Should Design Spectra in Building Codes Be Specified from the Maximum Component or the Average Horizontal?

Jonathan P. Stewart

University of California, Los Angeles

LATBSDC Meeting

May 7, 2010
Outline

• Problem definition
• Background on the code change
• Directionality in structural response
• Logic behind bias concern
• Technical summary
• Where to go from here?
• References
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
 - Basis for most pre-NGA GMPEs
Problem Definition

• Three-component ground motions
• $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
• GMRotI50
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
- GMRotI50
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
- GMRot150
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
- $GMRotI50$
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
- GMRotI50
 - GMRotD50 = Median(GM_i)
 - Find single rotation angle with GM closest to GMRotD50
- Basis for NGA GMPEs
- Values similar to GM

Boore et al., 2006
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
- GMRotI50
- Max Direction (MD)
 - Used in 2009 code
 - Median converted from GMRotI50
 - Sigma (σ) larger than for GM or GMRotI50

Huang et al., 2008, 2009
Problem Definition

- Three-component ground motions
- $\ln(GM) = \text{avg}(\ln H_1, \ln H_2)$
- GMRotI50
- Max Direction (MD)
- Arbitrary Component
 - Larger σ than for GM or GMRotI50

Huang et al., 2008, 2009
Problem Definition

This presentation:
• Was the change to MD appropriate?
• Could it bias the hazard levels intended for application in design?
Background on the Code Change

• Change to MD is part of broad revisions
 – Update to NGA GMPEs
 – Adoption of risk targeted ground motions
 – Change to MD from GM

• Full disclosure
 – I opposed the change because of MD issue
 – Co-authored EERI letter justifying institutional “No” vote to NEHRP Provisions Update Comm.
Directionality in Structural Response

• Azimuth-independent response
 – Flagpole

www.flagpolesetc.com
Directionality in Structural Response

- Azimuth-independent
 - Flagpole
 - Buildings with similar str/stiffness in both directions -- ?

Christovasilis et al., 2009
Directionality in Structural Response

- Azimuth-independent
 - Flagpole
 - Buildings with similar str/stiffness in both directions -- ?

Christovasilis et al., 2009
Directionality in Structural Response

- Azimuth-independent
 - Flagpole
 - Buildings with similar str/stiffness in both directions -- ?
 - Can conceptualize MD controlling collapse, but...
 - Research has not demonstrated this
Directionality in Structural Response

- Azimuth-independent
- Azimuth-dependent response
Directionality in Structural Response

- Azimuth-independent
- Azimuth-dependent
Directionality in Structural Response

- Azimuth-independent
- Azimuth-dependent
 - Both directions contribute, but...
 - Out of phase
 - Modal combination
 (Sec. 12.9.3 ASCE7)

Transv: $\tilde{T} = 0.74$ sec
Long.: $\tilde{T} = 1.25$ sec

Stewart et al., 1999
Directionality in Structural Response

- Azimuth-independent
- Azimuth-dependent
- Azimuth-specific response requires directional ground motions
Logic Behind Bias Concern

• MD arbitrary for $R_{rup} > 3-5$ km

Watson-Lamprey et al., 2007
Logic Behind Bias Concern

• MD arbitrary for $R_{rup} > 3$-5 km

• 2D analysis: best to use arb. comp or GM (same μ, different σ)

$Baker$ and $Cornell$, 2006
$Watson-Lamprey$ et al., 2007
Logic Behind Bias Concern

- MD arbitrary for $R_{rup} > 3$-5 km
- 2D analysis: best to use arb. comp or GM (same μ, different σ)
- USGS hazard maps use GMRotI50 (\sim GM)
Logic Behind Bias Concern

- MD arbitrary for $R_{rup} > 3\text{-}5 \text{ km}$
- 2D analysis: best to use arb. comp or GM (same μ, different σ)
- USGS hazard maps use GMRotI50 (\sim GM)
Logic Behind Bias Concern

- MD arbitrary for $R_{rup} > 3$-5 km
- 2D analysis: best to use arb. comp or GM (same μ, different σ)
- USGS hazard maps use GMRotI50 (\sim GM)
- If MD, using lower APE (return period \uparrow)
Change of M

- Beyer and Bommer (2006): MD/GM ~ 1.2-1.3
Change of Median

- Beyer and Bommer (2006): MD/GM ~ 1.2-1.3
- Huang et al. (2008): 1.2-1.5

Huang et al., 2008
Effect of NGA on USGS Maps
NEHRP Revision Process

- Procedure
 - Technical Subcommittee drafts proposal
 - PUC feedback
 - Revision in Subcommittee
 - PUC approval
 - Member balloting
 - Final edits and approval
NEHRP Revision Process

• Procedure
• “Conservative” process
NEHRPRevisionProcess

- Procedure
- “Conservative” process
- Peculiarities in this case:
 - No technical basis for revisions
 - PUC input ignored
 - Member ballot objections ignored
NEHRP Revision Process

- Procedure
- “Conservative” process
- Peculiarities in this case
- The unwritten last bullet...
Technical Summary

- MD motions can be rationalized for structures with equal stiff./str. in both directions
 - Research needed to justify
 - Rarely the case in real buildings
Technical Summary

• MD motions can be rationalized for structures with equal stiff./str. in both directions

• MD motions should bias the APE used in design for structures with azimuth-dependent props.
 – If motivation was to avoid decreased motions from NGA, better to phase in adoption of NGA
 – Bias concern is widely held and was presented to NEHRP PUC
Technical Summary

• MD motions can be rationalized for structures with equal stiff./str. in both directions
• MD motions should bias the APE used in design for structures with azimuth-dependent props.
• USGS maps do not account for additional uncertainty of MD
 – Will lead to additional future increases of design spectra
Where to go from here?

- NEHRP Provisions and Commentary approved
- ASCE-7 updated approved
- IBC re-write in process
- IBC does not become “code” until adopted
 - Adoption can occur with revision
- Inform leaders in design profession; seek input
- Document concerns
- Bring concerns to regulatory agencies
References

Watson-Lamprey, J and DM Boore (2007). “Beyond Sa\textsubscript{GMRot}: Conversion to Sa\textsubscript{Arb,} Sa\textsubscript{SN,} and Sa\textsubscript{MaxRot,}” Bull Seism Soc Am, 97 (5), 1511-1524.