Appendix H

Specimen TCBF-B-1 to TCBF-B-4 Design Calculation Sheets
Building height = 2 stories

Typical floor height = 9 ft

F1, max = 300 kip

F2, max = 600 kip

SR = 4 -

ratio = 0.8 -

<table>
<thead>
<tr>
<th>Items</th>
<th>values</th>
<th>units</th>
<th>Items</th>
<th>values</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>240</td>
<td>kip</td>
<td>V1</td>
<td>720</td>
<td>kip</td>
</tr>
<tr>
<td>F2</td>
<td>480</td>
<td>kip</td>
<td>V2</td>
<td>480</td>
<td>kip</td>
</tr>
<tr>
<td>h1</td>
<td>9</td>
<td>ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h2</td>
<td>18</td>
<td>ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>span</td>
<td>20 (beam span)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>9 (typical floor height)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbase</td>
<td>13500</td>
<td>kip-ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pcolumn</td>
<td>675</td>
<td>kip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lbracket</td>
<td>13.45 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td>29000</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

: input value

Materials

<table>
<thead>
<tr>
<th>Members</th>
<th>Material Type</th>
<th>Fy (ksi)</th>
<th>Fu (ksi)</th>
<th>Ry</th>
<th>Rt</th>
<th>(Ref: Table I-6-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Beams</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Braces</td>
<td>ASTM A500B</td>
<td>46</td>
<td>58</td>
<td>1.4</td>
<td>1.3</td>
<td>(HSS-Square)</td>
</tr>
<tr>
<td>Plates 1</td>
<td>ASTM A36</td>
<td>36</td>
<td>58</td>
<td>1.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Plates 2</td>
<td>ASTM A572 Gr.50</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Load Combinations

Per ASCE-7-2005

Basic Reference Codes

AISC Specification for Structural Steel Buildings (March 9, 2005)
AISC Seismic Provisions for Structural Steel Buildings (March 9, 2005)
Pu = 131.72 kip (compression)

L brace = 8.1 ft

k = 1.0

Try section HSS5x5x5/16 (HSS-Square)

As = 5.26 in²

Iₓ = 19.00 in⁴

Zₓ = 9.16 in³

Iᵧ = 19.00 in⁴

b = 5.00 in

h = 5.00 in

t nom = 0.31 in

t des = 0.291 in

rₓ = 1.90 in

rᵧ = 1.90 in

Fᵧ (brace) = 46 ksi

Es = 29000 ksi

Kl/r = 51.05 - Limit = 100.43 OK

Fe = 109.81 ksi

0.44 Fᵧ = 20.24 ksi

φ = 0.90

Φ Pn = 182.74 kip (compression) Check OK

Check Compactness Seismically (AISC Seismic Provisions 2005, Sec 8.2b)

λ ps = 16.07 - b/t = 14.20 OK

(Table I-8-1)

h/t = 14.20 OK

Φ = 0.90

Φ Pn = 217.76 kip (tension) Check OK
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_u)</td>
<td>249.37 kip</td>
</tr>
<tr>
<td>(L_{br})</td>
<td>9 ft</td>
</tr>
<tr>
<td>(k)</td>
<td>1.0</td>
</tr>
<tr>
<td>Try section</td>
<td>HSS6x6x3/8</td>
</tr>
<tr>
<td>(A_s)</td>
<td>7.58 in²</td>
</tr>
<tr>
<td>(Z_x)</td>
<td>15.80 in³</td>
</tr>
<tr>
<td>(b)</td>
<td>6.00 in</td>
</tr>
<tr>
<td>(t_{nom})</td>
<td>0.38 in</td>
</tr>
<tr>
<td>(r_x)</td>
<td>2.28 in</td>
</tr>
<tr>
<td>(r_y)</td>
<td>2.28 in</td>
</tr>
<tr>
<td>(kL/r)</td>
<td>47.37</td>
</tr>
<tr>
<td>(F_c)</td>
<td>127.55 ksi</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.90</td>
</tr>
<tr>
<td>(\phi P_n)</td>
<td>269.85 kip</td>
</tr>
<tr>
<td>(F_y) (brace)</td>
<td>46 ksi</td>
</tr>
<tr>
<td>(E_s)</td>
<td>29000 ksi</td>
</tr>
<tr>
<td>(\lambda_{ps})</td>
<td>16.07</td>
</tr>
<tr>
<td>(b/t)</td>
<td>14.20</td>
</tr>
<tr>
<td>(h/t)</td>
<td>14.20</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.90</td>
</tr>
<tr>
<td>(\phi P_n)</td>
<td>313.81 kip</td>
</tr>
</tbody>
</table>

Check Compactness Seismically (AISC Seismic Provisions 2005, Sec 8.2b)

- \(KI/r \leq 4\sqrt{E/F_y} \)
- \(\lambda_{ps} \geq 16.07 \)
- \(b/t \geq 14.20 \)
- \(h/t \geq 14.20 \)

Check Seismic Provisions Limits

- \(F_c \) = 127.55 ksi
- \(F_y \) = 46 ksi

Check Tension Force

- \(\phi P_n = 313.81 \) kip
- **Check OK**
<table>
<thead>
<tr>
<th>Brace to Gusset Plate Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brace</td>
</tr>
<tr>
<td>HSS5x5x5/16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brace Block Shear</th>
<th>Brace to Gusset Plate Weld</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_yF_yA_g = 338.74 kip (T_u)</td>
<td></td>
</tr>
<tr>
<td>F_uA_g = 305.08 kip (P_u)</td>
<td></td>
</tr>
<tr>
<td>T_u/P_u = 1.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brace</th>
<th>Gusset Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_yF_y = 64.4 ksi</td>
<td></td>
</tr>
<tr>
<td>R_yF_u = 75.4 ksi</td>
<td></td>
</tr>
<tr>
<td>U = 0.9</td>
<td></td>
</tr>
<tr>
<td>φ_t = 0.75 (tensile rupture in net section)</td>
<td></td>
</tr>
<tr>
<td>A_y/A_g = 1.27 (Net section reinforcement required!)</td>
<td></td>
</tr>
<tr>
<td>φ_t = 0.90 (tensile yield in gross section)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gusset Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_gusset = 0.75 in (estimated)</td>
</tr>
<tr>
<td>t_g = 0.75 in (use)</td>
</tr>
<tr>
<td>F_y = 50 ksi</td>
</tr>
<tr>
<td>F_u = 65 ksi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reinforcement Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_cut = 0.51 in²</td>
</tr>
<tr>
<td>A_net = 4.75 in²</td>
</tr>
<tr>
<td>A_e = 5.99 in² (Reinforcement required!)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 = 12 in</th>
<th>B = 5 in</th>
<th>H = 5 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_bar = 1.875 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U = 0.84 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_e,req = 5.99 in²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_net,req = 7.10 in²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_reinf = 1.17 in² (both sides)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_reinf = 2 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_req = 0.59 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_use = 0.625 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_plate = 14 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_y,plate = 50 ksi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_yF_yA_g = 68.75 kip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_weld = 6 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weld = 5 x 1/16 in (fillet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φR_n = 83.51 kip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brace Block Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_brace = 0.291 in</td>
</tr>
<tr>
<td>L_req = 11.15 in</td>
</tr>
<tr>
<td>L_use = 12 in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brace to Gusset Plate Weld</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_weld = 12 in</td>
</tr>
<tr>
<td>weld = 6 x 1/16 in (fillet)</td>
</tr>
<tr>
<td>φ_b = 0.75 -</td>
</tr>
</tbody>
</table>
\[F_{exx} = 70 \text{ ksi} \]
\[F_w = 42 \text{ ksi} \]
\[\phi_b \sigma_n = 400.87 \text{ kip OK} \]

Gusset Plate Block Shear

\[A_{gv} = 18 \text{ in}^2 \]
\[A_{nt} = 4.31 \text{ in}^2 \]
\[U_{bs} = 1 \text{ -} \]
\[\phi = 0.75 \text{ -} \]
\[\phi \sigma_n = 615.23 \text{ kip OK} \]

Whitmore Effective Width

\[L_{\text{whitmore}} = 20.59 \text{ in (theoretical width)} \]
\[\phi = 0.90 \text{ -} \]
\[\phi \sigma_n = 694.86 \text{ kip OK (check gross yield)} \]
<table>
<thead>
<tr>
<th>Brace</th>
<th>HSS6x6x3/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_y F_y A_g = 488.152$ kip (T_u)</td>
<td></td>
</tr>
<tr>
<td>$F_u A_g = 439.64$ kip (P_u)</td>
<td>$T_u/P_u = 1.11$</td>
</tr>
<tr>
<td>$R_y F_y = 64.4$ ksi</td>
<td></td>
</tr>
<tr>
<td>$R_t F_u = 75.4$ ksi</td>
<td></td>
</tr>
<tr>
<td>$U = 0.9$</td>
<td>-</td>
</tr>
<tr>
<td>$\phi_t = 0.75$ (tensile rupture in net section)</td>
<td></td>
</tr>
<tr>
<td>$A_y/A_g = 1.27$ (Net section reinforcement required!)</td>
<td></td>
</tr>
<tr>
<td>$\phi_t = 0.90$ (tensile yield in gross section)</td>
<td></td>
</tr>
<tr>
<td>$t_{gusset} = 0.90$ in (estimated)</td>
<td>$F_y = 50$ ksi</td>
</tr>
<tr>
<td>$t_g = 0.75$ in (use)</td>
<td>$F_u = 65$ ksi</td>
</tr>
<tr>
<td>$A_{cut} = 0.61$ in2</td>
<td></td>
</tr>
<tr>
<td>$A_{net} = 6.97$ in2</td>
<td></td>
</tr>
<tr>
<td>$A_e = 8.63$ in2 (reinforcement required)</td>
<td></td>
</tr>
</tbody>
</table>

Reinforcement Plates

<table>
<thead>
<tr>
<th>1</th>
<th>14 in</th>
<th>$A_e, req = 8.63$ in2</th>
<th>$A_{net, req} = 10.29$ in2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{bar} = 2.25$ in</td>
<td>$U = 0.84$</td>
<td>(both sides)</td>
<td></td>
</tr>
<tr>
<td>$A_{reinf} = 1.66$ in2</td>
<td>$b_{reinf} = 3$ in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{req} = 0.55$ in</td>
<td>$t_{use} = 0.625$ in</td>
<td>$L_{plate} = 16$ in</td>
<td></td>
</tr>
<tr>
<td>$F_{y, plate} = 50$ ksi</td>
<td>$R_y F_y A_g = 103.13$ kip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{weld} = 7$ in</td>
<td>weld = 6 x 1/16 in (fillet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi R_n = 116.92$ kip</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brace Block Shear

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{brace} = 0.349$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{req} = 13.40$ in</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{use} = 14$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brace to Gusset Plate Weld

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{weld} = 14$ in</td>
<td>weld = 7 x 1/16 in (fillet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_b = 0.75$</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>F_{exx}</td>
<td>70</td>
<td>ksi</td>
<td></td>
</tr>
<tr>
<td>F_w</td>
<td>42</td>
<td>ksi</td>
<td></td>
</tr>
<tr>
<td>$\phi_b R_n$</td>
<td>545.63</td>
<td>kip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gusset Plate Block Shear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{gv}</td>
<td>21</td>
<td>in²</td>
<td></td>
</tr>
<tr>
<td>A_{nt}</td>
<td>5.16</td>
<td>in²</td>
<td></td>
</tr>
<tr>
<td>U_{bs}</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ϕR_n</td>
<td>723.87</td>
<td>kip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitmore Effective Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{whitmore}$</td>
<td>23.90</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>(theoretical width)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.90</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ϕR_n</td>
<td>806.55</td>
<td>kip</td>
<td></td>
</tr>
<tr>
<td>(check gross yield)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Try

\[R_y F_y A_g = 338.74 \text{kip} \]
\[0.3 P_n = 60.91 \text{kip} \]
\[V = 185.86 \text{kip} \]
\[H = 297.06 \text{kip} \]
\[P_u = 600.00 \text{kip} \] (conservatively)
\[M_u = 100.97 \text{kip-ft} \] (revised from structural analysis)

\[\theta = 0.73 \text{(rad) 42.0 (deg)} \]
\[\sin(\theta) = 0.67 \]
\[\cos(\theta) = 0.74 \]

\[V = 185.86 \text{kip} \]
\[H = 297.06 \text{kip} \]
\[P_u = 600.00 \text{kip} \] (conservatively)
\[M_u = 100.97 \text{kip-ft} \] (revised from structural analysis)

\[\lambda_{p1} = 9.15 \]
\[\lambda_{p2} = 90.55 \]
\[L_p = 10.38 \text{ft} \]
\[c = 1 \]
\[C_w = 40800 \text{in}^6 \]
\[S_x = 291 \text{in}^3 \]
\[L_r = 29.90 \text{ft} \]
\[L_b = 10 \text{ft} \]
\[M_p = 1362.5 \text{kip-ft} \]
\[\phi_{b} = 0.90 \]
\[\phi_{b} P_n = 1370.46 \text{kip} \]

\[P_u/\phi_{b} P_n = 0.44 \text{ use (H1-1a)} \]

Check 0.51 OK
<table>
<thead>
<tr>
<th>Title</th>
<th>Lower Beam Design Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>August 16, 2008</td>
</tr>
<tr>
<td>1F</td>
<td></td>
</tr>
</tbody>
</table>

Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{y}F_{y}A_{g}$</td>
<td>488.15 kip</td>
<td>(1F)</td>
</tr>
<tr>
<td>$R_{y}F_{y}A_{g}$</td>
<td>338.74 kip</td>
<td>(2F)</td>
</tr>
<tr>
<td>$0.3 P_{n}$</td>
<td>89.95 kip</td>
<td>(1F)</td>
</tr>
<tr>
<td>$0.3 P_{n}$</td>
<td>60.91 kip</td>
<td>(2F)</td>
</tr>
<tr>
<td>V</td>
<td>285.81 kip</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>317.56 kip</td>
<td></td>
</tr>
<tr>
<td>P_{u}</td>
<td>317.56 kip</td>
<td>(conservatively)</td>
</tr>
<tr>
<td>M_{u}</td>
<td>170.85 kip-ft</td>
<td>(revised from structural analysis)</td>
</tr>
</tbody>
</table>

Material Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>0.73 (rad)</td>
<td>42.0 (deg)</td>
</tr>
<tr>
<td>$V = \sin(\theta)$</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>$H = \cos(\theta)$</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>$V = 285.81$ kip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H = 317.56$ kip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{u} = 317.56$ kip</td>
<td>(conservatively)</td>
<td></td>
</tr>
<tr>
<td>$M_{u} = 170.85$ kip-ft</td>
<td>(revised from structural analysis)</td>
<td></td>
</tr>
</tbody>
</table>

Section Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{g}</td>
<td>20.1 in²</td>
<td></td>
</tr>
<tr>
<td>I_{x}</td>
<td>1830 in⁴</td>
<td></td>
</tr>
<tr>
<td>I_{y}</td>
<td>70.4 in⁴</td>
<td></td>
</tr>
<tr>
<td>r_{x}</td>
<td>9.55 in</td>
<td></td>
</tr>
<tr>
<td>r_{y}</td>
<td>1.87 in</td>
<td></td>
</tr>
<tr>
<td>F_{y}</td>
<td>50 ksi</td>
<td></td>
</tr>
</tbody>
</table>

Stability Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{p1}</td>
<td>9.15</td>
<td></td>
</tr>
<tr>
<td>λ_{p2}</td>
<td>90.55</td>
<td></td>
</tr>
<tr>
<td>Z_{x}</td>
<td>177 in³</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1.87 in⁴</td>
<td></td>
</tr>
<tr>
<td>h_{b}</td>
<td>23.12 in</td>
<td></td>
</tr>
<tr>
<td>r_{bs}</td>
<td>2.30 in</td>
<td></td>
</tr>
<tr>
<td>L_{p}</td>
<td>6.61 ft</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>w_{24x68} (revised from structural analysis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{b}</td>
<td>10 ft</td>
<td></td>
</tr>
<tr>
<td>M_{p}</td>
<td>737.5 kip-ft</td>
<td></td>
</tr>
<tr>
<td>F_{cr}</td>
<td>110.86 ksi</td>
<td></td>
</tr>
<tr>
<td>M_{n}</td>
<td>656.87 kip-ft</td>
<td></td>
</tr>
</tbody>
</table>

Check

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{u}/\phi_{c}P_{n}$</td>
<td>0.47</td>
<td>use (H1-1a)</td>
</tr>
<tr>
<td>Check</td>
<td>0.73</td>
<td>OK</td>
</tr>
<tr>
<td>Pu</td>
<td>Mu</td>
<td>L_{\text{column}}</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 42.58 kip | 126.56 kip-ft | 9 ft | \begin{align*} A_g &= 28.2 \text{ in}^2 \\
I_x &= 833 \text{ in}^4 \\
I_y &= 270 \text{ in}^4 \\
r_x &= 5.44 \text{ in} \\
r_y &= 3.09 \text{ in} \\
F_y &= 50 \text{ ksi} \\
\lambda_{p1} &= 7.22 - b/t = 6.78 \text{ Compact} \\
\lambda_{p2} &= 71.71 - h/tw = 19.82 \text{ Compact} \\
L_p &= 10.91 \text{ ft} \\
c &= 1 \\
C_w &= 9410 \text{ in}^6 \\
S_x &= 131 \text{ in}^3 \\
L_r &= 40.86 \text{ ft} \\
L_b &= 9 \text{ ft} \\
M_p &= 612.5 \text{ kip-ft} \\
\phi_b &= 0.90 \\
\phi_{M_n} &= 551.25 \text{ kip-ft} \\
kl/r &= 34.95 \\
F_c &= 234.28 \text{ ksi} \\
\phi_c &= 0.90 \\
\phi_{P_n} &= 1160.56 \text{ kip} \\
\frac{P_u}{\phi_c P_n} &= 0.04 \text{ use (H1-1b)} \\
\text{Check} &= 0.25 \text{ OK} |
Column Design Check

\begin{align*}
P_u &= 484.19 \text{ kip (revised from structural analysis)} \\
M_u &= 274.18 \text{ kip-ft (revised from structural analysis)} \\
L_{\text{column}} &= 9 \text{ ft}
\end{align*}

Try
\begin{align*}
A_e &= 28.2 \text{ in}^2 \\
I_x &= 833 \text{ in}^4 \\
I_y &= 270 \text{ in}^4 \\
r_x &= 5.44 \text{ in} \\
r_y &= 3.09 \text{ in}
\end{align*}

\begin{align*}
\lambda_{p1} &= 7.22 \quad \text{Compact} \\
\lambda_{p2} &= 52.56 \quad \text{Compact} \\
L_p &= 10.91 \text{ ft} \\
c &= 1 \\
C_w &= 9410 \text{ in}^6 \\
S_x &= 131 \text{ in}^3 \\
L_r &= 40.86 \text{ ft} \\
L_b &= 9 \text{ ft} \\
M_p &= 612.5 \text{ kip-ft} \\
\phi_b &= 0.90 \\
\phi_b M_n &= 551.25 \text{ kip-ft}
\end{align*}

\begin{align*}
\phi c &= 0.90 \\
\phi c P_n &= 1160.56 \text{ kip} \\
F_e &= 234.28 \text{ ksi} \\
F_y &= 22 \text{ ksi} \\
\phi c &= 0.90 \\
P_u/\phi c P_n &= 0.42 \quad \text{use (H1-1a)}
\end{align*}

Check 0.86 OK
<table>
<thead>
<tr>
<th>Check Column Web Shear Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_p = 7350$ kip-in</td>
</tr>
<tr>
<td>$L = 96.15$ in</td>
</tr>
<tr>
<td>$V = 152.89$ kip</td>
</tr>
<tr>
<td>$A_s = 6.99$ in2</td>
</tr>
<tr>
<td>$A_s = d \times tw$</td>
</tr>
<tr>
<td>$S_v = 21.89$ ksi</td>
</tr>
<tr>
<td>$S_{v, yield} = 29.00$ ksi</td>
</tr>
<tr>
<td>Elastic</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>R_u</td>
</tr>
<tr>
<td>d_b</td>
</tr>
<tr>
<td>A_b</td>
</tr>
<tr>
<td>N_b</td>
</tr>
<tr>
<td>R_n</td>
</tr>
<tr>
<td>ϕ</td>
</tr>
<tr>
<td>ϕR_n</td>
</tr>
<tr>
<td>$L_{c,ex}$</td>
</tr>
<tr>
<td>$L_{c,in}$</td>
</tr>
<tr>
<td>R_n1</td>
</tr>
<tr>
<td>R_n2</td>
</tr>
<tr>
<td>$L_{c,1}$</td>
</tr>
<tr>
<td>$L_{c,2}$</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>R_n</td>
</tr>
<tr>
<td>ϕ</td>
</tr>
<tr>
<td>ϕR_n</td>
</tr>
<tr>
<td>L_{tab}</td>
</tr>
<tr>
<td>w_{tab}</td>
</tr>
<tr>
<td>w</td>
</tr>
<tr>
<td>L_{weld}</td>
</tr>
<tr>
<td>b_f</td>
</tr>
<tr>
<td>t_f</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>t_w</td>
</tr>
<tr>
<td>F_{exx}</td>
</tr>
<tr>
<td>F_{w}</td>
</tr>
<tr>
<td>w</td>
</tr>
<tr>
<td>b_f</td>
</tr>
<tr>
<td>t_f</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>t_w</td>
</tr>
<tr>
<td>$F_{y,tm}$</td>
</tr>
<tr>
<td>P_{nt}</td>
</tr>
<tr>
<td>P_{nv}</td>
</tr>
<tr>
<td>R_n</td>
</tr>
<tr>
<td>R_n</td>
</tr>
<tr>
<td>R_n</td>
</tr>
<tr>
<td>$F_{y,bm}$</td>
</tr>
<tr>
<td>M_n</td>
</tr>
</tbody>
</table>

Weld Fillet

- **Fexx**: 70 ksi
- **Fw**: 42 ksi

Weld CJP

- **bt**: 12.8 in
- **tf**: 0.85 in
- **d**: 24.3 in
- **tw**: 0.55 in

Beam-Column Connection

- **H-14**

August 16, 2008

Title: TCBF-B-1 Specimen Design Calculation Sheet

Date: August 16, 2008

Page: 10

Title: PEER Report 2013/20

H-14
<table>
<thead>
<tr>
<th>Check</th>
<th>Shear tab length, OK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Check Block Shear</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Beam w24x117</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{gv} = 9.9 \text{ in}^2)</td>
</tr>
<tr>
<td>(A_{gt} = 1.925 \text{ in}^2)</td>
</tr>
<tr>
<td>(A_{nv} = 6.6 \text{ in}^2)</td>
</tr>
<tr>
<td>(A_{nt} = 1.65 \text{ in}^2)</td>
</tr>
<tr>
<td>(U_{bs} = 0.5)</td>
</tr>
<tr>
<td>(\phi = 0.75)</td>
</tr>
<tr>
<td>(F_y = 50 \text{ ksi})</td>
</tr>
<tr>
<td>(F_u = 65 \text{ ksi})</td>
</tr>
<tr>
<td>(\phi R_n = 233.27 \text{ kip} \text{ OK})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shear Tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{gv} = 8.25 \text{ in}^2)</td>
</tr>
<tr>
<td>(A_{gt} = 1.5 \text{ in}^2)</td>
</tr>
<tr>
<td>(A_{nv} = 5.5 \text{ in}^2)</td>
</tr>
<tr>
<td>(A_{nt} = 1.25 \text{ in}^2)</td>
</tr>
<tr>
<td>(U_{bs} = 0.5)</td>
</tr>
<tr>
<td>(\phi = 0.75)</td>
</tr>
<tr>
<td>(F_y = 50 \text{ ksi})</td>
</tr>
<tr>
<td>(F_u = 65 \text{ ksi})</td>
</tr>
<tr>
<td>(\phi R_n = 191.34 \text{ kip} \text{ OK})</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>2F Braces to Beam Connection</td>
</tr>
</tbody>
</table>

Braces

- **T** = 338.74 kip, \(\sin(\theta) = 0.669 \)
- **C** = 312.69 kip, \(\cos(\theta) = 0.743 \)
- **e** = 12.15 in
- **Shear** = 484.21 kip
- **Tension** = 169.56 kip
- **Moment** = 490.26 kip-ft

\[t_{\text{gusset}} = 0.75 \text{ in} \]
\[L = 60 \text{ in} \]
\[s_v = 10.76 \text{ ksi} \]
\[s_A = 3.77 \text{ ksi} \]
\[s_M = 13.07 \text{ ksi} \]
\[\phi = 0.9 \]

Fy, gusset = 50 ksi

Ratio = 0.56 OK

\[L_{\text{whitmore}} = 20.59 \text{ in} \]
\[L_v = 16 \text{ in} \]

\[w_{\text{up}} = 10.29 \text{ in} \]
\[w_{\text{low}} = 20.92 \text{ in} \]

Whitmeff = 20.59 in

\(\phi R_n \) = 694.86 kip

\(e = 0.5 d \)

Gusset Plate to Beam Flange

Weld Fillet

- \(F_{\text{exx}} = 70 \text{ ksi} \)
- \(F_w = 42 \text{ ksi} \)
- \(w = 8 \text{ in} \)
- \(L_{\text{weld}} = 60 \text{ in} \)
- \(\phi = 0.75 \)

Ratio = 0.77 OK

Check Beam Web

- **width** = 60 in

PEER Report 2013/20

H-16
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_u</td>
<td>196.10 kip</td>
</tr>
<tr>
<td>d</td>
<td>24.3 in</td>
</tr>
<tr>
<td>t_w</td>
<td>0.55 in</td>
</tr>
<tr>
<td>N</td>
<td>30 in</td>
</tr>
<tr>
<td>t_f</td>
<td>0.85 in</td>
</tr>
<tr>
<td>$F_{y,web}$</td>
<td>50 ksi</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.75</td>
</tr>
<tr>
<td>R_n</td>
<td>1060.63 kip</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>795.47 kip</td>
</tr>
<tr>
<td>k_{des}</td>
<td>1.35 in</td>
</tr>
<tr>
<td>ϕ</td>
<td>1.00</td>
</tr>
<tr>
<td>R_n</td>
<td>1010.63 kip</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>1010.63 kip</td>
</tr>
<tr>
<td>L_{gb}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>k</td>
<td>1.2</td>
</tr>
<tr>
<td>F_e</td>
<td>29.82 ksi</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>r</td>
<td>0.217 in</td>
</tr>
<tr>
<td>$0.44 F_y$</td>
<td>22 ksi</td>
</tr>
<tr>
<td>L_{c1}</td>
<td>11.38 in</td>
</tr>
<tr>
<td>A_g</td>
<td>15.44 in²</td>
</tr>
<tr>
<td>R_n</td>
<td>382.72 kip</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>344.45 kip</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_{gb}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
</tbody>
</table>
Big Gusset Plate for Upper Floor Bracing and Lower Floor Bracing

<table>
<thead>
<tr>
<th>Sway to Right</th>
<th>Sway to Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{U2R} = 338.74 \text{ kip})</td>
<td>(F_{L2L} = 312.69 \text{ kip})</td>
</tr>
<tr>
<td>(F_{L2R} = 461.74 \text{ kip})</td>
<td>(F_{L2R} = 488.15 \text{ kip})</td>
</tr>
</tbody>
</table>

Beam:
- \(w_{24x68} \)
- \(d = 23.7 \text{ in} \)
- \(L_{c, \text{min}} = 56.77 \text{ in} \)

Column:
- \(w_{12x96} \)
- \(e_c = 6.35 \text{ in} \)
- \(R_{beam} = 22.51 \text{ kip} \) (downward)
- \(L_{b, \text{min}} = 15.99 \text{ in} \)
- \(L_{cu, \text{min}} = 15.30 \text{ in} \)
- \(L_{cl, \text{min}} = 17.76 \text{ in} \)
- \(t_u = 0.75 \text{ in} \)
- \(L_{cu} = 18 \text{ in} \) (use)
- \(L_{cl} = 18 \text{ in} \) (use)
- \(L_c = 59.7 \text{ in} \) (use)
- \(L_b = 23 \text{ in} \) (use)

<table>
<thead>
<tr>
<th>Sway to the Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{U2R} = 226.61 \text{ kip}) (upward)</td>
</tr>
<tr>
<td>(H_{U2R} = 251.79 \text{ kip}) (rightward)</td>
</tr>
<tr>
<td>(V_{L2R} = 308.89 \text{ kip}) (upward)</td>
</tr>
<tr>
<td>(H_{L2R} = 343.21 \text{ kip}) (leftward)</td>
</tr>
<tr>
<td>(V_{\text{total}} = 512.98 \text{ kip}) (upward)</td>
</tr>
<tr>
<td>(M = 271.45 \text{ kip-ft}) (counter-clockwise)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column-Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{cu} = 154.67 \text{ kip}) (downward)</td>
</tr>
<tr>
<td>(f_1 = 5.48 \text{ kip/in}) (leftward)</td>
</tr>
<tr>
<td>(f_2 = 2.18 \text{ kip/in}) (leftward)</td>
</tr>
<tr>
<td>(H_{cu} = 68.95 \text{ kip}) (leftward)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam-Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_{bu} = 182.84 \text{ kip}) (leftward)</td>
</tr>
<tr>
<td>(V_{bu} = 71.94 \text{ kip}) (downward)</td>
</tr>
<tr>
<td>(M_{cu} = 7.44 \text{ kip-ft}) (counter-clockwise)</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>M_{bd}</td>
</tr>
<tr>
<td>Ratio</td>
</tr>
<tr>
<td>V_{cl}</td>
</tr>
<tr>
<td>f_1</td>
</tr>
<tr>
<td>f_2</td>
</tr>
<tr>
<td>H_{cl}</td>
</tr>
<tr>
<td>H_{bl}</td>
</tr>
<tr>
<td>M_{bl}</td>
</tr>
<tr>
<td>M_{cl}</td>
</tr>
<tr>
<td>Ratio</td>
</tr>
<tr>
<td>V_{mid}</td>
</tr>
<tr>
<td>M_{mid}</td>
</tr>
<tr>
<td>H_{mid}</td>
</tr>
<tr>
<td>Ratio</td>
</tr>
</tbody>
</table>

Weld Size

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_v</td>
<td>8.59</td>
<td>kip/in</td>
</tr>
<tr>
<td>f_a</td>
<td>4.98</td>
<td>kip/in (averaged)</td>
</tr>
<tr>
<td>f_b</td>
<td>5.48</td>
<td>kip/in</td>
</tr>
<tr>
<td>f_peak</td>
<td>13.54</td>
<td>kip/in</td>
</tr>
<tr>
<td>f_avg</td>
<td>11.07</td>
<td>kip/in</td>
</tr>
<tr>
<td>f_r</td>
<td>13.84</td>
<td>kip/in 13.84342</td>
</tr>
<tr>
<td>D</td>
<td>4.97</td>
<td>x 1/16 (weld size)</td>
</tr>
<tr>
<td>Use</td>
<td>6</td>
<td>x 1/16 (weld size)</td>
</tr>
</tbody>
</table>
Fillet Welds with Web Plates

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_u)</td>
<td>317.56 kip</td>
</tr>
<tr>
<td>(t_r)</td>
<td>0.59 in</td>
</tr>
<tr>
<td>(b)</td>
<td>8.97 in</td>
</tr>
<tr>
<td>(A_s)</td>
<td>5.25 in²</td>
</tr>
<tr>
<td>(2A_sF_y)</td>
<td>524.75 kip</td>
</tr>
</tbody>
</table>

\(R_{beam} = 22.51 \) kip (Gravity)

\(L_{tab} = 20.375 \) in | \(t = 0.5 \) in
\(w_{tab} = 8 \) in

Weld (shear tab)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{exx})</td>
<td>70 ksi</td>
</tr>
<tr>
<td>(F_w)</td>
<td>42 ksi</td>
</tr>
<tr>
<td>(w)</td>
<td>6 x 1/16 inch</td>
</tr>
<tr>
<td>(\phi_b)</td>
<td>0.75</td>
</tr>
<tr>
<td>(\phi_b R_n)</td>
<td>236.97 kip</td>
</tr>
</tbody>
</table>

\(L_{weld} = 28.375 \) in | \(\text{side} = 1 \) sides

Shim Plate

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>20 in</td>
</tr>
<tr>
<td>(w)</td>
<td>4 in</td>
</tr>
</tbody>
</table>

Weld (shear tab)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{exx})</td>
<td>70 ksi</td>
</tr>
<tr>
<td>(F_w)</td>
<td>42 ksi</td>
</tr>
<tr>
<td>(w)</td>
<td>2.68 x 1/16 inch</td>
</tr>
<tr>
<td>(\phi_b)</td>
<td>0.75</td>
</tr>
<tr>
<td>(\phi_b R_n)</td>
<td>104.45 kip</td>
</tr>
</tbody>
</table>

\(L_{weld} = 28 \) in | \(\text{side} = 1 \) sides (3 sides)
<table>
<thead>
<tr>
<th>Braces to Floor Beam Connection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Braces</td>
<td>HSS6x6x3/8</td>
</tr>
<tr>
<td>(T = 488.15) kip</td>
<td>(\sin(\theta) = 0.669)</td>
</tr>
<tr>
<td>(C = 461.74) kip</td>
<td>(\cos(\theta) = 0.743)</td>
</tr>
<tr>
<td>(e = 0) in</td>
<td>()</td>
</tr>
<tr>
<td>Shear</td>
<td>706.05 kip</td>
</tr>
<tr>
<td>Tension</td>
<td>242.31 kip</td>
</tr>
<tr>
<td>Moment</td>
<td>0.00 kip-ft</td>
</tr>
<tr>
<td>(t_{\text{gusset}} = 0.75) in</td>
<td>()</td>
</tr>
<tr>
<td>(L = 46) in</td>
<td>()</td>
</tr>
<tr>
<td>(s_V = 20.47) ksi</td>
<td>()</td>
</tr>
<tr>
<td>(s_M = 0.00) ksi</td>
<td>()</td>
</tr>
<tr>
<td>(\phi = 0.9)</td>
<td>()</td>
</tr>
<tr>
<td>(F_{Y, \text{gusset}} = 50) ksi</td>
<td>()</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.80 OK</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(whitmo = 23.90) in</td>
<td>()</td>
</tr>
<tr>
<td>(L_v = 19) in</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(w_{up} = 11.95) in</td>
<td>(A_v = 14.25) in2</td>
</tr>
<tr>
<td>(w_{low} = 14.12) in</td>
<td>(P_u = 326.56) kip</td>
</tr>
<tr>
<td>(whit_{\text{eff}} = 23.90) in</td>
<td>()</td>
</tr>
<tr>
<td>(\phi R_n = 806.55) kip</td>
<td>()</td>
</tr>
<tr>
<td>Weld Fillet</td>
<td>(Gusset to beam flange)</td>
</tr>
<tr>
<td>(F_{exx} = 70) ksi</td>
<td>()</td>
</tr>
<tr>
<td>(F_w = 42) ksi</td>
<td>()</td>
</tr>
<tr>
<td>(w = 11 \times \frac{1}{16}) inch</td>
<td>(s_V = 15.79) ksi</td>
</tr>
<tr>
<td>(L_{\text{weld}} = 46) in</td>
<td>(s_M = 0.00) ksi</td>
</tr>
<tr>
<td>()</td>
<td>(s_A = 5.42) ksi</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(t_{\text{eff}} = 0.486) in</td>
<td>()</td>
</tr>
<tr>
<td>(\phi = 0.75)</td>
<td>()</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.89 OK</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Check Beam Web</td>
<td>w30x391</td>
</tr>
<tr>
<td>(width = 46) in</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(R_u = 0.00) kip</td>
<td>(d = 33.2) in</td>
</tr>
<tr>
<td>(t_w = 1.36) in</td>
<td>()</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>(N)</td>
<td>23 in</td>
</tr>
<tr>
<td>(t_f)</td>
<td>2.44 in</td>
</tr>
<tr>
<td>(F_{y,\text{web}})</td>
<td>50 ksi</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.75</td>
</tr>
<tr>
<td>(R_n)</td>
<td>4450.60 kip</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>3337.95 kip</td>
</tr>
<tr>
<td>(k_{\text{des}})</td>
<td>3.23 in</td>
</tr>
<tr>
<td>(\phi)</td>
<td>1.00</td>
</tr>
<tr>
<td>(R_n)</td>
<td>2662.20 kip</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>2662.20 kip</td>
</tr>
<tr>
<td>(k_{\text{des}})</td>
<td>3.23 in</td>
</tr>
<tr>
<td>(\phi)</td>
<td>1.00</td>
</tr>
<tr>
<td>(R_n)</td>
<td>2662.20 kip</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>2662.20 kip</td>
</tr>
<tr>
<td>(k_{\text{des}})</td>
<td>3.23 in</td>
</tr>
</tbody>
</table>

Check Gusset Plate Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{eb})</td>
<td>14.84 in</td>
<td></td>
</tr>
<tr>
<td>(k)</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>(F_e)</td>
<td>42.32 ksi</td>
<td></td>
</tr>
<tr>
<td>(r)</td>
<td>0.217 in</td>
<td></td>
</tr>
<tr>
<td>(A_g)</td>
<td>17.92 in²</td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>491.88 kip</td>
<td></td>
</tr>
<tr>
<td>(L_{c})</td>
<td>15.88 in</td>
<td></td>
</tr>
<tr>
<td>(L_{c1})</td>
<td>18.06 in</td>
<td></td>
</tr>
<tr>
<td>(L_{c2})</td>
<td>12.56 in</td>
<td></td>
</tr>
<tr>
<td>(L_{\text{max}})</td>
<td>18.56 in</td>
<td></td>
</tr>
<tr>
<td>(L_{\text{ave}})</td>
<td>9.13 in</td>
<td></td>
</tr>
<tr>
<td>(L_{\text{ave}})</td>
<td>14.84 in</td>
<td></td>
</tr>
</tbody>
</table>

Free Edge Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_v)</td>
<td>17.88 in</td>
<td></td>
</tr>
<tr>
<td>(L_v/t_e)</td>
<td>23.83</td>
<td>-</td>
</tr>
<tr>
<td>(\text{Limit})</td>
<td>18.06</td>
<td>-</td>
</tr>
<tr>
<td>(\text{Edge stiffener required!})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lateral Stability of Beam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_r)</td>
<td>6645.83 kip·ft</td>
<td></td>
</tr>
<tr>
<td>(C_d)</td>
<td>1</td>
<td>(Nodal)</td>
</tr>
<tr>
<td>(Z)</td>
<td>1450 in³</td>
<td></td>
</tr>
<tr>
<td>(h_o)</td>
<td>30.76 in</td>
<td>(Nodal)</td>
</tr>
<tr>
<td>(P_{br})</td>
<td>51.85 kip</td>
<td>(Nodal)</td>
</tr>
<tr>
<td>(\beta_{br})</td>
<td>288.07 kip/in</td>
<td>OK</td>
</tr>
<tr>
<td>(L_{pb})</td>
<td>17.05 ft</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>(I_y)</td>
<td>1550 in⁴</td>
<td></td>
</tr>
<tr>
<td>(M_{br})</td>
<td>79.75 kip·ft</td>
<td></td>
</tr>
<tr>
<td>(P_{br})</td>
<td>31.11 kip</td>
<td>(torsional)</td>
</tr>
<tr>
<td>(\beta_{T})</td>
<td>108666 kip-in/rad</td>
<td>(\beta) sec not included</td>
</tr>
<tr>
<td>(\beta_{br})</td>
<td>114.85 kip/in</td>
<td>(torsional)</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>0.27 in</td>
<td></td>
</tr>
</tbody>
</table>
Column Base Plate Design Check

Calculation Results

- **$Z_x = 147 \text{ in}^3$**
- **$L = 96.15 \text{ in}$**
- **$F_y = 50 \text{ ksi}$**
- **$V_{M_p} = 152.89 \text{ kip}$**
- **$M_p = 7350 \text{ kip-in}$**
- **$P_u = 484.19 \text{ kip}$**
- **$M_u = 3290.12 \text{ kip-in}$**
- **$N = 31.25 \text{ in}$**
- **$f_{p, \text{max}} = 36 \text{ ksi}$**
- **$B = 28 \text{ in}$**
- **$e = 6.80 \text{ in}$**
- **$q_{\text{max}} = 1008 \text{ kip/in}$**
- **$e_{cr} = 15.38 \text{ in}$** (Small Moment)
- **$Y = 17.66 \text{ in}$**
- **$q = 27.42 \text{ kip/in}$** OK
- **$m = 9.59 \text{ in}$**
- **$f_p = 0.98 \text{ ksi}$**
- **$t_{p, \text{req}} = 2.01 \text{ in}$** eq 3.3.14a (LRFD)
- **$\text{use} = 2.00 \text{ in}$**

All-thread-rods

- **Type**: ASTM A193 B7
- **$d_{\text{bolt}} = 1.125 \text{ in}$**
- **$F_u = 125 \text{ ksi}$**
- **$F_y = 105 \text{ ksi}$**
- **$F_{at} = 93.75 \text{ ksi}$**
- **$F_{nv} = 50 \text{ ksi}$**
- **$A_b = 0.99 \text{ in}^2$**
- **$\phi = 0.75$**
- **$\phi R_n = 69.89 \text{ kip}$** (tension)
- **$\phi R_n = 37.28 \text{ kip}$** (shear)
- **$F_{PT} = 86.98 \text{ kip}$** (minimum required pretension)
- **$V_u = 152.89 \text{ kip}$** (very conservative assumption)
- **$M_u = 7350 \text{ kip-in}$** (very conservative assumption)
- **$P_u = 600 \text{ kip}$** (very conservative assumption)
- **$\mu = 0.35$** - (class A surface)
- **$SF = 2$** - (safety factor for not having enough bolt pretension force)
<table>
<thead>
<tr>
<th>N_V</th>
<th>10 bolts (for friction shear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_M</td>
<td>17 bolts (for bending)</td>
</tr>
<tr>
<td>N_T</td>
<td>9 bolts (for uplifting)</td>
</tr>
<tr>
<td>N_{req,total}</td>
<td>35 bolts</td>
</tr>
<tr>
<td>use</td>
<td>34 bolts</td>
</tr>
<tr>
<td>Title</td>
<td>TCBF-B-1 Specimen Design Calculation Sheet</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>2F</td>
<td>Stub Beam</td>
</tr>
<tr>
<td>F1 =</td>
<td>300 kip</td>
</tr>
<tr>
<td>F2 =</td>
<td>600 kip</td>
</tr>
<tr>
<td>L_{stub} =</td>
<td>19 in</td>
</tr>
<tr>
<td>Beam</td>
<td>w24x117</td>
</tr>
</tbody>
</table>

Column Dimension List

- w12x96
- Column:
 - $A_g = 28.2$ in²
 - $I_x = 833$ in⁴
 - $I_y = 270$ in⁴
 - $r_x = 5.44$ in
 - $r_y = 3.09$ in
 - $k_{des} = 1.5$ in
 - $E_s = 29000$ ksi

Column Web Local Yielding

- $N = 24.00$ in
- $R_n = 866.25$ kip
- $\phi = 1.00$
- $\phi R_n = 866.25$ kip OK

Column Web Crippling

- $R_n = 1382.366$ kip
- $\phi = 0.75$
- $\phi R_n = 1036.77$ kip OK

Column Flange Local Bending

- $R_n = 253.13$ kip
- $\phi = 0.90$
- $\phi R_n = 227.81$ kip
- $A_{web} = 12.43$ in²
- $A_s = 34.19$ in²
- $A_{flange} = 21.76$ in²
- $F_{1,flange} = 190.93$ kip
- $F_{2,flange} = 381.87$ kip Continue Plate Required!

Stub Beam Gross Yielding

- $A_s (beam) = 34.4$ in²
- $P_y = 1720$ kip OK
Column Dimension List

Stub Beam:
- $F_1 = 300 \text{ kip}$
- $d = 23.7 \text{ in}$
- $L_{\text{stub}} = 19 \text{ in}$
- $F_2 = 600 \text{ kip}$
- $t_w = 0.415 \text{ in}$
- $b = 8.97 \text{ in}$
- $t_f = 0.585 \text{ in}$

Column:
- $w24\times68$
- $t_r = 0.585 \text{ in}$

Column Web Local Yielding

- $N = 24.00 \text{ in}$
- $R_n = 866.25 \text{ kip}$
- $\phi = 1.00$
- $\phi R_n = 866.25 \text{ kip}$
 OK

Column Web Crippling

- $R_n = 1382.366 \text{ kip}$
- $\phi = 0.75$
- $\phi R_n = 1036.77 \text{ kip}$
 OK

Column Flange Local Bending

- $R_n = 253.13 \text{ kip}$
- $\phi = 0.90$
- $\phi R_n = 227.81 \text{ kip}$
 - $A_{\text{web}} = 9.35 \text{ in}^2$
 - $A_s = 19.84 \text{ in}^2$
 - $A_{\text{flange}} = 10.49 \text{ in}^2$
 - $F_{1\text{flange}} = 158.65 \text{ kip}$
 - $F_{2\text{flange}} = 317.31 \text{ kip}$
 OK

Stub Beam Gross Yielding

- $A_s (\text{beam}) = 20.1 \text{ in}^2$
- $P_y = 1005 \text{ kip}$
 OK
Title
TCBF-B-2 Specimen Design Calculation Sheet

General

Building height = 2 stories
Typical floor height = 9 ft

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1_{max}</td>
<td>300 kip</td>
<td></td>
</tr>
<tr>
<td>F_2_{max}</td>
<td>600 kip</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ratio</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Calculation Initialize

<table>
<thead>
<tr>
<th>Items</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>240 kip</td>
<td></td>
</tr>
<tr>
<td>F_2</td>
<td>480 kip</td>
<td></td>
</tr>
<tr>
<td>h_1</td>
<td>9 ft</td>
<td></td>
</tr>
<tr>
<td>h_2</td>
<td>18 ft</td>
<td></td>
</tr>
<tr>
<td>span</td>
<td>20 ft</td>
<td>(beam span)</td>
</tr>
<tr>
<td>h</td>
<td>9 ft</td>
<td>(typical floor height)</td>
</tr>
<tr>
<td>M_{base}</td>
<td>13500 kip-ft</td>
<td></td>
</tr>
<tr>
<td>P_{column}</td>
<td>675 kip</td>
<td></td>
</tr>
<tr>
<td>L_{brace}</td>
<td>13.45 ft</td>
<td>(work point to work point)</td>
</tr>
<tr>
<td>E_s</td>
<td>29000 ksi</td>
<td></td>
</tr>
</tbody>
</table>

Notes

: input value

Materials

<table>
<thead>
<tr>
<th>Members</th>
<th>Material Type</th>
<th>F_y (ksi)</th>
<th>F_u (ksi)</th>
<th>R_y</th>
<th>R_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Beams</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Braces</td>
<td>ASTM A500B</td>
<td>42</td>
<td>58</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Plates 1</td>
<td>ASTM A36</td>
<td>36</td>
<td>58</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Bolts</td>
<td>A490</td>
<td>130</td>
<td>150</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Welds</td>
<td>E70XX</td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plates 2</td>
<td>ASTM A572 Gr.50</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

(Ref: Table I-6-1)

(HSS-Round)

Load Combinations

Per ASCE-7-2005

Basic Reference Codes

AISC Specification for Structural Steel Buildings (March 9, 2005)
AISC Seismic Provisions for Structural Steel Buildings (March 9, 2005)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_u</td>
<td>144.00 kip (compression)</td>
</tr>
<tr>
<td>L_{brake}</td>
<td>8.1 ft</td>
</tr>
<tr>
<td>k</td>
<td>1.0</td>
</tr>
<tr>
<td>Try section</td>
<td>HSS5x.500 (HSS-Square)</td>
</tr>
<tr>
<td>A_s</td>
<td>6.62 in2</td>
</tr>
<tr>
<td>Z_x</td>
<td>9.60 in3</td>
</tr>
<tr>
<td>OD</td>
<td>5.00 in</td>
</tr>
<tr>
<td>t_{nom}</td>
<td>0.50 in</td>
</tr>
<tr>
<td>r_x</td>
<td>1.61 in</td>
</tr>
<tr>
<td>r_y</td>
<td>1.61 in</td>
</tr>
<tr>
<td>F_y (brace)</td>
<td>42 ksi</td>
</tr>
<tr>
<td>kL/r</td>
<td>60.25</td>
</tr>
<tr>
<td>F_c</td>
<td>78.85 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.90</td>
</tr>
<tr>
<td>ϕP_n</td>
<td>200.23 kip (compression) Check OK</td>
</tr>
</tbody>
</table>

Check Compactness Seismically (AISC Seismic Provisions 2005, Sec 8.2b)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{ps}</td>
<td>16.82</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.90</td>
</tr>
<tr>
<td>ϕP_n</td>
<td>250.24 kip (tension) Check OK</td>
</tr>
</tbody>
</table>

The given design calculations follow the AISC Seismic Provisions 2005 guidelines, ensuring structural integrity under seismic loads.
TCBF-B-2 Specimen Design Calculation Sheet

<table>
<thead>
<tr>
<th>Title</th>
<th>1F-Brace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu (kip)</td>
<td>252.07</td>
</tr>
<tr>
<td>Lbrace (ft)</td>
<td>9</td>
</tr>
<tr>
<td>k</td>
<td>1.0</td>
</tr>
<tr>
<td>Try section</td>
<td>HSS6x.500</td>
</tr>
</tbody>
</table>

Structural Properties

- \(A_s = 8.09 \text{ in}^2\)
- \(Z_x = 14.30 \text{ in}^3\)
- \(O_D = 6.00 \text{ in}\)
- \(t_{nom} = 0.50 \text{ in}\)
- \(r_x = 1.96 \text{ in}\)
- \(r_y = 1.96 \text{ in}\)
- \(F_y (brace) = 42 \text{ ksi}\)
- \(kL/r = 55.10\)
- \(F_e = 94.26 \text{ ksi}\)
- \(\phi = 0.90\)
- \(\phi P_n = 253.77 \text{ kip (compression)}\)

Check Compactness Seismically (AISC Seismic Provisions 2005, Sec 8.2b)

- \(\lambda_{ps} = 16.82\)
- \(b/t = 0.00\)
- \(h/t = 0.00\)

\[Kl/r \leq 4\sqrt{E/F_y}\]

Check

- \(\phi P_n = 305.80 \text{ kip (tension)}\)
- \(\phi = 0.90\)
- \(\phi P_n = 253.77 \text{ kip (compression)}\)

Check: OK
<table>
<thead>
<tr>
<th>Brace to Gusset Plate Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brace Block Shear</td>
</tr>
<tr>
<td>Brace to Gusset Plate Weld</td>
</tr>
</tbody>
</table>

Title: TCBF-B-2 Specimen Design Calculation Sheet
Date: May 27, 2009
Page: 4

Brace

Brace: HSS5x.500

\[
\begin{align*}
 R_y F_y A_g &= 389.26 \text{ kip} \quad (T_u) \\
 F_u A_g &= 383.96 \text{ kip} \quad (P_u) \\
 T_u / P_u &= 1.01 \\
 R_y F_y &= 58.8 \text{ ksi} \\
 R_y F_u &= 75.4 \text{ ksi} \\
 U &= 0.9 \\
 \phi_t &= 0.75 \quad (\text{tensile rupture in net section}) \\
 A_g / A_g &= 1.16 \quad (\text{Net section reinforcement required!}) \\
 \phi_t &= 0.90 \quad (\text{tensile yield in gross section}) \\
 t_{\text{gusset}} &= 0.87 \text{ in} \quad (\text{estimated}) \\
 t_g &= 0.75 \text{ in} \quad (\text{use}) \\
 A_{\text{cut}} &= 0.81 \text{ in}^2 \\
 A_{\text{net}} &= 5.81 \text{ in}^2 \\
 A_e &= 6.88 \text{ in}^2 \quad (\text{Reinforcement required!})
\end{align*}
\]

Reinforcement Plates

<table>
<thead>
<tr>
<th>1</th>
<th>12</th>
<th>in</th>
<th>Section</th>
<th>HSS6x.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{\text{bar}}</td>
<td>1.909859</td>
<td>in</td>
<td>OD</td>
<td>6</td>
</tr>
<tr>
<td>ID</td>
<td>5</td>
<td>in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.84</td>
<td>-</td>
<td>Ae,req</td>
<td>6.88</td>
</tr>
<tr>
<td>Ae,req</td>
<td>6.88</td>
<td>in2</td>
<td>A_{\text{net,req}}</td>
<td>8.19</td>
</tr>
<tr>
<td>A_{\text{reinf}}</td>
<td>1.19</td>
<td>in2</td>
<td>(both sides)</td>
<td></td>
</tr>
<tr>
<td>b_{\text{reinf}}</td>
<td>2.38</td>
<td>in</td>
<td>c_{\text{reinf}}</td>
<td>2.32</td>
</tr>
<tr>
<td>t_{\text{req}}</td>
<td>0.50</td>
<td>in</td>
<td>b_{\text{use}}</td>
<td>2.5</td>
</tr>
<tr>
<td>L_{\text{plate}}</td>
<td>14</td>
<td>in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{y,\text{plate}}</td>
<td>42</td>
<td>ksi</td>
<td>R_y F_y A_g</td>
<td>73.50</td>
</tr>
<tr>
<td>L_{\text{weld}}</td>
<td>6</td>
<td>in</td>
<td>weld</td>
<td>5</td>
</tr>
<tr>
<td>\phi R_n</td>
<td>83.51</td>
<td>kip</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Brace Block Shear

t_{\text{brace}}	0.465	in	
L_{\text{req}}	8.02	in	OK
L_{\text{use}}	12	in	

Brace to Gusset Plate Weld

<p>| L_{\text{weld}} | 12 | in |
| weld | 6 | x 1/16 in |
| \phi_b | 0.75 | - |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{exx}</td>
<td>70 ksi</td>
<td></td>
</tr>
<tr>
<td>F_w</td>
<td>42 ksi</td>
<td></td>
</tr>
<tr>
<td>ϕ_bR_n</td>
<td>400.87 kip</td>
<td>OK</td>
</tr>
</tbody>
</table>

Gusset Plate Block Shear

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{gv}</td>
<td>18 in2</td>
<td></td>
</tr>
<tr>
<td>A_{nt}</td>
<td>4.31 in2</td>
<td></td>
</tr>
<tr>
<td>U_{bs}</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75 -</td>
<td></td>
</tr>
<tr>
<td>ϕR_n</td>
<td>615.23 kip</td>
<td>OK</td>
</tr>
</tbody>
</table>

Whitmore Effective Width

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{whitmore}$</td>
<td>21.59 in (theoretical width)</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.90 -</td>
<td></td>
</tr>
<tr>
<td>ϕR_n</td>
<td>728.61 kip</td>
<td>OK (check gross yield)</td>
</tr>
<tr>
<td>Brace Block Shear</td>
<td>Brace to Gusset Plate Weld</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>$R_yF_yA_g = 475.692 \text{ kip (T_y)}$</td>
<td>$L_{weld} = 14 \text{ in}$</td>
<td></td>
</tr>
<tr>
<td>$F_u A_g = 469.22 \text{ kip (P_y)}$</td>
<td>$L_{weld} = 7 \text{ in} \times 1/16 \text{ in} \text{ (fillet)}$</td>
<td></td>
</tr>
<tr>
<td>$T_y/P_u = 1.01$</td>
<td>$\phi_b = 0.75 \text{ -}$</td>
<td></td>
</tr>
<tr>
<td>$R_y F_y = 58.8 \text{ ksi}$</td>
<td>$\phi_b = 0.75 \text{ (tensile rupture in net section)}$</td>
<td></td>
</tr>
<tr>
<td>$R_y F_u = 75.4 \text{ ksi}$</td>
<td>$A_g/A_g = 1.16 \text{ (Net section reinforcement required!)}$</td>
<td></td>
</tr>
<tr>
<td>$U = 0.9$</td>
<td>$\phi_t = 0.90 \text{ (tensile yield in gross section)}$</td>
<td></td>
</tr>
<tr>
<td>$\phi_t = 0.75$</td>
<td>$t_{gusset} = 0.88 \text{ in (estimated)}$</td>
<td></td>
</tr>
<tr>
<td>$A_g/A_g = 1.16$</td>
<td>$F_y = 50 \text{ ksi}$</td>
<td></td>
</tr>
<tr>
<td>$\phi_t = 0.90$</td>
<td>$t_g = 0.75 \text{ in (use)}$</td>
<td></td>
</tr>
<tr>
<td>$F_u = 65 \text{ ksi}$</td>
<td>(gusset plate)</td>
<td></td>
</tr>
<tr>
<td>$A_{cut} = 0.81 \text{ in}^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{net} = 7.28 \text{ in}^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_e = 8.41 \text{ in}^2 \text{ (reinforcement required)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcement Plates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l = 14 \text{ in \ Section \ HSS7x.500}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{bar} = 2.23 \text{ in \ OD = 7 \ in \ ID = 6 \ in}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U = 0.84$</td>
<td>$A_{req, \text{req}} = 8.41 \text{ in}^2$</td>
<td></td>
</tr>
<tr>
<td>$A = 1.36 \text{ in}^2 \text{ (both sides)}$</td>
<td>$A_{net, \text{req}} = 10.00 \text{ in}^2$</td>
<td></td>
</tr>
<tr>
<td>$b_{reinf} = 2.73 \text{ in \ c_{reinf} = 2.66 \ in}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{req} = 0.50 \text{ in \ t_{use} = 2.75 \ in}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{req} = 0.50 \text{ in}$</td>
<td>$L_{plate} = 16 \text{ in}$</td>
<td></td>
</tr>
<tr>
<td>$F_y, \text{plate} = 42 \text{ ksi \ R_yF_yA_g = 80.85 \ kip}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{weld} = 7 \text{ in \ weld = 5 \ x \ 1/16 \ in \ (fillet)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi \text{R}_n = 97.43 \text{ kip \ OK}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brace to Gusset Plate Weld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{brace} = 0.465 \text{ in}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{req} = 9.80 \text{ in \ OK}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{use} = 14 \text{ in}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{weld} = 14 \text{ in}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>F_{exx}</td>
<td>70 ksi</td>
<td></td>
</tr>
<tr>
<td>F_w</td>
<td>42 ksi</td>
<td></td>
</tr>
<tr>
<td>$\phi_b R_n$</td>
<td>545.63 kip OK</td>
<td></td>
</tr>
</tbody>
</table>

Gusset Plate Block Shear

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{gv}</td>
<td>21 in²</td>
</tr>
<tr>
<td>A_{nt}</td>
<td>5.16 in²</td>
</tr>
<tr>
<td>U_{bs}</td>
<td>1 -</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75 -</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>723.87 kip OK</td>
</tr>
</tbody>
</table>

Whitmore Effective Width

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{whitmore}$</td>
<td>24.90 in (theoretical width)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.90 -</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>840.30 kip OK (check gross yield)</td>
</tr>
<tr>
<td>Title</td>
<td>TCBF-B-2 Specimen Design Calculation Sheet</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>2F</td>
<td>Roof Beam Design Check</td>
</tr>
</tbody>
</table>

R_y F_y A_g = 389.26 kip \quad \theta = 0.73 \quad \text{(rad)} \quad 42.0 \quad \text{(deg)}

0.3 P_n = 66.74 kip \quad \sin(\theta) = 0.67

\cos(\theta) = 0.74

V = 215.75 kip

H = 338.94 kip

P_u = 600.00 kip \quad \text{(conservatively)}

M_u = 88.57 kip-ft \quad \text{(revised from structural analysis)}

Try \quad \text{w24x117}

A_g = 34.4 \quad \text{in}^2 \quad b_f = 12.8 \quad \text{in}

I_x = 3540 \quad \text{in}^4 \quad t_f = 0.85 \quad \text{in}

I_y = 297 \quad \text{in}^4 \quad d = 24.3 \quad \text{in}

r_x = 10.1 \quad \text{in} \quad t_w = 0.55 \quad \text{in}

r_y = 2.94 \quad \text{in} \quad F_y = 50 \quad \text{ksi}

\lambda_{p1} = 9.15 \quad \text{Compact}

\lambda_{p2} = 90.55 \quad \text{Compact}

L_p = 10.38 \quad \text{ft} \quad Z_x = 327 \quad \text{in}^3

c = 1 \quad \text{-} \quad J = 6.72 \quad \text{in}^4

C_w = 40800 \quad \text{in}^6 \quad h_c = 23.45 \quad \text{in}

S_x = 291 \quad \text{in}^3 \quad r_{tk} = 3.46 \quad \text{in}

L_r = 29.90 \quad \text{ft} \quad \text{Brace PT} = 2 \quad \text{-}

L_b = 10 \quad \text{ft} \quad C_b = 1.0 \quad \text{(Conservatively)}

M_p = 1362.5 \quad \text{kip-ft} \quad F_{cr} = 248.50 \quad \text{ksi}

\phi_b = 0.90 \quad \text{-} \quad M_n = 1362.50 \quad \text{kip-ft} \quad \text{(Need Check)}

\phi_b M_n = 1226.25 \quad \text{kip-ft}

k_l/r = 40.82 \quad \text{-} \quad k = 1.0 \quad \text{-}

F_c = 171.79 \quad \text{ksi} \quad 0.44 F_y = 22 \quad \text{ksi}

\phi_c = 0.90 \quad \text{-}

\phi_c P_n = 1370.46 \quad \text{kip}

P_u/\phi_c P_n = 0.44 \quad \text{use (H1-1a)}

Check 0.50 \quad \text{OK}
<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-2 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>May 27, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F</td>
<td>Lower Beam Design Check</td>
<td>Page</td>
<td>7</td>
</tr>
<tr>
<td>$R_y F_y A_g$</td>
<td>kip</td>
<td>(1F)</td>
<td></td>
</tr>
<tr>
<td>$R_y F_y A_g$</td>
<td>kip</td>
<td>(2F)</td>
<td>$\theta = 0.73$ (rad) $\sin(\theta) = 0.67$</td>
</tr>
<tr>
<td>$0.3 P_n$</td>
<td>kip</td>
<td>(1F)</td>
<td>$V = 273.57$ kip</td>
</tr>
<tr>
<td>$0.3 P_n$</td>
<td>kip</td>
<td>(2F)</td>
<td>$H = 303.97$ kip</td>
</tr>
<tr>
<td>P_u</td>
<td>kip</td>
<td>(conservatively)</td>
<td></td>
</tr>
<tr>
<td>M_u</td>
<td>kip-ft</td>
<td>(revised from structural analysis)</td>
<td></td>
</tr>
</tbody>
</table>

Try

A_g	in2	$b_t = 8.97$ in
I_x	in4	$t_r = 0.585$ in
I_y	in4	$d = 23.7$ in
r_x	in	$t_w = 0.415$ in
r_y	in	$F_y = 50$ ksi

λ_{p1}	9.15	$b/t = 7.67$ Compact
λ_{p2}	90.55	$h/tw = 54.29$ Compact
L_p	ft	$Z_x = 177$ in3
c	-	$J = 1.87$ in4
C_w	in6	$h_b = 23.12$ in
S_x	in3	$r_b = 2.30$ in
L_r	ft	Brace PT = 2
L_b	ft	$C_b = 1.0$ (Conservatively)
M_p	kip-ft	$F_{cr} = 110.86$ ksi
ϕ_b	0.90	$M_u = 656.87$ kip-ft OK
$\phi_b M_n$	591.18	kip-ft

$k l/r$	64.17	$k = 1.0$
F_c	ksi	0.44 $F_y = 22$ ksi
ϕ_c	0.90	-
$\phi_c P_n$	669.33	kip

$P_u/\phi_c P_n = 0.45$ use (H1-1a)

Check 0.69 OK
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_u</td>
<td>43.94</td>
<td>kip</td>
</tr>
<tr>
<td>M_u</td>
<td>110.65</td>
<td>kip-ft</td>
</tr>
<tr>
<td>L_{column}</td>
<td>9</td>
<td>ft</td>
</tr>
</tbody>
</table>

Try: \(w_{12x96} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>28.2</td>
<td>in2</td>
</tr>
<tr>
<td>I_x</td>
<td>833</td>
<td>in4</td>
</tr>
<tr>
<td>I_y</td>
<td>270</td>
<td>in4</td>
</tr>
<tr>
<td>r_x</td>
<td>5.44</td>
<td>in</td>
</tr>
<tr>
<td>r_y</td>
<td>3.09</td>
<td>in</td>
</tr>
<tr>
<td>F_y</td>
<td>50</td>
<td>ksi</td>
</tr>
</tbody>
</table>

\[
\lambda_{p1} = 7.22 \quad \lambda_{p2} = 71.59 \quad \text{Compact}
\]

\[
\lambda_{p1} = 71.59 \quad \lambda_{p2} = 19.82 \quad \text{Compact}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_p</td>
<td>10.91</td>
<td>ft</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>ft</td>
</tr>
<tr>
<td>C_w</td>
<td>9410</td>
<td>in6</td>
</tr>
<tr>
<td>S_x</td>
<td>131</td>
<td>in3</td>
</tr>
<tr>
<td>L_r</td>
<td>40.86</td>
<td>ft</td>
</tr>
</tbody>
</table>

Brace: PT = 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_b</td>
<td>9</td>
<td>ft</td>
</tr>
<tr>
<td>M_p</td>
<td>612.5</td>
<td>kip-ft</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>ϕ_bM_n</td>
<td>551.25</td>
<td>kip-ft</td>
</tr>
</tbody>
</table>

\[
\phi_c = 0.90 \quad \phi_bM_n = 612.50 \quad \text{Need Check}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>F_c</td>
<td>234.28</td>
<td>ksi</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>0.90</td>
<td>-</td>
</tr>
</tbody>
</table>

$P_d/\phi_cP_n = 0.04$ use (H1-1b)

Check: 0.22 OK
TCBF-B-2 Specimen Design Calculation Sheet

Column Design Check

\(P_u \)	493.82 kip	(revised from structural analysis)
\(M_u \)	263.05 kip-ft	(revised from structural analysis)
\(L_{\text{column}} \)	9 ft	

Try \(\text{w12x96} \)

\[
\begin{align*}
A_g &= 28.2 \text{ in}^2 \quad & b_l &= 12.2 \text{ in} \\
I_x &= 833 \text{ in}^4 \\
I_y &= 270 \text{ in}^4 \quad & d &= 12.7 \text{ in} \\
I_x &= 5.44 \text{ in} \\
I_y &= 3.09 \text{ in} \quad & F_y &= 50 \text{ ksi} \\
\lambda_{p1} &= 7.22 \quad & b/t &= 6.78 \quad \text{Compact} \\
\lambda_{p2} &= 52.35 \quad & h/tw &= 19.82 \quad \text{Compact} \\
L_p &= 10.91 \text{ ft} \quad & Z_x &= 147 \text{ in}^3 \\
c &= 1 \quad & J &= 6.85 \text{ in}^4 \\
C_w &= 9410 \text{ in}^6 \quad & h_o &= 11.80 \text{ in} \\
S_x &= 131 \text{ in}^3 \quad & r_{ts} &= 3.49 \text{ in} \\
L_r &= 40.86 \text{ ft} \quad & \text{Brace PT} &= 0 \quad \text{(Conservatively)} \\
L_b &= 9 \text{ ft} \quad & C_b &= 1.0 \\
M_p &= 612.5 \text{ kip-ft} \quad & F_{cr} &= 344.49 \text{ ksi} \\
\phi_b &= 0.90 \quad & M_n &= 612.50 \text{ kip-ft} \quad \text{(Need Check)} \\
\phi_b M_n &= 551.25 \text{ kip-ft} \quad & C_n &= 0.39 \quad - \\
\lambda_p &= 7.22 \quad & b/t &= 6.78 \quad \text{Compact} \\
\lambda = 7.22 \quad & b/t &= 6.78 \quad \text{Compact} \\
L_p &= 10.91 \text{ ft} \quad & Z_x &= 147 \text{ in}^3 \\
c &= 1 \quad & J &= 6.85 \text{ in}^4 \\
C_w &= 9410 \text{ in}^6 \quad & h_o &= 11.80 \text{ in} \\
S_x &= 131 \text{ in}^3 \quad & r_{ts} &= 3.49 \text{ in} \\
L_r &= 40.86 \text{ ft} \quad & \text{Brace PT} &= 0 \quad \text{(Conservatively)} \\
L_b &= 9 \text{ ft} \quad & C_b &= 1.0 \\
M_p &= 612.5 \text{ kip-ft} \quad & F_{cr} &= 344.49 \text{ ksi} \\
\phi_b &= 0.90 \quad & M_n &= 612.50 \text{ kip-ft} \quad \text{(Need Check)} \\
\phi_b M_n &= 551.25 \text{ kip-ft} \quad & C_n &= 0.39 \quad - \\
kl/r &= 34.95 \quad - \quad & k &= 1.0 \quad - \\
F_c &= 234.28 \text{ ksi} \quad & 0.44 F_y &= 22 \text{ ksi} \\
\phi_c &= 0.90 \quad - \\
\phi_c P_n &= 1160.56 \text{ kip} \\
\frac{P_u}{\phi_c P_n} &= 0.43 \quad \text{use (H1-1a)} \\
\text{Check} &= 0.85 \quad \text{OK}
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_p)</td>
<td>7350</td>
<td>kip-in</td>
</tr>
<tr>
<td>(L)</td>
<td>96.15</td>
<td>in</td>
</tr>
<tr>
<td>(V)</td>
<td>152.89</td>
<td>kip</td>
</tr>
<tr>
<td>(A_s)</td>
<td>6.99</td>
<td>in(^2)</td>
</tr>
<tr>
<td>(S_y)</td>
<td>21.89</td>
<td>ksi</td>
</tr>
<tr>
<td>(S_{y,yield})</td>
<td>29.00</td>
<td>ksi</td>
</tr>
</tbody>
</table>

Check Column Web Shear Stress
Title	TCBF-B-2 Specimen Design Calculation Sheet	Date	May 27, 2009
2F | Beam-Column Connection | Page | 10

Type Bolted (WUF-B)

H = 169.47 kip
V = 107.88 kip
M = 88.57 kip-ft (revised from structural analysis)

\[R_u = 200.89 \text{ kip} \]

Try \(d_b = 0.88 \text{ in} \) \(F_u = 150 \text{ ksi} \)

\[A_b = 0.60 \text{ in}^2 \]
\[F_{nv} = 75 \text{ ksi} \] (threads excluded)

\[N_b = 6 \text{ bolts} \] (in one row)

\[R_n = 270.59 \text{ kip} \] (bolt shear)
\[L_{c_{\text{ex}}} = 1.5 \text{ in} \]

\[\phi_b = 0.75 \]
\[L_{c_{\text{in}}} = 3 \text{ in} \]

\[\phi_b R_n = 202.94 \text{ kip} \] OK

\[L_{c1} = 1.03 \text{ in} \] (edge clear distance)
\[R_{n1} = 46.41 \text{ kip} \]

\[L_{c2} = 2.06 \text{ in} \] (clear distance)
\[R_{n2} = 236.25 \text{ kip} \]

\[t = 0.50 \text{ in} \] (shear tab thickness)

\[R_n = 1227.66 \text{ kip} \] (combined bolt bearing)

\[\phi_b = 0.75 \]

\[\phi_b R_n = 920.74 \text{ kip} \] OK

\[L_{\text{tab}} = 18 \text{ in} \]
\[w_{\text{tab}} = 4.5 \text{ in} \]
\[A_{s_{\text{tab}}} = 9 \text{ in}^2 \]
\[F_{y_{\text{tab}}} = 50 \text{ ksi} \]
\[F_{v_{\text{tab}}} = 30.0 \text{ ksi} \]
\[P_{nt} = 450.00 \text{ kip} \]
\[P_{nv} = 270.00 \text{ kip} \] OK

Weld Fillet (shear tab)

\[F_{exx} = 70 \text{ ksi} \]
\[F_{w} = 42 \text{ ksi} \]
\[w = 5 \times \frac{1}{16} \text{ inch} \]
\[\phi_b R_n = 250.54 \text{ kip} \] OK

Weld CJP (top, bottom flanges)

\[b_f = 12.8 \text{ in} \]
\[t_f = 0.85 \text{ in} \]
\[d = 24.3 \text{ in} \]
\[t_w = 0.55 \text{ in} \]

PEER Report 2013/20

H-39
<table>
<thead>
<tr>
<th>Check Block Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
</tr>
<tr>
<td>w24x117</td>
</tr>
<tr>
<td>A_{gv} = 9.9 in²</td>
</tr>
<tr>
<td>A_{gt} = 1.925 in²</td>
</tr>
<tr>
<td>A_{nv} = 6.6 in²</td>
</tr>
<tr>
<td>A_{nt} = 1.65 in²</td>
</tr>
<tr>
<td>U_{bs} = 0.5</td>
</tr>
<tr>
<td>ϕ = 0.75</td>
</tr>
<tr>
<td>F_y = 50 ksi</td>
</tr>
<tr>
<td>F_u = 65 ksi</td>
</tr>
<tr>
<td>ϕR_n = 233.27 kip OK</td>
</tr>
</tbody>
</table>

<p>| Shear Tab |
| A_{gv} = 8.25 in² |
| A_{gt} = 1.5 in² |
| A_{nv} = 5.5 in² |
| A_{nt} = 1.25 in² |
| U_{bs} = 0.5 |
| ϕ = 0.75 |
| F_y = 50 ksi |
| F_u = 65 ksi |
| ϕR_n = 191.34 kip NG! |</p>
<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-2 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>May 27, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2F</td>
<td>Braces to Beam Connection</td>
<td>Page</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Braces</th>
<th>HSS5x.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = 389.26) kip</td>
<td>(\sin(\theta) = 0.669)</td>
</tr>
<tr>
<td>(C = 342.61) kip</td>
<td>(\cos(\theta) = 0.743)</td>
</tr>
<tr>
<td>(e = 12.15) in</td>
<td></td>
</tr>
<tr>
<td>Shear = 543.99 kip</td>
<td></td>
</tr>
<tr>
<td>Tension = 197.89 kip</td>
<td></td>
</tr>
<tr>
<td>Moment = 550.79 kip-ft</td>
<td></td>
</tr>
<tr>
<td>(t_{gusset} = 0.75) in</td>
<td></td>
</tr>
<tr>
<td>(L = 60) in</td>
<td></td>
</tr>
<tr>
<td>(s_V = 12.09) ksi</td>
<td></td>
</tr>
<tr>
<td>(s_A = 4.40) ksi</td>
<td></td>
</tr>
<tr>
<td>(s_M = 14.69) ksi</td>
<td></td>
</tr>
<tr>
<td>(\phi = 0.9)</td>
<td></td>
</tr>
<tr>
<td>(F_{y, gusset} = 50) ksi</td>
<td></td>
</tr>
<tr>
<td>Ratio = 0.63 OK</td>
<td></td>
</tr>
</tbody>
</table>

\[L_{\text{Whitmore}} = 21.59 \text{ in} \quad \text{in} \quad L_{\text{min}} = 59.27 \text{ in} \quad \text{(geometry limit)} \quad \text{OK} \]

\[L_v = 16 \text{ in} \quad \text{in} \quad L_{v, \text{min}} = 16.05 \text{ in} \quad \text{(geometry limit)} \quad \text{NG!} \]

\[w_{up} = 10.79 \text{ in} \quad A_v = 12 \text{ in}^2 \]

\[w_{low} = 20.92 \text{ in} \quad P_u = 260.40 \text{ kip} \]

\[\text{Whitmeff} = 21.59 \text{ in} \quad \phi R_n = 324 \text{ kip} \quad \text{OK} \]

\[\phi R_n = 728.61 \text{ kip} \quad \text{OK} \]

Gusset Plate to Beam Flange

<table>
<thead>
<tr>
<th>Weld</th>
<th>Fillet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{exx} = 70) ksi</td>
<td></td>
</tr>
<tr>
<td>(F_w = 42) ksi</td>
<td>(s_V = 12.82) ksi</td>
</tr>
<tr>
<td>(w = 8 \times) 1/16 inch</td>
<td>(s_M = 15.58) ksi</td>
</tr>
<tr>
<td>(L_{\text{weld}} = 60) in</td>
<td>(s_A = 4.67) ksi</td>
</tr>
<tr>
<td>(\text{side} = 2) sides</td>
<td>(f_{\text{peak}} = 23.97) ksi</td>
</tr>
<tr>
<td>(t_{\text{eff}} = 0.354) in</td>
<td>(f_{\text{avg}} = 20.40) ksi</td>
</tr>
<tr>
<td>(\phi = 0.75) -</td>
<td>(f_r = 25.50) ksi</td>
</tr>
<tr>
<td>Ratio = 0.86 OK</td>
<td>Ratio = 0.81 OK</td>
</tr>
</tbody>
</table>

Check Beam Web

| width = 60 in |

Beam | \(w24x117 \)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_u</td>
<td>220.32 kip</td>
</tr>
<tr>
<td>d</td>
<td>24.3 in</td>
</tr>
<tr>
<td>t_w</td>
<td>0.55 in</td>
</tr>
<tr>
<td>N</td>
<td>30 in</td>
</tr>
<tr>
<td>t_f</td>
<td>0.85 in</td>
</tr>
<tr>
<td>$F_{y,web}$</td>
<td>50 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>R_n</td>
<td>1060.63 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>795.47 kip</td>
</tr>
<tr>
<td>k_{des}</td>
<td>1.35 in</td>
</tr>
<tr>
<td>R_n</td>
<td>1010.63 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>1010.63 kip</td>
</tr>
<tr>
<td>L_{gb}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>F_c</td>
<td>29.82 ksi</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>r</td>
<td>0.217 in</td>
</tr>
<tr>
<td>A_g</td>
<td>16.19 in²</td>
</tr>
<tr>
<td>R_n</td>
<td>401.31 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>361.18 kip</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{c1}</td>
<td>11.38 in</td>
</tr>
<tr>
<td>L_{c2}</td>
<td>16.94 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>Le</td>
<td>15.63 in</td>
</tr>
<tr>
<td>Le/tg</td>
<td>20.83 -</td>
</tr>
<tr>
<td>Limit</td>
<td>18.06 -</td>
</tr>
<tr>
<td>M_r</td>
<td>1498.75 kip-ft</td>
</tr>
<tr>
<td>Z</td>
<td>327 in³</td>
</tr>
<tr>
<td>L_b</td>
<td>10 ft</td>
</tr>
<tr>
<td>C_d</td>
<td>1</td>
</tr>
<tr>
<td>h_o</td>
<td>23.45 in</td>
</tr>
<tr>
<td>L_{pd}</td>
<td>17.05 ft</td>
</tr>
<tr>
<td>P_{br}</td>
<td>15.34 kip</td>
</tr>
<tr>
<td>β_{br}</td>
<td>85.22 kip/in</td>
</tr>
<tr>
<td>C_b</td>
<td>1</td>
</tr>
<tr>
<td>M_{br}</td>
<td>17.985 kip-ft</td>
</tr>
<tr>
<td>P_{br}</td>
<td>9.20 kip</td>
</tr>
<tr>
<td>β_T</td>
<td>28842 kip-in/rad</td>
</tr>
<tr>
<td>β_{br}</td>
<td>52.45 kip/in</td>
</tr>
<tr>
<td>Δ</td>
<td>0.18 in</td>
</tr>
<tr>
<td>k_{axial}</td>
<td>2006.8 kip/in</td>
</tr>
<tr>
<td>k</td>
<td>1419 kip/in</td>
</tr>
</tbody>
</table>

Check Gusset Plate Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{gb}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>kL/r</td>
<td>98.0</td>
</tr>
<tr>
<td>F_c</td>
<td>29.82 ksi</td>
</tr>
<tr>
<td>L_c</td>
<td>14.13 in</td>
</tr>
<tr>
<td>r</td>
<td>0.217 in</td>
</tr>
<tr>
<td>A_g</td>
<td>16.19 in²</td>
</tr>
<tr>
<td>R_n</td>
<td>401.31 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>361.18 kip</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{c1}</td>
<td>11.38 in</td>
</tr>
<tr>
<td>L_{c2}</td>
<td>16.94 in</td>
</tr>
<tr>
<td>L_{max}</td>
<td>24.06 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>Le</td>
<td>15.63 in</td>
</tr>
<tr>
<td>Le/tg</td>
<td>20.83 -</td>
</tr>
<tr>
<td>Limit</td>
<td>18.06 -</td>
</tr>
<tr>
<td>M_r</td>
<td>1498.75 kip-ft</td>
</tr>
<tr>
<td>Z</td>
<td>327 in³</td>
</tr>
<tr>
<td>L_b</td>
<td>10 ft</td>
</tr>
<tr>
<td>C_d</td>
<td>1</td>
</tr>
<tr>
<td>h_o</td>
<td>23.45 in</td>
</tr>
<tr>
<td>L_{pd}</td>
<td>17.05 ft</td>
</tr>
<tr>
<td>P_{br}</td>
<td>15.34 kip</td>
</tr>
<tr>
<td>β_{br}</td>
<td>85.22 kip/in</td>
</tr>
<tr>
<td>C_b</td>
<td>1</td>
</tr>
<tr>
<td>M_{br}</td>
<td>17.985 kip-ft</td>
</tr>
<tr>
<td>P_{br}</td>
<td>9.20 kip</td>
</tr>
<tr>
<td>β_T</td>
<td>28842 kip-in/rad</td>
</tr>
<tr>
<td>β_{br}</td>
<td>52.45 kip/in</td>
</tr>
<tr>
<td>Δ</td>
<td>0.18 in</td>
</tr>
<tr>
<td>k_{axial}</td>
<td>2006.8 kip/in</td>
</tr>
<tr>
<td>k</td>
<td>1419 kip/in</td>
</tr>
</tbody>
</table>

Free Edge Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{c1}</td>
<td>11.38 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>21.88 in</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>17.68 in</td>
</tr>
</tbody>
</table>

Lateral Stability of Beam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{br}</td>
<td>17.985 kip-ft</td>
</tr>
<tr>
<td>P_{br}</td>
<td>9.20 kip</td>
</tr>
<tr>
<td>β_T</td>
<td>28842 kip-in/rad</td>
</tr>
<tr>
<td>β_{br}</td>
<td>52.45 kip/in</td>
</tr>
<tr>
<td>Δ</td>
<td>0.18 in</td>
</tr>
</tbody>
</table>

Kicker

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>1.73 in²</td>
</tr>
<tr>
<td>L</td>
<td>25 in</td>
</tr>
<tr>
<td>k_{axial}</td>
<td>2006.8 kip/in</td>
</tr>
<tr>
<td>k</td>
<td>1419 kip/in</td>
</tr>
</tbody>
</table>
Big Gusset Plate for Upper Floor Bracing and Lower Floor Bracing

Sway to Right
- \(F_{U2R} = 389.26 \text{ kip} \)
- \(F_{L2R} = 434.24 \text{ kip} \)
- \(\cos(\theta_U) = 0.743 \)
- \(\cos(\theta_L) = 0.743 \)

Sway to Left
- \(F_{U2L} = 342.61 \text{ kip} \)
- \(F_{L2L} = 475.69 \text{ kip} \)

Beam
- \(d = 23.7 \text{ in} \)
- \(L_{c,\text{min}} = 58.25 \text{ in} \)

Column
- \(e_c = 6.35 \text{ in} \)
- \(R_{\text{beam}} = 21.32 \text{ kip} \) (downward)
- \(L_{b,\text{min}} = 16.66 \text{ in} \)
- \(L_{cu,\text{min}} = 16.05 \text{ in} \)
- \(L_{cl,\text{min}} = 18.51 \text{ in} \)
- \(t_g = 0.75 \text{ in} \)
- \(L_{cu} = 18 \text{ in} \) (use)
- \(L_{cl} = 18 \text{ in} \) (use)
- \(L_c = 59.7 \text{ in} \) (use)
- \(L_b = 23 \text{ in} \) (use)
- \(F_y, \text{gusset} = 50 \text{ ksi} \)

Sway to the Right
- \(V_{U2R} = 260.40 \text{ kip} \) (upward)
- \(H_{U2R} = 289.33 \text{ kip} \) (rightward)
- \(V_{L2R} = 290.49 \text{ kip} \) (upward)
- \(H_{L2R} = 322.77 \text{ kip} \) (leftward)
- \(V_{\text{total}} = 529.57 \text{ kip} \) (upward)
- \(M = 280.23 \text{ kip-ft} \) (counter-clockwise)
- \(V_{cu} = 159.67 \text{ kip} \) (downward)
- \(f_1 = 5.66 \text{ kip/in} \) (leftward)
- \(f_2 = 2.25 \text{ kip/in} \) (leftward)
- \(H_{cu} = 71.18 \text{ kip} \) (leftward)
- \(H_{bu} = 218.16 \text{ kip} \) (leftward)
- \(V_{bu} = 100.73 \text{ kip} \) (downward)
- \(M_{cu} = 7.68 \text{ kip-ft} \) (counter-clockwise)

Column-Side
- \(s_A = 5.27 \text{ ksi} \)
- \(s_V = 11.83 \text{ ksi} \)
- \(s_M = 2.28 \text{ ksi} \)
- \(s_A = 5.84 \text{ ksi} \)
- \(s_V = 12.65 \text{ ksi} \)

Beam-Side
- \(s_A = 0.75 \text{ ksi} \)
- \(s_V = 11.83 \text{ ksi} \)
- \(s_M = 7.55 \text{ ksi} \)
- \(s_A = 0.75 \text{ ksi} \)
- \(s_V = 12.65 \text{ ksi} \)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Direction</th>
<th>Unit</th>
<th>Ratio</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{bs}</td>
<td>-112.45 kip-ft</td>
<td>clockwise</td>
<td></td>
<td>Ratio = 0.58</td>
<td>OK</td>
</tr>
<tr>
<td>V_{cl}</td>
<td>159.67 kip</td>
<td>downward</td>
<td></td>
<td>$s_A = 5.27$ ksi</td>
<td></td>
</tr>
<tr>
<td>f_1</td>
<td>5.66 kip/in</td>
<td>rightward</td>
<td></td>
<td>$s_V = 11.83$ ksi</td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td>2.25 kip/in</td>
<td>rightward</td>
<td></td>
<td>$s_M = 2.28$ ksi</td>
<td></td>
</tr>
<tr>
<td>H_{cl}</td>
<td>71.18 kip</td>
<td>rightward</td>
<td></td>
<td>Ratio = 0.49</td>
<td>OK</td>
</tr>
<tr>
<td>H_{bl}</td>
<td>251.59 kip</td>
<td>rightward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{bl}</td>
<td>130.82 kip</td>
<td>downward</td>
<td></td>
<td>$s_A = 7.58$ ksi</td>
<td></td>
</tr>
<tr>
<td>M_{bs}</td>
<td>100.71 kip-ft</td>
<td>clockwise</td>
<td></td>
<td>$s_V = 14.58$ ksi</td>
<td></td>
</tr>
<tr>
<td>M_{cl}</td>
<td>7.68 kip-ft</td>
<td>counter-clockwise</td>
<td></td>
<td>$s_M = 18.28$ ksi</td>
<td></td>
</tr>
<tr>
<td>H_{mid}</td>
<td>0.00 kip</td>
<td>leftward</td>
<td></td>
<td>Ratio = 0.35</td>
<td>OK</td>
</tr>
</tbody>
</table>

Weld Size

- $f_v = 8.87$ kip/in
- $f_a = 5.13$ kip/in (averaged)
- $f_b = 5.66$ kip/in
- $f_{peak} = 13.97$ kip/in
- $f_{avg} = 11.43$ kip/in
- $f_r = 14.28$ kip/in

D >= 5.13 x 1/16 (weld size)

Use 6 x 1/16 (weld size)
<table>
<thead>
<tr>
<th>Web</th>
<th>Fillet welds with web plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange</td>
<td>CJP weld (T & B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pu</th>
<th>303.97 kip</th>
</tr>
</thead>
<tbody>
<tr>
<td>tr</td>
<td>0.59 in</td>
</tr>
<tr>
<td>b</td>
<td>8.97 in</td>
</tr>
<tr>
<td>As</td>
<td>5.25 in²</td>
</tr>
</tbody>
</table>

\[2*As*F_y = 524.75 \text{ kip} \quad \text{OK} \]

<table>
<thead>
<tr>
<th>R_{beam}</th>
<th>21.32 kip (Gravity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{tab}</td>
<td>20.375 in</td>
</tr>
<tr>
<td>(w_{tab})</td>
<td>8 in</td>
</tr>
<tr>
<td>Weld</td>
<td>Fillet (shear tab)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_{exx}</th>
<th>70 ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{w}</td>
<td>42 ksi</td>
</tr>
<tr>
<td>w</td>
<td>6 in x 1/16 inch</td>
</tr>
</tbody>
</table>

\[\phi_b R_n = 236.97 \text{ kip} \quad \text{OK} \]

L_{weld} = 28.375 in
side = 1 sides

Shim Plate

<table>
<thead>
<tr>
<th>L</th>
<th>20 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>4 in</td>
</tr>
<tr>
<td>Weld</td>
<td>Fillet (shear tab)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_{exx}</th>
<th>70 ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{w}</td>
<td>42 ksi</td>
</tr>
<tr>
<td>w</td>
<td>2.68 in x 1/16 inch</td>
</tr>
</tbody>
</table>

\[\phi_b R_n = 104.45 \text{ kip} \quad \text{OK} \]

L_{weld} = 28 in (3 sides)
side = 1 sides
Braces

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>475.69 kip</td>
</tr>
<tr>
<td>C</td>
<td>434.24 kip</td>
</tr>
<tr>
<td>e</td>
<td>0 in</td>
</tr>
<tr>
<td>Shear</td>
<td>676.34 kip</td>
</tr>
<tr>
<td>Tension</td>
<td>239.00 kip</td>
</tr>
<tr>
<td>Moment</td>
<td>0.00 kip-ft</td>
</tr>
</tbody>
</table>

t_{gusset}	0.75 in
L	46 in
s_V	19.60 ksi
s_M	0.00 ksi
φ	0.9
F_{y, gusset}	50 ksi
Ratio	0.77 OK

Shear: 676.34 kip
Tension: 239.00 kip
Moment: 0.00 kip-ft

Gusset to beam flange

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s<sub>V</sub></td>
<td>15.12 ksi</td>
</tr>
<tr>
<td>s<sub>M</sub></td>
<td>0.00 ksi</td>
</tr>
<tr>
<td>s<sub>A</sub></td>
<td>5.34 ksi</td>
</tr>
</tbody>
</table>

L_{weld} = 46 in

<table>
<thead>
<tr>
<th>Weld</th>
<th>Fillet (Gusset to beam flange)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sub>exx</sub></td>
<td>70 ksi</td>
</tr>
<tr>
<td>F<sub>w</sub></td>
<td>42 ksi</td>
</tr>
<tr>
<td>w</td>
<td>11 x 1/16 inch</td>
</tr>
<tr>
<td>L<sub>weld</sub></td>
<td>46 in</td>
</tr>
<tr>
<td>side</td>
<td>2 sides</td>
</tr>
<tr>
<td>t<sub>eff</sub></td>
<td>0.486 in</td>
</tr>
<tr>
<td>φ</td>
<td>0.75 -</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.85 OK</td>
</tr>
</tbody>
</table>

Check Beam Web

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>46 in</td>
</tr>
<tr>
<td>R<sub>u</sub></td>
<td>0.00 kip</td>
</tr>
<tr>
<td>d</td>
<td>33.2 in</td>
</tr>
<tr>
<td>t<sub>w</sub></td>
<td>1.36 in</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>N = 23 in</td>
<td>t_i = 2.44 in</td>
</tr>
<tr>
<td>φ = 0.75</td>
<td>R_n = 4450.60 kip</td>
</tr>
<tr>
<td>k_{des} = 3.23 in</td>
<td>(web crippling)</td>
</tr>
<tr>
<td>φ = 1.00</td>
<td>R_n = 2662.20 kip</td>
</tr>
<tr>
<td>L_{gb} = 14.84 in</td>
<td>kL/r = 82.2</td>
</tr>
<tr>
<td>k = 1.2</td>
<td>F_e = 42.32 ksi</td>
</tr>
<tr>
<td>r = 0.217 in</td>
<td>0.44 F_y = 22 ksi</td>
</tr>
<tr>
<td>A_g = 18.67 in^2</td>
<td>R_n = 569.41 kip</td>
</tr>
<tr>
<td>φ = 0.9</td>
<td>φR_n = 512.47 kip</td>
</tr>
<tr>
<td>L_{ave} = 14.84 in</td>
<td>OK</td>
</tr>
</tbody>
</table>

Check Gusset Plate Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{ave} = 17.88 in</td>
<td>L_{ave} = 14.84 in</td>
</tr>
<tr>
<td>L_{ave}/t_g = 23.83</td>
<td>-</td>
</tr>
<tr>
<td>Limit = 18.06</td>
<td>Edge stiffener required!</td>
</tr>
</tbody>
</table>

Free Edge Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_r = 6645.83 kip-ft</td>
<td>Z = 1450 in^3</td>
</tr>
<tr>
<td>C_d = 1</td>
<td>h_o = 30.76 in</td>
</tr>
<tr>
<td>P_{br} = 51.85 kip</td>
<td>β_{br} = 288.07 kip/in</td>
</tr>
<tr>
<td>(Nodal)</td>
<td>(Nodal)</td>
</tr>
<tr>
<td>M_{br} = 79.75 kip-ft</td>
<td>I_y = 1550 in^4</td>
</tr>
<tr>
<td>P_{br} = 31.11 kip</td>
<td>(torsional)</td>
</tr>
<tr>
<td>β_T = 108666 kip-in/rad</td>
<td>β_{sec} not included</td>
</tr>
<tr>
<td>β_{br} = 114.85 kip/in</td>
<td>(torsional)</td>
</tr>
<tr>
<td>Δ = 0.27 in</td>
<td>-</td>
</tr>
</tbody>
</table>
Column Base Plate Design Check

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_x</td>
<td>147</td>
<td>in³</td>
</tr>
<tr>
<td>F_y</td>
<td>50</td>
<td>ksi</td>
</tr>
<tr>
<td>M_p</td>
<td>7350</td>
<td>kip-in</td>
</tr>
<tr>
<td>P_u</td>
<td>493.82</td>
<td>kip</td>
</tr>
<tr>
<td>M_u</td>
<td>3156.6</td>
<td>kip-in</td>
</tr>
<tr>
<td>N</td>
<td>31.25</td>
<td>in</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>in</td>
</tr>
<tr>
<td>e</td>
<td>6.39</td>
<td>in</td>
</tr>
<tr>
<td>e_{cr}</td>
<td>15.38</td>
<td>in</td>
</tr>
<tr>
<td>a</td>
<td>9.59</td>
<td>in</td>
</tr>
<tr>
<td>q_{max}</td>
<td>1008</td>
<td>kip/in</td>
</tr>
<tr>
<td>$f_{p, max}$</td>
<td>36</td>
<td>ksi</td>
</tr>
<tr>
<td>$q_{p, req}$</td>
<td>1.99</td>
<td>in</td>
</tr>
<tr>
<td>tp, use</td>
<td>2.00</td>
<td>in</td>
</tr>
</tbody>
</table>

All-thread-rods

- **Type**: ASTM A193 B7
- **d_{bolt}**: 1.125 in
- **F_u**: 125 ksi
- **F_y**: 105 ksi
- **F_{at}**: 93.75 ksi
- **F_{nv}**: 50 ksi
- **A_b**: 0.99 in²
- **ϕ**: 0.75
- **ϕR_n**: 69.89 kip (tension)
- **ϕR_n**: 37.28 kip (shear)
- **F_{PT}**: 86.98 kip (minimum required pretension)
- **V_u**: 152.89 kip (very conservative assumption)
- **M_u**: 7350 kip-in (very conservative assumption)
- **P_u**: 600 kip (very conservative assumption)
- **μ**: 0.35 (class A surface)
- **SF**: 2 (safety factor for not having enough bolt pretension force)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_V</td>
<td>10</td>
<td>bolts (for friction shear)</td>
</tr>
<tr>
<td>N_M</td>
<td>17</td>
<td>bolts (for bending)</td>
</tr>
<tr>
<td>N_T</td>
<td>9</td>
<td>bolts (for uplifting)</td>
</tr>
<tr>
<td>$N_{req,\ total}$</td>
<td>35</td>
<td>bolts</td>
</tr>
<tr>
<td>use</td>
<td>34</td>
<td>bolts</td>
</tr>
</tbody>
</table>
TCBF-B-2 Specimen Design Calculation Sheet

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2F</td>
<td>May 27, 2009</td>
<td>16</td>
</tr>
</tbody>
</table>

Stub Beam

- $F_1 = 300$ kip, $d = 24.3$ in
- $F_2 = 600$ kip, $t_w = 0.55$ in
- $L_{stub} = 19$ in, $b = 12.8$ in
- Beam: $w_{24\times117}$, $t_f = 0.85$ in

Column Dimension List

- **Column**: $w_{12\times96}$
 - $A_g = 28.2$ in2, $b_f = 12.2$ in
 - $I_x = 833$ in4, $t_f = 0.9$ in
 - $I_y = 270$ in4, $d = 12.7$ in
 - $r_x = 5.44$ in, $t_w = 0.55$ in
 - $r_y = 3.09$ in, $F_y = 50$ ksi
 - $k_{des} = 1.5$ in, $E_s = 29000$ ksi

Column Web Local Yielding

- $N = 24.00$ in
- $R_n = 866.25$ kip
- $\phi = 1.00$ -
- $\phi R_n = 866.25$ kip, **OK**

Column Web Crippling

- $R_n = 1382.366$ kip
- $\phi = 0.75$ -
- $\phi R_n = 1036.77$ kip, **OK**

Column Flange Local Bending

- $R_n = 253.13$ kip
- $\phi = 0.90$ -
- $\phi R_n = 227.81$ kip
- $A_{web} = 12.43$ in2, $A_s = 34.19$ in2
- $A_{flange} = 21.76$ in2
- $F_{1_{flange}} = 190.93$ kip
- $F_{2_{flange}} = 381.87$ kip
- **Continue Plate Required!**

Stub Beam Gross Yielding

- $A_{s\, (beam)} = 34.4$ in2
- $P_y = 1720$ kip, **OK**
<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-2 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>May 27, 2009</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IF</th>
<th>Stub Beam</th>
<th>Page</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁ = 300 kip</td>
<td>d = 23.7 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₂ = 600 kip</td>
<td>tₚ = 0.415 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lstub = 19 in</td>
<td>b = 8.97 in</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Column Dimension List

<table>
<thead>
<tr>
<th>Column</th>
<th>w₁₂x₉₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₉ = 28.2 in²</td>
<td>bₙ = 12.2 in</td>
</tr>
<tr>
<td>Iₓ = 833 in⁴</td>
<td>tₙ = 0.9 in</td>
</tr>
<tr>
<td>Iᵧ = 270 in⁴</td>
<td>d = 12.7 in</td>
</tr>
<tr>
<td>rₓ = 5.44 in</td>
<td>tₓ = 0.55 in</td>
</tr>
<tr>
<td>rᵧ = 3.09 in</td>
<td>Fᵧ = 50 ksi</td>
</tr>
<tr>
<td>kₖₑₙ = 1.5 in</td>
<td>Eₛ = 29000 ksi</td>
</tr>
</tbody>
</table>

Column Web Local Yielding

| N = 24.00 in | Rₙ = 866.25 kip |
| φ = 1.00 | φRₙ = 866.25 kip OK |

Column Web Crippling

| Rₙ = 1382.366 kip | φ = 0.75 |
| φRₙ = 1036.77 kip | OK |

Column Flange Local Bending

Rₙ = 253.13 kip	Aₛ (beam) = 19.84 in²
φ = 0.90	Aₛ (flange) = 10.49 in²
φRₙ = 227.81 kip	F₁ (flange) = 158.65 kip
F₂ (flange) = 317.31 kip	OK

Stub Beam Gross Yielding

| Aₛ (beam) = 20.1 in² | Pₛ = 1005 kip |
| OK |
Building height = 2 stories
Typical floor height = 9 ft

F1, max = 300 kip
F2, max = 600 kip
SR = 4
ratio = 0.8

<table>
<thead>
<tr>
<th>Items</th>
<th>values</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>240</td>
<td>kip</td>
</tr>
<tr>
<td>F2</td>
<td>480</td>
<td>kip</td>
</tr>
<tr>
<td>h1</td>
<td>9</td>
<td>ft</td>
</tr>
<tr>
<td>h2</td>
<td>18</td>
<td>ft</td>
</tr>
<tr>
<td>span</td>
<td>20</td>
<td>ft</td>
</tr>
<tr>
<td>h</td>
<td>9</td>
<td>ft</td>
</tr>
<tr>
<td>M_base</td>
<td>13500</td>
<td>kip-ft</td>
</tr>
<tr>
<td>P_column</td>
<td>675</td>
<td>kip</td>
</tr>
<tr>
<td>L_brace</td>
<td>13.45</td>
<td>ft</td>
</tr>
<tr>
<td>E_s</td>
<td>29000</td>
<td>ksi</td>
</tr>
</tbody>
</table>

Notes: input value

Materials

<table>
<thead>
<tr>
<th>Members</th>
<th>Material Type</th>
<th>Fy (ksi)</th>
<th>Fu (ksi)</th>
<th>Ry</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Beams</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Braces</td>
<td>ASTM A992</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Plates 1</td>
<td>ASTM A36</td>
<td>36</td>
<td>58</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Bolts</td>
<td>A490</td>
<td>130</td>
<td>150</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Welds</td>
<td>E70XX</td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plates 2</td>
<td>ASTM A572 Gr.50</td>
<td>50</td>
<td>65</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Load Combinations

Per ASCE-7-2005

Basic Reference Codes

AISC Specification for Structural Steel Buildings (March 9, 2005)
AISC Seismic Provisions for Structural Steel Buildings (March 9, 2005)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_u</td>
<td>139.67 kip</td>
</tr>
<tr>
<td>L_{brace}</td>
<td>8.1 ft</td>
</tr>
<tr>
<td>k</td>
<td>1.0</td>
</tr>
<tr>
<td>Try section</td>
<td>W8x21</td>
</tr>
<tr>
<td>A_s</td>
<td>6.16 in2</td>
</tr>
<tr>
<td>I_x</td>
<td>75.30 in4</td>
</tr>
<tr>
<td>Z_x</td>
<td>20.40 in3</td>
</tr>
<tr>
<td>b_f</td>
<td>5.27 in</td>
</tr>
<tr>
<td>t_f</td>
<td>0.40 in</td>
</tr>
<tr>
<td>d</td>
<td>8.28 in</td>
</tr>
<tr>
<td>t_w</td>
<td>0.250 in</td>
</tr>
<tr>
<td>r_x</td>
<td>3.49 in</td>
</tr>
<tr>
<td>r_y</td>
<td>1.26 in</td>
</tr>
<tr>
<td>F_y (brace)</td>
<td>50 ksi</td>
</tr>
<tr>
<td>E_s</td>
<td>29000 ksi</td>
</tr>
<tr>
<td>kL/r</td>
<td>76.98</td>
</tr>
<tr>
<td>F_e</td>
<td>48.29 ksi</td>
</tr>
<tr>
<td>$0.44 F_y$</td>
<td>22 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.90</td>
</tr>
<tr>
<td>ϕP_n</td>
<td>179.72 kip</td>
</tr>
</tbody>
</table>

Compactness Seismically (AISC Seismic Provisions 2005, Sec 8.2b)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{ps}</td>
<td>7.22</td>
</tr>
<tr>
<td>Ca</td>
<td>0.50</td>
</tr>
<tr>
<td>λ_{ps}</td>
<td>35.88</td>
</tr>
<tr>
<td>$b_f/2t$</td>
<td>6.59</td>
</tr>
<tr>
<td>h/t_w</td>
<td>27.50</td>
</tr>
</tbody>
</table>

Check Compactness

- $Kl/r = 4\sqrt{E_s/F_y}$

Tension

<p>| ϕ | 0.90 |
| ϕP_n | 277.20 kip |</p>
<table>
<thead>
<tr>
<th>P<sub>u</sub> = 254.24 kip (compression)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>brace</sub> = 9 ft</td>
</tr>
<tr>
<td>k = 1.0</td>
</tr>
<tr>
<td>Try section W8x28 (HSS-Square)</td>
</tr>
</tbody>
</table>

A_s = 8.24 in²	I_x = 98.00 in⁴
Z_x = 27.20 in³	I_y = 98.00 in⁴
b = 6.54 in	t_f = 0.47 in
d = 8.06 in	t_w = 0.285 in
r_x = 3.45 in	
r_y = 1.62 in	

F_y (brace) = 50 ksi | E_s = 29000 ksi | \[\frac{kL}{r} \leq 4\sqrt{\frac{E}{F_y}} \]
| Fe = 64.40 ksi | 0.44 F_y = 22 ksi |
| \(\phi = 0.90 \) |
| \(\phi P_n = 267.92 \) kip (compression) | Check OK |

Check Compactness Seismically (AISC Seismic Provisions 2005, Sec 8.2b)

| \(\lambda_{ps} = 7.22 \) | \(b_f / 2t = 7.03 \) OK |
| Ca = 0.69 | | \(\lambda_{ps} = 35.88 \) | \(h / t_w = 22.30 \) OK |

<p>| (\phi = 0.90) |
| (\phi P_n = 370.80) kip (tension) | Check OK |</p>
<table>
<thead>
<tr>
<th>Brace to Gusset Plate Connection</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Brace Block Shear</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Brace to Gusset Plate Weld</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-3 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>May 28, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brace</td>
<td>W8x21</td>
<td>Page</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
R_yF_yA_g = 338.80 \text{ kip (T_d)} \\
F_uA_g = 400.40 \text{ kip (P_d)} \\
T_u/P_u = 0.85 -
\]

\[
R_yF_y = 55 \text{ ksi} \\
R_yF_u = 71.5 \text{ ksi} \\
U = 0.9 - \\
\phi_t = 0.75 \text{ (tensile yield in gross section)} \\
A_p/A_g = 1.14 \text{ (Net section reinforcement required!)} \\
\phi_t = 0.90 \text{ (tensile yield in gross section)} \\
t_{gusset} = 0.71 \text{ in (estimated)} \\
t_g = 0.75 \text{ in (use)} \\
F_y = 50 \text{ ksi (gusset plate)} \\
F_u = 65 \text{ ksi}
\]

\[
A_{cut} = 2.57 \text{ in}^2 \\
A_{net} = 3.59 \text{ in}^2 \\
A_e = 6.32 \text{ in}^2 \text{ (Reinforcement required!)}
\]

<table>
<thead>
<tr>
<th>Reinforcement Plates</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>l = 12 \text{ in} & d = 8.28 \text{ in}</th>
</tr>
</thead>
</table>

\[
U = 1.00 - \quad A_{e, req} = 6.32 \text{ in}^2 \quad A_{net, req} = 6.32 \text{ in}^2 \\
A_{reinf} = 1.36 \text{ in}^2 \text{ (both sides)} \\
b_{reinf} = 4 \text{ in} \\
t_{req} = 0.47 \text{ in} \\
t_{use} = 0.5 \text{ in} \\
L_{plate} = 14 \text{ in} \\
F_y, plate = 36 \text{ ksi} \\
R_yF_yA_g = 93.60 \text{ kip} \\
L_{weld} = 6 \text{ in} \\
weld = 6 \times \frac{1}{16} \text{ in (fillet)} \\
\phi R_n = 100.22 \text{ kip} \quad OK
\]

<table>
<thead>
<tr>
<th>Brace Block Shear</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Brace to Gusset Plate Weld</th>
</tr>
</thead>
</table>

| L_{weld} = 12 \text{ in} \\
weld = 6 \times \frac{1}{16} \text{ in (fillet)} \\
\phi_b = 0.75 - |
<table>
<thead>
<tr>
<th></th>
<th>Gusset Plate Block Shear</th>
<th>Whitmore Effective Width</th>
<th>Brace Web Block Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{exx} = 70$ ksi</td>
<td>$A_{gv} = 18$ in2</td>
<td>$L_{whitmore} = 23.87$ in</td>
<td>$A_{gv} = 3$ in2</td>
</tr>
<tr>
<td>$F_w = 42$ ksi</td>
<td>$A_{nt} = 6.77$ in2</td>
<td></td>
<td>$A_{nt} = 1.19$ in2</td>
</tr>
<tr>
<td>$\phi_{bRn} = 400.87$ kip OK</td>
<td>$U_{bs} = 1$ -</td>
<td></td>
<td>$U_{bs} = 1$ -</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.75$ -</td>
<td></td>
<td>$\phi = 0.75$ -</td>
</tr>
<tr>
<td></td>
<td>$\phi R_{n} = 735.16$ kip OK</td>
<td></td>
<td>$\phi R_{n} = 125.39$ kip OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brace Block Shear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_y F_y A_{g} = 453.2$ kip (T$_u$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_u A_{g} = 535.6$ kip (P$_u$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_u/P_u = 0.85$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_y F_y = 55$ ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_y F_u = 71.5$ ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U = 0.9$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_t = 0.75$ (tensile rupture in net section)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_p/A_g = 1.14$ (Net section reinforcement required!)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_t = 0.90$ (tensile yield in gross section)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{gusset} = 0.77$ in (estimated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_g = 0.75$ in (use)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_y = 50$ ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_u = 65$ ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{cut} = 2.85$ in2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{net} = 5.39$ in2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_e = 8.45$ in2 (reinforcement required)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcement Plates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l = 14$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d = 8.06$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U = 1.00$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{reinf} = 1.53$ in2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{reinf} = 4$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{req} = 0.53$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{use} = 0.625$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{plate} = 16$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{y, plate} = 36$ ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_y F_y A_{g} = 99.00$ kip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{weld} = 7$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$weld = 6$ x 1/16 in (fillet)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi R_n = 116.92$ kip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brace to Gusset Plate Weld</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{weld} = 14$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$weld = 7$ x 1/16 in (fillet)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_b = 0.75$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCBF-B-3 Specimen Design Calculation Sheet

May 28, 2009
<table>
<thead>
<tr>
<th>Gusset Plate Block Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{gv} = 21 \text{ in}^2$</td>
</tr>
<tr>
<td>$A_{nt} = 6.70 \text{ in}^2$</td>
</tr>
<tr>
<td>$U_{bs} = 1$</td>
</tr>
<tr>
<td>$\phi = 0.75$</td>
</tr>
<tr>
<td>$\phi R_n = 799.19 \text{ kip} \quad \text{OK}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Whitmore Effective Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{whitmore} = 25.96 \text{ in}$ (theoretical width)</td>
</tr>
<tr>
<td>$\phi = 0.90$</td>
</tr>
<tr>
<td>$\phi R_n = 876.08 \text{ kip} \quad \text{OK} \quad \text{(check gross yield)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brace Web Block Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{gv} = 3.99 \text{ in}^2$</td>
</tr>
<tr>
<td>$A_{nt} = 1.35 \text{ in}^2$</td>
</tr>
<tr>
<td>$U_{bs} = 1$</td>
</tr>
<tr>
<td>$\phi = 0.75$</td>
</tr>
<tr>
<td>$\phi R_n = 155.77 \text{ kip} \quad \text{OK}$</td>
</tr>
</tbody>
</table>
Roof Beam Design Check

Calculation Sheet

<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-3 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>Page</th>
<th>May 28, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2F</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_y F_y A_g</th>
<th>338.80 kip</th>
<th>θ = 0.73 (rad) 42.0 (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 P_n</td>
<td>59.91 kip</td>
<td>sin(θ) = 0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cos(θ) = 0.74</td>
</tr>
<tr>
<td>V</td>
<td>186.57 kip</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>296.36 kip</td>
<td></td>
</tr>
<tr>
<td>P_u</td>
<td>600.00 kip (conservatively)</td>
<td></td>
</tr>
<tr>
<td>M_u</td>
<td>92.46 kip-ft (revised from structural analysis)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Try</th>
<th>w24x117</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_s</td>
<td>34.4 in²</td>
</tr>
<tr>
<td>I_x</td>
<td>3540 in⁴</td>
</tr>
<tr>
<td>I_y</td>
<td>297 in⁴</td>
</tr>
<tr>
<td>r_x</td>
<td>10.1 in</td>
</tr>
<tr>
<td>r_y</td>
<td>2.94 in</td>
</tr>
</tbody>
</table>

λ_p1	9.15	b/t = 7.53 Compact
λ_p2	90.55	h/tw = 41.09 Compact
L_p	10.38 ft	Z_x = 327 in³
c	1	J = 6.72 in⁴
C_w	40800 in⁶	h_b = 23.45 in
S_x	291 in³	r_k = 3.46 in
L_r	29.90 ft	Brace PT= 2
L_b	10 ft	C_b = 1.0 (Conservatively)
M_p	1362.5 kip-ft	F_cr = 248.50 ksi
φ_b	0.90	M_n = 1362.50 kip-ft (Need Check)
φ_b M_n	1226.25 kip-ft	

kl/r	40.82	k = 1.0
F_c	171.79 ksi	0.44 F_y = 22 ksi
φ_c	0.90	
φ_c P_n	1370.46 kip	

| P_u/φ_c P_n | 0.44 | use (H1-1a) |

Check 0.50 OK
<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-3 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>May 28, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F</td>
<td>Lower Beam Design Check</td>
<td>Page</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_y F_y A_g$</td>
<td>453.20 kip</td>
<td>(1F)</td>
</tr>
<tr>
<td>$R_y F_y A_g$</td>
<td>338.80 kip</td>
<td>(2F)</td>
</tr>
<tr>
<td>θ</td>
<td>0.73 radians (rad)</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>42.0 degrees (deg)</td>
<td></td>
</tr>
<tr>
<td>$0.3 P_n$</td>
<td>89.31 kip</td>
<td>(1F)</td>
</tr>
<tr>
<td>$\sin(\theta)$</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>$0.3 P_n$</td>
<td>59.91 kip</td>
<td>(2F)</td>
</tr>
<tr>
<td>$\cos(\theta)$</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>263.10 kip</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>292.33 kip</td>
<td></td>
</tr>
<tr>
<td>P_u</td>
<td>300.00 kip (conservatively)</td>
<td></td>
</tr>
<tr>
<td>M_u</td>
<td>160.72 kip-ft (revised from structural analysis)</td>
<td></td>
</tr>
</tbody>
</table>

Try w24x68

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>20.1 in2</td>
<td></td>
</tr>
<tr>
<td>I_x</td>
<td>1830 in4</td>
<td></td>
</tr>
<tr>
<td>I_y</td>
<td>70.4 in4</td>
<td></td>
</tr>
<tr>
<td>r_x</td>
<td>9.55 in</td>
<td></td>
</tr>
<tr>
<td>r_y</td>
<td>1.87 in</td>
<td></td>
</tr>
<tr>
<td>λ_{p1}</td>
<td>9.15</td>
<td></td>
</tr>
<tr>
<td>λ_{p2}</td>
<td>90.55</td>
<td></td>
</tr>
<tr>
<td>L_p</td>
<td>6.61 ft</td>
<td></td>
</tr>
<tr>
<td>Z_x</td>
<td>177 in3</td>
<td></td>
</tr>
<tr>
<td>h/tw</td>
<td>54.29</td>
<td></td>
</tr>
<tr>
<td>C_w</td>
<td>9430 in6</td>
<td></td>
</tr>
<tr>
<td>S_x</td>
<td>154 in3</td>
<td></td>
</tr>
<tr>
<td>r_{bs}</td>
<td>2.30 in</td>
<td></td>
</tr>
<tr>
<td>L_t</td>
<td>18.74 ft</td>
<td></td>
</tr>
<tr>
<td>L_b</td>
<td>10 ft</td>
<td></td>
</tr>
<tr>
<td>M_p</td>
<td>737.5 kip-ft (Conservatively)</td>
<td></td>
</tr>
<tr>
<td>ϕ_b</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>M_n</td>
<td>656.87 kip-ft</td>
<td></td>
</tr>
<tr>
<td>F_e</td>
<td>69.50 ksi</td>
<td></td>
</tr>
<tr>
<td>F_{cr}</td>
<td>110.86 kpsi</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ϕ_c</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>$\phi_c M_n$</td>
<td>669.33 kip-ft</td>
<td></td>
</tr>
<tr>
<td>$P_u/\phi_c P_n$</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>0.69 OK</td>
<td></td>
</tr>
</tbody>
</table>

PEER Report 2013/20

H-60
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_u)</td>
<td>43.55</td>
<td>kip</td>
</tr>
<tr>
<td>(M_u)</td>
<td>115.54</td>
<td>kip-ft</td>
</tr>
<tr>
<td>(L_{\text{column}})</td>
<td>9</td>
<td>ft</td>
</tr>
<tr>
<td>(A_g)</td>
<td>28.2</td>
<td>in²</td>
</tr>
<tr>
<td>(I_x)</td>
<td>833</td>
<td>in⁴</td>
</tr>
<tr>
<td>(I_y)</td>
<td>270</td>
<td>in⁴</td>
</tr>
<tr>
<td>(r_x)</td>
<td>5.44</td>
<td>in</td>
</tr>
<tr>
<td>(r_y)</td>
<td>3.09</td>
<td>in</td>
</tr>
<tr>
<td>(F_y)</td>
<td>50</td>
<td>ksi</td>
</tr>
<tr>
<td>(\lambda_{p1})</td>
<td>7.22</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda_{p2})</td>
<td>71.62</td>
<td>-</td>
</tr>
<tr>
<td>(c)</td>
<td>10.91</td>
<td>ft</td>
</tr>
<tr>
<td>(C_w)</td>
<td>9410</td>
<td>in⁶</td>
</tr>
<tr>
<td>(S_x)</td>
<td>131</td>
<td>in³</td>
</tr>
<tr>
<td>(L_r)</td>
<td>40.86</td>
<td>ft</td>
</tr>
<tr>
<td>(L_b)</td>
<td>9</td>
<td>ft</td>
</tr>
<tr>
<td>(M_b)</td>
<td>612.5</td>
<td>kip-ft</td>
</tr>
<tr>
<td>(\phi_b)</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>(\phi_{c}M_n)</td>
<td>551.25</td>
<td>kip-ft</td>
</tr>
<tr>
<td>(k)</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>(F_c)</td>
<td>234.28</td>
<td>ksi</td>
</tr>
<tr>
<td>(\phi_{c}P_n)</td>
<td>1160.56</td>
<td>kip</td>
</tr>
</tbody>
</table>

Check: \(P_u / \phi_{c}P_n = 0.04 \) use (H1-1b)
Check: 0.23 OK
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_u</td>
<td>492.31 kip</td>
<td></td>
</tr>
<tr>
<td>M_u</td>
<td>259.53 kip-ft</td>
<td></td>
</tr>
<tr>
<td>L_{column}</td>
<td>9 ft</td>
<td></td>
</tr>
<tr>
<td>A_g</td>
<td>28.2 in2</td>
<td></td>
</tr>
<tr>
<td>I_x</td>
<td>833 in4</td>
<td></td>
</tr>
<tr>
<td>I_y</td>
<td>270 in4</td>
<td></td>
</tr>
<tr>
<td>r_x</td>
<td>5.44 in</td>
<td></td>
</tr>
<tr>
<td>r_y</td>
<td>3.09 in</td>
<td></td>
</tr>
<tr>
<td>F_y</td>
<td>50 ksi</td>
<td></td>
</tr>
<tr>
<td>λ_{p1}</td>
<td>7.22</td>
<td></td>
</tr>
<tr>
<td>λ_{p2}</td>
<td>52.38</td>
<td></td>
</tr>
<tr>
<td>L_p</td>
<td>10.91 ft</td>
<td></td>
</tr>
<tr>
<td>C_w</td>
<td>9410 in6</td>
<td></td>
</tr>
<tr>
<td>S_x</td>
<td>131 in3</td>
<td></td>
</tr>
<tr>
<td>L_r</td>
<td>40.86 ft</td>
<td></td>
</tr>
<tr>
<td>L_b</td>
<td>9 ft</td>
<td></td>
</tr>
<tr>
<td>M_p</td>
<td>612.5 kip-ft</td>
<td></td>
</tr>
<tr>
<td>ϕ_b</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>ϕ_bM_n</td>
<td>551.25 kip-ft</td>
<td></td>
</tr>
<tr>
<td>F_c</td>
<td>234.28 ksi</td>
<td></td>
</tr>
<tr>
<td>ϕ_c</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>ϕ_cP_n</td>
<td>1160.56 kip</td>
<td></td>
</tr>
<tr>
<td>P_u/ϕ_cP_n</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>0.84</td>
<td>OK</td>
</tr>
</tbody>
</table>

(revised from structural analysis)
Check Column Web Shear Stress

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_p</td>
<td>7350 kip-in</td>
</tr>
<tr>
<td>L</td>
<td>96.15 in</td>
</tr>
<tr>
<td>V</td>
<td>152.89 kip</td>
</tr>
<tr>
<td>A_s</td>
<td>6.99 in2</td>
</tr>
<tr>
<td>S_y</td>
<td>21.89 ksi</td>
</tr>
<tr>
<td>$S_{y,\text{yield}}$</td>
<td>29.00 ksi</td>
</tr>
</tbody>
</table>

$A_s = d \times tw$

Elastic
<table>
<thead>
<tr>
<th>Type</th>
<th>Bolted (WUF-B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>148.18 kip</td>
</tr>
<tr>
<td>V</td>
<td>93.29 kip</td>
</tr>
<tr>
<td>M</td>
<td>92.46 kip-ft (revised from structural analysis)</td>
</tr>
<tr>
<td>R_u</td>
<td>175.10 kip</td>
</tr>
<tr>
<td>d_b</td>
<td>0.88 in</td>
</tr>
<tr>
<td>F_u</td>
<td>150 ksi</td>
</tr>
<tr>
<td>A_b</td>
<td>0.60 in2</td>
</tr>
<tr>
<td>F_{nv}</td>
<td>75 ksi (threads excluded)</td>
</tr>
<tr>
<td>N_b</td>
<td>6 bolts (in one row)</td>
</tr>
<tr>
<td>R_n</td>
<td>270.59 kip (bolt shear)</td>
</tr>
<tr>
<td>$L_{c,ex}$</td>
<td>1.5 in</td>
</tr>
<tr>
<td>$L_{c,in}$</td>
<td>3 in</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>0.75</td>
</tr>
<tr>
<td>$\phi_b R_n$</td>
<td>202.94 kip OK</td>
</tr>
<tr>
<td>L_{c1}</td>
<td>1.03 in (edge clear distance)</td>
</tr>
<tr>
<td>R_{n1}</td>
<td>46.41 kip</td>
</tr>
<tr>
<td>L_{c2}</td>
<td>2.06 in (clear distance)</td>
</tr>
<tr>
<td>R_{n2}</td>
<td>236.25 kip</td>
</tr>
<tr>
<td>t</td>
<td>0.50 in (shear tab thickness)</td>
</tr>
<tr>
<td>R_n</td>
<td>1227.66 kip (combined bolt bearing)</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>0.75</td>
</tr>
<tr>
<td>$\phi_b R_n$</td>
<td>920.74 kip OK</td>
</tr>
<tr>
<td>L_{tab}</td>
<td>18 in</td>
</tr>
<tr>
<td>$A_{s,tab}$</td>
<td>9 in2</td>
</tr>
<tr>
<td>R_n</td>
<td>524.79 kip</td>
</tr>
<tr>
<td>F_{exx}</td>
<td>70 ksi</td>
</tr>
<tr>
<td>F_{w}</td>
<td>42 ksi</td>
</tr>
<tr>
<td>F_{w}</td>
<td>0.75</td>
</tr>
<tr>
<td>w</td>
<td>5 x 1/16 inch</td>
</tr>
<tr>
<td>$\phi_b R_n$</td>
<td>250.54 kip OK</td>
</tr>
<tr>
<td>L_{weld}</td>
<td>18 in</td>
</tr>
<tr>
<td>side</td>
<td>2 sides</td>
</tr>
<tr>
<td>Weld Fillet</td>
<td>(shear tab)</td>
</tr>
<tr>
<td>Fexx</td>
<td>70 ksi</td>
</tr>
<tr>
<td>Rw</td>
<td>42 ksi</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>0.75</td>
</tr>
<tr>
<td>w</td>
<td>5 x 1/16 inch</td>
</tr>
<tr>
<td>$\phi_b R_n$</td>
<td>250.54 kip OK</td>
</tr>
<tr>
<td>Weld CJP</td>
<td>(top, bottom flanges)</td>
</tr>
<tr>
<td>b_f</td>
<td>12.8 in</td>
</tr>
<tr>
<td>$F_{y, bm}$</td>
<td>50 ksi (base metal)</td>
</tr>
<tr>
<td>t_f</td>
<td>0.85 in</td>
</tr>
<tr>
<td>M_n</td>
<td>1063.07 kip-ft OK</td>
</tr>
<tr>
<td>d</td>
<td>24.3 in</td>
</tr>
<tr>
<td>t_w</td>
<td>0.55 in</td>
</tr>
<tr>
<td>Check Block Shear</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
</tbody>
</table>

Beam

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{gv}</td>
<td>9.9 in2</td>
</tr>
<tr>
<td>A_{gt}</td>
<td>1.925 in2</td>
</tr>
<tr>
<td>A_{nv}</td>
<td>6.6 in2</td>
</tr>
<tr>
<td>A_{nt}</td>
<td>1.65 in2</td>
</tr>
<tr>
<td>U_{bs}</td>
<td>0.5</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>F_y</td>
<td>50 ksi</td>
</tr>
<tr>
<td>F_u</td>
<td>65 ksi</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>233.27 kip OK</td>
</tr>
</tbody>
</table>

Shear Tab

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{gv}</td>
<td>8.25 in2</td>
</tr>
<tr>
<td>A_{gt}</td>
<td>1.5 in2</td>
</tr>
<tr>
<td>A_{nv}</td>
<td>5.5 in2</td>
</tr>
<tr>
<td>A_{nt}</td>
<td>1.25 in2</td>
</tr>
<tr>
<td>U_{bs}</td>
<td>0.5</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>F_y</td>
<td>50 ksi</td>
</tr>
<tr>
<td>F_u</td>
<td>65 ksi</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>191.34 kip OK</td>
</tr>
</tbody>
</table>
Braces to Beam Connection

<table>
<thead>
<tr>
<th>Title</th>
<th>TCBF-B-3 Specimen Design Calculation Sheet</th>
<th>Date</th>
<th>May 28, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2F</td>
<td>Braces to Beam Connection</td>
<td>Page</td>
<td>11</td>
</tr>
</tbody>
</table>

- **Braces**
 - \(T = 338.80 \) kip
 - \(\sin(\theta) = 0.669 \)
 - \(C = 241.62 \) kip
 - \(\cos(\theta) = 0.743 \)
 - \(e = 12.15 \) in
 - **Shear** = 431.42 kip
 - **Tension** = 182.56 kip
 - **Moment** = 436.81 kip-ft

- \(t_{\text{gusset}} = 0.75 \) in
- \(L = 60 \) in
- \(s_V = 9.59 \) ksi
- \(s_A = 4.06 \) ksi
- \(s_M = 11.65 \) ksi
- \(\phi = 0.9 \)
- \(F_{y, \text{gusset}} = 50 \) ksi
- **Ratio** = 0.51 OK

- **L_{\text{whitmore}}** = 23.87 in
- **L_{\nu}** = 16 in
- **L_{\nu, \text{min}}** = 17.74 in

- **L_{\nu}** = 16 in
- **L_{\nu, \text{min}}** = 17.74 in

- **w_{up}** = 11.93 in
- **A_{\nu}** = 12 in²
- **w_{low}** = 20.92 in
- **P_u** = 226.65 kip
- **Whitm_{eff}** = 23.87 in
- \(\phi R_n = 805.56 \) kip

- **Gusset Plate to Beam Flange**

- **Weld**
 - \(F_{exx} = 70 \) ksi
 - \(F_w = 42 \) ksi
 - \(w = 8 \times \frac{1}{16} \) inch
 - \(L_{\text{weld}} = 60 \) in
 - \(s_V = 10.17 \) ksi
 - \(s_M = 12.36 \) ksi
 - \(s_A = 4.30 \) ksi
 - **Side** = 2 sides
 - \(f_{\text{peak}} = 19.52 \) ksi
 - \(f_{\text{avg}} = 16.25 \) ksi
 - \(f_{\nu} = 20.31 \) ksi
 - **Ratio** = 0.68 OK

- **Check Beam Web**
 - **width** = 60 in

PEER Report 2013/20

H-66
Check Gusset Plate Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{gb}</td>
<td>17.68 in</td>
</tr>
<tr>
<td>k</td>
<td>1.2</td>
</tr>
<tr>
<td>r</td>
<td>0.217 in</td>
</tr>
<tr>
<td>A_g</td>
<td>17.90 in2</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Free Edge Buckling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_e</td>
<td>15.63 in</td>
</tr>
<tr>
<td>L_{A_e}</td>
<td>20.83</td>
</tr>
<tr>
<td>Limit</td>
<td>18.06</td>
</tr>
</tbody>
</table>

Lateral Stability of Beam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_t</td>
<td>1498.75 kip-ft</td>
</tr>
<tr>
<td>C_d</td>
<td>1</td>
</tr>
<tr>
<td>P_{br}</td>
<td>15.34 kip</td>
</tr>
<tr>
<td>β_{br}</td>
<td>85.22 kip/in</td>
</tr>
</tbody>
</table>

Kicker

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>1.73 in2</td>
</tr>
<tr>
<td>L</td>
<td>25 in</td>
</tr>
</tbody>
</table>

Miscellaneous

- Edge stiffener required!
Big Gusset Plate for Upper Floor Bracing and Lower Floor Bracing

Sway to Right

\[F_{U2R} = 338.80 \text{ kip} \quad \cos(\theta_U) = 0.743 \]
\[F_{L2R} = 360.20 \text{ kip} \quad \cos(\theta_L) = 0.743 \]

Sway to Left

\[F_{U2L} = 241.62 \text{ kip} \]
\[F_{L2L} = 453.20 \text{ kip} \]

Beam

- \[w_{24x68} \]
- \[d = 23.7 \text{ in} \]
- \[L_{c, \text{min}} = 60.74 \text{ in} \]

Column

- \[w_{12x96} \]
- \[e_c = 6.35 \text{ in} \]
- \[R_{\text{beam}} = 21.45 \text{ kip} \text{ (downward)} \]
- \[L_{t, \text{min}} = 17.36 \text{ in} \]
- \[L_{cu, \text{min}} = 17.74 \text{ in} \]
- \[L_{cl, \text{min}} = 19.29 \text{ in} \]
- \[t_e = 0.75 \text{ in} \]
- \[L_{cu} = 18 \text{ in} \text{ (use)} \]
- \[L_{cl} = 18 \text{ in} \text{ (use)} \]
- \[L_c = 59.7 \text{ in} \text{ (use)} \]
- \[L_b = 23 \text{ in} \text{ (use)} \]

V_{total} = 446.16 \text{ kip} \text{ (upward)}

M = 236.09 \text{ kip-ft} \text{ (counter-clockwise)}

Sway to the Right

\[V_{U2R} = 226.65 \text{ kip} \text{ (upward)} \quad s_V = 9.96 \text{ ksi} \]
\[H_{U2R} = 251.83 \text{ kip} \text{ (rightward)} \quad s_M = 6.36 \text{ ksi} \]
\[V_{L2R} = 240.96 \text{ kip} \text{ (upward)} \quad s_A = 0.36 \text{ ksi} \]
\[H_{L2R} = 267.73 \text{ kip} \text{ (leftward)} \quad \text{Ratio} = 0.41 \text{ - OK} \]
\[V_{\text{total}} = 446.16 \text{ kip} \text{ (upward)} \]
\[M = 236.09 \text{ kip-ft} \text{ (counter-clockwise)} \]

Column-Side

\[V_{cu} = 134.52 \text{ kip} \text{ (downward)} \quad s_A = 4.44 \text{ ksi} \]
\[f_1 = 4.77 \text{ kip/in} \text{ (leftward)} \quad s_V = 9.96 \text{ ksi} \]
\[f_2 = 1.89 \text{ kip/in} \text{ (leftward)} \quad s_M = 1.92 \text{ ksi} \]
\[H_{cu} = 59.96 \text{ kip} \text{ (leftward)} \quad \text{Ratio} = 0.41 \text{ - OK} \]
\[H_{bu} = 191.86 \text{ kip} \text{ (leftward)} \]

Beam-Side

\[V_{bu} = 92.13 \text{ kip} \text{ (downward)} \quad s_A = 5.34 \text{ ksi} \]
\[M_{cu} = 6.47 \text{ kip-ft} \text{ (counter-clockwise)} \quad s_V = 11.12 \text{ ksi} \]
<table>
<thead>
<tr>
<th></th>
<th>M_{bd}</th>
<th>kip-ft</th>
<th>(clockwise)</th>
<th>s_{M}</th>
<th>-16.68</th>
<th>ksi</th>
<th>Ratio</th>
<th>0.50</th>
<th>-</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{cl}</td>
<td>134.52</td>
<td>kip</td>
<td>(downward)</td>
<td>s_{A}</td>
<td>4.44</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{1}</td>
<td>4.77</td>
<td>kip/in</td>
<td>(rightward)</td>
<td>s_{V}</td>
<td>9.96</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{2}</td>
<td>1.89</td>
<td>kip/in</td>
<td>(rightward)</td>
<td>s_{M}</td>
<td>1.92</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_{cl}</td>
<td>59.96</td>
<td>kip</td>
<td>(rightward)</td>
<td>Ratio</td>
<td>0.41</td>
<td>-</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_{bl}</td>
<td>207.77</td>
<td>kip</td>
<td>(rightward)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{bl}</td>
<td>106.44</td>
<td>kip</td>
<td>(downward)</td>
<td>s_{A}</td>
<td>6.17</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{bl}</td>
<td>86.32</td>
<td>kip-ft</td>
<td>(clockwise)</td>
<td>s_{V}</td>
<td>12.04</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{cl}</td>
<td>6.47</td>
<td>kip-ft</td>
<td>(counter-clockwise)</td>
<td>s_{M}</td>
<td>15.66</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{mid}</td>
<td>136.01</td>
<td>kip</td>
<td>(downward)</td>
<td>s_{A}</td>
<td>0.00</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{mid}</td>
<td>8.71</td>
<td>kip-ft</td>
<td>(counter-clockwise)</td>
<td>s_{V}</td>
<td>7.65</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_{mid}</td>
<td>0.00</td>
<td>kip</td>
<td>(leftward)</td>
<td>s_{M}</td>
<td>1.49</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td>0.30</td>
<td>-</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weld Size

- \(f_v = 7.47 \) kip/in
- \(f_s = 4.35 \) kip/in (averaged)
- \(f_b = 4.77 \) kip/in
- \(f_{peak} = 11.79 \) kip/in
- \(f_{avg} = 9.64 \) kip/in
- \(f_t = 12.05 \) kip/in

\(D \geq 4.33 \times 1/16 \) (weld size)

Use \(6 \times 1/16 \) (weld size)
Web Flange
Fillet welds with web plates at one end and bolted to gusset plate (T & B) free (no weld)

\[P_u = 300.00 \text{ kip} \]
\[R_{beam} = 21.45 \text{ kip} \] (Gravity)

Fillet Weld at Beam Side

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>16 in</td>
</tr>
<tr>
<td>(w)</td>
<td>7 in</td>
</tr>
<tr>
<td>(L_{\text{weld}})</td>
<td>30 in</td>
</tr>
<tr>
<td>(t_{\text{shim}})</td>
<td>0.168 in</td>
</tr>
<tr>
<td>(t_{\text{splice}})</td>
<td>0.500 in</td>
</tr>
<tr>
<td>(F_{\text{exx}})</td>
<td>70 ksi</td>
</tr>
<tr>
<td>(F_w)</td>
<td>42 ksi</td>
</tr>
<tr>
<td>(w)</td>
<td>7 in x 1/16 inch</td>
</tr>
<tr>
<td>(\phi_b)</td>
<td>0.75</td>
</tr>
<tr>
<td>(\phi_b R_n)</td>
<td>584.60 kip</td>
</tr>
<tr>
<td>(R_n)</td>
<td>779.47 kip</td>
</tr>
</tbody>
</table>

OK
Block Shear in Splice Plate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_y</td>
<td>36 ksi</td>
</tr>
<tr>
<td>F_u</td>
<td>58 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>A_{gv}</td>
<td>7 in2</td>
</tr>
<tr>
<td>A_{nf}</td>
<td>8 in2</td>
</tr>
<tr>
<td>side</td>
<td>2 sides</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>1061.40 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>OK</td>
</tr>
</tbody>
</table>

Block Shear in Lower Beam Web

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_y</td>
<td>50 ksi</td>
</tr>
<tr>
<td>F_u</td>
<td>65 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>A_{gv}</td>
<td>5.81 in2</td>
</tr>
<tr>
<td>A_{nf}</td>
<td>6.64 in2</td>
</tr>
<tr>
<td>side</td>
<td>1 sides</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>493.64 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>OK</td>
</tr>
</tbody>
</table>

Bolt Strength Check

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{slot}</td>
<td>1.125 in (short slot)</td>
</tr>
<tr>
<td>d_{bolt}</td>
<td>0.875 in (TC bolts)</td>
</tr>
<tr>
<td>w_{slot}</td>
<td>0.9375 in (short slot)</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>21.6 kip / per bolt (LRFD)</td>
</tr>
<tr>
<td>N_{bolt}</td>
<td>15 bolts</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>324 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>OK</td>
</tr>
</tbody>
</table>

Block Shear in Gusset Plate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_y</td>
<td>50 ksi</td>
</tr>
<tr>
<td>F_u</td>
<td>65 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>A_{gv}</td>
<td>12.38 in2</td>
</tr>
<tr>
<td>A_{nf}</td>
<td>6.19 in2</td>
</tr>
<tr>
<td>A_{av}</td>
<td>8.16 in2</td>
</tr>
<tr>
<td>side</td>
<td>1 sides</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>540.21 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>OK</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>F_y</td>
<td>36 ksi</td>
</tr>
<tr>
<td>F_u</td>
<td>58 ksi</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>A_{gt}</td>
<td>8 in2</td>
</tr>
<tr>
<td>A_{nt}</td>
<td>5.66 in2</td>
</tr>
<tr>
<td>side</td>
<td>2 sides</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>576.00 kip</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>492.09 kip</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>T</td>
<td>453.20 kip</td>
</tr>
<tr>
<td>(\sin(\theta))</td>
<td>0.669</td>
</tr>
<tr>
<td>C</td>
<td>360.20 kip</td>
</tr>
<tr>
<td>(\cos(\theta))</td>
<td>0.743</td>
</tr>
<tr>
<td>e</td>
<td>0 in</td>
</tr>
<tr>
<td>Shear</td>
<td>604.60 kip</td>
</tr>
<tr>
<td>Tension</td>
<td>237.46 kip</td>
</tr>
<tr>
<td>Moment</td>
<td>0.00 kip-ft</td>
</tr>
<tr>
<td>(t_{\text{gusset}})</td>
<td>0.75 in</td>
</tr>
<tr>
<td>L</td>
<td>46 in</td>
</tr>
<tr>
<td>(s_V)</td>
<td>17.52 ksi</td>
</tr>
<tr>
<td>(s_M)</td>
<td>0.00 ksi</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.9 -</td>
</tr>
<tr>
<td>(F_{Y, \text{gusset}})</td>
<td>50 ksi</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.69 OK</td>
</tr>
<tr>
<td>whitmo</td>
<td>25.96 in</td>
</tr>
<tr>
<td>L_v</td>
<td>19 in</td>
</tr>
<tr>
<td>(L_{\text{min}})</td>
<td>38.80 in</td>
</tr>
<tr>
<td>(L_{\text{v, min}})</td>
<td>19.29 in</td>
</tr>
<tr>
<td>(w_{\text{up}})</td>
<td>12.98 in</td>
</tr>
<tr>
<td>(A_v)</td>
<td>14.25 in²</td>
</tr>
<tr>
<td>(w_{\text{low}})</td>
<td>14.12 in</td>
</tr>
<tr>
<td>(P_u)</td>
<td>303.17 kip</td>
</tr>
<tr>
<td>whit_{\text{eff}}</td>
<td>25.96 in</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>384.75 kip</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>876.08 kip</td>
</tr>
</tbody>
</table>

Weld
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{exx})</td>
<td>70 ksi</td>
</tr>
<tr>
<td>(F_w)</td>
<td>42 ksi</td>
</tr>
<tr>
<td>(w)</td>
<td>11 x 1/16 inch</td>
</tr>
<tr>
<td>(s_V)</td>
<td>13.52 ksi</td>
</tr>
<tr>
<td>(s_M)</td>
<td>0.00 ksi</td>
</tr>
<tr>
<td>(s_A)</td>
<td>5.31 ksi</td>
</tr>
<tr>
<td>(t_{\text{eff}})</td>
<td>0.486 in</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.75 -</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.76 OK</td>
</tr>
</tbody>
</table>

Check Beam Web
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>46 in</td>
</tr>
<tr>
<td>(R_u)</td>
<td>0.00 kip</td>
</tr>
<tr>
<td>d</td>
<td>33.2 in</td>
</tr>
<tr>
<td>(t_w)</td>
<td>1.36 in</td>
</tr>
<tr>
<td>Symbol</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>N</td>
<td>23</td>
</tr>
<tr>
<td>t_f</td>
<td>2.44</td>
</tr>
<tr>
<td>$F_{y,web}$</td>
<td>50</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>R_n</td>
<td>4450.60</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>3337.95</td>
</tr>
<tr>
<td>k_{des}</td>
<td>3.23</td>
</tr>
<tr>
<td>ϕ</td>
<td>1.00</td>
</tr>
<tr>
<td>R_n</td>
<td>2662.20</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>2662.20</td>
</tr>
<tr>
<td>L_{gb}</td>
<td>14.84</td>
</tr>
<tr>
<td>kL/r</td>
<td>82.2</td>
</tr>
<tr>
<td>L_c</td>
<td>15.88</td>
</tr>
<tr>
<td>F_e</td>
<td>42.32</td>
</tr>
<tr>
<td>L_{c1}</td>
<td>18.06</td>
</tr>
<tr>
<td>k</td>
<td>1.2</td>
</tr>
<tr>
<td>r</td>
<td>0.217</td>
</tr>
<tr>
<td>F_y</td>
<td>22</td>
</tr>
<tr>
<td>L_{c2}</td>
<td>12.56</td>
</tr>
<tr>
<td>A_g</td>
<td>19.47</td>
</tr>
<tr>
<td>R_n</td>
<td>593.65</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>534.29</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9</td>
</tr>
<tr>
<td>L_{tip}</td>
<td>9.13</td>
</tr>
<tr>
<td>L_{ave}</td>
<td>14.84</td>
</tr>
<tr>
<td>L_{e}</td>
<td>17.88</td>
</tr>
<tr>
<td>L_{e}/t_g</td>
<td>23.83</td>
</tr>
<tr>
<td>Limit</td>
<td>18.06</td>
</tr>
<tr>
<td>M_r</td>
<td>6645.83</td>
</tr>
<tr>
<td>Z</td>
<td>1450</td>
</tr>
<tr>
<td>L_b</td>
<td>10</td>
</tr>
<tr>
<td>C_d</td>
<td>1</td>
</tr>
<tr>
<td>h_o</td>
<td>30.76</td>
</tr>
<tr>
<td>L_{pd}</td>
<td>17.05</td>
</tr>
<tr>
<td>P_{br}</td>
<td>51.85</td>
</tr>
<tr>
<td>β_{br}</td>
<td>288.07</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>Δ</td>
<td>0.27</td>
</tr>
<tr>
<td>M_{br}</td>
<td>79.75</td>
</tr>
<tr>
<td>I_y</td>
<td>1550</td>
</tr>
<tr>
<td>P_{br}</td>
<td>31.11</td>
</tr>
<tr>
<td>β_{br}</td>
<td>108666</td>
</tr>
<tr>
<td>β_{sec}</td>
<td>not included</td>
</tr>
<tr>
<td>Δ</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Column Base Plate Design Check

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_x</td>
<td>147 in3</td>
</tr>
<tr>
<td>F_y</td>
<td>50 ksi</td>
</tr>
<tr>
<td>M_p</td>
<td>7350 kip-in</td>
</tr>
<tr>
<td>P_u</td>
<td>492.31 kip</td>
</tr>
<tr>
<td>M_u</td>
<td>3114.35 kip-in</td>
</tr>
<tr>
<td>N</td>
<td>31.25 in</td>
</tr>
<tr>
<td>B</td>
<td>28 in</td>
</tr>
<tr>
<td>e</td>
<td>6.33 in</td>
</tr>
<tr>
<td>e_{cr}</td>
<td>15.38 in</td>
</tr>
<tr>
<td>$Q = 26.47$ kip/in</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>9.59 in</td>
</tr>
<tr>
<td>f_p</td>
<td>0.95 ksi</td>
</tr>
<tr>
<td>$t_{p,req}$</td>
<td>1.98 in</td>
</tr>
<tr>
<td>use</td>
<td>2.00 in</td>
</tr>
</tbody>
</table>

All-thread-rods

<table>
<thead>
<tr>
<th>Type</th>
<th>ASTM A193 B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{bolt}</td>
<td>1.125 in</td>
</tr>
<tr>
<td>F_u</td>
<td>125 ksi</td>
</tr>
<tr>
<td>F_y</td>
<td>105 ksi</td>
</tr>
<tr>
<td>F_{at}</td>
<td>93.75 ksi</td>
</tr>
<tr>
<td>F_{nv}</td>
<td>50 ksi</td>
</tr>
<tr>
<td>A_b</td>
<td>0.99 in2</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.75</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>69.89 kip (tension)</td>
</tr>
<tr>
<td>ϕR_n</td>
<td>37.28 kip (shear)</td>
</tr>
<tr>
<td>F_{PT}</td>
<td>86.98 kip (minimum required pretension)</td>
</tr>
<tr>
<td>V_u</td>
<td>152.89 kip (very conservative assumption)</td>
</tr>
<tr>
<td>M_u</td>
<td>7350 kip-in (very conservative assumption)</td>
</tr>
<tr>
<td>P_u</td>
<td>600 kip (very conservative assumption)</td>
</tr>
<tr>
<td>μ</td>
<td>0.35 (class A surface)</td>
</tr>
<tr>
<td>SF</td>
<td>2 (safety factor for not having enough bolt pretension force)</td>
</tr>
<tr>
<td>NV</td>
<td>10</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>NM</td>
<td>17</td>
</tr>
<tr>
<td>NT</td>
<td>9</td>
</tr>
<tr>
<td>N_{req, total}</td>
<td>35</td>
</tr>
<tr>
<td>use</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>TCBF-B-3 Specimen Design Calculation Sheet</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>2F</td>
<td>Stub Beam</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Column Dimension List

<table>
<thead>
<tr>
<th>Column</th>
<th>w12x96</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_g)</td>
<td>(28.2) in(^2)</td>
</tr>
<tr>
<td>(I_x)</td>
<td>(833) in(^4)</td>
</tr>
<tr>
<td>(I_y)</td>
<td>(270) in(^4)</td>
</tr>
<tr>
<td>(r_x)</td>
<td>(5.44) in</td>
</tr>
<tr>
<td>(r_y)</td>
<td>(3.09) in</td>
</tr>
<tr>
<td>(k_{des})</td>
<td>(1.5) in</td>
</tr>
<tr>
<td>(E_s)</td>
<td>(29000) ksi</td>
</tr>
</tbody>
</table>

Column Web Local Yielding

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(24.00) in</td>
</tr>
<tr>
<td>(R_n)</td>
<td>(866.25) kip</td>
</tr>
<tr>
<td>(\phi)</td>
<td>(1.00) -</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>(866.25) kip OK</td>
</tr>
</tbody>
</table>

Column Web Crippling

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_n)</td>
<td>(1382.366) kip</td>
</tr>
<tr>
<td>(\phi)</td>
<td>(0.75) -</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>(1036.77) kip OK</td>
</tr>
</tbody>
</table>

Column Flange Local Bending

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_n)</td>
<td>(253.13) kip</td>
</tr>
<tr>
<td>(\phi)</td>
<td>(0.90) -</td>
</tr>
<tr>
<td>(\phi R_n)</td>
<td>(227.81) kip</td>
</tr>
<tr>
<td>(F_{1flange})</td>
<td>(190.93) kip</td>
</tr>
<tr>
<td>(F_{2flange})</td>
<td>(381.87) kip</td>
</tr>
<tr>
<td></td>
<td>Continue Plate Required!</td>
</tr>
</tbody>
</table>

Stub Beam Gross Yielding

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{s (beam)})</td>
<td>(34.4) in(^2)</td>
</tr>
<tr>
<td>(P_y)</td>
<td>(1720) kip</td>
</tr>
<tr>
<td></td>
<td>OK</td>
</tr>
<tr>
<td>Title</td>
<td>TCBF-B-3 Specimen Design Calculation Sheet</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1F</td>
<td>Stub Beam</td>
</tr>
<tr>
<td>F_1 = 300 kip</td>
<td>d = 23.7 in</td>
</tr>
<tr>
<td>F_2 = 600 kip</td>
<td>t_w = 0.415 in</td>
</tr>
<tr>
<td>L_{stub} = 19 in</td>
<td>b = 8.97 in</td>
</tr>
<tr>
<td>Beam</td>
<td>w24x68</td>
</tr>
</tbody>
</table>

Column Dimension List

<table>
<thead>
<tr>
<th>Column</th>
<th>w12x96</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g = 28.2 in2</td>
<td>b_f = 12.2 in</td>
</tr>
<tr>
<td>I_x = 833 in4</td>
<td>t_f = 0.9 in</td>
</tr>
<tr>
<td>I_y = 270 in4</td>
<td>d = 12.7 in</td>
</tr>
<tr>
<td>r_x = 5.44 in</td>
<td>t_w = 0.55 in</td>
</tr>
<tr>
<td>r_y = 3.09 in</td>
<td>F_y = 50 ksi</td>
</tr>
<tr>
<td>k_{des} = 1.5 in</td>
<td>E_s = 29000 ksi</td>
</tr>
</tbody>
</table>

Column Web Local Yielding

<table>
<thead>
<tr>
<th>N = 24.00 in</th>
<th>R_n = 866.25 kip</th>
<th>ϕ = 1.00 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕR_n = 866.25 kip</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Column Web Crippling

<table>
<thead>
<tr>
<th>R_n = 1382.366 kip</th>
<th>ϕ = 0.75 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕR_n = 1036.77 kip</td>
<td>OK</td>
</tr>
</tbody>
</table>

Column Flange Local Bending

<table>
<thead>
<tr>
<th>R_n = 253.13 kip</th>
<th>A_{web} = 9.35 in2</th>
<th>A_s = 19.84 in2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ = 0.90 -</td>
<td>A_{flange} = 10.49 in2</td>
<td>$F_{1,flange}$ = 158.65 kip</td>
</tr>
<tr>
<td>ϕR_n = 227.81 kip</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>$F_{2,flange}$ = 317.31 kip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stub Beam Gross Yielding

<table>
<thead>
<tr>
<th>$A_{s \text{(beam)}}$ = 20.1 in2</th>
<th>P_y = 1005 kip</th>
<th>OK</th>
</tr>
</thead>
</table>