Historic Overview

Jack Moehle
University of California, Berkeley
Concrete Design, Codes, Events

- **1900**: Concrete building construction begins
- **1920**: First UBC
- **1940**: Blume, Newmark, Corning book published
- **1960**: San Fernando earthquake
- **1976**: UBC
- **1980**: Imperial County earthquake
- **2000**: FEMA 273
- **1920**: Northridge earthquake

(Note: The timeline and events are represented in a visual format with images and text labels for each year and event.)
Ductile detailing today
General Trends in Construction Practices

1900-1910
- earliest construction
- structural systems
 - frames
 - bearing walls
- concrete quality
- interior and exterior infills

1910-1920
- development of specialized systems
- flat slabs
 - drop panels and capitals
 - reinforcement arrangements
- joist and waffle slabs
 - steel pan or hollow clay tile void formers
- bearing walls
General Trends in Construction Practices

1920-1930
- Era of improved construction quality
- Improvements in gravity load design
- Seismic design still in its infancy

1930-1950
- Slight progress in concrete construction
General Trends in Construction Practices

1950-1960
- rapid change in systems, design methods, and construction practices
- more open interiors and lighter cladding
- some seismic development
- prestressed and precast concrete
- formal use of shear walls

1960-1970
- improvement seismic design, but lack of attention to concrete detailing requirements
- designated lateral load systems
- lightweight aggregate concrete

Beam-column frame

Slab-column frame
General Trends in Construction Practices

1970-1980
- 1971 San Fernando earthquake
- 1976 UBC ductile concrete provisions
- 1979 Imperial Valley earthquake

1980-present
- continued improvement and consolidation in design, code provisions, and construction
- gravity framing
- 1994 Northridge earthquake
- FEMA 273/356
Materials

Typical range of column concrete strengths

Compressive strength, ksi

- 1900-1919: 10
- 1920-1949: 8
- 1950-1969: 6
- 1970-present: 4

LWC
Materials

◆ Non-prestressed Reinforcement
 ■ Early proprietary systems
 ■ Plain bars, twisted bars
 ■ Deformed reinforcement
 ◆ prominent use starting in 1950’s

◆ Prestressed Reinforcement
 ■ prominent use starting in 1950’s
 ■ corrosion
 ■ lack of non-prestressed reinforcement
Materials - Reinforcement

<table>
<thead>
<tr>
<th>ASTM</th>
<th>Steel Type</th>
<th>Year Range</th>
<th>Minimum Yield (psi)</th>
<th>Structural Grade 33</th>
<th>Structural Grade 40</th>
<th>Intermediate Grade 50</th>
<th>Hard Grade 60</th>
<th>Hard Grade 70</th>
<th>Hard Grade 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15</td>
<td>Billet</td>
<td>1911-1966</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>Rail</td>
<td>1913-1966</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A61</td>
<td>Rail</td>
<td>1963-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A160</td>
<td>Axle</td>
<td>1936-1964</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A160</td>
<td>Axle</td>
<td>1965-1966</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A408</td>
<td>Billet</td>
<td>1957-1966</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A431</td>
<td>Billet</td>
<td>1959-1966</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>A432</td>
<td>Billet</td>
<td>1959-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A615</td>
<td>Billet</td>
<td>1968-1969</td>
<td>.</td>
<td></td>
<td>x</td>
<td>.</td>
<td>.</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM</th>
<th>Steel Type</th>
<th>Year Range</th>
<th>Minimum Tensile (psi)</th>
<th>55,000</th>
<th>70,000</th>
<th>80,000</th>
<th>90,000</th>
<th>80,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15</td>
<td>Billet</td>
<td>1911-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>Rail</td>
<td>1913-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A61</td>
<td>Rail</td>
<td>1963-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A160</td>
<td>Axle</td>
<td>1936-1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A160</td>
<td>Axle</td>
<td>1965-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A408</td>
<td>Billet</td>
<td>1957-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A431</td>
<td>Billet</td>
<td>1959-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A432</td>
<td>Billet</td>
<td>1959-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A615</td>
<td>Billet</td>
<td>1968-1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Transition to ductile detailing – 1960s onward

- 1961 - Blume, Newmark, Corning published
 - Many fresh concepts
 - confined concrete
 - flexural ductility concepts
 - plastic hinge length
 - capacity design for shear
 - Many aspects not considered
 - column/beam strength ratios
 - lap splices
 - joint design
ELEVATION OF TYPICAL COLUMN & GIRDER

S.T. = stirrup ties.
Transition to ductile detailing

- **Concrete buildings**
 - 1900
 - 1920
 - 1940
 - 1960
 - 1971 Blue Book
 - **1965 Blue Book**
 - highrise
 - ductile moment frame
 - wall confined boundaries
 - **1967 Blue Book**
 - commentary
 - **1968 Blue Book**
 - discontinuous wall provisions
 - **1976 UBC**
 - requirements for all buildings, not just highrise
 - gravity frames
 - LWC limits
 - **1980**
 - **2000**
Columns

3 OR 4 EXTRA TIE SETS SOMETIMES ADDED TOP & BOTTOM

TIE SETS @ 0.6 D TO 1.0 D

30 diam.

ALTERNATE INTERIOR TIE CONFIGURATIONS

Older

Today
Beam-column connections

Older

Today
Gravity columns
Walls

Older

Post-1976
Modern framing systems
Research today
Historic Overview

Jack Moehle
University of California, Berkeley