Risk Decision Making for Buildings – From Owners to Society

Mary Comerio

University of California, Berkeley

PEER Summative Meeting 13 June 2007
Defining Links Between Planning, Policy, Economics and Earthquake Engineering

Workshop in May 1998 Raised Questions:

- How to integrate disciplines and find a common language?
- Can models from various disciplines be linked?
- What should performance standards look like?
- **Can a standardized loss-accounting system be developed?**
- What are meaningful metrics?
- What are financial implications of performance standards?
- What is known about adoption, implementation and enforcement of performance based codes?
Key Milestone: Defining Loss Metrics

What the 3 D’s Mean to Decision Makers

Death
- Casualty and Injury Prevention
- Reduces Risks to Users

Dollars
- Estimated Losses in Scenarios or Annualized
- Allows Comparison of Losses vs. Mitigation Costs

Downtime
- Impact of Building Damage on Operations
- Sets value of recovery time
PEER - PBEE Methodology Components

- Decision Variable ($loss, downtime, life-safety$)
- Damage Measure (condition assessment, necessary repairs)
- Eng. Demand Param. (drift, acceleration)
- Intensity Measure (Sa, Sv, duration ...)

Loss Models
Performance (Damage) Models
Simulation Models
Testbeds Applied Methodology

<table>
<thead>
<tr>
<th>Lab</th>
<th>Floor</th>
<th>Safety</th>
<th>Operability</th>
<th>Safety</th>
<th>Operability</th>
<th>Safety</th>
<th>Operability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>0.14</td>
<td><0.01</td>
<td>0.62</td>
<td>0.06</td>
<td>0.96</td>
<td>0.50</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>0.50</td>
<td>0.18</td>
<td>1.00</td>
<td>0.72</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>0.58</td>
<td>0.44</td>
<td>0.94</td>
<td>0.82</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>XL</td>
<td>4</td>
<td>0.72</td>
<td>0.36</td>
<td>0.96</td>
<td>0.78</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>XO</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expected NPV (Structural)	Downtime	Deaths
Do nothing | $0 | 16 days| 0.13 |
Moderate retrofit | $142,178 | 7.6 days| 0.06 |
Extensive retrofit | -$61,319 | 3.2 days| 0.02 |
Benchmark Project Integrated Loss Studies

<table>
<thead>
<tr>
<th>Discussion Point</th>
<th>Beck, Mitrani-Reiser, & Porter</th>
<th>Miranda, Aslani, & Ramirez</th>
<th>Moehle, Stojadinovic, Der Kiureghian, & Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of damageable components</td>
<td>Group damageable building components into assembly groups</td>
<td>Divided by building components by floors</td>
<td>Group damageable building components into performance groups sensitive to the same EDP.</td>
</tr>
<tr>
<td>Casualty</td>
<td>Use Shoaf and Seligson data to estimate value of a statistical life</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Downtime** | Use Comerio data | ABAG/Building Department Data on Wood Residential Buildings:
2 Years to Repair
4 Years to Rebuild
Stanford and UC Case Study Experience:
2-3 Years Min Repair of Large Buildings
Plus Mobilization Time and External Conditions | |
Benchmark Study Integrated “3 D” Losses

<table>
<thead>
<tr>
<th>Design Description</th>
<th>EAL ($)</th>
<th>EALD ($)</th>
<th>EALF ($)</th>
<th>EAL TOTAL ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Baseline perimeter frame design.</td>
<td>66,585</td>
<td>20,519</td>
<td>4,900</td>
<td>92,004</td>
</tr>
<tr>
<td>B: Same as A, but with code-min strengths.</td>
<td>95,656</td>
<td>28,362</td>
<td>4,550</td>
<td>128,568</td>
</tr>
<tr>
<td>C: Same A, but with uniform beam/column throughout.</td>
<td>51,933</td>
<td>22,207</td>
<td>5,600</td>
<td>79,740</td>
</tr>
<tr>
<td>D: Same as C, but no SCWB provision.</td>
<td>112,930</td>
<td>32,726</td>
<td>79,800</td>
<td>225,456</td>
</tr>
<tr>
<td>E: Baseline space frame design.</td>
<td>49,422</td>
<td>19,517</td>
<td>3,500</td>
<td>72,439</td>
</tr>
</tbody>
</table>

Ref: J. Mitrani Reiser
UCB Implementation of Performance Goals

- Risk Management: Building-Specific and Inventory Performance Objectives
- No closure > 30 days
UC Risk Reduction – Seismic Retrofits (2000-06)

<table>
<thead>
<tr>
<th>Source and Loss Parameter</th>
<th>Scenario Earthquake Level</th>
<th>Occasional (50%/50 Yrs.)</th>
<th>Rare (M7.0)</th>
<th>Very Rare (M7.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic losses w/Closure ($ millions) - 10 Buildings (approx. $1.1 billion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before Seismic Retrofit</td>
<td>$171</td>
<td>$568</td>
<td>$761</td>
<td></td>
</tr>
<tr>
<td>After Seismic Retrofit</td>
<td>$31</td>
<td>$219</td>
<td>$337</td>
<td></td>
</tr>
<tr>
<td>Risk Reduction</td>
<td>$140</td>
<td>$349</td>
<td>$424</td>
<td></td>
</tr>
</tbody>
</table>

Deaths and Serious Injuries based on ECO (approx. 1,350 people)			
Before Seismic Retrofit	23	104	153
After Seismic Retrofit	0	3	7
Risk Reduction	23	101	146

Ref: C. Kircher
ATC 58 Products Use PEER Methods

Guidelines for Seismic Performance

Recommendations for:
- building officials
- building owners
- lenders
- tenants
- insurers

how to take advantage of PBEE

Ref: R. Hamburger
Performance Goals for Risk Management

- Non-owners Use Performance to Set and/or Limit Annualized Losses
 - Insurance and Re-insurance

- Real Estate Owners Use Performance Goals to Manage Assets Pre- and Post-Disaster
 - Government, Institutions
 - Lenders, Portfolio Managers
 - e.g. St. Louis Art Museum
 - Set Design Criteria for Addition
 - e.g. Arden Realty, LA
 - Requires Tenant Insurance
 - Plans for Downtime in Leases
PEER Established a Performance Vocabulary

- Defining and Costing Damage to Structural and Nonstructural Systems and Contents
- Defining and Incorporating the Risk to Life in Financial Terms
- Defining Mobilization and Repair Time; Establishing Baseline Data
- Used by Engineers, Owners, Insurance, Portfolio Managers, Government, etc.