Concrete-Filled-Tube Column-to-Cap-Beam Welded Connection Detail

PEER Internship Program – Summer 2013

Undergraduate Intern: Vivian T. Steyert, Harvey Mudd College
Faculty Mentors: Dawn E. Lehman, PhD, PE & Charles W. Roeder, PhD, PE
Graduate Mentors: Max T. Stephens

This research was conducted at the University of Washington (UW)

Introduction

Concrete-filled tubes (CFTs) provide several advantages over traditional reinforced concrete or hollow steel columns.

Steel tube
- Replaces formwork
- Replaces reinforcing steel
- Confines concrete, increasing strength and strain capacity
- Increases flexural capacity

However, there are no standardized connection details for CFT columns. Current UW research focuses on column-to-cap beam connections, including the connection in Figure 1.

Concrete fill
- Delays buckling
- Increases axial capacity

Figure 1: Caltrans proposed CFT column-to-cap beam connection.

Research Objective

To evaluate the parameters affecting the proposed welded reinforcing-bar-to-steel-tube connection

Methods

Pullout test performed on 24 reinforcing bars welded into CFT as specified by Caltrans design.

Specimen Construction

Figure 2: Flare bevel groove weld connecting reinforcing bar to steel tube. Welding performed by licensed welder. FCAW weld with E70 electrode.

Test Setup

Experimental Parameters
- Bar bonding
- Weld strength
- Bar size
- Embedment depth

Instrumentation
- Load cell
- String potentiometers
- Strain gages

Figure 3: No. 9 bars welded into tube. PVC de-bonding staggered around tube.

Figure 4: Specimens during construction, ready for concrete fill.

Figure 5: Experimental test setup photo and schematic. String potentiometers, instrumentation rod, and catch removed from schematic for clarity.

Results

- Failure mode was reinforcing bar fracture in all cases, as shown by observation and force-displacement data.
- No weld damage observed.
- Significant concrete damage during bonded bar pullout.

Figure 6: Representative force-displacement curves for each bar size. Force normalized by theoretical bar yield strength P_y. Displacement normalized by embedded length L_e.

Figure 7: Typical failed No. 7 reinforcing bar.

Figure 8: Concrete damage from No. 11 reinforcing bar pullout. Photos taken after steel tube was torch-cut off.

Conclusions

- Connection failure mode was reinforcing bar fracture, as desired.
- De-bonding reinforcing bar from concrete increases ductility and decreases concrete damage.

Acknowledgements

Thanks to PEER and NSF for supporting my research this summer, and Caltrans; Professors Dawn Lehman and Charles Roeder for their guidance; Max Stephens for his excellent mentorship and advice; Heidi Tremayne for coordinating the PEER internship program; and Donovan Holder, Lisa Berg, and Vince Chaijaroen for their assistance in the lab.