Objective

• Develop of a set of GMPEs that are mutually exclusive and collectively exhaustive (MECE)

• Assign weights to the GMPEs that represent the probabilities
 – Discritize a continuous distribution
Main Issue

• Candidate GMPEs
 – Provide a small sample of the full range
 – GMPEs may be correlated (evaluation of similar data)
 – Not MECE

• Weighting of candidate GMPEs
 – Often a relative merit weight, not a probability

Defining MECE GMPEs

• Scaled Backbone approach
 – Select/develop a representative GMPE
 • Defines the backbone model
 – Scale the backbone model up and down
 • Only change the constant term
 • Does not address range of mag, dist scaling (or other effects)
 • MECE in terms of the amplitude at a given M,R

• Sammons map approach
 – Captures alternative in mag, dist scaling in addition to the constant term
 – MECE in sammons map space
General Approach

- Select Set of Candidate GMPEs
 - No weights (Pass / no pass)
 - May include limits on range of applicability for each model
- Expand the Set of Candidate GMPEs
 - Interpolate and extrapolate range from published GMPEs
 - Define the full continuous space of possible GMPEs
- Use Sammons maps to compare the GMPEs (one period at a time)
 - Continuous space of GMPEs
- Discritize the continuous space to a manageable number of models (cells in Sammons map)
- Select a representative GMPE for each cell
- Assign a weight to each cell (each representative GMPE)
 - TI team Evaluation
Select Candidate Set of GMPEs

- TI team evaluation
 - Evaluate available GMPEs
 - Select those that are considered applicable
 - Traditional evaluation

Expand Set of Candidate GMPEs

- SWUS approach
 - Fit each candidate GMPE to a common functional form for the FW only
 - Evaluate the covariance of the coefficients
 - Equal weight assigned to each candidate GMPE
 - Sample the covariance to generate 2000 new GMPEs for the FW
 - Extrapolates and interpolates
 - Restrict models to avoid non-physical models (e.g. don’t allow PSA to decrease with magnitude)
Use Sammons Maps to Compare GMPEs

- Compare the GMPEs in terms of their ground motions, not the method used to generate them.

Discritize the Continuous Space of GMPEs

- Set the subset of the range to consider
 - Generated set of GMPE should be too broad
- Define cells in the selected subregion
Select a Representative GMPE for each Cell in the Sammons map

- GMPE should be “Representative” in terms of impacts on hazard
- Approach
 - Use a simplified representative source model
 - Compute the hazard for each model (FW only)
 - Compute the mean hazard for the GMPEs in a cell
 - Select the GMPE that has the hazard that is closest to the mean hazard for the cell
- Add a HW model to the selected GMPE
 - Separately, 5 HW models were developed, each with equal weight.
 - Either use all 5 HE models or randomly select one of five
- These are the median GMPE branches on the logic tree

Assign a Logic Tree Weight to Each Cell

- Main TI Team evaluation
- Compare to Empirical Data Sets
 - Mean event term (average bias) by cell
 - Likelihood (bias and variability) by cell
 - Data sets
 - NGA-East data (pick M,R ranges)
 - MMI data (did you feel it)
- Prior (Equal weighting)
 - Proportional to number of GMPEs within a cell
Example: Comparisons to Data Sets

General Approach

- Select Set of Candidate GMPEs
 - TI team Evaluation
- Expand the Set of Candidate GMPEs
- Use Sammons maps to define the continuous space of GMPEs (one period at a time)
- Discritize the continuous space to a manageable number of models (cells in Sammons map)
- Select a representative GMPE for each cell
- Assign a weight to each cell (each representative GMPE)
 - TI team Evaluation