Background

The socket connection is a column-to-footing connection created by placing a precast column into an excavation and then casting the footing concrete around the column. The column has an intentionally roughened surface in the region that is embedded into the foundation in order to create a strong bond with the footing. However, the current means of roughening has proven to be labor intensive and can not be implemented on a column with a circular cross section. Using precast components in bridges has the potential to significantly reduce the construction time, which will mitigate issues caused by the construction process, such as increased traffic congestion and pollution.

The biggest challenge facing precast construction in seismic regions is designing a connection that can be constructed quickly and provide adequate strength under earthquake loading.

Objectives

- Develop novel methods of creating the roughened surface on a precast column that are constructible and allow for a column with an arbitrary section
- Conduct push through tests to determine the shear strength at the column-to-footing interface
- Determine the effectiveness of each roughening method based on strength and ease of implementation

Methods

- 4” x 8” precast cylinder is cast into a 12” x 6” cylindrical foundation
- Applied four methods of roughening:
 - Chemical Methods
 - Mechanical Methods
- Basis of Comparison:
 - Smooth surface (lower bound)
 - Monolithic specimen (upper bound)
- Apply axial load until push through failure occurs

Results

- Peak stress is less consistent than stress at post-peak displacements
- Chemical roughening is easily applied and performed better than the mechanical methods
- All roughening methods produced a shear strength that exceed the nominal shear resistance determined from AASHTO LRFD Bridge Design Specifications, section 5.8.4.

Conclusions

- In-form cement retarders are a viable means of roughening for the socket connection, but results should be confirmed by larger scale tests before field implementation
- Results gathered from the mechanically roughened specimens may not be valid due to scaling imperfections and needs verification before use

Acknowledgments

This research was supported by the Pacific Earthquake Engineering Research Center (PEER) and the National Science Foundation (NSF). This research would not have been possible without the help from graduate students, faculty, and staff at the University of Washington. Thank you to Bryan Kennedy, Jeffrey Schaefer, Professor John Stanton, and Professor Marc Eberhard for their guidance and support throughout this project. I also want to thank Heidi Tremayne for organizing this internship program and giving me this amazing opportunity to explore my interest in earthquake engineering research. Lastly, I offer a special thanks to my research partner, Matt Brosman, for his hard work and dedication throughout this summer.