Purpose

- Recommended alternative to the prescriptive procedures for seismic design of buildings contained in *ASCE 7* and the *International Building Code (IBC)*.

- Intended for use by structural engineers and building officials engaged in the seismic design and review of individual tall buildings.
The new breed of tall buildings

- Designed without dual moment-resisting frames
- Justified using nonlinear analyses and “performance-based” procedures adapted from ASCE 41
The Source
The Approach

- Design per the building code with a few exceptions
 - Exceed height limits for structural systems
 - Use different R values
 - Neglect redundancy requirements

- Develop nonlinear analytical model
 - MCE (2%-50 year) shaking
 - Conservative values on acceptable parameters

- Rigorous Peer Review
Purpose

- Suggest improved design criteria that will ensure safe and usable tall buildings following future earthquakes based on:
 - Recent design experience
 - State-of-art research
Development Team

Research
- Jack P. Moehle
- Yousef Bozorgnia
- Jonathan Stewart
- Helmut Krawinkler

Practice
- Ronald Hamburger
- James Malley
- C.B. Crouse
- Farzad Naeim
- Ron Klemencic
Table of Contents

1. General
2. Performance Objectives
3. Design Process
4. Design Criteria
5. Seismic input
6. Conceptual design
7. Design Criteria Document
8. Service Level Evaluation
9. MCE Level Evaluation
10. Presentation of Results
11. Peer Review
Scope -

- Design of tall buildings:
 - Fundamental periods $>> 1$ second
 - Significant mass participation and response in higher modes
 - Slender aspect ratio
 - Large portion of drift due to flexural behavior as opposed to shear behavior
Performance Intent

- Similar to that historically contained in SEAOC Blue Book & ASCE-7 for Ordinary Occupancies
 - Small risk of collapse (perhaps 10%) in MCE shaking
 - Limited risk (50%) of loss of cladding in MCE shaking
 - Negligible risk to life for design shaking
 - Negligible risk of occupancy loss for Service level shaking

- Other Objectives
 - Possible
 - Need to modify these criteria on project-specific basis
Design Criteria

- Formal written criteria required
 - Building description
 - Codes and standards
 - Performance Objectives
 - Gravity Loading
 - Seismic Hazards
 - Wind Loading
 - Load Combinations
 - Materials
 - Analysis Procedures
 - Acceptance Criteria
Seismic Input

- Two Event Levels
 - Service level
 - Elastic response spectrum - required
 - Response history analysis - alternate

- Maximum Considered level
 - Nonlinear response history
Preliminary Design

- Configuration Issues
- Structural Performance Heirarchy (capacity-design)
- Wind
- Higher Mode Effects
- Diaphragms
- Nonparticipating elements
- Foundations
Service Level Design

- 50% - 30 years (43 year return)
- Elastic analysis – 2.5% damping
- Maximum DCRs 150% of expected strength
- Story drift limited to 0.005
Maximum Considered Level

- 3-D nonlinear response history analysis
- Ground motion input at structure base
- SSI Permitted

Desired

Typical

Optional
Maximum Considered Level

- Modeling must consider degradation effects
- Global acceptance criteria
 - Transient drift
 - <3 % mean
 - <4.5% any run
 - Residual drift
 - <0.01 mean
 - <0.015 any run
Maximum Considered Level

- Component Acceptance
- Ductile actions
 - Response within validity limits of hysteretic model
- Brittle actions
 - Inconsequential failure
 \[\bar{Q} \leq Q_{n,e} \]
 - Significant consequence
 \[Q_u \leq \phi Q_{n,e} \]
 \[Q_u = 1.5 \bar{Q}; \quad \bar{Q} + 1.3\sigma \geq 1.2 \bar{Q} \]
Peer Review

- Qualifications
- Responsibilities
- Documents to be reviewed
- Stages of Review
- Resolution of concerns
Summary

- Successful multi-disciplinary effort
 - Geotechnical engineers & Seismologists
 - Structural engineers
 - Building Officials
- Project has had positive impact on the design of real structures
- Has also affected design practice internationally