Epistemic Uncertainty in Median Ground Motions
SWUS project approach

Nicolas Kuehn\(^1\), SWUS TI Team

\(^1\)Pacific Earthquake Engineering Research Center

15 July 2014 - NGA East Workshop

Motivation

SSHAC Guidelines
To account for (epistemic) uncertainties in *probabilistic seismic hazard analysis*, one needs to capture the **center**, **body** and **range** of *technical defensible interpretations* (the **CBR** of the **TDI**).

- For a discrete set of GMPEs, this is difficult.
 \(\Rightarrow\) go to a continuous distribution of GMPEs
 - Assessment of models \(\Rightarrow\) Visualization tools
Epistemic Uncertainties
Ground Motions

To account for epistemic uncertainties in (median) ground motions
- Select GMPEs based on certain criteria, populate the logic tree
- give subjective weights
 - Problem: GMPEs are non-exclusive and not collectively exhaustive
 - Problem: GMPEs are not independent (NGA project)
- increase epistemic uncertainty by selecting a backbone model and scaling it up and down
 - misses epistemic uncertainty in magnitude/distance scaling

GMPE Model Space
GMPE Distribution

- Each GMPE is just a (discrete) point in modelspace
 - What about unpublished models?
 - Hypothetical additional developers would come up with different models.
- Center/body/range should be based on all models.
- Assumption: GMPEs are sampled from a distribution of models
Enhancing GMPE Model Space

GMPE distribution

- Each GMPE f_i is a sample from a distribution \mathcal{F}:
 \[f \sim \mathcal{F} \]

 - \mathcal{F} can be thought of as a distribution over physically plausible functions.
 - In general, \mathcal{F} will be something complicated.
 - Simplification: all models have the same functional form, with coefficients θ_i:
 \[\mu_i(\ln Y) = f(\theta_i; M, R, \ldots) \]

- Then the distribution over GMPEs is a distribution over coefficients θ:
 \[\theta \sim \mathcal{D} \]
 \[\theta \sim \mathcal{N}(\theta; \mu_\theta, \Sigma_\theta) \]

Enhancing GMPE Model Space

Common Functional Form

Is a common functional form justified?

- GMPEs are generally similar
 - monotonically increasing with magnitude
 - monotonically decreasing with distance
 - restrictions on slopes with magnitudes/distances

- For some applications, only parts of the model are relevant.
GMPE Distribution

Estimation

- common functional form for median prediction
 \[\mu(\ln Y) = f(\theta; M, R, \ldots) \]
- for each GMPE \(i \), the set of coefficients \(\theta_i \) can be estimated
 - generating “data” (median predictions) for several scenarios, fit
- From the \(\theta_i \), calculate mean \(\mu_\theta \) and covariance \(\Sigma_\theta \).
- Given \(\mu_\theta \) and \(\Sigma_\theta \), sample new sets of coefficients \(\theta \) and thus generate new models.

Enhancing GMPE Model Space

Approach

Broadening the model space based of existing GMPEs
- Take selected GMPEs
- fit to common functional form
- estimate joint parameter distribution
- generate new models (sample from joint distribution)
- evaluate new models (visualization)
- reduce model space
GMPE Distribution
Application

- Diablo Canyon Power Plant (SWUS project)
 - SSHAC Level 3 project: Hazard estimation for DCPP (California)
 - Ground-motion characterization (source characterization is different project)
 - Project output: hazard for rock ($V_{S30} = 760m/s$)
 - controlling sources for DCPP are nearby faults (Los Osos, Hosgri, Shoreline)
 - controlling sources nearby strike-slip and reverse events

For this application, only specific parts of a GMPE are relevant.

GMPE Distribution
Application

- Diablo Canyon Power Plant (SWUS project)

Approach

- selected GMPEs: ASK 14, ASB13, BSSA 14, CaBo 14, ChYo 14, Id 14, ZhLu 11, Zh+ 06
- generate synthetic “data”
 - $M_w = 5., 5.2, \ldots , 8.$
 - $R_{JB} = 1., 2., \ldots , 30., 35., \ldots , 70.$ km, R_{rup} calculated from geometry footwall
 - $V_{S30} = 760m/s$
 - different values of Z_{tor} and hypocentral depth for each magnitude
 - 17 response spectral periods between $T = 0.01, \ldots , 3s$
Each GMPE is fitted to the following functional form:

\[f(M_W, R, Z_{tor}, F, T) = \]
\[\theta_1(T) - \exp(\theta_6(T))R + \exp(\theta_9(T))Z_{tor} + \exp(\theta_{10}(T))F + \]
\[(\theta_5(T) + \theta_6(T)(M_W - 5.))\log \sqrt{R^2 + \theta_7(T)^2} + \]
\[\begin{cases}
\theta_2(T)(5.5 - 6.5) + \theta_3(T)(M_W - 5.5), & M_w < 5.5 \\
\theta_2(T)(M_W - 6.5), & 5.5 \leq M_W \leq 6.5 \\
\theta_3(T)(M_W - 6.5), & 6.5 \leq M_W
\end{cases} \]
Common Functional Form

Fit

- fit to R_{RUP} and R_{JB}
- different Z_{tor} values for same magnitude

Common Functional Form

- fit models to common functional form using both R_{RUP} and R_{JB}
 - behave differently on the hanging wall
 - capture characteristics of both types
 - reduce misfit

- From fitted sets of coefficients, calculate μ_θ and Σ_θ
 \Rightarrow two coefficient distributions, one for R_{RUP}, one for R_{JB}
generate “data” for each GMPE

fit common functional form to each GMPE
GMPE Distribution

Approach

- generate “data” for each GMPE
- fit common functional form to each GMPE
- sample new GMPEs (1000 new models are shown)

uncertainty model of Al-Atik and Youngs (2014)

\[\ln Y = f(M, R, \ldots) \pm \alpha \sigma_{AY14}(T, M, F), \]

with \(\alpha = \{-2, 0, 2\} \)
GMPE Distribution
Evaluation

- In total, 15000 new models are sampled
 - 7500 from the R_{RUP}-distribution
 - 7500 from the R_{JB}-distribution
- 15000 new models too many for application
- need to evaluate with respect to center/body/range
 ⇒ visualize models in 2D (Scherbaum et al., 2010)

Visualization

- A GMPE is a function
- A function is an infinitely-dimensional vector (sort of)
 - discretize function → GMPE is a point in high-dimensional space
- Project points from HD to lower (2D, 3D) dimensions
Visualization

Example

- 1000 sampled models, evaluated at $M_W = 5, 6, 7$
 → each model is a point in 3D-ground-motion space
- models lie on lower dimensional manifold

Visualization

Method

- Go from 3D to higher dimensions ⇒ calculate model predictions at many different M, R scenarios
- perform principal component analysis (PCA)
- use output from PCA as input to Sammon’s mapping
 - minimizes differences between HD and 2D Euclidean distances
 - $d_E(x, y) = \sqrt{\sum_i^N (x_i - y_i)}$
GMPE Distribution
Visualization

- Visualization of models in 2D
 - $M_W = 5., 5.5, \ldots 8.$
 - $R_{JB} = 1., 2., \ldots, 10., 15., 20., 30.$
 - $F = 0, 1$
 - $T = 0.01s$
GMPE Distribution
Visualization

- Contour plot of Euclidean Distance (HD) to mean model

![Contour plot](image)

- The map can be used to select the center, body and range of median predictions.
 - 2D visualization of ground-motion space.
 - Need to evaluate the models.

Visualization of Model Space
Evaluation

To evaluate the models, different information is available:

- GMPEs
 - All GMPEs are published, good models → use GMPE distribution as is.

- Data
 - Select data that is relevant for the application, calculate likelihood, residuals.

- Simulations
 - Do finite-fault simulations, compare with models.
Visualization of Models
Comparison with Data

- data set underlying ASK 14, $R_{JB} < 70$ km, $M_W > 5$, number of recordings per event > 3, $V_{S30} > 250$ m/s corrected to $V_{S30} = 760$ m/s, on footwall

For each of the 15000 new models
- Residuals are calculated.
 - These are split into between-event and within-event residuals, δB_i and δW_{ij}.
- The log-likelihood is calculated (eq. (7) of Abrahamson and Youngs, 1992).
- Between and within-event variability τ and ϕ are fixed at the values of the BSSA 14 model.
Evaluation of Models
Residuals – Data

- Mean between residual \approx mean bias
- most models are approximately centered

Evaluation of Models
Visualization – Data

- Contour plot of mean between-event residual
Evaluation of Models
Visualization – Data

- Contour plot of log-likelihood

Evaluation of Models
Simulations

- Finite-Fault Simulations (Hosgri, Shoreline)
- Different scenarios: $M_W = 5.5, 6., 6.5, 6.6, 7.2$
- Three methods: ExSIM, GP, SDSU

- Treat as data: calculate residuals to all models

J. Bayless, K. Woodell
Evaluation of Models
Visualization – Data

Contour plot of mean between-event residual

Evaluation of Models
Visualization – Data and Residuals

Contour plot of mean between-event residual
Selection of models:
- calculate ellipse fitting the convex hull of all GMPEs ± uncertainty model (Al-Atik and Youngs, 2014)
- scale ellipse (times 0.5, 1.5)
- calculate intersection points of ellipse and contours of mean between-event residual (-0.3, -0.15, 0, 0.15, 0.3)
- select R_{RUP} and R_{JB} models closest to these points
- evaluate
Selection of Models

Scaling

- magnitude/distance scaling of original GMPEs and selected models

Selection of Models

Spectrum

- Selection is done for each period separately.
- Different number of selected models per period.
Models represent a large ground-motion space, but need to be weighted.

- Models that are more consistent with data (smaller absolute residual, larger likelihood) should receive higher weight.
- Models that are far from other models should receive higher weight (contain more information).

Weights are calculated by calculating some mean statistic (likelihood, residual) over the area of a selected model.
Selection of Models

Weights

Selected statistics:

- \(\frac{1}{\mu(\delta B)} \): 1/mean bias
 - NGA, simulations
- likelihood: variability
 - NGA
- “prior” – value of PDF of GMPE distribution (uninformativ)

\[w_{\text{Total}} = 0.6 \left(0.6 \times w_{\text{Residual}_{\text{NGA}}} + 0.4 \times w_{\text{LL}_{\text{NGA}}} \right) + 0.2 \times w_{\text{Residual}_{\text{SIM}}} + 0.2 \times w_{\text{Prior}} \]
Weighted Models

Distribution

![Graph showing weighted models with parameters: $M_W = 7.5$, $R_x = -10$, sof = 1, $T = 0.01$.]

- **CDF**
- **Ln(HPSAL)**
- **$M_W = 7.5$**
- **$R_x = -10.$**
- **sof = 1**
- **$T = 0.01$**

- **Legend**:
 - wTotal
 - wResidual_NGA
 - wLL_NGA
 - wPrior
 - wResidual_SIM
 - GMPEs

- **Axes**: M_W vs. Ln(PSA)
- **Range**: M_W from 5.0 to 8.0
- **Ln(PSA)** from -5.0 to 0.0

Weighted Models

Distribution

![Graphs showing different distributions with parameters: $M = 6.5$, $R_x = -10$, sof = 0, $T = 0.01$.]

- **Graph 1**: M_W vs. Ln(PSA) with $M = 6.5$, $R_x = -10$, sof = 0, $T = 0.01$
- **Graph 2**: $-R_x$ vs. Ln(PSA) with $M = 6.5$, sof = 0, $T = 0.01$
- **Graph 3**: Ln(PSA) vs. T with $M = 6.5$, $R_x = -10$, sof = 0, T range from 0.01 to 2.00
NGA East

- Calculation of PSA using different methods (empirical FAS, stochastic simulations)
 - Distribution of Models (posterior distribution?)
 - Do they overlap?
- Evaluation of models
 - Data
 - Simulations

Acknowledgements

- SWUS PPRP
 - Steven Day
 - Brian Chiou
 - Ken Campbell
 - Tom Rockwell
- Nick Gregor
- Gabriel Toro
- Linda Al-Atik
References

K. W. Campbell and Y. Bozorgnia (2014) NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5%-Damped Linear Acceleration Response Spectra, *Earthquake Spectra*

References
