Questions from TI Team

• How were the event/source data established for the NGA-East database?
• How can we address and quantify uncertainty in magnitude, focal depth and mechanism?
Source Metadata (1 of 3)

• Epicentral Location
 – Taken from special studies on individual earthquakes published in the literature
 – otherwise from ANSS (in US) or NRCAN (in Canada) online catalogs
• Earthquake depth
 – Taken from moment tensor solutions if available
 – otherwise taken from special studies on individual earthquakes published in the literature
 – otherwise from ANSS (in US) or NRCAN (in Canada) online catalogs

Source Metadata (2 of 3)

• Earthquake magnitude
 – Computed from seismic moment using Hanks and Kanamori (1979) – $M = \frac{2}{3} \log_{10}(Mo) – 10.7$
 – Averaged magnitudes computed from available moments from SLU website, published literature, Alison Bent (written communication), Jack Boatwright (written communication)
 – If moments or reported moment magnitudes not available, used relationships in NUREG-2115 (EPRI/USDOE/USNRC, 2012) (typically small eqs.)
Source Metadata (3 of 3)

• Focal Mechanism
 – Taken from SLU website or published literature
 – If no preferred mechanism given, both planes used

Distance Calculations (1 of 5)

• Only 4 earthquakes have rupture models
• For remaining earthquakes, utilized simulation process developed in NGA-West and NGA-West2 to estimate R_{RUP} and R_{JB}
Distance Calculations (2 of 5)

- Given hypocenter, simulate 101 potential rupture surfaces
 - Simulate rupture area using Somerville relationship developed for NGA-East
 \[\log_{10}(RA) = M - 4.25, \sigma_{\log_{10}(RA)} = 0.2 \]
 - Simulation aspect ratio, along strike hypocenter location, and down dip hypocenter location using relationships presented in Appendix B of Chiou and Youngs (2008)

Distance Calculations (3 of 5)

- Place rupture plane on hypocenter using focal mechanism
 - If no preferred plane, randomly select one of the two
 - If no focal mechanism, select style of faulting based on location, assume random strike, set dip to 90 for SS, 40 for reverse, 55 for normal
Distance Calculations (4 of 5)

• Place rupture plane on hypocenter using focal mechanism
 – If no preferred plane, randomly select one of the two
 – If no focal mechanism, select style of faulting based on location, assume random strike, set dip to 90 for SS, 40 for reverse, 55 for normal

Distance Calculations (5 of 5)

• Construct grid of pseudo sites evenly distributed around epicenter in distance range 0 to 300 km
• Calculate R_{RUP} to each pseudo site for each simulation
 – Calculate median distance to each pseudo site from simulations
 – Select single simulation k that minimizes the squared difference between median distance and the distance for the k^{th} simulated rupture across all pseudo sites.
 – Use selected k^{th} simulated rupture to compute distances for actual sites.
Treatment of Uncertainty

- Uncertainty in distance is greatest where data are sparsest
- Can assess impact of uncertainty through simulation
 - Simulate data sets incorporating uncertainty and refit to see effect on model parameters
 - Increase uncertainty in metadata and refit process
 - Extrapolate mean parameters back toward zero error
One Approach to Dealing with Data Errors in Nonlinear Models

References (1 of 2)

References (2 of 2)

