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ABSTRACT

In this report the development and validation of a simple yet dependable method to estimate the

seismic response of freeway overcrossings is presented. The proposed method adopts the sub-

structure approach to address the issue of soil-foundation-superstructure interaction. The various

steps of the method are validated with scarce historic records and are compared with the results

obtained by other investigators.

Recognizing that soil-structure interaction affects appreciably the earthquake response of

highway overcrossings, Chapter 2 concentrates on the calculation of the kinematic response func-

tions and dynamic stiffnesses of the approach embankments. It is shown that the shear-wedge model

yields dependable estimates for the amplification functions of typical embankments. The shear-

wedge model is extended to a two-dimensional model in order to calculate the transverse static

stiffness of an approach embankment loaded at one end. The formulation reveals a sound closed-

form expression for the critical length, Lc, that is the ratio of the transverse static stiffness of an

approach embankment and the transverse static stiffness of a unit-width wedge. It is shown through

examples that the transverse dynamic stiffness (“spring” and “dashpot”) of the approach embank-

ment can be estimated with confidence by multiplying the dynamic stiffnesses of the unit-width

wedge with the critical length, Lc. The study also shows that the values obtained for the transverse

kinematic response function and dynamic stiffness can also be used with confidence to represent

the longitudinal kinematic response function and dynamic stiffness, respectively.

The dynamic stiffness of piles and pile groups is revisited in Chapter 3 where an existing

methodology is employed to determine the group effect. Chapter 4 concentrates on the computation

of bridge response quantities. The analysis is conducted in the time domain using either an elemen-

tary stick model or a more sophisticated finite element formulation to discretize the bridge super-

structure. All dynamic stiffnesses of approach embankments and pile groups are approximated

with frequency-independent springs and dashpots that have been established in chapters 2 and 3. A

real eigenvalue analysis confirms the one-to-one correspondence between modal characteristics

obtained with the three-dimensional finite element solutions and the result of the simpler stick-

model idealizations. A complex eigenvalue analysis reveals modal damping values in the first six

modes of interest and shows that realistic damping ratios assume values much higher than those

used by Caltrans. The efficiency of the proposed method is validated by comparing the computed

time response quantities with records from the Meloland Road and the Painter Street overcrossings

located in southern and northern California, respectively. The proposed procedure allows for inex-

pensive parametric analysis that examines the importance of considering soil-structure interaction

at the end abutments and center bent. Results and recommendations presented by past investiga-

tions are revisited and integrated in comprehensive tables that improve our understanding of the
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dynamic characteristics and behavior of freeway overcrossings. The study concludes with a step-

by-step methodology that allows for a simple, yet dependable dynamic analysis of freeway

overcrossings that involves a stick model and frequency-independent springs and dashpots.



v

ACKNOWLEDGMENTS

Partial financial support for this study was provided by the National Science Foundation under

Grant CMS-9696241. The valuable input and comments of Dr. Tim Delis are appreciated.

This work made use of Pacific Earthquake Engineering Research Center shared facilities

supported by the Earthquake Engineering Research Center Program of the National Science Foun-

dation under award number EEC-9701568.



vii

CONTENTS

ABSTRACT ................................................................................................................................ iii

ACKNOWLEDGMENTS ............................................................................................................. v

TABLE OF CONTENTS ............................................................................................................ vii

LIST OF FIGURES ...................................................................................................................... ix

LIST OF TABLES ....................................................................................................................... xv

CHAPTER 1: INTRODUCTION .............................................................................................. 1

1.1 Background ......................................................................................................... 1

1.2 Soil-Structure Interaction.................................................................................... 4

CHAPTER 2: KINEMATIC RESPONSE FUNCTIONS AND DYNAMIC STIFFNESSES
OF BRIDGE EMBANKMENTS ....................................................................... 9

2.1 Considerations for Response Analysis ............................................................... 9

2.2 Kinematic Response Functions ........................................................................ 10
2.2.1 The Shear Beam Approximation .......................................................... 11
2.2.2 Finite Element Analysis ....................................................................... 20
2.2.3 Kinematic Response Functions ............................................................ 22
2.2.4 Validation of Method     Crest Response .............................................. 25
2.2.5 Summary of Procedure to Compute the Kinematic Response

Functions of Embankments .................................................................. 35

2.3 Dynamic Stiffnesses ......................................................................................... 38
2.3.1 Resilience of Abutments ...................................................................... 38
2.3.2 The Shear Beam Approximation .......................................................... 40
2.3.3 Finite Element Analysis ....................................................................... 43
2.3.4 Estimation of Critical Length L

c
..........................................................50

2.3.5 Summary of Procedure to Compute the Spring and Dashpot Values
of Bridge Embankments ....................................................................... 53

CHAPTER 3: DYNAMIC STIFFNESSES OF PILE FOUNDATIONS ................................. 57

3.1 Input Motion at Pile Caps ................................................................................. 57

3.2 Dynamic Stiffnesses of Single Pile ................................................................... 58
3.2.1 Lateral Dynamic Stiffness of a Single Pile ........................................... 58
3.2.2 Vertical and Rocking Dynamic Stiffnesses of a Single Pile ................. 61

3.3 Dynamic Stiffnesses of Pile Group................................................................... 63
3.3.1 Lateral Dynamic Stiffness of Pile Group ............................................. 63
3.3.2 Vertical and Rocking Dynamic Stiffnesses of Pile Group.................... 66
3.3.3 Spring and Dashpot Values of the Pile Foundations of the

Meloland Road Overcrossing and the Painter Street Overcrossing ..... 67



viii

3.4 Equivalent Flexural-Shear Beam ...................................................................... 77

3.5 Summary of Procedure to Compute the Spring and Dashpot Values
 of Pile Foundations .......................................................................................... 79

CHAPTER 4: PREDICTION OF THE SEISMIC RESPONSE OF HIGHWAY
OVERCROSSINGS ......................................................................................... 81

4.1 Response of the Meloland Road Overcrossing................................................. 81
4.1.1 Eigenvalue Analysis ............................................................................. 84
4.1.2 Time History Analysis .......................................................................... 92

4.2 Response of the Painter Street Overcrossing .................................................. 100
4.2.1 Eigenvalue Analysis ........................................................................... 100
4.2.2 Time History Analysis ........................................................................ 108

4.3 Outline of Proposed Procedure ....................................................................... 117

CHAPTER 5: CONCLUSIONS ............................................................................................ 119

REFERENCES .......................................................................................................................... 123



ix

LIST OF FIGURES

Figure 1.1 General procedure for seismic soil-foundation-superstructure interaction .............. 5

Figure 1.2 Schematic of a highway overcrossing and its idealized model ................................ 7

Figure 2.1 Cross section of infinitely long embankment (top); Isoparametric view of
approach embankment (center); geometrical and material characteristics of
embankments of three instrumented bridges in California (bottom) ..................... 12

Figure 2.2 Characteristic function (top) and first and second transverse modes (center and
bottom) of shear-wedge model with variable cross sections ................................. 14

Figure 2.3 First natural frequency of prismatic embankment ................................................. 15

Figure 2.4 Normalized soil shear modulus and damping coefficient (��2�) as a function
of shear strain ......................................................................................................... 17

Figure 2.5 Crest total acceleration, relative velocity, and relative displacement time
histories computed with shear-beam approximation for Meloland Road
Overcrossing embankment (G=2.0MPa, ��0.52 ) ............................................... 19

Figure 2.6 Strain time histories at base, center, and near top of Meloland Road
Overcrossing soil embankment computed with Rayleigh damping
approximation (G = 2.0MPa, �= 0.52, � = 2.3057, and  �=2.9312x10-2 ) ............ 21

Figure 2.7 Strain time histories at base, center, and near top of Painter Street Overcrossing
soil embankment computed with Rayleigh damping approximation
(G= 8.0MPa, � = 0.50, � = 3.6461, and  �= 1.7140x10-2) .................................... 23

Figure 2.8 Kinematic response functions of Meloland Road Overcrossing embankment
(left) and Painter Street Overcrossing embankment (right) ................................... 24

Figure 2.9 Elevation and plan views of Meloland Road Overcrossing along with locations
of accelerometers ................................................................................................... 26

Figure 2.10 Recorded acceleration time histories at free field (left), north embankment
(center),and south embankment (right) of Meloland Road Overcrossing
during 1979 Imperial Valley earthquake ................................................................ 27

Figure 2.11 Transverse crest response of Meloland Road Overcrossing embankment computed
with shear-beam approximation (left), two-dimensional finite element method
(center), and three-dimensional finite element method (right) .............................. 29

Figure 2.12 Longitudinal crest response of Meloland Road Overcrossing embankment com-
puted with shear-beam approximation (left), three-dimensional prismatic
geometry (center), and three-dimensional tapered geometry (right) ...................... 30

Figure 2.13 Elevation and plan views of Painter Street Overcrossing along with locations of
accelerometers ........................................................................................................ 32



x

Figure 2.14 Recorded acceleration time histories at free field (left), west embankment
(center), and east embankment (right) of Painter Street Overcrossing during
1992 Petrolia earthquake ........................................................................................ 33

Figure 2.15 Idealized soil profiles that emerged from refraction surveys (Heuze and
Swift 1991) ............................................................................................................. 34

Figure 2.16 Transverse crest response of Painter Street Overcrossing embankment computed
with shear-beam approximation (left), two-dimensional finite element method
(center), and three-dimensional finite element method (right) .............................. 36

Figure 2.17 Longitudinal crest response of Painter Street Overcrossing embankment
computed with shear beam approximation (left), three-dimensional prismatic
geometry (center) and three-dimensional tapered geometry (right) ....................... 37

Figure 2.18 Unit-width finite wedge (top) and infinitely tall wedge (bottom) .......................... 41

Figure 2.19 Transverse dynamic stiffnesses of shear-wedge model and solution of two-
dimensional finite element formulation. Left: finite wedge on rigid support;
Right: infinitely tall wedge. Material and geometrical properties are those of
Meloland Road Overcrossing (G = 2MPa, � = 0.52, z

0
 = 2.59m, H = 7.92m,

and B
c
 = 10.36m) ................................................................................................... 44

Figure 2.20 Transverse dynamic stiffnesses of shear-wedge model and solution of two-
dimensional finite element formulation. Left: finite wedge on rigid support;
Right: infinitely tall wedge. Material and geometrical properties are those of
Painter Street Overcrossing (G = 8MPa, � = 0.50, z

0
 = 3.81m, H = 9.6m, and

B
c
 = 15.24m) .......................................................................................................... 45

Figure 2.21 Transverse and longitudinal loading imposed to obtain dynamic stiffness of
approach embankment with material properties, G and �, supported on
halfspace with material properties, Gh and �h ........................................................ 47

Figure 2.22 Dynamic stiffnesses of approach embankment of Meloland Road Overcrossing
(G = 2.0MPa, � = 0.52). Spring and dashpot values shown in Figure 1.1 are
extracted by multiplying values shown above with width of embankment, B

c
.

Stiffness and damping values along longitudinal (y) direction are equal to those
of transverse direction ............................................................................................ 48

Figure 2.23 Dynamic stiffnesses of approach embankment of Painter Street Bridge
(G = 8.0MPa, � = 0.50). Spring and dashpot values shown in Figure 1.1 are ex-
tracted by multiplying values shown above with width of embankment, B

c
.

Stiffness and damping values along longitudinal (y) direction are equal to those
of transverse direction ............................................................................................ 49

Figure 2.24 Free-body diagram of a section of a long embankment under transverse loading
at one end ............................................................................................................... 51

Figure 2.25 Critical-length parameter, )HSBk( K cxx
ˆ/=�  for various geometries ................ 54



xi

Figure 3.1 Comparison of storage (real part) and loss (imaginary part) stiffness factors
along horizontal direction obtained with approximate analytical method (dashed
lines) against rigorous solution of Kaynia and Kausel (solid line) for single pile
(top) and 3 by 3 square group with rigid pile cap and pile spacing,
S/d = 5 (bottom). E

p
 /E

s 
=1000, �

p
 / �

s
 = 1.42,  L / d = 15, �

s
 = � / 2 = 0.05,

� = 0.4, homogeneous halfspace ............................................................................ 59

Figure 3.2 Comparison of storage (real part) and loss (imaginary part) stiffness factors
along the vertical direction obtained with approximate analytical method
(dashed lines) against rigorous solution of Kaynia and Kausel (solid line) for
single pile (top) and 3 by 3 square group with rigid pile cap and pile spacing,
S/d = 5 (bottom). Ep /Es =1000, �p /�s = 1.42,  L / d = 15, �s = � / 2 = 0.05,
� = 0.4, homogeneous halfspace ............................................................................ 64

Figure 3.3 Cross-section view of Meloland Road Overcrossing and plan view of pile group
at center bent .......................................................................................................... 68

Figure 3.4 Plan view of pile groups at south and north abutments of Meloland Road
Overcrossing .......................................................................................................... 69

Figure 3.5 Cross-section view of Painter Street Overcrossing and plan view of pile group
at center bent .......................................................................................................... 70

Figure 3.6 Plan view of pile groups at west and east abutments of Painter Street
Overcrossing .......................................................................................................... 71

Figure 3.7 Dynamic stiffnesses of single pile and pile group at center bent of Meloland
Road Overcrossing ................................................................................................. 72

Figure 3.8 Dynamic stiffnesses of single pile and pile group at center bent of Painter Street
Overcrossing .......................................................................................................... 73

Figure 3.9 Dynamic stiffnesses of single pile and pile group at abutments of Meloland
Road Overcrossing ................................................................................................. 74

Figure 3.10 Dynamic stiffnesses of single pile and pile group at west abutment of Painter
Street Overcrossing ................................................................................................ 75

Figure 3.11 Dynamic stiffnesses of single pile and pile group at east abutment of Painter
Street Overcrossing ................................................................................................ 76

Figure 4.1 Numerical models of Meloland Road Overcrossing (Top: stick model; Bottom:
3D finite element model) ....................................................................................... 82

Figure 4.2 First six natural frequencies and modes computed by stick model (left) and
3D FEM model (right) of Meloland Road Overcrossing ....................................... 85

Figure 4.3 Fourier amplitude of recorded accelerations of channels 7, 8, 9, and 13 of
Meloland Road Overcrossing................................................................................. 91



xii

Figure 4.4 Records of channel 7 and predictions of Meloland Road Overcrossing response
considering different support motions ....................................................................93

Figure 4.5 Records of channel 8 and predictions of Meloland Road Overcrossing response
considering different support motions ....................................................................94

Figure 4.6 Records of channel 9 and predictions of Meloland Road Overcrossing response
considering different support motions ....................................................................95

Figure 4.7 Records of channel 13 and predictions of Meloland Road Overcrossing response
considering different support motions ....................................................................96

Figure 4.8 Bridge models with different support idealizations ................................................97

Figure 4.9 Records of channel 7 and predictions of Meloland Road Overcrossing response
considering different support idealizations .............................................................98

Figure 4.10 Records of channel 9 and predictions of Meloland Road Overcrossing response
considering different support idealizations .............................................................99

Figure 4.11 Numerical models of Painter Street Bridge (Top: stick model; Bottom: 3D finite
element model) ......................................................................................................101

Figure 4.12 First six natural frequencies and modes computed by stick model (left) and
3D FEM model (right). Values in parentheses are those reported by McCallen
and Romstad (1994) ..............................................................................................102

Figure 4.13 Fourier amplitude of recorded accelerations of channels 4, 7, 9, and 11 of Painter
Street Bridge .........................................................................................................107

Figure 4.14 Records of channel 4 and predictions of Painter Street Overcrossing response
considering different support motions ..................................................................109

Figure 4.15 Records of channel 7 and predictions of Painter Street Overcrossing response
considering different support motions .................................................................. 110

Figure 4.16 Records of channel 9 and predictions of Painter Street Overcrossing response
considering different support motions .................................................................. 111

Figure 4.17 Records of channel 11 and predictions of Painter Street Overcrossing response
considering different support motions .................................................................. 112

Figure 4.18 Records of channel 4 and predictions of Painter Street Overcrossing response
considering different support idealizations ........................................................... 113

Figure 4.19 Records of channel 7 and predictions of Painter Street Overcrossing response
considering different support idealizations ........................................................... 114

Figure 4.20 Records of channel 9 and predictions of Painter Street Overcrossing response
considering different support idealizations ........................................................... 115



xiii

Figure 4.21 Records of channel 11 and predictions of Painter Street Overcrossing response
considering different support idealizations ........................................................... 116



xv

LIST OF TABLES

Table 2.1 Comparisons of estimated abutment/embankment stiffnesses .............................. 39

Table 3.1 Spring and dashpot values of the pile groups of interest ....................................... 77

Table 4.1 Spring and dashpot values that approximate the presence of the approach
embankments and pile foundation of the Meloland Road Overcrossing.
Values from this study are associated with the intensity of the 1979 Imperial
Valley earthquake ................................................................................................... 83

Table 4.2 Modal frequencies, 	j  (rad/s), and damping ratios, � j  (%), of the Meloland
Road Overcrossing ................................................................................................. 89

Table 4.3 Spring and dashpot values that approximate the presence of the approach
embankments and pile foundations of the Painter Street Overcrossing.
Values from this study are associated with the intensity of the 1992
Petrolia earthquake .............................................................................................. 104

Table 4.4 Modal frequencies, 	
j
 (rad/s), and damping ratios, �

j
 (%), of the Painter

Street Overcrossing .............................................................................................. 106



1

1 Introduction

1.1 BACKGROUND

Over the last thirty years several highway overcrossings have experienced severe damage under

strong ground shaking. Most of this damage was the result of excessive seismic displacements

and deflections that have been substantially underestimated during design. Such design deficien-

cies appear to be the result of dated design concepts, which typically considered a small fraction

of the actual forces and displacements that develop on bridges during strong earthquake shaking.

A direct consequence of the underestimated seismic displacements, which were the combined

result of poor representation of the kinematic characteristics of the ground, low lateral forces, and

overestimated stiffnesses, was that the seating length at the deck supports was unrealistically short

and the lateral separations between adjacent structures were typically inadequate, resulting in loss

of support or pounding (Maragakis and Jennings 1987). These geometrical inconsistencies

resulted in spectacular failures that have been witnessed during the recent 1989 Loma Prieta and

the 1994 Northridge earthquakes in California and the 1995 Kobe earthquake in Japan. In addition

to failures that are the result of geometric inconsistencies (limited seating length, pounding-abut-

ment slumping), several bridges failed due to inadequate strength and ductility in their columns,

cap-beams, and foundations (Priestley et al. 1996).

In view of these failures, many research programs were launched after the 1971 San

Fernando earthquake to study the seismic resistance of highway bridges. Improvements have been

achieved in both design and analysis of bridge structures with the help of strong-motion records.

Extensive retrofit programs have been implemented in California, which include jacketing of col-

umns and the use of composite materials (FHWA 1995).

An alternative strategy for the seismic protection of bridges that the California Depart-

ment of Transportation (Caltrans) is currently investigating is the implementation of devices such
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as isolation bearings and supplemental dampers. Several bridges worldwide are equipped with

seismic protection devices (Skinner et al. 1993). The increasing need for safer bridges in associa-

tion with the rapid success of seismic protection devices in buildings has accelerated the imple-

mentation of large-capacity damping devices in bridges (Delis et al. 1996). Typically bridges and,

in particular, freeway overcrossings are more sensitive than buildings to soil-structure interaction,

yet the potentially important effects of soil-structure interaction are often downplayed or occa-

sionally neglected even in relatively sophisticated studies that consider the implementation of

modern technologies. These concerns and conclusions from system identification studies that

indicate that once damping is beyond 20% of critical its effect is marginal even if it is augmented

to 40% (Wilson and Tan 1990a,b), generated the need for a comprehensive study that will eluci-

date the effectiveness of supplemental damping in freeway overcrossings.

The motivation for this study did not originate from a lack of published material on the

seismic response of freeway overcrossings but rather from an abundance of publications, the vast

numbers of which present findings that are scattered, occasionally conflicting, and derived from

various methodologies that in many occasions have little in common. As a result, despite several

existing recommendations (Werner 1994; Goel and Chopra 1997, among others) there is no estab-

lished procedure that results in a dependable estimate of the seismic response of freeway over-

crossings, partly because the findings of the below-mentioned studies have not been combined in

a rational manner that will result in a systematic analysis procedure.

Most of the work published on this class of bridge structures was motivated from the

availability of strong-motion response data from two representative bridges which have been

instrumented by the Strong Motion Instrumentation Program (SMIP) of the California Division of

Mines and Geology. The two representative bridges are the Meloland Road Overcrossing that was

subjected to the 1979 Imperial Valley earthquake and the Painter Street Bridge that was subjected

to the 1992 Petrolia earthquake.

In this report we also use the data from these two aforementioned overcrossings to

develop and validate a step-by-step simple, yet sound, procedure to estimate the seismic response

of freeway overcrossings. Our goal is not to derive another isolated study, but rather to build on

the work of others. Many past publications are used in this study to validate deformation levels,

material parameters, and response quantities. Agreements between our results and those of other

investigators further establish the dependability of the proposed procedure, while discrepancies in

response quantities have been the motivation for the additional studies presented herein.
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The seismic response of freeway overcrossings received distinct attention in the late

1980s. Maragakis and Jennings (1987) introduced the “stick model” enhanced with bilinear

“springs” and “dashpots” at its support to study the motion of skew overpasses. While their model

accounted for several practical difficulties such as the presence of elastometric pads and the gap

between the deck and the back wall, the estimation of model parameters was presented in a hasty

manner. Werner et al. (1987) developed a system identification methodology to extract informa-

tion from an array of strong-motion measurements that were recorded in the vicinity of the

Meloland Road Overcrossing during the 1979 Imperial Valley earthquake. Their conclusions

emphasized the ability of linear models to fit the measured response and the pronounced effects

that the approach embankments and foundations have on the response of the bridge. Although

their paper identifies relatively low values of modal damping for the bridge-foundation system

( to 8%), a later publication by Werner (1994) indicates modal damping ratios ranging

from 19% to 26%. About the same time, Crouse et al. (1987) conducted experimental and analyt-

ical studies to determine the significance of soil-structure interaction on the response of a single

span overcrossing with monolithic abutments on spread footings. The small displacement gradi-

ent generated from the ambient quick-release and forced-vibration tests resulted in small values of

damping and large values of stiffness that are not representative under earthquake loading. The

present report essentially builds on and extends the work of Wilson and Tan (1990a, b), Werner

(1994), Goel and Chopra (1997), McCallen and Romstad (1994) and Makris et al. (1994).

Wilson and Tan (1990a) was the first study that presented a simple analytical model to

estimate the static transverse and vertical stiffnesses of approach embankments of typical short-

and medium-span highway bridges. Their closed-form expressions that account for the sloped

geometry of the embankment provide a realistic estimate of the static stiffnesses of a unit-width

wedge and are consistent with the shear-wedge model that can be easily used to estimate the

amplification functions of approach embankments. Their study, however, did not provide any

information on the embankment stiffnesses along the longitudinal direction nor any information

on the embankment damping in any direction. Furthermore, in their companion paper (Wilson and

Tan 1990b) while initial calculations resulted in a soil shear modulus as low as ,

subsequent values of the embankment stiffnesses are calculated using a shear modulus value as

high as (three times larger). In this report, the concept of the shear-wedge model

established by Wilson and Tan (1990a,b) is utilized to develop kinematic response functions and

dynamic stiffnesses (stiffness and damping) of the approach embankments. A dependable estima-

ξi 6%=

G 2.4MPa=

G 7.2MPa=
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tion of the crest response not only allows for a more appropriate support motion at the end abut-

ments but also reveals realistic levels of dynamic strains which are subsequently used to estimate

the stiffness and damping coefficients of embankments.

The work of S. D. Werner and others on two-span short bridge overcrossings was summa-

rized in a paper in an effort to evaluate Caltrans procedures for seismic response analysis of free-

way overcrossings (Werner 1994). That study underlined the significance of soil-structure

interaction and offered selected recommended values on some modal parameters. Emphasis was

given to the transverse response of the bridge. As in the Wilson and Tan (1990a) study, the Werner

(1994) study did not provide any information on the embankment stiffnesses and damping along

the longitudinal direction. Information on modal response quantities was limited to the first trans-

verse mode only. Despite its limitations and occasional sweeping statements, the Werner (1994)

study identifies several of the challenges associated with this problem. This study revisits the

Werner (1994) paper by refining and extending several of the concepts advanced therein.

The development of realistic values of kinematic response functions and dynamic stiff-

nesses of the approach embankments and pile foundations (which are also presented in this

report) are used to synthesize a simple dynamic model to estimate the dynamic response of free-

way overcrossings. The numerical simulations that employ a simple stick model and a more

sophisticated finite element model build on the work presented by McCallen and Romstad (1994).

Nevertheless, the methodology presented in this study adopts the substructure approach, where

the kinematic response functions and dynamic stiffnesses are computed separately and subse-

quently are incorporated in a simple dynamic model where the mechanical behavior of each of its

components can be calculated with any desired level of sophistication.

Lastly, the structural characteristics that we compute for the Painter Street Overcrossing

are compared with those reported by Goel and Chopra (1997), who employed an equilibrium-

based approach to back-figure abutment stiffnesses at different levels of shaking. The follow-up

work of Goel (1997) is also used to compare the estimated values of modal periods and damping

ratios of the entire bridge-foundation system.

1.2 SOIL-STRUCTURE INTERACTION

Figure 1.1(a) shows the schematic of a typical two-span overcrossing with its approach embank-

ments. During ground shaking the dynamic response of the deck is affected: (a) from the dynamic
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Figure 1.1. General procedure for seismic soil-foundation-superstructure interaction
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response of the embankments that support the end abutment and (b) from the dynamic response of

the pile foundations at the center bent. The need to account for this interaction motivated finite

element studies that involved the discretization of the bridge superstructure and a large volume of

the embankments and supporting soil (Sweet 1993; McCallen and Romstad 1994 among others).

Although such studies elucidated the significance of deck-abutment-embankment interaction,

they do not provide direct information on the distinct mechanical characteristics of approach

embankments and pile foundations and their influence on the dynamic response of the bridge

structure. This might be a possible reason for the lack of practical procedures to account for soil-

structure interaction when computing the seismic response of freeway overcrossings. This report

concentrates on addressing the issue of the importance of soil-structure interaction on the seismic

response of freeway overcrossings and presents practical methodologies to include its effect in

association with simple bridge models.

Owing to its computational efficiency the substructure method is a popular approach to

address the soil-foundation-superstructure problem (Tseng and Penzien 2000). Assuming linear

soil-foundation-superstructure response, the analysis of the system can be performed in three con-

secutive steps as shown in Figure 1.1. First, find the motion at the end abutments and pile cap of

the center bent in the absence of the bridge superstructure (the so-called foundation input motion),

which includes translational as well as rotational components; second, determine the dynamic

stiffnesses (frequency dependent springs and dashpots) associated with longitudinal, transverse,

vertical, rocking and cross-horizontal-rocking oscillations of the embankments and pile groups;

third, compute the seismic response of the superstructure (deck and abutments) supported on

springs and dashpots and subjected to the foundation input motion.

An earlier attempt to investigate the effect of soil-pile-structure interaction was presented

by Makris et al. (1994). In that study the Painter Street Overcrossing was idealized with a plane

six-degree-of-freedom lumped-parameter model, whereas the influence of the approach embank-

ments was neglected. The limitations of the plane model restricted the analysis of the response

only along the transverse direction. Despite its limitations, the study indicates some of the short-

comings that may result by neglecting the resilience of the pile foundations at the center bent and

outlines a simple integrated procedure that one can follow in order to compute the stiffnesses and

damping of pile foundations. The same procedure was adopted and extended in this study which

examines the two-dimensional coupled longitudinal and transverse response of highway over-

crossings. Figure 1.2 shows the elevation and plan views of the model adopted in this study and
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Figure 1.2. Schematic of a highway overcrossing and its idealized model

(a) Real System

(b) Elevation View of Idealized Model

(c) Plan View of Idealized Model
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the springs and dashpots that are proposed to approximate the interaction of the bridge superstruc-

ture with its foundation and the surrounding soil.
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2 Kinematic Response Functions and Dynamic
Stiffnesses of Bridge Embankments

2.1 CONSIDERATIONS FOR RESPONSE ANALYSIS

Understanding of the dynamic response of embankments has been substantially advanced due to a

large number of studies on the seismic response of earth dams (Chopra 1967). During the last two

decades a considerable amount of published research has focused on refining, expanding and ver-

ifying the basic dynamic models developed in the 1960s for predicting the seismic response of

earth dams and embankments. As a result several improved analytical models have appeared by

which parametric studies have been performed to elucidate the importance of dam geometry and

material inhomogeneity (Dakoulas and Gazetas 1985, 1986). Many of these early studies con-

ducted limit state analysis on the stability of embankments or concentrated on the dependability

of proposed liquefaction procedures. The behavior of bridge embankments at their limit states is

beyond the scope of this report.

In this chapter we focus on developing dependable amplification functions, together with

springs and dashpots that can replace the presence of the bridge embankments with various geom-

etries. It is well known from experimental studies (Romstad et al. 1995) and theoretical consider-

ations (Siddharthan et al. 1997, among others) that the behavior of bridge abutments is

increasingly nonlinear as displacement increases. Nevertheless, analytical studies on recorded

motions have indicated that even under strong earthquake motion the force-displacement loops of

bridge abutments resemble elliptical shapes (Goel and Chopra 1997). Earlier studies that were

based on a system identification methodology indicated that linear models provide a good fit with

the measured response of a bridge (Werner et al. 1987). Such observations indicate that even for
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the design earthquake an equivalent linear analysis can provide dependable estimates of the

bridge response.

Strong-motion records near and on highway overcrossings revealed that the crest motion

of the approach embankment can be more than two times the motion recorded near the pile cap of

the center bent (Maroney et al. 1990), indicating that the kinematic response of embankments

might have a substantial effect on the bridge response. No established procedures are presently

available to account for this amplification. Current design procedures used by Caltrans (1989)

assume only an equivalent linear distributed spring to approximate the resilience of the embank-

ment without considering the energy absorbed by the embankment and the overall dynamic nature

of the problem. Apparently, the evaluation of such quantities is not of prime interest when a tradi-

tional design is adopted, since the entire design philosophy is based on strength. When, however,

the evaluation of displacements is of prime interest, a more detailed analysis is needed, since it

has been stressed by several researchers that the effect of soil-structure interaction is increasingly

important as the intensity of the ground shaking increases.

The numerical study presented herein is conducted within the context of equivalent linear

viscoelasticity and is based on a three-dimensional (3-D) finite element analysis that is partly used

to validate the dependability of approximate transfer functions and dynamic stiffnesses computed

with the shear-wedge model. The proposed transfer functions, springs and dashpots, are expected

to improve the estimation of displacements and forces that develop at the end abutments. It is

shown that the presented formulation provides dependable estimates of the response even under

larger abutment displacements when the soil of the embankment is strained in the nonlinear range.

Evaluation of realistic energy dissipation levels together with the resilience of the embankments

will provide more dependable indications on the need to equip overcrossings with supplemental

dampers.

2.2 KINEMATIC RESPONSE FUNCTIONS

The approach earth embankments on many highway overcrossings usually have a length that is

several times larger than the dimension of the trapezoidal cross section of the embankment. Typi-

cal approach embankments of highway overcrossings extend 150 m or more beyond each end
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abutment of the bridge. Because of this geometry several researchers have adopted a two-dimen-

sional (2-D) plane-strain idealization to derive approximate response quantities.

2.2.1 The Shear Beam Approximation

Sixty years ago, Mononobe (1936) was perhaps the first to consider that earth dams and embank-

ments are deformable bodies, and introduced the ingredients of what has come to be called the

“shear-wedge” or the “shear-beam” model. This concept has served as the basis for many of the

newly developed models and has been revisited in detail in the review paper by Gazetas (1987). In

this section the shear-wedge or the shear-beam model is discussed briefly to show the advantages

and limitations of a one-dimensional (1-D) approximation when applied to three-dimensional

approach embankments.

Figure 2.1 (top) represents the cross section of an infinitely long embankment subjected to

a horizontal rigid-base excitation, , under the condition of plane strain deformations. Assum-

ing that only horizontal shearing deformations develop and that horizontal displacements are uni-

form across the embankment ( are independent of ), the dynamic equilibrium of a slice of

the embankment gives

(2.1)

where and are the density and the shear modulus of the soil material of the embankment.

In general the shear modulus, , is a function of . For instance, a reasonable assumption is

to assume that is proportional to the square root of the confining pressure (Gazetas 1987).

In this study the shear modulus of the embankment has been assumed to be a constant.

Under free vibrations ( ), the solution of equation (2.1) gives the free vibration

characteristics of the shear-wedge. The natural frequencies, , are given by

(2.2)

where , is the shear-wave velocity of the soil material and is the nth wave number

that is obtained from the solution of the characteristic equation

(2.3)

The value of the constant depends on the geometry of the embankment. In the general case of

an unsymmetrical embankment, ; whereas in the case of a symmetric embank-
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Figure 2.1. Cross section of infinitely long embankment (top); isoparametric view of approach

embankment (center); geometrical and material characteristics of embankments of three instru-

mented bridges in California (bottom)
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ment with slope , . is the crest width and is the height of the embankment. The

geometrical characteristics of three approach bridge embankments of interest, two of which have

been instrumented and subjected to strong shaking are shown in Figure 2.1 (bottom). In equation

(2.3) , , , and are the zero- and first-order Bessel functions of the first and second kind

respectively (Abramowitz and Stegun 1970). The mode shapes are given by

(2.4)

Figure 2.2 plots the characteristic function (top) together with the first (center) and second (bot-

tom) mode of a symmetric wedged beam for different values of the slope, . Figure 2.3 compares

the shear-wedge solution for the first undamped natural frequency of trapezoidal embankments

with various slopes with the 2-D finite element solution that assumes plane strain conditions and

the 3-D finite element solution of trapezoidal nonprismatic embankments with finite length that is

equal to 10 times the width of the crest near the abutment. In the 3-D solution an approaching

slope,i=5%, is assumed. An isoparametric sketch of a trapezoidal nonprismatic embankment is

shown in Figure 2.1 (center).

When the ground input in (2.1) is a harmonic motion, of frequency ,

equation (2.1) can be solved analytically. The quantity of interest is the ratio of the amplitude of

the crest motion, , to the amplitude of the base motion, . This transfer function is

the kinematic response function of the shear wedge and is given by

(2.5)

where . and are integration constants given by

(2.6)

(2.7)

In the case where the soil is assumed as a purely elastic material, its shear modulus is real and the

kinematic response function given by (2.5) is singular at all natural frequencies given by (2.2). In

reality soil material has internal damping and the kinematic response function is finite along the

entire frequency spectrum. Experimental studies in the 1960s indicated that the storage and loss

modulus of sand is nearly frequency independent (Hardin 1965). Following Hardin’s pioneering
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Figure 2.2. Characteristic function (top) and first and second transverse modes (center and bot-

tom) of shear-wedge model with variable cross sections
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Figure 2.3. First natural frequency of prismatic embankment
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work it has become a practice to use the following simple expression of the dynamic modulus of

soil materials

(2.8)

where and are frequency independent quantities and is the frequency variable. The

signum function is appended at the imaginary part of (2.8) so that the loss modulus of the

proposed model is an odd function of frequency. This condition ensures that under a real valued

strain history, , with Fourier transform, , the resulting stress history

(2.9)

is real valued. Since the real part, (storage modulus) in (2.8) is frequency independent it

assumes the static value of the shear modulus of the material ; whereas the constant,

, appearing in (2.8) is the hysteretic damping coefficient. Accordingly the constant

hysteretic model has been traditionally expressed as , where and

are strongly strain dependent. Figure 2.4 plots selected curves published in the literature based

on the work of Seed and Idriss (1970), Iwasaki et al. (1978), Tatsuoka et al. (1978), Vucetic and

Dobry (1991), among others. The darker line on Figure 2.4 represents an averaged curve of these

reported curves, and is the curve used for iteration in this report. Note that in the bottom of Figure

2.4 the material damping of soil is presented in terms of and not in terms of the

modal damping of the embankment, . It should be noted that the constant hysteretic model

given by (2.8) is a pathological model since it does not process a real-valued constitutive law in

the time domain. The main flaw of this model that is due to its noncausality is well known to the

literature (Caughey 1962; Crandall 1963, 1970; Inaudi and Kelly 1995) and has been rigorously

addressed by Makris (1997) and Makris and Zhang (2000). Despite its noncausal behavior the

constant hysteretic model given by (2.8) is a reliable model for the dynamic analysis of earth

structures, in particular when the excitation has several cycles.

Using the correspondence principle (Flugge 1975) the harmonic response of an embank-

ment that consists of viscoelastic material is given from the same equations that are derived by

assuming a purely elastic material after replacing the real shear modulus, , with the complex

shear modulus . With this substitution the shear-wave velocity, , and natural

frequencies, , become complex quantities. As an example, the modal frequencies, , are

given by
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Figure 2.4. Normalized soil shear modulus and damping coefficient ( ) as function of

shear strain
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(2.10)

in which is again the nth wave number that is obtained from the solution of the characteristic

equation (2.3). The modal damping ratio, , is given by

(2.11)

It is important to emphasize that the modal damping ratio, , appearing on the left of

equation (2.11), is a quantity that characterizes the modal damping of the entire soil embankment;

whereas, the hysteretic damping coefficient, , appearing on the right of (2.11), char-

acterizes the dissipation of the soil material at a point. It is partly because of the simple relation

give by (2.11) that the modal damping ratio and the hysteretic damping coefficient are often con-

fused in the literature without distinguishing between the modal damping ratio of an entire struc-

ture, , and the loss factor, , of a viscoelastic material.

In selecting the values of and iterations are required, since their values are strain

dependent and the strain level is not known a priori. Initially, a strain level is projected, the associ-

ated shear modulus and damping coefficient are estimated, and response time histories are com-

puted. Seed and Idriss (1969) suggested that two thirds of the response strain should be used as

the average strain to evaluate and for the next iteration. With a finite element analysis

different values of soil parameters can be assigned at various locations according to local strain

level (Idriss et al. 1974). With the shear-wedge formulation only a macroscopic value of an aver-

age strain can be evaluated, where is some representative crest displacement (say

) and H is the height of the shear wedge.

The dependability of the shear-wedge model to predict the transverse seismic response of

bridge embankments is illustrated by examining the crest response of the embankments of the

Meloland Road Overcrossing (Werner et al. 1987) and the Painter Street Bridge (McCallen and

Romstad 1994). Each embankment is subjected to the corresponding free-field horizontal motion

recorded during the 1979 Imperial Valley earthquake and the 1992 Petrolia earthquake. The two

input motions are shown in figures 2.10 and 2.14 (left column).

Figure 2.5 shows computed crest relative displacement, relative velocity and total acceler-

ation histories of a shear wedge with the physical and geometrical characteristics of the embank-

ment of the Meloland Road Overcrossing (see Figure 2.1). The input motion is the one shown in
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Figure 2.5. Crest total acceleration, relative velocity, and relative displacement time histories

computed with shear-beam approximation for Meloland Road Overcrossing embankment
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Figure 2.10. With and , the small-strain shear modulus

. Following the averaged curve shown in Figure 2.4 and the aforemen-

tioned iterative procedure, our analysis converged at an approximate strain , where

and .

When a shear wedge with the physical and geometrical characteristics of the embankment

of the Painter Street Bridge is subjected to the input motion shown in Figure 2.14, our analysis

converges at an approximate strain , where and .

2.2.2 Finite Element Analysis

The shear-wedge model presented in the previous section is a one-dimensional approximation of a

three-dimensional structure. In this section the solution of the shear-wedge approximation is com-

pared with the results of a 2-D and 3-D finite element analysis. The computer software ABAQUS

(1997) is used in this study to conduct free- and forced- vibration dynamic analyses of the

embankment. In the 2-D formulation isoparametric elements were used, whereas in the 3-D anal-

ysis eight node solid elements were used. In the 3-D model the approach slope along the longitu-

dinal direction is included.

The response is computed in the time domain where damping is approximated with the

Rayleigh approach. The damping matrix, , of the soil structure is assumed to be a linear com-

bination of the mass matrix, , and the stiffness matrix,

(2.12)

in which and are frequency-independent coefficients. With this ad hoc approach the ele-

ments of the damping matrix, , can be constructed by using the information on the modal

damping of the soil structure at two distinct modes

(2.13)

At every iteration where the new strain level is established and the values of and are

updated, new values of the parameters and are established. In this analysis the values of

and were computed by using the first and second modal frequencies ( ).

Figure 2.6 plots the computed time histories of the converged strains at the base, mid-

height and crest of the north embankment of the Meloland Road Overcrossing subjected to the
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Figure 2.6. Strain time histories at base, center, and near top of Meloland Road Overcrossing soil embankment under 1979 Imperial Valley

earthquake, computed with Rayleigh damping approximation ( , , , and )
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1979 Imperial Valley earthquake. The left column plots the time history of strains due to trans-

verse shearing ( ), the center column plots the time history of strains due to longitudinal shear-

ing ( ), whereas the right column plots the amplitude of the maximum shear strains as a

function of time. Following the Seed and Idriss suggestion, Figure 2.6 indicates that an appropri-

ate value for the converged strain is . This corresponds to

( ), and . These values are close to the values computed with the shear-

wedge approximation.

Figure 2.7 plots the converged strain histories at the west embankment of the Painter

Street Bridge subjected to the 1992 Petrolia earthquake. In this case the converged strain level is

somehow smaller than the strain level shown in Figure 2.6, to a value of . The equiv-

alent linear values for the stiffness and damping coefficient adopted are

( ), and .

Once the converged strains have been established they can be integrated in the time

domain to yield the displacement profile of the embankment. In the special case of a harmonic

steady-state excitation, , the software ABAQUS allows for a frequency domain

evaluation of the response for any frequency dependence of the shear modulus and damping coef-

ficient, including the noncausal compromise given by (2.8). With a frequency domain calculation

of the response, one can directly compute the kinematic response function using equation

(2.5).

2.2.3 Kinematic Response Functions

Figure 2.8 (left) plots the kinematic response functions along the transverse direction (top) and

longitudinal direction (bottom) of the north embankment of the Meloland Road Overcrossing

computed with converged values of and . Figure 2.8 (right) plots the cor-

responding kinematic response functions of the west embankment of the Painter Street Bridge for

converged value and . Along the transverse direction, results are obtained

with the shear beam approximation (equation (2.5)) and a 2-D and 3-D finite element analysis.

Along the longitudinal direction only a 3-D finite element analysis is meaningful. The results

shown on Figure 2.8 (top) indicate that the shear-beam approximation captures most of the trans-

verse response; whereas the responses computed by assuming a tapered or a prismatic geometry
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Figure 2.7. Strain time histories at base, center and near top of Painter Street Bridge soil embankment under 1992 Petrolia earth-

quake, computed with Rayleigh damping approximation ( , , , and )
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Figure 2.8. Kinematic response functions of Meloland Road Overcrossing embankment (left) and Painter Street Overcrossing

embankment (right)
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might differ appreciably only at higher frequencies of the longitudinal response. In the bottom

plots of Figure 2.8 we included the kinematic response function along the transverse direction

obtained with the shear-wedge approximation in order to show that it can capture most of the

amplification generated due to a longitudinal excitation. This comparison is presented in order to

validate the use of a single amplification function which can be easily derived from the shear-

wedge model and can be applied for both transverse and longitudinal shaking.

2.2.4 Validation of Method Crest Response

The kinematic response functions shown in Figure 2.8 can be used to compute the displacement

time history at the crest of the embankment

(2.14)

The validity of the equivalent linear approach expressed with equation (2.14) is estab-

lished with motions recorded on the crests of bridge embankments that have been instrumented

and subjected to strong shaking. In this study we use records from the Meloland Road Overcross-

ing and the Painter Street Bridge.

The Meloland Road Overcrossing, located near El Centro in southern California, is a con-

crete box-girder, two-span bridge with monolithic abutments and a single central column that was

designed in 1968. The structure has two spans, each being 104 ft (31.7 m) long and 34 ft (10.36

m) wide. The single-column pier at the center of the bridge is approximately 20 ft (6.1 m) high

and is supported by a pile group consisting 25 ( ) driven concrete friction piles. The bridge

has monolithic abutments supported by 7 concrete piles driven into stiff clay embankments over-

laying native alluvium. The superstructure, abutments, embankments, and free field were instru-

mented with 26 strong-motion accelerometers (Werner et al. 1987). Figure 2.9 shows the

elevation and plan views of the Meloland Road Overcrossing together with the location of the

accelerometers. The bridge was strongly shaken by the October 15, 1979, Imperial Valley earth-

quake ( ) with a peak transverse acceleration of 0.51g recorded on the bridge deck. Fig-

ure 2.10 (left) shows the free-field motions recorded with channels 24 (EW), 15 (NS) and 14

(UP), while Figure 2.10 (center and right) shows the motions recorded on the north and south

embankment respectively.
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Figure 2.9. Elevation and plan views of Meloland Road Overcrossing along with locations of accelerometers
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Figure 2.10. Recorded acceleration time histories at free field (left), north embankment (center) and south embankment (right)

of Meloland Road Overcrossing during 1979 Imperial Valley earthquake.
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Figure 2.11 (left column) plots the transverse crest response of the Meloland Road

embankment when computed with equation (2.14) in which is given by (2.5); whereas in the

center and right columns, the values of were computed with a 2-D and 3-D finite element

analysis. In the 3-D finite element analysis the 4.4% approach slope of the MRO-embankment

was used. The final values of shear modulus and the damping coefficient are and

. These values correspond to an average macroscopic strain , as indicated

in Figure 2.6. The relative difference, , between the maximum values of a computed and

recorded response quantity, say , is expressed as

(2.15)

where and are the maximum recorded and computed response quantities.

Figure 2.12 plots the longitudinal response of the Meloland Road embankment computed

with equation (2.14) in which is the corresponding kinematic response function under longi-

tudinal vibrations, shown on the bottom-left of Figure 2.8. The left column plots the longitudinal

response computed with (2.14) in which is the kinematic response function obtained with

the shear-wedge model in the transverse direction. The center column plots the longitudinal

response computed with (2.14) in which is the kinematic response function obtained with

the prismatic geometry, while the right column plots the longitudinal response computed with

obtained with the tapered geometry.

The foregoing study shows that an equivalent linear analysis yields dependable results on

the crest response of a non-skewed bridge embankment. Furthermore, the 1-D shear-beam

approximation offers a realistic estimate for the transverse response of a mildly inclined embank-

ment provided that the equivalent linear properties of the soil material are evaluated at realistic

strains. Interestingly, the shear-beam approximation also provides an acceptable prediction of the

longitudinal response. Our study proceeds with the validation of our method against the motions

recorded on the skew embankments of the Painter Street Bridge.

The Painter Street Bridge, located near Rio Dell in northern California is a continuous,

two-span, cast-in-place, prestressed post-tensioned, concrete, box-girder bridge that was instru-

mented in 1977 by the California Division of Mines and Geology. Several earthquakes from 1980

to 1987, ranging in magnitude from to , have produced significant accelerograms,
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Figure 2.11. Transverse crest response of Meloland Road Overcrossing embankment computed with shear beam approximation

(left), two-dimensional finite element method (center), and three-dimensional finite element method (right)
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Figure 2.12. Longitudinal crest response of Meloland Road Overcrossing embankment computed with shear-beam approxima-

tion (left), three-dimensional prismatic geometry (center), and three-dimensional tapered geometry (right)
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the peak values of which are summarized by Maroney et al. (1990). The largest peak acceleration

of 0.59g was near the center of the bridge deck during a small ( ) nearby earthquake.

Maroney et al. (1990) used these records in conjunction with a number of finite element

and lumped parameter (stick) models of the entire bridge. However, none of these models

accounted for soil-foundation-superstructure interaction. At each abutment, soil-wall interaction

was modeled using a single real-valued transverse spring, the stiffness of which was back-calcu-

lated from the interpreted small-amplitude fundamental natural period, , in lateral vibra-

tion.

On April 25, 1992, the bridge was severely shaken by the Petrolia earthquake ( ,

distance to the fault ) with a peak transverse acceleration of 0.92g recorded on the

bridge deck. Figure 2.13 shows the elevation and plan views of the Painter Street Bridge together

with the location of accelerometers. Motions were recorded in all accelerographs shown. Figure

2.14 (left) shows the free-field motions recorded with channel 14 (NS), 12 (EW) and 13 (UP),

while Figure 2.14 (center and right) shows the motions recorded on the west and east embank-

ment respectively.

Before construction, a geotechnical exploration at the locations of the piers was con-

ducted. Using standard penetration test (SPT) measurements from the ground surface down to a

depth of about 10 m, moderately stiff/dense soil layers were identified, which consisted of clayey

sand, sandy silt, and gravelly sand. SPT blowcounts varied from 8 near the surface to 34 at 10 m

depth. The underlying stratum was a very dense gravelly and silty sand, where blowcounts

exceeded 100 blows/ft.

In a geophysical exploration by Heuze and Swift (1991) six so-called seismic refraction

surveys were reported, along from lines parallel to the highway. Four different idealized soil pro-

files have emerged as shown in Figure 2.15. Evidently, the differences in the S-wave velocities

and shear moduli among these profiles are substantial, given that they are 20-30 m apart from

each other. For instance, the resulting low-strain shear modulus from the data along line 2 is 1.5

times the value of that resulting from the data along line 1. It is quite possible that some of these

differences merely reflected inadequacies (general and specific) of the seismic refraction tech-

nique. The soil properties used for the dynamic analysis of embankments is taken as a set of uni-

form values, i.e., , , and for both west and east

embankments. The small-strain shear modulus is .
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Figure 2.13. Elevation and plan views of Painter Street Overcrossing along with locations of accelerometers
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Figure 2.14. Recorded acceleration time histories at free field (left), west embankment (center), and east embankment (right) of

Painter Street Overcrossing during 1992 Petrolia earthquake
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Figure 2.15. Idealized soil profiles that emerged from refraction surveys (Heuze and Swift 1991)
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Figure 2.16 (left column) plots the transverse crest response of the west embankment at

Painter Street Bridge when computed with equation (2.14) in which is given by (2.5). In the

center and right columns, the values of used to compute the crest response were evaluated

with 2-D and 3-D finite element analysis. In the 3-D finite element analysis the 5% approach

slope of the Painter Street Bridge embankment is used. The converged values of the shear modu-

lus and damping coefficient used are and as indicated in Figure 2.7.

Again, it is observed that the shear-beam approximation gives an acceptable estimate of the

response provided that the equivalent linear soil properties are evaluated at a realistic strain level.

Figure 2.17 plots the longitudinal response of the west embankment of the Painter Street

Bridge. The left column plots the computed longitudinal response using the kinematic response

function, , obtained with shear-beam approximation in the transverse direction. The center

column plots the computed response when the geometry of the embankment is assumed to be

prismatic (zero approaching slope); whereas the right column plots the computed response when

the tapered geometry is considered with a slope . The formulation that accounts for the

tapered geometry of the embankment offers better predictions of the relative velocity and dis-

placement histories than the formulation with prismatic geometry. At the same time, the shear-

beam approximation gives equally good prediction of longitudinal response, compared to 3-D

finite element analysis that accounts for the tapered geometry of the embankments.

The convincing results offered by the shear-beam approximation shown in both the

Meloland Road Overcrossing and Painter Street Bridge cases indicate that the shear-beam approx-

imation, despite its simplicity, is a dependable procedure for estimating the transverse and longi-

tudinal response of bridge embankments.

2.2.5 Summary of Procedure to Compute the Kinematic Response Functions of

Embankments

1. Compute the kinematic response functions with equation (2.5);

2. Compute the crest displacement response with equation (2.14);

3. Obtain the shear modulus, , and damping coefficient, through iterations so that the aver-

aged strain, , converges.
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Figure 2.16. Transverse crest response of Painter Street Overcrossing embankment computed with shear-beam approximation

(left), two-dimensional finite element method (center), and three-dimensional finite element method (right)
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Figure 2.17. Longitudinal crest response of Painter Street Overcrossing embankment computed with shear-beam approximation

(left), three-dimensional prismatic geometry (center), and three-dimensional tapered geometry (right)
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2.3 DYNAMIC STIFFNESSES

2.3.1 Resilience of Abutments

The need to account for the resilience of abutments when subjected to the inertia forces of the

deck has been recognized by several researchers who approached this problem in various ways.

Maragakis (1985) proposed a Winkler foundation model to approximate the reaction of soil

embankments on bridge abutments supported on spread footings. The spring values of the Win-

kler model were derived using soil mechanics concepts. Recently, his approach was extended by

Siddharthan et al. (1993, 1997), who derived simple expressions for the values of the secant stiff-

nesses of abutments along the longitudinal, vertical, and transverse directions. Their simple

expressions were found to agree with the experimental data from large-scale experiments con-

ducted by Romstad et al. (1995). Crouse et al. (1987) conducted small-amplitude harmonic tests

on the Horsethief Road Bridge and subsequently back-figured the values of distributed springs

that approximated the interaction between abutment wall and backfill soil. The spring value that

resulted from such small-amplitude tests is at the high end and is not practical for design under

intense earthquake loading, since abutment stiffnesses are amplitude dependent. Motivated from

the need to obtain more realistic values of abutment stiffnesses under strong ground motions,

Goel and Chopra (1997) back-figured the force-displacement loops at the abutments of the

Painter Street Bridge by investigating its recorded response under several earthquakes. Other

studies have been conducted by Werner et al. (1994) and McCallen and Romstad (1994), who

concluded that abutment stiffnesses are much lower and modal damping ratios much higher than

previously deduced from low-amplitude tests. A large-scale experimental program was conducted

by Romstad et al. (1995) to evaluate the stiffnesses and strengths of abutments. Table 2.1 summa-

rizes various values of stiffnesses of bridge abutments that have been reported in the literature or

that have been calculated with proposed methods. Table 2.1 includes the values used by Caltrans

and the values that one computes using the closed-form expressions derived by Wilson and Tan

(1990a). All stiffness values have been normalized by the width of the embankment with a unit of

[Force]/[Length]2. The large discrepancies shown in Table 2.1 is an indication of the lack of the

dependable procedure in estimating the resilience of abutments.
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Table 2.1: Comparisons of estimated abutment/embankment stiffnesses

Meloland Road Overcrossing
H=7.92 m, B=10.36 m, S=1/2

, ,
,

Painter Street Bridge
H=9.6 m, B=15.24 m, S=1/2

, ,
,

Large Scale Field Test
H=2.06 m, B=4.72 m, S=1/2

, ,

Stiffnesses ( )

1 Douglas et al. 1991 8.8 8.8 25.4 / / / / / /

2 Maroney et al. 1993 / / / / / / 2.6~7.4 3.7~11.1 /

3 McCallen & Romstad 1994 / / / 56.0 53.0 / / / /

4 Werner 1994 10.3 / / / / / / / /

5 Goel & Chopra 1997 / / / 9.6~14.0 9.6~46.9 / / / /

6 Price and Eberhard 1998 / / / 4.7 / / / / /

7 Caltrans: Method A 58.6 57.5 / 53.2 57.5 / 44.6 57.5 /

8 Caltrans: Method B 7.4 / / 6.9 / / 2.6~3.4 / /

9 Wilson 1988 12.1 12.1 16.1 24.6 24.9 52.5 / / /

10 Wilson & Tan 1990a 3.3 / 9.2 13.2 / 37 / / /

11 Siddharthan et al 1997 10~48 0.3~1.5 12~54 27~126 0.7~3.4 21.6~101.3 1.5~6.8 0.1~0.4 1.1~4.9

12 FEM 3D 2~3 2~3.1 7.5 9~14 9~13.8 38.2 / / /

13 Proposed Simple Procedure 2 2 / 10 10 / / / /

N
o

te

1. Values are identified from records, pile foundation stiffnesses are included. 2. Experimental results, pile foundation stiffnesses are included. 3. Per Cal-
trans procedure A, pile foundation stiffnesses are not included. 4. Best identified value, including pile foundation stiffnesses. 5. Back-figuredvalues, includ-
ing pile foundation stiffnesses. 6. Pile foundation stiffnesses are not included. 7. Use (200kips/in/ft)*(2/3 wingwall length)*4/3 in transversedirection and
(200kips/in/ft)*(0.5*embankment width) in longitudinal direction. 8. Use 7.7ksf*(effective wingwall area)/0.2 ft. 9. Use converged shear modulus and
damping coefficient without including pile foundation stiffnesses. 10. Same as 9. 11. Unable to reproduce the results in longitudinal direction with the for-
mulations presented in their paper. Pile foundation stiffnesses are not included. 12. Same as 9. 13. Use unit-width shear-wedge solution multipliedby critical
length, . Pile foundation stiffnesses are not included.
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2.3.2 The Shear Beam Approximation

The Wilson and Tan expressions, given by equations (2.16) and (2.17) of this report, were derived

by integrating the incremental displacements of a slice of unit width of the wedge due to a distrib-

uted load at the crest.

(2.16)

(2.17)

where is the converged value of the shear modulus that is concluded from the kinematic

response analysis and is the associated Young’s modulus. The expressions given

by (2.16) and (2.17) assume that the ground beneath the embankment is rigid and does not

undergo any deformation; whereas its geometry is symmetric, having the same slope on each side.

For the general case of a nonsymmetric cross section (see Figure 2.1(top)), the transverse dis-

placement at the top of unit-width wedge due to a distributed load, , at the crest is given by

. (2.18)

and the transverse static stiffness of the unit-width wedge is thus given by

. (2.19)

Similarly, the vertical static stiffness due to a distributed load at the crest is given by

. (2.20)

For the case of a symmetric embankment equations (2.19) and (2.20) reduce to equations (2.16)

and (2.17), since .

The static solutions derived by Wilson and Tan (1990a) for the case of a symmetric

embankment or the more general expressions offered by equations (2.19) can be extended for har-

monic distributed loads at the crest. With reference to Figure 2.18 (top), considering a distributed
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Figure 2.18. Unit-width finite wedge (top) and infinitely tall wedge (bottom)
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harmonic loading, , that creates horizontal crest displacement, , dynamic equi-

librium of a section, , of the wedge gives

(2.21)

where is the time-dependent shear force at depth . Using that

(2.22)

equation (2.21) becomes

(2.23)

The solution of equation (2.23) is offered below for limiting cases where (a) the supporting soil is

rigid and does not accommodate any deformation and (b) the supporting soil is deformable to the

extent that the embankment wedge can be extended into the halfspace over a large depth. The

boundary conditions for case (a) are that the displacements at depth are zero, while

the shear force at the crest is equal to the external load, i.e., . The boundary con-

dition for the case (b) is that there are no incoming waves (Somerfield radiation conditionsee

Wolf (1994) among others), while the shear force . With these boundary condi-

tions the solution of (2.23) for case (a) is

(rigid supporting soil) (2.24)

and for case (b) is

(infinitely tall wedge) (2.25)

At the crest of the embankment

(2.26)

and for each of these cases (a) and (b) equation (2.26) gives

(rigid supporting soil) (2.27)
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(infinitely tall wedge) (2.28)

Figures 2.19 and 2.20 plot the real and imaginary parts of the dynamic stiffnesses given by equa-

tion (2.27) (left, rigid support) and equation (2.28) (right, infinitely tall wedge). In Figure 2.19 the

material and geometrical properties, , , , , and

of the Meloland Road Overcrossing are used; whereas in Figure 2.20 the material

and geometrical properties, , , , , and

of the Painter Street Bridge are used.

2.3.3 Finite Element Analysis

The ability of the shear-wedge model to approximate the transverse dynamic stiffness of an

approach embankment is examined in this section by conducting finite element analysis on a unit-

width wedge. Figures 2.19 and 2.20 show finite element solutions for the transverse dynamic

stiffness of the unit-width wedge. In the case of the infinitely tall wedge (flexible support), the

supporting soil is represented by the 2-D infinite element with the soil properties same as that of

the embankments. The solution is computed by imposing a transverse oscillating load, at

the crest of the wedge and computing the resulting displacement, . By definition, the

dynamic stiffness is

(2.29)

The dashed lines in Figures 2.19 and 2.20 are the results from a 2-D finite element analy-

sis; whereas the chain line in these figures is the finite element solution that is obtained by

restraining the vertical degree of freedom. The real part of solutions given by (2.27) at static limit

agrees with the solution of Wilson and Tan (1990a), while the solutions from 2-D finite element

analysis follow the similar trend with the analytical solution but with slightly lower values.

Because of the unit-width of the wedge, the units of equation (2.29) are [Force]/[length]2. To

translate the results of equations (2.27) to (2.29) to spring values that reflect the dynamic stiffness

of the entire embankment, one has to multiply the computed values with a critical length . Wil-
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Figure 2.19. Transverse dynamic stiffnesses of shear-wedge model and solution of two-dimensional finite element formulation.

Left: finite wedge on rigid support; Right: infinitely tall wedge. Material and geometrical properties are those of Meloland Road

Overcrossing ( , , , , and ).

0 5 10 15 20
−10

−5

0

5

10

Frequency (Hz)

K 1(ω
) (

M
N

/m
2 )

Rigid Support

Wilson & Tan (1990a)
Practical Spring Value

0 5 10 15 20
−10

−5

0

5

10

Frequency (Hz)

K 1(ω
) (

M
N

/m
2 )

Flexible Support

0 5 10 15 20
0

20

40

60

80

100

Frequency (Hz)

K 2(ω
) (

M
N

/m
2 )

Practical Dashpot Value

Eq. (2.27)                      
FEM 2D                          
FEM 2D (vertical DOF restrained)

0 5 10 15 20
0

20

40

60

80

100

Frequency (Hz)

K 2(ω
) (

M
N

/m
2 )

Eq. (2.28)        
FEM/INF 2D        
Eq. (2.27) H Large

G 2MPa= η 0.52= z0 2.59m= H 7.92m= Bc 10.36m=



45

Figure 2.20. Transverse dynamic stiffnesses of shear-wedge model and solution of two-dimensional finite element formulation.

Left: finite wedge on rigid support; Right: infinitely tall wedge. Material and geometrical properties are those of Painter Street

Overcrossing ( , , , , and ).
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son and Tan (1990b) proposed to use as critical length the length of the wing wall. Herein a 3-D

finite element study is conducted to further investigate this issue.

Figure 2.21 shows an isoparametric schematic of an approach embankment subjected to

transverse (top) and longitudinal (bottom) oscillatory loads, and . Under harmonic

loading along direction , the resulting displacement is harmonic, , where

is the phase difference between displacement and force. Along any direction, , the dynamic

stiffness is defined as

(2.30)

The ratio is a real and frequency-dependent quantity known as the total distributed stiff-

ness, , whereas is the distributed storage stiffness and

is the distributed loss stiffness.

The computer software ABAQUS (1997) is used to conduct the forced-vibration dynamic

analysis of bridge embankments under the loadings shown in Figure 2.21. Figure 2.22 plots the

computed real part (storage stiffness) and the imaginary part (loss stiffness) of the Meloland Road

Overcrossing embankments under transverse, longitudinal, and vertical distributed loadings. The

values of and of embankment soil used in the elastic analysis are the converged values of

and that were determined from the forced vibration of the embankment

under base shaking. The shear modulus of supporting soil underneath the embankment is taken as

, 10 and 1, respectively. Figure 2.22 indicates that the effect of the stiffness of the sup-

porting soil is marginal in both the transverse and longitudinal directions; therefore the solution of

the embankment sitting on a rigid support can be used with confidence. Similarly, Figure 2.23

plots the computed real and imaginary parts of Painter Street Bridge embankments under trans-

verse, longitudinal, and vertical loadings. The values of and of embankment soil used in the

elastic analysis are the converged values and , also determined from the

forced vibration of the embankment under the corresponding base shaking. The slope of the loss

stiffness gives the dashpot values. The spring and dashpot value, as shown in Figure 1.1, can be

extracted by multiplying the values shown in figures 2.22 and 2.23 with the width of the embank-

ment, .
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Figure 2.21. Transverse and longitudinal loading imposed to obtain dynamic stiffnesses of

approach embankment with material properties, and , supported on halfspace with material

properties, and
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Figure 2.22. Dynamic stiffnesses of approach embankment of Meloland Road Overcrossing ( , ). Spring and dash-

pot values shown in Figure 1.1 are extracted by multiplying values shown above with width of embankment, . Stiffness and damping val-

ues along longitudinal (y) direction are equal to those of transverse direction.
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Figure 2.23. Dynamic stiffnesses of approach embankment of Painter Street Bridge ( , ). Spring and

dashpot values shown in Figure 1.1 are extracted by multiplying values shown above with width of embankment, . Stiffness

and damping values along longitudinal (y) direction are equal to those of transverse direction.
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2.3.4 Estimation of Critical Length

While 3-D finite element calculations are necessary in this study to establish the dynamic stiff-

nesses of approach embankments, our study proceeds with the development of a practical proce-

dure that allows for the estimation of the dynamic stiffnesses of the embankments by using the

stiffness and damping values of a unit-width shear wedge and a critical length,. The transverse

mechanical behavior of an infinitely long embankment due to a concentrated load at one end is

idealized with a series of unit-width wedges interacting in shear with one another. Figure 2.24

shows a long embankment subjected to a transverse load, , at its front end and a slice of the

embankment with width, . Within the context of 1-D analysis the equilibrium of the section

along the transverse direction gives

(2.31)

which gives

(2.32)

In equations (2.31) and (2.32), is the transverse displacement of some reference point on

the section, is the static stiffness of the unit-width wedge given by (2.16) or (2.19), and

is the shear force on the face of the section of the slice that is approximated with

(2.33)

substitution of (2.16) and (2.33) into (2.32) gives

(2.34)

Equation (2.34) reduces to

(2.35)

where

(2.36)
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Figure 2.24. Free-body diagram of a section of a long embankment under transverse loading at

one end
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Using that at large values of the displacement, , vanishes, the solution of (2.35) becomes

(2.37)

where C is an integration constant that is determined from the boundary conditions. The force at

the origin is given by (2.33) after setting

(2.38)

from which

(2.39)

Substitution of (2.39) to (2.37) gives the approximate expression for the displacement distribution

(2.40)

which when evaluated at gives an estimate of the dynamic stiffness of the embankment

(2.41)

Equation (2.41) is the extension of the solution for the dynamic stiffness of the unit-width wedge

that was derived by Wilson and Tan (1990a). Equation (2.41) in association with (2.16) yield an

expression for the critical length, , that is needed to multiply the static stiffness of the unit-

width wedge to estimate the transverse stiffness of the embankment. Wilson and Tan (1990b)

have assumed that should be approximately the length of the wing wall. In this study we con-

clude that

(2.42)

which gives

(2.43)

Equation (2.43) indicates that the critical length is independent of the shear modulus, , and is

proportional to the square root of the area, , and the slope of the embankment, .

Equation (2.43) was derived by relating the expression of the static stiffness of the unit-

width wedge to the approximate closed-form expression of the static stiffness of the embankment

given by (2.41). If instead of the values provided by (2.41) one uses the more exact finite element
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results, the foregoing analysis suggests that a good candidate expression for the critical length,

, is

(2.44)

where the quantity accommodates the physics that emerges from

and is a dimensionless coefficient that is expected to be nearly independent of the geometry.

Figure 2.25 plots the coefficient, for various embankment geometries. Fig-

ure 2.25 indicates that is indeed nearly independent of geometry for the embankment

configurations of interest. Therefore, it is suggested that the critical length, , is given by

(2.45)

The concept of the critical length, , which relates the stiffness of the unit-width wedge

to the stiffness of the embankment, is extended for the case of damping. Accordingly, it is pro-

posed that the dynamic stiffness of the embankment is given by

(2.46)

where is the dynamic stiffness of the unit-width wedge given by (2.27) and is a critical

length that is given by (2.45). The good estimates for the stiffness and dashpot values given by

(2.46) where the critical length is given by (2.45), is shown in Figure 2.22 and 2.23 together with

the 3-D finite element solutions.

2.3.5 Summary of Procedure to Compute the Spring and Dashpot Values of Bridge

Embankments

1. Compute the dynamic stiffness of the unit-width shear wedge using equation (2.27). The values

of and in this equation are the converged values obtained from the calculation of the kine-

matic response functions.

2. Plot the real and imaginary part of equation (2.27) as a function of frequency (wave number

and ).

3. Select practical spring and dashpot values by passing a horizontal line through the graph of the

real part and an inclined line through the graph of the imaginary part at locations that capture with

satisfaction the low frequency behavior (see Figures 2.19 and 2.20). If only spring values are of
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Figure 2.25. Critical length parameter for various geometries
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interest, steps 1 to 3 can be avoided by merely using the Wilson and Tan (1990a) expressions

(equations (2.16) and (2.17)) or the more general expressions offered by equations (2.19) and

(2.20). Steps 1 to 3 are primarily needed to estimate the dashpot values.

4. Compute the transverse spring and dashpot values of the embankment by multiplying the val-

ues indicated by the lines identified in step 3 with the critical length, .

5. Use the spring and dashpot values computed in step 4 for the longitudinal spring and dashpot

values.

Lc 0.7 SBcH≈
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3 Dynamic Stiffnesses of Pile Foundations

3.1 INPUT MOTION AT PILE CAPS

The difference between the free-field motion and the motion at the cap of a pile foundation is due

to the scattered wave field generated from the difference between pile and soil rigidities. Never-

theless, for motions that are not rich in high frequencies, the scattered field is weak, and the sup-

port motion can be considered to be approximately equal to that of the free field (Fan et al. 1991;

Gazetas 1984; Kaynia and Novak 1992; Makris and Gazetas 1992; Mamoon and Banerjee 1990;

Tajimi 1977). For instance, for Painter Street Bridge the soil deposit has an average shear veloc-

ity, , of about (Heuze and Swift 1991); the pile diameter is 0.36 m. Accordingly,

even for the high-frequency content of the input motion ( ), the dimensionless fre-

quency, , is of the order of only 0.1. From studies on vertically propagating shear

waves in homogeneous soil deposits (Fan et al. 1991), the kinematic-seismic response factors

(head-group displacement over free-field displacement) are very close to unity, even at values of

the dimensionless frequency, .

Waves other than vertical S-waves also participate in ground shaking. Seismic-kinematic

response factors for SV waves, P waves and Rayleigh surface waves are given by Mamoon and

Banerjee (1990), Kaynia and Novak (1992), Makris (1994) and Makris and Badoni (1995). For all

these types of waves that produce a vertical component of the seismic input motion, the kinematic

response factors are also close to unity. Only in some cases do SV waves with a high angle of

incidence result in kinematic response factors of the order of 0.90. Based on such supporting ana-

lytical evidence, in most cases the excitation input motion at the level of the pile foundation can

be assumed to be equal to that of the free-field motion. Only at very high frequencies or for very

soft soils will a reduction be needed. Moreover, in the case of Rayleigh waves and SV waves, a

Vs 200 m s⁄ d

f 10 Hz≈

a0 2πfd Vs⁄=

a0 0.1>
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pile group produces an effective rocking input motion, whereas for oblique incidence SH waves

the foundation experiences torsional excitation. These motions are the result of phase differences

that the seismic input has at the locations of different piles in the group (wave passage effect);

their intensity depends on the frequency content of the seismic input and the geometry of the pile

group.

3.2 DYNAMIC STIFFNESSES OF A SINGLE PILE

3.2.1 Lateral Dynamic Stiffness of a Single Pile

Figure 3.1 (top) depicts the storage stiffness (real part) and loss stiffness (imaginary part) of a sin-

gle pile under lateral harmonic excitation. The solid lines are the result of a rigorous numerical

solution (for cylindrical pile with finite length , ) obtained by Kaynia

and Kausel (1982), based on an integral equation formulation. The dashed lines are the results of

an analytical solution (for an infinitely long pile) derived by Makris and Gazetas (1993), where

pile-soil interaction is realistically represented through a dynamic Winkler model with frequency

dependent spring, , and dashpot, , coefficients.

(3.1)

where is the flexural rigidity of the pile and

(3.2)

(3.3)

For values of the excitation frequency, , less than the characteristics frequency of the pile-soil

system, (m being the pile mass per length), the values of , , and are
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Figure 3.1. Comparison of storage (real part) and loss (imaginary part) stiffness factors along hor-

izontal direction obtained with approximate analytical method (dashed lines) against rigorous

solution of Kaynia and Kausel (solid line) for single pile (top) and 3 by 3 square group with rigid

pile cap and pile spacing, (bottom). , , ,

, , homogeneous halfspace.
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and for values of , the values of , , and are

(3.7)

, (3.8)

(3.9)

The closed-form expression for the lateral dynamic stiffness of the single pile given by (3.1) can

accommodate any variation with frequency of the distributed spring and dashpot coefficients. For

example, such spring and dashpot coefficients can be obtained using Novak’s plane-strain elasto-

dynamic solution (Novak et al. 1978). Herein the expressions used for and to com-

pute the values of the lateral dynamic stiffness of the single pile shown in Figure 3.1 with dashed

line are given by (Makris and Gazetas 1992; Makris and Gazetas 1993):

(3.10)

(3.11)

where is the hysteretic damping coefficient of the soil defined in equation (2.8), is mass

density, is Young’s modulus, is shear-wave velocity of the soil, is a dimen-

sionless excitation frequency, and is an apparent velocity of the compression-extension

waves, called “Lysmer’s analogue” velocity (Gazetas and Dobry 1984a, 1984b)

(3.12)

where is Poisson’s ratio of the soil. Equations (3.10) and (3.11) are developed by matching the

dynamic pile-head displacement from Winkler and dynamic finite-element analysis (Blaney et al.

1976; Roesset and Angelides 1980; Gazetas and Dobry 1984a, 1984b).

Figure 3.1 (top) shows that the prediction of the closed-form expression given by (3.1),

which was derived for an infinitely long flexural beam, is in good agreement with the rigorous

solution of Kaynia and Kausel (1982) obtained for a flexural beam with finite length. The reason

why the infinite long beam model gives such good results in the case of lateral vibration is dis-

cussed in the paper by Makris and Gazetas (1993).
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It should be noted that approximate expressions for the lateral dynamic stiffness of a sin-

gle pile have also been proposed by Gazetas and Dobry (1984a). Instead of equation (3.1), which

was not derived at that time, Gazetas and Dobry proposed that the storage stiffness, of

the single pile for lateral motion to be constant with frequency, equal to its static value .

Referring to Figure 3.1 (top) this is a realistic approximation for the practical frequency range. Of

course at higher frequencies the dynamic stiffness diminishes due to inertia effects and eventually

reaches negative values. For the loss stiffness , they proposed the following engineering

approximation

(3.13)

where is given by (3.11) and is the static deflection profile normalized to the unit top-

amplitude. So for the low-frequency range, Gazetas and Dobry’s approximation for the lateral

dynamic stiffness of the single pile is

(3.14)

For a homogeneous deposit equation (3.14) is not as convenient and realistic as (3.1) which is the

closed-form solution of the dynamic problem. Nevertheless, when the soil is a layered deposit

with different mechanical properties per layer, equation (3.14) becomes a practical alternative.

3.2.2 Vertical and Rocking Dynamic Stiffnesses of a Single Pile

For the case of a vertical and rocking vibrational mode, closed-form solutions for the dynamic

stiffnesses of a single pile are not known. Accordingly, one has to use results from rigorous

numerical analyses or experimental investigations. Some efforts have been conducted to justify

approximate expressions similar to equation (3.14) for the case of vertical vibrational mode

(Kanakari 1990). As an example, for a homogeneous soil deposit an approximation to the vertical

stiffness of a single pile at the low-frequency range is

(3.15)
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where

(3.16)

(3.17)

where is the hysteretic damping of the soil defined in equation (2.8).

It should be emphasized that many procedures and methods are available to estimate the

dynamic stiffnesses of a single pile. The approximate expressions (3.1), (3.14), and (3.15) are

attractive since they provide the stiffnesses of a single pile without involving sophisticated analy-

sis procedure. Nevertheless, it is the engineer’s task to select the best procedure(s) available to

obtain the dynamic stiffnesses of the single pile.

For the extreme case of very long piles, the pile is idealized as an elastic “thin” rod with

mass per unit length, , that is attached to the surrounding soil with vertical distributed springs,

, and dashpots, . For this special case the vertical dynamic stiffness of the single pile

is given by

when . (3.18)

In equation (3.18),
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. (3.20)

When the vertical dynamic stiffness of the single pile is
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(3.22)

Figure 3.2 plots the real and imaginary part of the vertical dynamic stiffness of a single

pile computed by Kaynia and Kausel ( , ) and the results from equations

(3.18) and (3.21).

3.3 DYNAMIC STIFFNESSES OF PILE GROUP

The dynamic stiffnesses of a pile group, in any vibration mode, can be computed using the

dynamic stiffnesses of a single pile in conjunction with the concept of superposition criterion,

originally developed for static loads by Poulos (1968), and later justified for dynamic loads by

Kaynia and Kausel (1982), Sanchez-Salinero (1983) and Roesset (1984). It can be used with con-

fidence at least for groups with less than 50 piles. Dynamic interaction factors for various modes

of loading are available in the form of non-dimensional graphs (Gazetas et al. 1991) and in some

cases, closed form expressions derived from a beam on winkler foundation model in conjunction

with simplified wave-propagation theory (Dobry and Gazetas 1988; Makris and Gazetas 1992).

3.3.1 Lateral Dynamic Stiffness of Pile Group

The horizontal dynamic interaction factor for two piles in a homogeneous stratum takes the form:

(3.23)

where

(3.24)

(3.25)

where is an approximate attenuation function proposed in the above mentioned reference.

θ
ωcz ω( )

kz ω( ) m– ω2
---------------------------

 
 
 

atan π
2
---– θ 0< <,=

L d⁄ 15= Ep Es⁄ 1000=

αx S θ,( ) αx S 0,( ) θ2 αx S
π
2
---, 

  θ2
sin+cos=

αx S 0,( ) 3
4
---ψ S 0,( )

kx ω( ) iωcx ω( )+

kx ω( ) iωcx ω( ) mω2
–+

------------------------------------------------------=

αx S
π
2
---, 

  3
4
---ψ S

π
2
---, 

  kz ω( ) iωcz ω( )+

kz ω( ) iωcz ω( ) mω2
–+

------------------------------------------------------=

ψ r θ,( )



64

Figure 3.2. Comparison of storage (real part) and loss (imaginary part) stiffness factors along ver-

tical direction obtained with approximate analytical method (dashed lines) against rigorous solu-

tion of Kaynia and Kausel (solid line) for single pile (top) and 3 by 3 square group with rigid pile

cap and pile spacing, (bottom). , , ,

, , homogeneous halfspace.
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(3.26)

(3.27)

whereS is the distance between two piles and is the angle between the direction of loading and

the line connecting the axes of the two piles.

The lateral dynamic stiffnesses of a group of piles can now be computed using the concept

of superposition in association with the dynamic stiffnesses of a single pile and dynamic interac-

tion factors between any two piles (Makris et al. 1994). Let be the horizontal displacement of

pile belonging to a group ofN piles. Superposition of displacements leads to

(3.28)

where is given from Eq. (3.23); if . The value of is obtained as

(3.29)

where is the force thatjth pile carries, and is the horizontal dynamic stiffness of a single

fixed-head pile. Since all piles are connected with a rigid cap, the displacement of pile group,

, is equal to for all . Substitution of (3.29) into (3.28) gives

(3.30)

Repeating (3.30) for allN piles of the pile group, one obtains the matrix equation

(3.31)
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(3.32)

where is the element of the inverse of matrix . Since ,

the lateral dynamic stiffness of the pile group for the horizontal mode is simply

(3.33)

3.3.2 Vertical and Rocking Dynamic Stiffnesses of Pile Group

In these two cases where the pile motion is along the axial direction, the dynamic interaction fac-

tor for two piles in a homogeneous stratum is simply

(3.34)

The vertical dynamic stiffness of the group is also given by an analysis similar to the one pre-

sented for lateral loading, where indexx is replaced byz.Accordingly

(3.35)

where is the element of the inverse of matrix obtained from (3.34).

The rocking group-dynamic stiffness can be derived by an analysis similar to the one pre-

viously presented (Dobry and Gazetas 1988; Makris and Gazetas 1993)

(3.36)

where is the distance of pile from the axis about which the rotation occurs.

For the cross-horizontal-rocking interaction factor it has been found (Gazetas et al. 1991)

that the following approximation proposed by Randolph (1977) for the static loaded piles is also

valid for dynamic loads:

(3.37)
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Accordingly, the cross-horizontal-rocking group stiffness is

(3.38)

where is the element of inverse of matrix given by (3.37). The static stiffness

of the single fixed-head pile is approximated by

(3.39)

3.3.3 Spring and Dashpot Values of the Pile Foundations of the Meloland Road

Overcrossing and the Painter Street Overcrossing

Figures 3.3 and 3.4 show the configurations of the pile groups at the center bent and abutments of

the Meloland Road Overcrossing. Figures 3.5 and 3.6 show the pile group configurations at the

center bent and abutments of the Painter Street Bridge. Figure 3.7 plots the normalized group

dynamic stiffnesses as a function of the dimensionless frequency, , of the 5 by 5 pile

group of the center bent of the Meloland Road Overcrossing, whereas Figure 3.8 plots the normal-

ized group dynamic stiffnesses as a function of the dimensionless frequency, , of

the 4 by 5 pile group of the center bent of the Painter Street Bridge. The static group stiffness is

only a fraction of the sum of the individual pile static stiffnesses. Both cases show the significance

of the interaction between piles. Figure 3.9 plots the normalized dynamic pile group stiffnesses at

the abutments of the Meloland Road Overcrossing, while Figures 3.10 and 3.11 plot the normal-

ized dynamic pile group stiffnesses at the west and east abutments of the Painter Street Bridge.

Figures 3.7 to 3.11 indicate a vivid fluctuation of the real and imaginary parts of the dynamic stiff-

nesses with frequency. However, during strong shaking additional phenomena associated with

nonlinear soil behavior are present that are not represented in this analysis. Nonlinear behavior,

even when local, has a tendency to suppress fluctuations with frequency (Badoni and Makris

1997). This observation motivated us to abandon the frequency dependence of pile foundations

and adopt a single frequency-independent spring value for the storage stiffness that is equal to the

computed static stiffness; and a single frequency-independent damping value for the damping

coefficient . Table 3.1 summarizes the spring and dashpot values of the pile groups

of the two instrumented bridges that are the subject of this study.
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Figure 3.3. Cross-section view of Meloland Road Overcrossing and plan view of pile group at

center bent
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Figure 3.4. Plan view of pile groups at south and north abutments of Meloland Road Overcrossing
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Figure 3.5. Cross-section view of Painter Street Overcrossing and plan view of pile group at cen-

ter bent
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Figure 3.6. Plan view of pile groups at west and east abutments of Painter Street Overcrossing
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Figure 3.7. Dynamic stiffnesses of single pile and pile group at center bent of Meloland Road

Overcrossing
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Figure 3.8. Dynamic stiffnesses of single pile and pile group at center bent of Painter Street Over-

crossing
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Figure 3.9. Dynamic stiffnesses of single pile and pile group at abutments of Meloland Road

Overcrossing
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Figure 3.10. Dynamic stiffnesses of single pile and pile group at west abutment of Painter Street

Overcrossing
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Figure 3.11. Dynamic stiffnesses of single pile and pile group at east abutment of Painter Street

Overcrossing

0 0.5 1
0

0.5

1

1.5

2

a
0
=ωd/V

s

K
[1

]
x

(ω
)/

K
[1

]
sx

Real Part     
Imaginary Part

0 0.5 1
0

0.5

1

1.5

2

a
0
=ωd/V

s

K
[1

]
z

(ω
)/

K
[1

]
sz

Real Part     
Imaginary Part

0 0.5 1
0

0.5

1

1.5

2

a
0
=ωd/V

s

K
[G

]
x

(ω
)/

14
K

[1
]

sx

0 0.5 1
0

0.5

1

1.5

2

a
0
=ωd/V

s

K
[G

]
z

(ω
)/

14
K

[1
]

szDashpot Value Dashpot Value

Spring Value Spring Value



77

3.4 EQUIVALENT FLEXURAL-SHEAR BEAM

In finite element analysis of the bridge system, the stiffnesses of the pile group should be included

by an element whose stiffness matrix reads as

(3.40)

TABLE 3. 1. The spring and dashpot values of the pile groups of interest

Parameters
Meloland Road
Overcrossing Painter Street Bridge

P
ile

F
ou

nd
at

io
n

at

A
bu

tm
en

ts

56 180 (176)

336 775 (762)

4.5 9.0 (8.6)

28.1 57.0 (54.5)

P
ile

F
ou

nd
at

io
n

at
C

en
te

r
B

e
nt , ( ) 260 321

7611 5254

, ( ) -409 -354

887 982

, 6.3 5.4

25.3 20.0

Note Numbers in parentheses are for the east abutment of
Painter Street Bridge

Kx Ky MN m⁄( ),

Kz MN m⁄( )

Cx Cy MN s m⁄⋅( ),

Cz MN s m⁄⋅( )

Kx Ky MN m⁄

Kr MN m rad⁄⋅( )

Kxr Kyr MN rad⁄

Kz MN m⁄( )

Cx Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

K
G[ ]

K1x
G[ ]

K1xr
G[ ]

0

K1xr
G[ ]

K1r
G[ ]

0

0 0 K1z
G[ ]

=
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where , , , and are the real part of the static group stiffnesses obtained ear-

lier. However, the cross-rocking term can not be modeled by adding a rotational spring or a dis-

placement spring. To overcome this limitation a flexural-shear beam element is introduced. Its

stiffness matrix takes the form (Ketter et al 1979):

(3.41)

where

(3.42)

(3.43)

(3.44)

(3.45)

and for a wide-flange cross section. By matching the stiffnesses of the equivalent beam

element and those of the pile group, one can solve for beam length, , cross-section area, ,

moment of inertia, , and shear modulus, :

(3.46)

(3.47)

(3.48)

(3.49)

The expressions offered by (3.46) to (3.49) have been used in the finite element analysis

presented in the next chapter.
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3.5 SUMMARY OF PROCEDURE TO COMPUTE THE SPRING AND DASHPOT

VALUES OF PILE FOUNDATIONS

1. Compute the transverse and vertical stiffnesses of single pile with equations (3.1), (3.18) and

(3.21).

2. Compute the transverse, vertical, rocking and cross-rocking stiffnesses of pile groups with

equations (3.33), (3.35), (3.36) and (3.38).

3. Select practical spring and dashpot values by passing a horizontal line through the graph of the

real part and an inclined line through the graph of the imaginary part at locations that capture with

satisfaction the low frequency behavior. In this study the spring value was selected equal to the

static group stiffness.

4. When a stick model is used the pile foundation can be represented with a flexural-shear beam

where its stiffness elements are given by equations (3.42) to (3.45).
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4 Prediction of the Seismic Response of
Highway Overcrossings

Once the kinematic response factors and dynamic stiffnesses of embankments and pile founda-

tions have been established, the dynamic analysis of the bridge superstructure can be conducted

with various models that offer different levels of sophistication. The most popular models are the

reduced-order stick model and a detailed three-dimensional finite element model.

A comprehensive study that established the validity of the stick model was conducted by

McCallen and Romstad (1994) who computed natural frequencies, mode shapes, and response

time histories of the Painter Street Overcrossing using the two aforementioned numerical models.

Both fixed and resilient foundation supports were considered and it was found that there is a one-

to-one correspondence between the mode shapes predicted by the stick and the detailed finite ele-

ment model. The McCallen and Romstad study indicated the substantial reduction in the trans-

verse and longitudinal frequencies when realistic soil strains are considered; while in these two

modes of vibration modal damping should be of the order of 20 to 30%. The levels of modal

damping were concluded by McCallen and Romstad (1994) after a large number of trial and error

iterations and comparisons of measured and computed responses at several bridge locations. The

detailed finite element study by McCallen and Romstad (1994) that accounts for the resilience

and dissipation at the center bent and end abutment involved the discretization of embankments

and a large volume of the surrounding soil. Efforts to establish the validity of the stick model in

estimating the seismic response of skew bridges have been also reported by Werner (1994).

4.1 RESPONSE OF THE MELOLAND ROAD OVERCROSSING

Figure 4.1 shows the stick model (top) and the three-dimensional finite element model (bottom)

of the Meloland Road Overcrossing. The stick model is a collection of beam elements with cross-
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Figure 4.1 Numerical models of Meloland Road Overcrossing (Top: stick model; Bottom: 3-D fi-

nite element model)
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section properties adjusted from geometric data without considering any cracked section reduc-

tion. The three-dimensional finite element model uses eight-node solid elements for the bridge

superstructure. The bridge superstructure is supported at its center bent and at each end by the

springs and dashpots schematically shown in Figure 1.1, their values being estimated separately

in Chapter 2 and 3 and summarized in Table 4.1.

TABLE 4.1. Spring and dashpot values that approximate the presence of the approach
embankments and pile foundation of the Meloland Road Overcrossing. Values from this
study are associated with the intensity of the 1979 Imperial Valley earthquake.

During the numerical simulation, the Young’s modulus of the beam elements on top of the

column was artificially increased by three orders of magnitude to form a rigid link in order to pre-

vent excessive deflections at the connection point between pier and deck in the stick model,

(McCallen and Romstad 1994). Vertical excitations are not considered. In both models, the damp-

Parameters 1 2 3 4 5 6

E
m

ba
nk

m
en

t
+

P
ile

F
ou

nd
a

tio
ns

21+56 160* 91 (365) 107 /
607+49
(51+49)

21+56 / 91 (365) / / 596+49

78+356 418* 263 (1051) / / /

1.5+4.5 / / / / /

1.5+4.5 / / / / /

3+28 / / / / /

P
ile

F
ou

nd
at

io
n

of
C

en
te

r
B

en
t

, ( ) 260 / 254 (876) / 1007 175

7611 366 1888 (6509) / 5696 /

, ( ) -409 / / / / /

887 / 550 (1898) / 1460 /

, 6 / / / / /

25 / / / / /

Note

1. This study ( and for embankment soil)
2. Wilson and Tan 1990a (* embankment only, no piles and is used for
embankment soil)
3. Douglas, Maragakis and Vrontinos 1991 (values in parenthesis are the optimal values
identified from dynamic tests)
4. Werner 1994 (fixed boundary condition at the base of pier)
5. Maragakis, Douglas and Abdel-Ghaffar 1994 (values are from dynamic tests)
6. Caltrans: Method A (Method B)

Kx MN m⁄( )

Ky MN m⁄( )

Kz MN m⁄( )

Cx MN s m⁄⋅( )

Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

Kx Ky MN m⁄

Kr MN m rad⁄⋅( )

Kxr Kyr MN rad⁄

Kz MN m⁄( )

Cx Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

G 2.0 MPa= η 0.52=
G 7.2 MPa=
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ing of the bridge deck and center bent is approximated with the Rayleigh damping approximation,

where the parameters and are computed by assuming a 5% modal damping ratio in the first

and the second modes. The Young’s modulus of the concrete is assumed to be . This

value is approximately 80% of the value obtained from empirical expressions to account for the

cracking that occurred during the earthquake. Similar cracked values for the Young’s modulus of

concrete in seismic response analysis of bridges have been reported by Douglas and Reid (1982,

) and Dendrou et al. (1985, ). The density of concrete is

assumed .

4.1.1 Eigenvalue Analysis

Eigensolutions were performed for the stick model and three-dimensional finite element model

using the commercially available software ABAQUS. Figure 4.2 compares the first six modes and

modal frequencies of the stick model and three-dimensional finite element model, and indicates a

one-to-one correspondence between the two models. The natural frequencies of the stick model

are also in good agreement with that of the three-dimensional finite element model.

While modal frequencies are directly estimated by solving the real eigenvalue problem of

some structural idealization of the bridge-foundation system having mass matrix, , and stiff-

ness matrix, , the estimation of the modal damping ratios appears to be a less straightforward

procedure. The majority of modal damping ratios of bridges published in the literature have been

back-figured by processing recorded data with system identification algorithms (Wilson 1986;

Werner et al. 1987; Wilson and Tan 1990b; Werner 1994; and Goel 1997 among others). Although

more recent multi-input-multi-output system identification algorithms appear to be more efficient

than older single-input-single-output algorithms, the relevance of the reported values is strongly

associated with the sophistication of the adopted structural model and the quality of the recorded

data. In some occasions modal damping values appreciably larger than those identified were rec-

ommended (Werner 1994).

In an effort to calibrate finite element results, McCallen and Romstad (1994) initially

assigned a uniform modal damping ratio, , to the first six modes of the Painter Street

Overcrossing. Subsequently, after conducting a large number of trial and error iterations and com-

parisons of recorded and computed responses of the bridge, they reassigned much larger values of

modal damping to selected modes in order to approximate satisfactorily the recorded responses.

α β

Ec 22 GPa=

Ec 20 25 GPa∼= Ec 20 GPa=

2400 kg m
3⁄

M[ ]

K[ ]

ξj 5%=
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Figure 4.2. First six modal frequencies, damping ratios, and modes computed by stick model (left)

and 3D FEM model (right) of Meloland Road Overcrossing (continued)
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Figure 4.2. First six modal frequencies, damping ratios, and modes computed by stick model (left)

and 3D FEM model (right) of Meloland Road Overcrossing
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In this study the modal damping ratios of the bridge foundation system are computed by solving

for the complex eigenvalues of the homogeneous equation

(4.1)

where , , and are the mass, damping, and stiffness matrices of the bridge-foundation

idealization shown in Figure 1.1 and is the free vibration response vector

(4.2)

In equation (4.2), is the complex characteristic value and is the associated characteristic

vector. This complex eigenvalue approach is well known in the literature and was given a critical

review by Veletsos and Ventura (1986). The damping matrix, , is constructed by adopting the

concept of Rayleigh damping for the bridge superstructure and appending the pre-identified

lumped dashpots at the locations where the superstructure interacts with its foundation. Following

this approach we assign a 5% modal damping ratio at the first and second modes of the undamped

idealized model (bridge deck with springs) and add the damping constants, , identified in chap-

ters 2 and 3 that represent the presence of the embankments and pile foundations. With this super-

position the nonclassical damping matrix, , of the bridge-foundation system assumes the form

(4.3)

The matrix is assembled in the same way as the stiffness matrix of the undamped super-

structure so that the lumped dashpots are assigned to the correct degrees of freedom. Substitu-

tion of (4.2) in (4.1) yields

(4.4)

which is a standard polynomial eigenvalue problem. The roots of this polynomial are the complex

characteristic values that were evaluated with MATLAB (1997). The relation between

with the modal frequencies, , and modal damping ratios, ( ) is determined

from the associated equation of a single-degree-of-freedom oscillator. Interpreting as the fre-

quency domain parameter one may determine

(4.5)

After solving for and ,

(4.6)

(4.7)

M[ ] u··{ } C[ ] u·{ } K[ ] u{ }+ + 0=

M[ ] C[ ] K[ ]

u{ }

u{ } φ{ }e
iΩt

=

Ω φ{ }

C[ ]

cij

C[ ]

C[ ] α M[ ] β K[ ] cij[ ]+ +=

cij[ ] K[ ]

cij

Ω2
M[ ]– iΩ C[ ] K[ ]+ +( ) φ{ } 0=

Ω j Ωj

ωj ξj j 1 2 ....N, ,=
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Ωj ωj
2 ξj

2ωj
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– iξjωj+±=

ωj ξj

ωj ΩjR
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+=

ξj

ΩjI

ωj
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in which and are the real and imaginary parts of the characteristic value , respec-

tively.

The stick model used in the real eigenvalue analysis consists of 354 degrees of freedom

for Meloland Road Overcrossing. In order to bypass the problem of computing and interpreting

the complex eigenvalues of such large matrices, a reduced-order stick model was developed with

fewer degrees of freedom. Sensitivity studies indicated that the modal characteristics of the first

ten modes are virtually insensitive to the exact number of elements of the reduced-order stick

model. Two reduced-order stick models that consist of 228 and 300 degrees of freedom (d.o.f)

respectively yield nearly identical results as indicated in Table 4.2.

Table 4.2 presents the first six real eigenvalues of the Meloland Road Overcrossing that

have been computed with the 3D finite element model of the undamped bridge (column A), the

original stick model of the undamped bridge (column B, d.o.f=354), the reduced-order stick

model of the undamped bridge (column C, d.o.f=300 and 228 respectively), and the first six com-

plex eigenvalues of the reduced-order stick model of the damped bridge (column D, d.o.f=300

and 228 respectively). The corresponding damping ratios computed with this study are shown in

column 1, next to other values reported in the literature.

The values shown in Table 4.2 indicate that the reduced-order stick model in association

with the complex eigenvalue analysis yield valuable information on the free vibration characteris-

tics of the bridge.

• The computed modal damping ratios, , are much larger than the 5% modal damping assumed

by Caltrans.

• The computed first modal damping ratio, , which in this case corresponds to the

first transverse mode with the deck bending away from the undeformed configuration, is in

agreement with the low end of damping values along the transverse mode that are reported by

Werner (1994). The values of first modal damping reported by Werner (1994) are appreciably

larger than the value by the same and other investigators during earlier studies on the same

bridge (Werner et al. 1987).

• The computed second modal damping is unusually high. However, our confi-

dence in this value originates from the straight configuration of the deck and its integral abut-

ments which are mobilizing a large volume of soil with high damping. Indirect evidence that

this high damping value might be realistic is provided by the inability of system identification

studies to detect modal characteristics along the longitudinal mode of vibration.

ΩjR ΩjI Ωj

ξj

ξ1 18.7%=

ξ2 56.8%=
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TABLE 4.2. Modal frequencies, (rad/s), and damping ratios, (%), of Meloland Road Overcrossing

Modes
Eigenvalues (rad/s) 1 2 3 4 5

Model A Model B Model C Model D

1st transverse 12.320 12.647 12.440

(12.441)

13.8

(13.8)

18.7

(18.7)

15.5 7.2 14.3~15.7 6.6~12.7 15.6 16.3 19~26

longitudinal 16.044 17.913 17.882

(17.884)

19.4

(19.4)

56.8

(56.8)

16.7

1st vertical
(antisymmetric)

21.405 22.460 21.911

(21.921)

21.1

(21.2)

8.3

(8.3)

17.5

torsion about vertical
axis

24.521 25.105 23.823

(23.824)

17.9

(18.0)

100

(100)

Critically Damped Mode

2nd transverse/torsion
about longitudinal axis

26.996 25.340 25.096

(25.087)

26.9

(26.9)

28.2

(28.2)

2nd vertical
(symmetric)

30.724 26.515 26.496

(26.526)

28.3

(28.3)

10.2

(10.2)

28.7 5.8 27.4~29.9 3.1~7.4 27.6

Note A: Undamped original 3D FEM model

B: Undamped original stick model

C: Undamped reduced stick model with 300 d.o.f and (228 d.o.f) respectively

D: Damped reduced stick model with 300 d.o.f and (228 d.o.f) respectively

1: This study

2: Werner, Beck, and Levine 1987;

3: Wilson & Tan 1990b

4: Gates 1993

5: Werner 1994

ωj ξj

ωj ξj ωj ξj ωj ξj ωj ωj ξj

13.519 2.5771i+

13.702 2.7333i+( )

16.001 11.047i+

16.221 11.104i+( )

21.073 1.746i+

21.252 1.888i+( )

0.0 17.942i+

0.0 17.962i+( )

25.778 7.570i+

26.830 8.010i+( )

28.153 2.895i+

28.187 2.900i+( )
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• The modal damping associated with the third mode (1st vertical, antisymmetric, )

is lower than the modal damping associated with the transverse and the longitudinal modes that

involve more soil participation.

• The torsional mode about the vertical axis is critically damped. Since the modes are decoupled

the modal damping of the torsional mode can be estimated by assuming that the deck is a sin-

gle-degree-of-freedom structure with length, , and linear mass density, , that rotates about

the center bent and its motion is resisted at the two ends by the transverse springs and dashpots

of the embankments indicated in Table 4.1. With this idealization, the equation of motion for

torsion about the vertical axis is

(4.8)

where is the moment of inertia of the deck about the vertical axis. Using the stan-

dard real valued procedure (Chopra 1995) or the complex formulation given by equations (4.6)

and (4.7) one concludes that and .

• The computed fifth modal damping also assumes a high value, probably due to

the explanation offered above, since this mode involves the transverse motion of the deck as

well as torsional motion of deck about the longitudinal axis.

• The good agreement between the values reported for the first and sixth natural frequencies of

the MRO by various investigators is worth mentioning.

Figure 4.3 shows Fourier amplitude spectra of channels 7, 8, 9, and 13, which are located

on the bridge deck and indicated in Figure 2.9. The solid lines indicate the first natural frequen-

cies predicted by the stick model and 3D FEM model (1.96Hz~2.01Hz), while the dashed lines

indicate the range of identified fundamental frequencies (2.28Hz~2.57Hz) that have been reported

in literature (Werner et al. 1987; Wilson and Tan 1990b; Gates 1993; excitation: the1979 Imperial

Valley earthquake). The spectrum shows an appreciable power concentration at a even lower fre-

quency (0.5 Hz) which has not been identified from any studies. This might be related to a mal-

function of the recording instruments (Werner et al. 1987). The data used in this study are

reconstructed histories that have been provided by the California Division of Mines and Geolo-

gies.
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Figure 4.3. Fourier amplitude spectra of accelerations recorded at channels 7, 8, 9, and 13 of

Meloland Road Overcrossing
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4.1.2 Time History Analysis

Figures 4.4 to 4.7 plot total acceleration, relative velocity, and displacement time histories of the

bridge response at selected locations. The analysis shown in these figures investigates the sensi-

tivity of the bridge response to the support motion. The first column shows the recorded motions.

The second column shows computed response quantities by using as a support motion at the end

abutments the crest motions computed using Equation (2.14). The third column shows the com-

puted response quantities by using as a support motion at the center bent and the end abutments

the free-field motion. The last column shows computed response quantities by using as a support

motion at the end abutments the recorded crest motions. All simulated responses are obtained by

implementing the spring and dashpot values that have been evaluated with the approximate meth-

ods advanced in Chapters 2 and 3.

Figure 4.4 compares the computed response with the records of channel 7, which is

located at mid-span of the bridge deck. The case where the recorded crest motions is used as sup-

port motions yields the best overall predictions. The acceleration and the deck drift are predicted

with errors less than 8%, while the relative velocity is underestimated by 26%. When the com-

puted crest motions are used as support motions, the peak acceleration is overestimated by 27%

while the deck drift and the relative velocity is predicted with marginal discrepancies. Figure 4.5

compares the computed response with the records of channel 8. When the free-field motions are

used as support motions the discrepancies between records and predictions are of the order of

70% or more for relative velocities and relative displacements. Similar trends can be observed in

Figures 4.6 and 4.7, which compare the computed responses with the records of channels 9 and

13. The results shown in Figures 4.4 to 4.7 indicate the significance of considering the amplified

support motions at the crest of the embankments.

Our parametric analysis proceeds by analyzing the bridge response when different support

idealizations are considered. Figure 4.8 shows three idealizations of interest: (a) monolithic abut-

ments and viscoelastic foundation at the center bent, (b) viscoelastic embankments and mono-

lithic support at the center bent, and (c) viscoelastic embankments and elastic support at the center

bent. The sensitivity of the bridge responses to the resilience and dissipation of the bridge sup-

ports is investigated in Figures 4.9 and 4.10, which compare the response quantities against the

records of channels 7 and 9. The first column in Figures 4.9 and 4.10 shows the recorded motions.

The second column shows computed response quantities by assuming monolithic abutments and
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Figure 4.4. Records of channel 7 and predictions of Meloland Road Overcrossing response considering different support motions
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Figure 4.5. Records of channel 8 and predictions of Meloland Road Overcrossing response considering different support

motions
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Figure 4.6. Records of channel 9 and predictions of Meloland Road Overcrossing response considering different support

motions.
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Figure 4.7. Records of channel 13 and predictions of Meloland Road Overcrossing response considering different support

motions
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Figure 4.8 Bridge models with different support idealizations
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Figure 4.9. Records of channel 7 and predictions of Meloland Road Overcrossing response considering different support ideali-

zations
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Figure 4.10. Records of channel 9 and predictions of Meloland Road Overcrossing response considering different support ideal-

izations
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viscoelastic foundation at the center bent. It examines the effect of neglecting the resilience and

dissipation at the abutments. The third column examines the effect of neglecting the resilience and

dissipation of the pile foundation at the center bent. The last column examines the effect of

neglecting the dissipation of the pile foundation at the center bent. All simulated response are sub-

jected to the recorded motions at the crest of the embenkment and the freefield and should be

compared with the last column of Figures 4.4 and 4.6. The case of a rigid support at the center

bent results in the smaller drifts, while the case of neglecting the dissipation of the pile founda-

tions (Goel and Chopra 1997) yields comparable results when it is included.

4.2 RESPONSE OF THE PAINTER STREET OVERCROSSING

Figure 4.11 shows the stick model (top) and three-dimensional finite element model (bottom) of

the Painter Street Overcrossing. Again, the stick model is a collection of beam elements with

cross-section properties adjusted from geometric data without considering any cracked section

reduction. While it is not shown in Figure 4.11 the beam elements are joined following the skew

configuration of the bridge that results in coupling of the vibration modes. The three-dimensional

finite element model uses eight-node solid elements for the bridge structure. The bridge super-

structure is supported at its center bent and both ends by the springs and dashpots schematically

shown in Figure 1.1 their values being estimated separately in the chapters 2 and 3 and summa-

rized in Table 4.3 (column 1), along with selected values reported in literature (columns 2 to 5).

Vertical excitations are not included during the analysis. In both models, the damping of

the bridge superstructure is approximated with the Rayleigh damping approximation, where the

parameters and are computed by assuming a 5% modal damping ratio in the first and the sec-

ond modes. The Young’s modulus of the concrete is assumed to be 22GPa. This value is approxi-

mately 80% of the value obtained from empirical expressions to account for the cracking that

occurred during the earthquake. The density of concrete is .

4.2.1 Eigenvalue Analysis

Eigensolutions were performed for the stick model and three-dimensional finite element model

using the commercially available software ABAQUS. Figure 4.12 compares the first six natural

modes and frequencies of the stick model and the three-dimensional finite element model.

α β

2400 kg m
3⁄
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Figure 4.11. Numerical models of Painter Street Overcrossing (Top: stick model; Bottom: 3D fi-

nite element model)
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Figure 4.12. First six modal frequencies, damping ratios, and modes computed by stick model

(left) and 3D FEM model (right). Values in parentheses are those reported by McCallen and Rom-

stad (1994) (continued).
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Figure 4.12. First six modal frequencies, damping ratios, and modes computed by stick model

(left) and 3D FEM model (right). Values in parentheses are those reported by McCallen and Rom-

stad (1994).

1

2

3

1

2

3

f4 3 25
·
Hz 4.72Hz( ),= ξ4 8.3%=

1

2

3

1

2

3

f4 3.75 Hz 5.03Hz( )=

1

2

3

1

2

3

f5 3.29 Hz 5.24Hz( )= ξ5 45.8%=

1

2

3

1

2

3

f5 4.24 Hz 5.28Hz( )=

1

2

3

1

2

3

f6 3.43 Hz 6.61Hz( )= ξ6 17.0%=

1

2

3

1

2

3

f6 5.13 Hz 5.53Hz( )=



104

TABLE 4.3. Spring and dashpot values that approximate the presence of the
embankments and pile foundations of the Painter Street Overcrossing. Values from this
study are associated with the intensity of the 1992 Petrolia earthquake.

There is a one-to-one correspondence between the mode shapes predicted by the stick

model and three-dimensional finite element model. The natural frequencies of the stick model are

also in good agreement with that of the three-dimensional finite element model. The first values

shown are those computed by adopting the converged soil properties during the strong 1992

Petrolia earthquake. The values shown in the parenthesis are those reported by McCallen and

Romstad (1994). They are 50% higher than the values computed in this study. Part of the reason

for these discrepancies is the six times larger embankment stiffnesses they used in their study.

Modal damping ratios are estimated with the complex eigenvalue procedure presented in

the equivalent section associated with the analysis of the Meloland Road Overcrossing. Similarly,

a reduced-order stick model was developed with fewer degrees of freedom in order to bypass the

problem of computing and interpreting the large number of complex eigenvalues resulting from

Parameters 1 2 3 4 5

E
m

ba
nk

m
en

t
+

P
ile

F
ou

nd
at

io
ns

137+180 201* 851+105 117~438+
810+105
(68+105)

137+180 / 815+105 146~1458+ 876+105

582+773 564* / /

9+9 / / / /

9+9 / / / /

17+56 / / / /

P
ile

F
ou

nd
at

io
n

of
C

en
te

r
B

en
t

, ( ) 321 / 140 / 140

5254 / / / /

, ( ) 354 / / / /

982 / / /

, 5 / / / /

20 / / / /

Note

1. This study ( and for embankment soil)
2. Wilson and Tan 1990a (* embankment only, no piles)
3. McCallen and Romstad 1994
4. Goel and Chopra 1997(+ embankment and piles)
5. Caltrans 1989 Method A (Method B)

Kx MN m⁄( )

Ky MN m⁄( )

Kz MN m⁄( ) ∞

Cx MN s m⁄⋅( )

Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

Kx Ky MN m⁄

Kr MN m rad⁄⋅( )

Kxr Kyr MN rad⁄

Kz MN m⁄( ) ∞

Cx Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

G 8.0 MPa= η 0.50=
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the original stick model which consists of 618 degrees of freedom. Table 4.4 presents the first six

eigenvalues of the Painter Street Overcrossing that have been computed with the three-dimen-

sional (3-D) finite element model of the undamped bridge (column A), the original stick model of

the undamped bridge (column B), the reduced-order stick model of the undamped bridge (column

C), and the first six complex eigenvalues of the reduced-order stick model of the damped bridge.

Damping ratios computed with this study are shown in column 1 next to other values reported in

the literature. Selected observations from the modal values indicated in Table 4.4 are

• Due to the skew configuration, there is strong coupling of modes involved in the eigenvalue

analysis.

• The computed modal damping ratio, , are larger than the 5% modal damping assumed by

Caltrans, however, the first three modal damping ratios are not as high as the modal damping

ratios computed for the unskewed Meloland Road Overcrossing. This might be partly due to

the strong participation of the vertical mode in the Painter Street Bridge that is associated with

less damping.

• The computed first modal damping, is approximately half the value that McCallen

and Romstad (1994) needed to match the recorded data. However, it is in agreement with the

high-end of the modal damping range identified by Goel (1997).

• The longitudinal mode (that was the second mode for the Meloland Road Overcrossing) has

been pushed down to the fifth mode. Interestingly, the complex eigenvalue analysis advanced

in this study is able to capture the outstandingly high damping, , associated with this

mode. As was indicated during the analysis of the modal properties of the Meloland Road

Overcrossing, in which , the longitudinal mode mobilize a

large volume of soil with high damping.

• The procedure advanced in this study, where the appropriate values of and of the soil

embankments are established with the kinematic response analysis, yields a first natural fre-

quency that is in very good agreement with the values reported by Goel (1997) and Price and

Eberhard (1998).

Figure 4.13 shows Fourier amplitude spectra of channels 4, 7, 9, and 11 of the Painter

Street Overcrossing, where the frequency around 2Hz can be identified. The solid lines are the

fundamental frequencies computed by the stick model and 3D FEM model in this study while the

dashed lines are the values reported by McCallen and Romstad (1994). It can be seen that our pre-

diction is closer to the main amplification of the spectrum.

ξj

ξ1 9%=

ξ5 46%=

ξ2 56.5% (longitudinal mode)=

G η
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TABLE 4.4. Modal frequencies, (rad/s), and damping ratios, (%), of Painter Street Overcrossing

Modes
Eigenvalues (rad/s) 1 2 3 4

Model A Model B Model C Model D

1st transverse/antisymmetric
vertical

14.514 11.162 11.364

(11.587)

11.5

(11.8)

9.0

(9.5)

20.7 20 11.0~17.9 5.6~8.5 10.3 16.6

antisymmetric vertical/tor-
sion about vertical axis

17.593 14.409 14.578

(14.751)

14.7

(14.9)

6.7

(6.8)

16.9 3

torsion about vertical axis/
symmetric vertical

18.410 16.366 16.365

(16.366)

16.6

(16.6)

5.8

(5.9)

25.1 3

symmetric vertical/longitudi-
nal

23.562 20.691 20.808

(20.994)

21.1

(21.4)

8.3

(8.4)

32.9 5

longitudinal 26.641 21.545 20.938

(21.265)

22.7

(22.9)

45.8

(45.4)

29.6 30

2nd transverse/torsion about
longitudinal axis

32.233 31.156 22.052

(22.532)

24.1

(24.6)

17.0

(17.5)

41.5 5

Note A: Undamped original 3D FEM model

B: Undamped original stick model

C: Undamped reduced stick model with 174 d.o.f and (138 d.o.f) respectively

D: Damped reduced stick model with 174 d.o.f and (138 d.o.f) respectively

1: This study

2: McCallen and Romstad 1994

3: Goel 1997

4. Price and Eberhard 1998

ωj ξj

ωj ξj ωj ξj ωj ξj ωj ξj

11.490 1.040i+

11.730 1.116i+( )

14.683 0.984i+

14.863 1.006i+( )

16.527 0.962i+

16.524 0.972i+( )

21.075 1.761i+

21.370 1.809i+( )

20.176 10.383i+

20.394 10.395i+( )

23.754 4.096i+

24.236 4.302i+( )
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Figure 4.13. Fourier amplitude spectra of accelerations recorded at channels 4, 7, 9, and 11 of

Painter Street Overcrossing
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4.2.2 Time History Analysis

Figures 4.14 to 4.17 plot total acceleration, relative velocity, and displacement time histories of

the bridge response at selected locations. The analysis shown in these figures investigates the sen-

sitivity of the bridge response to the foundation input motion. The first column shows the

recorded motions. The second column shows computed response quantities by using as a support

motion at the end abutments the crest motions computed using Eq. (2-14). The third column

shows the computed response quantities by using as a support motion at the center bent and end

abutments the free-field motion. The last column shows computed response quantities by using as

a support motion at the end abutments the recorded crest motions.

Figure 4.14 compares the computed responses with the records of channel 4. The case

where the recorded crest motions are used as support motions yields invariably the most favorable

prediction. When the free-field motions are used as support motions, the bridge response shown

along the third column is substantially underestimated, since it has not experienced the amplifica-

tion that the embankments induce at the two ends. When the computed crest motions are used as

support motions the peak accelerations are predicted with marginal discrepancies; however, deck

drifts are underestimated by 22%. Figure 4.15 which compares the computed response with the

records of channel 7, indicates similar trends. When the free-field motions are used as support

motions the discrepancies between records and predictions are of the order of 40% or more, for

relative velocities and relative displacements. Similar trends are observed in Figures 4.16 and

4.17, which compare the computed responses with the records of channels 9 and 11.

The sensitivity of the bridge response to the resilience and dissipation of the bridge sup-

ports is investigated in Figures 4.18 to 4.21, which plot total acceleration, relative velocity, and

displacement time histories. Again the first column shows the recorded motion for convenience.

The second column plots the computed response quantities by assuming that the abutments are

monolithic supports and soil-structure-interaction happens only at the foundation of the center

bent (case (a) of Figure 4.8). The third column plots the computed response quantities by consid-

ering soil-structure-interaction at the end abutments and by assuming a monolithic support at the

center bent (case (b) of Figure 4.8). The forth column plots the computed response quantities by

accounting for soil-structure interaction at the end abutments and at the center bent; the flexibility

is included whereas the dissipation of the pile foundation at the center bent is eliminated. In all
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Figure 4.14. Records of channel 4 and predictions of Painter Street Overcrossing response considering different support motions
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Figure 4.15. Records of channel 7 and predictions of Painter Street Overcrossing response considering different support motions
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Figure 4.16. Records of channel 9 and predictions of Painter Street Overcrossing response considering different support motions
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Figure 4.17. Records of channel 11 and predictions of Painter Street Overcrossing response considering different support motions
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Figure 4.18. Records of channel 4 and predictions of Painter Street Overcrossing response considering different support ideali-

zations
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Figure 4.19. Records of channel 7 and predictions of Painter Street Overcrossing response considering different support ideali-

zations
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Figure 4.20. Records of channel 9 and predictions of Painter Street Overcrossing response considering different support ideali-

zations
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Figure 4.21. Records of channel 11 and predictions of Painter Street Overcrossing response considering different support ideali-

zations
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cases the free-field motions were induced at the foundation of the center bent and the recorded

crest motions were induced at the end abutments.

Figure 4.18 compares the computed responses with the records of channel 4. It indicates

that the resilience of the pile foundation of the center bent is appreciably affecting the response,

whereas the associated damping has less important effects. Figure 4.19, which shows computed

responses at the mid-span, indicates the similar trends. More specifically, the results obtained by

neglecting the damping of the pile foundation at the center bent are comparable to the results

obtained when damping is included, a result that confirms the validity of the assumption adopted

by Goel and Chopra (1997). Similar trends, observed in Figures 4.20 and 4.21, suggest that in this

case the damping of the pile foundation at the center bent has marginal effects; whereas the flexi-

bility of the pile foundations has an appreciable effect and has to be included.

4.3 OUTLINE OF PROPOSED PROCEDURE

The two case studies presented in this report confirmed the validity of a step-by-step procedure to

estimate the seismic response of freeway overcrossings. The study shows that the stick model

used by Caltrans when enhanced with realistic springs and dashpots at its supports can yield

dependable estimates of the seismic response of freeway overcrossings.

Step 1. Compute the kinematic response function of the approach embankments as outlined in

section 2.2.5, after establishing the converged values of the equivalent linear soil parameters,

and .

Step 2. Compute the embankment crest response by amplifying the free-field motion with the

kinematic response functions obtained in step 1.

Step 3. Compute the frequency-independent spring and dashpot values of the approach embank-

ment as outlined in section 2.3.5.

Step 4. Compute the frequency-independent spring and dashpot values of the pile groups at the

abutments and the center bent as outlined in section 3.5.

Step 5. Construct a stick model of the bridge enhanced with the transverse and longitudinal spring

and dashpot values computed in steps 3 and 4.

Step 6. Compute the two-dimensional dynamic response of the model constructed in step 5 (see

Figure 1.2) subjected to the free-field motions at the center bent and the crest motions at the abut-

ment ends computed in step 2.

G

η
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5 Conclusions

The seismic response of highway overcrossings was investigated in this report within the context

of equivalent linear analysis. The goal of this study was to identify and characterize the effects of

various structural components of the bridge-foundation system and to develop a simple yet

dependable method to estimate the earthquake response of short bridges.

Recognizing that soil-structure interaction affects appreciably the earthquake response of

highway overcrossings, the kinematic response functions and dynamic stiffnesses of approach

embankments were revisited in Chapter 2 and it was concluded that

• During strong shaking soil strains in the embankment can be as large as or even

larger, resulting in equivalent linear shear modulus, , and damping coefficient,

.

• Typical approach embankments even when strained at the above-indicated levels tend to

amplify substantially the free-field motions (two to three times).

• The dynamic stiffnesses of embankments, although in theory are frequency dependent, can be

approximated in practice with frequency-independent springs and dashpots.

• The unit-width shear-wedge model can be extended to a two-dimensional model that yields

dependable estimates of the transverse static stiffness of approach embankments when loaded

at one end. The formulation reveals a sound closed-form expression for the critical length, ,

that is the ratio of the transverse static stiffness of an approach embankment to the transverse

static stiffness of a unit-width wedge.

• The simple expression for the critical length, allows for a realistic estimation

of the dynamic stiffness of the approach embankment from the dynamic stiffness of a unit-

width shear-wedge.

Chapter 3 summarizes current state-of-art procedures to compute the dynamic stiffnesses

of piles and pile groups. They were implemented to compute the dynamic stiffnesses of the pile

γ 5
3–×10≈

G Gmax 10⁄≈

η 0.5≈

Lc

Lc 0.7 SBcH≈
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groups at the end abutments and the center bents of the two instrumented bridges studied in this

report the Meloland Road Overcrossing and the Painter Street Overcrossing. The study indi-

cates that the dynamic stiffnesses of pile groups, although in theory are frequency dependent, can

be approximated in practice with frequency-independent springs and dashpots.

The free-vibration and earthquake responses of the two aforementioned bridges of interest

were examined in Chapter 4 with a reduced-order stick model and a more detailed three-dimen-

sional finite element model. Either model in this study was enhanced with the springs and dash-

pots established in chapters 2 and 3 to account for the presence of the approach embankments and

pile foundations. Our analysis revealed distinguishable trends that lead to the following conclu-

sions:

• The reduced-order stick model yields comparable modal parameters and seismic response

characteristics to the more detailed three-dimensional finite element model. It is capable to

capture the dynamic characteristics of a skewed overcrossing that exhibits strong coupling of

its vibration modes.

• The modal damping ratios, , of either the straight Meloland Road Overcrossing and the

skewed Painter Street Overcrossing are much larger than the 5% modal damping ratios

assumed by Caltrans.

• The first mode of the straight Meloland Road Overcrossing is the transverse mode; whereas,

for the skewed Painter Street Overcrossing, it is the coupled transverse/first antisymmetric ver-

tical mode.

• The first modal damping ratio of the Meloland Road Overcrossing is of the order of 20%;

whereas, for the Painter Street Overcrossing, it is of the order of 10%. The smaller amount of

the first modal damping in the skewed Painter Street Overcrossing is because the transverse

mode is coupled with the first antisymmetric vertical mode that is lightly damped.

• The longitudinal mode emerges as the second mode for the straight Meloland Road Overcross-

ing; whereas, in the skewed Painter Street Overcrossing, it is pushed down to the fifth place. In

both cases the modal damping ratio along the longitudinal direction is of the order of 50%.

• Vertical vibration modes exhibit smaller damping ratios (8% to 10%).

• The torsional mode of the straight and symmetric overcrossings is highly damped. For the par-

ticular case of the Meloland Road Overcrossing, the torsional mode (4th mode) was critically

damped, . In contrast, in the case of the skewed Painter Street Overcrossing the tor-

ξj

ξ4 100%≈
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sional mode is coupled with the symmetric vertical mode and the modal damping was as low as

.

• Time history analysis shows that the amplified crest motions of the approach embankments

have an appreciable effect on the bridge response and should not be neglected.

• Parametric studies that examine the effect of different support idealizations indicate that

neglecting the resilience of the foundation of the center bent yields unrealistic small drifts,

while neglecting the dissipation of the foundation of the center bent has a marginal effect.

In summary, in view of the strong effect of soil-structure interaction, it is concluded that

the earthquake response of highway overcrossings can be realistically computed with the stick

model used by Caltrans provided that (a) it is enhanced with the springs and dashpots established

in chapters 2 and 3 and (b) it is subjected at its end abutments to the amplified crest motions cal-

culated in Chapter 2.

ξ3 6%≈
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