NGA-West 2: Regional Path Effects, Aftershock Effects, and Site Response

Jonathan P. Stewart, Ph.D., P.E.
Professor and Chair
University of California, Los Angeles

USSD COMMITTEE ON EARTHQUAKES
NGA/Ground Motion Estimation Workshop

April 10, 2014
Acknowledgements

Financial Support: PEER Center

Collaborators: Emel Seyhan, Risk Engineering, Newark, CA
David M. Boore, USGS, Menlo Park, CA
Gail M. Atkinson, Western Univ., Ontario, Canada
All other NGA developers and supporting researchers
Outline

• BSSA GMPE (Boore-Stewart-Seyhan-Atkinson)
• Path effects and their regional dependence
• Are aftershock motions different from mainshocks?
• Site response model: V_{s30}-scaling & basin depth effects
• Use of non-ergotic site terms for dams
• Summary
BSSA GMPE

- Database
BSSA GMPE

- Database
BSSA GMPE

• Database

4147 sites: 49% with V_{s30} from measurements
BSSA GMPE

- Database
- Predictor variables
BSSA GMPE

![Graph showing PGA (g) and PGA (R_x / PGA (R_x < 0)) vs. R_x (km) for different models.

- Light grey lines: Simulation-based models
- Black lines: R_{ubr}-based model

The graph includes a note: δ = 45 deg, M 7 surface reverse]
BSSA GMPE

- Database
- Predictor variables

\[M, R_{JB} \]

Fault type: NS, RS, SS

Site parameters: \(V_{S30}, \delta z_1 \)

![Graph showing depth vs. Vs30 for California and Japan with different site conditions.](a)
BSSA GMPE

- Database
- Predictor variables

The equations

\[
\ln Y = F_E (M, \text{mech}) + F_P (R_{JB}, M, \text{region}) + F_S (V_{S30}, R_{JB}, M, z_1) + \varepsilon_s \sigma (M, R_{JB}, V_{S30})
\]

- $R_{JB} = 1$ km, $V_{S30} = 760$ m/s
- Strike slip
- Reverse
- Normal
BSSA GMPE

- Database
- Predictor variables
- The equations

\[
\ln Y = F_E \left(M, mech \right) + F_P \left(R_{JB}, M, region \right) + F_S \left(V_{S30}, R_{JB}, M, z_1 \right) + \varepsilon_n \sigma \left(M, R_{JB}, V_{S30} \right)
\]
BSSA GMPE

- Database
- Predictor variables

- The equations

\[
\ln Y = F_E(M, \text{mech}) + F_p(R_{JB}, M, \text{region}) + F_S(V_{S30}, R_{JB}, M, z_1) + \epsilon_n \sigma(M, R_{JB}, V_{S30})
\]
Outline

• BSSA GMPE

• **Path effects and their regional dependence**
 • Are aftershock motions different from mainshocks?
 • Site response model: V_{s30}-scaling & basin depth effects
 • Use of non-ergotic site terms for dams

• Summary
Path Effects

Distance attenuation

\(\ln Y \)

1 km \hspace{1cm} 10 km \hspace{1cm} 100 km

Given M

\(\ln R \)
Path Effects

Distance attenuation

![Graph showing distance attenuation with saturation near fault and a given magnitude](image)

Saturation: near fault

Given M

- InY
- 1 km
- 10 km
- 100 km

InR
Path Effects

Distance attenuation

Given M

Constant slope: M-Dependent geometric spreading
Path Effects

Distance attenuation

\[\text{Given } M \]

\[\ln Y \]

\[\ln R \]

1 km 10 km 100 km

Large \(R \): Anelastic attenuation
Path Effects

Distance attenuation

\[\text{InY} \]

\[\text{InR} \]

1 km 10 km 100 km

Given M
Path Effects

Distance attenuation

\[\text{InY} \]

\[\text{InR} \]

1 km 10 km 100 km

Given M

High Q

Low Q
Path Effects

- CA inelastic term, c_3
Path Effects

- **CA inelastic term, c_3**

\[\ln Y_{ij} = \eta_i' + c_1' \ln \left(\frac{R}{R_{ref}} \right) + c_3 \left(R - R_{ref} \right) \]
Path Effects

- **CA inelastic term,** \(c_3 \)

\[
\ln Y_{ij} = \eta_i' + c_1' \ln \left(\frac{R}{R_{\text{ref}}} \right) + c_3 \left(R - R_{\text{ref}} \right)
\]
Path Effects

- CA inelastic term, c_3
- Main regression performed with fixed c_3 from CA.

$$F_p(R_{JB}, M, region) = \left[c_1 + c_2(M - M_{ref}) \right] \ln \left(\frac{R}{R_{ref}} \right) + (c_3 + \Delta c_3) \left(R - R_{ref} \right)$$
Path Effects

- CA inelastic term, c_3
- Main regression performed with fixed c_3 from CA.
- Compute residuals

Total residual:

$$R_{ij} = \ln Y_{ij} - \mu_{ij} \left(M, R_{JB}, V_{S30} \right)$$

Partitioning into within- and between-event components:

$$R_{ij} = c_k + \eta_i + \epsilon_{ij}$$
Path Effects

• CA inelastic term, c_3
• Main regression performed with fixed c_3 from CA.
• Compute residuals

Total residual:

$$R_{ij} = \ln Y_{ij} - \mu_{ij} \left(M, R_{JB}, V_{S30} \right)$$

Partitioning into within- and between-event components:

$$R_{ij} = c_k + \eta_i + \varepsilon_{ij}$$
Path Effects

- CA inelastic term, c_3
- Main regression performed with fixed c_3 from CA.
- Compute residuals

Total residual:

$$R_{ij} = \ln Y_{ij} - \mu_{ij} \left(M, R_{JB}, V_{S30} \right)$$

Partitioning into within- and between-event components:

$$R_{ij} = c_k + \eta_i + \epsilon_{ij}$$
Within- and Between-Event Variability

- Data, $+\eta$ event
- Fit, $+\eta$ event
- GMPE mean
- Fit, $-\eta$ event
- Data, $-\eta$ event

Intensity Measure vs. Site-source distance
Path Effects

- CA inelastic term, c_3
- Main regression performed with fixed c_3 from CA.
- Compute residuals
- Evaluate regional trends from ε_{ij}
Faster attenuation (low Q)

$$\varepsilon = \Delta c_3 \left(R - R_{ref} \right) + \bar{\varepsilon}_{IR}$$
Slower attenuation (high Q)

$$\varepsilon = \Delta c_3 \left(R - R_{ref} \right) + \bar{e}_{IR}$$
Outline

• BSSA GMPE
• Path effects and their regional dependence
• Are aftershock motions different from mainshocks?
• Site response model: V_{s30}-scaling & basin depth effects
• Use of non-ergotic site terms for dams
• Summary
Aftershocks & Mainshocks

• CL1 and CL2 definition

Ref: Wooddell & Abrahamson, 2014
Aftershocks & Mainshocks

• CL1 and CL2 definition
• Base model developed with only CL1 events
Aftershocks & Mainshocks

- CL1 and CL2 definition
- Base model developed with only CL1 events
- Residuals computed using both event types

Examine between-event residuals, η_i

- Parent CL1 event: η_{CL1}
- Children CL2 events: η_{CL2}
- Mean: $\bar{\eta}_{CL2}$
Modest correlation: strongest at short periods
Aftershocks & Mainshocks

- CL1 and CL2 definition
- Base model developed with only CL1 events
- Residuals computed using both event types

Examine between-event residuals, η_i

Parent CL1 event: η_{CL1}
Children CL2 events: η_{CL2}
Mean: $\bar{\eta}_{CL2}$

Compute difference between CL1 and CL2 event terms

$$\Delta \eta = \bar{\eta}_{CL2} - \eta_{CL1}$$

13 CL1-CL2 sequences
\(\Delta \eta \) not significantly offset from zero

No trend with \(M \)

\(\therefore \) CL2 events are not more biased relative to GMPE than their CL1 parent events
Outline

• BSSA GMPE

• Path effects and their regional dependence

• Are aftershock motions different from mainshocks?

• **Site response model: \(V_{s30}\)-scaling & basin depth effects**

• Use of non-ergotic site terms for dams

• Summary
Site Response Model

V_{S30}-scaling

- Initial site model developed (using data analysis and simulations)
- Site coefficients fixed in GMPE regressions
- Site model checked from residuals analysis, ε_{ij} terms
- Multiple iterations performed
- V_{S30}-scaling model used to develop updated ASCE/NEHRP site factors
Model Summary

- **Combined model**

\[
F_S(V_{S30}, M, R_{JB}, \delta z_1) = \ln(F_{lin}) + \ln(F_{nl}) + F_{\delta z_1} (\delta z_1)
\]

- **Linear term**

\[
\ln(F_{lin}) = \begin{cases}
 c \ln \left(\frac{V_{S30}}{V_{ref}} \right) & V_{S30} \leq V_c \\
 c \ln \left(\frac{V_c}{V_{ref}} \right) & V_{S30} > V_c
\end{cases}
\]

- **Nonlinear term**

\[
\ln(F_{nl}) = f_1 + f_2 \ln \left(\frac{PGA_r + f_3}{f_3} \right)
\]

- $V_{ref} = 760 \text{ m/s}$
- c = slope term for V_{S30}-scaling
- Δc = regional correction
- V_c = limiting (corner) velocity for V_{S30}-scaling
- $f_2 = f(V_{S30}, PGA_r)$
- $f_3 = 0.1 \text{ g, } f_1 = 0$
Steps in Model Development

V_{S30}-scaling

• Evaluation of nonlinearity. Guided by data trends and simulation results
• Evaluation of V_{S30}-scaling. Considers regional effects

* Basis: Non-Reference Site Approach *

• Compute residuals between data ($\ln Y_{ij}$) and rock GMPE, $(\mu_r)_{ij}$

\[
R^c_{ij} = \ln Y_{ij} - \left[(\mu_r)_{ij} + \eta_i \right]
\]
Nonlinearity

- Data analysis

Bin residuals \(R_{ij} \) by \(V_{S30} \):

- Class B : \(760 < V_{S30} < 1500 \text{ m/s} \)
- Class C : \(520 < V_{S30} < 760 \text{ m/s} \)
- Class CD : \(310 < V_{S30} < 520 \text{ m/s} \)
- Class D : \(200 < V_{S30} < 310 \text{ m/s} \)
- Class E : \(200 \geq V_{S30} \text{ m/s} \)

Plot against \(PGA_r \)

Nonlinear regression

\[
\ln(F_{nl}) = f_1 + f_2 \ln\left(\frac{PGA_r + f_3}{f_3} \right)
\]
Nonlinearity
Nonlinearity

- Data analysis
- Interpretation of simulation results

Fit slope parameter to simulation results

Ref: Kamei et al. (2014)
Nonlinearity

• Data analysis
• Interpretation of simulation results
• Plot f_2 vs V_{S30} and select model that captures trends
Nonlinearity
V_{S30}-Scaling

- Remove nonlinearity from residuals

$$R^{\text{lin}}_k = R^r_{ij} - \ln \left(F_{nl} \right)_{ij}$$
V_{S30}-Scaling

- Remove nonlinearity from residuals
- Plot against V_{S30}
V_{S30}-Scaling

- Remove nonlinearity from residuals
- Plot against V_{S30}
- Regional variations.
V_{S30}-Scaling: Regional Variations

NGA-West 2 data by region

Grey: all distances

Blue: $R_{jb} < 80$ km

Large difference in Japan high-frequency IMs

Not present for CA or Taiwan
NEHRP-ASCE Site Factors

F=1.0 at B-C

Average amplification computed across period ranges.

F increased in some cases for strong shaking

F generally reduced for weak shaking

F < 1 for Class B (only allowed if *V_s* measured)
Site Response Model

z_1-scaling

• Within-event residuals (ϵ_{ij}) plotted against depth
• Trends identified and model developed
Model Summary

• **Combined model**

\[
F_S(V_{S30}, M, R_{JB}, \delta z_1) = \ln(F_{lin}) + \ln(F_n) + F_{\delta z_1}(\delta z_1)
\]

• **Depth model**

\[
\delta z_1 = z_1 - \mu_{z1}(V_{S30})
\]

Offset between actual depth and default for region-specific \(V_{S30} \)

\[
F_{\delta z_1}(\delta z_1) = \begin{cases}
0 & T < 0.65 \\
 f_6 \delta z_1 & T \geq 0.65 \& \delta z_1 \leq f_7/f_6 \\
 f_7 & T \geq 0.65 \& \delta z_1 > f_7/f_6
\end{cases}
\]
Short periods: no effect
Long periods: strong trend for $\delta z_1 < \sim 0.5 \text{ km}$
Outline

• BSSA GMPE
• Path effects and their regional dependence
• Are aftershock motions different from mainshocks?
• Site response model: V_{s30}-scaling & basin depth effects

• **Use of non-ergotic site terms for dams**
• Summary
Non-Ergotic Site Terms

• **Ergotic**: GMPE used as-published (site response taken from site term).

• **Non-ergotic site term**: Evaluate true site response, which may deviate from site term in GMPE by amount $\delta S2S(T)$

• Within event standard deviation, ϕ:
 – Ergotic: use full ϕ; includes contribution from standard deviation of $\delta S2S(T)$, ϕ_{S2S}
 – Non-ergotic: use $\sqrt{\phi^2 - \phi_{S2S}^2}$
Non-Ergotic Site Terms

Install sensors

Record eqks in \(M-R \) range of GMPE

Compute and partition residuals. Mean is \(\delta S2S \)

Reduced sigma impactful for PSHA
Non-Ergotic Site Terms

1. Install sensor at site
2. Record earthquakes within M-R range of GMPE
3. Compute residuals, partition into η_i, ε_{ij}
Non-Ergotic Site Terms

4. Compute mean and stdev of $\varepsilon_{ij}(\delta S2S, \phi_{amp})$
Non-Ergotic Site Terms

4. Compute mean and std dev of $\varepsilon_{ij}(\delta S2S, \phi_{amp})$

5. Extract ϕ_{S2S} from literature or region-specific analysis

6. Adjust GMPE moments, run PSHA. Site response uncertainty treated as epistemic.
Summary

• **BSSA GMPE:**
 – Relatively simple functional form
 – Considered relatively robust for scaling with respect to M, R_{JB}, and site parameters
 – Captures average hanging wall effects from dataset
 – No source depth correction required

• **Path term:**
 – Important anelastic effects at short T and $R > \sim 70$ km
 – Regional variations in anelastic effects in active crustal regions
Summary

• Aftershocks and mainshocks:
 – No significant differences identified from event terms
 – GMPE considered equally applicable for both event types

• Site response model:
 – Nonlinearity from simulations and data
 – Modest regional variations in V_{s30}-scaling (not included in BSSA model)
 – High V_{s30} limit to scaling (mid to low frequencies)
Summary

• **NEHRP/ASCE site factors. Changes caused by:**
 – Adjustments to V_{s30}-scaling
 – Enforcing amplification of unity at 760 m/s
 – Reduced levels of nonlinearity (esp. C & D)

• **Basin amplification model:**
 – Based on δ_{z1} term (default is $\delta_{z1} = 0$)
 – No effect at short periods; strong effect at long periods