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Abstract

The reinforcing elements of multi-layer elastomeric isolation bearings, which are normally steel
plates, are replaced by a fiber reinforcement. The fiber-reinforced isolator is significantly lighter
and could lead to a much less labor-intensive manufacturing process. In contrast to the steel-
reinforced isolator, which is assumed to be rigid both in extension and in flexure, the fiber-reinforced
isolator is assumed flexible in extension, but completely without flexural rigidity. This report
presents theoretical approaches for analyzing the compressive stiffness and bending stiffness of
fiber-reinforced isolators having three types of geometry: infinitely long strip, rectangular and
circular. The stiffness formulae of fiber-reinforced isolators are derived. The influence of fiber
flexibility on the mechanical properties of fiber-teinforced isolators is studied, and it is shown that

it should be possible to produce a fiber-reinforced isolator that equals the advantageous behavior

of steel-reinforced isolator.
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1 Introduction

1.1 Fiber-Reinforced Elastomeric Isolators

Seismic isolation technology in the United States is applied almost entirely to large, expensive
buildings housing sensitive internal equipment, for example, computer centers, chip fabrication
factories, emergency operation centers and hospitals. The isolators used in these applications
are large, heavy and expensive. An individual isolator can weigh one ton or more. To extend this
valuable earthquake-resistant strategy to housing and commercial building, it is necessary to reduce
the weight and cost of the isolators.

The primary weight in an isolator is due to the reinforcing steel plates, which are used to
provide vertical stiffness to the rubber-steel composite element. A typical rubber isolator has two
large end-plates (around 1 inch thick) and 20 thin reinforcing plates (1/8 inch thick). The high cost
of producing the isolators results from the labor involved in preparing the steel plates and assembly
of the rubber sheets and steel plates for vulcanization bonding in a mold. The steel plates are
cut, sand-blasted, acid cleaned and then coated with bonding compound. Next, the compounded
rubber sheets with the interleaved steel plates are put into a mold and heated under pressure for
several hours to complete the manufacturing process. The research work recently performed by
Kelly (1999) suggests that both the weight and the cost of isolators can be significantly reduced by
eliminating the steel reinforcing plates and replacing them with a fiber reinforcement.

The reduction in weight is possible because fiber materials are now available with an elastic



stiffness that is of the same order as steel. Thus the reinforcement needed to provide the vertical
stiffness may be obtained by using a similar volume of a very much lighter material. Manufacturing
costs may also be reduced if the use of fiber allows a simpler, less labor-intensive process. It is also
possible that the current approach of vulcanization under pressure in a mold with steam heating
can be replaced by microwave heating in an autoclave.

Another benefit of using fiber reinforcement is that it would then be possible to build isolators
in long rectangular strips, whereby individual isolators could then be cut to the required size.
Currently, all isolators are manufactured as either circular or square in the mistaken belief that
if the isolation system for a building is to be isotropic, it needs to be made of symmetrically
shaped isolators. Rectangular isolators in the form of long strips would have distinct advantages
over square or circular isolators when applied to buildings where the lateral resistance is provided
by walls. When isolation is applied to buildings with structural walls, additional wall beams are
needed to carry the wall from isolator to isolator. A strip isolator would have a distinct advantage
for retrofitting masonry structures and for isolating residential housing constructed from concrete
or masonry blocks.

An enormous amount of research funding has been spent over the past ten years on attempting
to develop and implement active control techniques for the seismic protection of buildings; several
buildings using active control systems have been constructed in Japan. There have also been
proposals to develop “smart” isolators and “intelligent” isolation systems. The value of this research
endeavor is questionable. While there may be a role for these adaptive systems for expensive
buildings in highly seismic areas, such systems will definitely never be of any use in the developing
countries. On the other hand, the development of lightweight and cost-effective isolators is crucial
if this method of seismic protection is to be applied to a wide range of buildings, such as housing,

schools, and medical centers, in earthquake-prone areas of the world.



1.2 Stiffness of Elastomeric Isolators

In modeling the isolator reinforced with steel plates, the plates are assumed to be inextensional and
rigid in flexure to constrain the displacement at the top and bottom of the elastomeric layer. The
restricted lateral expansion on the bonded surfaces of the elastomer causes a higher compression
stiffness than the unbonded elastomeric layer in the direction normal to the layer.

To calculate the compression bending stiffnesses of steel-reinforced bearings, approximate analy-
ses are used. The elastomer is assumed to be strictly incompressible. The normal stress components
are approximated by the pressure. Each individual elastomeric layer in the bearing deforms accord-
ing to two kinematic assumptions: (i) horizontal planes remain planar and (ii) points on a vertical
line lie on a parabola after loading. Based on these assumptions, Gent and Lindley (1959) derived
the compression stiffness for pads of infinitely long strip shape and circular shape. It was further
extended by Gent and Meinecke (1970) to analyze the compression stiffness and bending stiffness
for pads of other shapes. The “pressure solution” approach developed by Kelly (1997) is a simpli-
fied version of these earlier analyses and is applicable to bearings with shape factors greater than
about five. Through the analytical approach (Koh and Kelly, 1989) and the numerical approach
(Tsai and Lee, 1998 and 1999), the two kinematic assumptions have been proved to be realistic to
describe the deformation of the bonded elastic layers subjected to compression or flexural loading.

The fiber reinforcement is made up of many individual fibers grouped in strands and coiled
into a cord of sub-millimeter diameter. The cords are more flexible in tension than the individual
fibers; therefore, they may stretch when the bearing is loaded by the weight of a building. On
the other hand, they are completely flexible in bending. In contrast to the steel-reinforced isolator
where the reinforcement is assumed to be rigid both in extension and flexure, the reinforcement in

the fiber-reinforced isolator is assumed to be flexible in extension, but completely without flexural

rigidity.



In this report, the extensional flexibility of the fiber reinforcement is incorporated into the
“pressure solution” approach which is then applied to analyze the compressive stiffness and bending

stiffness of fiber-reinforced isolators with three types of geometry: infinitely long strip, rectangular,

and circular. The stiffness formulae of fiber-reinforced isolators are derived. The influence of fiber

flexibility on the mechanical properties of fiber-reinforced isolators is also studied.



2 Analysis of Infinitely Long Strip Isolators

2.1 Compression Stiffness of Infinitely Long Strip Isolators

2.1.1 Equilibrium in Elastomeric Layer

A layer of elastomer in an infinitely long, rectangular isolator is shown in Figure 2.1. The elastomeric
layer has a width of 2b and a thickness of ¢. The top and bottom surfaces of the layer are perfectly
bonded to flexible reinforcements that are modeled as an equivalent sheet with a thickness of ¢;.
A coordinate system (z,y, 2) is established by locating the origin at the center of the layer and the
y coordinate direction is attached to the infinitely long side. Under the compression load P in the
z direction, the deformation of the elastomer is in a plane strain state, so that the displacement
component in the y direction vanishes. The displacement components of the elastomer in the z
and z coordinate directions, denoted as u and w, tespectively, are assumed to have the form

2

w(z, 2) = wolz) (1 - %) + ua(z) 2.1)
w(z,z) = w(z) (2.2)

In Egs. (2.1), the term of uo represents the kinematic assumption that vertical lines in the elastomer
become parabolic after deformation; the horizontal deformation is supplemented by additional
displacement u; which is constant through the thickness and is intended to accommodate the
stretch of the reinforcement. Eq. (2.2) represents the assumption that horizontal planes in the

elastomer remain planar after deformation.



The elastomer is assumed to have linearly elastic behavior with incompressibility. The assump-
tion of incompressibility means that the summation of normal strain components is negligible and

produces a constraint on displacements in the form
g+ wz =0 (2.3)

where the commas imply partial differentiation with respect to the indicated coordinate. Substitu-

tion of Egs. (2.1) and (2.2) into the above equation gives

42*
Uo,z (1 - —%—2—) + Ui,z + w, = 0 (24)

Integration through the thickness of the elastomer from z = —1/2 to z = t/2 leads to

2
guO,z + U1z = € (2.5)

in which €. is the nominal compression strain defined as

_w(g) - w(F)
€= ————1= (2.6)

The stress state in the elastomer is assumed to be dominated by the internal pressure p, such

that the normal stress components oz and 0., are assumed as
Opz R Oy X —D (2.7)
Under these stress assumptions, the equilibrium equation of the elastomer in the z direction
Ozz + Ozz,z = 0 (2.8)

is reduced to

— Pz + Ozz,z = 0 (29)

The assumption of linearly elastic behavior for the elastomer means that

0pe = Gluz + Wwe) (2.10)



with G being the shear modulus of the elastomer. Using the displacement assumptions in Egs. (2.1)

and (2.2), the above equation becomes

P4
Ory = -—8Guoz2— (2.11)
which gives, from Eq. (2.9),
8G
Pz =3 (2.12)

Differentiating the above equation with respect to z and then combining the result with Eq. (2.5)

to eliminate the term of ug ., we have

12G
Pzzx = _t2_(u1,x - €c) (213)

2.1.2 Equilibrium in Reinforcing Sheet

The deformation of the elastomeric layers bonded to the top and bottom surfaces of the reinforcing
sheet generates the bonding shear stresses oz, on the surfaces of the reinforcing sheet, as shown in
Figure 2.2. In an infinitesimal dz width of the reinforcing sheet, the internal normal force per unit
length in the z direction, N, is related to these bonding shear stresses through the equilibrium

equation

ANz + (el )de =0 (2.14)

£ - azzl =1
2 =3

The shear stresses acting on the top and bottom surfaces of the reinforcing sheet can be derived

from Eq. (2.11)
4G 4G

Uizlz:—% =7 Y% 5 Ozl=f =T % (2.15)

Substitution of these into Eq. (2.14) gives

8G
N:ca:,z = _TUO (216)



The displacement in the reinforcement is related to the internal normal forces through the

linearly elastic strain-stress relation such that

! (N” —uﬁy—y—> (2.17)

T B\ 1y ty

where Ej is the elastic modulus of the reinforcement, v is Poisson’s ratio and Ny, is the internal
normal force per unit length in the y direction. According to the plane strain condition in the

infinitely long strip pad, the normal strain of the reinforcing sheet in the y direction vanishes, so

that
Nyy = vNzs (2.18)
Substituting this into Eq. (2.17), we have
Esty
sz - 1_'__1/3'“1@ (219)

The governing equation of the displacement in the reinforcement is derived by substituting
Eq. (2-19) into Eq. (2.16), which leads to

2
Ulzz = —§Q2U0 (2.20)

1260 -v?)
a= —_——Eftft (2.21)

Differentiating Eq. (2.20) with respect to z and then combining the result with Eq. (2.5) to eliminate

where « is defined as

the terms of ug s, we have

Ul zzz — a2u1,x = _a2€c (222)

2.1.3 Solution of Pressure

To derive the governing equation of the pressure, arrange Eq. (2.13) to have

t2

Ul,r = € + 'ﬁap,zz (223)



and then substitute this into Eq. (2.22), which gives
Przzz — a2p,a:a: =0 (224)

To solve the pressure p(z) from this differential equation, we need the boundary conditions for p(z).
The normal stresses of the elastomer and the reinforcement at the edges of the infinitely long

strip pad are free, which means that

Opa(2b) =0 (2.25)

and
Based on the assumption of pressure domination in Eq. (2.7), the condition shown in Eq. (2.25)

becomes

p(£b) =0 (2.27)

From Eq. (2.19), the condition shown in Eq. (2.26) gives U1 z(£b) = 0, which means, according to

Eq. (2.13), that

12G
t2

p,:z:r(ib) = - € (228)

Because the compression loading and the boundary conditions are symmetric with respect to

the y axis, the pressure has the following symmetric property

p(z) = p(-2) (2.29)

which means that

p,xz(z) = p,zr("m) (230)

From Eq. (2.24), we have the expression of p sz

pzz(2) = 1 cosh az + casinh az (2.31)



where ¢; and ¢, are constants to be determined. The condition in Eq. (2.30) gives ¢ = 0. Then

the condition in Eq. (2.28) gives
126 1

@ = ¢ t2 cosh ab (2.32)
so that
12G cosh az
Pas(2) = —C t2 cosh ab (2.33)
It follows that
12G 1
p(z) = —ec—ﬁm(cosh az + 3T + ¢4) (2.34)

where ¢3 and ¢4 are integration constants. The condition in Eqg. (2.29) gives cg = 0. Then the

condition in Eq. (2.27) gives ¢4 = — cosh ab, so that

12G (1 cosh az)

p(z) = € a?t? " coshab (2.35)

2.1.4 Effective Compressive Modulus

The compressive stiffness of the isolator is determined by the effective compressive modulus £,
which is defined as
UC

E. == (2.36)

€
where @, is the nominal compression stress which is equal to the resultant compression load per
unit length P divided by the width of the pad 2b. According to the assumption in Eq. (2.7), the

resultant compression load per unit length P can be expressed as
b b
P=- / 2 dz = / p(z) dz (2.37)
- —b

Thus, the effective compressive modulus has the form

E.

b
= The. /_bp(:l;) dz (2.38)

10



When the pressure solution in Eq. (2.35) is substituted, the effective compressive modulus becomes

_ o 12 ( _tanhab)
E.=GS (ab)? 1 " (2.39)

in which § is the shape factor which is defined as the ratio of loaded area to free area and is a
dimensionless measure of the aspect ratio of the single layer of the elastomer. For the infinitely

long strip layer,

S = (2.40)

o] o

The ratio E./(GS?) is plotted in Figure 2.3 as a function of ab, which shows that the effective
compressive modulus decreases with increasing ab. To have high effective compressive modulus, we
must keep the value of ab as low as possible. The value of E, at ab = 0 is derived by substituting

the following approximation

tanh ab =~ ab — %(ab)3 (2.41)

into Eq. (2.39), which gives

E. = 4GS? (2.42)
This is the effective compressive modulus of an infinitely long strip layer of elastomer bonded to
the rigid reinforcement (Kelly, 1997).

For clarification, we define the in-plane stiffness of the reinforcement as

Eysts

kr=1_,2 (2.43)
From Eq. (2.21), we have
Gt
b= 12—
ab=S Py (2.44)

The ratio of the in-plane stiffness of the reinforcement to the shear stiffness of the elastomer,

K;/(Gt), versus the shape factor, 5, is plotted in Figure 2.4 for several ab values, which shows
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that a small ab value is not necessary for high reinforcement stiffness; it depends on the value of

the shape factor S. Using the relation in Eq. (2.44), Eq. (2.39) can be rewritten as

ks tanh ab
E. = + (1 R > (2.45)

When ab tends to infinity, tanh @b = 1, so that
Ec = - (2.46)

Substituting ab in Eq. (2.44) into Eq. (2.39), the normalized effective compressive modulus
E./G is expressed as a function of the shape factor S and the stiffness ratio of the reinforcement
and the elastomer k;/(Gt). In Figure 2.5, the curves of E./G versus k;/(Gt) for several § values
show that the compressive modulus increases with increasing reinforcement stiffness and converges
to the value shown in Eq. (2.42). The figure also reveals that the curve of the smaller shape
factor reaches the convergence at the smaller reinforcement stiffness. In Figure 2.6, the curves of
E./G versus ks /(Gt) for several k;/(Gt) values show that the compressive modulus increases with
increasing the shape factor and converges to the value shown in Eq. (2.46). The figure also reveals
that the curve of the smaller reinforcement stiffness reaches the convergence at the smaller shape
factor. In other words, when the reinforcement becomes more flexible, the shape factor has less

influence on the compressive modulus.

2.1.5 Stresses in Elastomer and Reinforcement

Normalized with respect to the nominal compression stress 0. = E_e., the distribution of pressure

in the elastomer given by Eq. (2.35) becomes

p(z) _ ab(cosh ab— coshar)

FE.e.  abcosh ab— sinh ab (2.47)
When « tends to zero, substitution of the following approximation
1 2 . 1 3
coshaz = 1+ §(aa:) ;  sinhazr = az + g(am) (2.48)
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into Eq. (2.47) gives

2
BE(—E = -;1 (1 - %) (2.49)
which is the pressure distribution in the elastomeric layer bonded to the rigid reinforcement. The
distribution of the normalized pressure along the z axis is plotted in Figure 2.7 for ab=0,1,2 and
4. The figure shows that the effect of the flexibility of the reinforcement is to make the pressure
distribution more uniform and to decrease the maximum value at the center.

Let 7 denote the shear stress on the bonding surface between the elastomer and the reinforce-

ment. From Egs. (2.12) and (2.15), we have

t

ol (2.50)

T(l') = O‘frzlz:—;— =

Substitution of Eq. (2.47) into the above equation gives the normalized shear stress as

r(z) _ 1 (ab)?sinh az
E.c. 2S5 |abcoshab— sinhab

(2.51)

When o tends to zero, substitution of the approximation in Eq. (2.48) into the above equation

leads

3
Foe, 5% (2.52)

o 8

which is the bonding shear stress for the rigid reinforcement. To show the distribution of the
bonding shear stress along the z axis, the curves of 7(z)$ / (chc) versus /b are plotted in Figure
28 for ab = 0, 1, 2 and 4. The figure demonstrates that the flexibility of the reinforcement
makes the distribution of the bonding shear stress more concentrated on the edge and increases
the maximum value at the edge. The normalized shear stress at the edge, 7(b)/(Ecc.), is plotted
in Figure 2.9 as a function of the stiffness ratio k¢/(Gt) for several S values. The figure shows

that 7(b) decreases with increasing stiffness ratio, and the lower shape factor always has a higher

bonding shear stress at the edge.
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The in-plane displacement of the reinforcement, u1(z), can be solved by substituting Eq. (2.35)
into Eq. (2.23) and applying the condition u1(0) =0, which gives

z sinh ax > (2.53)

ui(2) = €cb (3 " abcosh ab

This displacement pattern is shown in Figure 2.10 by plotting the curves of uy(z)/(be.) as a function
of z/b for several ab values, which shows that displacement increases with reducing reinforcement
stiffness.

The distribution of the internal force Ny (z) in the reinforcement can be solved by substituting
Eq. (2.53) into Eq. (2.19). The quantity Nz is unit of force per unit length, which can be normalized
by dividing by the nominal compressive stress o. = E_e. and then becomes dimensionless by dividing

by the thickness of the elastomeric layer ¢

Nzz(z)  ab(cosh ab — cosh az)
E.c.t ~  abcosh ab— sinh ab

(2.54)

which is the same form as the pressure distribution shown in Eq. (2.47), so that the distribution of

the internal force plotted in Figure 2.11 is the same as the pressure distribution plotted in Figure

2.7.

2.2 Bending Stiffness of Infinitely Long Strip Isolators

2.2.1 Governing Equation of Pressure

For a layer of elastomer in an infinitely long rectangular isolator, shown in Figure 2.12, the re-
inforcements bonded to the top and bottom surfaces of the elastomeric layer are subjected to a
pure bending moment M. Assuming that the reinforcing sheets remain planar, the top and bottom
reinforcements rotate to form an angle ¢ which is symmetric to the z-y plane. Following the same

kinematic assumptions used for the compression stiffness, the displacement field of the elastomer

14



is given by
2

u(z,z) = uo(z) (1 - 4—:;) + uy () (2.55)
1
w(z,z) = ;zz (2.56)

in which p is the radius of the bending curvature defined as
p=1 (2.57)
3 .

Substituting Egs. (2.55) and (2.56) into the constraint of elastomer incompressibility in Eq. (2.3)
and then integrating the result through the thickness of the elastomer from z = ~t/2 to z = t/2

lead to

2 + Uy = L 2.58
U0,z z :
3o, 1, p (2.58)

Substituting Egs. (2.55) and (2.56) into the shear stress of elastomer oz, defined in Eq. (2.10),
we have
8 1
0z, = —Gz (—uo - ;) (2.59)

t2

which gives, according to the equilibrium equation of the elastomer shown in Eq. (2.9),

8 1
pz=-G (t—z‘uo - ;) (2.60)

Differentiating this equation with respect to z and then combining the result with Eq. (2.58) to
eliminate the term of ug yield
_12G 1
Par = —5~ \Ue + ;Z (2.61)
From Eq. (2.59), the bonding shear stresses acting on the top and bottom surfaces of the

reinforcing sheet have the forms

Gt (8 1
ozzl -t = ("‘UO - —) ) Ozzl,—t = — 5~ (§U() - '1‘) (262)
==z 2 \t? p =2 2 \t2 P
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so that the equilibrium equation of the reinforcement shown in Eq. (2.14) is reduced to
8 t
N;c:z,r =-G <_u0 - _) (263)

Substitution of the force-displacement relation of the reinforcement in Eq. (2.19) into this equation

gives

u = —92—t-2— (gu - l) 2.64
l,zz — 12 t2 0 p ( . )

where « is defined in Eq. (2.21). Differentiating Eq. (2.64) with respect to z and then combining

the result with Eq. (2.58) to eliminate the term of uoz, we have

1
U, zxz = o? (ul,:r + ;17) (265)
From Eq. (2.61), we know that
2 1
U,z = 12Gp,z1: (266)
Substitution of this into Eq. (2.65) leads to
Pzzzz — a2p,xx =0 (2.67)

This governing equation of pressure has the same form as Eq. (2.24) used for deriving the compres-

sion stiffness.

2.2.2 Solution of Pressure

To solve for pressure p(z) , we need the boundary conditions for p(z). The normal stresses of the
clastomer and the reinforcement are free at the edges of the infinitely long strip pad, which gives
the same boundary conditions shown in Egs. (2.25) and (2.26). According to the assumption of
pressure domination in Eq. (2.7), the stress boundary conditions of the elastomeric layer shown in
Eq. (2.25) becomes

p(£b) =0 (2.68)
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Based on the force-displacement relation of the reinforcement in Eq. (2.19), the stress boundary

condition of the reinforcing sheet shown in Eq. (2.26) means that u1 z(4b) = 0, which gives, from

Eq. (2.61),

12G' b
p,m(:}:b) = :t—t?—; (2.69)

Because the deformation of the elastomer induced by the bending moment loading is anti-

symmetric with respect to the y axis, the pressure is an odd function of z
p(z) = —p(-z) (2.70)

which means that

P,zx(l') = "p,:c:c(—x) (2.71)

From Eq. (2.67), we have the expression of p z¢
pzz(z) = ¢1 coshaz + cysinh az (2.72)

where ¢; and ¢, are constants to be determined. The condition in Eq. (2.71) gives ¢; = 0. Then,

the condition in Eq. (2.69) gives
b12G 1

2= 5712 sinhab (2.73)
so that
b 12G sinh az
Pzz(T) = » @ smhab (2.74)
It follows that
b12G 1 .
p(z) = ;——t§—~m(smh az + c3z + ¢4) (2.75)

where c¢3 and ¢4 are integration constants. The condition in Eq. (2.70) gives ¢4 = 0. Then, the

condition in Eq. (2.68) gives ¢3 = —(sinh ab)/b, so that

b 12G (sinhax :c) 5
sinhab b (2.76)
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2.2.3 Effective Bending Modulus
The bending stiffness (EI).ss of the infinitely long strip pad is defined as
(EDcss = pPM (2.77)

in which M is the resultant bending moment per unit length. Using the assumption in Eq. (2.7),

we have
b b
M -——/ 0..¢ dz = —/ p(z)z dz (2.78)
—b -b

When the pressure solution in Eq. (2.76) is substituted, the bending stiffness becomes

24GS? [

(EI)eff - —W 1+ ‘]:(ab)2 ab ] (279)

3 " tanhab
where S is the shape factor defined in Eq. (2.40).

For clarification, we define the effective bending modulus as

ET).
By = ELess (2.80)
Iy

in which I, is the area moment of inertia about the y axis. For a unit length of the strip pad,

I, = 2b®/3. From Eq. (2.79), we have

36G5? 1 ab
Ey= = |14 =(ab)® -
® 7 (ab)* * 3(a ) tanh ab (2:81)
The value of Ej at ab = 0 is derived by substituting the following approximation
ab 1+ l(ab)Q — _l_(ab)4 2.82
tanhab 3 45 (2.82)
into Eq. (2.81), which gives
4 2

This is the effective bending modulus of an infinitely long strip layer of elastomer bonded to the
rigid reinforcement. The ratio E3/(GS?) is plotted in Figure 2.13 as a function of ab, which shows

that the bending modulus decreases with increasing ab.
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Using the relation in Eq. (2.44), Eq. (2.81) can be rewritten as

Br= e 130~ b (2:84)

where kj is the reinforcement stiffness defined in Eq. (2.43). When ab tends to infinity,
Ey = — (2.85)

The ratio E,/G can be expressed as a function of the shape factor S and the stiffness ratio
k;/(Gt) by substituting ab in Eq. (2.44) into Eq. (2.81). The variation of Ep/G with ks /(Gt) is
plotted in Figure 2.14 for several § values. The figure shows that the bending modulus increases
with increasing reinforcement stiffness and converges to the value shown in Eq. (2.83). The smaller
shape factor has faster convergence and reaches the bending modulus in Eq. (2.83) at a smaller
stiffness ratio. The variation of Ej/G with shape factor is plotted in Figure 2.15 for several values
of stiffness ratio k;/(Gt). The figure shows that increasing the shape factor will increase the
bending modulus until reaching the value shown in Eq. (2.85). The figure also reveals that when

the reinforcement stiffness is smaller, the bending modulus converges to the asymptotic value at a

smaller shape factor.

2.2.4 Stresses in Elastomer and Reinforcement

The nominal bending stress o is the maximum normal stress created by the moment M. From

Egs. (2.77) and (2.80), we have
Mb b

op = — = Ep— 2.86
I, P ( )

Normalization of the pressure distribution in Eq. (2.76) with respect to the nominal bending stress

gives
p(.’E)p — (ab)2 _ss;immh%% - %{ (2 87)
Epd 3 1+ %(ab)2 - ta:}fab
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When o tends to zero, substitution of the approximations in Egs. (2.48) and (2.82) into Eq. (2.87)

gives

e 5[z o
Fb 2 (E - 35) (2:88)

which is the normalized pressure distribution in the elastomeric layer bonded to the rigid reinforce-
ment. The distribution of the normalized pressure along the z axis is plotted in Figure 2.16 for
ab =0, 1, 2 and 4, which shows that the effect of the flexibility of the reinforcement is to decrease
the maximum pressure and to make the location of the maximum pressure closer to the edge.

Denote 7(z) as the shear stress on the bonding surface between the elastomer and the reinforce-
ment. From Eq. (2.60) and (2.62)

t
7(2) = Oreloap = —5Pa (2.89)

Substitution of Eq. (2.87) into the above equation gives the normalized bonding shear stress as

r(z)p _ (ab)’ 1 — abssher (2.90)
Eyb 65 |14 L(ab)? - 2 '

Substitution of Eq. (2.88) into Eq. (2.89) gives

r(z)p 5 z?

which is the bonding shear stress for the rigid reinforcement. The distribution of the bonding
shear stress along the z axis is plotted in Figure 2.17 for ab = 0, 1, 2 and 4. The figure shows
that the effect of the flexibility of the reinforcement is to make the shear stress distribution more
concentrated on the edge, to decrease the value at the center and to increase the maximum value at
the edge. The normalized bonding shear stress at the edge, 7(b)p/(Ewb), is plotted in Figure 2.18
as a function of the stiffness ratio k;/(Gt) for several § values. The figure shows that, under the
same external moment and the same width of the pad, increasing the shape factor or the stiffness

ratio of the reinforcement to the elastomer will decrease the bonding shear stress at the edge.
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The displacement of the reinforcement u;(z) can be solved from Eq. (2.66) by applying the

condition u1(0) = 0,

b2 {coshaz —1 122
ui{z) = > (W — 535) (2.92)
This displacement pattern is displayed in Figure 2.19 by plotting the curves of u;(z)p/ b% versus
b/z for different ab values. The figure shows that the displacement is symmetric to the origin of
z, so that the reinforcement has the same direction of deformation on the positive and negative
sides of the z axis, which creates tension on the negative z side and compression at the positive z
side. This is consistent with the distribution of the internal force in the reinforcement plotted in
Figure 2.20. The distribution of the internal force N.z(z) is solved by substituting Eq. (2.92) into

Eq. (2.19). After normalized with respect to the nominal bending stress, the dimensionless internal

force becomes

N:z::l:(z)p — (ab)2 Ssllﬁzfg _ % (2 93)
Eybt 3 [1+L(eb)? - 53 '

This internal force distribution in the reinforcement has the same form of the pressure distribution
shown in Eq. (2.87), so that the distribution of the internal force plotted in Figure 2.20 is the same

as the pressure distribution plotted in Figure 2.16.
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Figure 2.2: Forces in reinforcing sheet bonded to infinitely long strip layers of elastomer
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3 Analysis of Rectangular Isolators

3.1 Compression Stiffness of Rectangular Isolators

3.1.1 Equilibrium in Elastomeric Layer

A layer of elastomer in a rectangular isolator is shown in Figure 3.1 where a coordinate system
(z,y,2) is established by locating the origin at the center of the elastomeric layer and the z-y plane
in the middle plane of the layer. The elastomeric layer has a thickness of . Its side length parallel
to the z axis is 2a and the y axis is 2b. The elastomeric layer’s top and bottom surfaces are perfectly
bonded to flexible reinforcements which are modeled as an eqﬁivalent sheet of thickness t;. Let
u, v and w denote the displacements of the elastomer in the z, y and z coordinate directions,
respectively. In addition u; and v are denoted as the displacements of the reinforcement in the z
and y directions, respectively. Under the compression load P in the z direction, the displacements

of the elastomer are assumed to have the form

u(z,y,2) = uo(z,y) (1 - 11:72) + ui(z, y) (3.1)
22
v(z,y,z) = Uo(il?,y) (1 - 4t_2) + ’01(17, y) (32)

w(z,y,2) = w(2) (3.3)

In Egs. (3.1) and (3.2), the terms of up and vg represent the kinematic assumption of quadratically

varied displacements and are supplemented by additional displacements u; and v;, respectively,
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which are constant through the thickness and are intended to accommodate the stretch of the
reinforcement. Eq. (3.3) represents the assumption that horizontal planes remain planar.
The elastomer is assumed to have linearly elastic behavior with incompressibility. The assump-

tion of incompressibility produces a constraint on displacements in the form
Ug+Vy+w, =0 (3.4)

where the commas imply partial differentiation with respect to the indicated coordinate. Substi-
tuting Egs. (3.1) to (3.3) into the above equation gives

422
(uoz + voy) (1 - 72*) turztoiytw,=0 (3.5)

Integration through the thickness from z = —t/2 to z = t/2 leads to
2
5(“0,1‘ + voy) + U1,z + Viy = € (3.6)

in which €, is the nominal compression strain defined as

€ = ﬁﬁ__tiu__(_ﬂ (3.7)

The stress state in the elastomer is assumed to be dominated by the internal pressure p, such
that the normal stress components 0z, 0y, and o, differ from —p only by terms of order pt? /12
where [ is the smaller value of 2a and 2b. The shear stress components ¢, and o,,, which are
generated by the constraints of the reinforcements at the top and the bottom of the elastomeric
layer, are assumed to be of order pt/l; the in-plane shear stress o, is assumed to be of order pt?/12,
The thickness ¢ of a single elastomeric layer in a rectangular isolator is generally much smaller than
the dimension [ of the pad. Neglecting the terms of order pt? /1% gives the stress components of the
elastomer as

Opg R Oyy R Oz & —p  ; Ogy R0 (3.8)
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Under these stress assumptions, the equilibrium equations in the z and y directions for the stresses

of the elastomer

Ozza + Ozyy + Ozz2 =0 (3.9)
Oyt Oyyy + Oyz,z = 0 (3.10)
are reduced to
~ Pzt 0zz2=0 (3.11)
— Pyt 0yz,z =0 (3.12)

The assumption of linearly elastic behavior means that
Ozz = G(u,z + w,g:) (3.13)

0y = G(vz + wy) (3.14)

with G being the shear modulus of the elastomer. Using the displacement assumptions in Egs. (3.1)

to (3.3), the above equations become
— oz (3.15)

Oyz = ——V02 ' (3.16)

8G

Pz =~ % (3.17)
8G

Py ="z (3.18)

Differentiating Eqs. (3.17) and (3.18) with respect to z and y, respectively, and then adding them
up yield

8G
Dzx + Pyy = ——tﬁ_(uo,z + vO,y) (319)
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3.1.2 Equilibrium in Reinforcing Sheet

The internal forces acting in an infinitesimal dz by dy area of the reinforcing sheet is shown in
Figure 3.2 where N, and Ny, are the normal forces per unit length in the z and y directions,
respectively; Nz, is the in-plane shear force per unit length. These internal forces are related to the
shear stresses, 0, and o0y, on the surfaces of the reinforcing sheet bonded to the top and bottom

layers of elastomer through two equilibrium equations in the z and y directions

e — 0gsl,t ) dody = 0 (3.20)

dNppdy + dNaydz + (0aal,o s :
ANyydz + dNoydy + (0ysl s — 0yal,oy) dzdy = 0 (3.21)

From Egs. (3.15) and (3.16), we have the bonding shear stresses acting on the top surface of the
reinforcing sheet

Ozl ,— L= —Up ay2|z:_% = —1g (3.22)
and the bonding shear stresses acting on the bottom surface of the reinforcing sheet

4G 4G

Urzlz—-i = "—t‘uo ) ayzlzz,:; = _Tvo (3.23)

The equations of equilibrium in the reinforcing sheet in Eqs. (3.20) and (3.21) become

8G

N:t::l:,:t: + Nzy,y - _TUO (324)
8G

Nyyy + Nayz = v (3.25)

Combining these with the equilibrium equations of the elastomeric layer in Egs. (3.17) and (3.18)

to eliminate up and vg gives

NII,:L‘ + Nzy,y = tp,:r: (326)

Nyy,y + Nzy,z =1py (327)
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The displacements in the reinforcement are related to the internal normal forces through the

linearly elastic strain-stress relation such that

1 [Ny Ny

Uz = E ( i v y ) (3.28)
1 [Ny, Ny

Uy = Ef ( tf -V tf ) (329)

where Es and v are the elastic modulus and Poisson’s ratio of the reinforcement. By inversion, the
f y .

normal forces are expressed in terms of the displacement components

Est

Ngp = T‘_L#(ULI + v y) (3.30)
Eqt

Nyy = 'i?f’l%(vl,y + v z) (3.31)

The in-plane shear force has the following relation with the displacements

Eyty

Ney = 2(1+v)

(u1y + v1,2) (3.32)

Substitution of Eqgs. (3.30) to (3.32) into Eqgs. (3.26) and (3.27) leads to

1-v 1-v2)t

Ul,ze + V01 yz + T(ul,yy + 'Ul,a:y) = ‘(_E'}'i?l'p,z (333)
1-v 1—-v2)t

V1gy +VUzy T “2_‘(“1,yz + V1,22) = (_E’_ﬂ?)_p'y (334

Differentiating Eqs. (3.33) and (3.34) with respect to z and y, respectively, and then adding them

up yield
(1-v2)
Qoz + Qyy = —E7t_;—_(p’" + Dyy) (3.35)
in which, for clarification, ¢ is denoted as
g=1uUrz+ vy (3.36)
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3.1.3 Governing Equation of Pressure

Combining Eq. (3.6) with Eq. (3.19) to eliminate the terms of uo and v and using the definition
of ¢ in Eq. (3.36),

tZ
g=c¢€+ E@(p,zx + P,yy) (3.37)

Substitution of this into Eq. (3.35) gives

Przze T 2P zzyy + Pyyyy — a2(P,za: +Py) =0 (3.38)

12601 -2
o=\ (3.39)

To solve the partial differential equation of Eq. (3.38) for the pressure p(z,y), we need the

in which o is defined as

boundary conditions for p(z,y). The normal stresses and shear stresses of the elastomer and the

reinforcement are free at the edges, which gives
0so(£a,y) =0 ; ogy(Ea,y)=0 ; oyy(zT,20) =0 ;5 ogy(z,£b)=0 (3.40)
and
Noo(£a,y) =0 ; Ngy(Fa,y)=0 ; Nyy(z,2£0) =0 ; Ngy(z,£6)=0 (3.41)

According to the assumption of pressure domination in Eq. (3.8), the stress boundary conditions

of the elastomeric layer shown in Eq. (3.40) becomes

p(ta,y) =0 ;  p(z,1b)=0 (3.42)

3.1.4 Approximate Boundary Conditions

In Eq. (3.8), the in-plane shear stress of the elastomer, o5y, is assumed to be of order pt? /1?2 and
becomes negligible,
ozy(z,y) = Gluy +vz) =0 (3.43)
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Substituting the displacement assumptions in Egs. (3.1) and (3.2) into the above equation and

taking integration through the thickness of the elastomeric layer lead to
2
3(voy + v02) + (ury + v12) © 0 (3.44)

The last term, u1 4 + v1,z, is equal to the in-plane shear strain of the reinforcement, which means
that the in-plane shear strain of the reinforcement is of the order t?/1? and the in-plane shear force

of the reinforcement N, is negligible. Therefore, we can assume
Nzy,z(a,y) =0 ; Nzy.y(z,b) =0 (3.45)
which give, from Egs. (3.26) and (3.27),
Nizz(2,b) = tpo(z,b) (3.46)

Nyyy(a,y) = tpy(a,y) (3.47)

We can find another equation relating the pressure of the elastomer with the internal normal

forces of the reinforcement by adding Eg. (3.30) to Eq. (3.31), which gives

1-v
0= G (Vee + V) (3.48)

and then combining this with Eq. (3.37) to eliminate g,

P+ Piy) = (Ve + Moy — (3.49)

From the boundary condition p(+a,y) = 0in Eq. (3.42), p y(%a,y) = 0 which, when substituted
into Eq. (3.47), gives Nyy(*a,y) being constant. From the boundary conditions in Eq. (3.41), we
know Ny, (+a,+b) = 0, thus

N,y (£a,y) =0 (3.50)
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Bringing this into Eq. (3.49) and using the boundary condition N, .(%a,y) = 0 in Eq. (3.41) and

pyy(£a,y) = 0 from p(+a,y) = 0 in Eq. (3.42),

12G
P,m(ia, y) = "?_ec (351)

From the boundary condition p(z, +b) = 0 in Eq. (3.42), p«(z, +b) = 0 which, when substituted
into Eq. (3.46), gives N;;(z,+b) being constant. From the boundary conditions in Eq. (3.41), we

know that N, (+a,+b) = 0, thus

Nya(z,4b) = 0 (3.52)

Bringing this into Eq. (3.49) and using the boundary condition Nyy(z,1b) = 0 in Eq. (3.41) and
P.oz(z,1b) = 0 from p(z,+b) = 0 in Eq. (3.42),

12G
t2

P,yy(wa +b) = — €c (3.53)

It should be noted that Ny, is not neglected when we derive the governing equation of the
pressure in Eq. (3.38). To solve for pressure in this governing equation, we use the approximate
boundary conditions of the pressure in Egs. (3.51) and (3.53), which are derived by assuming that
the derivatives of N, at the edges are negligible and stem from the assumption that pressure is

dominant in the stress field of the elastomer.

3.1.5 Solution of Pressure
To solve for pressure, p(z,y) is decomposed into two pressure components p; (z,y) and pa(z,y)

p(z,y) = p1(z,y) + p2(z,9) (3.54)

The boundary conditions for pressure in Eqs. (3.42), (3.51) and (3.53) are split into two sets. Each
pressure component satisfies a different set of boundary conditions. The first set of boundary
conditions is

pi(£a,9)=0 5 pres(tae,y)=0 (3.55)
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12G
pl(a:,:l:b) =0 ; pl,yy(myib) = —~tT€c (356)

and the second set of boundary conditions is

12G
p2(:ta'7 y) =0 ) p2,z‘z(ia3 y) = —_t—é—ec (357)
po(z,£0) =0 ;  payy(z,£b)=0 (3.58)

Adding the boundary conditions in Egs. (3.55) to (3.58) yields the same boundary conditions
defined in Egs. (3.42), (3.51) and (3.53). The governing equations for these pressure components

are the same as for Eq. (3.38), that is
Pl,zzzz + 2p1,z-a:yy + Plyyyy — a2(p1,:cx + pl,yy) =0 (359)

P2,zzzz T 2P2,zzyy + P2yyyy — 0‘2(?2,11 + P2yy) =0 (3.60)

Because the compression loading and the boundary conditions are symmetric with respect to the

z axis and y axis, the pressure components have the following symmetric properties
n(z,y) = p(-2,9) = p(z,-y) (3.61)

p2(z,9) = p2(~2,y) = p2(z, —y) (3.62)

According to the boundary conditions in Eq. (3.55) and the y-axis symmetric property in

Eq. (3.61), the first pressure component can be assumed to be a cosine series of

n(z,y) = i fn(y) cos Tz (3.63)

n=1

where the amplitudes f, are the functions of y and
1.«
Tn = (n — 5); (3.64)

Substitution of Eq. (3.63) into Eq. (3.59) gives

o0

Z ('Y:zfn - 27121fn,yy + fryyyy oy fn - azfn,yy) cos Ynz = 0 (3.65)

n=1
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which indicates

Fryyy — V2 + %) frgy + Va(1n + @) fn =0 (3.66)

The solution of this equation has the form
fn(y) = Cy coshyny + C3 cosh By + C3sinh v,y + Cysinh B,y (3.67)
where C; are constants to be determined and
Brn =\[72 +0? (3.68)

Using the z-axis symmetric property in Eq. (3.61), C3 = C4 = 0. The boundary condition

p1(z,£b) = 0 in Eq. (3.56) gives fn(+b) = 0, from which

_ coshypb
C, = ~ cosh Bub Cy (3.69)
Thus, fn(y) has the form
_ coshyny cosh ﬂny>
fu(y) = An (cosh Ynb  coshBpb (3.70)

with A, = C; cosh 7nb, from which the boundary condition for p; 4y (2, £b) in Eq. (3.56) becomes

> 12G
z a?A, cos Tz = 7—60 (3.71)
n=1
By use of the following orthogonal property
a a for n=m
/ COS Y T COS YnzdT = (3.72)
- 0 for n#m
Eq. (3.71) is reduced to
24G (-1)"1
An =€ c (3.73)

“ralt? (n— —)

Combining Egs. (3.63), (3.70) and (3.73) leads to

24G 1)*~1 /cosh v, cosh G,
n(z,y) = €c7ra2t2 Z (=1 ( Y _ p y) COS Yn T (3.74)

(n— 5 coshy,b ’ cosh 8,b
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According to the boundary conditions in Eq. (3.58) and the z-axis symmetric property in

Eq. (3.62), the second pressure component can be assumed to be a cosine series of y
piad —_
p2(z,y) = Y fn(2) cOSTny (3.75)
n=1

where the amplitudes f, are the functions of z and

1

_ by
Substitution of Eq. (3.75) into Eq. (3.60) gives
S (34 Fa = 22 Fan + Frzwas + 0%72Sa = 0 fazc) c0STny = 0 (3.77)
n=1
which indicates
Frozze — (272 + &) fagz + 7272 + &%) fa =0 (3.78)
The solution of this equation has the form
fn(x) = Cy coshynz + C; cosh Bnz + Cssinh Y,z + Cysinh B,z (3.79)

where C; are constants to be determined and

Br = \/¥2 + 2 (3.80)

Using the y-axis symmetric property in Eq. (3.62), we have C3 = C4 = 0. The boundary condition
p2(Fa,y) = 0 in Eq. (3.57) gives fn(%a) = 0, from which we have

- coshypa ~
Ca=- cosh Bnacl (3.81)

Thus, fn(z) has the form

(3.82)

- cosh#,z  cosh B,z
n = A'n. - - =
fn(2) (cosh Ana  cosh ﬁna>

with A, = Ci cosh ,a, from which the boundary condition for p2zz(£a,y) in Eq. (3.57) becomes

> - _ 12G
2 a?A, cos Yy = —t—z—ec (3.83)

n=1
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By use of the following orthogonal property

b for n=m

b
/ €08 Ym Y CO8 Ypydy = (3.84)
- 0 for n#m
Eq. (3.83) is reduced to
4G (! 1)"~
An=rmm Ty (3.85)

Combining of Egs. (3.75), (3.82) and (3.85) leads to

24G Z( 1t (cosh"yn cosh Bpz

Tat? (n - l) coshiza  cosh fra ) CosTnY (3.86)

p2(z,y) = €

Substitution of p1(z,y) in Eq. (3.74) and pa(z,y) in Eq. (3.86) into Eq. (3.54) gives the solution

of the pressure p(z,y)
24G S§? =y 1)"'
p(z,y) = GCW( ) Z_:l (n- 1)

coshy,y  cosh ,Bny) coshynz  cosh Bz )
[( coshy,b  coshfpb €o8TnT + | Cosh Yna  cosh fra cosYny|  (3.87)

in which S is the shape factor of the rectangular layer of the elastomer defined as

ab

= m (3.88)

3.1.6 Effective Compressive Modulus

The compression stiffness of the isolator is determined by the effective compressive modulus E,

defined as

E =2 (3.89)

€
where o, is the nominal compression stress which is equal to the resultant compression load P

divided by the area 4ab. Using the assumption in Eq. (3.8), the resultant compression load P has

the form

b ra b ra
—/b/ Ozz dzdyz/b/ p(z,y) dzdy (3.90)
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which gives

1 b a .
E.= Tabe. /_ . /_ ap(x,y) dzdy (3.91)

Bringing the pressure solution p(z,y) in Eq. (3.87), the effective compressive modulus becomes

24G S? a\? & 1 tanhy,b tanhf@,b tanh%yna tanh Bra
E,=——=(1++ - -tk :
oar ( +5) Z;(n—%)z( b b g fwe ) O

If we denote a to be the length of the short side and b to be the length of the long side, the value

of the aspect ratio a/b is between 0 and 1. When the aspect ratio a/b tends to zero, y,b — oo,

Bpb — o0, Bra — aa and yp,a — 0 which makes

tanh v,
LS | (3.93)
Tna
Using the following series equation
Stmeg an

Eq. (3.92) is reduced to

E.

2
12GS (1 3 tanh aa) (3.95)

" (aa)?® aa
which is the effective compressive modulus of the infinitely long strip isolator shown in Eq. (2.39).
When the stiffness of the reinforcement becomes rigid, & — 0. B, defined in Eq. (3.68) can be
approximated as a series of a
B % Tn [1 + -;— (;;i) 2] (3.96)
and tanh 3,b becomes

tanh B,b ~ tanh b+—-—7i—(a)2 3.97
T Tn 2 cosh? 7,0 \n (3:97)

Similarly, B, defined in Eq. (3.80) can be approximated as

B % [1 + % (%) 2] (3.98)

n
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and tanh 8,b becomes
_ _ ’7nb ( a )2

tanh B,b ~ tanh 3,0 + ———— [ — .
anh j anh Jnb + o= =5 \5n (3.99)

Substituting these approximations into Eq. (3.92) and neglecting the high-order terms of a, we

have

12GS5? 2 1 tanh y,b 1 b? (tanh¥,a 1
om0 (18 5 [ - e B (- )
md b (n—3)* Ynb cosh*y,b a Yn@ cosh® y,a

(3.100)

which is the effective compressive modulus of the rectangular layer of elastomer bonded to the rigid
reinforcement.

From Eq. (3.92), it is known that the ratio Ec/ (GS?) is a function of aa and the aspect ratio
a/b. The variation of E./(GS?) with aa is plotted in Figure 3.3 for a/b =0, 0.1, 0.2, 0.5 and 1,
which shows that the effective compressive modulus decreases with increasing aa. To have a high
compressive modulus, the value of aa must be small. The figure also reveals that a larger value of
a/b produces a larger value of the effective compressive modulus. To test the convergence of the
series solution in Eq. (3.92), the values of E./(GS?) are calculated using the first 1, 2, 5 and 10
terms and then finding the ratios of these values to the value using the first 50 terms. These ratios
are plotted in Figure 3.4 as a function of aa for a/b = 0.5 and plotted in Figure 3.5 as a function
of a/b for aa = 0.5. The two figures show that the series solution in Eq. (3.92) converges very fast
and that using the first 10 terms is enough to have an accurate solution, except when the aspect
ratio a/b is very small.

For clarification, the in-plane stiffness of the reinforcement is defined as

Eyty
ke = .
=1 (3.101)
From Eq. (3.39),
a Gt
—~ 2. /192 .
ada 7 1 k7 (3 102)



Figure 3.6 plots the ratio of the in-plane stiffness of the reinforcement to the shear stiffness of the
elastomer, K;/(Gt), versus the ratio a/t fér several aa values, which indicates that a small aa
value is not necessary for high reinforcement stiffness; instead, it depends on the value of a/t. From
Eq. (3.88), it is known that the shape factor § is the function of a/t and a/b, of which the range is
from S = 0.5a/t for the square layer to § = a/t for the infinitely long layer. Substituting the shape
factor S in Eq. (3.88) and aa in Eq. (3.102) into Eq. (3.92), the normalized effective compression
modulus E./G is expressed as a function of the ratios a/b, a/t and ks/(Gt). When a/t tends to

infinity, aa — 00, fpb — 00, Brna — 00, Eq. (3.92) becomes

2 kg i 1 tanhy,b tanh¥,a

The curves of E./G versus k;/(Gt) are plotted in Figure 3.7 for a/b = 0.5 and several aft
values, which shows that the effective compressive modulus increases with an increase in the re-
inforcement stiffness until reaching the asymptotic value in Eq. (3.100). The curve of the smaller
shape factor reaches the plateau at the smaller value of k¢ /(Gt). The curves of E /G versus aft
are plotted in Figure 3.8 for a/b = 0.5 and several k;/(Gt) values, which shows that the effective
compressive modulus increases with the increasing shape factor until reaching the asymptotic value
in Eq. (3.103). The curve of the smaller value of ks/(Gt) reaches a plateau at the smaller shape
factor.

To study the variation of the effective compressive modulus with the aspect ratio a/b , the ratios
of the compressive modulus of the rectangular layers with a/b > 0, shown in Eq. (3.92), to the
compressive modulus of the infinitely long strip layer (a/b = 0), shown in Eq. (3.95), are plotted in
Figure 3.9 for ca = 0, 1, 2 and 4, which reveals that the effective compressive modulus is almost
linearly varied with respect to the aspect ratio a/b. The ratio of E. at a/lb=1to E;at a/b=10is

plotted in Figure 3.10 as a function of aa between 0 and 5 which, utilizing the regression analysis,
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can be fitted by the four-degree polynomial
g(ea) = 0.41 + 0.0260a + 0.074(ca)® — 0.022(ca)® 4 0.0019(ca)* (3.104)

Assuming that the value of E is linearly varied between a/b = 0 and a/b = 1, an empirical
formula for the effective compressive modulus of rectangular reinforced layers can be established

from Egs. (3.95) and (3.104)

12GS? (1 B tanh aa)

{1 + % [—0.59 +0.026aa + 0.074(aa)? — 0.022(aa)’ + 0.0019(aa)4]} (3.105)

aa

The errors of this empirical formula with respect to the exact formula in Eq. (3.92) are plotted in
Figure 3.11 as a function of a/b for several values of aa and in Figure 3.12 as a function of aa for
several values of a/b, which show that the maximum error is smaller than 4 percent. It should be
noted that because the range of the aa values used in the regression analysis is between 0 and 5,

the effective compressive modulus in Eq. (3.105) is only applicable to the range of 0 < aa <5.

3.1.7 Stresses in Elastomer

When the pressure distribution in Eq. (3.87) is normalized with respect to the nominal compression
stress 0, = E.€., the normalized pressure distribution p(z,y)/(Ecec) can be expressed in terms of
aa, a/b, z/a and y/b. A 3-D graph of the normalized pressure distribution for aa = 0.5 and
a/b = 0.5 is plotted in Figure 3.13, which shows that the center of the elastomeric layer has the

highest pressure.

When o tends to zero, using Egs. (3.96) and (3.98) and the following approximations

1 2
cosh B,y = cosh v,y [1 + 57y tanh v,y (;ya—) ] (3.106)
n
= ‘ 1. _ a\?
cosh Bnz = cosh 4,z |1+ 57,,1 tanh ¥,z ? (3.107)
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Eq. (3.87) is reduced to

2 2 b 1) -1 h n
p(z,y) = 691—2—G£— <1+ b) Z (=1) [COS Iny (tanh'ynb— %tanh'yny> COS YnZ

2  (n— 2)? Lcosh ynb
M (tanh Fnt — — ? tanh "yn:c> cos %y] (3.108)
coshy,a a

which is the pressure distribution in the rectangular layer of elastomer bonded to the rigid rein-
forcement.

To study the effect of the flexibility of the reinforcement on the pressure distribution, the
normalized pressure distributions along the z axis at y = 0 and along the y axis at z = 0 are
plotted in Figures 3.14 and 3.15, respectively, for the aspect ratio a/b = 0.5 and aa =0, 1, 2 and
4, which show that decreasing the stiffness of the reinforcement makes the pressure distribution
more uniform and reduces the maximum value at the center. For the elastomeric layers of different
aspect ratios a/b, the distribution of the normalized pressure along the z axis at y = 0 is plotted in
Figure 3.16 with aa = 0.5, which reveals that the maximum value of the pressure becomes smaller
as the layer has smaller value of a/b.

If 7, and 7, denote the shear stresses in the z and y directions, respectively, on the bonding

surface between the elastomer and the reinforcement, from Egs. (3.17), (3.18) and (3.22)

t

Tz(za y) = Uzzlzz_% = _'2‘p,:c (3109)
t

Ty(2,Y) = Oyal, & = ~ 5Py (3.110)

Substituting Eq. (3.87) into Eqgs. (3.109) and (3.110), we have the bonding shear stresses as
_ 12GS a n coshy,y cosh ﬂny) )
ma(®:9) = ec( a)? ( ) Z( 2 [ (cosh b cosh Bpb S Tn®

a [ sinh9y, B smh Br _
+b (cosh;/n Fn cosh ,Bna oS TnY (3.111)

r(z,y) = € 12GS( )Z(“ [(sinh'yny_ﬁnsinhﬂny>
Wy = “(a coshypb  n cosh Bpb COBIn T
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_% (cosh T _ cosh ﬂ_nz) sin ’7ny:| (3.112)

coshy,a  coshfra

When a tends to zero, using Eqgs. (3.96), (3.98), (3.106) and (3.107) and the following approxi-

mations
2
. . TnY a
~ sinh Y (2
sinh B,y =~ sinh v,y [1 + 5 tanh 7.y (%) } (3.113)
= 2
_— L FnT a
T % sinh —_— | — .
sinh B,z = sinh ¥,z [1 + Stanh 7.z (771) ] (3.114)

Egs. (3.111) and (3.112) are reduced to

_ 865 S 1)" { b( y )cosh’yny :
(z,y) = € - ( )Z - ta,nh’ynb—btanhyny cosh7an‘n7"z

B smh FnT z\ coshy,z _
+ [(tanh An@ — %a) cosh7.a - (;) ol 7na] cos 7ny} (3.115)
6GS 1" _ T _ coshynz . _
(z,y) = €—— ( ) Z =07 ) {— (tanh'yna - tanh 'yn:c> zaﬁ; sin ¥,y
b smh’yny (y) cosh'yny] }
— |t nb — —r =) Y7 n .
P [( anh w) cosh b \b) coshymb] 01" (3.116)

which are the bonding shear stresses for the rigid reinforcement.

When the bonding shear stresses are normalized with respect to the nominal compression stress,
the quantities 7,5/(E.e.) and 7,5/(Ec€:) can be expressed in terms of aa, a/b, z/a and y/b.
The distributions of these two quantities are plotted as 3-D graphs in Figures 3.17 and 3.18,
respectively, for aa = 0.5 and a/b = 0.5. These figures indicate that the compression load makes
the reinforcement in the stretch condition. The distributions of 7,5/(Ece.) along the z axis at y = 0
and 7,5/(E.¢;) along the y axis at z = 0 are plotted in Figures 3.19 and 3.20, respectively, for the
aspect ratio a/b=0.5and ca =0,1,2 and 4, which shows that the flexibility of the reinforcement
makes the distribution of the bonding shear stresses more concentrated on the edges and increases
the maximum values at the edges.

The shear resultant 7(z,y) is defined as

r(z,9) = \[r2(z,9) + T(2,9) (3.117)
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The distribution of 7(z,y)S/(E.¢€.) is plotted as a 3-D graph in Figure 3.21 for aa = 0.5 and
a/b = 0.5, which shows that the maximum shear resultant locates at z = +a and y = 0. The
normalized maximum shear resultant, 7(a,0)/(Ece.), is plotted as a function of the stiffness ratio
k¢/(Gt) in Figure 3.22 for a/b = 0.5 and several a/t values, and in Figure 3.23 for a/t = 10 and
several a/b values, which show that the maximum shear resultant decreases with increasing the

stiffness ratio; the lower shape factor always has a higher shear resultant.

3.1.8 Solution for Rigid Reinforcement

Although the effective compressive modulus of the rigid-reinforced elastomer is derived from the
asymptotic solution of the flexible-reinforced elastomer by setting @ — 0 in the previous sections,

the effective compressive modulus of the rigid-reinforced elastomer can be directly solved and is

described in this section.

For a layer of elastomer in a rectangular isolator under compression loading as shown in Figure
3.1, if the top and bottom surfaces of the elastomeric layer are bonded to rigid reinforcements, the

displacements of the elastomer can be assumed as

u(z,y,2) = uo(z,y) (1 - ilf?—) (3.118)

t?.

t2

v(z,y,2) = vo(z,y) (1 - g) (3.119)
w(z,y,2) = w(z) (3.120)

Substituting these into the displacement constraint in Eqg. (3.4), attributed to the assumption of

incompressibility of the elastomer, and then taking the integration through the thickness lead to
2
3 (U0 +v0y) = € (3.121)

where ¢, is the nominal compression strain defined in Eq. (3.7).
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Attributed to the assumption that the stress state in the elastomer is dominated by the internal
pressure p, the equilibrium equations in the z and y directions defined in Eqs. (3.9) and (3.10) are
reduced to

— Pzt 0pz:=0 (3.122)
— Pyt 0yzz=0 (3.123)
in which o, and o, are the shear stress components of the elastomer defined in Egs. (3.13) and

(3.14). Using the displacement assumptions in Egs. (3.118) to (3.120), the shear stress components

become
8G
Ozz = —72—’“02' (3124)
8G '
Oyz = '—72—'002 (3.125)

Po =75 U (3.126)
8G
Py=—"5% (3.127)

Differentiating Egs. (3.126) and (3.127) with respect to z and y, respectively, then adding them up

and applying the relation in Eq. (3.121) yield

12G
y + Pyy = "‘_22_61: (3.128)

According to the boundary condition p(+a, y) = 0 and the symmetric property p(z,y) =

p(—z,y), the pressure p can be assumed to be a cosine series of =

p(z,y) = i fn(y) cos Tnz (3.129)

n=1

where the amplitude f, is a function of y, and -y, is defined in Eq. (3.64). Substitution of Eq. (3.129)

into Eq. (3.128) gives

e 12G
Z Jngy — 'Yﬁfn COS YnZ = ——5—€c (3.130)
=1 12

52



which, by use of the orthogonal property in Eq. (3.72), can be reduced to

24G  (-1)"!

-— 2 [ —
fryy = Tntn Al o y (3.131)

The boundary condition p(z,+b) = 0 and the symmetric property p(z,y) = p(z, —y) give fo(Fb) =

0 and fo(y) = fu(—y), from which fa(y) can be solved and the pressure p has the form

24GS? a\? X (-1)! coshyny
Pley) =< 73 ( * b) —(n-3)P < cosh 7nb> €08 I (3.132)

where S is the shape factor defined in Eq. (3.88). This series expression for the pressure distribu-

tion is different from the expression depicted in Eq. (3.108), but the numerical results of the two
equations are the same. The series expression in Eq. (3.108) exhibits second-order convergence,
whereas Eq. (3.132) has third-order convergence.

Substituting Eq. (3.132) into the formula of the effective compressive modulus in Eq. (3.91), we

have

24GS? a\? & 1 tanh v,b
= — — 1-— .
=3 (1 + b) > Ty ( — ) (3.133)

Although the above series expression is different from the expression depicted in Eq. (3.100), the
numerical results of the two equations are the same. To compare the convergence of the series
solutions, the ratios of the values using the first 1 and 2 terms to the value of the first 50 terms
are calculated from Egs. (3.100) and (3.133) and are plotted in Figure 3.24 as a function of the
aspect ratio a/b. The figure reveals that when a/b is small, the convergence rate of Eq. (3.133) is
much faster than that of Eq. (3.100); when a/b is close to unity, the convergence rate of Eq. (3.100)

becomes better than Eq. (3.133).

When the aspect ratio a/b tends to zero, ¥,b — oo. Using the following series equation

i ——11—4 -~ (3.134)
n=1 (TL - 5) 6

Eq. (3.133) is reduced to

E. = 4GS? (3.135)



which is the effective compressive modulus of the infinitely long strip of elastomer bonded to rigid
reinforcements shown in Eq. (2.42).
From Egs. (3.124) to (3.127), we have the shear stresses on the bonding surface between the

elastomer and the reinforcement

Tz(zvy) = Urzlzz_% = —Ep,z (3136)
i
Ty(.’L‘, y) = Uyzkz:—% = _gp,y (3137)

Substitution of Eq. (3.132) into these leads to

ro(z,y) = €c12G5 ( ) Z =y 1)n i ( - M) Sin Y,z (3.138)

cosh v,b
12GS a\ X (=171 /sinh v,y
Ty(z,Y) = €c——— 2 (1 + 5) z:: Ty (cosh %b) COS YnT (3.139)

Although the series expressions of the above two equations are different from the expressions de-

picted in Egs. (3.115) and (3.116), the numerical results of the two sets of equations are the same.

3.2 Bending Stiffness of Rectangular Isolators

3.2.1 Governing Equation of Pressure

For a layer of elastomer in a rectangular isolator as shown in Figure 3.25, the reinforcements bonded
to the top and bottom surfaces of the elastomeric layer are subjected to a pure bending moment M
and rotate about the y axes. Assume the reinforcements remain planar, so that the rotation forms
an angle ¢ between the reinforcing sheets and is symmetric to the z-y plane. Following the same
kinematic assumptions used in the previous sections for the compression stiffness, the displacement

field of the elastomer is given by

u(z,y,2) = uo(z,y) (1 - 4—:;—) + ui(z,y) (3.140)
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v(z,y,2) = vo(z, Y) (1 - E) +v1(z,y) (3.141)

12
1
w(z,y,2) = ;:z:z (3.142)

in which p is the radius of the bending curvature defined as

(3.143)

A
Il
o =~

Substituting Egs. (3.140) to (3.142) into the constraint of incompressibility of the elastomer in
Eq. (3.4) and then integrating it through the thickness of the elastomeric layer from z = —t/2 to
z=1/2lead to

2 1
g(uo,z + voy) + U1z + V1y = —;z (3.144)

Substitution of Eqs. (3.140) to (3.142) into the shear stress components of elastomer o, and

0y defined in Egs. (3.13) and (3.14) gives

8G G
Opz = (—t—2u0 + ;) z (3145)
8G
Oyz = ——tz—'uoz (3.146)

Bringing these into the equilibrium equations of elastomer in Eqgs. (3.11) and (3.12), which have

been simplified by assuming that the pressure is dominated in the stress field of elastomer, leads to

Po = 8+ & (3.147)
W t2 0 p .
8G
Py = =77 (3.148)

Differentiating Eqs. (3.147) and (3.148) with respect to z and y, respectively, and then adding them
up yield

8G
Dxz + Pyy = _"'t'z_(uo,:z: + 'UO,y) (3149)
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which is the same as Eq. (3.19) used for the compression stiffness. Combination of Egs. (3.144)

and (3.149) to eliminate the terms of up and vo gives

1 12
g=——2+ —=

p 56 Pz + Pay) (3.150)

where g has been defined in Eq. (3.36).

Substituting the shear stresses o, and oy, in Egs. (3.145) and (3.146) into the equilibrium

equations of the reinforcement in Egs. (3.20) and (3.21), we have

8G Gt

Nx:r,:c + N:l:y,y = _‘TUO + ';' (3151)
8G
Nyyy + Noyz = =0 (3.152)

Combination of these with the equilibrium equations of the elastomer in Egs. (3.147) and (3.148),

respectively, leads to

Nzzg + Noyy = tPs (3.153)
Nyyy + Noyz = tpy (3.154)

The above two equations are the same as Eqgs. (3.26) and (3.27) used for the compression stiffness.
Therefore, when bringing the force-displacement relations of the reinforcement in Egs. (3.30) to

(3.32) into the above two equations, we obtain the same equation as Eq. (3.35)

(_I_T_V—E(p,zz + p,yy) (3.155)

Goz + 0w = Tp

Substituting Eq. (3.150) into the above equation, we have
p,l’I.‘L‘.’L‘ + 2p,1‘l‘yy + p,yyyy - a2(p1_1;1- + p’yy) = 0 (3.156)

which is the same form of the pressure governing equation for the compression stiffness in Eq. (3.38).
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3.2.2 Boundary Conditions of Pressure

A relation between the pressure of the elastomer and the normal forces of the reinforcement is
established by substituting Eq. (3.150) into the displacement-force relation of the reinforcement in
Eq. (3.48), which gives

12 -V

1 1
T = ——(Nzs - .
12G(P, + Pyy) Eft; ( + Nyy) + pm (3.157)

The normal stresses and shear stresses of the elastomer and the reinforcement are free at the edges,
which gives the same boundary conditions as shown in Eqs. (3.40) and (3.41). To find the boundary
conditions for the pressure, as discussed in Section 3.1.4, the in-plane shear force Ny, at the edges
of the reinforcement is assumed to satisfy the conditions in Eq. (3.45), from which we find out that
Nyy(z,y) satisfies the condition in Eq. (3.50) and that N,.(z,y) satisfies the condition in Eq. (3.52).

From the boundary conditions in Eq. (3.40), the pressure domination of the elastomer gives
p(ta,y)=0 ;5 p(z,2b)=0 (3.158)

Substituting p(+a,y) = 0, Nyz(%a,y) = 0 in Eq. (3.41) and Nyy(£a,y) = 0 in Eq. (3.50) into
Eq. (3.157), we have

prr(ta,y) = t—5— (3.159)

Substituting p(z,+b) = 0, Ngz(z,+b) = 0 in Eq. (3.52) and Nyy(z,%b) = 0 in Eq. (3.41) into
Eq. (3.157), we have

Pyy(z,1b) = —{T;z (3.160)

The pressure p(z,y) is solved by superposing the two pressure components p;(z,y) and pa(z,y)
p(z,y) = m(z,y) + pa(z,y) (3.161)
The boundary conditions for the pressure in Egs. (3.158), (3.159) and (3.160) are split into two
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sets. Corresponding to the pressure component py, the first set of boundary conditions is
p(ta,y) =0 ;  Pre(ta,y)=0 (3.162)
pi(z, b)) =0 ;  pry(z,tb) = = 5° (3.163)

Corresponding to the pressure component ps, the second set of boundary conditions is

12G a
pa(£a,3) =0 5 Pre(fe,y) = s (3.164)
po(z, b)) =0 ;  pagy(z,£b)=0 (3.165)

The governing equations for the pressure components p and p, are the same as Eq. (3.156), that
is
Pizzzz + 2p1,.7:zyy + DP1,yyyy — az(pl,zx + pl,yy) =0 (3166)

D2,xxzz + 2p2,xxyy + P2.yyyy — 042(1)2,m + Pz,yy) =0 (3.167)

3.2.3 Solution of Pressure

Because the loading and the boundary conditions are symmetric with respect to the z axis and

anti-symmetric with respect to the y axis, the pressure components have the following properties
pi(z,y) = —p(~2,y) = p1(z, —y) (3.168)

p2(z,y) = —pa(~2,9) = pa(z, —y) (3.169)

According to the boundary conditions in Eq. (3.162) and the y-axis anti-symmetric property in

Eq. (3.168), the first pressure component can be assumed to be a sine series of =
[e o]
pi(z,y) = Y fa(y)sininz (3.170)
n=1
where the amplitudes f, are the functions of y and
. s
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Substitution of Eq. (3.170) into Eq. (3.166) gives

Z (’73fn - 2’772zfn,yy + frgyyy T 0?42 fn - azfn,yy) sinynz =0 (3.172)

n=1
which indicates

Fauwy — (272 + @) fagy + 7250 + o®)fn =0 (3.173)
The solution of this equation has the form
fu(y) = Cy cosh 7y + Cg cosh B,y + Cssinh 7ny + Cysinh Bry (3.174)
where C; are constants to be determined and

B = \/32 + 02 (3.175)

Using the z-axis symmetric property in Eq. (3.168), C5 = C4 = 0. The boundary condition
pi(z,4b) = 0 in Eq. (3.163) gives fu(£b) = 0, from which we have

cosh 7,0

C, = = 3.176
2 cosh B,b ! ( )
Thus, f.(y) has the form
coshy,y cosh By
n(y) = An — = 3.177
J() ( coshn,b  cosh 3,b ( )

with A,, = C; cosh b, from which the boundary condition for py 4y (2, +b) in Eq. (3.163) becomes

2 12G'1
2 .-
;a Ansinyp,z = ——ﬁ—;x (3.178)
By use of the following orthogonal property
a a for n=m
/ sin Y, = sin Y,zdz = (3.179)
- 0 for n#m
Eq. (3.178) is reduced to
a 24G (-1)"

A, =
" pma?t?

(3.180)
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Combination of Egs. (3.170), (3.177) and (3.180) leads to

_a 24G X (=1)" [coshny cosh By . .
pl(z’y) N p7l'(12t2 ngl n (COSh ‘_)"nb cosh Bnb S Tn (3181)

According to the boundary conditions in Eq. (3.165) and the z-axis symmetric property in

Eq. (3.169), the second pressure component can be assumed to be a cosine series of y

p2(z,y) = i fn(z) cos Tny (3.182)

n=1

where the amplitudes f, are the functions of z and ¥, has been defined in Eq. (3.76). Substitution

of Eq. (3.182) into Eq. (3.167) gives

Z (ﬁsfn - 2'772Lfn,zx + fn,xxa:x + az'_)’g,.fn - a2fn,zz) COS Yp¥y = 0 (3183)

n=1
which indicates

Frzsas — (272 + ) fage +72(A2 + ") fa =0 (3.184)
The solution of this equation has the form
fo(z) = C1 cosh ¥uz + C; cosh Bnz + Cysinh 3,z + Cysinh Bz (3.185)

where C; are constants to be determined and J3, has been defined in Eq. (3.80). Using the y-axis
anti-symmetric property in Eq. (3.169), Cy = Cy = 0. The boundary condition ps(£a,y) = 0 in
Eq. (3.164) gives fn(a) = 0, from which

= sinh ¥,a =
inh G

~ Tsinh Bpa ° (3.186)
Thus, f.(z) has the form
- ~ [sinh4,z sinh Bn
n = An " - = s
fn(@) (smh Yna  sinh ,Bna> (3.187)
with A,, = C3sinh 9na, from which the boundary condition for p2zz(£a,y) in Eq. (3.164) becomes
2 g _ 12G a
Z a?A, cos Yy = BT (3.188)

n=1
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By use of the orthogonal property in Eq. (3.84), this can be reduced to

G a0 (-1

=) (3.189)
Combination of Egs. (3.182), (3.187) and (3.189) leads to
_a 246G & (=) (sinhynz sinh B,z _
pa(2,y) = p Ta?t? nzz:l (n—1) (sinh Yna  sinh fna cosInY (3.190)

Substitution of pi(z,y) in Eq. (3.181) and py(z,y) in Eq. (3.190) into Eq. (3.161) gives the

solution of the pressure p(z,y)

a 24GS* a\? & n
pew) = S (145) XY

p n(aa)?

coshyp,y cosh Bry \ Sin Anz sinh9,z  sinh B,z \ cosYnYy
— - = o =3 (3.191)
cosh9,b  cosh 3,b n sinh4,e¢  sinh f,a (n - %)

in which § is the shape factor of the rectangular layer of the elastomer defined in Eq. (3.88).

3.2.4 Effective Bending Modulus

The effective bending stiffness (EI)css of the isolator is defined as
(ED)ess = pM (3.192)
Using the assumption of pressure domination in Eq. (3.8), the bending moment M is expressed as

b a b a
M = /b/ 0z.zdzdy = —/b/ p(z,y)zdzdy (3.193)

For clarification, we define the effective bending modulus as

I
E, = (EDess (3.194)
Iy

where I, is the moment of inertia of the rectangular area about the y axis, defined as

4
I, = 3a% (3.195)
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By substituting the expression of p(z,y) in Eq. (3.191) into Eq. (3.193), the effective bending
modulus becomes

72GS5? a2 [ 1 (tanhd,b tanhf.b
B = Haay (1+3) 2{57( b Bab

n=1

(3.196)

+ 1 [ 1 1 _ 1 + 1 ]
(n— 1)? |ynatanh yna (32.0)?  fBnpatanhfB,a = (Bnpa)?

When the aspect ratio a/b tends to zero, Y, — oo, Bnb — 00, Bra — aa and ,a — 0 which

makes
L L .1 3.197
y.atanhy,a (Jna)? 3 (3.197)
Using the series equation in Eq. (3.94), Eq. (3.196) is reduced to
36G.52 1 o oa
By = Tyt (1 + 5(aa - =5 aa) (3.198)

which is the effective bending modulus of the infinitely long strip isolator shown in Eq. (2.81).
When the stiffness of the reinforcement becomes rigid, @ — 0. Similar to the approximations

of B, in Eqgs. (3.98) and (3.99), B,, defined in Eq. (3.175) can be approximated as

~ 1/a\?
7 1+—(——~ ) 3.199
Bn ® 3 [ 5 \5, ] (3.199)
and tanh ,Bnb becomes
2 ~ ?'nb < « )2
tanh 8,b =~ tanh y,0 + ——— { — 2
anh j anh a0 + 2 cosh? .0 \ n (3-200)

Substituting these approximations into Eq. (3.196) and neglecting the high-order terms of a,

36G 52 a\? X (1 [tanhA,b 1
e ()

= Ynb cosh? 3,b

+_1__<2)2[ L 2 ] (3.201
(n—%)‘* a Fnatanhy,a sinhzﬁna (Fna)? 200

which is the effective bending modulus of the rectangular layer of elastomer bonded to the rigid

reinforcement.
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The ratio E,/(GS?) is plotted in Figure 3.26 as a function of aa for the aspect ratio a/b = 0,
0.1, 0.2, 0.5 and 1, which shows that the effective bending modulus decreases with increasing aa.
The figure also reveals that the smaller the value of the aspect ratio a/b, the smaller the value of
the effective bending modulus. To test the convergence of the series solution in Eq. (3.196), we
calculate the values of Ej/(GS?) using the first 1, 2, 5 and 10 terms and then find the ratios of
these values to the value using the first 50 terms. These ratios are plotted in Figure 3.27 as a
function of aa for a/b = 0.5 and plotted in Figure 3.28 as a function of a/b for aa = 0.5. The two
figures show that the series solution in Eqg. (3.196) converges very fast and using the first 10 terms
is enough to have an accurate solution except when the aspect ratio a/b is very small.

Substituting the shape factor § in Eq. (3.88) and aa in Eq. (3.102) into Eq. (3.196), we have
the normalized effective bending modulus E,/G expressed as a function of the ratios a/b, aft and

k;/(Gt). When a/t tends to infinity, aa — oo, B,b — o0, Bra — oo and Eq. (3.196) becomes

6k )1 tanh'ynb 1 [ 1 1 ]
R g{ Ynb * (n - 1)? [fnatanhy,a  (Yna)? (3.202)

The curves of E;/G versus k;/(Gt) are plotted in Figure 3.29 for a/b = 0.5 and several a/t values,

which shows that the effective bending modulus increases with increasing the reinforcement stiffness
until reaching the asymptotic value in Eq. (3.201). The curve of the smaller shape factor reaches
the plateau at the smaller value of k;/(Gt). The curves of E,/G versus a/t are plotted in Figure
3.30 for a/b = 0.5 and several k;/(Gt) values, which shows that the effective bending modulus
increases with increasing the shape factor until reaching the asymptotic value in Eq. (3.202). The
curve of the smaller value of k;/(Gt) reaches the plateau at the smaller shape factor.

To study the variation of the effective bending modulus with the aspect ratio a/b, the ratios of
the bending modulus of the rectangular layers with a/b > 0 shown in Eq. (3.196) to the bending
modulus of the infinitely long strip layer a/b = 0 shown in Eq. (3.198) are plotted in Figure 3.31

for aa = 0, 1, 2 and 4, which reveals that the effective bending modulus is almost linearly varied
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with the aspect ratio a/b. The ratio of E at a/b = 1 to Ej at a/b = 0 is plotted in Figure 3.32

as a function of aa between 0 and 5 which, utilizing the regression analysis, can be fitted by the

four-degree polynomial
g(aa) = 0.70 — 0.0024aa + 0.021(aa)? — 0.0045(ca)® + 0.00030(aa)* (3.203)

Assuming the value of Ej is linearly varied between a/b =0 and a/b = 1, an empirical formula for

the effective bending modulus of rectangular reinforced layers can be established from Eqgs. (3.198)

and (3.203)

2
B, = 36GS {1+1(aa)2— aa ]

(aa)t 3 tanh aa

{1 + % [—0.30 — 0.0024aa + 0.021(aa)? — 0.0045(ca)® + 0.00030(aa)4]} (3.204)

The errors of this empirical formula with respect to the exact formula in Eq. (3.196) are plotted in
Figure 3.33 as a function of a/b for several values of aa and in Figure 3.34 as a function of aa for
several values of a/b, which show that the maximum error is smaller than 0.6 percent. It should
be noted that because the range of the ca values used in the regression analysis is between 0 and

5, the effective bending modulus in Eq. (3.204) is only applicable to the range of 0 < aa <'5.

3.2.5 Stresses in Elastomer

The nominal bending stress o, is the maximum normal stress created by the moment M. From

Eqgs. (3.192) and (3.194)

Ma a
op = — = Ep— 3.205
=B (3.205)

When the pressure distribution in Eq. (3.191) is normalized with respect to the nominal bending
stress oy, the normalized pressure distribution p(z,y)p/(Esa) can be expressed in terms of aa, a/b,

z/a and y/b. A 3-D graph of the normalized pressure distribution for aa = 0.5 and a/b = 0.5 is
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plotted in Figure 3.35, which shows that the bending moment creates the positive pressure at the
side of the negative z axis and the negative pressure at the side of the positive z axis.
When o tends to zero, using the approximations of B, in Eqgs. (3.98), (3.107) and (3.114) and

the approximations of B, in Eq. (3.199) and the following

- 1 ‘ 2
cosh B,z ~ cosh ¥, T {1 + E’yn:z: tanh 3,z <$) ] (3.206)
inh Gz & sinh g |1 4 —120 (a)2 3.207
sinh B,z = sinh y,z Stanh Aoz \F. (3.207)

Eq. (3.191) is reduced to

a12GS? a\?b & " 5 Y . cosh Y,y \ sin 4,z
p(z,y) = ;‘_ﬂj_ (1 + —b—> E;(—l) {(tanh Ynb gtaﬂh ’Yny) (coshﬁ'nb> 2
1 sinh v,z (x) cosh '7nz] Cos VY
+ [(tanh '7na> sinh y,a a/ sinhypa] (n - %)2 (3.208)

which is the pressure distribution of the rectangular layer of elastomer bonded to the rigid rein-
forcement.

To study the effect of the flexibility of the reinforcement on the pressure distribution, the
normalized pressure distribution along the z axis at y = 0 is plotted in Figures 3.36 for the
aspect ratio a/b = 0.5 and aa = 0, 1, 2 and 4, which shows that decreasing the stiffness of the
reinforcement reduces the maximum pressure. For the elastomeric layers of different aspect ratios
a/b, the distribution of the normalized pressure along the z axis at y = 0 is plotted in Figure 3.37
with aa = 0.5, which reveals that the maximum value of the pressure becomes smaller as the layer
has smaller value of a/b.

If 7, and 7, denote the shear stresses in the z and y directions, respectively, on the bonding

surface between the elastomer and the reinforcement, from Egs. (3.145) and (3.147)

A
Tz(fl',y) = Uzzlz=_.2‘. = —ip,:c (3209)

65



and, from Egs. (3.146) and (3.148),

t
1y(2,Y) = Oyzlo=t = — 5P (3.210)

Substituting Eq. (3.191) into Egs. (3.209) and (3.210), we have the bonding shear stresses as

a 12GS a > cosh ?ny cosh Bny
= 22222 (14 < —1)~! - - y
@y = (aa>2( + b)};( 1) [(cosh%b ey | st

a [coshynz B cosh Bz _
a - 7 . 2
+ b ( sinhy,a  Jnsinh Bra o8 TnY (3.211)

12GS & inh9,y  Basinh By .
r(2,y) = a12GS (1+ %) Z(_l)n—l [(sm ™Y B sinh 8 y) sin Fn@

p (ca)? i cosh¥,b 7, cosh f,b
a {sinhq,z sinh Bz .
b (sinh Yna  sinh Bna) s ‘Yny} (3.212)

When o tends to zero, using the approximations of By in Egs. (3.98), (3.107) and (3.114) and

the approximations of B, in Eq. (3.199), (3.206) and (3.207), the above two equations are reduced

to

(z,y) = a6GS (1 + 2) io:(—l)n'1 [-b— (tanh~ b— Y tanh 4 ) (COSh%y) COS YnZ
T\ T, Y - T b a Tn b ’Yny COSh ’7,nb n

n=1

1 1 T _ cosh "yna:) oS Yy
- — —— — —tanh¥, - .
+ (tanh'?na na @ aniy x) (smh"yna (n—13) (3:213)

a 6GS a\ = _ 1 sinh ¥,z z\ cosh¥,z] sin ¥,y
- 277 |1 bl -1 n-1 ) _ ney (_) n ] n
my(e:y) p T ( + b) z( ) { [(tanh’yna) sinh yna a) sinhynal (n—3)

n=1

b - 1 \ sinh4,¥y (y) cosh’yny] sin'?nx}
Ta Ktanh b - ’7nb) cosh 7,0 b/ cosh7,b n (3.214)

which are the bonding shear stresses for the rigid reinforcement.

When these bonding shear stresses are normalized with respect to the nominal bending stress,
the quantities 7,pS/(Esa) and 7ypS/(Esa) can be expressed in terms of aa, a/b, z/a and y/b. The
distributions of these two quantities are plotted as 3-D graphs in Figures 3.38 and 3.39, respectively,

for aa = 0.5 and a/b = 0.5. These figures indicate that the loading of the bending moment makes
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the negative z portion of the reinforcement in the stretch state and the positive z portion in the
contraction state. The distributions of 7,pS/(Esa) along the z axis at y = 0 and along the y axis at
z = 0 are plotted in Figures 3.40 and 3.41, respectively, for the aspect ratio a/b = 0.5 and aa = 0,
1, 2 and 4, which reveal that the flexibility of the reinforcement decreases the bonding shear stress
at the center but increases the maximum values at the edges.

The shear resultant 7(z,y) is defined as

r(z,y) = \/72(2,y) + 72(2,Y) (3.215)

The distribution of 7(z,y)pS/(Esa) is plotted as a 3-D graph in Figure 3.42 for ca = 0.5 and
a/b = 0.5, which shows that the maximum shear resultant locates at ¢ = +a and y = 0. The
normalized maximum shear resultant, 7(a,0)p/( Esa), is plotted in Figure 3.43 as a function of the
stiffness ratio k;/(Gt) for a/b = 0.5 and several different a/t values, which shows that the maximum
shear resultant decreases with increasing the stiffness ratio; the lower shape factor always has a
higher shear resultant. The normalized maximum shear resultant plotted in Figure 3.44 is for
a/t = 10 and a/b = 0.1, 0.2, 0.5 and 1, which shows that although the lower value of the aspect

a/b has the smaller maximum shear resultant, the effect of the aspect ratio on the maximum shear

resultant is negligible.

3.2.6 Solution for Rigid Reinforcement

Although the effective bending modulus of the rigid-reinforced elastomer is derived from the asymp-
totic solution of the flexible-reinforced elastomer by setting @ — 0 in the previous sections, the
effective bending modulus of the rigid-reinforced elastomer can be directly solved and is described
in this section.

For a layer of elastomer in a rectangular isolator under a pure bending moment, as shown in Fig-

ure 3.25, if the top and bottom surfaces of the elastomeric layer are bonded to rigid reinforcements,
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the displacements of the elastomer can be assumed as

42?
u(z,y,2) = uo(z,y) (1 - _t2—) (3.216)
422
v(z,y,2) = vo(z,¥y) (1 - ?—) (3.217)
w(z,y,2) = ;l)—zz (3.218)

where p is the radius of the bending curvature defined in Eq. (3.143). Substituting these into
the displacement constraint in Eq. (3.4), attributed to the assumption of incompressibility of the

elastomer, and then taking the integration through the thickness lead to
2 1
g(uoyx + UO,y) = —;.’E (3'219)

Substitution of Egs. (3.216) to (3.218) into the shear stress components of elastomer o, and

02, defined in Egs. (3.13) and (3.14) gives

8G G
Oy, = (— 72—-’11,0 + —p—> z (3220)
8G
Oyz = -—-tT’U()Z (3221)

Bringing these into the equilibrium equations of elastomer in Egs. (3.122) and (3.123), which are

simplified by assuming that the pressure is dominated in the stress field of elastomer, leads to

= ——§€u + g‘ 3.222

p,:E - t2 0 p ( " )
8G

Py=—"7z"% (3.223)

Differentiating Eqs. (3.222) and (3.223) with respect to z and y, respectively, then adding them up

and applying the relation in Eq. (3.219) yield

12G

p,z‘:z: + p,yy = tzp z (3224)
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According to the boundary condition p(£a,y) = 0 and the anti-symmetric property p(z,y) =

—p(—z,y), the pressure p can be assumed to be a sine series of z -

(z,y) = }: fu(y) sin ne (3.225)

where the amplitude f, is a function of y and 4, is defined in Eq. (3.171). Substitution of Eq. (3.225)

into Eq. (3.224) gives
= - : 12G
> (fn,yy - 7an) SinYnZ = 57 (3.226)

2
n=1 p

which, by use of the orthogonal property in Eq. (3.179), can be reduced to

24Ga (—-1)"1
t2p  nm

fray ~ Tofn = (3.227)

The boundary condition p(z,+b) = 0 and the symmetric property p(z,y) = p(z, —y) give fo(£d) =

0 and fn(y) = fu(—y), from which fu(y) can be solved and the pressure p has the form

24G §> I
p(z,y) = Z 47?5 ( ) Z ( cosh y y)sin%x (3.228)

cosh Y, b

where S is the shape factor defined in Eq. (3.88). This series expression for the pressure distribu-
tion is different from the expression depicted in Eq. (3.208), but the numerical results of the twb
equations are the same. The series expression in Eq. (3.208) exhibits second-order convergence,
whereas Eq. (3.228) has third-order convergence.

Using the pressure solution in Eq. (3.228), the effective bending modulus defined in Eq. (3.194)

becomes

72G §? a\* & 1 tanh 7,b
Ey = e (1 + 3) ngl vy (1 - —_‘-7_nb—-) (3.229)

Although the above series expression is different from the expression depicted in Eq. (3.201), the
numerical results of the two equations are the same. To compare the convergence of the series
solutions, the ratios of the values using the first 1 and 2 terms to the value of the first 50 terms

are calculated from Egs. (3.201) and (3.229) and are plotted in Figure 3.45 as a function of the
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aspect ratio a/b. The figure reveals that, when a/b is small, the convergence rate of Eq. (3.229) is
much faster than that of Eq. (3.201); when a/b is close to unity, the convergence rate of Eq. (3.201)

becomes better than Eq. (3.229).

When the aspect ratio a/b tends to zero, §,b — co. Using the following series equation

> 1 4
> =57 (3.230)

n=1
Eq. (3.229) is reduced to

Ey=-GS* (3.231)
which is the effective bending modulus of the infinitely long strip of elastomer bonded to rigid

reinforcements shown in Eq. (2.83).

From Egs. (3.220) to (3.223), we have the shear stresses on the bonding surface between the

elastomer and the reinforcement

t

Tx(xa y) = Uzzlz_—___;. = _‘Q'P,z' (3.232)
t

Ty(Z,y) = Uyzlzz_.% = "§p,y (3.233)

Substitution of Eq. (3.228) into these leads to

_al2GS a\ X (-1t cosh Jny :
Tz(z,y) = —p_ 72 (1 + 'b‘) niz:l n? (1 - m) COS YnT (3234)
_al2GS a\ <= (-1)" (sinh’yny> .
Ty(z,y) = o 2 (1 + b) n2=21 w2 \cosh7,b sin Yn T (3.235)

Although the series expressions of the above two equations are different from the expressions de-

picted in Egs. (3.213) and (3.214), the numerical results of the two sets of equations are the same.
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Figure 3.1: Rectangular layer of reinforced elastomer under compression load
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Figure 3.2: Forces in reinforcing sheet bonded to rectangular layers of elastomer
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pad (a/b = 0) versus ca and its regression curve
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Figure 3.13: 3-D view on contour of normalized pressure in rectangular pad of a/b = 0.5 and

aa = 0.5 under compression load

1.00 —

p(x,0) / EcEo

0.00

0.20 0.40 0.60 0.80 1.00

0.00
x/a

Figure 3.14: Distribution of normalized pressure along z axis in rectangular pad of different aa

values and a/b = 0.5 under compression load
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Figure 3.15: Distribution of normalized pressure along y axis in rectangular pad of different aa

values and a/b = 0.5 under compression load
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Figure 3.16: Distribution of normalized pressure along = axis in rectangular pad of different aspect

ratios and @a = 0.5 under compression load
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Figure 3.17: 3-D view on contour of bonding shear stress in z direction in rectangular pad of

a/b = 0.5 and aa = 0.5 under compression load

Figure 3.18: 3-D view on contour of bonding shear stress in y direction in rectangular pad of

a/b= 0.5 and ca = 0.5 under compression load
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Figure 3.19: Distribution of bonding shear stress in z direction along z axis of rectangular pad

under compression load
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Figure 3.20: Distribution of bonding shear stress in y direction along y axis of rectangular pad

under compression load
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Figure 3.21: 3-D view on contour of bonding shear resultant in rectangular pad of a/b = 0.5 and

aa = 0.5 under compression load
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Figure 3.22: Variation of maximum bonding shear resultant with reinforcement stiffness in rectan-

gular pad of different a/t values and a/b = 0.5 under compression load
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Figure 3.23: Variation of maximum bonding shear resultant with reinforcement stiffness in rectan-

gular pad of different aspect ratios and a /t = 10 under compression load
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Figure 3.25: Rectangular layer of reinforced elastomer under pure bending load
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Figure 3.27: Convergence ratio of effective bending modulus related with aa in rectangular pad of
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Figure 3.29: Variation of effective bending modulus with reinforcement stiffness in rectangular pad

of a/b=10.5
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Figure 3.30: Variation of effective bending modulus with width-thickness ratio in rectangular pad
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Figure 3.31: Ratio of effective bending modulus of rectangular pad to infinite-long strip pad (a/b =

0) versus aspect ratio
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Figure 3.32: Ratio of effective bending modulus of square pad (a/b = 1) to infinite-long strip pad

(a/b = 0) versus aa and its regression curve
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Figure 3.33: Error of empirical formula for effective bending modulus of rectangular pad versus
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Figure 3.34: Error of empirical formula for effective bending modulus of rectangular pad versus aa

Figure 3.35: 3-D view on contour of normalized pressure in rectangular pad of a/b = 0.5 and

aa = 0.5 under pure bending load
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Figure 3.36: Distribution of normalized pressure along z axis in rectangular pad of different aa

values and a/b = 0.5 under pure bending load
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Figure 3.37: Distribution of normalized pressure along z axis in rectangular pad of different aspect

ratios and ca = 0.5 under pure bending load
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Figure 3.38: 3-D view on contour of bonding shear stress in z direction in rectangular pad of

a/b = 0.5 and aa = 0.5 under pure bending load

Figure 3.39: 3-D view on contour of bonding shear stress in y direction in rectangular pad of

a/b = 0.5 and aa = 0.5 under pure bending load
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Figure 3.40: Distribution of bonding shear stress in z direction along z axis of rectangular pad

under pure bending load
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Figure 3.41: Distribution of bonding shear stress in z direction along y axis of rectangular pad

under pure bending load
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Figure 3.42: 3-D view on contour of bonding shear resultant in rectangular pad of a/b = 0.5 and

aa = 0.5 under pure bending load
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Figure 3.43: Variation of maximum bonding shear resultant with reinforcement stiffness in rectan-

gular pad of different a/t values and a/b = 0.5 under pure bending load
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Figure 3.44: Variation of maximum bonding shear resultant with reinforcement stiffness in rectan-

gular pad of different aspect ratios and a/t = 10 under pure bending load
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Figure 3.45: Convergence comparison between formulae for effective bending stiffness of rigid-

reinforced rectangular pad
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4 Analysis of Circular Isolators

4.1 Compression Stiffness of Circular Isolators

4.1.1 Equilibrium in Elastomer and Reinforcement

A layer of elastomer in a circular isolator is shown in Figure 4.1. The elastomeric layer has a radius
of b and a thickness of #. Its top and bottom surfaces are perfectly bonded to flexible reinforcements
which are modeled as an equivalent sheet of thickness t5. A cylindrical coordinate system (7,8, 2)
is established with the origin at the center of the layer. When the isolator sustains the compression
load P along the z direction, the elastomeric layer and the reinforcing sheets are in the axisymmetric
stress state, so that the displacement in the 6 direction vanishes. The displacements of the elastomer

along the r and z directions, denoted as u and w respectively, are assumed to have the forms

472

u(r, z) = uo(r) (1 - —tT) + uy(r) (4.1)
w(r,z) = w(z) (4.2)

In Eq. (4.1), the term of uo represents the kinematic assumption of quadratically varied deforma-
tion of the vertical lines in the elastomer and is supplemented by additional displacement u; to
accommodate the stretch of the reinforcement. Eq. (4.2) represents the assumption that horizontal
planes remain planar in the elastomer.

The assumption of incompressibility in the elastomer means that the summation of the normal

strains €,,, €g9 and €, in the 7, § and z directions, respectively, equals zero. Bringing the following
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axisymmetric strain-displacement relations
U
€Err = Uy ) €60 = —’IT ) €2z = W, (43)
to this assumption gives a constraint on displacements in the form

ur+ 1:— +w,=0 (4.4)

where the commas imply partial differentiation with respect to the indicated coordinate. Substitut-

ing Egs. (4.1) and (4.2) into the above equation and then taking integration through the thickness

of the elastomer from z = —t/2 to z = t/2 give
2 (u + 1—‘9> Fu, == 45
3 0,r r 1,7 r = & ( . )

in which ¢, is the nominal compression strain defined as

€= — 3‘_’(_';2%2(:_%2 (4.6)

The stress state in the elastomer is assumed to be dominated by the internal pressure p, which

gives the normal stress components of the elastomer, o,,, 0gg and o, as
Ory R OgY = 05, X —P (47)

Under this stress assumption, the equilibrium equation in the r direction for the stresses in the
elastomer

r— 048

Orrr + Orz,z + o =0 (48)

T

is reduced to

—Pr+ Orzz = 0 (49)

The assumption of linearly elastic behavior of the elastomer means that

0rz = G(uz+wyr) (4.10)
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with G being the shear modulus of the elastomer. Using the displacement assumptions in Eqgs. (4.1)

and (4.2), the above equation becomes
z
Ory = —8GUOﬁ (411)
Substitution of this into the equilibrium equation in Eq. (4.9) leads to
Pr=——5Uo (412)

The internal forces acting in an infinitesimal sector of the reinforcing sheet with a length dr
and an angle d@ are shown in Figure 4.2, where N,, and Ngg are the normal forces per unit length
in the 7 and @ directions, respectively. These internal forces are related to the shear stresses oz,
acting on the top and bottom surfaces of the reinforcement and generated by the deformation of

the bonded layers of elastomer, through the equilibrium equation in the r direction

de
. a,2|z=%) [(r+dr)’ -5 = 0 (4.13)

(Nys + dNyp)(r +dr)d8 — Norrdd — Nopdrdd + (o7,

By neglecting the higher-order derivative terms, the above equation becomes

Ny =N
Nrr,r + —___T_"oﬁ + UTle:—% - aTZIz:% =0 (414)

From Eq. (4.11), we have the shear stresses acting on the top and bottom surfaces of the reinforce-

ment, respectively,
4G 4G

0rz|z=_§ =7 Y G.Tzlz:% =- v (4.15)

The equation of equilibrium in the reinforcing sheet in Egs. (4.14) becomes

N, — N 8G
N’rr,r + —'Tig‘ = _TUO (416)

The linearly elastic strain-stress relation in the reinforcement gives

. 1 N'r'r N@G
Uy,r = Ef ( tf 14 tf ) (4.17)
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up 1 [ Ngg N,
T‘Ef(tf v ) (4.18)

where E; is the elastic modulus of the reinforcement and v is its Poisson’s ratio. By inversion, we

have the normal forces expressed in terms of displacement components in the reinforcement

Eftf Uy

Ny = 12 (’Ul,r + V—T—) (4.19)
Eftf Uq

Noo =773 (—r + Vul,r) (4.20)

Substitution of Egs. (4.19) and (4.20) into Eq. (4.16) leads to

Uy,r Uy _ 2 2
e (4.21)

_[12G(1 ~v?) 49
o= Eftft ( ) 2)

Ul,rr +

in which « is defined as

4.1.2 Solution of Pressure

For clarification, we denote the function

q(r) = w1, + % = %(TUI),T (4.23)
Then, Eq. (4.21) becomes
Up = --2-37% (4.24)
and Eq. (4.5) becomes
Uup,r + %9 = -g—(ec -q) (4.25)

Substitution of Eq. (4.24) into Eq. (4.25) leads to
1 2 2
g+ ;q,r —a‘q= —o‘e (4.26)
from which we have the expression for ¢(r)

q(r) = € + erlo(ar) + c2Ko(ar) (4.27)
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where ¢, and ¢y are constants to be determined; In and K, are modified Bessel functions of the
first and second kinds of order n, respectively. Since Ko(0) = oo, we must have ¢3 = 0.

Substitution of Eq. (4.27) into Eq. (4.23) gives
(ru1), = € + carlo(ar) (4.28)
from which we have the expression for u;
1 1 1
ur(r) = 5667‘ + ¢ —C;Il (ar) + 63; (4.29)

where c3 is the constant of integration. Since u1(0) is finite, we must have ¢3 = 0. The constant ¢;
can be determined from the requirement that the radial force vanishes at the edge of the reinforcing

sheet, i.e., Ny(b) = 0, which with Eq. (4.19) means

uy +(b) + u"léb) =0 (4.30)

Substitution of Eq. (4.29) into this gives

1 (1+v)ab
€= "yt [ab[o(ab) ~ (- y)Il(ab)] (4.31)

from which
1 T (1+v)i(ar)
= -eb|s— :
u(r) = 3¢ [b ablo(ab) — (1 - V)Il(ab)] (4.32)
Substitution of Eq. (4.24) into Eq. (4.12) gives
12G
Pr= 334 (4.33)

The requirement that the normal stress in the radial direction vanishes at the edge of the elastomeric

layer means p(b) = 0, when applying the assumption in Eq. (4.7). The solution of Eq. (4.33) becomes

p(r) = pafa(r) — a(8)] (430
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Substitution of Eq. (4.31) into Eq. (4.27) gives the solution of ¢(r); then substituting g(r) into the

above equation, we have the solution of p(r)

(4.35)

_ 6G(1+v) [ ably(ab) — ably(ar)
P(r) = €353 [abIo(Zb) (- u)Il(ab)]

4.1.3 Effective Compressive Modulus

The compressive stiffness of the isolator is determined by the effective compressive modulus E.
defined as
UC

E. =% (4.36)

cC
where o, is the nominal compression stress which is equal to the resultant compression load P

divided by the area 7b*. By using the assumption in Eq. (4.7), the resultant compression load P

has the form

b 27 b
P= —/ / 0,, 7df dr =~ 27r/ p(r)r dr (4.37)
o Jo 0

Thus, the effective compressive modulus becomes
2 b
E= =5 /0 p(r)r dr (4.38)

Substitution of the pressure solution in Eq. (4.35) into the above equation gives

24(1 +v) [ ably(ab) — 21 (ab)
Q2
Ee=GS =100y | ablo(ab) = (1 = »)Ix(abd) (4.39)
in which § is the shape factor of the circular layer defined as
b
= (4.40)
When o tends to zero, substituting the following power series for the Bessel functions
ab)? b b)3
napy~1+ &8 nen~ 3+ (441)
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into Eq. (4.39) and neglecting the higher-order terms of ab
E. = 6GS? (4.42)

which is the effective compressive modulus for the circular layer of elastomer bonded to the rigid
reinforcement (Kelly, 1997).

The ratio E./(GS?)is plotted in Figure 4.3 as a function of ab for v = 0, 0.3 and 0.5, which shows
that the effective compressive modulus decreases with increasing ab. To have high compressive
modulus, we must keep the value of ab as low as possible. The figure also reveals that a higher
Poisson’s ratio of the reinforcement tends to have higher modulus, but the difference becomes
negligible when ab is small.

If k; denotes the in-plane stiffness of the reinforcing sheet,

Eyty

kf= .
f 1- 1/2 (4 43)
from Eq. (4.22)
2
ob = 5, 485" (4.44)
ks

Figure 4.4 plots the ratio of the in-plane stiffness of reinforcement to the shear stiffness of elastomer,
K ;/(Gt), versus the shape factor .5 for several ab values, which shows that small ab value is not
necessary to mean high reinforcement stiffness. Using the relation in Eq. (4.44), Eq. (4.39) can be

rewritten as

I (ab
B (14 v)ks l: 1_2ab110 wb ] (4.45)
¢ I; (ab) :
2 1—(1—1/)011)110 ab

As b becomes infinite, the term of the Bessel function Iy(ab)/[ablo(ab)] tends to zero, so that

_ (Lt v)ky

Ec
2t

(4.46)

Substituting ab in Eq. (4.44) into Eq. (4.39), we have the normalized effective compressive
modulus E./G expressed as a function of the shape factor S and the stiffness ratio of the rein-

forcement to the elastomer k;/(Gt). The curves of E./G versus ky/(Gt) are plotted in Figure 4.5
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for v = 0.3 and several S values, which shows that the effective compressive modulus increases
with increasing the reinforcement stiffness until reaching the asymptotic value in Eq. (4.42). The
curve of the smaller shape factor reaches the plateau at the smaller value of ky/(Gt). The curves
of E,/G versus S are plotted in Figure 4.6 for v = 0.3 and several ky/(Gt) values, which shows
that the effective compressive modulus increases with increasing the shape factor until reaching the
asymptotic value in Eq. (4.46). The curve of the smaller value of ky /(Gt) reaches the plateau at

the smaller shape factor.

4.1.4 Stresses in Elastomer and Reinforcement

Normalized to the nominal compression stress o, = E.¢., the pressure distribution of the elastomer

in Eq. (4.35) becomes

p(r) _ Io(ab) — Ip(ar)
Ee. =a [abIO(ab) - ;Il(ab)] (447)

When o tends to zero, applying the power series approximation in Eq. (4.41) to the above equation

gives

p(r) _ r?
Fe =2 (1 - Ef) (4.48)

which is the pressure distribution in the elastomeric layer bonded to the rigid reinforcement. The
distribution of the normalized pressure along the r axis is plotted in Figure 4.7 for ab = 0, 1, 2
and 4, which reveals that the effect of the flexibility of the reinforcement is to make the pressure
distribution more uniform and to decrease the maximum value at the center. It should be noted
that the normalized pressure distribution in Eq. (4.47) is independent of the Poisson’s ratio of the
reinforcement v.

If 7, denotes the shear stress in the radial direction on the bonding surface between thé elastomer
and the reinforcement, from Egs. (4.12) and (4.15)

t

To(r) = Orzlmm g = = 5P (4.49)
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Substitution of Eq. (4.47) into the above equation gives the normalized shear stress as

™(r) 1 (ab)?L1(ar)
Eece. 45 [abIo(ab) - 2I1(ab)] (4.50)

which shows that the normalized bonding shear stress distribution is independent of the Poisson’s

ratio of the reinforcement v. Substituting Eq. (4.48) into Eq. (4.49),

L) asn

which is the bonding shear stress for the rigid reinforcement. The curves of 7(1)S/(Ece.) versus 7 /b
are plotted in Figure 4.8 for ab = 0, 1, 2 and 4 to show the distribution of the bonding shear stress
along the r axis. The figure demonstrates that the effect of the flexibility of the reinforcement is
to make the shear stress distribution more concentrated on the edge and to increase the maximum
value at the edge. The normalized shear stress at the edge, 7+ (b)/(Ecec), is plotted in Figure 4.9
as a function of the stiffness ratio k;/(Gt) for several § values. The figure shows that, under the
same compressive load, increasing the reinforcement stiffness or the shape factor will reduce the
maximum bonding shear stress in the radial direction.

To depict the reinforcement displacement pattern under the compressive load, the curves of
uy(r)/(be.) versus r/b, calculated from Eq. (4.32), are plotted in Figure 4.10 for » = 0.3 and several
ab values. The figure demonstrates that the radial displacement of the reinforcement increases with
increasing the value of ab, i.e., with increasing the reinforcement stiffness or decreasing the shape
factor.

The radial force N,, and the hoop force Nyg in the reinforcement can be derived by substituting

Eq. (4.32) into Eqgs. (4.19) and (4.20), respectively, which gives
Nop(r)  To(ed) = To(ar) = (1= v) [0 — 2]

4.52
Ecect I()(Ctb) - 2%%91 ( )

and
Noo(r) Io(ab) — vIp(ar) — (1 —v) [b—g;—bl + I—lg'rir—)-] (453

Ecect To(ab) — 2058
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The distributions of the radial force and the hoop force along the r axis are plotted in Figure 4.11
and Figure 4.12, respectively, for v = 0.3 and several ab values, which show that increasing ab
value reduces the maximum values of the radial force and the hoop force at the center. At the

center, the radial force is equal to the hoop force, N;,(0) = Ngs(0). At the edge,

Noo(b)
Feq =17 (4.54)

which is independent of ab.

4.2 Bending Stiffness of Circular Isolators

4.2.1 Equilibrium in Elastomeric Layer

For a layer of elastomer in a circular isolator shown in Figure 4.13, the elastomeric layer has a radius
of b and a thickness of ¢. Its top and bottom surfaces are perfectly bonded to flexible reinforcements,
which are modeled as an equivalent sheet of thickness ;. When a pure bending moment M is
applied to the top and bottom reinforcing sheets, assuming the reinforcing sheets remain planar,
the two sheets rotate about the y axis and form an angle ¢. A cylindrical coordinate system (7,6, z)
is established with the origin at the center of the layer, so that the angle ¢ is symmetric to the r-6
plane at z = 0. Let u, v and w denote the displacements of the elastomer along the r,  and 2

directions, respectively, which are assumed to have the form

u(r,8,2) = uo(r,0) (1 — 4—:2—2) + u1(r,0) (4.55)
v(r,8,z) = vo(r,8) (1 - %i) + v1(r,0) (4.56)
w(r,8,2) = %zr cosf (4.57)

p - V .
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In Egs. (4.55) and (4.56), the terms of ug and wp represents the kinematic assumption of quadrat-
ically varied displacements and are supplemented by additional displacements u; and vy, respec-
tively, which are constant through the thickness and are intended to accommodate the stretch of
the reinforcement. Eq. (4.57) represents the assumption that horizontal planes in the elastomer
remain planar.

The assumption of incompressibility of the elastomer means that the summation of three normal

strain components, €., €gg and €., equals zero. Bringing the strain-displacement relations

U+ vy
€rr = Uy ) €69 = r ) €22 = W, (459)

gives a constraint on displacements in the form
u v
u,T + ;‘- + —1:.—0 + ’u),z = 0 (4.60)

where the commas imply partial differentiation with respect to the indicated coordinate. Substitut-
ing Eqs. (4.55) to (4.57) into the above equation and then taking integration through the thickness

from z = —t/2 to z = t/2 give

2 U v U v 1
Z(uoy + 2 4 20y puy, 4+ 22 = —rcos (4.61)
3 T T T T p

For clarification, the form is denoted

1 1
g=1tir+ U1+ ~V1p (4.62)
T T
Eq. (4.61) becomes
2 Up Vo,0 _ 1
3(u0,T + = += )= —q pr cos (4.63)

The stress state in the elastomer is assumed to be dominated by the internal pressure p, such
that the normal stress components 0,r, 0gg and o, differ from —p only by terms of order pt?/b2.

The shear stress components o,, and o, which are generated by the constraint of the reinforcement
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are assumed to be of order pt/b; the in-plane shear stress 0,4 is assumed to be of the order pt? /b2,
The thickness of a single elastomeric layer, ¢, in an isolator is generally much smaller than the
radius of the isolator, b. Therefore, we can neglect the terms of order pt? /b%, which gives the stress

components of the elastomer as
Orp R Ogyg R Oy, R —P ) o9 =0 (464)
Under these stress assumptions, the equilibrium equation in the r direction
1 1
Orryr + ';O'TO,B + 02z + ;(Urr - 009) =0 (465)

is reduced to

—Pr + Orz,z = 0 (466)
The equilibrium equation in the # direction
1 2
Orgr + ;099,9 + 092,z + ;0'1'0 =0 (467)

becomes

1
—_— -’,:p,o + 0’02’2 = 0 (468)
The assumption of linearly elastic behavior in the elastomer means that
o =Gu,+w,) (4.69)

1
0o, = G(vz + ;’U),g) (4.70)

with G being the shear modulus of the elastomer. Using the displacement assumptions in Eqs. (4.55)

to (4.57), the above equations become

8 1

0, =G (—ﬁuoz + ;z cos 0) (4.71)
8 1 .

op, = G (—ﬁvgz - ;z s1§ 0) (4.72)
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Substitution of these into the equilibrium equations in Eqs. (4.66) and (4.68), respectively, leads to

8 1
p’,r p G (—t—z’U,O + ;COS 0) (473)
8 1 .
pe =Gr (—ﬁvo - —/;sm 9) (4.74)
From these,
1 8 1 8 1.
(rp,)r + (;pﬂ) . =G [(—ﬁruo + ;7‘ cos 0) i + (-t—2v0 - ;sm 9) ’0] (4.75)
which can be simplified as
1 8G
TPrr +Prt+ SP.ee = —t—z(T’uo,r + up + vo,6) (4.76)

Subtracting the differentiation of Eq. (4.73) with respect to 6 from the differentiation of Eq. (4.74)

with respect to 7,

1 1
Vo + Vo~ Ttog = 0 (4.77)

4.2.2 Equilibrium in Reinforcing Sheet

The internal forces acting in an infinitesimal sector of the reinforcing sheet with a length dr and an
angle df are shown in Figure 4.14, where N,, and Ngg are the normal forces per unit length in the r
and @ directions, respectively. N, is the in-plane shear force per unit length. These internal forces
are related to the bonding shear stresses 0., and g, created by the elastomeric layers bonded on
the top and bottom surfaces of the reinforcing sheet, through two equilibrium equations in the r

and 6 directions

1 1
Nery + ~(Nor = Nog) + ~Nrg + (orelues - arz|z=%) =0 (4.78)

2

1 2
L Nooo + Nogg + =Nro + (00:],cg — 0l = 0 (4.79)
T T 2 2
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After making use of Eqgs. (4.71) and (4.72) to calculate the bonding shear stresses, these equilibrium

equations in the reinforcement become
1 1 8 t
Nerr + ;(Nrr — Ngg) + ;NT9,9 =-G <Zu0 - ;COS 0) (480)

1 2 8 t .
- Nooo + Neoy + —Nro = -G (;UO + o sin 0) (4.81)

The displacements in the reinforcement are related to the internal normal forces through the

linearly elastic strain-stress relation such that

1 [Ny Nog

Ul = E ( y —-v i > (4.82)
1 N 1 N90 Nr'r

T(ul +v1,9) = E; ( i —v i ) (4.83)

where Ej is the elastic modulus of the reinforcement and v is the Poisson’s ratio of the reinforcement.

By inversion, we have the normal forces expressed in terms of displacement components

Eft/ vy + U
N.r = 1.2 <’U,1,1- + V———;—’) (484)

Nyg =

Eftf (’0119 + uy
1-—-v? T

+ 1/u1,1> (485)

The in-plane shear force has the following relation with the displacements

Eftf (ulg vl)
N’r — e | ,o—— .
E ity T (4.86)

Substitution of Egs. (4.84) to (4.86) into Egs. (4.80) and (4.81) leads to

(1-v)spy  t2a? ( 8 1 )
qr 5 T T 1 \g" ; cos (4.87)
ge  (1-v)  t%? (8 1, )
. + 55 =~ 5 \ ;" + > sin 6 (4.88)

where a is defined in Eq. (4.22) and s is defined as

1
s=vy,+-v; — —ULp (4.89)
T T
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To eliminate the s terms in Egs. (4.87) and (4.88), multiply Eq. (4.87) by r and differentiate the
result with respect to 7; then add this to the differentiation of Eq. (4.88) with respect to 8, which
gives

Tqrr + 45+ 000 = —3C (ruo,r + uo + vo,6) (4.90)

Substitution of Eq. (4.63) into the above equation yields

2

1 1 . 1 ;
Grr+ S 0r+ 5000 —0q = o cos (4.91)

To eliminate the ¢ terms in Eqgs. (4.87) and (4.88), multiply Eq. (4.88) by r and differentiate the

result with respect to r; then subtract this from the differentiation of Eq. (4.87) with respect to 6,

which gives

1—v

1 2
(Ts,r'r + Sr + ;5,09) = §a2(’l"’l)(),.,- + vo — ’U;o,g) (492)

Substitution of Eq. (4.77) into the above equation yields

1 1
Srr+ ;S,T + :2'3,99 =0 (493)

4.2.3 Series Solutions of Governing Equations

Under the pure bending moment, the pressure and displacements have the following symmetric and

anti-symmetric properties

p(r,8) = p(r,—B) = —p(r, 7 — 6) | (4.94)

uy (r,0) = ui(r,—8) = —wy(r, 7 — 6) (4.95)
vy(r,8) = —v1(r,—0) = v1(r,m — 0) (4.96)

According to the definitions of ¢ in Eq. (4.62) and s in Eq. (4.89),
q(r,6) = g(r,—0) = —q(r,m — 0) (4.97)

s(r,0) = —s(r,—0) = s(r,m - ) (4.98)
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The method of separation of variables is applied to solve the partial differential equation in
Eq. (4.91). By defining the complementary solution of ¢(r, ) equal to R(r)©(8), the functions

R(r) and ©(0) must satisfy the following relation

R,rr + %R,r - a2R _ 9,(90

where ¢ is a constant. Since g(r,8) is a periodic function of 8, i.e. g(r,8) = g(r,0 + 27), we can set

¢ = n? where n is an integer. The solution of © for a particular n value is
0, = ¢ cos nf + ¢z sinnf (4.100)

with ¢; and ¢, being constants. The symmetric property in Eq. (4.97) means c¢; = 0, and the

anti-symmetric property in Eq. (4.97) implies that n has to be an odd integer. The differential

equation for R becomes

1 2 n?
Ryw+=-R,-|a"+—51R=0 (4.101)
T T
The solution of R for a particular n value is
R, () = csln(ar) + caKq(ar) (4.102)

where I, and K, are modified Bessel functions of the first and second kinds of order n, respectively,
and c3 and c4 are constants. Since g(r,8) is finite at r = 0 and K,(0) = oo, we must have ¢4 = 0.

Including the particular solution of g(r,8) in Eq. (4.91), we have the series solution of ¢

oo
q(r,0) = —%r cosf + Z A, I, (ar)cosnd (4.103)
n=1,3,5,...

where A, is a constant to be determined.

Combining Egs. (4.76) with (4.90) to eliminate the terms of rugr + ug + vo,¢ yields
202 + 1 t20? + 1 t2a0? —0 4104
"1¢?) TT\'"1me?) Te\" 16", (4.104)
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When the method of separation of variables is applied to solve this equation, the symmetric prop-

erties in Eqs. (4.94) and (4.97) for p and ¢ indicate that we can assume that

q- %p = TL:g;s’m R, (r)cosnf (4.105)
Substitution of this into Eq. (4.104) gives
Rusr + %Rn,r - %QR” =0 (4.106)
which has a solution
R.(r)=cr" +car™" (4.107)

To keep R, being finite at r = 0, it must be ¢4 =0, so that

20?2

1= 7ogP = > Bar"cosnb (4.108)

n=1,3,5,...

where B,, is a constant to be determined. Substitution of Eq. (4.103) into the above equation gives

n=1,3,5,...

12G 1 ke n
p(r,0) = vl {—;r cosf + Z [AnI,(ar) — Bpr™] cos n&} (4.109)
The method of separation of variables is also applied to solve s(r,8) in Eq. (4.93). Using the

anti-symmetric property in Eq. (4.98), we can assume that

s(r,0) = f: s (r) sin né (4.110)

n=1,3,5,...

in which s(™(r) is the amplitude of the nth term. Substitution of this into Eq. (4.93) gives
s® 4+ ;sf,) - ﬁs( ) =0 (4.111)
To keep s(®) being finite at r = 0, the solution of st (r) is
sM(r) = Cpr™ (4.112)

where C,, is a constant to be determined, so that

s(r,8) = Z Cy,r" sin nf (4.113)

n=1,3,5,...
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4.2.4 Constants in Series Solutions

There are three sets of constants, A,, B, and C,, to be determined in the series solutions, which
requires three equations to show the relations among these constants. In this section, we establish
the first two equations. The third equation will be derived in the next section.

Combination of Eq. (4.73), which represents the elastomer equilibrium in the r direction, and

Eq. (4.87), which represents the reinforcement equilibrium in the r direction, yields

(1-v)sp t2a?
qr — — = Dr
2 12G

(4.114)

Substituting of the series solutions in Egs. (4.103), (4.109) and (4.113) into the above equation,

= (1-v) 1
Z [Bn - C’n] nr" " cosnf =0 (4.115)
2
n=1,3,5,...
which gives
2
Cn = a—_—y—)'Bn fOI' n = 1,3,5, wes (4116)

Combination of Eq. (4.74), which represents the elastomer equilibrium in the 6 direction, and

Eq. (4.88), which represents the reinforcement equilibrium in the § direction, yields

g  (1-v) t?alpy
r P T2 TGy (4.117)

Substitution of the series solutions in Eqs. (4.103), (4.109) and (4.113) into the above equation will
give the same result in Eq. (4.116).
Based on the assumption of pressure domination in Eq. (4.64), the boundary condition that the

normal stress in the radial direction is zero at the edge of the elastomeric layer means p(b,6) = 0,

which with Eq. (4.109) gives

[ ]
- —1-b cosf + Z [AnI,(ab) — B,b"]cosnf =0 (4.118)
P n=135,...
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so that,

1 1
B] = —; + ZAlll(ab) (4119)

and
1

o ApL,(ab) forn=3,5,7,... (4.120)

B, =

4.2.5 Displacements in Reinforcing Sheet

Since the solution of ¢(r,8) in Eq. (4.103) is a cosine series and the solution of s(r,8) in Eq. (4.113)
is a sine series, the definitions of ¢ in Eq. (4.62) and s in Eq. (4.89) imply that we can assume u;

be a cosine series, according to the symmetric properties in Eq. (4.95),

u(r,0) = Z ugn)(r) cosné (4.121)
n=1,3,5,...
and v; be a sine series, according to the anti-symmetric properties in Eq. (4.96),
v (r,8) = 2 vgn)(r) sin nd (4.122)
n=1,3,5,...
where ugn)(r) and vgn)(r) are the amplitudes of the nth term in uy(r,6) and v1(r,8), respectively.

Using these series forms of u; and v; and the series expression of ¢ in Eq. (4.103), the definition of

q in Eq. (4.62) gives

1 1 1
ugl) + ;ugl) + ;Ugl) = —;7” + Aihi(ar) (4.123)

,T
and

n 1 n
ug ) + ;ug )4 gvil) = Apl(ar) forn=3,5,7,.. (4.124)

Using the series expression of s in Eq. (4.113) and the series forms of u; and vy, the definition of s
in Eq. (4.89) gives

L7 1 n n n
vg,r) + ;v§ ) + g-ug ) = Cnpr forn=1,3,5,... (4.125)
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Summation of Egs. (4.123) and (4.125) with n = 1 yields

( ) + v(l)), + - - ( () + 'U(l)) (Cl - ;) T+ AiLi(ar)
It is known that the modified Bessel function has the relation
B(r)s + 21(r) = 1)
so that the particular solution of Eq. (4.126) is
(l) + '0(1) (C’ - ;) e+ 1A112(a7')
The complementary solution of Eq. (4.126) is

MOJANO S

(4.126)

(4.127)

(4.128)

(4.129)

which is infinite at 7 = 0, unless the constant ¢ = 0. Subtraction of Eq. (4.123) from Eq. (4.125)

with n = 1 yields

(u o) = (cl + %) r+ ALy (ar)
Since Io(r), = I1(r), this equation has the solution
o =M = = (01 + ) r? i—AIIO(ar) + Dy
where D, is the integration constant. From Eqgs. (4.128) and (4.131),
() = —% (1 +31) 4 S ilar) + Tofer)] + 5y
”gl)(r) = % (301 + -/1;) r? 4 2_1&A1[I2(ar) — Ip(ar)] - %Dl

so that

ul(r) = -3 (c1 + 3%) rt Ay [Il(ar) ~ - Iy(r)
o) 1 1
(’I") 3C] + ; Tr— Al -a—rIg(a‘l")

114

(4.130)

(4.131)

(4.132)
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For the terms of n > 1, summation of Eqs. (4.124) and (4.125) yields

(ugn) + vgn)> + E—;——l (ugn) + v£n)) = Cpr"™ + AnIn(ar)

Since the modified Bessel function has the relation

n+1
Lnya(r)r + ‘T—‘In+1(r) = L,(r)

the particular solution of Eq. (4.136) can be

(n) (n) _ __1_ ntl , 1
uy v = 30n ¥ 1)Cnr + aAnInH(ar)

The complementary solution of Eq. (4.136) is

) 4 o) = et

1 = ¢Cr

(4.136)

(4.137)

(4.138)

(4.139)

which is infinite at 7 = 0, unless the constant ¢ = 0. Subtraction of Eq. (4.124) from Eq. (4.125)

with n > 1 yields

(u(") — v(n)) = ————(n —1) (ug (n)) —Cpr + ApL(ar)

1 1 , r

Applying the following relation of the modified Bessel functions

L), — - D1 () = In(r)

the solution is

n n 1 1 _
ug )~ vg ) = —-2-Cnr"+1 + a—AnIn_l(ar) + D"}

where D,, is the integration constant. From Egs. (4.138) and (4.142)

My — __ "
w (M= e 2a

WM(r) = Z((_”_:%C rmt 4 2_A nlInti(ar) = In-1(ar)] - _D r
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Cor™ + —Ap[Liy1(ar) + In—1(ar)] + %anr""’l

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)



so that

n_H(ar) +(n- l)In_;E"ar)] 4 (n ; 1)Dnr"”2

ugnr)(r) = —Z—Cnr" + -;—A [2[ (ar) = (n+1)

(4.145)

) = B3 L, [ p0len) (n-yf2@D] = Dp s a1se)

ar 2

The requirement that the radial force in the reinforcement is zero at the edge 7 = b means

N,.(b,0) = 0, which with Eq. (4.84) gives
mﬁhm+%mﬂam+m@mn=o (4.147)
This can be expressed as an equation of cosine series, of which the nth term gives
u@@y+[mgkm+uwwn (4.148)

For n = 1, substitution of Egs. (4.132), (4.133) and (4.134) with r = b into Eq. (4.148) leads to

Iy (ab) - bbmm]—in=<%+lzu)% (4.149)

4 e
For n > 1, substitution of Egs. (4.143), (4.144) and (4.145) with r = b into Eq. (4.148) yields

n+1

ab n+1(ab) + ——b—I — (ab)] - gCnb" + (’IL - l)Dnbn_z =0 (4150)

[(1 pyn(ed) =

The requirement that the in-plane shear force in the reinforcement is zero at the edge 7 = b

means N,4(b,6) = 0, which with Eq. (4.86) gives
mﬁm®+amﬂm®—m®ﬁﬂ=0 (4.151)
This can be expressed as an equation of sine series, of which the nth term gives
™ (b) - [ {M(8) + 2{7 ()] = 0 (4.152)

For n = 1, substitution of Egs. (4.132), (4.133) and (4.135) with r = b into Eq. (4.152) leads to

1 1b
A= mm—-c¢_zz (4.153)

116



For n > 1, substitution of Eqs. (4.143), (4.144) and (4.146) with r = b into Eq. (4.152) yields

n+1) (n—1) n n e
A, [( F U (et + In_l(ab)] 2G4 (n = DDA = 0 (4.154)

Substitution of Eq. (4.116) with n = 1 into Eq. (4.119) gives

1 1 1 b
Al —-——Il(ab) - :{):Clb = (T-jj;

T (4.155)

Egs. (4.149), (4.153) and (4.155) are the linear equations of A; and (4, but only two of them are

independent. Select any two of these equations to solve 4; and C}

_b(1+v) ab

A=y [abIl(ab) (1= V)Ig(ab)] (4.156)
1 2 14+v abl(ab)

Gr= p [—_ (1-v) + (1 — 1/) abl;(ab) — 2(1 — I/)I2(ab)] (4.157)

Then we have, from Eq. (4.116),

Bi = % [_1 + (1 5 V) abIl(ab)a—bI21((1a i)u)lz(ab)] (4.158)
For n > 1, subtraction of Egs. (4.150) from (4.154) gives
A =0 (4.159)
Then, from Egs. (4.120), (4.116) and (4.150), we have
B,=0 ; Ca=0 ; D=0 (4.160)

Therefore, all the n > 1 terms in the series solutions vanish.
If we assume the displacement of the reinforcement at the center to be zero, ugl)(O) = vgl)(O) =0,

which gives, from Eq. (4.132) or (4.133),

Dy =--4A (4.161)
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By substituting this and the solutions of A; in Eq. (4.156) and C; in Eq. (4.157) into Eqgs. (4.132)

and (4.133), the displacements of the reinforcement in Egs. (4.121) and (4.122) have the forms

b2 [ -2 L(ar) + Io(ar) = 1 - I(ab) (3)?
u(r,0) = 1 [—b—2 +(1+v) abIl(a(;)) T A YA Y . } cos 6 (4.162)

sin 8 (4.163)

2| 2 L(ar) — Io(ar) + 1 + 313(ab) (5)?
1}1(7‘,0) = ZE [—Ei + (1 + V) abIl(ab) - 2(1 - V)Iz(ab) b ]

4.2.6 Effective Bending Modulus

The effective bending stiffness of a single layer of the reinforced elastomer (EI)css is defined as
(ED)ess = pM (4.164)

in which M is the resultant bending moment. Using the assumption of pressure dominating in

Eq. (4.64), the bending moment M has the form
27 b 2 b
M= / / 0., cosf drdf ~ ——/ / p(r,0)r% cos § drdd (4.165)
o Jo o Jo

Substituting the expression of p(r,6) in Eq. (4.109) into the above equation, the effective bending

stiffness becomes

412(ab)} (4.166)

b2
_ 2
(EI)eff = 121G S -OA—E [1 + pBl e pAl ab?
where S is the shape factor defined in Eq. (4.40) . Using the solutions of 4; in Eq. (4.156) and By

in Eq. (4.158), the above equation becomes

b? abl;(ab) — 41y(ab)
= 2 1 Y L ] ¢
(EI)eff 6rGS ( + V)O[2 ACOE 21 V)Iz(ab) (4 167)
For clarification, we define the effective bending modulus as
EI),
Ey = (——Il—fi (4.168)
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in which I, is the moment of inertia of the cross-section area about the r axis. For the circular

pad, I, = wb*/4, so that

1+v) abl(ab) — 41;(ab) ]
= 24657 .
By = 2465 (ab)? |abli(ab) —2(1 — v)Ix(ab) (4.169)
When a tends to zero, substituting the following power series for the Bessel functions
ab  (ab)? (ab)?  (ab)?
N — 4 b)  —— + —— .
I (ab) 5 + To i Ix(ab) 3 + 96 (4.170)
into Eq. (4.169) and neglecting the higher order terms of ab,
E, = 2GS* (4.171)

which is the effective bending modulus for the circular layer of elastomer bonded to the rigid
reinforcement. The ratio Ey/(GS?) is plotted in Figure 4.15 as a function of ab for v = 0, 0.3
and 0.5. The figure shows that the effective bending modulus decreases with increasing ab; higher
Poisson’s tatio of the reinforcement tends to produce higher modulus, but the difference becomes
negligible when ab is small.

Using the relation in Eq. (4.44), Eq. (4.169) can be rewritten as

I (ab
5, = (L ks [ 1 - 4550 } 1)
= ). .
2 1-2(1-v) abZIICEab)

in which ky is the in-plane stiffness of the reinforcement defined in Eq. (4.43). As ab tends to

infinity, the term of the Bessel function I(ab)/[abI1(ab)] tends to zero, so that

_ L+ v)ky

E
b 2t

(4.173)

Substituting ab in Eq. (4.44) into Eq. (4.169), we have the normalized effective bending modulus
E,/G expressed as a function of the shape factor S and the stiffness ratio of the reinforcement to
the elastomer k;/(Gt). The curves of Ey/G versus k;/(Gt) are plotted in Figure 4.16 for v = 0.3

and several S values, which shows that the effective bending modulus increases with increasing
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reinforcement stiffness until reaching the asymptotic value in Eq. (4.171). The curve of the smaller
shape factor reaches a plateau at the smaller value of ks/(Gt). The curves of Ep/G versus S are
plotted in Figure 4.17 for v = 0.3 and several ky /(Gt) values, which shows that the effective bending
modulus increases with increasing shape factor until reaching the asymptotic value in Eq. (4.173).

The curve of the smaller value of k;/(Gt) reaches a plateau at the smaller shape factor.

4.2.7 Stresses in Elastomer and Reinforcement

The nominal bending stress o, is the maximum normal stress in the elastomer created by the
moment M. From Egs. (4.164) and (4.168)

Mb b
= Ep— .
i =B (4.174)

Op =

The pressure distribution can be solved by substituting the constants A; and B; in Egs. (4.156)

and (4.158) into Eq. (4.109)

52(1 + v) [ abli(ar) — arl;(ab)

(ab)? [abli(ab)—2(1 - V)I2(ab)] cos § (4.175)

b
r,0) = —24G
p(r,0) >

which becomes, after normalized with respect to the nominal bending stress,

p(r,0)p _ abl(ar) — arly(ab)
Ewb  ~  abli(ab) — 41(ab)

cos @ (4.176)

When o tends to zero, applying the power series approximation in Eq. (4.170) to the above equation

p(r,0)p P
AR/ A ¥ 0
Erb 3 (b 7 | cos (4.177)
which is the pressure distribution in the elastomeric layer bonded to the rigid reinforcement. The
distribution of the normalized pressure along the r axis at § = 0 is plotted in Figure 4.18 for

ab = 0, 1, 2 and 4, which shows that the effect of the flexibility of the reinforcement is to decrease

the maximum pressure and make the location of the maximum pressure closer to the edge. It should
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be noted that the normalized pressure distribution in Eq. (4.176) is independent of the Poisson’s

ratio of the reinforcement v.

If . and 7y denote the shear stresses in the radial and hoop directions, respectively, on the

bonding surface between the elastomer and the reinforcement, from Eqgs. (4.71) and (4.73), we have

t
TT(’I‘,H) = U'rzlz=._% = _'Ep,r (4178)
and, from Egs. (4.72) and (4.74),
t
7o(r,0) = 00zl =t = — 5 Po (4.179)

Substituting Eq. (4.176) into Eqs. (4.178) and (4.179), the normalized shear stresses are

7r(r,0)p = (ab)® I_lo(‘%ﬂ _ Ll_g‘?l — Ia(ar) cos f (4.180)
Eyb 45 abl(ab) — 41 (ab) )

ro(r,0)p _ _(eb)" g - A sin (4.181)
Epb 45 | abli(ab) — 4I2(ab) '

which show that the normalized bonding shear stresses are independent of the Poisson’s ratio of the
reinforcement ». When « tends to zero, substituting the power series approximation in Eq. (4.170)

into the above two equations,

» (7,0 3 2
i (;bb)p =5 (1 - 32—2> cos (4.182)
6 3 2\ |
Ti%)ﬁ =25 (1 - %) sin 8 (4.183)

which are the bonding shear stresses for the rigid reinforcement. The distribution of the bonding
shear stress in the radial direction along the r axis at 8 = 0 is plotted in Figure 4.19 for ab = 0,
1, 2 and 4, which demonstrates that the effect of the flexibility of the reinforcement is to decrease
the magnitude at the center but to increase the maximum value at the edge. The distribution of

the bonding shear stress in the hoop direction along the r axis at # = n/2 is plotted in Figure 4.20
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for ab = 0, 1, 2 and 4, which demonstrates that the effect of the flexibility of the reinforcement is

to decrease the maximum value at the center.

The shear resultant on the bonding surface (r,8) which is defined as

r(r,8) = \/72(r,0) + 3(,6) (4.184)

has the maximum value at 7 = b and # = 0 or 7 which has the form, after normalization,

7(b,0)p 1

Exb 45

(ab)2I5(ab)
[abIl(ab) - 4T,(ab) (4.185)

By using the expression of ab in Eq. (4.44), the above equation becomes a function of the stiffness
ratio k;/(Gt) and the shape factor §, which is plotted in Figure 4.21. The figure shows that, under
the same bending moment, the maximum shear resultant at the edge decreases with increasing
stiffness ratio or shape factor. At the center r = 0, the normalized shear resultant is

7(0,0)p _ 2abI(ab) — (ab)?

1
E,b 85 | abl;(ab) — 4L;(ab)

(4.186)

To demonstrate the displacement pattern in the reinforcement under the bending moment, the
radial displacement u; in Eq. (4.162) is plotted in Figure 4.22 along the r axis at § = 0, and the
hoop displacement v; in Eq. (4.163) is plotted in Figure 4.23 along the r axis at 6 =mn/2forv=03
and ab = 0.5, 1, 2 and 4. The deformed shapes of the reinforcing sheet for different values of ab
are plotted in Figure 4.24. The shape for ab = 0 is an undeformed circular shape. The reinforcing
sheet does not move at the center because u; = v; = 0 at the center of the reinforcing sheet is
assumed in deriving Egs. (4.162) and (4.163).

The in-plane force components in the reinforcing sheet, Nyr, Ngg and Nyg, can be derived by
substituting Eqs. (4.162) and (4.163) into Eqs. (4.84) to (4.86), which give, after being normalized

with respect to the nominal bending stress in Eqgs. (4.175),

Noo(r,8)p _ @bh(ar) = arli(ab) + (1 =) (5 a(eb) - 2Iy(ar)|
Ebt abl;(ab) — 41x(ab)

cos (4.187)

122



Neo(r,0)p _ vably(ar) — arli(ab) + (1~ v) [3%Ig(ab) + glg(ar)]

6 .
Eybl bl (ab) — 415(ab) cos (4.188)
Neo(r,0)p I(ab) — Lhy(ar)
Neo(r.0)p _ r 6 .
R ACO R ACO (4.189)

The distributions of N,, and Ngg along the r axis at 8 = 0, and N,¢ along the r axis at § = 7 /2 are

plotted in Figures 4.25 to 4.27, respectively, for v = 0.3 and several ab values. At the edge r = b,

Ngg(b,8)p
A~ (11— 0 .
Eobi (1-v)cos (4.190)

which is independent of ab.
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Figure 4.1: Circular layer of reinforced elastomer under compression load
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Figure 4.3: Variation of effective compressive modulus with ab in circular pad
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circular pad
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Figure 4.5: Variation of effective compressive modulus with reinforcement stiffness in circular pad
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Figure 4.6: Variation of effective compressive modulus with shape factor in circular pad
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Figure 4.7: Distribution of normalized pressure in circular pad under compression load
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Figure 4.8: Distribution of bonding shear stress in circular pad under compression load
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Figure 4.9: Variation of maximum bonding shear stress with reinforcement stiffness in circular pad

under compression load

0.40 —
v=0.3

ab=0.5 ~
- == ab=10 ~
— — - ab=20 Ve

0.20 —| - — ab=4.0 - -

uy(r) / bee
\

Figure 4.10: Displacement pattern in reinforcement of circular pad under compression load
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Figure 4.11: Distribution of radial force in reinforcement of circular pad under compression load
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Figure 4.12: Distribution of hoop force in reinforcement of circular pad under compression load

130



-
o
4
o
L

>» X

Figure 4.13: Circular layer of reinforced elastomer under pure bending load
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Figure 4.15: Variation of effective bending modulus with ab in circular pad
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Figure 4.16: Variation of effective bending modulus with reinforcement stiffness in circular pad
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Figure 4.18: Distribution of normalized pressure in circular pad under pure bending load
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Figure 4.20: Distribution of bonding shear stress in hoop direction of circular pad under pure

bending load
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Figure 4.21: Variation of maximum bonding shear resultant with reinforcement stiffness in circular

pad under pure bending load
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Figure 4.22: Radial displacement pattern in reinforcement of circular pad under pure bending load
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Figure 4.23: Hoop displacement pattern in reinforcement of circular pad under pure bending load

Figure 4.24: Deformed shapes of reinforcement in circular pad under pure bending load
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5 Conclusion

To study the influence of fiber flexibility on the mechanical properties of fiber-reinforced multi-layer
elastomeric isolators, theoretical analyses on a single layer of elastomer bonded to flexible reinforce-
ments and subjected to compression loading and pure bending loading are given for infinitely long
strip isolators, rectangular isolators and circular isolators. Although it may be derived from the
solution of rectangular isolators by setting the aspect ratio to the extreme value, the solution of
infinitely long strip isolators directly derived from the plane-strain model provides insight into the
approach of the theoretical analyses.

The displacement field of the elastomer is simplified by assuming that horizontal planes remain
planar and vertical lines become parabolic after deformation. The displacement field of the rein-
forcement is idealized in the plane stress state. The assumption of incompressibility on the material
of the elastomer produces the first differential equation, a constraint between the displacements of
the elastomer and reinforcement. The stress state of the elastomer is assumed to be dominated
by the internal pressure, such that the stress equilibrium in the elastomer reduces to the second
differential equation relating the pressure with the displacement of the elastomer. The equilibrium
in the reinforcing sheet generates the third differential equation in terms of the displacements of the
elastomer and the reinforcement. Based on these three differential equations, the governing equa-
tions and the boundary conditions for the pressure in the elastomer are established, from which the
closed-form solutions of pressure distribution are derived. For the rectangular pads, the boundary

conditions of the pressure are established by assuming that the derivatives of the shear forces at
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the edges of the reinforcement are negligible. For the circular isolators, the displacements in the
reinforcement must be solved before the pressure distributions are derived.

Theoretical solutions show that the compression stiffness and the bending stiffness of the re-
inforced elastomer, derived from the pressure distribution, are affected by the shape factor of the
elastomer and the flexibility of the reinforcement. Similar to the elastomer bonded to rigid rein-
forcements, the stiffness of the elastomer bonded to flexible reinforcements increases with increasing
shape factor, but the flexibility of the reinforcement can decrease the stiffness of the reinforced elas-
tomer. When the reinforced elastomer is subjected to compressive loading, the flexibility of the
reinforcement makes the pressure distribution more uniform and decreases the maximum value at
the center. When the reinforced elastomer is subjected to pure bending moment, the flexibility of
the reinforcement makes the location of the maximum pressure closer to the edge and decreases
the maximum value. For the shear stress on the bonding surface between the elastomer and the
reinforcement, the flexibility of the reinforcement makes the distribution of the bonding shear stress
more concentrating on the edge and increases the maximum value at the edge.

For circular isolators, theoretical solutions show that the stiffness of the reinforced elastomer
also varies with the Poisson’s ratio of the reinforcement, but this effect becomes minor when the
reinforcement becomes more rigid. For rectangular isolators, theoretical solutions of the compres-
sion stiffness and the bending stiffness are expressed in series form. Because the approximated
boundary conditions are applied, the stiffness solutions of the reinforced elastomer become inde-
pendent of the Poisson’s ratio of the reinforcement. Based on the stiffness formulae of infinitely
long strip isolators, simple empirical formulae are derived to provide good approximations for the

compression stiffness and the bending stiffness of the rectangular isolators.
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