Scaling Relations between Seismic Moment and Rupture Area of Earthquakes in Stable Continental Regions

Paul Somerville
URS Corporation
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s) or the Pacific Earthquake Engineering Research Center.
Scaling Relations between Seismic Moment and Rupture Area of Earthquakes in Stable Continental Regions

Paul Somerville
URS Corporation

PEER Report 2014/14
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley
Revised August 2014
ABSTRACT

This report describes the development of scaling relations between seismic moment and rupture area of earthquakes in stable continental regions (SCR). The report reviews existing relations, develops new relations, and compares the new relations with the existing relations. It also compares the scaling relations of SCR earthquakes with those in tectonically active continental regions (TCR). Three different methods of estimating rupture area—based on aftershocks, slip models, and duration—were used to analyze the relation between seismic moment and rupture area, using earthquake source parameters compiled from published literature. For each category of data, the relations obtained were not significantly different from those obtained by constraining them to be self-similar. Accordingly, these self-similar relations were adopted in this study. The stress drops corresponding to these scaling relations range from 51 to 86 bars, with an average of 65 bars. This value is comparable to the value of 58 bars obtained by Leonard [2010]. Because Leonard [2010] did not document his data and used an undifferentiated mixture of different ways of measuring fault area, the relation that he developed is less soundly based than that developed in this study. However, the two relations are not significantly different, and the Leonard [2010] relations have the advantage of having been derived in a self-consistent manner for a wide range of earthquake categories, including crustal earthquakes in tectonically active regions. Consequently, it is recommended that the Leonard [2010] scaling relations for SCR earthquakes be used for the NGA-East Project. To a first approximation, the results of this study and that of Somerville et al. [1997] indicate that the rupture areas of SCR earthquakes are about half those of TCR earthquakes, and their stress drops are about 2.8 times higher. Allmann and Shearer [2009] find less of a difference, presumably because their intraplate category includes some earthquakes that the NGA-East Project would assign to TCR instead of SCR. Their study indicates that the rupture areas of intraplate earthquakes are about two-thirds those of TCR earthquakes, and their stress drops are about two times higher.
ACKNOWLEDGMENTS

This study was sponsored by the Pacific Earthquake Engineering Research center (PEER), as part of the NGA-East research project, and was funded by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), and the Electric Power Research Institute (EPRI), with the participation of the U.S. Geological Survey (USGS).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect those of the sponsoring agencies.
CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS .. v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES .. xi

1 INTRODUCTION .. 1
 1.1 Self-Similar Scaling Relations .. 1
 1.2 Methods for Estimating Fault Rupture Area of Earthquakes 1
 1.2.1 Aftershocks and Surface Faulting ... 1
 1.2.2 Earthquake Slip Models .. 2
 1.2.3 Source Duration ... 2
 1.2.4 Corner Frequency ... 3
 1.3 Compilation of Earthquake Source Parameters ... 3
 1.4 Derivation of Relations between Seismic Moment and Fault Rupture Area 3
 1.5 Summary of Relations between Seismic Moment and Fault Rupture Area 6
 1.6 Seismic Moment–Rupture Area Scaling Relations for Stable Continental Regions 6
 1.7 Epistemic Uncertainty and Aleatory Variability in Stress Drop 13
 1.8 Epistemic Uncertainty and Aleatory Variability of Magnitude-Area Scaling Relations ... 15
 1.9 Comparison of Scaling Relations for Earthquakes in Stable Continental Regions and Tectonically Active Continental Regions ... 15
 1.10 Width Saturation in Scaling Relations .. 18
 1.11 Guidance on the Use of Scaling Relations of Earthquakes in Stable Continental Regions .. 19

REFERENCES .. 21
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Earthquake source parameters.</td>
<td>4</td>
</tr>
<tr>
<td>Table 2</td>
<td>Distribution of events by region and magnitude.</td>
<td>5</td>
</tr>
<tr>
<td>Table 3</td>
<td>Scaling relations between seismic moment and rupture area.</td>
<td>5</td>
</tr>
<tr>
<td>Table 4</td>
<td>Epistemic uncertainty and aleatory variability of Log_{10} (static stress drop).</td>
<td>14</td>
</tr>
<tr>
<td>Table 5</td>
<td>Epistemic uncertainty and aleatory variability of magnitude-area scaling relations.</td>
<td>15</td>
</tr>
<tr>
<td>Table 6</td>
<td>Comparison of area and stress drop scaling of earthquakes in stable continental regions and tectonically active continental regions.</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Relation between seismic moment and rupture area derived from source duration.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Relation between seismic moment and rupture area derived from aftershock area and surface rupture data.</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Relation between seismic moment and rupture area derived from slip models.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Comparison of relations between seismic moment and rupture area derived from three different methods.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Comparison of relations between seismic moment and rupture area derived from three different methods with previous relations using Duration [Somerville et al. 1987] and Slip Model [Somerville et al. 2001].</td>
<td>11</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Comparison of Leonard [2010] and Somerville [2011] relations between seismic moment and rupture area.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Comparison of Somerville [2011] with Leonard [2010] relations between seismic moment and rupture area with previous relations using Duration [Somerville et al. 1987] and Slip Model [Somerville et al. 2001].</td>
<td>13</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Comparison of relations between seismic moment and rupture area for earthquakes in stable continental regions (this study and Leonard [2010]) with relations for earthquakes in tectonically active continental regions [Somerville et al. 1999; Hanks and Bakun 2002] ($M_w < 7.0$).</td>
<td>16</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Comparison of relations between seismic moment and rupture area for earthquakes in stable continental regions (this study) with the relation for earthquakes in tectonically active continental regions [Somerville et al. 1999].</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Comparison of the Somerville et al. [1999] relations between seismic moment and rupture area for earthquakes in tectonically active continental regions with the model of Hanks and Bakun [2002].</td>
<td>18</td>
</tr>
</tbody>
</table>
1 Introduction

This report, which is a follow-up to a previous in-depth investigation [Somerville 2011], describes the development of scaling relations between seismic moment and rupture area of earthquakes in stable continental regions (SCR). The report reviews existing relations, develops new relations, and compares the new relations with the existing relations. It also compares the scaling relations of SCR earthquakes with those in tectonically active continental regions (TCR).

1.1 SELF-SIMILAR SCALING RELATIONS

Self-similar scaling relations have the property of scale invariance. For example, self-similar scaling relations arise when the average displacement on a fault rupture surface changes at the same rate as its change in area, yielding constant stress drop. The scaling relations that we obtained for SCR earthquakes in this study are not significantly different from those obtained by constraining them to be self-similar. Self-similar scaling relations have the advantage of simplicity, and so we adopted self-similar scaling relations in this study.

1.2 METHODS FOR ESTIMATING FAULT RUPTURE AREA OF EARTHQUAKES

In the following sections of the report, we describe four alternative approaches to estimating the rupture areas of earthquakes.

1.2.1 Aftershocks and Surface Faulting

The aftershock dimensions and surface rupture length (if present) provide indirect information about the rupture areas of earthquakes. The approach has been used by investigators such as Wells and Coppersmith [1994] and Hanks and Bakun [2002] to estimate the rupture areas of earthquakes. These indirect methods have limitations. For example, surface rupture length can only be used with earthquakes that produce surface rupture. Aftershocks typically occur in a volume of crust surrounding the earthquake rupture surface and may extend beyond the ends of the rupture zone of the earthquake, and so the aftershock zone may not provide a reliable indication of the dimensions of the mainshock rupture.
1.2.2 Earthquake Slip Models

Procedures for characterizing earthquake sources for the simulation of strong ground motion were developed by Somerville et al. [1999], based on the finite-fault rupture models of 15 crustal earthquakes in tectonically active regions. These rupture models were derived from the inversion of a combination of strong motion, teleseismic and geodetic data. This method accounts for seismic wave propagation effects through the computation of synthetic seismograms. The slip distributions of these events are highly variable, characterized by asperities (regions of large slip) surrounded by regions of low slip. These data were used to develop scaling relationships between seismic moment and a set of fault parameters that are needed for predicting strong ground motions, including fault length, fault width, rise time (duration of slip at a point on the fault), and the size, slip contrast and location of asperities.

In the course of developing ground motion models in eastern North America, Somerville et al. [2001] used published rupture models of three earthquakes that occurred in eastern Canada [Hartzell et al. 1994] to develop earthquake source scaling relations for eastern North America. Somerville et al. [2009] derived rupture models of four earthquakes that occurred in Australia: the 1968 Meckering earthquake and the three large earthquakes of the 1988 Tennant Creek sequence in the course of developing ground motion models for Australia. All four earthquakes occurred within the cratonic region of Australia.

1.2.3 Source Duration

The rupture duration of an earthquake contains information about the dimensions of the fault rupture surface based on an assumed value of rupture velocity. Estimates of the source duration can be obtained by computing synthetic seismograms, adjusting the source duration used in the synthetic seismograms to optimize the fit between the synthetic and recorded waveforms, usually from teleseismic P-waves. This method accounts for seismic wave propagation effects through the computation of synthetic seismograms.

Somerville et al. [1987] analyzed the source durations from earthquakes in eastern North America and other stable continental regions. Stress drop is calculated from seismic moment and source duration estimates using the model of Cohn et al. [1982], in which rupture duration is assumed to reflect the effects of rupture propagation and dislocation rise time over a circular fault surface embedded in a homogeneous medium. Assuming a rupture speed that is 0.8 times the shear wave velocity of 3.5 km/sec, the duration τ (in seconds) of the shear wave pulse, averaged over the angle between the fault plane and the ray path, is related to the fault radius r (in kilometers) by

$$\tau = 0.75r$$

The stress drop $\Delta \sigma$ is related to seismic moment M_o and duration by:

$$\Delta \sigma = 1.87 \times 10^{-22} \times M_o / \tau^3$$
and to seismic moment and fault rupture area A by:

$$\Delta \sigma = 2.468 \times 10^{-21} \times \frac{M_o}{A^{1.5}}$$
$$\log_{10} \Delta \sigma = \log_{10} M_o - 1.5 \log_{10} A - 20.6076$$

1.2.4 Corner Frequency

The frequency domain equivalent of source duration is the corner frequency of the source radiation. In practice, measurements are made using seismograms, which contain seismic wave propagation effects that are difficult to separate from source effects. Allmann and Shearer [2009] did a global analysis of earthquake stress drops using corner frequency methods. One set of events that they studied consists of 61 “intraplate” earthquakes, which have varying distances from plate boundaries depending on the region. These distances are typically about 150 km, so this category includes more events than just those on stable continental regions. They also studied 48 “continental transform fault” events and 81 “continental collision boundary” events.

1.3 COMPILATION OF EARTHQUAKE SOURCE PARAMETERS

In this study, we used the Aftershock, Slip Model, and Duration methods to analyze the relation between seismic moment and rupture area. The earthquake source parameters that were compiled from published literature are listed in Table 1; these parameters are not available for more recent events such as the 1997 Cap-Rouge, 2002 Au-Sable-Forks, 2005 Riviere-du-Loup, and 2010 Val-des-Bois earthquakes. This table includes 29 events that have source duration, mostly from older events already studied; source duration is not routinely reported in earthquake catalogs. It includes eight events that have slip models, mostly from smaller eastern Canadian and larger Australian events. It also includes 12 events with aftershock/surface faulting data from a wide variety of regions. Multiple methods are available for many events; there are only 30 different events in Table 1. For a given event, we used the same seismic moment estimate with the fault rupture areas estimated from each of the different methods. Table 1 provides references for each method used. The distribution of events by region and magnitude range is given in Table 2.

1.4 DERIVATION OF RELATIONS BETWEEN SEISMIC MOMENT AND FAULT RUPTURE AREA

We obtained separate relations between seismic moment and fault rupture area using each of the three methods: Aftershock, Slip Model, and Duration. In each case, the relations obtained were not significantly different from those obtained by constraining them to be self-similar. Accordingly, we adopted the self-similar relations in this study. The stress drops corresponding to these scaling relations were obtained using the method described in Somerville et al. [1987] described above and are listed in Table 3.
Table 1 Earthquake source parameters.

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>M_W</th>
<th>H</th>
<th>M_o</th>
<th>Ref*</th>
<th>Slip Model</th>
<th>Aftershock/SurfaceRupture</th>
<th>Duration</th>
<th>A</th>
<th>Ref*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>dyne.cm</td>
<td></td>
<td></td>
<td></td>
<td>L km</td>
<td>W km</td>
<td>A km2</td>
<td>Ref*</td>
<td>L km</td>
</tr>
<tr>
<td>1925.3.1</td>
<td>Charlevoix</td>
<td>6.29</td>
<td>10</td>
<td>3.1E25</td>
<td>B92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1929.11.18</td>
<td>Gr. Banks#1</td>
<td>7.13</td>
<td>20</td>
<td>5.5E26</td>
<td>B95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1935.11.1</td>
<td>Timiskaming</td>
<td>6.44</td>
<td>10</td>
<td>5.1E25</td>
<td>ES85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1939.10.19</td>
<td>Charlevoix</td>
<td>5.30</td>
<td>8</td>
<td>1.0E24</td>
<td>SM87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940.12.20</td>
<td>Ossippee</td>
<td>5.35</td>
<td>10</td>
<td>1.2E24</td>
<td>ES85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963.9.4</td>
<td>Baffin Bay</td>
<td>6.10</td>
<td>7</td>
<td>1.6E25</td>
<td>LK80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965.10.21</td>
<td>Missouri</td>
<td>4.60</td>
<td>4</td>
<td>9.0E22</td>
<td>SM87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967.12.10</td>
<td>Koyna</td>
<td>6.30</td>
<td>4.4</td>
<td>3.2E25</td>
<td>L76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968.10.14</td>
<td>Meckering</td>
<td>6.61</td>
<td>1</td>
<td>9.3E25</td>
<td>SM87</td>
<td>28 10 280</td>
<td>SG09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968.3.30</td>
<td>Marryat Ck</td>
<td>5.81</td>
<td>1</td>
<td>5.8E24</td>
<td>M89</td>
<td>13 3 39</td>
<td>WC94 4</td>
<td>89</td>
<td>M89</td>
<td></td>
</tr>
<tr>
<td>1969.9.29</td>
<td>Ceres</td>
<td>6.37</td>
<td>11</td>
<td>4.0E25</td>
<td>NB86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970.3.24</td>
<td>Lake McKay</td>
<td>5.99</td>
<td>12</td>
<td>1.1E25</td>
<td>LK80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973.6.15</td>
<td>Maine</td>
<td>4.49</td>
<td>6</td>
<td>6.2E22</td>
<td>SM87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979.8.19</td>
<td>Quebec</td>
<td>4.75</td>
<td>6.5</td>
<td>1.5E23</td>
<td>SM87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980.7.27</td>
<td>Kentucky</td>
<td>5.09</td>
<td>13.5</td>
<td>4.8E23</td>
<td>SM87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982.1.9</td>
<td>Miramichi</td>
<td>5.50</td>
<td>7</td>
<td>2.0E24</td>
<td>HL94</td>
<td>17 4.0 22</td>
<td>WC94 1.5</td>
<td>12.6 HL94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983.10.7</td>
<td>New York</td>
<td>4.90</td>
<td>7</td>
<td>2.5E23</td>
<td>SM87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983.12.22</td>
<td>Guinea</td>
<td>6.32</td>
<td>13</td>
<td>3.4E25</td>
<td>DD84</td>
<td>27 14 378</td>
<td>WC94 5.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984.10.7</td>
<td>North Wales</td>
<td>5.30</td>
<td>20.7</td>
<td>1.0E24</td>
<td>WC94</td>
<td>3.0 9.6</td>
<td>WC94 4.2</td>
<td>99</td>
<td>M89</td>
<td></td>
</tr>
<tr>
<td>1988.1.22</td>
<td>Tennant Ck</td>
<td>6.26</td>
<td>2.7</td>
<td>2.8E25</td>
<td>FM88</td>
<td>12 16 192</td>
<td>SG09 13</td>
<td>9 117 WC94</td>
<td>4.2</td>
<td>99</td>
</tr>
<tr>
<td>1988.11.25</td>
<td>Saguenay</td>
<td>5.82</td>
<td>26</td>
<td>6.1E24</td>
<td>SM90</td>
<td>33</td>
<td>HL94</td>
<td>1.8</td>
<td>18</td>
<td>S90</td>
</tr>
<tr>
<td>1993.9.30</td>
<td>Latur</td>
<td>5.99</td>
<td>6</td>
<td>1.1E25</td>
<td>RE98</td>
<td>10 5 50</td>
<td>WC94 3.0</td>
<td>50</td>
<td>B94</td>
<td></td>
</tr>
<tr>
<td>1997.5.21</td>
<td>Jabalpur</td>
<td>5.81</td>
<td>35</td>
<td>5.9E4</td>
<td>S06</td>
<td>1.9 20.2</td>
<td>S06 1.9</td>
<td>20.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001.1.23</td>
<td>Bhuj</td>
<td>7.67</td>
<td>22</td>
<td>3.6E27</td>
<td>AD03</td>
<td>60 35 2100</td>
<td>AD03 60</td>
<td>40 2400</td>
<td>MH06</td>
<td>25</td>
</tr>
</tbody>
</table>

*Initials of first two authors and last two digits of year in References
Table 2 Distribution of events by region and magnitude.

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Events</th>
<th>Magnitude Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Canada</td>
<td>9</td>
<td>M_w 5.3 – 7.1</td>
</tr>
<tr>
<td>Eastern U.S</td>
<td>7</td>
<td>M_w 4.5 – 5.4</td>
</tr>
<tr>
<td>Australia</td>
<td>7</td>
<td>M_w 5.8 – 6.6</td>
</tr>
<tr>
<td>India</td>
<td>4</td>
<td>M_w 5.8 – 7.7</td>
</tr>
<tr>
<td>Africa</td>
<td>2</td>
<td>M_w 6.3 – 6.4</td>
</tr>
<tr>
<td>Europe</td>
<td>1</td>
<td>M_w 5.3</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>M_w 5.3 – 7.7</td>
</tr>
</tbody>
</table>

Table 3 Scaling relations between seismic moment and rupture area.

($\log_{10} \Delta A = \text{slope} \times \log_{10} M_w + \text{intercept}$ and $\log_{10} \text{stress drop} = -20.6076 - \text{intercept} / \text{slope}$).

<table>
<thead>
<tr>
<th>Model Region</th>
<th>Method</th>
<th>Reference</th>
<th>Slope</th>
<th>Intercept</th>
<th>Stress Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR</td>
<td>Slip Model</td>
<td>Somerville et al. [1999]</td>
<td>2/3</td>
<td>-14.65</td>
<td>23.4</td>
</tr>
<tr>
<td>TCR, M_w < 7.0</td>
<td>Aftershock</td>
<td>Hanks & Bakun [2002]</td>
<td>2/3</td>
<td>-14.74</td>
<td>31.9</td>
</tr>
<tr>
<td>TCR, dip slip</td>
<td>Various, mostly</td>
<td>Leonard [2010]</td>
<td>2/3</td>
<td>-14.72</td>
<td>30.0</td>
</tr>
<tr>
<td>Continental collision boundary</td>
<td>Corner Frequency</td>
<td>Allmann and Shearer [2009]</td>
<td>2/3</td>
<td>-14.68</td>
<td>26.3</td>
</tr>
<tr>
<td>Continental transform fault</td>
<td>Corner Frequency</td>
<td>Allmann and Shearer [2009]</td>
<td>2/3</td>
<td>-14.77</td>
<td>35.4</td>
</tr>
<tr>
<td>ENAM</td>
<td>Source Duration</td>
<td>Somerville et al. [1987]</td>
<td>2/3</td>
<td>-15.12</td>
<td>118.4</td>
</tr>
<tr>
<td>SCR</td>
<td>Source Duration</td>
<td>Somerville et al. [1987]</td>
<td>2/3</td>
<td>-15.03</td>
<td>86.8</td>
</tr>
<tr>
<td>ENAM</td>
<td>Slip Model</td>
<td>Somerville et al. [2001]</td>
<td>2/3</td>
<td>-15.05</td>
<td>93.0</td>
</tr>
<tr>
<td>Intraplate (~150 km beyond plate boundary)</td>
<td>Corner Frequency</td>
<td>Allmann and Shearer [2009]</td>
<td>2/3</td>
<td>-14.911</td>
<td>59.5</td>
</tr>
<tr>
<td>SCR</td>
<td>Various, mostly</td>
<td>Leonard [2010]</td>
<td>2/3</td>
<td>-14.89</td>
<td>58.0</td>
</tr>
<tr>
<td>SCR–Combination of three methods</td>
<td>Various</td>
<td>Somerville [2011] (this study)</td>
<td>2/3</td>
<td>-14.946</td>
<td>64.9</td>
</tr>
<tr>
<td>SCR–Aftershock</td>
<td>Aftershock</td>
<td>Somerville [2011] (this study)</td>
<td>2/3</td>
<td>-14.876</td>
<td>51.0</td>
</tr>
<tr>
<td>SCR–Duration</td>
<td>Source Duration</td>
<td>Somerville [2011] (this study)</td>
<td>2/3</td>
<td>-15.028</td>
<td>86.2</td>
</tr>
<tr>
<td>SCR–Slip Model</td>
<td>Slip Model</td>
<td>Somerville [2011] (this study)</td>
<td>2/3</td>
<td>-14.934</td>
<td>62.3</td>
</tr>
</tbody>
</table>
1.5 SUMMARY OF RELATIONS BETWEEN SEISMIC MOMENT AND FAULT RUPTURE AREA

A summary of the published analyses of the relation between seismic moment and fault rupture area reviewed above, together with those derived in this study, is given in Table 3. All of these relations are self-similar relations, in which the relation between average displacement and rupture area, which is a measure of static stress drop, is independent of seismic moment and therefore provides a convenient way of characterizing the scaling relation. Our measurements of static stress drop relate to the static stress drop of a circular crack embedded in an elastic medium; this gives values like Brune stress drops. Stress drop values for other fault geometries and for surface faulting earthquakes may differ from those computed in this study. Hence we use the term static stress drop as index of the relation between average displacement and rupture area in a set of earthquakes, and not as an accurate estimate of the actual stress drops of individual earthquakes.

Table 3 also includes results from a recent global analysis of earthquake source scaling relations by Leonard [2010]. He derived self-consistent relations between L, W, D, and M_o for all categories of earthquakes. The data that he used are undocumented, based mainly on existing compilations of source parameters, with areas mostly based on the Aftershock method. All of his scaling relations have self-similar scaling of seismic moment with rupture area, although the rupture widths have non-self-similar scaling.

1.6 SEISMIC MOMENT–RUPTURE AREA SCALING RELATIONS FOR STABLE CONTINENTAL REGIONS

Table 3 lists the scaling relations obtained by the three different method categories used in this study, as well as the relation obtained by averaging these three relations. The seismic moment – rupture area scaling relations and the equivalent relation between magnitude and rupture area for the average of the models is as follows:

$$\log_{10} A = \frac{2}{3} \log_{10} M_o - 14.95$$

$$\log_{10} A = M_w - 4.25$$

The data and scaling relations for the three methods are shown in Figures 1, 2, and 3, and the three relations are shown together in Figure 4. Figure 5 shows these three relations together with the relations derived using duration by Somerville et al. [1987] and using slip model by Somerville et al. [2001]. These two earlier relations, based on much smaller data sets, both have larger stress drops than all of the three new models.

Figure 6 shows the similarity between the average model derived in this study and the model obtained by Leonard [2010] for SCR earthquakes. Figure 7 shows that both of these models have lower stress drops than the relations derived using duration by Somerville et al. [1987] and using slip model by Somerville et al. [2001].
Figure 1 Relation between seismic moment and rupture area derived from source duration.
Figure 2 Relation between seismic moment and rupture area derived from aftershock area and surface rupture data.
Figure 3
Relation between seismic moment and rupture area derived from slip models.
Figure 4 Comparison of relations between seismic moment and rupture area derived from three different methods.
Figure 5 Comparison of relations between seismic moment and rupture area derived from three different methods with previous relations using Duration [Somerville et al. 1987] and Slip Model [Somerville et al. 2001].
Figure 6 Comparison of Leonard [2010] and Somerville [2011] relations between seismic moment and rupture area.
1.7 EPISTEMIC UNCERTAINTY AND ALEATORY VARIABILITY IN STRESS DROP

We have shown that in a self-similar source scaling relation, the static stress drop is independent of seismic moment and therefore provides a convenient way of characterizing the scaling relation. We calculated the values of \log_{10} of the stress drops of the earthquakes for each method category and then calculated the standard deviation (aleatory variability of the values about the mean) and standard error (epistemic uncertainty in the mean) for each method category. The results are listed in Table 4. The Aftershock and Duration categories have means that are statistically significantly different from each other (as measured by the standard errors of the means), but the mean for the Slip Model category is not statistically significantly different from the mean of either of the other models.
The values for the three model categories were combined by taking a weighted average of the standard deviations of the three models, with weights based on the respective numbers of data points, and by calculating the standard error of the mean of the three mean values. These results are also listed in Table 4. In this combined model, the stress drop has an aleatory variability of a factor of 2.0, and the standard error of the mean has a coefficient of variation of 1.165. The coefficient of variation of the mean of the Allmann and Shearer [2009] estimate for intraplate earthquakes is 1.17, which is similar to the estimate for the combined three models.

An alternative assessment of the median, standard deviation, and standard error of stress drop was made by including the models of Leonard [2010] and Allmann and Shearer [2009]. The median value of the stress drop from those two studies and the three model estimates obtained in this study is 63.4 bars, which is quite similar to the value of 64.9 bars obtained using just the three model estimates from this study. The standard error of the estimate from the five models has a coefficient of variation of 1.08, which is less than the value of 1.165 for the combined three models. We consider the estimate of standard error from the five models to be more reliable, and accordingly we report this value (0.034 log$_{10}$ units) in Tables 4 and 5.

Table 4 Epistemic uncertainty and aleatory variability of Log$_{10}$ (static stress drop).

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Mean</th>
<th>Epistemic uncertainty (standard error of mean)</th>
<th>Aleatory variability (standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aftershock</td>
<td>51.0</td>
<td>0.0708</td>
<td>0.245</td>
</tr>
<tr>
<td>Slip Model</td>
<td>62.3</td>
<td>0.0836</td>
<td>0.236</td>
</tr>
<tr>
<td>Duration</td>
<td>86.2</td>
<td>0.0713</td>
<td>0.384</td>
</tr>
<tr>
<td>Combined–3 Models</td>
<td>64.8</td>
<td>0.0664</td>
<td>0.300</td>
</tr>
<tr>
<td>Combined–5 Models</td>
<td>62.4</td>
<td>0.0340</td>
<td></td>
</tr>
</tbody>
</table>
1.8 EPISTEMIC UNCERTAINTY AND ALEATORY VARIABILITY OF MAGNITUDE-AREA SCALING RELATIONS

The measurements of epistemic uncertainty and aleatory variability in stress drop in Table 4 were used to estimate the epistemic uncertainty and aleatory variability of the magnitude-area scaling relations, based on the scaling relationships given above. The results for the combined 5 models are given in Table 5.

Table 5 Epistemic uncertainty and aleatory variability of magnitude-area scaling relations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Epistemic Uncertainty (Standard Error of Mean)</th>
<th>Aleatory Variability (Standard Deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log₁₀(area)</td>
<td>0.023</td>
<td>0.20</td>
</tr>
<tr>
<td>(M_w)</td>
<td>0.023</td>
<td>0.20</td>
</tr>
<tr>
<td>Log₁₀(stress drop)</td>
<td>0.034</td>
<td>0.30</td>
</tr>
<tr>
<td>Log₁₀(seismic moment)</td>
<td>0.034</td>
<td>0.30</td>
</tr>
</tbody>
</table>

1.9 COMPARISON OF SCALING RELATIONS FOR EARTHQUAKES IN STABLE CONTINENTAL REGIONS AND TECTONICALLY ACTIVE CONTINENTAL REGIONS

Table 3 lists the scaling relations for earthquakes in tectonically active crustal regions (TCR) in addition to those for SCR earthquakes. These include estimates made using slip models [Somerville et al. 1999]; using aftershock areas for magnitudes less than 7 [Hanks and Bakun 2002]; using various data [Leonard 2010], and using corner frequencies for continental collision boundary and continental transform fault earthquakes [Allmann and Shearer 2009]. The stress drops of these relations all lie in the range of 23 to 35 bars. As shown in Figure 8, these values are significantly lower than those of SCR earthquakes, whose current estimates range from 58 bars based on various methods [Leonard 2010] to 59.5 bars from corner frequencies of Intraplate earthquakes (about 150 km beyond plate boundaries; see Allman and Shearer [2009]) to 64.9 bars (from the average of three methods in this study).

To a first approximation, the results of this study and that of Somerville et al. [1997] indicate that the rupture areas of SCR earthquakes are about half those of TCR earthquakes, and their stress drops are about 2.8 times higher (Figure 9). Allmann and Shearer [2009] find less of a difference, presumably because their Intraplate category includes some earthquakes that we would assign to TCR instead of SCR. Their study indicates that the rupture areas of Intraplate earthquakes are about two-thirds those of TCR earthquakes, and their stress drops are about two times higher.
Figure 8 Comparison of relations between seismic moment and rupture area for earthquakes in stable continental regions (this study and Leonard [2010]) with relations for earthquakes in tectonically active continental regions [Somerville et al. 1999; Hanks and Bakun 2002] ($M_w < 7.0$).
Figure 9 Comparison of relations between seismic moment and rupture area for earthquakes in stable continental regions (this study) with the relation for earthquakes in tectonically active continental regions [Somerville et al. 1999].

Table 6 Comparison of area and stress drop scaling of earthquakes in stable continental regions and tectonically active continental regions.

<table>
<thead>
<tr>
<th>Author</th>
<th>Stress Drop</th>
<th>Area ratio SCR/TCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR/Intraplate</td>
<td>TCR</td>
<td>SCR/TCR</td>
</tr>
<tr>
<td>Somerville</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>Allmann and Shearer</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>
1.10 WIDTH SATURATION IN SCALING RELATIONS

Width scaling saturates in some manner as the seismogenic zone extends from the brittle zone into the ductile zones above and below it. This led Hanks and Bakun [2002] to propose a change in scaling of rupture area with seismic moment of TCR earthquakes from self-similar (constant stress drop) below magnitude 7 to increasing stress drop with increasing magnitude above magnitude 7. Below M_w 7.0, there is general agreement that the scaling is self-similar (Figure 10).

![Moment-Area Scaling Relations](image)

Figure 10 Comparison of the Somerville et al. [1999] relations between seismic moment and rupture area for earthquakes in tectonically active continental regions with the model of Hanks and Bakun [2002].
We have shown that SCR earthquakes have rupture dimensions that are about half those of TCR earthquakes. Furthermore, the TCR crust is also generally thicker than the SCR crust, and the shallow ductile zone is very thin or absent. This suggests that the saturation of width, if it occurs at all in SCR crust, is at magnitudes that are much larger than 7.0. In this report we have assumed that width saturation does not cause significant departure from self-similarity in the relation between seismic moment and rupture area in SCR earthquakes. This is consistent with the assumption of Leonard [2010] that all categories of earthquakes have self-similar magnitude – rupture area scaling.

1.11 GUIDANCE ON THE USE OF SCALING RELATIONS OF EARTHQUAKES IN STABLE CONTINENTAL REGIONS

The analysis of scaling relations of earthquakes in SCR in this study used three different approaches to estimating fault area that all agreed fairly well. Leonard [2010] did not document his data and used an undifferentiated mixture of different ways of measuring fault area, and so the relation that he developed is less soundly based than that developed in this study. However, the two relations are not significantly different; the average stress drop value of 64.9 bars obtained from the three methods in this study is 1.12 times the value of 58 bars for Leonard [2010]. This is less than our estimate of 1.165 for the standard error of the mean of the three methods used in this report. The Leonard [2010] relations have the advantage of having been derived in a self-consistent manner for a wide range of earthquake categories, including crustal earthquakes in tectonically active regions. Consequently, it is recommended that the Leonard [2010] scaling relations for SCR earthquakes be used for the NGA-East Project.
REFERENCES

Relevant and Related Published Research on this Topic

PEER REPORTS

PEER reports are available as a free PDF download from http://peer.berkeley.edu/publications/peer_reports_complete.html. Printed hard copies of PEER reports can be ordered directly from our printer by following the instructions at http://peer.berkeley.edu/publications/peer_reports.html. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall mail code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; Fax: (510) 665-1655; Email: peer_editor@berkeley.edu

PEER 2013/06 NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, and 5%-Damped Elastic Pseudo-Acceleration Response Spectra for Periods Ranging from 0.01 to 10 sec. Kenneth W. Campbell and Yousef Bozorgnia. May 2013.

PEER 2013/02 Hybrid Simulation of the Seismic Response of Squat Reinforced Concrete Shear Walls. Catherine A. Whyte and Bozidar Stojadinovic. May 2013.

Demand Fragility Surfaces for Bridges in Liquefied and Laterally Spreading Ground. Scott J. Brandenberg, Jian Zhang, Pirooz Kashighandi, Yili Huo, and Minxing Zhao. March 2011.

The following PEER reports are available by Internet only at http://peer.berkeley.edu/publications/peer_reports_complete.html.

PEER 2010/102 Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I_{MA}) Using the PEER–NGA Strong Motion Database. Kenneth W. Campbell and Yousif Bozorgnia. February 2010.

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.

PEER Core Institutions:
University of California, Berkeley (Lead Institution)
California Institute of Technology
Oregon State University
Stanford University
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, San Diego
University of Southern California
University of Washington

PEER reports can be ordered at http://peer.berkeley.edu/publications/peer_reports.html or by contacting

Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, mail code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437
Fax: 510-642-1655
Email: peer_editor@berkeley.edu

ISSN 1547-0587X