Hanging-Wall Scaling using Finite-Fault Simulations

Jennifer L. Donahue
Geosyntec Consultants

Norman A. Abrahamson
Department of Civil and Environmental Engineering
University of California, Berkeley
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s) or the Pacific Earthquake Engineering Research Center.
Hanging-Wall Scaling using Finite-Fault Simulations

Jessica L. Donahue
Geosyntec Consultants

Norman A. Abrahamson
Department of Civil and Environmental Engineering
University of California, Berkeley

PEER Report 2013/14
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley
September 2013
ABSTRACT

The hanging-wall (HW) effect is defined as the increase in ground motions observed during a reverse earthquake event, when in close proximity and while on the hanging-wall side of a fault. As observed in the empirical data, the short period ground motions over the hanging-wall may be twice the amplitude of the ground motions recorded on the footwall at the same rupture distance. Because there are only a few earthquakes with near-fault recordings, there is insufficient empirical data to constrain the dependence of the HW effect. Using finite-fault simulations, 34 reverse earthquake events were simulated. The scenarios varied the magnitude between M6 and M7.8, dips from 20 to 70 degrees, and distances to top of rupture of 0 and 5 km.

A simplified parametric model for the median hanging-wall effect was developed using the distance parameters R_x and R_y, magnitude, fault dip, fault width, and depth to top of rupture. The HW effect reaches it maximum over the bottom edge of the rupture. The residuals for the model fall within the range -0.2 to 0.2 natural log units. The scaling constraints derived in this study are being used in part or in whole in many of the NGA-West2 GMPEs and lead to more consistent HW effects.
ACKNOWLEDGMENTS

The NGA-West2 research program was sponsored by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority, California Department of Transportation, and the Pacific Gas & Electric Company (PG&E). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsoring agencies. Additional support was provided by PG&E.
CONTENTS

ABSTRACT.. iii
ACKNOWLEDGMENTS... v
TABLE OF CONTENTS ... vii
LIST OF FIGURES ... ix
LIST OF TABLES ... xiii
LIST OF APPENDICES ... xv

1 INTRODUCTION.. 1
 1.1 Review of Previous Hanging Wall Models: Abrahamson and Somerville (1996)........ 1
 1.2 Review of Previous Hanging-Wall Models: NGA (2008) 1
 1.3 Empirical Data in NGA-West 2 Database ... 7

2 SIMULATIONS CONDUCTED ... 13
 2.1 2004 Results (PEA, UNR, URS) ... 13
 2.2 Graves and Pitarka Model Results ... 17

3 THE NEW HANGING-WALL MODEL ... 23
 3.1 Model Development .. 23
 3.1.1 Footwall Functional Form .. 23
 3.1.2 Hanging-Wall Terms .. 25
 3.1.3 Residuals for Hanging-Wall Model ... 33
 3.2 Comparison of Model to 2004 Simulation Results .. 35
 3.3 Comparison between Model and NGA (2008) .. 38
 3.4 Comparison between Model and Empirical Data from NGA-West2 Database 39
 3.5 Comparison between Model and NGA-W2 Models ... 41

4 VERTICAL HANGING-WALL RESULTS ... 45

REFERENCES... 49
LIST OF FIGURES

Figure 1.1 Comparison of the hanging-wall results for five 2008 NGA models; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6, (b) M6.5, (c) M7, and (d) M7.5. ... 3

Figure 1.2 Comparison of the hanging-wall results for the five 2008 NGA models; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, (c) 60°, and (d) 70° ... 4

Figure 1.3 Comparison of the hanging-wall results for five 2008 NGA models; shown here are M7 events with a dip of 45° with varied depths: (a) 0 km, (b) 2.5 km, (c) 5 km, and (d) 10 km ... 5

Figure 1.4 The hanging-wall results for five 2008 NGA models using the 1994 Northridge earthquake as a comparison; shown here are buried ruptures with a dip of 40°, with varied magnitudes: (a) M6, (b) M6.69, (c) M7, and (d) M7.5 ... 6

Figure 1.5 The hanging-wall results for five 2008 NGA models using the 1999 Chi-Chi event as a comparison; shown here are surface ruptures with a dip of 33°, with varied magnitudes: (a) M6, (b) M6.5, (c) M7, and (d) M7.62. 7

Figure 1.6 Intra-event residuals (in natural log units) for selected events with at least five recordings within 80 km, and at least one recording on the footwall with R_{JB} distances of 15 km or less, and three or more recordings directly over the rupture plane: (a) Imperial Valley, (b) Northridge, (c) Chi-Chi, (d) L’Aquila, and e) Wenchuan. 9

Figure 1.7 Comparison of magnitude and dip of the fault of events in Table 1.1 10

Figure 1.8 Comparison of magnitude and depth to top of rupture of the fault of events in Table 1.1 ... 10

Figure 1.9 Comparison of dip of the fault and depth to top of rupture of the fault of events in Table 1.1 ... 11

Figure 2.1 Comparison of the hanging-wall effects for the 2004 simulations; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5 ... 15

Figure 2.2 Comparison of 2004 models; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and (c) 60° ... 16

Figure 2.3 Comparison of 2004 models; shown here are M6.5 with a dip of 45° with varied depths: (a) 0 km, (b) 5 km, and (c) 10 km. ... 17

Figure 2.4 Comparison of 2004 and 2012 models; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5. 19

Figure 2.5 Comparison of 2004 and 2012 models; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and (c) 60° ... 20
Figure 2.6 Comparison of 2004 and 2012 models; shown here are M6.5 with a dip of 45° with varied depths: (a) 0 km, (b) 5 km, and (c) 10 km.........................21

Figure 3.1 Regression of the median spectral acceleration (in natural log units) on the footwall for four magnitudes...24

Figure 3.2 (a) Application of the footwall GMPE (black dashed line) to the hanging-wall side of the fault. Red squares are representative of the mean acceleration (in g’s) for each R_d distance, and (b) residuals of mean acceleration to the footwall GMPE...26

Figure 3.3 The distance taper, T_3, shown graphically ..29

Figure 3.4 Example of the side taper for a M6.5 event. The side taper applies to stations located in the blue shaded areas...30

Figure 3.5 Figure contour of a plot of the T_3 term. Example given is a M7 surface rupture, a length of 44 km, a width of 23 km, and with a dip of 45°......................31

Figure 3.6 (a) Application of the hanging-wall model (blue solid line to all stations along the fault; and (b) residuals from the footwall and hanging-wall model...32

Figure 3.7 Residuals (in natural log units) for surface ruptures. (a) M6, (b) M6.5, (c) M7, (d) M7.5, and (e) M7.8...34

Figure 3.8 Residuals (in natural log units) for buried ruptures ($Z_{TOR} = 5$ km): (a) M6, and (b) M6.5..35

Figure 3.9 Comparison of the median acceleration (in g’s) for 2004 models and hanging-wall model; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5.................................36

Figure 3.10 Comparison of the median acceleration (in g’s) for 2004 models and hanging-wall model; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and (c) 60° ...37

Figure 3.11 Comparison of the median acceleration (in g’s) for 2004 models and hanging-wall model; shown here is a M6.5 event with a dip of 45° with varied depths: (a) 0 km, and (b) 5 km...38

Figure 3.12 Intra-event Residuals (in natural log units) for selected events with at least five recordings within 80 km, and at least one recording on the footwall with R_{JB} distances of 15 km or less, and three or more recordings directly over the rupture plane: (a) Imperial Valley, (b) Northridge, (c) Chi-Chi, (d) L’Aquila, and (e) Wenchuan...40

Figure 3.13 Comparison of the hanging-wall results for five 2013 NGA-West2 models; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6, (b) M6.5, (c) M7, and (d) M7.5...42
Figure 3.14 Comparison of the median acceleration (in g’s) for the 2013 models and hanging-wall model. Models have been normalized at an $R_x = -12$ km; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and (c) 60°. ...43

Figure 3.15 Comparison of the median acceleration (in g’s) for the 2013 models and hanging-wall model. Models have been normalized at an $R_x = -12$ km; shown here are M6.5 events with a dip of 45° with varied depths: (a) 0 km, and (b) 5 km. ...44

Figure 4.1 Comparison of the residuals (in natural log units) for the vertical footwall GMPE compared to the horizontal hanging-wall term; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6.0, (b) M6.5, (c) M7, (d) M7.5, and (e) M7.8. ...46

Figure 4.2 Comparison of the residuals (in natural log units) for the vertical footwall GMPE compared to the horizontal hanging-wall term; shown here are M7 surface ruptures with varied dips: (a) 20°, (b) 30°, (c) 45°, (d) 60°, and (e) 70°. ...47

Figure 4.3 Comparison of the residuals (in natural log units) for the vertical footwall GMPE compared to the horizontal hanging-wall term; shown here are M6.5 events with a dip of 45° with varied depths: (a) 0 km and (b) 5 km48
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Listing of earthquakes in the 2008 NGA and 2013 NGA-West2 databases with at least five recordings within 80 km, and at least one recording on both the footwall and hanging-wall with (R_{JB}) distances of 15 km or less located along the rupture.</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Earthquake scenarios for PEA, UNR, and URS (2004) simulation runs.</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Earthquake scenarios for GP Set A and Set B simulation runs.</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

http://peer.berkeley.edu/publications/peer_reports/reports_2013/reports_2013.html

Appendix B: Coefficients for Hanging-Wall Model

http://peer.berkeley.edu/publications/peer_reports/reports_2013/reports_2013.html

Appendix C: Results of Model

http://peer.berkeley.edu/publications/peer_reports/reports_2013/reports_2013.html

Appendix D: Comparison of Hanging-Wall Model to the Five NGA (2008) Models

http://peer.berkeley.edu/publications/peer_reports/reports_2013/reports_2013.html

Appendix E: Intra-Event Residuals for the Abrahamson and Silva (2008) and Chiou and Youngs (2008) Footwall Model Compared to the Hanging-Wall Term for Recorded Spectral Accelerations of Selected Events using the NGA-West2 Database

http://peer.berkeley.edu/publications/peer_reports/reports_2013/reports_2013.html

Appendix F: Vertical Hanging Wall Results

http://peer.berkeley.edu/publications/peer_reports/reports_2013/reports_2013.html
1 Introduction

The hanging-wall (HW) effect is defined as the increase in ground motions observed for sites located in close proximity to the rupture plane and on the HW as compared to sites located on the footwall (FW). As observed in the empirical data, the short-period ground motions may be a factor of 2–3 larger over the HW, but are not well constrained by the sparse available empirical data.

1.1 REVIEW OF PREVIOUS HANGING WALL MODELS: ABRAHAMSON AND SOMERVILLE (1996)

Following the 1994 Northridge, California, earthquake, Abrahamson and Somerville [1996] found that recordings on the HW side of the fault typically exhibited greater than average ground motions when compared to recordings at the same distance on the FW side. Using this information, they derived an empirical model for the HW effect that results in a 50% increase in peak horizontal accelerations over the HW, which attenuated with distance. From these findings, they postulated that ground motions for other reverse events would also lead to similar systematic increases.

1.2 REVIEW OF PREVIOUS HANGING-WALL MODELS: NGA (2008)

In 2008, as part of the Next Generation Attenuation (NGA) project, coordinated by the Pacific Earthquake Engineering Research Center (PEER), five ground motion prediction equations (GMPEs) were developed to model ground motion for shallow crustal earthquakes in the western United States. Three of these models incorporated a term for the HW effect: Abrahamson and Silva [2008]; Campbell and Bozorgnia [2008]; and Chiou and Youngs [2008]. The Boore and Atkinson [2008] model does not specifically include a HW term, but the effect of the HW is implicitly captured by the use of the R_{jb} distance metric as the primary distance scaling parameter. The Idriss model [2008], which uses a simple functional form, does not include a HW term, nor does it attempt to capture differences in the ground motion on the HW and FW sides of the rupture.

The HW effect mentioned in the three aforementioned models are dependent on different predictive parameters. Each of these HW models was developed utilizing the distance metric R_v, dip of the fault, and depth to top of rupture. However, the Abrahamson and Silva [2008] model is also dependent on the distance metrics R_v, fault width, and magnitude. The Campbell and
Bozorgnia [2008] model also relies on the distance metrics R_{RUP} and magnitude. The Chiou and Youngs, [2008] model represented the HW effect by using a combination of the distance metrics R_{JB} and R_{RUP}.

To properly constrain the HW effect, multiple recordings are needed from sites located on both the HW and FW sides of the rupture and at short distances. In NGA dataset [PEER 2005], only two earthquakes meet these criteria: the 1994 Northridge California, earthquake and 1999 Chi-Chi, Taiwan, earthquake. Based on this limited availability, the modelers made assumptions on the scaling of the HW effect for magnitude, distance, dip, and rupture depth. This lead to large differences between the different GMPEs, driven by different assumptions on the HW scaling that did not have a strong empirical constraint (e.g., scaling with magnitude, dip, and depth).

Figures 1.1 through 1.3 are the results for the five 2008 NGA models. Figure 1.1 illustrates differences in magnitude scaling, while Figure 1.2 illustrates comparisons for dip of the fault and Figure 1.3 for depth scaling. From Figure 1.1, it is apparent that magnitude scaling was not been well constrained. The Chiou and Youngs [2008] model, shown as the green line, has the largest HW factors, particularly at M_6 and 6.5, culminating in the weakest magnitude scaling. At lower magnitudes, the effect of the HW tapers more quickly than the larger magnitudes, leading to the convergence of the GMPEs at different R_x distances. For instance at M_6 and 6.5, the GMPEs reconverge near $R_x = 25$ km and 30 km, respectively. However, the M_7 and 7.5 GMPEs reconverge near an R_x distance of 40 km and greater. Figure 1.2 illustrates the lack of constraint on the effect of the dip of the fault. Because there is more empirical data available for steeply dipping faults, (e.g., 60º and 70º), the GMPEs are better constrained for steeply dipping ruptures than for shallow dipping ruptures, leading to large discrepancies in the GMPE results for shallow dips. More empirical data with HW effects are available for the shallow rupture depths than for deep rupture depths. As seen in Figure 1.3, as the depth to top of rupture increases, so does the differences in the both the FW and HW ground motions for the GMPEs.

As previously stated, one of the first events used to constrain the HW effect was the 1994 Northridge event. This $M_{6.69}$ with a dip of 40º and a depth to top of rupture of 5 km was first used to constrain the magnitude scaling. Figure 1.4b for the Northridge event shows general agreement between the GMPEs both over the rupture plane and at greater distances; the exception in the Idriss model [2008] as it does not include a HW model. This agreement between the GMPEs is also consistent for the M_6 scenario, but the GMPE results begin to diverge rapidly with greater magnitudes.

The 1999 Chi-Chi, Taiwan, event provided additional data on which to draw assumptions for the HW effect, especially for larger magnitude, shallow dipping events. Although Figure 1.5d for the Chi-Chi event shows a wide range between the GMPEs over the rupture plane, the Abrahamson and Silva [2008], Boore and Atkinson [2008], and Chiou and Youngs [2008] converge at an R_x distance of 30 km and beyond. Coincidently, there is empirical data at this distance from the fault that the developers used to constrain the effect. The Campbell and Bozorgnia [2008] model has much weaker HW factors for this event.
Figure 1.1 Comparison of the hanging-wall results for five 2008 NGA models; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6, (b) M6.5, (c) M7, and (d) M7.5.
Figure 1.2 Comparison of the hanging-wall results for the five 2008 NGA models; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, (c) 60°, and (d) 70°.
Figure 1.3 Comparison of the hanging-wall results for five 2008 NGA models; shown here are M7 events with a dip of 45° with varied depths: (a) 0 km, (b) 2.5 km, (c) 5 km, and (d) 10 km.
Figure 1.4 The hanging-wall results for five 2008 NGA models using the 1994 Northridge earthquake as a comparison; shown here are buried ruptures with a dip of 40º, with varied magnitudes: (a) M6, (b) M6.69, (c) M7, and (d) M7.5.
1.3 EMPIRICAL DATA IN NGA-WEST 2 DATABASE

As mentioned in the previous section, the PEER 2008 NGA database had only a few events with recordings on both the FW and HW sides of the rupture at short distances. With the completion of the NGA-West2 database, several additional events could be considered to constrain the HW effect. Table 1.1 shows the earthquakes with at least one recording on the HW and FW within a rupture distance of 15 km.

Of the events listed above, the Imperial Valley-06, Northridge-01, Chi-Chi Taiwan, L’Aquila Italy, and Wenchuan, China, have at least three recordings over the HW and stations at close distances on the FW. Figure 1.6 shows the total residuals comparing the recorded spectral accelerations against the 2008 Abrahamson and Silva model. The total residuals for the Abrahamson and Silva [2008] and Chiou and Youngs [2008] models, with no HW effect term, are shown in Appendix A for all events in Table 1.1 with various periods.
Table 1.1 Listing of earthquakes in the 2008 NGA and 2013 NGA-West2 databases with at least five recordings within 80 km, and at least one recording on both the footwall and hanging-wall with R_{JB} distances of 15 km or less located along the rupture.

<table>
<thead>
<tr>
<th>Database</th>
<th>Event</th>
<th>Year</th>
<th>Mag</th>
<th>Dip</th>
<th>No. of records</th>
<th>No. of records $R_{JB}=0$</th>
<th>No. of records < 15 km on footwall</th>
<th>No. of records < 15 km on hanging wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGA (2008)</td>
<td>Imperial Valley-06</td>
<td>1979</td>
<td>6.53</td>
<td>80</td>
<td>19</td>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>NGA (2008)</td>
<td>Irpinia, Italy-01</td>
<td>1980</td>
<td>6.9</td>
<td>60</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NGA (2008)</td>
<td>Kobe, Japan</td>
<td>1995</td>
<td>6.9</td>
<td>85</td>
<td>14</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>NGA (2008)</td>
<td>Chi-Chi, Taiwan</td>
<td>1999</td>
<td>6.3</td>
<td>30</td>
<td>34</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>Niigata, Japan</td>
<td>2004</td>
<td>6.63</td>
<td>47</td>
<td>23</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>L’Aquila, Italy</td>
<td>2009</td>
<td>6.3</td>
<td>48</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>Wenchuan, China</td>
<td>2008</td>
<td>7.9</td>
<td>50</td>
<td>34</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>Iwate</td>
<td>2008</td>
<td>6.9</td>
<td>40</td>
<td>37</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>El Mayor-Cucapah</td>
<td>2010</td>
<td>7.2</td>
<td>63</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>Darfield, New Zealand</td>
<td>2010</td>
<td>7</td>
<td>82.2</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>NGA-W2</td>
<td>Christchurch, New Zealand</td>
<td>2011</td>
<td>6.2</td>
<td>67</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 1.6 Intra-event residuals (in natural log units) for selected events with at least five recordings within 80 km, and at least one recording on the footwall with R_{JB} distances of 15 km or less, and three or more recordings directly over the rupture plane: (a) Imperial Valley, (b) Northridge, (c) Chi-Chi, (d) L’Aquila, and e) Wenchuan.
Using the subset of fifteen events in Table 1.1, correlations between magnitude, dip of the fault, and depth to top of rupture were investigated. As seen in Figure 1.7 below, there does not appear to be a trend with the magnitude of the event and the dip of the fault. In Figure 1.8, there does appear to be a correlation between the events with deep tops of ruptures and the magnitude: as the magnitude increases, the depth to top of rupture tends to decrease. The dip of the fault and the depth to top of rupture also appear to be correlated. The deeper events appear to occur with shallower dipping faults, as seen in Figure 1.9.

Figure 1.7 Comparison of magnitude and dip of the fault of events in Table 1.1.

Figure 1.8 Comparison of magnitude and depth to top of rupture of the fault of events in Table 1.1.
Figure 1.9 Comparison of dip of the fault and depth to top of rupture of the fault of events in Table 1.1.
2 Simulations Conducted

The sparse empirical data severely limits the ability to constraint the scaling of the HW effect based on distance, magnitude, dip, and rupture depth. For this reason, constraints on the HW scaling were developed using finite-fault simulations (FSS).

2.1 2004 RESULTS (PEA, UNR, URS)

As part of Working Group 4 for the 2008 PEER NGA project, rock ground motions were simulated for a suite of reverse slip events; see Table 2.1. In all, twelve scenarios were considered with magnitudes ranging from $M_{6.5}$ to $M_{7.8}$, dips ranging from $30-60^\circ$, and with surface and buried ruptures. For these reverse-slip simulations, the crustal thickness was assumed to be 20 km, and the velocity structure had a minimum of $V_{s30} = 1800$ m/sec.

Pacific Engineering and Analysis (PEA), the University of Reno (UNR), and URS Corporation undertook the simulations with varying results. A minimum of 20 realizations of slip distribution/hypocenter combinations were needed. In almost all cases, the PEA model had higher resulting spectral accelerations, and the UNR model had lower spectral acceleration results. The results, mean, and standard deviation, of the simulations are presented in Figures 2.1 through 2.3.

From Figure 2.1, the effects of magnitude scaling for the hanging-wall effect are shown for a surface rupture with a constant dip for 45°. The three models are similar for the larger magnitudes and diverge as the magnitude decreases.
Table 2.1 Earthquake scenarios for PEA, UNR, and URS (2004) simulation runs.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Magnitude</th>
<th>Area (km²)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Dip</th>
<th>Top of Rupture (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>RB</td>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>RC</td>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>RD</td>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>RE</td>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>RF</td>
<td>7.0</td>
<td>1024</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>RG</td>
<td>7.0</td>
<td>1008</td>
<td>28</td>
<td>36</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>RH</td>
<td>7.0</td>
<td>1008</td>
<td>21</td>
<td>48</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>RI</td>
<td>7.0</td>
<td>989</td>
<td>23</td>
<td>43</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>RJ</td>
<td>7.5</td>
<td>3160</td>
<td>40</td>
<td>79</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>RK</td>
<td>7.5</td>
<td>3164</td>
<td>28</td>
<td>113</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>RL</td>
<td>7.8</td>
<td>6320</td>
<td>40</td>
<td>158</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 2.1 Comparison of the hanging-wall effects for the 2004 simulations; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5.
In Figure 2.2, the effect of dip of the fault is compared. For these simulations, the results are fairly consistent between the three modelers, with larger HW effects for the shallower dips. Although the results for PEA shows a stronger HW effect than the other two models, the shape of the effect of dip on the HW is similar. Note that the effect of the HW extends further from the top of the rupture for shallower dips than for steeply dipping faults.

As shown in Figure 2.3, the three simulation results do not show similar HW effects for different rupture depths; however, the three sets of simulations show the same trend: that as the depth to the top of rupture increases, the effect of the HW tapers more slowly with distance.
2.2 GRAVES AND PITARKA MODEL RESULTS

An additional set of FFS for HW effects were developed using the 2010 Graves and Pitarka [Graves and Pitarka, 2010] modules on the Southern California Earthquake Center (SCEC) broadband platform (BBP). Table 2.2 shows the 34 reverse earthquake events that were simulated. The scenarios varied the magnitude between M_6 and $M_{7.8}$, dips from 20–70°, distances to top of rupture of 0 and 5 km. The Graves and Pitarka (GP) model, developed for simulation of the Loma Prieta earthquake, uses a one-dimensional velocity model having a V_{s30} of 865 m/sec.
<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Area (km2)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Dip</th>
<th>Top of Rupture (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>25</td>
<td>40</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>25</td>
<td>40</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1012</td>
<td>23</td>
<td>44</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>25</td>
<td>40</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>25</td>
<td>40</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>25</td>
<td>40</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>25</td>
<td>40</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3200</td>
<td>32</td>
<td>100</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3200</td>
<td>32</td>
<td>100</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3150</td>
<td>25</td>
<td>126</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3200</td>
<td>32</td>
<td>100</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3000</td>
<td>20</td>
<td>150</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3200</td>
<td>32</td>
<td>100</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>3200</td>
<td>32</td>
<td>100</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>7.8</td>
<td>4500</td>
<td>25</td>
<td>180</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>7.8</td>
<td>4500</td>
<td>20</td>
<td>200</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>6.5</td>
<td>324</td>
<td>18</td>
<td>18</td>
<td>60</td>
<td>5</td>
</tr>
</tbody>
</table>

(* Denotes GP Set B)
Originally, 28 scenarios were run; these are shown in Table 2.2, without an asterisk. For these original scenarios (GP Set A), the width and length were held constant for each magnitude. This assumption leads to some ruptures that may not be realistic: for scenarios with larger magnitudes and larger dip angles, the rupture extended below the traditional limit of the seismogenic depth. For this reason, four additional large magnitude scenarios were run that limited the width to be within the traditional seismogenic width and extended the length of the larger magnitudes, keeping the rupture area unchanged for the steeper dip angles. This ensured that at steeper dip angles, the bottom of the fault would not extend too deeply or past a reasonable seismogenic zone. Two additional M7.8 scenarios were also included in these latest runs. The GP Set B scenarios are marked in Table 2.2 with an asterisk. The GP Set A and Set B simulation results are compared to the HW effects from the 2004 simulations in Figures 2.4 through 2.6.

Figure 2.4 Comparison of 2004 and 2012 models; shown here are surface ruptures with a dip of 45º with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5.
From Figure 2.4, the GP Set A and Set B simulation results closely resemble each other and are within the same range of spectral acceleration as the 2004 PEA and 2004 URS models, despite the fact that the V_{s30} for the 2004 models is 1800 m/sec and the 2012 models’ V_{s30} is 865 m/sec. In Figure 2.5, the GP Set A and Set B models are similar to those of the 2004 models and most closely resemble those of the PEA (2004) simulation results. Note that as the dip of the fault becomes steeper the FW and HW become more symmetric.

Figure 2.6 demonstrates the effect of the depth to the top of fault between the various simulations. Because the GP models did not simulate a depth to top of rupture below 5 km, it is not shown in Figure 2.6c. Here the GP Set A model closely follows the results of the 2004 PEA model on FW and the 2004 URS model. Also note in Figure 2.6b, the HW effects for the buried rupture from the GP Set A model are less than those of the GP Set A model in Figure 2.6a.

Figure 2.5 Comparison of 2004 and 2012 models; shown here are M7 surface ruptures with varied dips: (a) 30º, (b) 45º, and (c) 60º.
Figure 2.6 Comparison of 2004 and 2012 models; shown here are M6.5 with a dip of 45° with varied depths: (a) 0 km, (b) 5 km, and (c) 10 km.
The New Hanging-Wall Model

3.1 MODEL DEVELOPMENT

The new HW model was developed to be amendable to a GMPE, meaning that the model could be an additional term added to the base form of a GMPE. As stated in Section 1, there is a lack of available empirical data for which to constrain the HW scaling. Simulations add a level of understanding to the HW effect, but models used in 2004 were divergent in their results. The most recent sets of simulations have updated the 2004 models and now provide a more representative suite of possible ground motions. For this reason, the simulation results from GP Set A and Set B were used in the HW model development.

3.1.1 Footwall Functional Form

To develop the HW model, the first step is to build the functional form equation based on a regression of the simulation results for the FW side of the fault. Using this methodology, the equation for the functional form of the results from the GP model simulations was developed and is shown in Equation (3.1).

\[
\ln(S_a) = b_1 + \left[b_2 + b_3(M - 6) \right] \times \left[\ln(R_{\text{RUP}} + b_4) \right] + b_5(M - 6) + b_6(M - 6)^2 + b_7(R_{\text{RUP}})
\]

(3.1)

where \(M \) is magnitude, \(R_{\text{RUP}} \) is distance measurement [(km)], and \(b_1 - b_7 \) are coefficients of the functional form.

Additional event scaling terms were added to the functional form after significant dependence of the residuals on the dip of the fault and the depth to the top of the rupture were found. Additional terms for the dip of the fault and the depth to top of rupture \((Z_{\text{TOR}})\) were added to the functional form, for the FW regression GMPE, as shown in Equation (3.2).

\[
\ln(S_a) = b_1 + \left[b_2 + b_3(M - 6) \right] \times \left[\ln(R_{\text{RUP}} + b_4) \right] + b_5(M - 6) + b_6(M - 6)^2 + b_7(R_{\text{RUP}}) + f_{\text{dip}}(\delta) + f_{\text{ZTORFW}}(Z_{\text{TOR}}, \delta, M)
\]

(3.2)
The dip and depth to top-of-rupture terms for the FW regression are given in Equations (3.3) and (3.4).

\[f_{dip}(\delta) = d_1 *(90 - \delta) + d_2 *(90 - \delta)^2 + d_3 \]

(3.3)

\[f_{ZTORFW}(Z_{TOR}, \delta, M) = \left[z_{ft1} *(90 - \delta) + z_{ft2}\right] + \left[z_{ft3} *(M - 6)\right] \]

(3.4)

where \(\delta\) is the dip of the fault, \(Z_{TOR}\) is the depth to the top of the rupture (km), \(d_1 - d_3\) are the coefficients of the dip equations, and \(z_{ft1} - z_{ft3}\) are the coefficients of the depth to the top-of-rupture equations. Using Equation (3.2), the regression for the FW simulation results for \(M_{6-7.5}\) is shown in Figure 3.1. This form provides for an unbiased model on the FW side of the fault. The coefficients for Equations (3.2), (3.3), and (3.4) are available in Appendix B.

Figure 3.1 Regression of the median spectral acceleration (in natural log units) on the footwall for four magnitudes.
3.1.2 Hanging-Wall Terms

The next step to building the HW model is to compare the effect of the HW to the FW GMPE [Equation (3.2)]. The FW GMPE is shown as the dashed black line in Figure 3.2a. The mean spectral acceleration for each R_x was then computed, as shown by the red squares in Figure 3.2a. The residuals, which represent the overall HW effect, are shown in Figure 3.2b.
Figure 3.2 (a) Application of the footwall GMPE (black dashed line) to the hanging-wall side of the fault. Red squares are representative of the mean acceleration (in g's) for each R_x distance, and (b) residuals of mean acceleration to the footwall GMPE.
Using the residuals of the unbiased model form of the median ground motion on the FW side of the fault [Equation (3.2)], the full HW model takes the form of Equation (3.5). This form of the HW effect model was developed so that it could be easily incorporated into the forms of the GMPEs being used in the NGA-West2 project.

\[
\ln(S_u) = b_1 + \left[b_2 + b_3 \times (M - 6) \right] \times \left\{ \ln[(R_{\text{RUP}}) + b_4] \right\} + b_5 \times (M - 6) + b_6 \times (M - 6)^2 + b_7 \times (R_{\text{RUP}}) \\
+ f_{\text{dip}}(\delta) + f_{\text{ZTORFW}}(Z_{\text{TOR}}, \delta, M) + f_{\text{hw}}(M, \delta, W, Z_{\text{TOR}}, R_x, R_y, L)
\]

(3.5)

The HW term is composed of an amplitude term \((a_1)\) and five scaling terms: dip, magnitude, distance perpendicular to the rupture, \(Z_{\text{TOR}}\), and distance off the end of the rupture. The model of the HW effect, \(f_{\text{hw}}\), is given by:

\[
f_{\text{hw}}(M, \delta, W, Z_{\text{TOR}}, R_x, R_y, L) = a_1 T_1(\delta) T_2(M) T_3(R_x, W, \delta, M) T_4(Z_{\text{TOR}}) T_5(R_x, R_y, L)
\]

(3.6)

The amplitude term, \(a_1\), is scaled for a M6.5 event, with a dip of 45°, and a surface rupture with a maximum effect at a distance equal to the surface projection of the bottom edge of the fault. The form of Equation (3.6) is flexible in that it allows the individual developers of the GMPEs to adopt the scaling from the simulations that they consider to be reliable, while still using the empirical data to constrain the amplitude, \(a_1\), or other specific tapers in the model.

3.1.2.1 \(T_1\) – Dip Scaling

The dip scaling term was designed to be centered for a fault with a 45° dip and takes the form as shown below.

\[
T_1(\delta) = (90 - \delta)/45 \quad \text{for } \delta \leq 90°
\]

(3.7)

This model is applicable for dips of 30° or more, but, as will be shown later, the simulated data are not consistent with this model for dips less than 30°. It is currently not clear as to the cause for the change in scaling for dips less than 30° from the simulated data.

3.1.2.2 \(T_2\) – Magnitude Scaling

The magnitude scaling term was designed to be centered for a M6.5 event and takes the form as shown below.

\[
T_2(M) = 1 + a_2(M - 6.5)
\]

(3.8)

The smallest magnitude considered in the 34 scenarios is M6.0. The scaling from Equation (3.8) does not go to zero at M6; therefore, the extrapolation of the magnitude scaling below M6 is not constrained and must be set by the GMPE developers.
3.1.2.3 \(T_3 \) – Distance Scaling

The distance scaling term is dependent on the distance away from the fault. If the station location has a negative \(R_s \) value, it is assumed to be on the FW and is therefore zero. When the location is on the HW side of the fault, three distance metrics are used to describe the distance dependence. Directly over the HW, the distance function increases parabolically with increasing distance from the fault [\(f_1 \) term, Equation (3.11)]. Using the \(f_1 \) equation, the HW effect reaches its maximum value over the bottom edge of the rupture. As the distance increases further from the fault, the \(f_2 \) term [Equation (3.12)] is utilized until \(R_x \) is greater than the \(R_2 \) term [Equation (3.10)]. Using the \(f_2 \) term, the HW effect decreases parabolically with distance from the surface projection of the bottom edge of the fault. At greater distances than \(R_2 \), the HW effect decreases exponentially using the \(f_3 \) term [Equation (3.13)]. The shape of the distance taper is shown in the Figure 3.3.

\[
T_3(R_x, W, \delta, M) = \begin{cases}
0 & \text{for } R_x < 0 \\
f_1 & \text{for } R_x \leq R_1 \\
f_2 & \text{for } R_x > R_1 \text{ and } R_x \leq R_2 \\
f_3 & \text{for } R_x \leq R_2
\end{cases}
\]

\[
R_1(W, \delta) = W \cos(\delta) \tag{3.9}
\]

\[
R_2(M) = 62(M) - 350 \tag{3.10}
\]

\[
f_1(R_x) = h_1 + h_2 \left(\frac{R_x}{R_1} \right) + h_3 \left(\frac{R_x}{R_1} \right)^2 \tag{3.11}
\]

\[
f_2(R_x) = h_4 + h_5 \left[\left(\frac{R_x - R_1}{R_2 - R_1} \right) \right] + h_6 \left[\left(\frac{R_x - R_1}{R_2 - R_1} \right)^2 \right] \tag{3.12}
\]

\[
f_3(R_x, M) = (h_4 + h_5 + h_6) e^{-\gamma(R_s - R_s)} \tag{3.13}
\]

where \(\gamma = -0.2(M) + 1.65 \), \(W \) is the width of the fault (km), and \(h_1-h_6 \) are the coefficients of the distance taper.
Only two depths were modeled in the GP Set A and Set B simulation series: 0 km depth and 5 km depth. Because the amplitude of the HW effect for $Z_{TOR} = 5$ km is 30% smaller than the HW effect for surface rupture, there is a dependence on Z_{TOR}. However, with only two points, the form of the Z_{TOR} scaling is not constrained: it is not known if the scaling is linear between 0 and 5 km, nor is it known how the Z_{TOR} scaling extrapolates to Z_{TOR} values greater than 5 km.

3.1.2.5 T_5 – Rupture Edge Distance Scaling

The second distance scaling is a taper that is applied to sites located off the end of the rupture at source to site angles of 45–90° and from 90–135°. This taper allows for a gradual decrease in the HW effect at sites that are not within the length of the rupture (source-to-site angle of 90°). This taper is parameterized by an additional distance metric, R_y. If R_y is greater than half the rupture length ($L/2$), then the site is located off the end of the rupture. Therefore, the T_5 term is set to unity for sites located along the rupture with $R_y \leq L/2$.

![Figure 3.3](image_url)

Figure 3.3 The distance taper, T_3, shown graphically
where \(L \) is the length of the fault, (km), and \(\text{abs}(R_y) \) is the distance dimension measured along the strike of the fault (km) [Ancheta et al. 2013].

Applying the functional form, site effects terms, and HW term as shown in Equation (3.5), the model is calculated for all distances along the FW and HW. An example of the final form is shown in Figure 3.6a and 3.6b. See Appendix B for the coefficients to the functional form, event terms and HW terms. See Appendix C for the result of the HW model applied to all GP model scenarios for periods 0.1, 0.2, 0.5, and 1.0 sec.

![Figure 3.4](image.png)

Figure 3.4 Example of the side taper for a M6.5 event. The side taper applies to stations located in the blue shaded areas.
Figure 3.5 Figure contour of a plot of the T_s term. Example given is a M7 surface rupture, a length of 44 km, a width of 23 km, and with a dip of 45°.
Figure 3.6 (a) Application of the hanging-wall model (blue solid line to all stations along the fault; and (b) residuals from the footwall and hanging-wall model.
3.1.3 Residuals for Hanging-Wall Model

The mean residuals by scenario are shown as a function of R_x in Figure 3.7 and Figure 3.8. In each case, the residuals are averaged over all sites with the same R_x values. The residuals for sites on the HW side of the rupture typically fall within the range -0.2 to 0.2 natural log units. The exception to this is small magnitude events with shallow dipping faults; for instance, the M6 and M6.5 with shallow dips of 20° and 30° and M7 with a shallow dip of 20°. It is still being investigated if the 2010 Graves and Pitarka one-dimensional velocity model within the top 7 km may be a cause of this or if this phenomenon may be a new issue to resolve. Near the surface trace of the top of the rupture (-1 km < R_x < 1 km), the model tends to overpredict the ground motions for M7.0–M7.5; however, this over-prediction at the top of the rupture is not seen for M6–6.5 or for M7.8. For the M7.8 scenarios, the model overpredicts the HW effect at R_x distances greater than 10 km. Finally, the buried rupture residuals are well constrained, except as noted for the M6.5 with a shallow dip of 20°.
Figure 3.7 Residuals (in natural log units) for surface ruptures. (a) M6, (b) M6.5, (c) M7, (d) M7.5, and (e) M7.8.
3.2 COMPARISON OF MODEL TO 2004 SIMULATION RESULTS

The HW model is then compared to the results of the 2004 simulations. Because the HW model was developed from the GP models, the result of GP Set A and Set B simulations are not shown separately.

As shown in Figure 3.9, the HW model closely resembles the PEA and URS models for a M7 event with a dip of 45°. Note that as shown in Figure 1.2b, the 2008 NGA models also closely resemble each other for this event because of the availability of empirical data.

Like the 2004 URS model, the effect from the HW model increases in amplitude over the fault and decreases beyond a distance equals to the surface trace of the bottom of the fault, as shown in Figure 3.10. Interestingly, as the magnitude increases, the HW model more closely resembles the results from 2004 PEA.

The HW model for a buried rupture fits below the 2004 PEA model and above the 2004 UNR model, as shown in Figure 3.11. The HW model closely follows the 2004 URS model but only beyond the fault plane. At closer distances, the HW model’s shape is more similar to that of the PEA and UNR models.
Figure 3.9 Comparison of the median acceleration (in g's) for 2004 models and hanging-wall model; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5.
Figure 3.10 Comparison of the median acceleration (in g’s) for 2004 models and hanging-wall model; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and (c) 60°.
Figure 3.11 Comparison of the median acceleration (in g's) for 2004 models and hanging-wall model; shown here is a M6.5 event with a dip of 45° with varied depths: (a) 0 km, and (b) 5 km.

3.3 COMPARISON BETWEEN MODEL AND NGA (2008)

As stated in Section 1, more empirical data was available when developing the 2008 NGA models. In the Appendix D figures, the HW model is compared to the spectral shapes of the five 2008 NGA models with respect to magnitude scaling (Appendix D-1 through Appendix D-4), dip of the fault (Appendix D-5 through Appendix D-7), and depth to the top of rupture (Appendix D-8).

The HW model closely resembles the 2008 NGA models for the small magnitude events, as seen in Appendix D-1. As the magnitude increases, however, the remaining the 2008 NGA relationships attenuate much quicker with distance from the fault. As seen in Appendix D-4, at an R_s distance of 30 km, the spectral acceleration is approximately 0.5 natural log units greater than the 5 GMPEs. Whether this is an artifact of the lack of empirical data at this distance or an issue with attenuation of the GP model is yet to be resolved.

Just as there is a discrepancy between the five 2008 NGA models at shallow dip angles, so is there a discrepancy between the HW model and the other 5 GMPEs, as shown in Appendix D-5. The 2008 Abrahamson and Silva, 2008 Chiou and Youngs and 2008 Campbell and Bozorgnia models all represent the HW as having the greatest effect near the top of the fault, then decreasing over the fault, with an exponential decrease beyond the fault. As stated in Section 3.1.2.3, using the GP model results to develop the HW distance taper, the HW effect increases over the fault, which is in opposition to the previously three mentioned 2008 NGA models. Again, the HW model does not attenuate with distance as quickly as the 2008 NGA models.

For buried ruptures, the spectral shape of the HW effect is different from the 2008 NGA models as seen in Appendix D-8. Except for the 2008 Idriss model, the HW effect is less than the
other four GMPEs at close distances (e.g., less than 15 km), yet greater than all GMPEs at greater distances.

3.4 COMPARISON BETWEEN MODEL AND EMPIRICAL DATA FROM NGA-WEST2 DATABASE

Using the 15 events listed in Section 1.3, the intra-event residuals for the 2008 Abrahamson and Silva and the 2008 Chiou and Youngs models, utilizing the HW term, were compared to the HW term. Figure 3.12 shows selected comparisons; all events from Table 1.1 can be viewed in Appendix E. As seen in Figure 3.12, the HW term correlates well for the Imperial Valley, Northridge, and Wenchuan events; however, for the Chi-Chi and L’Aquila events the HW term is lower than the observed recording.
Figure 3.12 Intra-event Residuals (in natural log units) for selected events with at least five recordings within 80 km, and at least one recording on the footwall with R_{d0} distances of 15 km or less, and three or more recordings directly over the rupture plane: (a) Imperial Valley, (b) Northridge, (c) Chi-Chi, (d) L’Aquila, and (e) Wenchuan.
3.5 COMPARISON BETWEEN MODEL AND NGA-W2 MODELS

The NGA-West2 project was undertaken by PEER to expand the previous work described in Section 1.2 of this report. This work culminated in the NGA-West2 GMPEs derived from the expanded NGA-West2 database described in Section 1.3.

The Abrahamson, Silva, and Kamai (ASK13) [2013] and the Campbell and Bozorgnia (CB13) [2013] GMPEs used parts of the simulation-based HW model to constrain the HW scaling in their GMPEs for sites located over the surface projection of the rupture plane. The Chiou and Youngs (CY13) [2013] GMPE does not use the HW model described within this paper, but instead relies on a HW term that better fits with their base functional form. The Boore, Stewart, Seyhan and Atkinson (BSSA13) [2013] GMPE does not specifically include a HW term, but the effect of the HW is implicitly captured by the use of the R_{JB} distance term. The Idriss (I2013) [2013] GMPE does not include a HW term, nor does it attempt to capture differences between the ground motion on the FW and HW.

Figures 3.13 through 3.15 compares the HW scaling from the five models to the HW scaling from the simulations. In each figure, the ground motion is normalized to the FW motion at an R_x distance of 12 km to remove differences in the GMPEs on the FW from the HW predictions. Figure 3.13 compares the GMPEs for a range of magnitudes for a fixed dip of 45°. Figure 3.14 compares the HW scaling for different dip angles for M7 earthquakes; Figure 3.15 compares the HW scaling for different Z_{TOR} values. These comparisons show that for sites located over the rupture plane, the GMPEs with HW effects tend to have larger HW factors than the HW model from the simulations; however, the HW scaling simulations are similar to the R_{JB}-based BSSA model. At large distances ($R_x > 20$ km), the simulations show a much weaker attenuation than all of the GMPEs.
Figure 3.13 Comparison of the hanging-wall results for five 2013 NGA-West2 models; shown here are surface ruptures with a dip of 45° with varied magnitudes: (a) M6, (b) M6.5, (c) M7, and (d) M7.5.
Figure 3.14 Comparison of the median acceleration (in g's) for the 2013 models and hanging-wall model. Models have been normalized at an $R_x = -12$ km; shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and (c) 60°.
Figure 3.15 Comparison of the median acceleration (in g’s) for the 2013 models and hanging-wall model. Models have been normalized at an $R_x = -12$ km; shown here are M6.5 events with a dip of 45º with varied depths: (a) 0 km, and (b) 5 km.
4 Vertical Hanging-Wall Results

Rather than deriving a new model for the scaling of the HW for the vertical component, we provide comparisons of the scaling between the horizontal and vertical components from the simulated ground motions. This allows the GMPE developers to evaluate the need for a change in the scaling of the HW effects between the horizontal and vertical. This approach to the vertical HW effect is also better suited for models that use the V/H ratio approach for the vertical component.

We show examples of the comparison of the HW effects for the horizontal and vertical components for three cases. Figure 4.1 shows the HW scaling for a dip of 45° for M6, 6.5, 7.0, 7.5, and 7.8. For this case, the HW effects for the vertical component are similar to the HW effects on the horizontal component. Figure 4.2 shows the HW scaling for M7 earthquakes for dips ranging from 20–70°. For this case, the HW effects for the vertical and horizontal component are similar for dips of 45 and 60°, but there are differences over the rupture for shallow dips (20–30°) and steep dips (70°). Finally, Figure 4.3 shows the HW scaling for M6.5 earthquakes with a dip of 45° for depth to top of ruptures of 0 and 5 km. For this case, the HW effects for the vertical and horizontal component are similar. The full set of comparisons for all of the cases are shown in Appendix F.
Figure 4.1 Comparison of the residuals (in natural log units) for the vertical footwall GMPE compared to the horizontal hanging-wall term; shown here are surface ruptures with a dip of 45º with varied magnitudes: (a) M6.0, (b) M6.5, (c) M7, (d) M7.5, and (e) M7.8.
Figure 4.2 Comparison of the residuals (in natural log units) for the vertical footwall GMPE compared to the horizontal hanging-wall term; shown here are M7 surface ruptures with varied dips: (a) 20°, (b) 30°, (c) 45°, (d) 60°, and (e) 70°.
Figure 4.3 Comparison of the residuals (in natural log units) for the vertical footwall GMPE compared to the horizontal hanging-wall term; shown here are M6.5 events with a dip of 45° with varied depths: (a) 0 km and (b) 5 km
REFERENCES

Campbell K.W., Bozorgnia Y. (2013). NGA-West2 Campbell-Bozorgnia ground motion model for the horizontal components of PGA, PGV, and 5%-damped elastic pseudo-acceleration response spectra for periods ranging from 0.01 to 10 sec. *Report PEER 2013/06*, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

PEER REPORTS

PEER reports are available as a free PDF download from http://peer.berkeley.edu/publications/peer_reports_complete.html. Printed hard copies of PEER reports can be ordered directly from our printer by following the instructions at http://peer.berkeley.edu/publications/peer_reports.html. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall mail code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; Fax: (510) 665-1655; Email: peer_editor@berkeley.edu

PEER 2013/15 publication pending

PEER 2013/13 publication pending

PEER 2013/06 NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, and 5%-Damped Elastic Pseudo-Acceleration Response Spectra for Periods Ranging from 0.01 to 10 sec. Kenneth W. Campbell and Yosef Bozorgnia. May 2013.

PEER 2013/02 Hybrid Simulation of the Seismic Response of Squat Reinforced Concrete Shear Walls. Catherine A. Whyte and Bozidar Stojadinovic. May 2013.

PEER 2011/01 *Demand Fragility Surfaces for Bridges in Liquefied and Laterally Spreading Ground.* Scott J. Brandenberg, Jian Zhang, Pirooz Kashighandi, Yili Huo, and Minxing Zhao. March 2011.

ONLINE PEER REPORTS

The following PEER reports are available by Internet only at http://peer.berkeley.edu/publications/peer_reports_complete.html.

PEER 2010/102 Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I(30)) Using the PEER–NGA Strong Motion Database. Kenneth W. Campbell and Youssef Bozorgnia. February 2010.

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.

PEER Core Institutions:
University of California, Berkeley (Lead Institution)
California Institute of Technology
Oregon State University
Stanford University
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, San Diego
University of Southern California
University of Washington

PEER reports can be ordered at http://peer.berkeley.edu/publications/peer_reports.html or by contacting

Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, mail code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437
Fax: 510-642-1655
Email: peer_editor@berkeley.edu

ISSN 1547-0587X