Pacific Earthquake Engineering Research
Approach to Random Vibration Theory (RVT)
for NGA-East

Albert Kottke, Norman Abrahamson, David Boore,
Christine Goulet, Justin Hollenback, Tadahiro Kishida,
Armen Der Kiureghian, Nicolas Kuehn, Ellen Rathje,
Walter Silva, Eric Thompson, & Xiaoyue Wang

October 30, 2014
Outline

Motivation for Using RVT

Introduction to RVT

Peak Factor Formulations
 Vanmarcke Peak Distribution
 Discussion

Processing Time Series
 Effective Amplitude
 Time Series Processing

Conclusion
Motivation for Using RVT

- Response spectrum has been the standard for:
 1. engineering design and evaluation
 2. ground motion models
- Response spectrum depends on characteristics of single-degree-of-freedom oscillators – response at f_n depends on lower frequencies
- Using Fourier amplitude spectra simplifies some problems:
 1. Application of ”factors” (e.g., κ_0, site amplification, etc.)
 2. Limited bandwidth of recorded motions
- RVT offers a method for calculation of mean response spectrum
Random vibration theory defines a motion by:

1. Frequency content
 - Fourier amplitude spectrum, $Y(f)$ (seismological community)
 - Power-spectral density (structural community)
 - (indirectly) Response spectrum

2. Stationary duration – time with constant statistical properties

Expected values in the time domain are computed using extreme value statistics, which is used to define the peak factor relationship.

Response of a system (site response, oscillator response, structural response) can be computed by applying the appropriate transfer function.
RVT Calculation Steps

1. Apply transfer function (optional)
2. Compute root-mean-squared response (y_{rms}):

$$y_{\text{rms}} = \sqrt{m_0/T_{\text{gm}}}$$

T_{gm} is the ground motion duration
m_0 is first spectral moment computed by:

$$m_k = 2 \int_0^{\infty} (2\pi f)^k |Y(f)|^2 df$$

3. Compute the peak factor ($p_f = y_{\text{max}}/y_{\text{rms}}$)
4. Compute time domain peak value ($y_{\text{max}} = p_f \cdot y_{\text{rms}}$)
Peak Factor Formulation

- Defines the distribution of peaks based on spectral moments of the ground motion

- A number of proposed peak factor formulations:
 2. Davenport (1964)
 3. Vanmarcke (1975)
 5. Toro and McGuire (1987)

- General assumptions:
 - band-limited white Gaussian noise with zero mean
 - stationary stochastic process over duration interval
 - random phase angles

- Cartwright & Longuet-Higgins (56) assume statistical independence of peaks (Poisson process)

- Vanmarcke (76) extended peak factor formulations to include the potential for temporal clustering
Vanmarcke (1975) Peak Distribution

Cumulative distribution of peak values defined by:

\[F_x(x) = \left[1 - \exp \left(\frac{-x^2}{2} \right) \right] \]

\[\cdot \exp \left\{ -N_z \left[1 - \exp \left(-\sqrt{\frac{\pi}{2}} \cdot \delta_e \cdot x \right) \right] \right\} \]

where \(\delta_e \) is defined as:

\[\delta_e = \delta^{1+b} = \left[1 - \frac{m_1^2}{m_0 \cdot m_2} \right]^{(1+b)/2} \]

and \(b \) is empirically calculated to be 0.2

Expected peak factor computed by:

\[E[x] = \int_0^\infty [1 - F_x(x)] dx \]
Comparison of V75 and DK80 Peak Factors

DK80 is simplifies V75 with in minor differences at low N_z, which are important at long periods
Kottke and Rathje (2013) observed differences between TS and RVT (CLH56) site response. On-going research indicates improved agreement using D80 RVT.
Discussion of Peak Factors

- CLH56 assumes statistical independence between local peaks which is a significant approximation.
- CLH56 shortcomings can be partially addressed through empirical duration modification (see Boore and Thompson, 2012), but fail to address underlying statistical deficiencies.
- V75 is more theoretically robust, but not as widely used within seismology.
- Empirical duration modifications will be developed for V75.
- CLH56 and V75 are both recommended, but V75 is preferred.
Processing Time Series for RVT

- Fourier amplitude spectra (FAS) computed from time series will be used to develop ground motion model of FAS
- Need to develop an orientation independent FAS to represent the two horizontal components from as-recorded ground motions
- Reduce frequency spacing to a reasonable number while maintaining consistent characteristics for RVT
Effective Amplitude

Effective spectra defined as:

\[
EA(f) = \sqrt{\frac{1}{2} [FA_{H1}(f)^2 + FA_{H2}(f)^2]}
\]

Average is performed on the \(FA^2 \) to maintain power (Boore, 2003)
Time Series Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate (1/sec)</td>
<td>10, 20, & 40</td>
<td>50, 100, & 200</td>
</tr>
<tr>
<td>Time step, Δt (sec)</td>
<td>0.1, 0.05, & 0.025</td>
<td>0.02, 0.01, & 0.005</td>
</tr>
<tr>
<td>Duration (sec)</td>
<td>3276.8</td>
<td>2621.44</td>
</tr>
<tr>
<td>2^n</td>
<td>15, 16, & 17</td>
<td>17, 18, & 19</td>
</tr>
<tr>
<td>Freq. step, Δf (Hz)</td>
<td>0.00030158</td>
<td>0.0003815</td>
</tr>
</tbody>
</table>

- Time series were classified and zero padded to achieve consistent frequency increments.
- Large number of frequencies which need to be reduced for ground motion model development.
Evaluation of Time Series Processing

- Selected the Konno and Ohmachi (1998) smoothing window
- Smoothing windows were evaluated to ensure no change in RVT characteristics:
 1. m_0
 2. $\delta = \sqrt{1 - m_1^2/(m_0 \cdot m_2)}$
 3. $f_z = \sqrt{m_2/m_0}/\pi$
 4. $f_e = \sqrt{m_4/m_2}/\pi$
- Considered:
 1. Number of points per decade
 2. Width of smoothing operator
Results of TS Evaluation at 0.2 sec

<table>
<thead>
<tr>
<th>Points per Decade</th>
<th>Operator Width</th>
<th>m_0</th>
<th>δ</th>
<th>f_z</th>
<th>f_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1/15</td>
<td>21%</td>
<td>15%</td>
<td>87%</td>
<td>92%</td>
</tr>
<tr>
<td>30</td>
<td>1/30</td>
<td>12%</td>
<td>10%</td>
<td>66%</td>
<td>78%</td>
</tr>
<tr>
<td>50</td>
<td>1/30</td>
<td>25%</td>
<td>24%</td>
<td>89%</td>
<td>94%</td>
</tr>
<tr>
<td>50</td>
<td>1/50</td>
<td>14%</td>
<td>13%</td>
<td>73%</td>
<td>83%</td>
</tr>
<tr>
<td>100</td>
<td>1/30</td>
<td>99%</td>
<td>98%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>100</td>
<td>1/100</td>
<td>17%</td>
<td>15%</td>
<td>79%</td>
<td>88%</td>
</tr>
</tbody>
</table>
Examples of Smoothed TS

Effective Amplitude Spectra (EAS) and smoothed and down-sampled Effective Amplitude Spectra (S-DS EAS). The red dashed vertical lines represent the high-pass (HP) and low-pass filters (LP) of the record.
Conclusion

- Range of peak factor formulations were considered for response spectra calculation and beyond.
- Vanmarcke (1975) is the preferred RVT peak factor formulation due to its ability to accurately model both response spectra, as well as other responses.
- Effective amplitude spectra will be computed by the average power of two horizontal components (i.e.,
 \[EA = \sqrt{\frac{FA_1^2 + FA_2^2}{2}} \]
- Standard time series processing methodology evaluated against RVT parameters.
- Recommended processing approach is a Konno and Ohmachi (98) operator with a width of 1/30\(^{th}\) of a decade, and 100 frequency points per decade.