Simulation Practice and Research Prior to PEER

Simulation in practice:
- Little use of pushover analysis, almost no use of nonlinear dynamic analysis
- Models based on simple hinge representation
- Very little consideration of soil-structure interaction

Simulation in research:
- Embedding of computational procedures in codes makes it difficult to use new models and Information Technology
- “Closed-source” was the norm creating islands of software
- Poor integration between structural and geotechnical simulation
- Very little incorporation of probabilistic methods in simulation

Combination of two impeded progress and both were inadequate for PBEE
Approach for Simulation in PEER

Open-Source Community Simulation Framework

Computation
- Algorithms, Solvers, Parallel/distributed computing

Information Technology
- Software framework, Databases, Visualization, Internet/grid computation

Models
- Simulation models, Performance models, Limit state models
- Material, component, system models
OpenSees has been under development by PEER since before 1997

Large group of developers and users

Open-source and license for non-commercial use

The only widely used community-based simulation software in CEE

NEES has adopted OpenSees for the NEESit simulation component

http://opensees.berkeley.edu
OpenSees Approach to Simulation

- **Basic approach:**
 - Modular software design for implementing and integrating modeling, numerical methods, and IT for scalable, robust simulation.
 - Open-source software for building a community of users and developers.
 - Focus on capabilities needed for PBEE.

- **Most users:** a “code” for nonlinear analysis.

- **Generally:** a software framework for developing simulation applications.
Form Follows Mechanics

Use of design patterns.

\[s = \int_A a_s^T \sigma dA \approx \sum_{i=1}^{N_f} (a_s^T \sigma) A_i \]

\[a_s = [1 \quad -y \quad z] \]
Framework Design/Source for Developers

Source Code Viewing/Updating

Class Specification
Application Program Interface

OpenSees

Click on a directory to enter that directory. Click on a file to display its revision history and to get a chance to display diffs between revisions.

Current directory: [local] / OpenSees / SRC / element / 20nbrick

<table>
<thead>
<tr>
<th>File</th>
<th>Rev.</th>
<th>Age</th>
<th>API</th>
<th>Last log entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makefile</td>
<td>1.2</td>
<td>2 years</td>
<td></td>
<td>2.yang - adding 20 node brick element that is not tensor based</td>
</tr>
<tr>
<td>TcfTwentyNodeBrickCommand.cpp</td>
<td>1.5</td>
<td>4 years</td>
<td></td>
<td>small changes, mostly on top... Boris Jeremic (@bdavis.edu)</td>
</tr>
<tr>
<td>TcfTwentyNodeBrickCommand.cpp</td>
<td>1.2</td>
<td>10 months</td>
<td></td>
<td>fmk - changes for vc 2005 compiler; problems with understanding some end-of-line...</td>
</tr>
<tr>
<td>TwentyNodeBrick.cpp</td>
<td>1.21</td>
<td>3 months</td>
<td>api</td>
<td>removing unused Information argument from setResponse</td>
</tr>
<tr>
<td>TwentyNodeBrick.h</td>
<td>1.14</td>
<td>3 months</td>
<td>api</td>
<td>removing unused Information argument from setResponse</td>
</tr>
<tr>
<td>Twenty_Node_Brick.cpp</td>
<td>1.5</td>
<td>3 months</td>
<td>api</td>
<td>removing unused Information argument from setResponse</td>
</tr>
<tr>
<td>Twenty_Node_Brick.h</td>
<td>1.4</td>
<td>3 months</td>
<td>api</td>
<td>removing unused Information argument from setResponse</td>
</tr>
</tbody>
</table>

Show only files with tag: All tags / default branch □ Module path or alias: OpenSees/SRC/element Go

#include <TwentyNodeBrick.h>

Inheritance diagram for TwentyNodeBrick:

```
    TaggedObject
       ↑
       ↑
    MovableObject
       ↑
       ↑
    DomainComponent
       ↑
       ↑
    Element
       ↑
       ↑
    TwentyNodeBrick
```

List of all members

Public Member Functions

```
TwentyNodeBrick (int element_number, int node_num_1, int node_num_2, int node_num_3, int node_num_4, int node_num_5, int node_num_6, int node_num_7, int node_num_8, int node_num_9, int node_num_10, int node_num_11, int node_num_12, int node_num_13, int node_num_14, int node_num_15, int node_num_16, int node_num_17, int node_num_18, int node_num_19, int node_num_20); #Material *GlobalModel, double b1, double b2, double b3, double r, double p);
TwentyNodeBrick ()
```

const char * getClassName (void) const

OpenSees Support @ berkeley.edu ©2006, UC Regents Supported by the National Science Foundation
OpenSees Framework Applications

Tall Building Analysis

Advanced Visualization

Seismic Performance of Urban Regions
NEESit: High-Performance Computing

- OpenSees implementations
 - Domain decomposition
 - High-fidelity site response by DRM
 - Large-scale parameter studies

- Teragrid allocation and usage
 - NEES wide 50,000 SU’s (OpenSees, ABAQUS, Adina, LS-Dyna)
 - 22 projects have access to allocation

- NEESsphere interfaces for HPC jobs
OpenSees Integration with NEESit
What Has Been Accomplished by PEER in Simulation/IT for Practice and Research?

Simulation in practice:
- Much more robust and validated models for R/C
- Dynamic analysis for suite of ground motions used more widely, provide improved understanding of EDP distributions for PBEE
- Recognition of importance of SSFI on many structures

Simulation in research:
- The first open-source software for earthquake engineering; developed an enabling technology for the community
- Introduced a new generation of students to modern IT
- Tackled more complex problems using teams of researchers to develop models, computational procedures, and model validations
- Improved coordination between structural and geotechnical simulation
- Created new opportunities for IT and cyberinfrastructure advances in earthquake engineering through NEES and other NSF initiatives

Combination of two accelerated advances for simulation in PBEE, incorporated modern IT, and created a community of users.