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ABSTRACT 

The principal objective of this investigation is to develop a pushover analysis procedure based on 

structural dynamics theory, which retains the conceptual simplicity and computational 

attractiveness of current procedures with invariant force distribution, but provides superior 

accuracy in estimating seismic demands on buildings. 

 The standard response spectrum analysis (RSA) for elastic buildings is reformulated as a 

Modal Pushover Analysis (MPA). The peak response of the elastic structure due to its nth 

vibration mode can be exactly determined by pushover analysis of the structure subjected to 

lateral forces distributed over the height of the building according to *
n n=s mφ , where m is the 

mass matrix and nφ  its nth-mode, and the structure is pushed to the roof displacement 

determined from the peak deformation nD  of the nth-mode elastic SDF system. Combining 

these peak modal responses by modal combination rule leads to the MPA procedure. 

 The MPA procedure is extended to estimate the seismic demands for inelastic systems: 

First, a pushover analysis determines the peak response nor  of the inelastic MDF system to 

individual modal terms, ( ) ( )eff,n n gut t= −p s && , in the modal expansion of the effective earthquake 

forces, ( ) ( )eff,n gut t= −p m &&ι . The base shear-roof displacement ( )bn mV u−  curve is developed 

from a pushover analysis for force distribution *
ns . This pushover curve is idealized as bilinear 

and converted to the force-deformation relation for the nth-“mode” inelastic SDF system. The 

peak deformation of this SDF system is used to determine the roof displacement, at which the 

seismic response, nor , is determined by pushover analysis. Second, the total demand, or , is 

determined by combining the ( )1, 2,nor n = K  according to an appropriate modal combination 

rule. 

 Comparing the peak inelastic response of a 9-story SAC building determined by the 

approximate MPA procedure with rigorous nonlinear response history analysis (RHA) 

demonstrates that the approximate procedure provides good estimates of floor displacements and 

story drifts, and identifies locations of most plastic hinges; plastic hinge rotations are less 

accurate. The results presented for El Centro ground motion scaled by factors varying from 0.25 

to 3.0, show that MPA estimates the response of buildings responding well into the inelastic 
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range to a similar degree of accuracy when compared to standard RSA for estimating peak 

response of elastic systems. Thus the MPA procedure is accurate enough for practical application 

in building evaluation and design. 

 Comparing the earthquake-induced demands for the selected 9-story building determined 

by pushover analysis using three force distributions in FEMA-273, MPA, and nonlinear RHA, it 

is demonstrated that the FEMA force distributions greatly underestimate the story drift demands, 

and the MPA procedure is more accurate than all the FEMA force distributions methods in 

estimating seismic demands. However, all pushover analysis procedures considered do not seem 

to compute to acceptable accuracy local response quantities, such as hinge plastic rotations. Thus 

the present trend of comparing computed hinge plastic rotations against rotation limits 

established in FEMA-273 to judge structural performance does not seem prudent. Instead, 

structural performance evaluation should be based on story drifts known to be closely related to 

damage and can be estimated to a higher degree of accuracy by pushover analyses. 
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1 Introduction 

Estimating seismic demands at low performance levels, such as life safety and collapse 

prevention, requires explicit consideration of inelastic behavior of the structure. While nonlinear 

response history analysis (RHA) is the most rigorous procedure to compute seismic demands, 

current structural engineering practice uses the nonlinear static procedure (NSP) or pushover 

analysis in FEMA-273 [Building Seismic Safety Council, 1997]. The seismic demands are 

computed by nonlinear static analysis of the structure subjected to monotonically increasing 

lateral forces with an invariant height-wise distribution until a predetermined target displacement 

is reached. Both the force distribution and target displacement are based on the assumption that 

the response is controlled by the fundamental mode and that the mode shape remains unchanged 

after the structure yields. 

 Obviously, after the structure yields both assumptions are approximate, but investigations 

[Saiidi and Sozen, 1981; Miranda, 1991; Lawson et al., 1994; Fajfar and Fischinger, 1988; 

Krawinkler and Seneviratna, 1998; Kim and D’Amore, 1999; Maison and Bonowitz, 1999; 

Gupta and Krawinkler, 1999, 2000; Skokan and Hart, 2000] have led to good estimates of 

seismic demands. However, such satisfactory predictions of seismic demands are mostly 

restricted to low- and medium-rise structures in which inelastic action is distributed throughout 

the height of the structure [Krawinkler and Seneviratna, 1998; Gupta and Krawinkler, 1999]. 

 None of the invariant force distributions can account for the contributions of higher modes 

to response, or for a redistribution of inertia forces because of structural yielding and the 

associated changes in the vibration properties of the structure. To overcome these limitations, 

several researchers have proposed adaptive force distributions that attempt to follow more 

closely the time-variant distributions of inertia forces [Fajfar and Fischinger, 1988; Bracci et al., 

1997; Gupta and Kunnath, 2000]. While these adaptive force distributions may provide better 

estimates of seismic demands [Gupta and Kunnath, 2000], they are conceptually complicated and 

computationally demanding for routine application in structural engineering practice. Attempts 
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have also been made to consider more than the fundamental vibration mode in pushover analysis 

[Paret et al., 1996; Sasaki et al., 1998; Gupta and Kunnath, 2000; Kunnath and Gupta, 2000; 

Matsumori et al., 2000]. 

 The principal objective of this investigation is to develop an improved pushover analysis 

procedure based on structural dynamics theory that retains the conceptual simplicity and 

computational attractiveness of the procedure with invariant force distribution, but provides 

superior accuracy in estimating seismic demands on buildings. First, we show that pushover 

analysis of a one-story system predicts perfectly peak seismic demands. Next we develop a 

modal pushover analysis (MPA) procedure for linearly elastic buildings and demonstrate that it 

is equivalent to the well-known response spectrum analysis (RSA) procedure. The MPA 

procedure is then extended to inelastic buildings, the underlying assumptions and approximations 

are identified, and the errors in the procedure relative to a rigorous nonlinear RHA are 

documented. Finally, the seismic demands determined by pushover analysis using three force 

distributions in FEMA-273 are compared against the MPA and nonlinear RHA procedures. 
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2 One-Story Systems 

2.1 EQUATION OF MOTION 

Consider the idealized one-story structure shown in Fig. 2.1a. It consists of a mass m (or weight 

w) concentrated at the roof level, a massless frame that provides stiffness to the system, and a 

linear viscous damper with damping coefficient c. The hysteretic relation between the lateral 

force f s and lateral displacement u of the mass relative to the base of the frame is denoted 

by ( ),signsf u u& . 

 This lateral-force displacement relation is idealized as shown in Fig. 2.1b. It is the familiar 

bilinear hysteretic relationship. On initial loading, this system is linearly elastic with stiffness k 

as long as the force does not exceed f y , the yield strength. Yielding begins when the force 

reaches f y  and the deformation reaches uy , the yield deformation. During yielding the stiffness 

of the frame is α k , where0<α<<1. The yield strength is the same in the two directions of 

deformation. Unloading from a maximum deformation takes place along a path parallel to the 

initial elastic branch. Similarly, reloading from a minimum deformation takes place along a path 

parallel to the initial elastic branch. The yield strength is related to fo , the strength required for 

the structure to remain elastic during the ground motion, through the yield strength reduction 

factor, Ry , defined by 

o
y

y

fR
f

=  (2.1) 

 The governing equation for this inelastic system subjected to horizontal ground 

acceleration ( )gu t&&  is 

( ) ( ),signs gmu cu f u u mu t+ + = −&& & & &&  (2.2) 
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Fig. 2.1. (a) Idealized one-story structure; and (b) bilinear hysteretic force-
deformation relation 

For a given excitation ( )gu t&& , the deformation ( )u t  depends on three systems parameters: ω n , 

ζ , and uy , in addition to the form of the force-deformation relation. This becomes evident if Eq. 

(2.1) is divided by m to obtain  

( ) ( )22 ,signn n y s gu u u f u u u tζω ω+ + = −%&& & & &&  (2.3) 

where 

2
s

n s
n y

k c ff
m m f

ω ζ
ω

= = =%   (2.4) 

and ω n  is the natural vibration frequency, 2n nT π ω=  is the natural vibration period, and ζ  is 

the damping ratio of the system vibrating within its linear elastic range (i.e., yu u≤ ). 

 The peak, or absolute (without regard to algebraic sign) maximum, deformation is denoted 

by um, and the ductility factor is 

m

y

u
u

µ =  (2.5) 

For a given ( )gu t&& , µ  depends on three system parameters: ω n , ζ y , and Ry  [Chopra, 2001; 

Section 7.3]. 
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2.2 SYSTEM AND EXCITATION CONSIDERED 

Consider the one-story system in Fig. 2.2: the dimensions and flexural rigidity of the structural 

elements are noted, with 0.5 secnT =  and 5%ζ =  subjected to the north-south component of the 

El Centro (1940) ground motion (Fig. 6.1.4 in Chopra, 2001) and scaled up by a factor of 2. For 

this system and excitation, 1.84of w = . The yield strength of the inelastic system, based on 

8yR = , is ( )/ / 8 0.2311y of w f w= ÷ = , and 39.26 kN (8.826 kips)yf =  for 

169.9 kN (38.2 kips)w = . 

 

• •
L = 7.32 m

•
•

h = 3.66 m EIc EIc

EIb m

 

Fig. 2.2.    One-story, one-bay frame 
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Fig. 2.3.    Pushover curve for structure shown in Fig. 2.2 
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 The yield moments in the beam and columns are defined as the bending moments due to 

the lateral force yf . Implementing this analysis with 7 46.077 10 mmcI = ×  (146 4in. ), 

7 43.134 10 mmbI = ×  (75.3 4in. ), and 8 32 10  kPa (29×10 ksi)E = ×  gives yield moments of 

21.65 kN-m (191.6 kip-in.) and 50.18 kN-m (444.1 kip-in.) for the beam and columns, 

respectively. The yielding stiffness of each structural element is defined as 3% of its initial 

stiffness. A static pushover analysis of this one-story system leads to the force-displacement 

relationship shown in Fig. 2.3. This pushover curve turns out to be bilinear because the beam and 

the columns are designed to yield simultaneously when sf  reaches yf . 

2.3 RESPONSE HISTORY ANALYSIS 

Figure 2.4 shows the earthquake response of the system described in the preceding section 

determined by response history analysis (RHA). It is organized in five parts: (a) shows the 

deformation ( )u t ; (b) shows the lateral force ( )sf t  or base shear ( )bV t  normalized relative to 

the weight; (c) shows the joint rotation ( )tθ ; (d) shows the rotation ( )p tθ  of the plastic hinges 

at the beam ends; and (e) shows the force-deformation relation. The peak values of the various 

response quantities are as follows: 7.36 cmmu = , 0.0217 radmθ = , and 0.017 radpmθ = . The 

system is excited well beyond the yield deformation, as apparent in Fig. 2.4e; the ductility factor 

5.35µ = . 

2.4 PUSHOVER ANALYSIS 

Static analysis of the one-story nonlinear system subjected to lateral force that increases in small 

increments is implemented until the lateral displacement reaches 7.36mu = cm, the peak value 

determined from RHA. The resulting pushover curve is shown in Fig. 2.4f, wherein the 

hysteretic force-deformation history of Fig. 2.4edetermined from RHAis superimposed. 

Observe that the pushover curve matches the initial loading path of the hysteretic system. 

Determined from pushover analysis at the exact peak deformation, the joint rotation and beam 

hinge rotation are identical to values mθ  and θ pm  determined from RHA. However, pushover 

analysis cannot provide any cumulative measure of response; e.g., the energy dissipated in 
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yielding during the ground motion, or the cumulative rotation at a plastic hinge. This represents 

an inherent limitation of pushover analyses. 
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Fig. 2.4. Response of one-story system to El Centro ground motion: (a) 
deformation; (b) base shear; (c) joint rotation; (d) plastic hinge 
rotation; (e) force-deformation relation; and (f) pushover curve 
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3 Elastic Multistory Buildings 

3.1 MODAL RESPONSE HISTORY ANALYSIS 

The differential equations governing the response of a multistory building to horizontal 

earthquake ground motion ( )gu t&&  are as follows: 

( )gu t+ + = −mu cu ku m&& & &&ι  (3.1) 

where u is the vector of N lateral floor displacements relative to the ground, m, c, and k are the 

mass, classical damping, and lateral stiffness matrices of the system; each element of the 

influence vector ι is equal to unity. 

 The right side of Eq. (3.1) can be interpreted as effective earthquake forces: 

( ) ( )eff gt u t= −p m &&ι  (3.2) 

The spatial distribution of these “forces” over the height of the building is defined by the vector 

s = mι and their time variation by ( )gu t&& . This force distribution can be expanded as a 

summation of modal inertia force distributions sn  [Chopra, 2001: Section 13.12]: 

1 1

N N
n n n

n n= =
= = Γ∑ ∑m s mι φ  (3.3) 

where φ n is the nth natural vibration mode of the structure, and 

( ) ( ) ( )eff eff,
1 1

N N
n n g

n n
t t u t

= =
= = −∑ ∑p p s &&  (3.4) 

The effective earthquake forces can then be expressed as 
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( ) ( ) ( )eff eff ,
1 1

N N
n n g

n n
t t u t

= =
= = −∑ ∑p p s &&  (3.5) 

The contribution of the nth mode to s and to ( )eff tp are: 

( ) ( )eff ,n n n n n gt u t= Γ = −s m p s &&φ  (3.6) 

respectively. 

 Next, we will outline that the response of the MDF system to ( )eff ,n tp  is entirely in the 

nth-mode, with no contribution from other modes. The equations governing the response of the 

system are 

( )n gu t+ + = −mu cu ku s&& & &&  (3.7) 

By utilizing the orthogonality property of modes, it can be demonstrated that none of the modes 

other than the nth mode contribute to the response. Then the floor displacements are 

( ) ( )n n nt q t=u φ  (3.8) 

where the modal coordinate ( )nq t  is governed by 

( )22n n n n n n n gq q q u tζ ω ω+ + = −Γ&& & &&  (3.9) 

in which ω n  is the natural vibration frequency and ζ n  is the damping ratio for the nth mode. The 

solution ( )nq t  can readily be obtained by comparing Eq. (3.9) to the equation of motion for the 

nth-mode elastic SDF system, an SDF system with vibration propertiesnatural frequency ω n  

and damping ratio ζ n of the nth-mode of the MDF system, subjected to ( )gu t&& : 

( )22n n n n n n gD D D u tζ ω ω+ + = −&& & &&  (3.10) 

Comparing Eqs. (3.9) and (3.10) gives 

( ) ( )n n nq t D t= Γ  (3.11) 

and substituting in Eq. (3.8) gives the floor displacements 

( ) ( )n n n nt D t= Γu φ  (3.12) 
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(a) Static Analysis of

Structure
(b) Dynamic Analysis of

SDF System

Forces
sn

rn
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An(t )

ug(t )¨

ωn, ζn

 

Fig. 3.1. Conceptual explanation of modal response history analysis of 
elastic MDF systems 

 Any response quantity ( )r t story drifts, internal element forces, etc.can be expressed 

by 

( ) ( )st
n n nr t r A t=  (3.13) 

where rn
st  denotes the modal static response, the static value of r due to external forces sn , and 

( ) ( )2
n n nA t D tω=  (3.14) 

is the pseudo-acceleration response of the nth-mode SDF system [Chopra, 2001; Section 13.1]. 

The two analyses leading to rn
st  and ( )nA t  are shown schematically in Fig. 3.1. 

 Equations (3.12) and (3.13) represent the response of the MDF system to ( )eff,n tp . 

Therefore, the response of the system to the total excitation ( )eff tp  is 

( ) ( ) ( )
1 1

N N
n n n n

n n
t t D tφ

= =
= = Γ∑ ∑u u  (3.15) 

( ) ( ) ( )st

1 1

N N
n n n

n n
r t r t r A t

= =
= =∑ ∑  (3.16) 

This is the classical modal RHA procedure wherein Eq. (3.9) is the standard modal equation 

governing ( )nq t , Eqs. (3.12) and (3.13) define the contribution of the nth-mode to the response, 

and Eqs. (3.15) and (3.16) reflect combining the response contributions of all modes. However, 
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these standard equations have been derived in an unconventional way. In contrast to the classical 

derivation found in textbooks (e.g., Chopra, 2001; Sections 12.4 and 13.1.3), we used the modal 

expansion of the spatial distribution of the effective earthquake forces. This concept provides a 

rational basis for the modal pushover analysis procedure developed later. 

3.2 MODAL RESPONSE SPECTRUM ANALYSIS 

The peak value ro  of the total response ( )r t  can be estimated directly from the response 

spectrum for the ground motion without carrying out the response history analysis (RHA) 

implied in Eqs. (3.9)-(3.16). In such a response spectrum analysis (RSA), the peak value rno  of 

the nth-mode contribution ( )nr t  to response ( )r t  is determined from 

st
no n nr r A=  (3.17) 

where An  is the ordinate ( ),n nA T ζ  of the pseudo-acceleration response (or design) spectrum for 

the nth-mode SDF system, and 2n nT π ω=  is the natural vibration period of the nth-mode of the 

MDF system. 

 The peak modal responses are combined according to the Square-Root-of-Sum-of-Squares 

(SRSS) or the Complete Quadratic Combination (CQC) rules. The SRSS rule, which is valid for 

structures with well-separated natural frequencies such as multistory buildings with symmetric 

plan, provides an estimate of the peak value of the total response: 

1/ 2
2

1

N
o no

n
r r

=

 
≈   

 
∑  (3.18) 

3.3 MODAL PUSHOVER ANALYSIS 

To develop a pushover analysis procedure consistent with RSA, we note that static analysis of 

the structure subjected to lateral forces 

no n n nA= Γf mφ  (3.19) 

will provide the same value of rno , the peak nth-mode response as in Eq. (3.17) [Chopra, 2001; 

Section 13.8.1]. Alternatively, this response value can be obtained by static analysis of the 

structure subjected to lateral forces distributed over the building height according to 
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*
n n=s mφ  (3.20) 

and the structure is pushed to the roof displacement, urno , the peak value of the roof 

displacement due to the nth-mode, which from Eq. (3.12) is 

rno n rn nu Dφ π= Γ  (3.21) 

where D An n n= ω 2 . Obviously Dn  and An  are available from the response (or design) 

spectrum. 

 The peak modal responses, rno , each determined by one pushover analysis, can be 

combined according to Eq. (3.18) to obtain an estimate of the peak value ro  of the total response. 

This modal pushover analysis (MPA) for linearly elastic systems is equivalent to the well-known 

RSA procedure (Section 3.2). 

3.4 COMPARATIVE EVALUATION OF ANALYSIS PROCEDURES 

3.4.1 System and Excitation Considered 

The 9-story structure, shown in Fig. 3.2, was designed by Brandow & Johnston Associates1 for 

the SAC2 Phase II Steel Project. Although not actually constructed, this structure meets seismic 

code and represents typical medium-rise buildings designed for the Los Angeles, California, 

region. 

 A benchmark structure for the SAC project, this building is 45.73 m (150 ft) × 45.73 m 

(150 ft) in plan, and 37.19 m (122 ft) in elevation. The bays are 9.15 m (30 ft) on center, in both 

directions, with five bays each in the north-south (N-S) and east-west (E-W) directions. The 

building’s lateral load-resisting system is composed of steel perimeter moment-resisting frames 

(MRFS) with simple framing on the farthest south E-W frame. The interior bays of the structure 

contain simple framing with composite floors. The columns are 345 MPa (50 ksi) steel wide-

flange sections. The levels of the 9-story building are numbered with respect to the ground level 

(see Fig. 3.2), with the ninth level being the roof. The building has a basement level, denoted B-

1. Typical floor-to-floor heights (for analysis purposes measured from center-of-beam to center-

                                                 
1 Brandow & Johnston Associates, Consulting Structural Engineers, 1660 W. Third St., Los Angeles, CA 90017. 
2 SAC is a joint venture of three non-profit organizations: The Structural Engineers Association of California 
(SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake 
Engineering (CUREE). SAC Steel Project Technical Office, 1301 S. 46th Street, Richmond, CA 94804-4698.  
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of-beam) are 3.96 m (13 ft). The floor-to-floor height of the basement level is 3.65 m (12 ft) and 

for the first floor is 5.49 m (18 ft). 

 The column lines employ two-tier construction, i.e., monolithic column pieces are 

connected every two levels beginning with the first level. Column splices, which are seismic 

(tension) splices to carry bending and uplift forces, are located on the first, third, fifth, and 

seventh levels at 1.83 m (6 ft) above the center-line of the beam to column joint. The column 

bases are modeled as pinned and secured to the ground (at the B-1 level). Concrete foundation 

walls and surrounding soil are assumed to restrain the structure at the ground level from 

horizontal displacement. 

 The floor system is composed of 248 MPa (36 ksi) steel wide-flange beams in acting 

composite action with the floor slab. Each frame resists one half of the seismic mass associated 

with the entire structure. The seismic mass of the structure is due to various components of the 

structure, including the steel framing, floor slabs, ceiling/flooring, mechanical/electrical, 

partitions, roofing and a penthouse located on the roof. The seismic mass of the ground level is 

9.65 × 105 kg (66.0 kips-sec2/ft), for the first level is 1.01 × 106 kg (69.0 kips-sec2/ft), for the 

second through eighth levels is 9.89 × 105 kg (67.7 kips-sec2/ft), and for the ninth level is 

1.07 × 106 kg (73.2 kips-sec2/ft). The seismic mass of the above ground levels of the entire 

structure is 9.00 × 106 kg (616 kips- sec2/ft). The 9-story N-S MRF is depicted in Fig. 3.2. 

 The building is modeled in DRAIN-2DX [Allahabadi and Powell, 1988] using the M1 

model developed by Krawinkler and Gupta [1998]. This model is based on centerline dimensions 

of the bare frame in which beams and columns extend from centerline to centerline. The 

strength, dimension, and shear distortion of panel zones are neglected but large deformation (P-

∆) effects are included. The simple model adopted here is sufficient for the objectives of this 

study; if desired more complex models, such as those described in Gupta and Krawinkler [1999] 

can be used.  

 The first three vibration modes and periods of the building for linearly elastic vibration are 

shown in Fig. 3.3; the vibration periods are 2.27, 0.85, and 0.49 sec, respectively. The force 

distributions, sn
*  [Eq. (3.20)], for the first three modes are shown in Fig. 3.4. These force 

distributions will be used in the pushover analysis to be presented later. 

 To ensure that this structure remains elastic, we select a weak ground motion: the north-

south component of the El Centro (1940) ground motion scaled down by a factor of 4. 
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Fig. 3.2.    Nine-story building [adapted from Ohtori et al., 2000] 
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Fig. 3.3. First three natural-vibration periods and modes of the 9-story 
building 
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Fig. 3.4.    Force distributions * , 1, 2, and 3n n nφ= =s m  

3.4.2 Response History Analysis 

The structural response due to individual vibration modes, n =  1, 2, and 3, determined by RHA 

[Eqs. (3.12) and (3.13)], is shown in Figs. 3.5, 3.6, and 3.7, respectively. Each figure is organized 

in four parts: (a) shows the roof displacement ( )rnu t ; (b) shows the base shear ( )bnV t  
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normalized relative to the weight W of the building; (c) shows the joint rotation ( )n tθ  of an 

external joint at the roof level; and (d) shows the Vbn� urn relation. The linear relationship 

between the base shear and roof displacement for each mode implies that the structure did not 

yield. The peak values of the various response quantities are noted in these figures; in particular, 

the peak roof displacement due to each of three modes is 1 9.12r ou = cm, 2 2.23r ou =  cm, and 

3 0.422r ou = cm, respectively. The peak values of displacements of all floors, drifts in all stories, 

and rotations of external joints with moment connections are presented in Tables 3.1, 3.2, and 

3.3, respectively. 

 Combining the modal response histories for all modes gives the total response [Eqs. (3.15) 

and (3.16)]; the results for the roof displacement and top-story drift are shown in Fig. 3.8. The 

same method was used to determine the peak values of many response quantities, which are 

listed in Tables 3.1, 3.2, and 3.3. Also included are the combined response due to one, two, and 

three vibration modes, the exact response considering all modes, and the percentage errors due to 

truncation of higher modal contributions. As expected, errors generally decrease as response 

contributions of more modes are included. For a fixed number of modes included, errors are 

smallest in floor displacements, larger in story drifts, and even larger in joint rotations, consistent 

with the increasing significance of the higher mode response among these three sets of response 

quantities. This is illustrated in Fig. 3.8, where the second and third modal responses are a larger 

percentage of the top story drift compared to roof displacement. 

 The peak values of floor displacements and story drifts determined by RHA, including one, 

two, three, or all modes, are presented in Fig. 3.9. It is apparent that the first mode alone is 

inadequate, especially in estimating the story drifts, but three modes—perhaps even two 

modes—are sufficient. The errors due to truncating the contributions of vibration modes beyond 

the third mode are negligible, with the first three modes provide essentially the exact response. 
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Table 3.1. Peak values of floor displacements (as % of building height = 37.14 m3) from 
RHA for 0.25 × El Centro ground motion 

Displacement /Height (%) 
Modal Response Combined (RHA) Error (%) 

Floor Mode 
1 

Mode 
2 

Mode 
3 

1 
Mode 

2 
Modes 

3 
Modes 

RHA 
(all 

modes) 
1 

Mode 
2 

Modes 
3 

Modes 
1st 0.042 0.023 -0.009 0.042 0.060 0.054 0.055 -23.9 9.7 -1.6 
2nd 0.069 0.035 -0.012 0.069 0.097 0.089 0.090 -23.4 7.6 -1.3 
3rd 0.097 0.043 -0.010 0.097 0.130 0.124 0.124 -22.1 4.6 -0.6 
4th 0.125 0.045 -0.003 0.125 0.159 0.157 0.156 -19.9 1.5 0.2 
5th 0.152 0.038 0.006 0.152 0.179 0.183 0.181 -16.0 -1.1 0.9 
6th 0.177 0.024 0.012 0.177 0.192 0.199 0.197 -10.1 -2.3 1.2 
7th 0.202 -0.001 0.011 0.202 0.202 0.205 0.203 -0.5 -0.6 1.0 
8th 0.227 -0.032 0.002 0.227 0.226 0.225 0.226 0.4 0.0 -0.4 
9th 0.245 -0.060 -0.011 0.245 0.258 0.265 0.264 -7.2 -2.4 0.3 

 

Table 3.2. Peak values of story drift ratios (as % of story height) from RHA for 0.25 × El 
Centro ground motion 

Drift Ratio (%) 
Modal Response Combined (RHA) Error (%) 

Story Mode 
1 

Mode 
2 

Mode 
3 

1 
Mode 

2 
Modes 

3 
Modes 

RHA 
(all 

modes) 
1 

Mode 
2 

Modes 
3 

Modes 
1st 0.282 0.156 -0.062 0.282 0.406 0.364 0.370 -23.9 9.7 -1.6 
2nd 0.259 0.117 -0.026 0.259 0.350 0.333 0.336 -22.7 4.4 -0.8 
3rd 0.260 0.071 0.022 0.260 0.311 0.325 0.321 -19.1 -3.3 1.1 
4th 0.266 0.015 0.062 0.266 0.275 0.311 0.300 -11.2 -8.4 3.6 
5th 0.253 -0.060 0.080 0.253 0.265 0.263 0.266 -4.9 -0.4 -1.1 
6th 0.235 -0.133 0.058 0.235 0.307 0.303 0.310 -24.4 -1.0 -2.2 
7th 0.237 -0.231 -0.008 0.237 0.399 0.400 0.407 -41.7 -2.1 -1.8 
8th 0.229 -0.295 -0.088 0.229 0.453 0.475 0.466 -50.8 -2.8 1.9 
9th 0.173 -0.261 -0.121 0.173 0.378 0.413 0.401 -56.9 -5.8 3.1 

 

Table 3.3. Peak values of joint rotations (radians) from RHA for 0.25 × El Centro ground 
motion 

Joint Rotation (rad) 
Modal Response Combined (RHA) Error (%) 

Floor Mode 
1 

Mode 
2 

Mode 
3 

1 
Mode 

2 
Modes 

3 
Modes 

RHA 
(all 

modes) 
1 

Mode 
2 

Modes 
3 

Modes 

1st 2.03E-03 -1.03E-03 3.28E-04 2.03E-03 2.56E-03 2.50E-03 2.65E-03 -23.2 -3.4 -5.8 
2nd 1.88E-03 -6.78E-04 1.66E-05 1.88E-03 2.14E-03 2.13E-03 2.38E-03 -20.9 -10.1 -10.4 
3rd 2.09E-03 -3.42E-04 -3.26E-04 2.09E-03 2.11E-03 2.33E-03 2.47E-03 -15.5 -14.9 -6.0 
4th 1.89E-03 1.74E-04 -5.11E-04 1.89E-03 1.99E-03 2.09E-03 1.94E-03 -2.8 2.6 7.3 
5th 1.76E-03 6.91E-04 -5.01E-04 1.76E-03 2.29E-03 2.00E-03 2.08E-03 -15.3 9.9 -3.7 
6th 1.63E-03 1.22E-03 -2.01E-04 1.63E-03 2.64E-03 2.50E-03 2.44E-03 -33.0 8.1 2.6 
7th 2.00E-03 2.24E-03 3.74E-04 2.00E-03 3.90E-03 4.15E-03 3.73E-03 -46.4 4.7 11.3 
8th 1.74E-03 2.44E-03 9.13E-04 1.74E-03 3.85E-03 4.45E-03 3.72E-03 -53.2 3.2 19.5 
9th 1.31E-03 1.99E-03 9.38E-04 1.31E-03 3.03E-03 3.65E-03 3.09E-03 -57.7 -2.0 18.1 

 

                                                 
3 Building height is measured from the ground floor to the 9th floor. 
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Fig. 3.5. Response due to first mode: (a) roof displacement; (b) base shear; (c) 
joint rotation; (d) force-deformation history; and (e) pushover curve. 
Excitation is 0.25 × El Centro ground motion 
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Fig. 3.6. Response due to second mode: (a) roof displacement; (b) base 
shear; (c) joint rotation;  (d) force-deformation history; and (e) 
pushover curve. Excitation is 0.25 × El Centro ground motion 
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Fig. 3.7. Response due to third mode: (a) roof displacement; (b) base shear; 
(c) joint rotation; (d) force-deformation history; and (e) pushover 
curve. Excitation is 0.25 × El Centro ground motion 
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3.4.3 Modal Pushover Analysis 

Implementing MPA for the fundamental vibration mode, i.e., pushing the structure using the 

force distribution of Eq. (3.20) with 1n =  (Fig. 3.4) to roof displacement 1 9.12r ou = cm, the 

value determined by RHA (Fig. 3.8) leads to the pushover curve shown in Fig. 3.5e. This 

pushover curve is consistent with the relationship between the base shear and roof displacement 

determined by RHA (Fig. 3.5d). As suggested by Eq. (3.12), the floor displacements are 

proportional to the mode shape φ 1  because the structure remains elastic. The floor 

displacements, story drifts, and external joint rotations computed by pushover analysis are 

presented in Tables 3.4, 3.5, and 3.6, respectively. These values of the response quantities are 

identical to the peak response values determined from RHA (Tables 3.1, 3.2, and 3.3), except for 

the algebraic sign associated with Γ1 and minor round-off errors, confirming that MPA gives the 

exact values of the individual modal responses. 

 Implementing pushover analysis for the second and third modes, i.e., pushing the structure, 

using the force distribution of Eq. (3.20) with 2n =  and 3 up to roof displacements 

2 2.23 cmr ou = , and 3 0.422 cmr ou = , respectively, leads to the pushover curves shown in Figs. 

3.6e and 3.7e and to the floor displacements, story drifts, and external joint rotations in Tables 

3.4, 3.5, and 3.6. As for the first mode, these pushover curves are consistent with the Vb � ur 

relations determined by RHA (Figs. 3.6d and 3.7d), and the computed response values are 

identical to the peak response values determined from RHA (Tables 3.1, 3.2, and 3.3). Observe 

that the target roof displacement in each pushover analysis is identical to its exact value 

determined by RHA. In practical application, this value would be determined directly from the 

response (or design) spectrum, which would provide the Dn  value to be substituted in Eq. (3.21). 

 Figure 3.10 and Tables 3.4, 3.5, and 3.6 present estimates of the combined response 

according to Eq. (3.18), considering one, two, or three vibration modes, respectively, and the 

errors in these estimates relative to the exact response from RHA considering all modes. For a 

fixed number of modes included considered, the errors in the MPA results are generally larger 

than in RHA (Fig. 3.9 and Tables 3.1 through 3.3), although both analyses led to identical peak 

values of the individual modal responses. In RHA the errors arise only from truncating the 

responses due to higher modes, and it is apparent in the example considered that three modes 

provide most of the response (Fig. 3.9), implying that the modal truncation errors are small if at 
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least three modes are included. Additional errors are introduced in pushover analysis due to the 

approximation inherent in modal combination rules. 
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Fig. 3.8. Response histories of roof displacement and top-story drift from 

RHA for 0.25 × El Centro ground motion: first three modal responses 
and total (all modes) response 
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Fig. 3.9. Heightwise variation of floor displacements and story drifts from 
RHA for 0.25 × El Centro ground motion 
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Table 3.4. Peak values of floor displacements (as % of building height = 37.14 m) from 
MPA for 0.25 × El Centro ground motion 

Displacement /Height (%) 
Modal Response Combined (MPA) 

Error (%) 
Modal Response 

 
Floor 

Mode 1 Mode 2 Mode 3 1 
Mode 

2 
Modes 

3 
Modes 

RHA 
(All 

Modes)
1 

Mode 
2 

Modes 
3 

Modes 
1st 0.042 -0.023 0.009 0.042 0.048 0.048 0.055 -23.8 -12.9 -11.3 
2nd 0.069 -0.036 0.012 0.069 0.078 0.079 0.090 -23.4 -13.9 -12.9 
3rd 0.097 -0.043 0.010 0.097 0.106 0.106 0.124 -22.1 -14.8 -14.4 
4th 0.125 -0.045 0.003 0.125 0.133 0.133 0.156 -19.9 -14.9 -14.9 
5th 0.152 -0.038 -0.006 0.152 0.157 0.157 0.181 -16.0 -13.4 -13.4 
6th 0.177 -0.024 -0.012 0.177 0.179 0.179 0.197 -10.1 -9.2 -9.0 
7th 0.203 0.001 -0.011 0.203 0.203 0.203 0.203 -0.4 -0.4 -0.3 
8th 0.227 0.032 -0.002 0.227 0.229 0.229 0.226 0.4 1.4 1.4 
9th 0.245 0.060 0.011 0.245 0.253 0.253 0.264 -7.2 -4.4 -4.3 

 

Table 3.5. Peak values of story drift ratios (as % of story height) from MPA for 0.25 × El 
Centro ground motion 

Drift Ratio (%) 
Modal Response Combined (MPA) Error (%)  

Story 
Mode 

1 
Mode 

2 
Mode 

3 
1 

Mode 
2 

Modes 
3 

Modes 

RHA 
(all 

modes) 
1 

Mode 
2 

Modes 
3 

Modes 
1st -0.282 0.156 -0.062 0.282 0.322 0.328 0.370 -23.8 -12.9 -11.3 
2nd -0.259 0.117 -0.026 0.259 0.285 0.286 0.336 -22.7 -15.2 -14.8 
3rd -0.260 0.071 0.022 0.260 0.270 0.270 0.321 -19.1 -16.1 -15.9 
4th -0.267 0.015 0.062 0.267 0.267 0.274 0.300 -11.2 -11.0 -8.7 
5th -0.253 -0.060 0.080 0.253 0.260 0.272 0.266 -4.9 -2.3 2.2 
6th -0.235 -0.133 0.058 0.235 0.270 0.276 0.310 -24.3 -13.1 -11.0 
7th -0.237 -0.231 -0.008 0.237 0.331 0.332 0.407 -41.7 -18.6 -18.6 
8th -0.230 -0.296 -0.088 0.230 0.374 0.385 0.466 -50.8 -19.7 -17.6 
9th -0.173 -0.261 -0.121 0.173 0.313 0.336 0.401 -56.9 -21.9 -16.2 

 

Table 3.6. Peak values of joint rotation (radians) from MPA for 0.25 × El Centro ground 
motion 

Joint Rotation (rad) 
Modal Response Combined (MPA) 

Error (%)  
Floor 

Mode 1 Mode 2 Mode 3 1 
Mode 

2 
Modes 

3 
Modes 

RHA (all 
modes) 1 

Mode 
2 

Modes 
3 

Modes 
1st -2.03E-03 1.03E-03 -3.42E-04 2.03E-03 2.28E-03 2.31E-03 2.65E-03 -23.2 -13.9 -12.9 
2nd -1.89E-03 6.80E-04 -1.73E-05 1.89E-03 2.00E-03 2.00E-03 2.38E-03 -20.9 -15.9 -15.9 
3rd -2.09E-03 3.43E-04 3.40E-04 2.09E-03 2.12E-03 2.15E-03 2.47E-03 -15.4 -14.3 -13.2 
4th -1.89E-03 -1.74E-04 5.33E-04 1.89E-03 1.90E-03 1.97E-03 1.94E-03 -2.8 -2.3 1.4 
5th -1.76E-03 -6.92E-04 5.22E-04 1.76E-03 1.89E-03 1.96E-03 2.08E-03 -15.3 -9.0 -5.6 
6th -1.63E-03 -1.22E-03 2.09E-04 1.63E-03 2.04E-03 2.05E-03 2.44E-03 -33.0 -16.3 -15.9 
7th -2.00E-03 -2.24E-03 -3.90E-04 2.00E-03 3.00E-03 3.03E-03 3.73E-03 -46.4 -19.4 -18.7 
8th -1.74E-03 -2.44E-03 -9.53E-04 1.74E-03 3.00E-03 3.15E-03 3.72E-03 -53.2 -19.4 -15.5 
9th -1.31E-03 -1.99E-03 -9.78E-04 1.31E-03 2.38E-03 2.57E-03 3.09E-03 -57.7 -22.9 -16.7 
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Fig. 3.10. Heightwise variation of floor displacements and story drifts from 
MPA for 0.25 × El Centro ground motion; shading indicates modal 
combination error 
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4 Inelastic Multistory Buildings 

4.1 RESPONSE HISTORY ANALYSIS 

For each structural element of a building, the initial loading curve is idealized as bilinear, and the 

unloading and reloading curves differ from the initial loading branch. Thus, the relations 

between lateral forces fs at the N floor levels and the lateral displacements u are not single 

valued, but depend on the history of the displacements: 

( ), signs s=f f u u&  (4.1) 

With this generalization for inelastic systems, Eq. (3.1) becomes 

( ) ( ),signs gu t= −mu + cu + f u u m&& & & &&ι  (4.2) 

The standard approach is to solve directly these coupled equations, leading to the “exact” 

nonlinear response history analysis (RHA). 

 Although classical modal analysis (Section 3.1) is not valid for inelastic systems, it is 

useful for later reference to transform Eq. (4.2) to the modal coordinates of the corresponding 

linear system. Each structural element of this elastic system is defined to have the same stiffness 

as the initial stiffness of the structural element of the inelastic system. Both systems have the 

same mass and damping. Therefore, the natural vibration periods and modes of the 

corresponding linear system are the same as the vibration properties of the inelastic system 

undergoing small oscillations (within the linear range). 

 Expanding the displacements of the inelastic system in terms of the natural vibration 

modes of the corresponding linear system we get 

( ) ( )
1

N
n n

n
t q t

=
= ∑u φ  (4.3) 
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Substituting Eq. (4.3) in Eq. (4.2), premultiplying by φ n
T  , and using the mass- and classical 

damping-orthogonality property of modes gives 

( )2 1, 2,sn
n n n n n g

n

Fq q u t n N
M

ζ ω+ + = −Γ =&& & && K  (4.4) 

where the only term that differs from Eq. (3.9) involves 

( ) ( ),sign ,signT
sn sn n n n s n nF F= =q q f u u& &φ  (4.5) 

This resisting force depends on all modal coordinates ( )nq t , implying coupling of modal 

coordinates because of yielding of the structure. 

 Equation (4.4) represents N equations in the modal coordinates qn . Unlike Eq. (3.9) for 

linearly elastic systems, these equations are coupled for inelastic systems. Simultaneously 

solving these coupled equations and using Eq. (4.3) will, in principle, give the same results for 

( )tu  as obtained directly from Eq. (4.2). However, Eq. (4.4) is rarely solved because it offers no 

particular advantage over Eq. (4.2). 

4.2 UNCOUPLED MODAL RESPONSE HISTORY ANALYSIS 

Neglecting the coupling of the N equations in modal coordinates [Eq. (4.4)] leads to the 

uncoupled modal response history analysis (UMRHA) procedure. This approximate RHA 

procedure is the preliminary step in developing a modal pushover analysis procedure for inelastic 

systems. 

 The spatial distribution s of the effective earthquake forces is expanded into the modal 

contributions sn  according to Eq. (3.3), where φ n  are now the modes of the corresponding linear 

system. The equations governing the response of the inelastic system to ( )eff,n tp  given by Eq. 

(3.6b) are 

( ) ( ),signs n gu t= −mu + cu + f u u s&& & & &&  (4.6) 

The solution of Eq. (4.6) for inelastic systems will no longer be described by Eq. (3.8) because 

( )rq t  will generally be nonzero for “modes” other than the nth “mode,” implying that other 

“modes” will also contribute to the solution.  For linear systems, however, ( ) 0rq t =  for all 
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Fig. 4.1. Modal decomposition of the roof displacement due to (a) 
( )eff,1 t =p 1 0.25− ×s  x El Centro ground motion; and (b) 

( )eff,2 2 0.25t = − × ×p s El Centro ground motion 

modes other than the nth-mode; therefore, it is reasonable to expect that the nth “mode” should 

be dominant even for inelastic systems. 

 These assertions are illustrated numerically in Figs. 4.1 and 4.2 for the selected 9-story 

building. Equation (4.6) was solved by nonlinear RHA, and the resulting roof displacement 

history was decomposed into its “modal” components. The modal decomposition of the roof 

displacement for the first three modes due to 0.25 x  El Centro ground motion demonstrates that 

because the building does not yield during this weak ground motion, the response to excitation 

( )eff,n tp  is all in the nth-mode (Fig. 4.1). The structure yields when subjected to the strong 

excitation of 1.5 x El Centro ground motion, and the modes other than the nth-mode contribute to 

the response. The second and third modes start responding to excitation ( )eff,1 tp  at about
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Fig. 4.2. Modal decomposition of the roof displacement due to: (a) 
( )eff,1 1 1.5t = − × ×p s  El Centro ground motion; and (b)      

( )eff,2 2 1.5t = − × ×p s  El Centro ground motion 

5.2 sec, the instant the structure first yields; however, their contributions to the roof displacement 

are only 7% and 1%, respectively, of the first mode response (Fig. 4.2a). The first and third 

modes start responding to excitation ( )eff,2 tp  at about 4.2 sec, the instant the structure first 

yields; however, their contributions to the roof displacement are 12% and 7%, respectively, of 

the second mode response (Fig. 4.2b). 

 Approximating the response of the structure to excitation ( )eff,n tp  by Eq. (3.8), 

substituting Eq. (3.8) in Eq. (4.6) and premultiplying by φ n
T gives Eq. (4.4), except for the 

important approximation that Fsn  now depends only on one modal coordinate, qn : 

( ) ( ),sign ,signT
sn sn n n n s n nF F q q q q= = f& &φ  (4.7) 
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With this approximation, solution of Eq. (4.4) can be expressed by Eq. (3.11) where ( )nD t  is 

governed by 

( )2 sn
n n n n g

n

FD D u t
L

ζ ω+ + = −&& & &&  (4.8) 

and 

( ) ( ),sign ,signT
sn sn n n n s n nF F D D D D= = f& &φ  (4.9) 

is related to ( ),signsn n nF q q&  because of Eq. (3.11).  

 Equation (4.8) may be interpreted as the governing equation for the nth-“mode” inelastic 

SDF system, an SDF system with (1) small amplitude vibration properties—natural frequency 

ω n  and damping ratio ζ n —of the nth-mode of the corresponding linear MDF system; (2) unit 

mass; and (3) Fsn/Ln � Dn relation between resisting force F Lsn n  and modal coordinate Dn 

defined by Eq. (4.9).  Although Eq. (4.4) can be solved in its original form, Eq. (4.8) can be 

solved conveniently by standard software because it is of the same form as the SDF system [Eq. 

(2.3)], and the peak value of ( )nD t  can be estimated from the inelastic response (or design) 

spectrum [Chopra, 2001; Sections 7.6 and 7.12.1]. Introducing the nth-“mode” inelastic SDF 

system also permitted extension of the well-established concepts for elastic systems to inelastic 

systems. Compare Eqs. (4.4) and (4.8) to Eqs. (3.9) and (3.10):  note that Eq. (3.11) applies to 

both systems.4  

 Solution of the nonlinear Eq. (4.8) formulated in this manner provides ( )nD t , which 

substituted into Eq. (3.12) gives the floor displacements of the structure associated with the nth-

“mode” inelastic SDF system. Any floor displacement, story drift, or another deformation 

response quantity ( )r t  is given by Eqs. (3.13) and (3.14), where ( )nA t  is now the pseudo-

acceleration response of the nth-“mode” inelastic SDF system. The two analyses leading to rn
st  

and ( )nA t  are shown schematically in Fig. 4.3. Equations (3.13) and (3.14) represent the 

response of the inelastic MDF system to ( )eff,n tp , the nth-mode contribution to ( )eff tp . 

Therefore the response of the system to the total excitation ( )eff tp  is given by Eqs. (3.15) and 

(3.16). This is the UMRHA procedure. 
                                                 
4 Equivalent inelastic SDF systems have been defined differently by other researchers [Villaverde, 1996; Han and 
Wen, 1997]. 
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Fig. 4.3. Conceptual explanation of uncoupled modal response history 
analysis of inelastic MDF systems 
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Fig. 4.4. Roof displacement due to ( ) ( )eff,n n gut t= −p s && , 1,2, and 3,n =  where 

( ) 3.0gu t = ×&&  El Centro ground motion: (a) exact solution by NL-RHA; and (b) 
approximate solution by UMRHA 
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Fig. 4.5.    Top story drift due to ( ) ( )eff,n n gut t= −p s && , 1,2, and 3,n =  where 

( ) 3.0gu t = ×&&  El Centro ground motion: (a) exact solution by NL-RHA; and (b) 
approximate solution by UMRHA 

4.2.1 Underlying Assumptions and Accuracy 

The approximate solution of Eq. (4.6) by UMRHA is compared with the “exact” solution by 

nonlinear RHA, both for 3.0 x  El Centro ground motion; this intense excitation was chosen to 

ensure that the structure is excited well beyond its linear elastic limit. Such comparison for roof 

displacement and top-story drift is presented in Figs. 4.4 and 4.5, respectively. The errors are 

slightly larger in drift than in displacement, but even for this very intense excitation, the errors in 

either response quantity are only a few percent. 

 These errors arise from the following assumptions and approximations: (1) the coupling 

among modal coordinates ( )nq t  arising from yielding of the system [recall Eqs. (4.4) and (4.5)] 

is neglected; (2) the superposition of responses to ( )eff,n tp  ( 1,2 )n N= K  according to Eq. 

(3.15) is strictly valid only for linearly elastic systems; and (3) the Fsn/Ln � Dn relation is 
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approximated by a bilinear curve to facilitate solution of Eq. (4.8) in UMRHA. Although several 

approximations are inherent in this UMRHA procedure, when specialized for linearly elastic 

systems it is identical to the RHA procedure of Section 3.1. The overall errors in the UMRHA 

procedure are documented in the examples presented in Section 4.4. 

 

4.2.2 Properties of the nth-“mode” Inelastic SDF System 

How is the Fsn/Ln � Dn relation to be determined in Eq. (4.8) before it can be solved? Because 

Eq. (4.8) governing ( )nD t is based on Eq. (3.12) for floor displacements, the relationship 

between lateral forces fs and Dn in Eq. (4.9) should be determined by nonlinear static analysis of 

the structure as the structure undergoes displacements n nD=u φ  with increasing Dn. Although 

most commercially available software cannot implement such displacement-controlled analysis, 

it can conduct a force-controlled nonlinear static analysis with an invariant distribution of lateral 

forces. Therefore we impose this constraint in developing the UMRHA procedure in this section 

and modal pushover analysis in the next section. 

 What is an appropriate invariant distribution of lateral forces to determine Fsn? For an 

inelastic system no invariant distribution of forces can produce displacements proportional to φn  

at all displacements or force levels. However, within the linearly elastic range of the structure, 

the only force distribution that produces displacements proportional to φn  is given by Eq. (3.20).  

Therefore, this distribution seems to be a rational choiceeven for inelastic systemsto 

determine Fsn  in Eq. (4.9). When implemented by commercially available software, such 

nonlinear static analysis provides the so-called pushover curve, which is different than the Fsn/Ln 

� Dn curve. The structure is pushed using the force distribution of Eq. (3.20) to some pre-

determined roof displacement, and the base shear Vbn , is plotted against roof displacement urn. A 

bilinear idealization of this pushover curve for the nth-“mode” is shown in Fig. 4.6a. At the yield 

point, the base shear is Vbny  and roof displacement is urny . 

 How to convert this Vbn � urn pushover curve to the Fsn/Ln � Dn relation? The two sets of 

forces and displacements are related as follows: 

bn rn
sn n

n n rn

V uF D
φ

= =
Γ Γ

 (4.10) 
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Fig. 4.6.  Properties of the nth-“mode” inelastic SDF system from the pushover 
curve 

Equation 4.10 enables conversion of the pushover curve to the desired sn n nF L D−  relation 

shown in Fig. 4.6b, where the yield values of F Lsn n  and Dn are 

*
sny bny rny

ny
n n rnn

F V u
D

L M φ
= =

Γ
 (4.11) 

in which *
n n nM L= Γ  is the effective modal mass [Chopra, 2001, Section 13.2.5]. The two are 

related through 

2sny
n ny

n

F
D

L
ω=  (4.12) 

implying that the initial slope of the curve in Fig. 4.6b is ω n
2 . Knowing F Lsny n  and Dny  from 

Eq. (4.11), the elastic vibration period Tn  of the nth-mode SDF system is computed from 

1/ 2

2 n ny
n

sny

L D
T

F
π

 
=   

 
 (4.13) 

This value of Tn , which may differ from the period of the corresponding linear system, should 

be used in Eq. (4.8). In contrast, the initial slope of the pushover curve in Fig. 4.6a is 

2k Ln n nω= , which is not a meaningful quantity. 
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4.2.3 Summary 

The inelastic response of an N-story building with plan symmetric about two orthogonal axes to 

earthquake ground motion along an axis of symmetry can be estimated as a function of time by 

the UMRHA procedure just developed, which is summarized next as a sequence of steps; details 

are available in Appendix A: 

1. Compute the natural frequencies, nω , and modes, nφ , for linearly-elastic vibration of the 

building. 

2. For the nth-mode, develop the base-shear – roof-displacement ( bn rnV u− ) pushover curve for 

the force distribution *
ns  [Eq. (3.20)]. 

3. Idealize the pushover curve as a bilinear curve (Fig. 4.6a). 

4. Convert the idealized pushover curve to the sn n nF L D−  relation (Fig. 4.6b) by utilizing Eq. 

(4.11). 

5. Compute the deformation history, ( )nD t , and pseudo-acceleration history, ( )nA t , of the 

nth-“mode” inelastic SDF system (Fig. 4.3b) with force-deformation relation of Fig. 4.6b. 

6. Calculate histories of various responses by Eqs. (3.12) and (3.13). 

7. Repeat Steps 2 to 6 for as many modes as required for sufficient accuracy. Typically, the first 

two or three modes will suffice. 

8. Combine the “modal” responses using Eqs. (3.15) and (3.16) to determine the total response. 

9. Calculate the peak value, or , of the total response ( )r t  obtained in Step 8. 

4.3 MODAL PUSHOVER ANALYSIS 

A pushover analysis procedure is presented next to estimate the peak response rno  of the inelastic 

MDF system to effective earthquake forces ( )eff ,n tp . Consider a nonlinear static analysis of the 

structure subjected to lateral forces distributed over the building height according to sn
*  [Eq. 

(3.20)], with the structure is pushed to the roof displacement urno. This value of the roof 

displacement is given by Eq. (3.21) where Dn, the peak value of ( )nD t , is now determined by 

solving Eq. (4.8), as described in Section 4.2; alternatively, it can be determined from the 

inelastic response (or design) spectrum [Chopra, 2001; Sections 7.6 and 7.12]. At this roof 
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displacement, the pushover analysis provides an estimate of the peak value rno  of any response 

( )nr t : floor displacements, story drifts, joint rotations, plastic hinge rotations, etc. 

 This pushover analysis, although somewhat intuitive for inelastic buildings, seems 

reasonable. It provides results for elastic buildings that are identical to the well-known RSA 

procedure (Section 3.4.3) because, as mentioned earlier, the lateral force distribution used 

possesses two properties: (1) it appears to be the most rational choice among all invariant 

distribution of forces; and (2) it provides the exact modal response for elastic systems. 

 The response value rno  is an estimate of the peak value of the response of the inelastic 

system to ( )eff,n tp , governed by Eq. (4.6). As shown in Sections 3.2 and 3.3, for elastic 

systems, rno  also represents the exact peak value of the nth-mode contribution ( )nr t  to response 

( )r t . Thus, we will refer to rno  as the peak “modal” response even in the case of inelastic 

systems. 

 The peak “modal” responses rno , each determined by one pushover analysis, are combined 

using an appropriate modal combination rule, e.g., Eq. (3.18), to obtain an estimate of the peak 

value ro  of the total response. This application of modal combination rules to inelastic systems 

obviously lacks a theoretical basis. However, it seems reasonable because it provides results for 

elastic buildings that are identical to the well-known RSA procedure described in Section 3.2. 

4.3.1 Summary 

The peak inelastic response of a building to earthquake excitation can be estimated by the MPA 

procedure just developed, which is summarized next as a sequence of steps; details are available 

in Appendix B. 

Steps 1 to 4 of the MPA are same as those for UMRHA. 

5. Compute the peak deformation, nD , of the nth-“mode” inelastic SDF system (Fig. 4.3b) 

with force-deformation relation of Fig. 4.6b by solving Eq. (4.8), or from the inelastic 

response (or design) spectrum. 

6. Calculate the peak roof displacement urno associated with the nth-“mode” inelastic SDF 

system from Eq. (3.21). 

7. At rnou , extract from the pushover database values of other desired responses, nor .  
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8. Repeat Steps 3 to 8 for as many “modes” as required for sufficient accuracy. Typically, 

the first two or three “modes” will suffice. 

9. Determine the total response by combining the peak “modal” responses using the SRSS 

combination rule of Eq. (3.18). From the total rotation of a plastic hinge, subtract the 

yield value of hinge rotation to determine the hinge plastic rotation. 

4.4 COMPARATIVE EVALUATION OF ANALYSIS PROCEDURES 

The response of the 9-story building described earlier is determined by the two approximate 

methods: UMRHA and MPA, and compared with the results of a rigorous nonlinear RHA using 

the DRAIN-2DX computer program. To ensure that this structure responds well into the inelastic 

range the El Centro ground motion is scaled up by a factor varying from 1.0 to 3.0. 

4.4.1 Uncoupled Modal Response History Analysis 

The structural response to 1.5 x the El Centro ground motion including the response 

contributions associated with three “modal” inelastic SDF systems, determined by the UMRHA 

procedure, is presented next. Figure 4.7 shows the individual “modal” responses, the combined 

response due to three “modes”, and the “exact” response from nonlinear RHA for the roof 

displacement and top-story drift. The peak values of response are as noted; in particular, the peak 

roof displacement due to each of the three “modes” is 1 48.3r ou = cm, 2 11.7r ou = cm, and 

3 2.53r ou = cm. The peak values of displacements of all floors and drifts in all stories are 

presented in Tables 4.1 and 4.2, respectively; also included are the combined responses due to 

one, two, and three “modes,” the “exact” results, and the percentage errors in the approximate 

results. The peak values of floor displacements and story drifts including one, two, and three 

modes are compared with the “exact” values in Fig. 4.8, and the errors in the approximate results 

are shown in Fig. 4.9. 

 Observe that errors tend to decrease as response contributions of more “modes” are 

included, although the trends are not systematic as when the system remained elastic (Section 

3.4.2). This is to be expected; in contrast to modal analysis (Section 3.1), the UMRHA procedure 

lacks a rigorous theory. This deficiency also implies that, with, say, three “modes” included, the 

response is much less accurate (Tables 4.1 and 4.2) if the system yields significantly versus if the 
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system remains within the elastic range (Tables 3.1 and 3.2). However, for a fixed number of 

“modes” included, the errors in story drifts are larger compared to floor displacements, just as for 

elastic systems. 

 Next, we investigate how the errors in the UMRHA vary with the deformation demands 

imposed by the ground motion, in particular, the degree to which the system deforms beyond its 

elastic limit. For this purpose the UMRHA and exact analyses were repeated for ground motions 

of varying intensity, defined as the El Centro ground motion multiplied by 0.25, 0.5, 0.75, 0.85, 

1.0, 1.5, 2.0, and 3.0. For each excitation, the errors in responses computed by UMRHA 

including three “modes” relative to the “exact” response were determined; recall that the 

computed errors have been presented earlier for ground motion multipliers 0.25 (Tables 3.1 and 

3.2) and 1.5 (Tables 4.1 and 4.2). 
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Fig. 4.7. Response histories of roof displacement and top-story drift due to 
1.5 × El Centro ground motion: individual “modal” responses and 
combined response from UMRHA, and total response from NL-RHA 



 

 
 

40

0 0.5 1 1.5 2
Displacement/Height (%)

(a) Floor Displacements
F

lo
or

Ground

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

NL−RHA

UMRHA
1 "Mode"
2 "Modes"
3 "Modes"

0 0.5 1 1.5 2 2.5
Story Drift Ratio (%)

(b) Story Drift Ratios

F
lo

or

Ground

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

NL−RHA

UMRHA
1 "Mode"
2 "Modes"
3 "Modes"

 

Fig. 4.8. Height-wise variation of floor displacements and story drift ratios 
from UMRHA and NL-RHA for 1.5 × El Centro ground motion 
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Fig. 4.9. Height-wise variation of error in floor displacements and story drifts 
estimated by UMRHA including one, two, or three “modes” for 1.5 x 
El Centro ground motion 

 Figure 4.10 summarizes the error in UMRHA as a function of ground motion intensity, 

indicated by a ground motion multiplier. Shown is the error in each floor displacement (Fig. 

4.10a), in each story drift (Fig. 4.10b), and the error envelope for each case. To interpret these 

results, it will be useful to know the deformation of the system relative to its yield deformation. 

For this purpose, the pushover curves using force distributions sn
*  [Eq. (3.20)] for the first three 

modes of the system are shown in Fig. 4.11, with the peak displacement of each “modal” SDF 

system noted for each ground motion multiplier. Two versions of the pushover curve are 
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included: the actual curve and its idealized bilinear version. The location of plastic hinges and 

their rotations, determined from “exact” analyses, were noted but are not shown here. 

 Figure 4.10 permits the following observations regarding the accuracy of the UMRHA 

procedure: the errors (1) are small (less than 5%) for ground motion multipliers up to 0.75; (2) 

increase rapidly as the ground motion multiplier increases to 1.0; (3) maintain roughly similar 

values for more intense ground motions; and (4) are larger in story drift compared to floor 

displacements. The system remains elastic up to ground motion multiplier 0.75, and, as 

mentioned in Section 3.4.2, the errors in truncating the higher mode contributions are negligible. 

Additional errors are introduced in UMRHA of systems responding beyond the linearly elastic 

limit for at least two reasons. First, as mentioned in Section 4.2, UMRHA lacks a rigorous theory 

and is based on several approximations. Second, the pushover curve for each “mode” is idealized 

by a bilinear curve in solving Eq. (4.10) for each “modal” inelastic SDF system (Figs 4.6 and 

4.1). The idealized curve for the first “mode” deviates most from the actual curve near the peak 

displacement corresponding to ground motion multiplier 1.0. Perhaps this explains why the 

errors are large at this excitation intensity, even though the system remains essentially elastic; the 

ductility factor for the first mode system is only 1.01 (Fig. 4.11a). For more intense excitations, 

the first reason mentioned above seems to be the primary source for the errors. 

4.4.2 Modal Pushover Analysis 

The results of modal pushover analysis procedure considering the response due to the first three 

“modes” was implemented for the selected building subjected to 1.5 x the El Centro ground 

motion. The structure is pushed using the force distribution of Eq. (3.20) with n = 1, 2, and 3 

(Fig. 3.4) to roof displacements rnou  = 48.3 cm, 11.7 cm, and 2.53 cm, respectively, the values 

determined by RHA of the nth-mode inelastic SDF system (Fig. 4.7). Each of these three 

pushover analyses provides the pushover curve (Fig. 4.11), the peak values of displacements at 

all floors (Table 4.3), drifts in all stories (Table 4.4), and plastic hinge rotations at the external 

beam end at each floor level (Table 4.5). 
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Fig. 4.10. Errors in UMRHA as a function of ground motion intensity: (a) floor 
displacements; and (b) story drifts 

Table 4.1. Peak values of floor displacements (as % of building height = 37.14 m) from 
UMRHA for 1.5 × El Centro ground motion 

Displacement /Height (%) 
“Modal” Response Combined (UMRHA) Error (%)  

Floor 
“Mode” 

1 
“Mode” 

2 
“Mode” 

3 
1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
NL 

RHA 1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

1st -0.220 -0.121 -0.055 0.220 0.333 0.291 0.260 -15.5 28.0 11.8 
2nd -0.366 -0.187 -0.071 0.366 0.540 0.484 0.473 -22.7 14.0 2.3 
3rd -0.513 -0.226 -0.057 0.513 0.722 0.676 0.668 -23.3 8.0 1.1 
4th -0.663 -0.235 -0.018 0.663 0.877 0.863 0.820 -19.2 6.9 5.2 
5th -0.806 -0.201 0.033 0.806 0.983 1.010 0.900 -10.5 9.2 12.1 
6th -0.938 -0.126 0.071 0.938 1.044 1.096 0.942 -0.5 10.9 16.3 
7th -1.072 0.003 0.065 1.072 1.070 1.104 0.982 9.1 8.9 12.4 
8th -1.201 0.169 0.009 1.201 1.138 1.133 1.088 10.4 4.6 4.1 
9th -1.298 0.315 -0.068 1.298 1.248 1.293 1.200 8.2 4.0 7.7 

Table 4.2. Peak values of story drift ratios (as % of story height) from UMRHA for 1.5 × El 
Centro ground motion 

Drift Ratio (%) 
Modal Response Combined (UMRHA) Error (%)  

Story 
“Mode” 

1 
“Mode” 

2 
“Mode” 

3 
1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
NL 

RHA 1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

1st -1.490 -0.820 -0.370 1.490 2.256 1.971 1.763 -15.5 28.0 11.8 
2nd -1.372 -0.616 -0.154 1.372 1.942 1.819 2.003 -31.5 -3.0 -9.2 
3rd -1.376 -0.371 0.130 1.376 1.707 1.811 1.844 -25.4 -7.4 -1.8 
4th -1.410 -0.079 0.371 1.410 1.472 1.751 1.426 -1.1 3.2 22.8 
5th -1.338 0.317 0.478 1.338 1.283 1.379 1.202 11.3 6.8 14.8 
6th -1.241 0.698 0.350 1.241 1.430 1.495 1.135 9.3 25.9 31.6 
7th -1.256 1.216 -0.049 1.256 1.856 1.852 1.407 -10.7 31.9 31.6 
8th -1.214 1.554 -0.526 1.214 2.120 2.136 1.945 -37.5 9.0 9.8 
9th -0.914 1.373 -0.727 0.914 1.772 1.863 1.575 -41.9 12.5 18.3 
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 Figures 4.12 and 4.13 and Tables 4.3 through 4.5 present estimates of the combined 

response according to Eq. (3.18), considering one, two, and three “modes,” respectively, and the 

errors in these estimates relative to the exact response from nonlinear RHA. Fortuitously, for two 

or three modes included, the errors in the modal pushover results are, in general, significantly 

smaller than in UMRHA (compare Fig. 4.13 with Fig. 4.9 and Tables 4.3 and 4.4 with Tables 4.1 

and 4.2). Obviously, the additional errors due to the approximation inherent in modal 

combination rules tend to cancel out the errors due to the various approximation contained in the 

UMRHA. The first “mode” alone is inadequate, especially in estimating the story drifts (Fig. 

4.12 and Tables 4.3 and 4.4). However, significant improvement is achieved by including 

response contributions due to the second “mode,” but the third “mode” contributions do not seem 

especially important (Fig. 4.12 and Tables 4.3 and 4.4). As shown in Figs. 4.13 and Tables 4.3 

and 4.4, MPA including three “modes” underestimates the displacements of the lower floors by 

up to 8% and overestimates the upper floor displacements by up to 14%. The drifts are 

underestimated by up to 13% in the lower stories, overestimated by up to 18% in the middle 

stories, and are within a few percent of the exact values for the upper stories. 

 The errors are especially large in the hinge plastic rotations estimated by the MPA 

procedure, even if three “modes” are included (Fig. 4.13 and Table 4.5); although the error is 

recorded as 100% if MPA estimates zero rotation when the nonlinear RHA computes a non-zero 

value, this error is not especially significant because the hinge plastic rotation is very small. 

Observe that the primary contributor to plastic hinge rotations in the lower stories is the first 

“mode” and the second “mode” in the upper stories; the third “mode” does not contribute 

because this SDF system remains elastic (Fig. 4.11c). Pushover analysis seems to be inherently 

limited in computing accurately hinge plastic rotations. 

 The locations of plastic hinges shown in Fig. 4.14, were determined by four analyses: 

MPA considering one “mode,” two “modes,” and three “modes;” and nonlinear RHA. One 

“mode” pushover analysis was unable to identify the plastic hinges in the upper stories where 

higher mode contributions to response are known to be more significant. The second “mode” 

was necessary to identify hinges in the upper stories; however, the results were not always 

accurate. For example, the hinges identified in beams at the 6th floor were at variance with the 

“exact” results. Furthermore, MPA failed to identify the plastic hinges at the column bases in 
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Fig. 4.14; but was more successful when the excitation was more intense (results are not 

included). 
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Fig. 4.11. “Modal” pushover curves with peak roof displacements identified for 
0.25, 0.5, 0.75, 1.0, 1.5, 2.0, and 3.0 × El Centro ground motion 
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Fig. 4.12. Height-wise variation of floor displacements and story drift ratios 
from MPA and NL-RHA for 1.5 × El Centro ground motion; shading 
indicates errors in MPA including three “modes” 

 Figure 4.15 summarizes the error in MPA considering three “modes” as a function of 

ground motion intensity, indicated by a ground motion multiplier. Shown is the error in each 

floor displacement (Fig. 4.15a), each story drift (Fig. 4.15b), and the error envelope for each 

case. While various sources of errors in UMRHA, identified in Section 3.4 also apply to MPA, 

the errors in MPA were fortuitously smaller than in UMRHA (compare Figs. 4.10 and 4.15) for 

ground multipliers larger than 1.0, implying excitations intense enough to cause significant 

yielding of the structure. However, the errors in MPA were larger for ground motion multipliers 

less than 0.75, implying excitations weak enough to limit the response in the elastic range of the 

structure. In this case, as discussed in Sections 3.4.2 and 3.4.3, UMRHA is essentially exact, 

whereas MPA contains errors inherent in modal combination rules. 

 The errors are only weakly dependent on ground motion intensity (Fig. 4.15), an 

observation with practical implications. As mentioned in Section 3.3 for elastic systems (or weak 

ground motions), the MPA procedure is equivalent to the RSA procedure, now standard in 

engineering practice, implying that the modal combination errors contained in these procedures 

are acceptable. The fact that MPA is able to estimate the response of buildings responding well 

into the inelastic range to a similar degree of accuracy indicates that this procedure is accurate 

enough for practical application in building retrofit and design. 
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Fig. 4.13. Errors in floor displacements, story drifts, and hinge plastic rotations 
estimated by MPA including one, two, and three “modes” for 1.5 x El 
Centro ground motion. 
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Table 4.3. Peak values of floor displacements (as % of building height = 37.14 m) from 
MPA for 1.5 × El Centro ground motion 

Displacement /Height (%) 
“Modal” Response Combined (MPA) Error (%)  

Floor “Mode” 
1 

“Mode”  
2 

“Mode”  
3 

1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

NL 
RHA 1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
1st 0.222 -0.101 0.055 0.222 0.244 0.250 0.260 -14.8 -6.3 -3.9 
2nd 0.399 -0.156 0.071 0.399 0.429 0.435 0.473 -15.6 -9.4 -8.2 
3rd 0.581 -0.190 0.057 0.581 0.611 0.614 0.668 -13.1 -8.6 -8.2 
4th 0.756 -0.197 0.018 0.756 0.781 0.781 0.820 -7.9 -4.8 -4.8 
5th 0.895 -0.168 -0.033 0.895 0.910 0.911 0.900 -0.6 1.1 1.2 
6th 1.007 -0.105 -0.071 1.007 1.012 1.015 0.942 6.9 7.5 7.7 
7th 1.116 0.015 -0.066 1.116 1.116 1.118 0.982 13.6 13.6 13.8 
8th 1.220 0.176 -0.009 1.220 1.233 1.233 1.088 12.1 13.3 13.3 
9th 1.298 0.315 0.068 1.298 1.336 1.338 1.200 8.2 11.3 11.5 

Table 4.4. Peak values of story drift ratios (as % of story height) from MPA for 1.5 × El 
Centro ground motion 

Drift Ratio (%) 
“Modal” Response Combined (MPA) Error (%)  

Story “Mode”  
1 

“Mode” 
2 

“Mode” 
3 

1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

NL 
RHA 1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
1st -1.503 0.687 -0.371 1.503 1.652 1.694 1.763 -14.8 -6.3 -3.9 
2nd -1.667 0.516 -0.154 1.667 1.745 1.752 2.003 -16.7 -12.8 -12.5 
3rd -1.705 0.311 0.130 1.705 1.733 1.738 1.844 -7.5 -6.0 -5.8 
4th -1.640 0.066 0.372 1.640 1.641 1.683 1.426 15.0 15.1 18.0 
5th -1.304 -0.266 0.478 1.304 1.331 1.414 1.202 8.5 10.8 17.7 
6th -1.053 -0.594 0.351 1.053 1.209 1.259 1.135 -7.2 6.5 10.9 
7th -1.018 -1.125 -0.049 1.018 1.517 1.518 1.407 -27.6 7.8 7.9 
8th -0.980 -1.514 -0.527 0.980 1.804 1.879 1.945 -49.6 -7.2 -3.4 
9th -0.737 -1.305 -0.728 0.737 1.498 1.666 1.575 -53.2 -4.9 5.8 

Table 4.5. Peak values of hinge plastic rotations (radians) from MPA for 1.5 × El Centro 
ground motion 

Hinge Plastic Rotation (rad) 
“Modal” Response Combined (MPA) 

Error (%) 
“Modal” Response 

Floor “Mode”  
1 

“Mode”  
2 

“Mode”  
3 

1 
“Mode” 

2 
“Modes”  

3 
“Modes” 

NL 
RHA 

1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

1st 7.36E-03 0.00E+00 0.00E+00 7.36E-03 7.36E-03 7.36E-03 1.10E-02 -32.8 -32.8 -32.8 
2nd 6.72E-03 0.00E+00 0.00E+00 6.72E-03 6.72E-03 6.72E-03 9.53E-03 -29.5 -29.5 -29.5 
3rd 7.76E-03 0.00E+00 0.00E+00 7.76E-03 7.76E-03 7.76E-03 7.60E-03 2.1 2.1 2.1 
4th 4.37E-03 0.00E+00 0.00E+00 4.37E-03 4.37E-03 4.37E-03 2.99E-03 46.1 46.1 46.1 
5th 1.02E-03 0.00E+00 0.00E+00 1.02E-03 1.02E-03 1.02E-03 6.26E-04 62.2 62.2 62.2 
6th 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.19E-10 3.50E-10 9.60E-04 -100.0 -100.0 -100.0 
7th 0.00E+00 3.55E-03 0.00E+00 0.00E+00 3.55E-03 3.55E-03 7.18E-03 -100.0 -50.6 -50.6 
8th 0.00E+00 3.88E-03 0.00E+00 0.00E+00 3.88E-03 3.88E-03 7.05E-03 -100.0 -44.9 -44.9 
9th 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.22E-10 2.37E-04 -100.0 -100.0 -100.0 
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4.4.3 Modal Pushover Analysis with Gravity Loads 

To evaluate the accuracy of the dynamic response of the system, the results presented so far did 

not include gravity load effects. They are now included in the pushover analysis of the structure 

for the first “mode” only. Static analysis of the structure for gravity loads provides the initial 

state—forces and deformations—of the structure, and the structure is pushed using the force 

distribution of Eq. (3.20) with n = 1 to a target roof displacement. Obviously gravity load effects 

will influence the seismic demands due to the first “mode,” but not the contributions of higher 

“modes”; these effects will modify the combined modal response as well as the results of 

nonlinear RHA. 

 Results of such analyses for the selected building subject to 1.5 × El Centro ground motion 

are presented below. Starting with its initial state under gravity loads, the structure is pushed 

using the force distribution of Eq. (3.20) with 1n =   (Fig. 3.4) to roof displacement 

1 52.0 cmr ou = , resulting in the pushover curve shown in Fig. 4.16a—which is slightly different 

than the one excluding gravity loads (Fig. 4.11a). The pushover curves for the second and third 

modes included in Fig. 4.16 are unchanged, as are the roof displacements 2 11.7 cmr ou =  and 

3 2.53 cmr ou = . Also presented at these roof displacements are the displacements at all floors 

(Table 4.6), drifts in all stories (Table 4.7), and plastic hinge rotations at selected external beam 

end at each floor level (Table 4.8). The response contributions of the second and third modes are 

the same as before (Tables 4.3 - 4.5). 

 Figures 4.17 and 4.18 and Tables 4.6 through 4.8 present estimates of the combined 

response according to Eq. (3.18) considering one, two, and three “modes,” and the errors in these 

estimates relative to the exact response from nonlinear RHA. The first “mode” alone provides 

adequate estimates of floor displacements, but it is inadequate in estimating the story drifts (Fig. 

4.17 and Tables 4.6 and 4.7). Significant improvement is achieved by including response 

contributions due to the second “mode,” however, the third “mode” contributions do not seem 

especially important (Fig. 4.17 and Tables 4.6 and 4.7). As shown in Fig. 4.18 and Tables 4.6 

and 4.7, MPA including two “modes” underestimates the displacements of lower floors by up to 

6% and overestimates the upper floor displacements by up to 22%. The story drifts are 

underestimated by up to 7% in the lower stories, and overestimated by up to 29% in the middle 

stories and by up to 13% in the upper stories. The errors are especially large in the plastic hinge 
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rotations estimated by the MPA procedure even if three “modes” are included (Fig. 4.18 and 

Table 4.8). Most pushover analysis procedures do not seem to compute to acceptable accuracy 

plastic hinge rotations. 
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Fig. 4.14. Locations of plastic hinges determined by MPA considering one, two, 
and three “modes” and by NL-RHA for 1.5 × El Centro ground motion 
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Fig. 4.15. Errors in MPA as a function of ground motion intensity: (a) floor 
displacements; and (b) story drifts 



 

 
 

50

The locations of plastic hinges shown in Fig. 4.19 were determined by four analyses: MPA 

considering one “mode,” two “modes,” and nonlinear RHA. One “mode” pushover analysis is 

unable to identify the plastic hinges in the upper stories where higher mode contributions to 

response are known to be more significant. The second “mode” is necessary to identify hinges in 

the upper stories. With two modes included in MPA, this procedure is able to predict plastic 

hinge locations essentially consistent with nonlinear RHA. 

 Figure 4.20 summarizes the error in MPA considering three “modes” as a function of 

ground motion intensity, indicated by a ground motion multiplier. Shown is the error in each 

floor displacement (Fig. 4.20a), each story drift (Fig. 4.20b), and the error envelope for each 

case. MPA provides response values accurate enough for practical application in building retrofit 

or design; and the errors are only weakly dependent on ground motion intensity. These errors are 

only slightly larger than those in Fig. 4.15, excluding gravity load effects. 
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Fig. 4.16. “Modal” pushover curves with gravity loads included; noted are peak 
values of roof displacement for 0.25, 0.50, 0.75, 0.85, 1.0, 2.0, and 3.0 
× El Centro ground motion 
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Fig. 4.17. Heightwise variation of floor displacements and story drift ratios from MPA 
and NL-RHA for 1.5 × El Centro ground motion; gravity loads included; 
shading indicates errors in MPA including three “modes” 
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Fig. 4.18. Errors in floor displacements, story drifts, and hinge plastic rotations 

estimated by MPA including one, two, and three “modes” for 1.5 x El Centro 
ground motion 
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Fig. 4.19.   Locations of plastic hinges determined by MPA considering one, two, and 

three “modes” and by NL-RHA for 1.5 × El Centro ground motion; gravity 
loads included 
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Fig. 4.20. Errors in MPA as a function of ground motion intensity: (a) floor 
displacements; and (b) story drifts; gravity loads included 
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Table 4.6. Peak values of floor displacements (as % of building height = 37.14 m) from 
MPA for 1.5 × El Centro ground motion; gravity loads included 

Displacement /Height (%) 
“Modal” Response Combined (MPA) Error (%)  

Floor “Mode” 
1 

“Mode”  
2 

“Mode”  
3 

1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

NL 
RHA 1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
1st 0.237 -0.101 0.055 0.237 0.257 0.263 0.270 -12.4 -4.7 -2.6 
2nd 0.434 -0.156 0.071 0.434 0.461 0.466 0.490 -11.5 -5.9 -4.8 
3rd 0.637 -0.190 0.057 0.637 0.665 0.667 0.686 -7.2 -3.2 -2.8 
4th 0.831 -0.197 0.018 0.831 0.854 0.854 0.836 -0.6 2.2 2.2 
5th 0.983 -0.168 -0.033 0.983 0.998 0.998 0.913 7.8 9.3 9.4 
6th 1.102 -0.105 -0.071 1.102 1.107 1.109 0.953 15.7 16.2 16.4 
7th 1.213 0.015 -0.066 1.213 1.213 1.214 0.998 21.5 21.5 21.7 
8th 1.319 0.176 -0.009 1.319 1.330 1.330 1.098 20.1 21.2 21.2 
9th 1.399 0.315 0.068 1.399 1.434 1.436 1.199 16.7 19.6 19.8 

Table 4.7 Peak values of story drift ratios (as % of story height) from MPA for 1.5 × El 
Centro ground motion; gravity loads included 

Drift Ratio (%) 
“Modal” Response Combined (MPA) Error (%)  

Story “Mode”  
1 

“Mode” 
2 

“Mode” 
3 

1 
“Mode” 

2 
“Modes” 

3 
“Modes” 

NL 
RHA 1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
1st -1.603 0.687 -0.371 1.603 1.744 1.783 1.830 -12.4 -4.7 -2.6 
2nd -1.850 0.516 -0.154 1.850 1.921 1.927 2.064 -10.4 -6.9 -6.6 
3rd -1.908 0.311 0.130 1.908 1.933 1.938 1.858 2.7 4.1 4.3 
4th -1.821 0.066 0.372 1.821 1.822 1.860 1.414 28.8 28.9 31.5 
5th -1.429 -0.266 0.478 1.429 1.454 1.530 1.207 18.4 20.4 26.8 
6th -1.114 -0.594 0.351 1.114 1.263 1.310 1.128 -1.2 12.0 16.2 
7th -1.037 -1.125 -0.049 1.037 1.530 1.530 1.353 -23.3 13.1 13.1 
8th -0.996 -1.514 -0.527 0.996 1.813 1.888 1.877 -46.9 -3.5 0.5 
9th -0.754 -1.305 -0.728 0.754 1.507 1.673 1.515 -50.2 -0.5 10.5 

Table 4.8 Peak values of hinge plastic rotations (radians) from MPA for 1.5 × El Centro 
ground motion; gravity loads included 

Hinge Plastic Rotation (rad) 

“Modal” Response Combined (MPA) 
Error (%) 

“Modal” Response 
 

Floor 

“Mode” 
1 

“Mode” 
2 

“Mode” 
3 

1 
“Mode” 

2 
“Mode”  

3 
“Modes” 

NL 
RHA 1 

“Mode” 
2 

“Modes” 
3 

“Modes” 
1st 8.35E-03 0.00E+00 0.00E+00 8.35E-03 8.35E-03 8.35E-03 1.23E-02 -32.3 -32.3 -32.3 
2nd 8.11E-03 0.00E+00 0.00E+00 8.11E-03 8.11E-03 8.11E-03 1.04E-02 -22.2 -22.2 -22.2 
3rd 9.00E-03 0.00E+00 0.00E+00 9.00E-03 9.00E-03 9.00E-03 8.26E-03 9.0 9.0 9.0 
4th 5.19E-03 0.00E+00 0.00E+00 5.19E-03 5.19E-03 5.19E-03 3.78E-03 37.2 37.2 37.2 
5th 1.23E-03 0.00E+00 0.00E+00 1.23E-03 1.23E-03 1.23E-03 1.17E-03 4.3 4.3 4.3 
6th 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.04E-10 3.35E-10 9.19E-04 -100.0 -100.0 -100.0 
7th 0.00E+00 3.55E-03 0.00E+00 0.00E+00 3.55E-03 3.55E-03 5.13E-03 -100.0 -30.8 -30.8 
8th 0.00E+00 3.88E-03 0.00E+00 0.00E+00 3.88E-03 3.88E-03 5.75E-03 -100.0 -32.5 -32.5 
9th 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-10 0.00E+00    
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5 Comparison of Modal and FEMA Pushover 
Analyses 

5.1 FEMA-273 PUSHOVER ANALYSIS 

In this investigation we focus on one step in the nonlinear static procedure in the FEMA-273 

document [Building Seismic Safety Council, 1997] The pushover curve, a plot of base shear 

versus roof displacement, is determined by nonlinear static analysis of the structure subjected to 

lateral forces with invariant distribution over height but gradually increasing values until a target 

value of roof displacement is reached. The floor displacements, story drifts, joint rotations, 

plastic hinge rotations, etc., computed at the target displacement represent the earthquake-

induced demands on the structure. 

 Specified in FEMA-273 are three distributions for lateral forces: 

1. “Uniform” distribution: *
j js m=  (where the floor number 1, 2j N= K );  

2. Equivalent lateral force (ELF) distribution: * k
j j js m h=  where hj  is the height of the 

jth floor above the base, and the exponent 1k =  for fundamental period T1 � 0.5 

sec, 2k =  for T1 � 2.5 sec; and varies linearly in between; and 

3. SRSS distribution: s*is defined by the lateral forces back-calculated from the story 

shears determined by response spectrum analysis of the structure, assumed to be 

linearly elastic. 

5.2 COMPARATIVE EVALUATION 

Compared in this section are the earthquake-induced demands for the selected building 

determined by five analyses: pushover analysis using the three force distributions in FEMA-273, 



 

 
 

56

MPA considering three “modes,” and nonlinear RHA; gravity load effects were included in all 

analyses. The three FEMA force distributions are presented in Fig. 5.1, wherein the first two are 

obvious and the third is determined from response spectrum analysis of the building (Appendix 

C). Using each of these force distributions, pushover analyses are implemented for a target roof 

displacement of 52.0 cm, the value determined from RHA of the first-mode inelastic SDF system 

for 1.5 times the El Centro ground motion. The pushover curves are given in Fig. 5.2, the floor 

displacement demands in Fig. 5.3a and Table 5.1, the story drift demands in Fig. 5.3b and Table 

5.2, plastic hinge rotation demands in Table 5.3, and the locations of all plastic hinges in Fig. 5.4. 

Also included in these presentations are the MPA results considering three “modes” and the 

“exact” demands from nonlinear RHA, both presented in Section 4.4.3. The errors in the FEMA 

and MPA estimates of seismic demands relative to the “exact” demands are presented in Fig. 5.4 

and Tables 5.1 through 5.3. 

 Figures 5.3a and 5.4a, and Table 5.1 demonstrate that the displacement demands are 

underestimated by the ELF and SRSS force distributions by 12 to 30 % at the lower six floors of 

the building, with the errors being larger for the SRSS distribution. The “uniform” distribution 

overestimates all floor displacements by 17-28%. The MPA procedure is more accurate than all 

the FEMA force distributions. The first four floor displacements are within 5% of the “exact” 

value, and the displacements of upper floors are overestimated by 9-22%. 
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Fig. 5.1.  Force distributions in FEMA-273: (a) “uniform”; (b) ELF; and (c) SRSS 
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Fig. 5.2.    Pushover curves using three force distributions in FEMA-273: (a) 
“uniform”; (b) ELF; and (c) SRSS; gravity loads are included 
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 Figures 5.3b and 5.4b, and Table 5.2 demonstrate that the story drift demands are greatly 

underestimated by all the FEMA force distributions. For the uniform distribution, errors are 

largest in the upper stories, reaching 64%. For the ELF distribution, larger errors are noted in the 

upper and lower stories, reaching 35%. For the SRSS distribution, the errors are largest in the 

lower stories, reaching 31%. In contrast, the MPA procedure is more accurate than all the FEMA 

force distributions, with story drifts under estimated by, at most, 7%, and overestimated by no 

more than 32%. 

 Figure 5.4c and Table 5.3 demonstrate that the hinge plastic rotations estimated by all three 

FEMA force distributions contain unacceptably large errors. Modal pushover analysis procedure 

gives estimates better than all the FEMA force distributions, but it is still inaccurate, with errors 

reaching 37% in this example. (The 100% error in a 6th floor hinge is ignored as it simply 

represents that the MPA estimated zero rotation, whereas nonlinear RHA computed an 

insignificantly small value.) The pushover analysis procedures considered seem incapable of 

computing accurately local response quantities, such as hinge plastic rotations. This seems to be 

an inherent limitation of pushover analysis. 
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Fig. 5.3.  Heightwise variation of floor displacements and story drift ratios estimated 
using FEMA-273 force distributions, MPA including three “modes,” and NL-
RHA; gravity loads included 
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Fig. 5.4. Errors in floor displacements, story drifts, and hinge plastic rotations 
estimated using FEMA-273 force distributions and MPA (including three 
“modes”); gravity loads included 

 The structural engineering profession is now comparing these hinge plastic rotations 

against rotation limits established in FEMA-273 to judge structural component performance. 

Based on the results presented here, it appears that structural performance evaluation should be 

based on story drifts that are known to be closely related to damage and can be estimated to a 

higher degree of accuracy by pushover analyses. While pushover estimates for floor 

displacements are more accurate, they are not good indicators of damage. 

 The locations of plastic hinges shown in Fig. 5.5 were determined by five analyses: MPA 

considering the three “modes,” nonlinear RHA (“exact”), and the three FEMA analyses. The 

locations of the plastic hinges are not identified correctly by the FEMA force distributions; the 

“uniform” distribution fails to identify yielding of the beams above the fourth floor; the SRSS 

distribution fails to identify yielding of beams in the middle floors; and the ELF distribution fails 
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to identify yielding in some locations. The MPA procedure identifies yielding in most locations 

predicted by “exact” analysis, but fails to predict yielding in a few locations. 

 Figures 5.6 and 5.7 summarize the error in FEMA analyses relative to the “exact” demands 

as a function of ground motion intensity indicated by a ground motion multiplier. Shown is the 

error in each floor displacement and each story drift, and the error envelope for each case. 

Included for comparison is the error in MPA with three “modes.” The MPA procedure provides 

estimates of earthquake demands that are significantly more accurate than all FEMA-273 

analyses, especially in estimating story drifts. The MPA procedure is superior to FEMA-273 

analyses over the entire range of ground motion intensities considered. 
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Table 5.1. Peak values of floor displacements (as % of building height = 37.14 m) from 
FEMA force distributions and MPA; gravity  loads included 

Displacement /Height (%) Error (%) 
FEMA FEMA Floor 

Uniform ELF SRSS MPA NL-RHA Uniform ELF SRSS MPA 

1st 0.344 0.195 0.209 0.263 0.270 27.6 -27.7 -22.5 -2.6 
2nd 0.597 0.351 0.355 0.466 0.490 21.8 -28.4 -27.5 -4.8 
3rd 0.809 0.524 0.487 0.667 0.686 17.9 -23.7 -29.1 -2.8 
4th 0.975 0.708 0.611 0.854 0.836 16.7 -15.3 -26.9 2.2 
5th 1.089 0.875 0.724 0.998 0.913 19.3 -4.2 -20.6 9.4 
6th 1.178 1.015 0.84 1.109 0.953 23.7 6.5 -11.9 16.4 
7th 1.262 1.154 1.007 1.214 0.998 26.5 15.6 0.9 21.7 
8th 1.341 1.294 1.221 1.330 1.098 22.2 17.9 11.2 21.2 
9th 1.399 1.399 1.399 1.436 1.199 16.7 16.7 16.7 19.8 

Table 5.2 Peak values of story drift ratios (as % of story height) from FEMA force 
distributions and MPA; gravity loads included 

Displacement /Height (%) Error (%) 
FEMA FEMA Story 

Uniform ELF SRSS MPA NL-RHA Uniform ELF SRSS MPA 

1st 2.335 1.323 1.417 1.783 1.830 27.6 -27.7 -22.5 -2.6 
2nd 2.367 1.462 1.372 1.927 2.064 14.7 -29.2 -33.5 -6.6 
3rd 1.992 1.623 1.234 1.938 1.858 7.2 -12.6 -33.6 4.3 
4th 1.560 1.730 1.168 1.860 1.414 10.3 22.3 -17.4 31.5 
5th 1.067 1.562 1.061 1.530 1.207 -11.6 29.4 -12.1 26.8 
6th 0.839 1.314 1.083 1.310 1.128 -25.6 16.5 -3.9 16.2 
7th 0.789 1.306 1.566 1.530 1.353 -41.7 -3.5 15.8 13.1 
8th 0.736 1.318 2.011 1.888 1.877 -60.8 -29.8 7.1 0.5 
9th 0.547 0.984 1.672 1.673 1.515 -63.9 -35.0 10.4 10.5 

Table 5.3 Peak values of hinge plastic rotations (radians) from FEMA force distributions 
and MPA 

Hinge Plastic Rotation (rad) Error (%) 
FEMA FEMA Floor 

Uniform ELF SRSS MPA NL-RHA Uniform ELF SRSS MPA 

1st 1.53E-02 4.51E-03 4.94E-03 8.35E-03 1.23E-02 24.2 -63.4 -59.9 -32.3 
2nd 1.10E-02 4.65E-03 2.34E-03 8.11E-03 1.04E-02 5.2 -55.3 -77.6 -22.2 
3rd 7.93E-03 7.03E-03 2.16E-03 9.00E-03 8.26E-03 -4.0 -14.8 -73.8 9.0 
4th 1.62E-03 5.45E-03 0.00E+00 5.19E-03 3.78E-03 -57.2 44.1 -100.0 37.2 
5th 0.00E+00 3.09E-03 0.00E+00 1.23E-03 1.17E-03 -100.0 163.4 -100.0 4.3 
6th 0.00E+00 4.52E-04 2.58E-04 3.35E-10 9.19E-04 -100.0 -50.9 -71.9 -100.0 
7th 0.00E+00 1.50E-03 6.59E-03 3.55E-03 5.13E-03 -100.0 -70.8 28.4 -30.8 
8th 0.00E+00 0.00E+00 5.78E-03 3.88E-03 5.75E-03 -100.0 -100.0 0.5 -32.5 
9th 0.00E+00 0.00E+00 0.00E+00 1.00E-10 0.00E+00     
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Fig. 5.5. Locations of plastic hinges determined from three force distributions in 
FEMA-273, MPA including three “modes” and NL-RHA for 1.5 × El Centro 
ground motion; gravity loads included 
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Fig. 5.6.   Errors in floor displacements from three force distributions in FEMA-273 
and from MPA including three “modes”; gravity loads included 
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Fig. 5.7. Error in story drifts from three force distributions in FEMA-273 and from 
MPA including three “modes”; gravity loads included 
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6 Conclusions 

This investigation was aimed toward developing an improved pushover analysis procedure based 

on structural dynamics theory, which retains the conceptual simplicity and computational 

attractiveness of the procedure with invariant force distribution, now common in structural 

engineering practice. It has led to the following conclusions: 

1. Pushover analysis of a one-story inelastic system predicts perfectly peak seismic 

demands: deformation, joint rotations, hinge plastic rotation, etc. However, pushover 

analysis is inherently limited in the sense that it cannot provide any cumulative measure 

of response; e.g., the energy dissipated in yielding or the cumulative rotation of a plastic 

hinge. 

2. The peak response of an elastic multistory building due to its nth vibration mode can be 

exactly determined by static analysis of the structure subjected to lateral forces 

distributed over the building height according to *
n n=s mφ , where m is the mass matrix 

of the building and φn  its nth mode, and the structure is pushed to the roof displacement 

determined from the peak deformation Dn of the nth-mode elastic SDF system. This 

system has vibration properties—natural frequency ω n  and damping ratio, nζ —of the 

nth-mode of the MDF system. For this system, Dn is available from the elastic response 

(or design) spectrum. Combining these peak modal responses by an appropriate modal 

combination rule (e.g., SRSS) leads to the modal pushover analysis (MPA) procedure. 

3. This MPA procedure for elastic buildings is shown to be equivalent to the standard 

response spectrum analysis (RSA) procedure, where the nature and magnitude of errors 

arising from approximate modal combination rules are well understood. 
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4. To enable systematic extension of the MPA procedure to inelastic systems, an uncoupled 

modal response history analysis (UMRHA) is developed by (1) neglecting the coupling 

among modal coordinates arising from yielding of the system; and (2) superposing 

responses of the inelastic MDF system to individual terms, ( ) ( )eff ,n n gt u t= −p s && —n 

denotes mode number—in the modal expansion of the effective earthquake forces, 

( ) ( )eff gt u t= −p m &&ι . These underlying assumptions and approximations are evaluated 

and the errors in the UMRHA procedure relative to the “exact” nonlinear response 

history analysis are documented. 

5. The MPA procedure developed to estimate the seismic demands for inelastic buildings 

consists of two phases: 

(i) the peak response rno  of the inelastic MDF system to effective earthquake 

forces ( )eff ,n tp  is determined by pushover analysis; and 

(ii) the total response ro  is determined by combining the rno  ( )1, 2,n = K  

according to an appropriate combination rule (e.g., the SRSS rule). 

6. The response value rno  is determined by implementing the following steps: 

(i) Develop the base-shearroof-displacement ( )bn rnV u−  curve from a 

pushover analysis of the structure for the force distribution *
n n=s mφ , 

where φn  is now the nth natural mode for small-amplitude linear vibration. 

(ii) Idealize the pushover curve as a bilinear curve and convert it to the bilinear 

force-deformation relation for the nth-“mode” inelastic SDF system, with 

vibration properties in the linear range same as those of the nth-mode 

elastic SDF system. 

(iii) Compute the peak deformation Dn of this system with unit mass by 

nonlinear response history analysis or from the inelastic response (or 

design) spectrum. 
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(iv) At the roof displacement determined from Dn, the pushover analysis 

provides the peak value nor  of any response quantity: floor displacements, 

story drifts, joint rotations, plastic hinge rotations, etc. 

7. Comparing the peak inelastic response of a 9-story SAC building determined by the 

approximate MPA procedure—including only the first two or three rno  terms—with 

rigorous nonlinear RHA demonstrates that the approximate procedure while providing 

good estimates of floor displacements and story drifts, and identifying locations of most 

plastic hinges, it fails to compute with acceptable accuracy plastic rotations of the 

hinges. Pushover analyses seem to be inherently limited in computing accurately hinge 

plastic rotations. 

8. Based on results presented for El Centro ground motion scaled by factors varying from 

0.25 to 3.0, the errors in the MPA procedure are shown to be only weakly dependent on 

ground motion intensity. This implies that MPA is able to estimate the response of 

buildings responding well into the inelastic range to a similar degree of accuracy when 

compared to standard RSA for estimating the peak response of elastic systems. Thus the 

MPA procedure is accurate enough for practical application in building evaluation and 

design. 

9. The initial state—forces and deformations—of the structure can be considered in the 

MPA procedure by including these gravity load effects in pushover analysis of the 

structure only for the first “mode.” 

10. Comparing the earthquake-induced demands for the selected 9-story building determined 

by pushover analysis using three force distributions in FEMA-273, MPA, and nonlinear 

RHA,  demonstrates that the FEMA force distributions greatly underestimate the story 

drift demands, and lead to unacceptably large errors in the hinge plastic rotations. The 

MPA procedure is more accurate than all the FEMA force distributions in estimating 

floor displacements, story drifts, and hinge plastic rotations. However, all pushover 

analysis procedures do not seem to compute with acceptable accuracy local response 

quantities, such as hinge plastic rotations. 
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11. The present trend in the structural engineering profession of comparing computed hinge 

plastic rotations against rotation limits established in FEMA-273 to judge structural 

performance does not seem prudent. Instead, structural performance evaluation should 

be based on story drifts that are known to be closely related to damage and can be 

estimated to a higher degree of accuracy by pushover analyses. While pushover 

estimates for floor displacements are even more accurate, they are not good indicators of 

damage. 

 This report has focused on development of the MPA procedure and its initial evaluation in 

estimating the seismic demands on a building imposed by a selected ground motion, with the 

excitation scaled to cover a wide range of ground motion intensities and building response. This 

new method for estimating seismic demands at low performance levels, such as life safety and 

collapse prevention, should obviously be evaluated for a wide range of buildings and ground 

motion ensembles. 
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Appendix A Uncoupled Modal Response 
History Analysis 

A.1  STEP-BY-STEP PROCEDURE 

A detailed step-by-step implementation of the uncoupled modal response history analysis 

(UMRHA) procedure is presented in this section and illustrated by an example in the next 

section. 

1. Compute natural frequencies, nω , and modes, nφ , for linear-elastic vibration of the building. 

2. For the nth-“mode,” develop the base-shear–roof-displacement (Vbn � urn) pushover curve 

for the force distribution *
ns : 

2.1. Define the force distribution *
ns  from Eq. (3.20): *

n n=s mφ  

2.2. Apply force distribution of Step 2.1 incrementally and record the base shears and 

associated roof displacements. The structure should be pushed just beyond the target (or 

expected) roof displacement in the selected mode. Since the target roof displacement 

may not be known at the start of the procedure, iterations may be necessary. This step 

can be conveniently implemented in any commercially available software, e.g., DRAIN-

2DX [Allahabadi and Powell, 1988]. 

3. Idealize the pushover curve as a bilinear curve (Fig. A.1) using the FEMA-273 procedure 

(Building Seismic Safety Council, 1977). 

3.1. Define the anchor point, B, of the bilinear curve at the target roof displacement. Let the 

roof displacement and base shear at the anchor point be rnou  and bnoV , respectively. 

3.2. Calculate the area under the actual pushover curve, pnA , using any numerical 

integration method, e.g., trapezoidal rule. 
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3.3. Estimate the yield base shear, i
bnyV . This value, obtained by judgment, will be refined by 

an iterative procedure that seeks to equate areas under the actual and the idealized 

pushover curves. 

3.4. Calculate initial slope of the idealized bilinear curve, i
nk , by connecting a straight line 

between origin, O, and a point on the actual pushover curve with base shear equal to 

0.6 i
bnyV× . This step gives the secant stiffness at a base shear equal to 60% of the yield 

base shear. 

3.4.1. From the pushover data, determine the roof displacement, ,0.6
i
rnu , at base shear 

equal to 0.6 i
bnyV× . 

3.4.2. Calculate the slope, ( ) ,0.60.6i i i
n bny rnk V u= × . 

3.5. Calculate the yield displacement, i i i
rny bny nu V k= , corresponding to the estimated yield 

base shear, i
bnyV . Let the point with base shear = i

bnyV  and roof displacement = i
rnyu  be 

denoted as A.  

3.6. Draw the curve OAB by connecting the three points O, A, and B with straight-line 

segments to obtain the idealized bilinear curve. 

3.7. Calculate the post-yielding strain-hardening ratio, 

 ( ) ( )1 1i i i
n bno bny rno rnyV V u uα    = − −      

 

3.8.  Calculate area under the bilinear curve OAB, i
bnA . 

3.9. Calculate the error = ( )100 i
bn pn pnA A A× − . If the error exceeds some pre-specified 

tolerance, iterations are necessary.  

3.9.1. Calculate ( )1i i i
bny bny pn bnV V A A+ = × . If desired, other appropriate methods can be 

used. 
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3.9.2. Replace 1i +  with i and repeat Steps 3.4 to 3.8.  

4. Develop the sn n nF L D−  relation (Fig. A.2). 

4.1. Compute the nL  and nΓ  from Eq. (3.4) and effective modal mass from *
n n nM L= Γ . 

4.2.  Scale the horizontal axis by n rnφΓ  to obtain no rno n rnD u φ= Γ  and ny rny n rnD u φ= Γ  

(Eqs. 4.10b and 4.11b). 

4.3. Scale the vertical axis with *
nM  to obtain *

sno n bno nF L V M=  and 

*
sny n bny nF L V M=  [Eqs. (4.10a) and (4.11a)]. 

5. Compute deformation history, ( )nD t , and pseudo-acceleration history, ( )nA t , of the nth-

“mode” inelastic SDF system (Fig. 4.3b) with unit-mass and force-deformation relation of 

Fig. A.2. 

6. Calculate histories of various responses using Eqs. (3.12) and (3.13). 

7. Repeat Steps 3 to 6 for as many modes as required for sufficient accuracy. In general first 

two or three modes will suffice. 

8. Combine the “modal” responses using Eqs. (3.15) and (3.16). 

9. Calculate peak values, or , of the combined responses obtained in Step 8. 
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Fig. A.1.    Idealization of nth-“mode” pushover curve 
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Fig. A.2.    Properties of the nth-“mode” inelastic SDF system 

A.2 EXAMPLE 

The UMRHA procedure is implemented to calculate the response of the 9-story building 

described in Section 3.4. to the north-south component of the El Centro (1940) ground motion 

scaled up by a factor of 1.5. Following is step-by-step implementation of the procedure described 

in Section A.1. 

1. First three mode shapes and frequencies of the selected building were computed and are 

shown in Fig. 3.3. 

2. The base-shear – roof-displacement (Vbn � urn) pushover curve for the force distribution *
ns : 

2.1. The force distributions, *
ns , computed for the first three modes are shown in Fig. 3.4.  

2.2. The pushover curves for the first three modes, generated using DRAIN-2DX, are shown 

in Fig. A.3. Target displacements used to generate these pushover curves are 63.5 cm 

(25 in.), 25.4 cm (10 in.), and 12.7 cm (5 in.), for the first, second, and third mode, 

respectively. 

3. Idealized bilinear curves for each of the three modes are included in Fig. A.3.  The following 

steps illustrate the procedure to develop the idealize curve for the first “mode”. 

3.1. The anchor point, B, is defined at the target roof displacement. At this point, 

1 63.5 cmr ou =   and 1 8729.6 kNb oV = . 
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3.2. Area under the actual pushover curve, 1 360,777 kN-cmpA = . 

3.3. The first estimate of the yield base shear 1 8006.4 kNi
b yV = . 

3.4. The initial slope of the idealized bilinear curve, 1
ik , is calculated as follows. 

3.4.1. Determined from the pushover database, 1,0.6 22.86 cmi
ru =  at  

10.6 4803.8 kNi
b yV× = .  

3.4.2. ( )1 1 1,0.60.6 4803.8 22.86 210.18 kN cmi i i
b y rk V u= × = = . 

3.5. The yield displacement, 1 1 1 8006.4 210.18 38.09i i i
r y b yu V k= = = cm. The point A on the 

bilinear curve is defined by 1
i
r yu = 38.09 cm and 1 8006.4 kNi

b yV = . 

3.6. The curve OAB obtained by connecting the three points O, A, and B with straight-line 

segments gives the idealized bilinear curve. 

3.7. The post-yielding strain-hardening ratio, ( ) ( )1 1 1 1 11 1i i i
b o b y r o r yV V u uα    = − −      

 = 

( ) ( )8729.6 8006.4 1 63.5 38.09 1 0.135− − =       . 

3.8.  Area under the bilinear curve OAB, 1 365100 kN-cmi
bA = . 

3.9. Error = ( )100 365100 360777 360777 1.198%× − = . This value exceeds the pre-

specified tolerance of 0.01%. Therefore, iterations are necessary. 

3.9.1. The next estimate of the yield shear is ( )1 8006.4 360777 365100i
bnyV + = ×  = 

7911.6 kN.  

3.9.2. The results of the iterative procedure are summarized in Table A.1. The procedure 

converged after nineteen cycles to give 1 36.23 cmr yu = , 1 7615.9 kNb yV = , and 

1α = 0.194. 
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4. The 1 1 1sF L D−  relation for the first “mode” is developed as follows. The results for other 

modes are summarized in Table A.2. Also included are the modal damping ratios and the 

periods calculated from Eq. (4.13). 

4.1. 1 2,736,789 kgL = , 1 1.3666Γ = , and *
1 27 36789 1.3666 3,740,189 kgM = × = . 

4.2.  Scaling the horizontal axis by 1 1rφΓ  gives 1 46.46 cmoD =  and 1 26.51 cmyD = . 

5. Scaling the vertical axis by *
1M  gives ( )2

1 1 233.40 cm secs oF L =  and 

 ( )2
1 1 203.62 cm secs yF L = . 

6. Deformation and pseudo-acceleration histories of the inelastic SDF systems for the first 

“mode” with unit mass and force-deformation relation developed in Step 4 are plotted in Fig. 

A.4. 

7. Histories of roof displacement and top story drifts for the first “mode” are computed and 

presented in Fig. 4.7. 

8. The results were generated for first three “modes’ and are included in Fig. 4.7. 

9. The combined modal responses are presented in Fig. 4.7. 

10. The peak values are computed and are summarized in Tables 4.1 and 4.2. The peak values 

are also plotted in Fig. 4.8. 
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Fig. A.3. “Modal” pushover curves for the example building  
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Fig. A.4.  Histories of deformation and pseudo-acceleration due to 1.5 × El Centro 
ground motion for the first “mode,” second “mode,” and third “mode” 
inelastic SDF systems.
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Table A.1. Results of iterative procedure to develop the idealized bilinear curve for the first 
“mode” inelastic SDF system 

Itr. No. i 1
i
b yV  

(kN) 
10.6 i

b yV×  

(kN) 
1,0.6

i
ru  
(cm) 

1
ik  

(kN/cm) 
1

i
r yu  

(cm) 
1
iα  1

i
bA  

(kN-cm) 
Error 
(%) 

1 8006.4 4803.8 22.86 210.18 38.09 0.135 365100 1.198 
2 7911.6 4747.0 22.59 210.18 37.64 0.151 364060 0.910 
3 7840.3 4704.2 22.38 210.18 37.30 0.162 363276 0.693 
4 7786.3 4671.8 22.23 210.18 37.05 0.170 362684 0.529 
5 7745.4 4647.2 22.11 210.18 36.85 0.176 362235 0.404 
6 7714.2 4628.5 22.02 210.18 36.70 0.180 361892 0.309 
7 7690.4 4614.3 21.95 210.18 36.59 0.184 361631 0.237 
8 7672.3 4603.4 21.90 210.18 36.50 0.186 361432 0.182 
9 7658.4 4595.0 21.86 210.18 36.44 0.188 361279 0.139 
10 7647.7 4588.6 21.83 210.18 36.39 0.190 361162 0.107 
11 7639.5 4583.7 21.81 210.18 36.35 0.191 361073 0.082 
12 7633.3 4580.0 21.79 210.18 36.32 0.192 361004 0.063 
13 7628.5 4577.1 21.78 210.18 36.29 0.193 360951 0.048 
14 7624.8 4574.9 21.77 210.18 36.28 0.193 360911 0.037 
15 7622.0 4573.2 21.76 210.18 36.26 0.193 360880 0.029 
16 7619.8 4571.9 21.75 210.18 36.25 0.194 360856 0.022 
17 7618.1 4570.9 21.75 210.18 36.25 0.194 360838 0.017 
18 7616.9 4570.1 21.74 210.18 36.24 0.194 360824 0.013 
19 7615.9 4569.5 21.74 210.18 36.23 0.194 360813 0.010 

 

Table A.2.    Properties of “modal” inelastic SDF systems 

Properties “Mode” 1 “Mode” 2 “Mode” 3 

nL  (kg) 2736789 -920860 696400 

nΓ  1.3666 -0.5309 0.2406 
*
nM  (kg) 3740189 488839.1 167531.5 

sny nF L (cm/sec2) 203.62 1013.09 3109.56 

nyD  (cm) 26.51 18.65 19.12 

sno nF L (cm/sec2) 233.40 1226.56 3876.05 

noD  (cm) 46.46 47.85 52.79 

nT  (sec) 2.2671 0.8525 0.4927 

nζ  (%) 1.948 1.103 1.136 
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Appendix B  Modal Pushover Analysis 

B.1  STEP-BY-STEP PROCEDURE 

A detailed step-by-step implementation of the modal pushover analysis (MPA) procedure is 

presented in this section and illustrated by an example in the next section. Steps 1 to 4 of the 

MPA are the same as those for UMRHA presented in Appendix A. 

5. Compute the peak deformation, nD , of the nth-“mode” inelastic SDF system (Fig. 4.3b) with 

unit mass and force-deformation relation of Fig. 4.6b by solving Eq. (4.8), or from the 

inelastic response (or design) spectrum. 

6. Calculate the peak roof displacement urno associated with the nth-“mode” inelastic SDF 

system from Eq. (3.21). 

7. At rnou , extract from the pushover database values of other desired responses, nor . 

8. Repeat Steps 3 to 7 for as many “modes” as required for sufficient accuracy. Typically, the 

first two or three “modes” will suffice. 

9. Determine the total response by combining the peak “modal” responses using the SRSS 

combination rule of Eq. (3.18). From the total hinge rotation, subtract the yield hinge rotation 

to determine the plastic hinge rotation. 

B.2 EXAMPLE 

The MPA procedure is implemented to calculate the response of the 9-story building described in 

Section 3.4.1 to the north-south component of the El Centro (1940) ground motion scaled up by a 

factor of 1.5. This is the same example as solved in Appendix A. Following is step-by-step 

implementation of the procedure described in Section B.1. 

5. Solving Eq. (4.8) for the peak deformation of the first-“mode” inelastic SDF system with unit 

mass and force-deformation relation developed in Step 4 gives 1 35.33 cmD = . 
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6.  Peak roof displacement 1 1 1 1 1.366 1 35.33 48.28r o ru Dφ= Γ × × = × × =  cm.  

7.  At 1r ou =  48.28 cm, values of floor displacements and story drifts are extracted. The values 

are summarized in Table 4.3 for the floor displacements normalized by the building. 

8.  Steps 3 to 7 are repeated for first three “modes,” and the results are included in Tables 4.3 

and 4.4. Results of Steps 5 and 6 are summarized in Table B.1, where results for other 

ground motion intensities are also included. 

9.  The total response computed by combining the peak “modal” responses using the SRSS 

combination rule of Eq. (3.18) are also included in Tables 4.3 and 4.4. Also included in Table 

4.5 are the plastic hinge rotations computed by subtracting the yield hinge rotation from the 

total hinge rotations. 



 

 
 

83

Table B.1. Calculation of roof displacements rnou  from peak deformation of inelastic SDF 
systems 

Ground Motion 
Multiplier Quantity “Mode” 1 “Mode” 2 “Mode” 3 

nD  (cm) 6.678 4.200 1.755 

n nyD Dµ = 0.252 0.225 0.691 0.25 

rno n rn nu Dφ= Γ  (cm) 9.126 2.229 0.4222 

nD  (cm) 13.35 8.395 3.513 

n nyD Dµ = 0.504 0.450 0.184 0.5 

rno n rn nu Dφ= Γ  (cm) 18.25 4.457 0.8451 

nD  (cm) 20.03 12.59 5.268 

n nyD Dµ = 0.755 0.676 0.275 0.75 

rno n rn nu Dφ= Γ  (cm) 27.38 6.660 1.267 

nD  (cm) 22.70 14.27 5.969 

n nyD Dµ = 0.856 0.766 0.312 0.85 

rno n rn nu Dφ= Γ  (cm) 31.03 7.577 1.436 

nD  (cm) 26.71 16.79 7.023 

n nyD Dµ = 1.007 0.901 0.367 1.0 

rno n rn nu Dφ= Γ  (cm) 36.50 8.913 1.690 

nD  (cm) 35.33 22.06 10.52 

n nyD Dµ = 1.332 1.185 0.551 1.5 

rno n rn nu Dφ= Γ  (cm) 48.28 11.73 2.535 

nD  (cm) 46.37 24.82 14.05 

n nyD Dµ = 1.748 1.332 0.735 2.0 

rno n rn nu Dφ= Γ  (cm) 63.37 13.18 3.379 

nD  (cm) 57.13 27.35 21.36 

n nyD Dµ = 2.154 1.467 1.117 3.0 

rno n rn nu Dφ= Γ  (cm) 78.07 14.52 5.139 
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Appendix C FEMA Force Distribution 
Calculations 

Presented in this appendix are the calculations leading to the FEMA-273 force distributions (Fig. 

5.1) used in developing the pushover curves (Fig. 5.2). These distributions were described in 

Section 5.1 

C.1  “UNIFORM” DISTRIBUTION 

The lateral force at a floor is equal to the mass at that floor, i.e., *
j js m= . For convenience, the 

floor forces are normalized with the base shear. The results are summarized in Table C.1.  

 

Table C.1.  FEMA273 “uniform” lateral force distribution 

Floor, j jm  

(10-3×kg) 

* j
j

ii

m
s

m
=

∑
 

1 503.5 0.112 
2 494.7 0.110 
3 494.7 0.110 
4 494.7 0.110 
5 494.7 0.110 
6 494.7 0.110 
7 494.7 0.110 
8 494.7 0.110 
9 534.1 0.119 
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C.2 EQUIVALENT LATERAL FORCE (ELF) DISTRIBUTION 

The lateral force at a floor is computed from * k
j j js m h=  where jm  is the mass, jh  is the height 

of the jth floor above the base, and the exponent 1k =   for fundamental period 1 0.5T ≤  sec, 

2k =  for fundamental period 1 2.5T >  sec; and varies linearly in between. For the selected 

building, 1 2.27T =  and 1.885k = . The resulting lateral forces are summarized in Table C.1. For 

convenience, the floor forces are normalized with the base shear. 

Table C.2.    FEMA273 equivalent lateral force (ELF) distribution 

Floor 

j 

k
j jm h  

(10-3×kg-

mk) 

*
k

j j
j k

i ii

m h
s

m h
=

∑

1 371.0 0.007 
2 1015.0 0.020 
3 1963.2 0.038 
4 3196.8 0.062 
5 4707.4 0.091 
6 6488.3 0.126 
7 8534.2 0.165 
8 10840.6 0.210 
9 14471.1 0.281 

 

C.3 SRSS DISTRIBUTION 

The calculation of the SRSS distribution is summarized as a series of steps as follows: 

1. For the nth-mode calculate the lateral forces, jn n j jn nf m Aφ= Γ  in which j denotes the floor 

number and nA  is the pseudo-acceleration of the nth-mode SDF elastic system, leading to 

columns 2 to 4 of Table C.3. 

2. Calculate the story shears, N
jn ini jV f== ∑  where j is now the story number.  Implementing 

this step gives columns 5 to 7 of Table C.3. 
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3. Combine the modal story shears using SRSS rule, ( )2
j jnnV V= ∑  to get column 8 of 

Table C.3. 

4. Back calculate the lateral forces at the floor levels from the combined story shears Vj  to 

obtain column 9 of Table C.3. 

For convenience, the lateral forces are normalized by the base shear to obtain column 10 in Table 

C.3.  

 

Table C.3.    FEMA 273 SRSS force distribution 

 Lateral Forces Story Shears Lateral Force 

Floor 

 j 
1jf  

(kN) 
2jf  

(kN) 
3jf  

(kN) 
1jV  

(kN) 
2jV  

(kN) 
3jV  

(kN) 
jV  

(kN) 
jf  

(kN) 
j

j
i

i

f
f

f
=

∑
%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1 59.7 234.2 277.2 1917.1 1114.9 478.2 2268.7 203.3 0.090 
2 97.7 355.0 354.0 1857.4 880.7 200.9 2065.4 222.5 0.098 
3 136.8 430.2 285.0 1759.7 525.7 -153.1 1842.9 159.2 0.070 
4 176.9 446.1 87.5 1622.9 95.5 -438.1 1683.7 105.7 0.047 
5 215.0 381.9 -166.4 1446.0 -350.6 -525.6 1578.0 101.2 0.045 
6 250.3 240.6 -352.6 1231.0 -732.5 -359.3 1476.8 95.2 0.042 
7 286.0 -5.8 -326.5 980.7 -973.1 -6.6 1381.6 148.4 0.065 
8 320.5 -320.7 -46.8 694.7 -967.3 319.9 1233.1 400.9 0.177 
9 374.1 -646.6 366.7 374.1 -646.6 366.7 832.2 832.2 0.367 
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