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EXECUTIVE SUMMARY 

In a previous study, we investigated the effect of interaction between interconnected elec-

trical substation equipment subjected to ground motions.  Each equipment item was mod-

eled as a system with distributed mass and stiffness properties and, through the use of a 

displacement shape function, was characterized by a single degree of freedom.  Two 

kinds of connecting elements were considered:  One was a linear spring-dashpot-mass 

element, representing a rigid bus conductor, and another was an extensible cable, repre-

senting a flexible conductor, in which the flexural rigidity and inertia effects were ne-

glected.  It was shown that the interaction effect resulting from the interconnection could 

have a significant influence on the equipment responses.  Amplification factors as high as 

6 to 8 in the response of the higher frequency equipment item, relative to its stand-alone 

response, were estimated.  In the cable-connected system, the response of the lower fre-

quency equipment item may also be amplified but to a lesser extent. 

The present study extends the results of the previous investigation in two important 

directions.  First, it extends the investigation of the rigid bus conductor by accounting for 

the nonlinear behavior of the flexible strap connector (FSC), which is usually installed at 

one end of the bus conductor to allow for thermal expansion.  Second, it extends the in-

vestigation of the flexible (cable) conductor by accounting for its flexural rigidity, inertia 

and damping characteristics.  Both problems are highly nonlinear and advanced finite 

element models are used to perform the analyses.  

To idealize the FSC, an elasto-plastic, large deformation finite element model is used 

with more than 500 elements.  The material properties are determined from the results of 

monotonic uniaxial tests of the material coupons performed at the University of Califor-

nia at San Diego (UCSD).  More accurate characterization of the material properties is 

possible if cyclic test data of the material coupons are available.  The finite element 

model of the FSC is used to compute force-elongation hysteresis loops under a prescribed 

cyclic loading.  These predictions show reasonable agreement with the experimental re-

sults obtained at UCSD.  Closer agreement can be achieved by using a refined finite ele-

ment model that accounts for contact and friction between the bars and straps of the FSC.  
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With such refinement, the finite element model can be used to predict the behavior of 

other FSC configurations, thus avoiding costly tests. 

For dynamic analysis of the combined system, we develop a mathematical model of 

the hysteretic behavior of the FSC.  For this purpose, we use a modified version of the 

well-known Bouc-Wen model.  Using this model, time history analysis of a combined 

system, consisting of two equipment items connected by a rigid bus with a FSC, is carried 

out for two recorded ground motions.  The effect of interaction on each equipment item is 

measured by computing the ratio of its response in the connected system to its stand-alone 

response.  Separate analyses are performed to show the influences of the flexibility and 

energy dissipation of the FSC on the interaction effect.  The results show that the flexibil-

ity and energy dissipation characteristics of the FSC significantly reduce the adverse ef-

fect of interaction on the higher frequency equipment item.  These results appear to be in 

agreement with test results obtained at UCSD.   The analytical approach developed can be 

used with confidence in the future to investigate the effect of interaction on equipment 

items connected by conductors that have grossly nonlinear behavior. 

For the flexible (cable) conductor, a finite element model using frame elements and a 

Lagrangian formulation is used that accounts for large displacements.  First, comparisons 

are made with previous experimental results for cables subjected to out-of-phase support 

motions.  Good qualitative agreement with experimental results are obtained, which show 

very large amplification of the cable force due to the flexural rigidity and inertia effects.  

Parametric studies showing the influences of the flexural rigidity and damping of the ca-

ble are carried out.  Next, the finite element model is used to carry out time history analy-

ses of a combined system, consisting of two equipment items and a connecting cable, for 

five different recorded ground motions.  Separate analyses are performed to show the in-

fluences of the cable flexural rigidity, inertia and damping.  The effect of interaction on 

each equipment item is measured in terms of the ratio of the equipment response in the 

connected system to its stand-alone response.  These response ratios are plotted as func-

tions of an interaction parameter introduced in our previous study.   The results show that, 

for certain ground motions and equipment/cable configurations, the cable flexural rigidity 

and inertia may further amplify the adverse effect of interaction.  Based on these results, a 
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recommendation for the minimum cable length to avoid the adverse interaction effect is 

developed.   

Conductor cables used in the power industry are usually made of braided aluminum 

strands of wire.  Under dynamic excitation, the strands may slip against each other under 

friction forces.  The present study accounts for this effect in an approximate manner by 

using an equivalent moment of inertia and a judgmentally assigned damping value.  For a 

more accurate prediction of the cable response, it is necessary to develop a refined model 

that explicitly accounts for the slippage and friction between the cable strands.  Until veri-

fied by such refined analyses, the results and recommendations presented in this study 

should be regarded as preliminary in nature. 
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Chapter 1 Introduction 

1.1  Introduction 

In a previous report (Der Kiureghian et al., 1999), we studied the effects of interaction 

between interconnected electrical substation equipment subjected to ground motions.  In-

vestigated were equipment items connected by a linear spring-dashpot-mass element, rep-

resenting a rigid bus conductor, and by an extensible cable representing a flexible conduc-

tor, in which the flexural rigidity and inertia effects of the cable were neglected.  It was 

shown that the interaction effect resulting from the interconnection could have a signifi-

cant influence on the equipment response.  Amplification factors as high as 6 to 8 in the 

response of the higher-frequency equipment item, relative to its stand-alone response, 

were estimated.  In cable-connected systems, the response of the lower-frequency equip-

ment may also be amplified but normally by a much lesser extent.   

The purpose of the present study is to further investigate the effects of seismic inter-

action between interconnected equipment items considering two specific problems:  (a) 

the nonlinear behavior of the spring used for thermal expansion with rigid bus connectors 

and comparison with experimental results conducted at the University of California, San 

Diego, and (b) the influence of the flexural rigidity and inertia effect of the flexible (ca-

ble) conductor on the interaction effect.  

The response of the rigid bus with the spring connector under severe earthquake 

loading is strongly inelastic with large deformations.  Hence, it requires careful modeling 

and analysis to accurately reflect the real behavior.  We have used an elasto-plastic, large 

deformation finite element model to predict the hysteretic behavior of the conductor con-

sisting of a rigid bus and a flexible strap connector, which was tested at UCSD.  The fi-



 2 

nite element code FEAP, developed by R. L. Taylor (1998), is used for this purpose.  This 

study shows that the behavior of such systems can be predicted by finite element analysis 

with reasonable accuracy.  For the dynamic analysis of the combined equipment conduc-

tor system, a modified version of the Bouc-Wen hysteretic model, which is fitted to the 

experimentally obtained hysteretic loops, is utilized.   The results show that the flexibility 

and energy dissipation characteristics of the flexible strap conductor significantly reduce 

the adverse effect of interaction on the high-frequency equipment item, which is present 

when a rigid bus without the flexible strap connector is used.  Quantitative estimates of 

the interaction effect are found to be in agreement with experimental results obtained at 

UCSD. 

The cable dynamics problem is highly nonlinear and because of the special construc-

tion of the conductor cable as braided strands of wire involves significant uncertainties as 

to the effective cable properties, such as the flexural rigidity, damping and initial configu-

ration.  For this analysis, a finite element model with a Lagrangian strain formulation is 

utilized.  Comparisons are made with previous experimental results for cables subjected 

to harmonic support excitations.  While good qualitative agreement between the experi-

mental and analytical results are achieved, questions regarding the effective cable stiff-

ness and damping remain unanswered.  Time history analyses of the cable-connected 

equipment items for five different recorded motions are carried out, separately accounting 

for the contributions of cable flexural rigidity, inertia and damping.   The results show 

that, for certain ground motions and equipment/cable configurations, the cable flexural 

rigidity and inertia tend to further amplify the adverse interaction effect on the equipment 

items in comparison to what we had estimated without accounting for these effects.  

Based on this limited study, a preliminary recommendation for the minimum cable length 

to avoid the adverse interaction effect is formulated.  Because of the importance of this 

problem, the scope of this part of the study was substantially broadened to include com-

parisons with experimental results that were discovered during the course of the study.   
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1.2  Organization of the Report 

Following this introductory chapter, in Chapter 2 we present the analysis of the rigid bus 

with the flexible strap connector and the effect of interaction between two equipment 

items connected by such a conductor.  Chapter 3 deals with the modeling and response 

analysis of cables and cable-connected equipment items.  Chapter 4 summarizes the main 

results of the study and describes areas needing further investigation. 



Chapter 2 Modeling and Analysis of  
Systems Connected by a Rigid Bus 
with a Flexible Strap Connector  

2.1  Introduction 

A rigid bus typically consists of an aluminum pipe connected between two electrical 

equipment items for conduction.  To accommodate thermal expansion, a U-shaped spring 

element made of copper bars is normally inserted at one end of the rigid bus between the 

pipe and the attachment point on one of the equipment items.  In the case of a severe 

earthquake, the relative displacement demand between the two equipment items in gen-

eral will cause large inelastic deformation of the spring connector.  In the first section of 

this chapter, we use an elasto-plastic model of the spring material together with a large 

deformation finite element analysis to predict the hysteretic response of the spring ele-

ment under cyclic loading.  Data from monotonic uni-axial testing of the material cou-

pons is used to determine the material property constants.  The predicted hysteresis loop 

is compared with experimental results obtained at the University of California, San Diego 

(UCSD, Filiatrault et al., 1999).  A fairly good agreement between the two sets of results 

is obtained.  However, in order to achieve more accuracy in the prediction, it is necessary 

to include in the finite element model the effects of contact and friction between bars, 

which give additional effective stiffness to the spring.  Furthermore, it is necessary to 

have unloading data of the material coupons in order to more accurately determine the 

constitutive properties.   

For dynamic analysis of the equipment items connected by the rigid bus and spring 

element, it is more convenient to employ an analytical model of the hysteretic behavior 
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for computational simplicity.  To this end, we employ the well-known Bouc-Wen model 

(Wang and Wen, 1998), which we modify to fit the experimental results obtained at 

UCSD.  This model, thereby, includes the effects of both material and geometric nonlin-

earities and the effects of both contact and friction between bars. The fitted model is sub-

sequently used in a step-by-step dynamic analysis of the connected equipment system to 

determine the effect of interaction. 

 2.2  Model of the Rigid Bus with Flexible Strap Connector 

Figure 2.1 shows a sketch of a typical rigid bus (RB) with a flexible strap connector 

(FSC).  The RB consists of an aluminum pipe segment.  At one end, it is rigidly attached 

to one of the equipment items.  At the other end, the RB is attached to the FSC, which in 

turn is rigidly attached to the other equipment item.  The FSC shown in Figure 2.2 is con-

structed from three straps, where each strap consists of two copper bars in the form of an 

inverted U.  The dimensions shown in Figure 2.2 are consistent with the PG&E specifica-

tion for FSC No. 30-2022 (Pacific Gas & Electric Company).  Figures 2.3 and 2.4 show 

sketches of another typical RB-FSC and FSC, respectively. The dimensions shown in 

Figure 2.4 are consistent with the PG&E specification for FSC No. 30-2021. 

Three coupons from a sample FSC were tested at UCSD under monotonic uniaxial 

tension to determine the material properties.  Figure 2.5 shows the test results as dotted 

lines.  Two of the curves exhibit small amplitude oscillations, which are presumed to be 

due to measurement noise.  For the finite element analysis of the RB-FSC using the finite 

element analysis program FEAP (Taylor 1998), we employ an 1-dimensional elasto-

plastic material model with hardening.  In this model an additive split of the strain in the 

form  

plel ε+ε=ε  (2.1) 

is assumed, where ε  is the total strain, elε  is the elastic strain and plε  is the plastic 

strain.  The uniaxial constitutive relation is given by the following set of equations:  The 

elastic stress-strain relation of the material is 

)( plE ε−ε=σ  (2.2) 
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where σ  is the applied stress and E  is the Young’s modulus.  The yield condition is de-

fined as  

0)(ˆ),ˆ,( ≤ασ−−σ=ασ Yqqf  (2.3) 

where q̂  is the back stress, α  is the internal isotropic-hardening variable, and )(ασY  is 

the flow stress defined by the linear and saturated form of isotropic hardening, given by  

( ) α+βα−σ−σ+σ=ασ ∞∞ isoY Hexp)()( 0  (2.4) 

where plε=α  is assumed, ∞σ  is the stress at large strain, 0σ  is the initial yield stress, β  

is a delay constant, and isoH  is the modulus of linear isotropic hardening.  The evolution 

of the back stress is defined by a linear kinematic hardening rule 

pl
kinHq ε= ��̂  (2.5) 

The associative flow rule gives the plastic strain rate in terms of the derivative of the 

yield function f , as 

  )ˆsgn( q
fpl −σγ=
σ∂

∂γ=ε�  (2.6) 

where γ  is the absolute value of the flow rate.  Since σ  must satisfy the yield condition 

given by (2.3) and γ  must be non-negative, we have the conditions 

 0≥γ  and  0≤f  (2.7) 

If the absolute value of the applied stress, σ , is less than the flow stress Yσ , no change 

in plε  takes place, i.e., 0=γ  if 0<f .  On the other hand, a change in plε  can take place 

only if 0=f , i.e., 0>γ  only if 0=f .  Therefore, the condition  

0=γ f  (2.8) 

always holds.  The conditions given by (2.7) and (2.8) are known as the Kuhn-Tucker 

conditions.  The additional condition  

0=γ f�   when  0=f  (2.9) 

is necessary because, when 0=f , we specify 0>γ  only if 0=f� , and set 0=γ  if 

0<f� .  This condition is referred to as the consistency condition and is used, together 
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with the Kuhn-Tucker conditions, to determine the actual value of 0≥γ  at any given 

time.  A more detailed description of this plastic model can be found in Simo and Hughes 

(1998). 

The uniaxial tensile test results of the FSC coupons supplied by UCSD did not con-

tain any unloading data.  Therefore, it is difficult to determine both isotropic and kine-

matic hardening moduli from this data.  If we simulate the tensile test by a finite element 

analysis using one frame element with a judgmentally chosen elasto-plastic hardening 

model having parameters ksi000,14=E , ksi180 =σ ,  ksi5.27=σ∞ , 1000=β , 

0=isoH  and 100/EHkin = , we obtain the solid line shown in Figure 2.5, which closely 

matches the actual data.  We apply this model below to analyze the RB-FSC by the finite 

element method. 

Figures 2.6a and 2.6b show schematics of the finite element layout of an RB-FSC, 

which was tested at UCSD.  The RB is a 4in-diameter SPS aluminum pipe of 10ft length, 

having an inner radius of 2.013in. and an outer radius of 2.250in.  The main body of the 

RB is modeled with 10 elastic frame elements, whereas connections A and B shown in 

Figure 2.2 are modeled with 1 and 6 elastic frame elements, respectively.  The Young’s 

modulus of the RB is assumed to be 000,10=E ksi.  The selected FSC is consistent with 

the PG&E specification No. 30-2022.  It is made of three parallel straps, each consisting 

of a pair of copper bars, and has the material properties mentioned earlier.  Each bar of 

the FSC is modeled by 80 elasto-plastic frame elements, each element consisting of 10 

layers to properly account for the plastic behavior through the thickness of the bar.  In 

addition, 20 elastic frame elements are used to model the spacers between the bars at the 

ends and 2 elastic frame elements are used to model the spacers between the RB and the 

FSC.  Thus, in total, the RB-FSC is modeled by 519 frame elements of which 480 are 

elasto-plastic. 

Figures 2.7a and 2.7b show schematics of the finite element layout of a second RB-

FSC, which was also tested at UCSD.  The RB is the same as described above, whereas 

the FSC is consistent with the PG&E specification No. 30-2021.  A finite element mesh 

similar to that described in the previous paragraph was used to model this RB-FSC. 
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For the finite element analysis, one end of the RB-FSC is assumed to be fixed, while 

the other end is subjected to the horizontal displacement time history utilized in the 

UCSD tests, which is shown in Figure 2.8.  The finite element program FEAP by R. L. 

Taylor (1998), which employs a Lagrangian strain formulation to account for large de-

formations, is used to predict the cyclic response of the RB with the 30-2022 FSC.  The 

computed force-elongation relationship is plotted in Figure 2.9a.  The agreement between 

the two hysteresis loops is fairly good.  However, the experimental curves show apparent 

hardening for large elongation or contraction values, which are not well predicted by the 

finite element model. This might be due to the wrong choice of the hardening moduli 

and/or due to the effect of contact and friction between bars and straps, which are not ac-

counted for in the finite element model. In the test, significant friction could occur be-

tween bars in a strap, and contact between straps would occur for extreme states of de-

formation. The contact and friction between the bars and straps would provide additional 

effective stiffness to the RB-FSC.  To account for this effect in an approximate manner, 

we can use a larger value of the kinematic hardening modulus, even though we lose accu-

racy in matching the uniaxial test results.  After a number of trials, we found the value 

20/kin EH =  of the kinematic hardening coefficient produce results that best fit the test 

hysteresis loops.  The result, shown in Figure 2.9b, demonstrates much closer agreement 

with the test results.  The extreme deformed shapes of the RB-FSC obtained from this 

analysis are shown in Figures 2.6c and 2.6d.   

If the deviations between the computed and test results in Figure 2.9a were truly due 

to material effects, then this revised value of the hardening parameter should produce 

good results for other FSC models as well.  However, as we will shortly see, this is not 

the case.  That is, the deviations seen in Figure 2.9a are more due to contact and friction 

between the bars and straps than due to material characterization.  

Next, we use the chosen material parameter values to conduct finite element analysis 

of the RB with the 30-2021 FSC, which has an asymmetric shape as shown in Figure 2.7.  

The computed hysteresis loops are compared with the UCSD test results in Figure 2.10 

and the extreme deformed shapes are shown in Figures 2.7c and 2.7d.  It is seen that there 

is a more significant difference between the computed and test results.  This difference is 
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due to a more significant effect of contact and friction between bars and straps for this 

asymmetric configuration of the FSC.  It is clear that the material characterization alone 

cannot account for this effective added hardening across different RB-FSC systems.    

The above comparisons show that, while the finite element predictions of the cyclic 

behavior of the RB-FSC are in reasonable agreement with test results, for enhanced accu-

racy it is necessary to develop a finite element model that accounts for the effect of con-

tact and friction between the bars and straps of the FSC.  Furthermore, it is necessary to 

perform cyclic tests of the FSC coupons so that the hardening moduli can be estimated 

properly.  By achieving these, the behavior of the RB-FSC under large deformations can 

be well predicted by a finite element model that accounts for the elasto-plastic material 

behavior, the effect of contact and friction between bars, and large deformations.  Such 

an analysis can be performed in the future in lieu of costly testing to determine the behav-

ior of other RB-FSC configurations.  

2.3  Analytical Model of the RB-FSC 

For the analysis of the RB-FSC-connected equipment system, the above finite element 

model is not convenient, as it would involve a very large nonlinear dynamic model.  In 

this section, we use an analytical model to fit the hysteresis loops of the RB-FSC, which 

is then used in the subsequent section to carry out dynamic analysis of the combined sys-

tem.  This approach has the advantage of computational simplicity.  Furthermore, it al-

lows for a random vibration analysis of the combined system, which we intend to carry 

out as a follow-up to this study.  Such an approach would properly account for the vari-

ability that is present in the earthquake excitation. 

To analytically describe the behavior of the RB-FSC, we employ the well-known 

hysteresis model originally proposed by Bouc (1967) and later modified by Wen (1976).  

This model has been generalized by Baber and Wen (1979) for degrading systems and by 

Wang and Wen (1998) to account for asymmetric yielding behavior.  Since the hysteresis 

loops of the RB-FSC element exhibit asymmetric behavior due to geometric nonlinearity, 

we employ the form of the model suggested by Wang and Wen (1998).  According to this 

model, the nonlinear force-elongation relationship for the RB-FSC element is defined by  
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kzukzuq )1(),( α−+∆α=∆  (2.10) 

where ),( zuq ∆  is the force acting on the element, u∆  is the resulting elongation, k  is 

the initial elastic stiffness, α  is the post-to-pre-yielding stiffness ratio, and z  is the hys-

teretic part of the elongation satisfying the differential equation 

{ }[ ]))sgn()(sgn()sgn( uzzuzA
u

z
n

��
�

� ∆+φ+γ+∆βν−
η
∆=  (2.11) 

In the preceding equation, A , β , γ , and n  are parameters that control the shape of hys-

teresis loop, η  is a parameter that controls the pre-yielding stiffness, ν  is a parameter 

that controls the ultimate strength, and φ  is a parameter that accounts for the asymmetric 

yielding behavior.  Also, 1)sgn( =x  for 0>x , 1)sgn( −=x  for 0<x , and 0)sgn( =x  for 

0=x . 

Baber and Wen defined A , η  and ν  as functions of the total dissipated energy, Tε , 

TAT AA εδ−=ε 0)( ,  TT εδ−η=εη η0)( ,  TT εδ−ν=εν ν0)(  (2.12) 

∫ ∆α−=ε
t

T dtuzk
0

)1( �  (2.13) 

In the preceding equations, 0A , 0η  and 0ν  are initial values of A , η  and ν , respec-

tively, and Aδ , ηδ  and νδ  are parameters that control the rate of degradation.  This 

model of deterioration is capable of accounting for the duration and severity of the re-

sponse.  The quasi-static tests conducted at UCSD incorporate geometric and material 

nonlinearities and contact and friction between bars.  It is difficult to derive equations 

that simulate the behavior of the RB-FSC and account for these effects.  Motivated by the 

Baber-Wen approach, we fit the test behavior of the RB-FSC by letting the parameters 

A , η  and ν  be functions of the response.  Specifically, these parameters are considered 

to be functions of the elongation/contraction u∆  and its rate u�∆  to account for the de-

pendency of the nonlinearity on the response and the state of loading.  For this purpose, 

we introduce the following limiting response values: 

E
tu∆  marker for the limit of the nearly elastic elongation zone 

E
cu∆   marker for the limit of the nearly elastic contraction zone 
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m
tu∆  maximum elongation experienced during the test  

m
cu∆   maximum contraction experienced during the test 

Associated with the nearly elastic zone, we define the parameter values EA , Eη  and 

Eν .  Associated with u
tu∆  ( u

cu∆ ), we define the parameter values +
tA , +ηt , +νt  −

tA , −ηt  

and −νt  ( +
cA , +ηc , +νc , −

cA , −ηc  and −νc ), where a superposed + denotes a “loading” state, 

i.e., 0≥∆u� , and a superposed − denotes an “unloading” state, i.e., 0<∆u� .  Furthermore, 

we define the set of parameters +
0A , +η0 , +ν0 , −

0A , −η0  and −ν0  associated with the state 

0=∆u . 

Initially, the parameters A , η  and ν  are set to the values EA , Eη  and Eν .  These 

values are kept fixed until a reversal of loading occurs outside the nearly elastic zone.   

From that point on, the parameters A , η  and ν are made functions of u∆ .  For a given 

u∆ , their values are obtained by interpolating between the extreme values associated 

with the states 0=∆u  and either m
tu∆  or m

cu∆ , depending on whether the RB-FSC is 

elongated or compressed.  The extreme parameter values selected are those with super-

script + if 0≥∆u�  and those with superscript − if 0<∆u� .  A simple parabolic interpola-

tion between the two extreme parameter values is used to determine the current value of 

each parameter.  For example, subsequent to a point of load reversal outside the nearly 

elastic zone when the element is in contraction and 0<∆u� , we obtain the value of pa-

rameter A  for a given u∆  from 

−−− +





∆
∆−=∆ 0

2

0 )()( A
u

u
AAuA m

c
c  (2.14) 

If a reversal of loading occurs inside the nearly elastic zone, the parameter values are 

again set to the constant values EA , Eη  and Eν . 

Based on the extreme displacements imposed on the test RB-FSC, we selected 

8=∆ m
tu in. and 6−=∆ m

cu in.  Furthermore, observing the range of nearly elastic behav-

ior, the limiting values 2=∆ E
tu in. and 2−=∆ E

cu in. were chosen.  Of the parameters of 
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the Bouc-Wen model, 200=k lbs/in., =n 2, 1.0=α , 507.0=β , 485.0=γ , 42.0=EA , 

34.0=ηE  and 08.0=νE in.-2 were selected by trial-and-error fitting of the overall fea-

tures of the hysteresis loops obtained in the test.  For the parameter φ , which controls the 

asymmetric yielding behavior, the initial value 1.0=φ  is selected.  This value is used un-

til a reversal of loading outside the nearly elastic zone is encountered, in which case the 

parameter is set to 1.0−=φ .  This value remains in effect until a reversal of loading 

within the nearly elastic zone occurs, in which case the parameter is reset to 1.0=φ .  

This modification is necessary to avoid vertical shifting of the narrow hysteresis loop in 

the nearly elastic zone.  This leaves us 18 parameters associated with the three extreme 

values of the parameter set A , η  and ν .  These are obtained by minimizing the cumula-

tive squared error between the experimental values and the predictions by the Bouc-Wen 

model together with trial-and-error to search for a better local minimum.  The resulting 

optimal parameter values were: 

27.0=+
0A , 42.00 =−A , 47.0=+

tA , 42.0=−
tA , 42.0=+

cA , 42.0=−
cA  

27.00 =η+ , 34.00 =η− , 30.0=η+
t , 14.0=η−

t , 34.0=η+
c , 34.0=η−

c  

06.00 =ν+ in.-2, 08.00 =ν− in.-2, 04.0=ν+
t in.-2, 04.0=ν−

t in.-2, 04.0=ν+
c in.-2, 080.c =− in.-2   

where A  and η  are dimensionless and ν  has the unit of in.-2 (for 2=n ). 

Figure 2.11 shows a comparison of the hysteresis loops obtained in the UCSD ex-

periments together with the hysteresis loops obtained from the modified Bouc-Wen 

model described above.  It is evident that the model predictions are in close agreement 

with the test results.  It is particularly noteworthy that the model closely follows the 

asymmetric features of the actual hysteresis loops.  This model is used in the following 

section to investigate the interaction between two equipment items attached by a RB-

FSC. 
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2.4  The Combined Equipment RB-FSC System 

In this section, we develop the equations for the system shown in Figure 2.12, which con-

sists of two equipment items connected by a RB-FSC represented by the modified Bouc-

Wen model described above.  In the subsequent section, we carry out time history analy-

ses to compute the responses of the stand-alone and connected systems to selected earth-

quake ground motions in order to determine the effect of the interaction on the equipment 

items. 

As in our previous study (Der Kiureghian et al., 1999), we employ a single-degree-

of-freedom model for each equipment item that is characterized by distributed mass and 

stiffness properties and a single displacement shape function. The displacement of 

equipment i  is written in the form )()(),( tzytyu iii ψ= , where y  is the spatial coordi-

nate, )(yiψ  is the displacement shape function, and )(tzi  is the generalized coordinate 

that defines the variations of the displacement shape in time.  For an equipment item 

modeled as a beam of length iL , the equivalent mass and stiffness are respectively given 

by 

[ ] dyyym
iL

iii

2

0
)()(∫ ψρ= , (2.15) 

[ ] dyyyEIk
iL

iii

2

0
)()(∫ ψ ′′=  (2.16) 

and the effective mass producing the external inertia force is given by 

dyyyyyl
iL

iiiiii ∫ ψρψ=
0

)()()()(  (2.17) 

In the above expressions, )( yiρ  is the mass per unit length of the equipment, )(yEIi  is 

the flexural stiffness, and iy  is the coordinate at the point where the connecting element 

is attached to the equipment.  For reasons described in the previous study, it is advanta-

geous to scale the shape functions such that 1)( =ψ ii y .   Furthermore, it is convenient to 

introduce the abbreviated notation ),()( tyutu iii =  and )( iii yll = .   The equations of mo-

tion of the connected system expressed in terms of the displacements at the attachment 

points when it is subjected to base acceleration gx��  can now be written as   
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( ) gxz ����� LuRuCuM −=++ ,  (2.18) 

where  
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(2.19b) 

and the modified Bouc-Wen model is defined by 

kzukzuq )1(),( α−+∆α=∆  

{ }[ ]))sgn()(sgn()sgn( uzzuzA
u

z
n

��
�

� ∆+φ+γ+∆βν−
η
∆=  

(2.20a) 

(2.20b) 

where )()( 12 tutuu −=∆  is the relative displacement between the two equipment items, 

which is equivalent to the elongation/contraction of the RB-FSC.  In (2.18), we have 

added a viscous damping matrix similar to that described in our previous study (see 

Equation (2.10) in Chapter 2 of Der Kiureghian et al., 1999).  Elements 1c  and 2c  of the 

damping matrix  in (2.19a) represent the damping coefficients of the two equipment 

items, whereas 0c  represents the viscous damping of the RB-FSC.  In the following 

analysis, we have used 00 =c , since the amount of energy dissipated by viscous damping 

would be negligible in comparison to that dissipated by the inelastic action in the FSC. 

For the numerical results reported in the following section, the above system of 

equations were solved by a 4th order Runge-Kutta algorithm using automatically varying 

time steps with a relative tolerance of 610− . 

2.5  Investigation of the Interaction Effect in Example Systems 

In this section, we examine the effect of interaction between two equipment items con-

nected by a RB-FSC and subjected to selected earthquake ground motions. As in our pre-

vious study, we examine the effect of interaction by computing the response ratios 
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R
u t

u ti
i

i

=
max| ( )|
max| ( )|

,
0

  i = 1 2,  (2.21) 

where )(tui  and )(0 tui denote the responses of equipment i  in the connected and stand-

alone systems, respectively.  As should be clear, a value greater than unity for a response 

ratio implies amplification of the corresponding equipment response in the connected 

system in comparison to its stand-alone response.  To the contrary, a value smaller than 

unity for a response ratio implies de-amplification of the corresponding equipment re-

sponse.   As discussed in the earlier study, although these response ratios are computed 

for the displacement responses, they are equally valid for internal forces in each equip-

ment item. 

In the following, we investigate three example systems.  The first system has proper-

ties that are similar to that of a system investigated in our previous study (described in 

page 55 of Der Kiureghian et al., 1999).  The other two examples have properties similar 

to two of the systems tested at UCSD. 

The first example system has the properties: 71.51 =m lb.s2/in, 111 / mk=ω  

π= 4 rad/s and 02.0)2/( 1111 =ω=ζ mc  for equipment 1, and 85.22 =m lb.s2/in., 

π==ω 10/ 222 mk rad/s, and 02.0)2/( 2222 =ω=ζ mc  for equipment 2.  The RB has 

the properties described earlier in this chapter.  The FSC is selected in accordance to the 

PG&E specification No. 30-2022. Figures 2.13 and 2.14 show the response pairs 

))(),(( 110 tutu  and ))(),(( 220 tutu , respectively, of the two equipment items in the stand-

alone and connected configurations, when the system is subjected to the N-S component 

of the Newhall record of the Northridge (1994) earthquake.  Figures 2.15 and 2.16 show 

the same for the system subjected to the longitudinal record of Tabas (1978) earthquake 

(TabasLN).  The ratios of the peak responses in the connected and stand-alone systems 

are 757.01 =R  and 931.02 =R  for the Northridge earthquake and 845.01 =R  and 

776.02 =R  for the TabasLN.  It is apparent that the responses of both equipment items in 

the connected system are de-amplified relative to their stand-alone responses. Figures 

2.17 and 2.18 show the force-elongation hysteresis loops of the RB-FSC for the two 
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earthquakes.  These plots show significant nonlinearity and energy dissipation in the 

FSC. 

To quantify the influences of the flexibility and energy dissipation characteristics of 

the FSC, we repeat the above analysis while entirely removing the FSC.  In this case, the 

connection has the full elastic axial rigidity of the RB, which is equal to 

lbs/in 504,2640 =k .  According to the definition in our previous study, this corresponds 

to a stiffness ratio of 2.71)/( 210 =+=κ kkk .  To quantify the influence of the energy dis-

sipation capacity of the FSC, we repeat the analysis while using an ideally elastic model 

of the FSC with its initial stiffness lbs/in 2250 =k ., which corresponds to the stiffness 

ratio 0606.0)/( 210 =+=κ kkk .  The response ratios from these analyses are summarized 

in Table 2.1.   

Our interest is in cases where 12 >R  in Table 2.1, since a response ratio larger than 1 

indicates an adverse interaction effect on an equipment item.  By attaching the FSC to 

RB, we increase the flexibility of the conductor and thereby reduce the response ratio 2R  

of the higher-frequency equipment from 3.526 to 1.053 (70% reduction) for the North-

ridge earthquake and from 1.272 to 0.884 (31% reduction) for the TabasLN earthquake.  

Furthermore, when we consider the energy dissipation provided by the FSC, 2R  is further 

reduced from 1.053 to 0.931 (12% reduction) for the Northridge earthquake and from 

0.884 to 0.776 (12% reduction) for the TabasLN earthquake.  This comparison clearly 

shows that, for this example system, the flexibility of the FSC is much more significant in 

reducing the adverse effect of the interaction than the energy dissipation of the RB-FSC.  

However, it is expected that if the RB-FSC is subjected to a larger relative displacement, 

then energy dissipation will be larger so that it will have more influence on reducing re-

sponses.  Clearly, the considered flexible strap connector (the PG&E 30-2022 FSC) pro-

vides a significant advantage in reducing the adverse effects of interaction between the 

connected equipment items. 

The second example considered is the equipment combination (pair) 2 used in the 

UCSD experiments (Filiatrault et al. 1999).  Adjusted frequency and damping values for 

this system were determined through discussions with A. Filiatrault of UCSD.  The as-
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sumed displacement shape function corresponds to the static displacement of a cantilever 

with an end load.  The property values used in the analysis are: 057.21 =m lb.s2/in., 

945.12/1 =πω Hz and 013.01 =ζ  for equipment 1, and 422.02 =m lb.s2/in., 

47.52/2 =πω Hz  and 013.02 =ζ  for equipment 2.  Figures 2.19-2.22 compare the re-

sponses of the two equipment items in their stand-alone (Figures 2.19 and 2.20) and con-

nected (Figures 2.21 and 2.22) configurations, as obtained in the experiments (top fig-

ures) and as predicted by analysis, for the table motion simulating the Newhall 1994 re-

cord at 100% span.  While the two sets of response time histories are not in close agree-

ment, general features are alike.  For example, both experimental and analytical results 

show that the response of the lower-frequency equipment item is de-amplified as a result 

of the interaction, whereas that of the higher-frequency equipment item is amplified.  

This is consistent with the results established in our previous study for linearly connected 

equipment systems.  Figure 2.23 shows the force-displacement hysteresis loop for the 

FSC under this excitation.  Whereas the overall shapes of the experimental and analytical 

hysteresis loops are similar, the effective stiffness of the FSC deduced from the test is 

found to be much larger than that predicted analytically.  The analytical value actually 

matches the effective stiffness of the FSC directly measured under quasi-static cyclic 

loads at UCSD.  Based on our discussions with A. Filiatrault, we believe the higher stiff-

ness measured for the FSC in this dynamic test has to do with the manner of attachment 

of the RB-FSC to the equipment items.   It is noteworthy that for the present example the 

FSC does not experience a large degree of nonlinearity or energy dissipation. 

Figures 2.24-2.28 show similar comparisons between experimental and analytical 

predictions of the equipment responses to a table motion simulating the Tabas 1978 

ground motion at 50% span.  The trends here are similar to those observed in Figures 

2.19-2.23 for the Newhall motion. 

Table 2.2 lists the response ratios for the example system for the two table motions.  

In addition to the cases described above, we have included the response ratios for systems 

without the FSC and for systems with linear FSC in the same manner as in Table 2.1.  

The experimental values are listed in parenthesis in the last row of the table.  It is ob-

served that the flexibility of the FSC significantly contributes to reducing the interaction 
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effect, whereas the energy dissipation within the FSC reduces the interaction effect by a 

small amount.   Furthermore, the response predictions by the analytical method are in 

reasonably close agreement with those measured in the experiments.  

Analyses similar to the above were carried out for the system with equipment com-

bination 5 in the UCSD tests.  This system has the properties: 057.21 =m lb.s2/in., 

945.12/1 =πω Hz and 013.01 =ζ  for equipment 1, and 422.02 =m lb.s2/in., 

23.122/2 =πω Hz  and 009.02 =ζ  for equipment 2.   In this case, equipment 2 had dis-

placements smaller than the measurement error, and reliable experimental estimates of its 

response consequently could not be obtained.  For the sake of brevity, here we list only 

the predicted response ratios in Table 2.3, where the test values only for equipment 1 are 

shown in parenthesis in the last row.  The very large amplification of the higher-

frequency equipment item for this system, even when the flexibility and energy dissipa-

tion of the FSC are accounted for, is due to the large separation between the frequencies 

of the two equipment items.  This example serves to once again demonstrate the adverse 

effect of interaction when equipment items with widely separated frequencies are con-

nected. 
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Table 2.1  Influence of the flexibility and energy dissipation of the RB-FSC on the effect 

of interaction on equipment items 

 

1R  2R  

Connector 

Northridge TabasLN Northridge TabasLN 

RB 
( 2.71=κ ) 

0.4172 0.513 3.5256 1.272 

Linear Spring 
with Initial Stiffness 

( 0606.0=κ ) 
0.844 0.901 1.053 0.884 

RB-FSC 0.757 0.845 0.931 0.776 
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Table 2.2  Influence of the flexibility and energy dissipation of the RB-FSC on the effect 

of interaction on the equipment combination 2 in the UCSD test 

 

1R  2R  

Connector 

Newhall 
100% span 

Tabas  
50% span 

Newhall 
100% span 

Tabas  
50% span 

RB 
( κ =328) 

0.4461 0.7012 2.8767 3.2682 

Linear Spring 
with Initial Stiffness 

( κ =0.2793) 
0.5804 0.8001 1.5953 1.4083 

RB-FSC 
(UCSD experiment) 

0.5277 
(0.5689) 

0.6879 
(0.6255) 

1.5509 
(1.2150) 

1.2707 
(1.2959) 
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Table 2.3  Influence of the flexibility and energy dissipation of the RB-FSC on the effect 

of interaction on equipment the equipment combination 5 in the UCSD test 

 

1R  2R  

Connector 

Newhall 
100% span 

Tabas  
50% span 

Newhall 
100% span 

Tabas  
50% span 

RB 
( κ =94.5) 

0.1068 0.1431 7.9218 7.8270 

Linear Spring 
with Initial Stiffness 

( κ =0.08) 
0.5595 0.7677 3.6879 3.6610 

RB-FSC 
(UCSD experiment) 

0.4107 
(0.3854) 

0.6790 
(0.4367) 

3.0058 
 

2.5939 
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Figure 2.2  Dimensions of FSC No. 30-2022 
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Figure 2.1 Rigid bus with a symmetric flexible strap connector  
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 Figure 2.4  Dimensions of FSC No. 30-2021 
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Figure 2.3 Rigid bus with an asymmetric flexible strap connector  
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Figure 2.5  Comparison of uniaxial tensile stress-strain relationship of FSC 

coupons generated in the UCSD tests with fitted model  
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(a) 

(b) 

(c) 

(d) 

Figure 2.6  Schematics of the finite element layout of the RB with symmetric FSC:  (a) frame 

elements for the RB-FSC,  (b) frame elements for the FSC, (c) extreme deformed 

shape under compression, and (d) extreme deformed shape under tension 
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(a) 

(b) 

(c) 

(d) 

Figure 2.7  Schematics of the finite element layout of the RB with asymmetric FSC:           

(a) frame elements for the RB-FSC,  (b) frame elements for the FSC,  

(c) extreme deformed shape under compression, and (d) extreme deformed 

shape under tension 
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Figure 2.8  History of imposed support displacement used in the UCSD test 
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Figure 2.9  Comparison of FE predicted force-elongation relationship of the RB with the 

symmetric FSC with UCSD test results:  (a) 100/kin EH = , (b) 20/kin EH =  
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Figure 2.10  Comparison of FE predicted force-elongation relationship of the RB 

with the asymmetric FSC with UCSD test results for 20/kin EH =  
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Figure 2.11   Force-elongation relationship of the first RB with symmetric FSC 

obtained from the UCSD test and from the modified Bouc-Wen 

model 
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Figure 2.12  Model of equipment items connected by a RB-FSC 
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Figure 2.13  Displacement time histories of the lower-frequency equipment item 

for the Newhall-Northridge record: (a) response in the stand-alone 

configuration and (b) response in the connected system  
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Figure 2.14  Displacement time histories of the higher-frequency equipment item 

for the Newhall-Northridge record: (a) response in the stand-alone 

configuration and (b) response in the connected system  
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Figure 2.15  Displacement time histories of the lower-frequency equipment item 

for the TabasLN record: (a) response in the stand-alone 

configuration and (b) response in the connected system  
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Figure 2.16  Displacement time histories of the higher-frequency equipment item 

for the TabasLN record: (a) response in the stand-alone 

configuration and (b) response in the connected system  
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Figure 2.17  Force-elongation hysteresis loops of the RB-FSC in the connected 

system subjected to the Newhall-Northridge record  

Figure 2.18  Force-elongation hysteresis loops of the RB-FSC in the connected 

system subjected to the TabasLN record  
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Figure 2.19  Displacement time histories of the lower-frequency equipment item in the 

stand-alone configuration for the table motion TRB127 (Newhall 100%): 

(a) experiment and (b) analysis  
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Figure 2.20  Displacement time histories of the higher-frequency equipment item in the 

stand-alone configuration for the table motion TRB127 (Newhall 100%): 

(a) experiment and (b) analysis  
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Figure 2.21  Displacement time histories of the lower-frequency equipment item in 

the connected system for the table motion TRB101 (Newhall 100%): 

(a) experiment and (b) analysis  
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Figure 2.22  Displacement time histories of the higher-frequency equipment item in 

the connected system for the table motion TRB101 (Newhall 100%): 

(a) experiment and (b) analysis  
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Figure 2.23  Force-elongation hysteresis loops of the RB-FSC in the connected system 

subjected to the table motion TRB101 (Newhall 100%): (a) experiment and 

(b) analysis  
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Figure 2.24  Displacement time histories of the lower-frequency equipment item in 

the stand-alone configuration for the table motion TRB126 (Tabas 50%): 

(a)  experiment and (b) analysis  
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Figure 2.25  Displacement time histories of the higher-frequency equipment item in 

the stand-alone configuration for the table motion TRB126 (Tabas 50%):  

(a) experiment and (b) analysis  
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Figure 2.26  Displacement time histories of the lower-frequency equipment item 

in the connected system for the table motion TRB100 (Tabas 50%): 

(a) experiment and (b) analysis  
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Figure 2.27  Displacement time histories of the higher-frequency equipment item 

in the connected system for the table motion TRB100 (Tabas 50%):  

(a) experiment and (b) analysis  
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Figure 2.28  Force-elongation hysteresis loops of the RB-FSC in the connected system 

subjected to the table motion TRB100 (Tabas 50%): (a) experiment; and 

(b) analysis  
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Chapter 3 Influence of the Bending Stiffness 
and Inertia of the Connecting Cable 
on the Interaction Effect 

3.1  Introduction 

Many equipment items in electrical substations are connected to each other by flexible 

conductors, typically cables made of braided aluminum wire strands.  In our previous 

study (Der Kiureghian et al., 1999), we investigated the effect of interaction in such sys-

tems when the flexible conductor was considered to be an extensible cable with negligi-

ble flexural rigidity and inertia effects.   Under these approximations, the flexible conduc-

tor was modeled as an extensible catenary cable and closed form expressions were de-

rived for its effective stiffness as a function of its geometry, i.e., span length, vertical 

separation of the supports, cable length, its weight per unit length w , and its axial rigidity 

EA , where E  denotes the Young’s modulus and A  is the cross-sectional area of the ca-

ble.  Extensive parametric studies using time history analyses with recorded ground mo-

tions were carried out to determine the effect of interaction on two equipment items con-

nected by such a cable.  It was found that, depending on the equipment characteristics and 

the selected ground motion, the response of both equipment items could be strongly am-

plified (in relation to their stand-alone responses) when the cable has a small sag.  To 

quantify the needed sag in order to avoid a large response amplification, the response ra-

tios 1R  and 2R  (see their definitions in (2.21)) were computed as functions of the “inter-

action” parameter β  defined as 

1/

/

00

2
00

−
⋅∆=β

cs

cL
 (3.1) 
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In this formula, 0L  denotes the initial span of the cable, 22
00 HLc +=  is the initial chord 

length of the cable, in which H  denotes the vertical separation between the supports, 0s  

denotes the cable length under the initial static equilibrium conditions, and ∆  denotes the 

maximum relative displacement between the stand-alone equipment items for the speci-

fied ground motion.  Investigations with five different ground motions and several 

equipment configurations revealed that there is virtually no interaction between the 

equipment items when β  is less than about 1.  Based on this finding, the minimum re-

quired cable length to avoid the adverse interaction effect was determined to be  

∆+=
0

0
00 c

L
cs  (3.2) 

A procedure for estimating the maximum relative displacement ∆  for a specified ground 

motion in terms of a specified response spectrum was described in our previous study. 

After completion of our previous study, we came across a paper by Dastous and Pi-

erre (1996) that described experimental results on flexible conductors subjected to im-

posed horizontal harmonic excitation either at one end or out-of-phase motions at both 

ends.  The paper argued that these experiments were relevant to the equipment interaction 

problem, since the response of each equipment item in the connected system would tend 

to be essentially in first mode and, thus, well represented by an harmonic motion.  This 

experimental study revealed a significant effect on the cable forces arising from the iner-

tia of the cable mass in the vertical direction.  Compared to the results based on quasi-

static analysis, the horizontal force in the cable could be amplified by several orders of 

magnitude when end motions were applied at certain frequencies.  Furthermore, signifi-

cant compression forces developed in the cable, thus indicating the potential importance 

of the flexural rigidity.  These results suggest that the effect of interaction in cable-

connected equipment items can be greater than that indicated in our previous study, 

which ignored the inertia and flexural rigidity of the cable.  Furthermore, the minimum 

required cable length given in (3.2) may not be sufficient to avoid the adverse effect of 

interaction, when inertia and flexural stiffness effects are present.  
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The aim of the present study is to re-examine the effect of interaction in cable-

connected equipment items while accounting for the cable inertia and flexural rigidity. A 

finite element approach using truss and frame elements with a Lagrangian strain formula-

tion is used to properly account for the geometric nonlinearity in the response.  In order to 

validate the finite element model, first comparisons are made with our previous results for 

the catenary cable under static loads without including the flexural rigidity effect.  Next, 

comparisons are made with the experimental results of Dastous and Pierre (1996) for a 

cable subjected to out-of-phase end motions.  Reasonable qualitative agreement between 

the finite element and experimental results is obtained.  In the final section of the chapter, 

the cable-connected equipment system is modeled and numerical time history analyses for 

the set of five earthquake ground motions from our previous study are carried out to de-

termine the interaction effect.  The results indicate that cable inertia and flexural rigidity 

have small influences for relatively taut cables. For cables with larger sag, the cable iner-

tia and flexural rigidity tend to amply the interaction effect for certain ground motions. 

However, these amplifications are not as dramatic as anticipated from the discussion in 

the paper by Dastous and Pierre (1996).  Evidently, the interaction between the equipment 

items and the cable in the case of an imposed ground motion significantly alters the dy-

namic response of the cable from that of a cable subjected to imposed end motions.  

While a definitive criterion for minimum slackness cannot be given at this time due to the 

limited number of ground motions studied, a preliminary recommendation is provided.   

3.2 Section Properties of the Flexible Conductor 

In order to develop a finite element model of the flexible conductor, it is necessary to de-

scribe the axial and flexural rigidity of the conductor at each section.  As mentioned ear-

lier, the flexible conductor is typically a cable made of braided strands of aluminum wire. 

The two ends of the cable usually are attached to the equipment items through welded 

aluminum connectors so that no unwrapping of the strands is possible.  For the following 

discussion, we let n  denote the number of strands and d  denote the diameter of each 

strand.  
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When the cable is subjected to a tension force, it is conceivable that some tightening 

of the braids will occur before the full axial stiffness of the strands is developed.  Like-

wise, when a segment of the cable is subjected to compression, opening of the braids or 

even buckling of the outer strands may occur.  These imply that the axial stiffness of the 

cable for a small tension force or a large compression force could be smaller than the sum 

of the axial stiffnesses of the individual strands.  We are not aware of any experiments 

that have investigated these effects.  For the sake of simplicity, in the following analysis 

we ignore these effects and assume that the effective cross-sectional area of the cable 

throughout its length is a constant and is equal to the sum of cross-sectional areas of the 

strands, i.e.,  

4

2dn
A

π=  (3.3) 

The flexural rigidity of the cable at a cross section is given by the product EI , where I  

denotes the section moment of inertia.  The value of I  depends on whether the strands at 

the cross section remain attached or slide with respect to one another as the cable is bent.  

The minimum value of the moment of inertia, denoted minI , is obtained by assuming that 

the strands freely slide against one another.  In that case the moment of inertia is simply 

the sum of the moments of inertia of the individual strands and is given by 

64

4

min

dn
I

π=  (3.4) 

In the actual system, significant friction forces may develop between the strands, particu-

larly at locations where the cable has a strong curvature and is under tension.  These fric-

tion forces may prevent sliding of some of the strands and, hence, a larger effective mo-

ment of inertia may develop.  The maximum value of I  is obtained when all strands re-

main attached and is given by 

∑
=







+π=

n

i
iy

dd
I

1

2
22

max 164
 (3.5) 

where iy  is the distance of the i -th strand from the neutral axis, as shown in Figure 3.1.  

The actual moment of inertia of the cable is somewhere between the above two extremes.  
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Furthermore, the moment of inertia would tend to vary along the cable depending on the 

cable curvature and the force magnitude.  Unfortunately the two bounding values in (3.4) 

and (3.5) are widely apart for typical cables used in the power industry. For example, for 

a 1796-MCM cable consisting of 61 strands in 5 layers, the upper bound in (3.5) is about 

80 times the lower bound in (3.4).  Based on experiments conducted by BC Hydro in the 

1990’s, a recent IEEE guideline (IEEE 1999) recommends the use of the approximation  

min)1( INI +≅  (3.6) 

for short length aluminum conductors, where N  denotes the number of layers of strand.  

In the following analyses, unless stated otherwise, this approximation is employed.  Fur-

thermore, it is assumed that the moment of inertia remains constant throughout the length 

of the cable at all times.  A parametric study is performed to investigate the sensitivity to 

the assumed value of the moment of inertia.  Unfortunately, the large uncertainty associ-

ated with this characteristic of the cable will prevent us from making predictions of the 

cable response that are in close quantitative agreement with the experimental results of 

Dastous and Pierre.   

For the subsequent analysis, it is also necessary to assign a value to the Young’s 

modulus. IEEE guidelines (IEEE 1999) recommend 61072.5 ×=E N/cm2 ( 61030.8 ×=  psi) 

for all-aluminum conductors.  Unless stated otherwise, this value is used in the subse-

quent analyses. 

3.3 Finite Element Model of the Cable 

The dynamic analysis of a taut cable with large displacements and rotations is a highly 

nonlinear elastodynamic problem that has no known analytical solution.  Even a numeri-

cal solution of this problem is challenging.   During the dynamic response, whenever the 

cable is fully stretched the axial stiffness dominates the cable behavior and significant 

high-frequency effects are generated.  With finite element spatial discretization, these 

high frequencies may give rise to errors and instability in the numerical computations 

(Armero and Romero, 1999).  Under these conditions, the Newmark time-integration al-

gorithm, which we had successfully used in our previous study with the catenary cable 

(using an exact expression of the cable stiffness, but neglecting inertia and flexural rigid-
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ity effects), does not lead to stable, accurate results.  Furthermore, the classical Newmark 

family of algorithms and its variants generally fail to conserve total angular momentum 

for nonlinear elastodynamics.  This is a significant shortcoming, since the angular mo-

mentum can have an important influence on the cable dynamics.  An algorithm that pre-

serves the conservation laws is presented by Simo et al. (1992).  A modified version of 

this algorithm, by controlling parameters, introduces numerical damping to stabilize the 

computations while slightly compromising on the conservation of energy.  Our experi-

ence showed that this algorithm with parameter values 55.0=α , 5.0=β  and 1=γ  (see 

Simo et al., 1995, for the definitions of these parameters) and time step =∆t 0.0005s 

works successfully for the cable dynamics problem.  Hereafter we call this the damped 

energy-conserving (DEC) algorithm.  We note that parameter values 5.0=α , 5.0=β  and 

1=γ  correspond to the energy-conserving algorithm with no numerical damping. 

As a test of this algorithm, Figure 3.2 shows plots of the computed and exact re-

sponses of two single-degree-of-freedom oscillators subjected to a step loading, as nor-

malized by the corresponding static responses.  The top plot is for an oscillator with 5Hz 

frequency and 2% damping ratio.  For this oscillator, the solution based on the DEC algo-

rithm coincides with the exact solution.  The bottom plot is for an oscillator with 50Hz 

frequency and 2% damping ratio.  Due to the numerical damping, the solution based on 

the DEC algorithm in this case shows a slightly faster decay than the exact solution.  

Since such high frequencies have no significant contribution to the response of the cable-

connected systems of interest, we conclude that the DEC algorithm with the parameters 

described above produces accurate results for the purpose of the present study. 

Two finite element models of the cable are considered in this study.  The first model 

idealizes the cable with 100 truss elements having the same cross section as the cable.  

This model is intended to idealize the catenary cable under static conditions.  The second 

model idealizes the cable with 100 frame elements having the same cross section proper-

ties as the cable.  This model is intended to account for both the cable inertia and flexural 

rigidity.  Full account of the geometric nonlinearity arising from large displacements and 

large rotations of the cable is made in the analyses by using a Lagrangian strain formula-
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tion.  The finite element program FEAP, developed by Taylor (1998), and the DEC algo-

rithm, described above, are used for the analyses. 

3.4 Comparison of the Finite Element Model with the Catenary Cable 

Before proceeding with dynamic analysis, we investigate the responses of a cable under 

static loading and compare them with the theoretical results obtained for the catenary ca-

ble in our previous study.  The cable consists of 271 strands in 10 layers, each strand hav-

ing a diameter of 0.3038cm so that the total cross-sectional area of the cable is 

6.19=A cm2.  The moment of inertia, computed using (3.6), is 246.1=I cm4.  The 

weight per unit length of the cable is 2.52=w N/m.  The cable is assumed to have an ini-

tial length of 6m, when it is held over two supports 5m apart horizontally with zero verti-

cal separation between the supports.  To be consistent with our previous results for the 

catenary cable, 6100.7 ×=E N/cm2 is used for the present analysis.  Using each finite ele-

ment model, the horizontal force T  in the left support is computed as the right support is 

moved quasi-statically in the horizontal direction.   The normalized force )/(wLT , in 

which L  denotes the current span length, is plotted as a function of the slackness 

1/ −Ls .  Note that s  denotes the actual length of the cable at each configuration, ac-

counting for the extensibility of the cable. 

Figure 3.3 shows a comparison of the horizontal force versus slackness curve for the 

catenary cable and the finite element model with truss elements.  Recall that this model 

does not account for the flexural rigidity of the cable and, hence, it closely idealizes the 

catenary cable conditions.  The results from the two analyses are virtually identical over a 

broad range of slackness values, thus demonstrating the accuracy of the finite element 

model. 

It is important to note that a cable having flexural rigidity and held between two 

fixed supports is a statically indeterminate system.  This is because the horizontal support 

force for such a system cannot be determined from equilibrium considerations alone.  For 

the present analysis with the finite element model with frame elements, we have assumed 

that the cable is initially straight.  After fixing both ends, the gravity load is applied and 

then the right support is moved horizontally towards the left support.  Due to the flexural 
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rigidity, the shape of the cable is considerably different from the catenary shape.  This can 

be seen in Figure 3.4, which shows the two shapes when the span is 5m.  Figure 3.5 com-

pares the normalized horizontal support force )/(wLT  as a function of the slackness 

1/ −Ls  for the catenary cable and the finite element model with frame elements.  Due to 

the flexural rigidity, the support force is in compression for slackness values greater than 

0.00275.   It is seen that the horizontal force-slackness relationship for the cable with 

flexural rigidity is similar to that of the catenary cable but shifted downward in the verti-

cal direction.  It is of course possible to consider an initially curved cable.  In that case, 

the horizontal force-slackness curve would tend to shift vertically upward so that the zero 

force point would occur at a slackness value at which no horizontal support force is nec-

essary to hold the cable in its position.  This indeterminacy of the initial shape of the ca-

ble with flexural rigidity is one more reason why it will not be possible to quantitatively 

match the experimental results of Dastous and Pierre, as described in the following sec-

tion. 

3.5 Comparison with Experimental Results of Dastous and Pierre 

In this section, we compare finite element predictions of the cable response with the ex-

perimental results of Dastous and Pierre (1996).  Two different cables used by Dastous 

and Pierre are considered for this analysis.  These are code named 1796-MCM and 4000-

MCM cable conductors.  Their properties are listed in Table 3.1. 

As mentioned earlier, our finite element model assumes constant cross-sectional area 

and moment of inertia along the cable.  This is an approximation, since during the ex-

periments the actual effective cross-sectional properties vary along the cable and in time, 

depending on whether the strands slide against each other or remain attached.  It is practi-

cally impossible to predict the damping in the cable, which can be significant when the 

cable strands slide against one another under friction forces.  An additional uncertainty 

has to do with the initial shape of the cable in the experiments.  As mentioned earlier, the 

cable with flexural rigidity and fixed ends is a statically indeterminate system.  Unfortu-

nately the paper by Dastous and Pierre did not describe how the cables were shaped and 

put in their positions before starting the tests.  In the analysis in this section, we have used 
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the following steps to set the initial shape of the cable:  A straight cable of the specified 

length is modeled with both its ends fixed.  The weight of the cable is applied as dead 

load and the cable is allowed to deform.  One end of the cable is then moved toward the 

other end until the specified initial span length used in the experiment is achieved.  The 

deformed shape of the cable in this position is computed.  This shape is considered to be 

the initial shape of the cable without any internal forces.  The cable with this shape is now 

placed on the supports with fixed ends and the reaction forces under the dead load are 

computed.   Note that this will generate an initial horizontal tension force at each support.  

As described below, because of the uncertainty in the initial conditions of the cable in the 

experiments, this horizontal force as well as the cable sag will be somewhat different 

from the initial conditions reported in the experiments by Dastous and Pierre.  

Because of the unavoidable differences between the finite element model and the ex-

perimental setup used by Dastous and Pierre, it is not possible to expect that the finite 

element predictions will closely match the experimental results.  Hence, instead of a 

quantitative agreement, we seek to make a qualitative comparison between the theoretical 

predictions and the experimental results.  In particular, we aim at verifying the large am-

plifications in the horizontal cable force under harmonic excitations, which were ob-

served by Dastous and Pierre.  We also carry out parameter variations in order to deter-

mine the importance of the flexural rigidity of the cable and the effect of energy dissipa-

tion due to friction forces in the cable. 

3.5.1 Experiment 1:  Sine-Start Test 

In this experiment, a 1796-MCM conductor cable of length 5.52m and span length 5.19m 

was subjected to out-of-phase harmonic support motions having an amplitude of 0.02m 

and a frequency of 3.5Hz.  Figure 3.6, taken from the paper by Dastous and Pierre (1996), 

shows the time history of the horizontal support force measured during the experiment.  

We note that the initial horizontal force is around 40N in tension.  During the dynamic 

excitation, the horizontal cable force at each support fluctuates, taking on both positive 

(tension) and negative (compression) values.  The maximum tension force achieved is 

approximately 400N, whereas the maximum compression force achieved is approxi-
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mately 260N.  It is important to note that under quasi-static conditions, the horizontal ca-

ble force would have varied only a small amount from its initial value of 40N.   It is clear, 

therefore, that the cable inertia and flexural rigidity significantly amplify the cable force.  

In the finite element analysis, we apply out-of-phase, harmonic horizontal support 

displacements of the form 

[ ] )2sin()2exp(1)( tfAtftu παπ−−=  (3.7) 

where 02.0=A m is the amplitude and 5.3=f Hz is the frequency.  The term inside the 

square brackets is a loading ramp that is included to avoid numerical instability caused by 

non-zero initial conditions.  For the present analysis, 1.0=α  is used.  Note that the term 

inside the square brackets approaches unity in a few cycles and the motion becomes 

purely harmonic.  The Young’s modulus of the cable is assumed to be the IEEE-

recommended value of 61072.5 ×=E N/cm2 and the moment of inertia is computed from 

(3.6).  No damping in the cable is assumed for this analysis. 

Figure 3.7 shows a plot of the time history of the horizontal cable force as predicted 

by the finite element model.  The overall features of the response are similar to those ob-

served for the experimental result shown in Figure 3.6.  In particular, the response shows 

large amplification of the horizontal cable force due to the inertia and flexural rigidity 

effects.  We also note that the cable experiences significant compression forces. Whereas 

the initial cable force is 83N, the maximum tension force achieved is 265N and the 

maximum compression force achieved is 97N.   These values are significantly different 

from the values observed in the experiment.  As mentioned earlier, the reasons for this 

discrepancy may include the assumed values of the cable moment of inertia and damping, 

as well as the assumed initial shape of the cable.  More detailed information about the 

conditions of the experiment as well as a more refined model of the cable that accounts 

for the variability of stiffness and damping properties along the length and in time are 

necessary if a close agreement between the theoretical and experimental results is to be 

achieved.  Nevertheless, the above comparison shows that the large amplification of the 

cable force, including compression forces, observed by Dastous and Pierre for cables sub-
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jected to harmonic support motions is realistic and is predicted by the finite element 

model.   

The differences observed between the experimental and theoretical results suggests 

that the cable response might be sensitive to the assumed values of the moment of inertia 

and damping.  To explore the sensitivity with respect to the moment of inertia, we repeat 

the above analysis while varying the moment of inertia in the range minII =  to min12II = , 

where minI  is as given in (3.4).  It is assumed that the cable has zero damping.  The 

maximum horizontal tension and compression forces, after 3 seconds of motion, are plot-

ted in Figure 3.8 as a function of the ratio min/ II .  The maximum responses are found to 

have mild dependence on the moment of inertia, except in the region of min3II < .  For 

this value of the moment of inertia, the maximum forces in both tension and compression 

side are sharply amplified.  Evidently, for this value of the moment of inertia the cable is 

in some sort of resonance with the harmonic excitation.  A similar but much smaller 

resonance effect is noticeable around the value min9II = .  Unfortunately we have no 

means of knowing what value of I  best reflects the conditions of the cable tested by Das-

tous and Pierre. 

In the above analysis, the cable was assumed to have no damping.  However, as men-

tioned earlier, there can be significant dissipation of energy due to sliding of the cable 

strands against one another under the action of friction forces.  Such damping would of 

course depend on the cable force and curvature at each location and, hence, would vary 

along the cable and in time.  Noiseux (1992) has proposed a hysteretic damping model for 

cables, which is reported to agree well with experimental results.  Unfortunately, imple-

mentation of this class of models in FEAP was not possible within the time scope of this 

project.  Instead, we attempted to investigate the sensitivity to damping by using a uni-

formly distributed viscous damping model, which is already available in FEAP.  In this 

model, the distributed viscous damping is achieved by placing a dashpot at each node of 

the finite element model, as shown in Figure 3.9.  While this model may not be realistic 

in describing energy dissipation by internal friction forces, it provides a preliminary esti-

mate of the importance of the damping effect on the dynamic response of cables.   
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For the numerical study, min6II =  is assumed and the damping coefficient is varied 

over the range of zero to 100Ns/m2 per unit length of the cable.  To provide a scale for 

this damping value, it is noted that when the damping value of 100Ns/m2 is used, the 

maximum damping force achieved in the cable under the harmonic motion with fre-

quency 3.5Hz is approximately 111N/m.  This can be compared with the maximum iner-

tia force, which is approximately 58N/m, and the weight per unit length of the cable, 

which is 24.6N/m.  Thus, while 100Ns/m2 might be an unrealistically high value for the 

distributed damping, values around 10-50Ns/m2 might be quite realistic.  Figure 3.10 

shows a plot of the maximum horizontal tension and compression forces, after 3 seconds 

of motion, as a function of the distributed damping coefficient.  It is seen that the maxi-

mum horizontal forces in the cable increase with increasing damping.  This is because the 

excitation is an imposed support displacement and, naturally, larger forces are necessary 

to counter the damping effect.  Unfortunately we have no means of knowing what value 

of the damping coefficient best represents the conditions present during the tests by Das-

tous and Pierre.  Nevertheless, this study shows that some of the discrepancy between our 

theoretical predictions and the experimental results could be attributed to the effect of 

damping in the cable.  We believe further study on the effect of damping in conductor 

cables is highly desirable.  

3.5.2 Experiment 2:  Sine-Sweep Test 

In this experiment by Dastous and Pierre (1996), a 4000-MCM conductor cable was sub-

jected to out-of-phase harmonic support motions of amplitude 0.02m and frequencies in 

the range 0.5-5Hz. The cable has a length of 5.64m and an initial span length of 5.35m. 

Figure 3.11, taken from the paper by Dastous and Pierre, shows plots of the peak horizon-

tal tension and compression forces at the support as functions of the excitation frequency. 

It is seen that the maximum tension and compression forces vary by several orders of 

magnitude, depending on the excitation frequency.  A peak appears to occur in the maxi-

mum tension force at around  4.3Hz, which could be due to some sort of resonance. 

For the finite element analysis, the cable is assumed to have constant cross-sectional 

area and moment of inertia as given by (3.3) and (3.6), respectively.  Zero damping is as-
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sumed.  The support motions are taken to be out of phase and described by (3.7) with the 

frequency f  varying from 0.5 to 5Hz.  The resulting maximum tension and compression 

forces, after 3 seconds of response at each frequency, are plotted in Figure 3.12 as func-

tions of the excitation frequency.  The overall features of these plots are similar to the ex-

perimental results shown in Figure 3.11.  The maximum tension and compression forces 

show variations by several orders of magnitude, depending on the excitation frequency.  

Peaks on both tension and compression sides appear at around 2.7Hz frequency, possibly 

indicating some sort of resonance effect.   A similar effect may be present at around 

4.6Hz frequency, where the peak responses appear to grow unboundedly.  The differences 

between the experimental and analytical results can be attributed to our assumed values of 

the cross-sectional area, moment of inertia and damping, and the assumed initial shape of 

the cable.  Unfortunately we have no means of knowing which values of these parameters 

better represent the experimental conditions.  In spite of the quantitative discrepancy be-

tween the experimental and analytical results, this study shows that indeed extremely 

large forces can develop in the cable when it is subjected to harmonic support motions.  

3.6 Cable-Connected Equipment Items 

In this section we study the effect of flexural rigidity and inertia of the cable conductor on 

the interaction between two connected equipment items.  Figure 3.13 shows a schematic 

description of the connected system.  For the conductor, we consider the aluminum cable 

investigated in our previous study, which consists of 271 strands in 10 layers, each strand 

having a diameter of 0.3038cm. The cross-sectional area is 6.19=A cm2, the moment of 

inertia computed from (3.6) is 246.1=I cm4, the Young’s modulus is 

6100.7 ×=E N/cm2, and the weight per unit length of the cable is 2.52=w  N/m. First, 

we consider the case when the cable has an initial length 0332.50 =s m and an initial span 

of 50 =L m.  For the catenary cable, this corresponds to a sag to span ratio of 0.05.  This 

is a rather taut cable and represents perhaps an extreme case.  We select it to highlight the 

effect of interaction and the highly nonlinear nature of the response.  Subsequently, we 

vary the length of the cable in order to investigate the interaction effect for varying cable 

slackness values.  The cable is assumed to connect two equipment items having masses 
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kg10001 =m  and kg5002 =m , an attachment configuration such that 11 / ml = 22 / ml =1, 

stand-alone frequencies π=ω 21 rad/s and π=ω 102 rad/s, and damping ratios 

02.021 =ζ=ζ .   

3.6.1 Effect of Flexural Rigidity, Inertia and Damping of the Cable 

on the Equipment Response  

We examine the responses of the above system to the N-S component of the Newhall re-

cord of the 1994 Northridge earthquake.  The accelerogram of this ground motion is 

shown in Figure 3.14.  Figure 3.15 shows the stand-alone responses of the two equipment 

items calculated by finite element analysis using the DEC algorithm.  The calculated 

maximum stand-alone displacements are =)(max 10 tu 0.3358m and 

=)(max 20 tu 0.0159m, respectively, and the maximum relative separation between the 

two stand-alone equipment items is [ ] 3163.0)()(max 1020 =−=∆ tutu m.  These estimates 

are slightly different from the values computed in our previous study (0.3375m, 0.0162m 

and 0.3163m, respectively), which were based on the Newmark algorithm.  

Figure 3.16 shows displacement responses of the two equipment items when both the 

flexural rigidity and inertia of the cable are neglected.  These results are from our previ-

ous study and were computed using the Newmark algorithm together with an analytical 

expression of the catenary cable stiffness. Note that the scales used in Figure 3.16 (and 

the subsequent five figures) are different from the scales used in Figure 3.15.  The maxi-

mum responses in Figure 3.16 are 500.0)(max 1 =tu m and 124.0)(max 2 =tu m, respec-

tively, which are much larger than the peak stand-alone responses given in the preceding 

paragraph.  It is also noticeable that the response is asymmetric with larger peaks in the 

equipment responses occurring in the direction of the cable.  Unfortunately, using time 

steps of reasonable size, it was not possible to generate similar results with the finite ele-

ment model because the numerical integration did not converge when the flexural rigidity 

and inertia of each frame element were set to zero or small values.  
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To see the effect of the cable inertia alone, we use the finite element model with the 

frame elements but set the section moment of inertia of each element to a negligibly small 

value.  The displacement responses for the two equipment items in this system are shown 

in Figure 3.17.  The peak absolute responses now are 444.0)(max 1 =tu m and =)(max 2 tu  

0.105m, respectively.  These values are smaller than the peak values for the case without 

the inertia effect in Figure 3.16.  However, the response curves show stronger asymmetry.  

Evidently, for this cable, the inertia effect tends to reduce the peaks in the equipment re-

sponses, but accentuates the asymmetry of the response.  Slightly longer periods in the 

equipment responses in Figure 3.17 are detectable, when compared with the responses in 

Figure 3.16 for the cable without mass.  These are due to the added mass of the cable.  

To see the effect of the cable flexural rigidity alone, we use the finite element model 

with the frame elements but set the mass of each element to zero, while representing the 

weight as a dead load. The displacement responses for the two equipment items in this 

case are shown in Figure 3.18.  The peak absolute responses now are 422.0)(max 1 =tu m 

and =)(max 2 tu 0.130m, respectively.  In comparison to the case without cable inertia 

and flexural rigidity shown in Figure 3.16, the peak absolute response of the lower-

frequency equipment item is smaller, while that of the higher-frequency equipment item 

is larger.  This agrees with the finding in our previous study that a larger stiffness of the 

connecting element tends to increase the response of the higher-frequency equipment 

item and decrease that of the lower-frequency equipment item.  Furthermore, with the ca-

ble flexural rigidity included, the response of the system is less asymmetric.  This is due 

to increased “beam effect” in the cable.  Finally, in the tail region, the response time his-

tories show shorter periods than in Figure 3.16 because of the added flexural stiffness of 

the cable.  In the region of strong response, the cable stiffness is dominated by its axial 

stiffness, which is the same for both cases, and as a result the predominant period of the 

response does not change.   

Now we consider the system with both the flexural rigidity and inertia of the cable 

included.  Figure 3.19 shows the displacement responses of the two equipment items for  
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this case.  The peak absolute responses now are 393.0)(max 1 =tu m and =)(max 2 tu  

0.121m, respectively.  These peak values are slightly smaller than the values for the pre-

vious case, which included only the flexural rigidity of the cable.  Evidently, for this ca-

ble, cable inertia tends to reduce the peak responses with or without the effect of flexural 

rigidity.  This result, however, may not apply to other cable/equipment configurations or 

ground motions.  As we will see, it is possible that resonance-type effects arise in the ca-

ble response leading to larger responses of the equipment items. 

In the above analysis, the cable was assumed to have zero damping.  As discussed 

earlier, slippage of the cable strands under friction forces could dissipate significant 

amounts of energy. To explore this effect, finite element analysis with the frame element 

was carried out, while including the flexural rigidity and inertia of the cable as well as a 

uniformly distributed viscous damping with a coefficient of 10Ns/m2. Figure 3.20 shows 

the displacement responses of the two equipment items for this case.  The peak absolute 

responses now are 355.0)(max 1 =tu m and =)(max 2 tu 0.112m, respectively.  As ex-

pected, these peak values are smaller than those without cable damping shown in Figure 

3.19.    

3.6.2 Effect of Interaction in the Cable-Connected System 

To determine the effect of interaction on equipment items in a cable-connected system, 

we compute and plot the response ratios 1R  and 2R  for the system described in the previ-

ous section for five different ground motions, which were described in our previous study 

(Der Kiureghian et al. 1999).  All system parameters are kept constant, with the exception 

of the initial cable length 0s , which is varied to cover a range of the interaction parameter 

β  defined in (3.1).  Since the vertical separation between the support points is zero, we 

have 00 Lc =  and the interaction parameter simplifies to   

00 Ls −
∆=β  (3.8) 
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where 50 =L m is the initial span and [ ])()(max 1020 tutu −=∆  is the maximum relative 

separation between the two stand-alone equipment items for the selected ground motion.  

Figure 3.21 shows plots of the response ratios 1R  and 2R  as functions of the interac-

tion parameter β  for the five selected ground motions, where the effects of flexural rigid-

ity and inertia of the cable are neglected.  These results are copied from our previous 

study.  As we had discussed, there is virtually no amplification of the equipment re-

sponses for values of β  less than 1.  Based on this finding, in our previous report we rec-

ommended a cable length based on 1=β . 

Figure 3.22 shows plots of the response ratios 1R  and 2R  as functions of the interac-

tion parameter β  for the five selected ground motions, where we have included the ef-

fects of flexural rigidity and inertia of the cable.  For 1>β , significant amplification of 

the equipment responses occurs similar to that in Figure 3.21.  The response ratios for a 

specific ground motion and β  value in the two figures are not identical, but the overall 

features are the same.  For 1<β , Figure 3.22 shows small amplifications of the equip-

ment responses, which are absent in Figure 3.21.  In particular, for the TabasLN record, a 

local peak of 1.36 appears in the response ratio 1R  around 9.0=β , which may be due to 

some sort of resonance for this particular cable configuration and input ground motion.  

This is similar to the resonance-like behavior observed in the experiments by Dastous and 

Pierre (1996) and our own analytical results in Section 3.5. 

Based on the results shown in Figure 3.22, it appears that the recommendation of se-

lecting a cable length for which 1≤β  is still valid.  This corresponds to a length of 

∆+> 00 Ls  for a cable with no vertical offset between its supports.  However, in light of 

possible resonance-type amplification of the cable, it is advisable to design the equipment 

items for forces slightly (about 50%) higher than the forces obtained for the stand-alone 

configuration. It should be emphasized that this recommendation is based on a rather lim-

ited study. Further investigations are advisable to ascertain the range of applicability of 

this rule for different types of ground motions and cable/equipment configurations. 
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Table 3.1.  Properties of conductor cables used in the experiments by Dastous and Pierre 

 
 

Property 1796-MCM 4000-MCM 

material all aluminum all aluminum 

Young’s modulus 61072.5 × N/cm2 61072.5 × N/cm2 

number of layers 5 10 

number of strands 61 271 

strand diameter 0.436 cm 0.309 cm 

overall conductor diameter 3.92 cm 5.86 cm 

cross section area 910 mm2 2027 mm2 

mass per unit length 2.509 kg/m 5.698 kg/m 
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Figure 3.1  Cross section of a conductor cable made of braided wire strands 
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Figure 3.2  Comparison of exact and computed normalized responses of an oscillator 

to step loading: (a) oscillator with 5Hz frequency and 2% damping ratio, 

(b) oscillator with 50Hz frequency and 2% damping ratio 
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Figure 3.3  Horizontal force versus slackness for a cable with no flexural 

rigidity under its own weight 
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Figure 3.4  Shapes of cables of length 60 =s m:  (a) without flexural rigidity, (b)  

with flexural rigidity 
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Figure 3.5  Comparison of horizontal force-slackness relationship 

for a catenary cable and a cable with flexural rigidity 
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Figure 3.7  Time history of horizontal force at the cable support as predicted 

by the finite element model 
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Figure 3.6  Time history of horizontal force at the cable support (after 

Dastous and Pierre, 1996) 
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Figure 3.8  Sensitivity of the horizontal force at the support to cable moment of inertia 
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Figure 3.10  Sensitivity of the horizontal force at the support to cable damping 
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Figure 3.9  Finite element model of distributed viscous damping  

)(tu  )(tu  

-200

0

200

400

0 20 40 60 80 100
 



 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

-2000

-1600

-1200

-800

-400

0

400

800

1200

1600

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 

Figure 3.12  Horizontal support force spectrum predicted by the finite element model 
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Figure 3.11  Horizontal support force spectrum obtained from the experiment 

(after Dastous and Pierre, 1996) 

Frequency, Hz 



 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h0
 

 

 

 

 

x tg ( )  
 

 y  

y1  

 
y2  

 
u y t2 ( , )  

H  

u y t1( , )  
L0  

y  

Figure 3.13  Cable-connected equipment items 
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Figure 3.14  N-S component of Newhall record, 1994 Northridge Earthquake 
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Figure 3.15  Displacement time histories of the stand-alone equipment 

items calculated by the damped energy-conserving algorithm 
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Figure 3.16  Displacement time histories of equipment items in the connected system, 

using catenary cable formulation and neglecting flexural rigidity, inertia 

and damping of the cable 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
 

u 1
(t

),
 m

 
u 2

(t
),

 m
 

Time, s 

toward the  
cable 

toward the  
cable 



 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20
 

Figure 3.17  Displacement time histories of equipment items in the connected system, 

including the inertia effect but neglecting the flexural rigidity and damping 

of the cable  
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Figure 3.18  Displacement time histories of equipment items in the connected system, 

including the flexural rigidity but neglecting the inertia and damping of 

the cable  
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Figure 3.19  Displacement time histories of equipment items in the connected system, 

including flexural rigidity and inertia, but neglecting the damping of the 

cable 
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Figure 3.20  Displacement time histories of equipment items in the connected system, 

including the flexural rigidity, inertia and damping of the cable 
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Figure 3.21  Response ratios for five earthquakes as functions of the interaction 

parameter neglecting the flexural rigidity, inertia and damping of the 

cable 
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Figure 3.22  Response ratios for five earthquakes as functions of the interaction parameter, 

including the flexural rigidity and inertia of the cable with zero damping 
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Chapter 4 Summary and Recommendations 
for Further Study 

4.1  Summary 

The main results of the study can be summarized as follows: 

(a) An elasto-plastic, large deformation finite element model of the flexible strap con-

nector (FSC) was developed and used to predict the cyclic behavior of the a rigid bus 

(RB) -FSC system under imposed quasi-static cyclic displacement.  The predictions 

are in reasonably close agreement with the results of tests conducted at the University 

of California at San Diego (UCSD).   More accuracy in the characterization of the 

material can be achieved if cyclic test results of the material coupon are available.  

Under large deformations, the bars and straps of the FSC develop contacts and slip-

page under friction forces.  These effects are not included in the current finite element 

model.  A refined model including these effects is expected to provide more accurate 

predictions.  Such a refined model can be used in the future to predict the behavior of 

other FSC configurations to large cyclic deformations, thus avoiding costly experi-

ments. 

(b) An analytical model of the hysteretic behavior of the RB-FSC is developed by use of 

a modified version of the well known Bouc-Wen differential representation.  This 

model is subsequently used for dynamic analysis of two equipment items connected 

by an RB-FSC conductor.  Time history analysis for two recorded earthquake ground 

motions are carried out to determine the effects of interaction on each equipment 

item.  Separate analyses are performed to investigate the influences of the flexibility 

and energy dissipation characteristics of the FSC on the interaction effect.  The re-

sults show that the flexibility and energy dissipation characteristics of the FSC sig-
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nificantly reduce the adverse interaction effect, particularly on the higher-frequency 

equipment item.   Reasonably good agreement with experimental results is achieved. 

(c) For the flexible cable conductor, which is made of braided aluminum wire strands, a 

finite element model using elastic frame elements and a Lagrangian formulation is 

developed that accounts for large displacements and rotations.  Comparisons with ex-

isting experimental results for conductor cables subjected to imposed harmonic sup-

port displacements are made.  Qualitative agreement between the analytical and ex-

perimental results is obtained, but large differences in the force magnitudes occur.  

These differences are attributed to prevailing uncertainties associated with determin-

ing the rigidity and damping characteristics of the cable and its initial shape.  Never-

theless, the analytical predictions verify the important experimental finding that cable 

forces can be magnified by several orders of magnitude when the cable is subjected to 

imposed harmonic end displacement of certain amplitude and frequency.  

(d) The finite element model of the cable is used to investigate the effect of interaction in 

a combined system consisting of two equipment items connected by a conductor ca-

ble.   Detailed time history results are presented for the Newhall record of the North-

ridge earthquake, where separate analyses are performed to demonstrate the influ-

ences of the cable flexural rigidity, inertia and damping on the interaction effect.  

These influences are found to be rather mild, certainly not nearly as large as had been 

anticipated by previous investigators based on the experiments mentioned above. 

(e) Extensive time history analyses are carried out for five different recorded ground mo-

tions and for varying cable slackness to determine the effect of interaction on each 

connected equipment item as a function of an interaction parameter.   Based on this 

study, a recommendation for the minimum cable length to avoid the adverse effect of 

interaction is formulated.  This formulation now accounts for the effects of cable 

flexural rigidity and inertia, but not damping.  Since no accurate information regard-

ing the cable damping is currently available, for the sake of conservatism the above 

recommendation was formulated assuming zero damping in the cable. 
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4.2  Recommendations for Further Study 

In light of the results obtained in the present study, we recommend consideration of the 

following topics for further study: 

(a) Develop a more refined finite element model of the flexible strap connector that ac-

counts for the contact and friction between the bars and straps.   Similar models can 

be developed for the slider connector, as well as for other connectors of different ge-

ometry.  With such refinement, accurate prediction of the behavior of flexible con-

nectors under large cyclic deformations can be made by finite element analysis, ac-

counting for both material and geometric nonlinearities and for the contact and fric-

tion effects, thus avoiding costly experiments that so far have been necessary.  This 

approach can also be used to explore new designs of the connecting element that are 

aimed at improving its seismic performance or electrical function. 

(b) Conduct experiments and develop analytical models to better characterize the flexural 

rigidity and energy dissipation of conductor cables that are made of braided wire 

strands.  Finite element models should be developed that account for the slippage of 

the strands against each other under friction forces.  These effects should be related to 

the deformation and force in the cable, so that variation of properties along the cable 

can be determined.  With such refined models, it should be possible to accurately 

predict the dynamic behavior of conductor cables under imposed end displacements, 

for which experimental results are available.  It is believed that results from such 

analysis will be of interest in determining the response of transmission cables sub-

jected to earthquake and wind loading. 

(c) The recommendation for the minimum cable length to avoid the adverse effect of in-

teraction formulated in this study is preliminary in nature.  This is because we are un-

certain about the effective values of cable rigidity and damping.  For the sake of con-

servatism, we have used zero cable damping to develop the present recommendation.  

Furthermore, the investigation so far has considered only five recorded ground mo-

tions.  Since the response is highly nonlinear and strongly sensitive to the details of 

the ground motion, a broader set of records should be investigated before a final rec-
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ommendation can be made.  Study item (b) listed above will also allow us to re-

examine this recommendation with a more refined characterization of the cable prop-

erties. 

(d) Throughout this study we have used a deterministic method of analysis with specifi-

cally selected ground motions.  Ideally, a random vibration approach should be used 

to properly account for the variability present in the ground motion.  Such a study can 

be conducted with relative ease by use of the analytical hysteresis model developed 

for the RB-FSC in this study.  For the cable-connected system, the nonlinear random 

vibration problem can be considerably more difficult.    
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