Epistemic Uncertainty: Previous Approaches

N. Abrahamson
NGA-East workshop
Jul 14, 2014

Epistemic Uncertainty:

Discrete Representation of Continuous Distribution
Logic Trees for Ground Motions

- Examples of SSHAC L3 and L4 Ground Motion Studies
 - TIP (1995)
 - Yucca Mtn (1998)
 - PEGASOS (2004)
 - BCHYDRO (2010)
 - SWUS (2014)

TIP (1995)

- SSHAC Level 4
- Type of Question
 - What is the median PSA at 5 Hz for a magnitude 6 earthquake at a distance of 20 km for a rock site?
- Answer
 - Scalar for each M,R,F pair
 - Discretize a continuous distribution
 - 5%, 50%, 95% values
 - Mutually exclusive, collectively exhaustive (MECE)
TIP (1995)

Yucca Mtn

- SSHAC Level 4
- Concept
 - Experts would consider many discrete M,R cases and make sure that the epistemic distribution was appropriate
- Type of Question
 - What is the median PSA at 5 Hz for a magnitude 6 NML earthquake at a distance of 10 km on the HW a rock site?
 - About 60 (M,R) Pairs and 9 frequencies
- Answer
 - Scalar for each case M,R,F
 - Describe a continuous distribution (may be asymmetric)
 - Mu, SigmaMu+, and SigmaMu-
 - Mutually exclusive, collectively exhaustive
Yucca Mtn

Used variable weights for GMPEs
Parameterized as sigma Mu
- Mag, dist, mech, period dependent

Yucca Mtn

• Difficulties
 – Too many evaluations needed (~540 cases H & V)
 • Experts all used weights on alternative models (empirical GMPEs, PS simulations, FF simulations) to develop an algorithm for determining the weights
 – Algorithms based on relative merits of models
 – Answer intended to be a description of statistical distribution
 • Used symmetric distributions
 – Results treated as independent for each case
 • No correlation between cases (e.g. different mag or dist scaling)
EPRI (2004)

• SSHAC level 3
• Concept
 – Define model clusters based on class of model with weights for each cluster
 – Address statistical uncertainty within each cluster
• Question
 – What is the weight for the cluster?
 – What are the weights of a GMPEs within each cluster?
• Answer
 – Vector PSA(M,R,F)
 – Weights capturing relative merits of clusters
 – Representative set of GMPEs and weights that discretize continuous distribution of GMPEs within each cluster
• Difficulties
 – Clusters evaluated for their merits, not for the range of ground motion models sampled
 – Not mutually exclusive, collectively exhaustive
 – Creates new models (not published models)

PEGASOS (2004)

• SSHAC Level 4
• Concept
 • If experts using weights on GMPEs to make their evaluation, then acknowledge this and directly ask about weights on GMPEs
• Type of Question
 – What at the weights on GMPEs for a given M,R,Freq range?
 • M5 – M7.5
 • Dist 0-150 km
 • Freq 0.3 to 50 Hz (plus pPGA)
• Answer
 – Vector PSA (M,R,F)
 – M,R,Freq dependent weights for GMPEs and point source models
• Difficulties
 – No longer a simple discretization of a continuous distribution
 – Weights represent relative merits of models
 – Not mutually exclusive, collectively exhaustive

Used mag-dist dependent Weights on GMPEs

Fig. 5.20: Comparison of the epistemic uncertainty of the median peak acceleration for magnitude 6.0 earthquake and a normal mechanism

BCHYDRO (2010)

- SSHAC Level 3
- Concept
 - Scaled backbone approach for subduction earthquakes
 - Weights on published GMPEs for crustal earthquakes
- Question
 - What are the weights on the GMPEs?
- Answer for subduction zones
 - Vector PSA for (M,R,F)
 - Backbone GMPE
 - Suite of scaled versions of the backbone GMPE
 - Uncertainty scale factor increases for larger magnitudes
 - Statistical weights for the scaled GMPEs
 - Discretize continuous distribution
 - Mutually exclusive, collectively exhaustive
- Difficulty
 - Does not address changes in the magnitude or distance scaling
Scaled Backbone Approach

- Advantages of scaled backbone
 - Weights on logic trees
 - Leads to models that are mutually exclusive
 - Models are collectively exhaustive in terms of ground motion levels
 - Easier to treat GMPE weights as probabilities

- Disadvantages of scaled backbone
 - Does not capture uncertainties in scaling (e.g. distance slope, magnitude slope)
 - Leads to over-estimation of width of fractiles
 - Creates new models (not published models)
SWUS (2014)

- SSHAC Level 3
- Concept
 - Develop a representative set of GMPEs that span the full range of technically defensible models
 - Capturing changes in magnitude and distance scaling
 - Mutually exclusive and collectively exhaustive in the Sammon’s map space
- Question
 - What are the GMPEs?
 - What are the weights on the GMPEs?
- Answer
 - Vector PSA (M,R) for each F
 - Statistical weights for the GMPEs
 - Discretize continuous distribution in Sammon’s map space
 - Mutually exclusive, collectively exhaustive
- Difficulty
 - Large number of GMPEs
 - Independent at each frequency (does not capture correlation across freq)

SWUS Epistemic Uncertainty
Discrete Representation of Continuous Distribution in 2 Dimensions
Summary

<table>
<thead>
<tr>
<th>Study</th>
<th>Approach</th>
<th>Resulting Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIP</td>
<td>Point estimates (M,R,F)</td>
<td>MECE for each point estimate</td>
</tr>
<tr>
<td>Yucca Mtn</td>
<td>Point estimates (M,R,F)</td>
<td>MECE for each point estimate</td>
</tr>
<tr>
<td>EPRI</td>
<td>GMPE clusters</td>
<td>Merits weights for clusters</td>
</tr>
<tr>
<td></td>
<td>Suite of GMPEs within cluster</td>
<td>MECE within cluster</td>
</tr>
<tr>
<td>PEGASOS</td>
<td>GMPEs adjusted to site-specific conditions</td>
<td>Merit weights for GMPEs</td>
</tr>
<tr>
<td>BCHYDRO</td>
<td>Scaled backbone</td>
<td>MECE, but ignores correlation of M, R scaling</td>
</tr>
<tr>
<td>Hanford</td>
<td>Scaled backbone with alternative magnitude</td>
<td>MECE including correlation of M scaling</td>
</tr>
<tr>
<td></td>
<td>scaling</td>
<td></td>
</tr>
<tr>
<td>SWUS</td>
<td>Sampling GMPEs from Sammon’s maps, independent for each freq</td>
<td>MECE including correlation of M,R scaling</td>
</tr>
</tbody>
</table>