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ABSTRACT 

Theoretical and experimental analyses are carried out for the mechanical characteristics 

of multi-layer elastomeric isolation bearings where the reinforcing elements, normally 

steel plates, are replaced by a fiber reinforcement.  The fiber-reinforced isolator, in 

contrast to the steel-reinforced isolator (which is assumed to be rigid both in extension 

and flexure), is assumed to be flexible in extension, but completely without flexure 

rigidity. 

 The influence of fiber flexibility on the mechanical properties of the fiber-

reinforced isolator, such as the vertical and horizontal stiffness, is studied, and it is shown 

that it should be possible to produce a fiber-reinforced isolator that matches the behavior 

of a steel-reinforced isolator.  The fiber-reinforced isolator will be significantly lighter 

and could lead to a much less labor-intensive manufacturing process. 
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1  Introduction

Seismic isolation technology in the United States is applied almost entirely to large, expensive

buildings housing sensitive internal equipment, such as computer centers, chip fabrication facto-

ries, emergency operation centers, and hospitals. The isolators used in these applications are large,

heavy, and expensive. An individual isolator can weigh one ton or more. To extend this effective

but expensive earthquake-resistant strategy to housing and commercial buildings, it is necessary

to reduce the weight and cost of the isolators.

The primary weight in an isolator is due to the reinforcing steel plates, which are used to pro-

vide the vertical stiffness of the rubber-steel composite element. A typical rubber isolator has two

large end-plates (around 25 mm thick) and 20 thin reinforcing plates (3 mm thick). The high cost

of producing the isolators results from the labor involved in preparing the steel plates and the

assembly of the rubber sheets and steel plates for vulcanization bonding in a mold. The steel

plates are cut, sand-blasted, acid-cleaned, and then coated with bonding compound. Next, the

compounded rubber sheets with the interleaved steel plates are put into a mold and heated under

pressure for several hours to complete the manufacturing process. The purpose of the research

described in this report is to suggest that both the weight and cost of isolators can be reduced by

eliminating the steel reinforcing plates and replacing them with a fiber reinforcement.

The weight reduction is possible because fiber materials are available with an elastic stiffness

that is of the same order as steel. Thus the reinforcement needed to provide the vertical stiffness

may be obtained by using a similar volume of a much lighter material. The cost savings may be

possible if the use of fiber allows a simpler, less labor-intensive manufacturing process. It is also
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possible that the current approach of vulcanization under pressure in a mold with steam heating

can be replaced by microwave heating in an autoclave.

Another benefit to using fiber reinforcement is that it would then be possible to build isola-

tors in long rectangular strips, whereby individual isolators could be cut to the required size. All

isolators are currently manufactured as either circular or square in the mistaken belief that if the

isolation system for a building is to be isotropic, it needs to be made of symmetrically shaped iso-

lators. Rectangular isolators in the form of long strips would have distinct advantages over square

or circular isolators when applied to buildings where the lateral resistance is provided by walls.

When isolation is applied to buildings with structural walls, additional wall beams are needed to

carry the wall from isolator to isolator. A strip isolator would have a distinct advantage for retro-

fitting masonry structures and for isolating residential housing constructed from concrete or

masonry blocks.

In modeling the isolator reinforced with steel plates, the plates are assumed to be inexten-

sional and rigid in flexure. The fiber reinforcement is made up of many individual fibers grouped

in strands and coiled into a cord of sub-millimeter diameter. The cords are more flexible in tension

than the individual fibers; therefore, they may stretch when the bearing is loaded by the weight of

a building. On the other hand, they are completely flexible in bending, so the assumption made

when modeling steel-reinforced isolatorsthat plane sections remain planeno longer holds. In

fact, when a fiber-reinforced isolator is loaded in shear, a plane cross section becomes curved.

This leads to an unexpected advantage in the use of fiber reinforcement. When the bearing is dis-

placed in shear, the tension in the fiber bundle (which acts on the curvature of the reinforcing

sheet caused by the shear) produces a frictional damping that is due to individual strands in the

fiber bundle slipping against each other. This energy dissipation in the reinforcement adds to that

of the elastomer. Recent tests show that this energy dissipation is larger than that of the elastomer.

Therefore, when designing a fiber-reinforced isolator for which a specified level of damping is

required, it is not necessary to use elaborate compounding to provide the damping because this

will be provided by the additional damping from the friction in the fibers.

To calculate the vertical stiffness of a steel-reinforced bearing, an approximate analysis is

used that assumes that each individual pad in the bearing deforms in such a way that horizontal
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planes remain horizontal and points on a vertical line lie on a parabola after loading. The plates

are assumed to constrain the displacement at the top and bottom of the pad. Linear elastic behav-

ior with incompressibility is assumed, with the additional assumption that the normal stress com-

ponents are approximated by the pressure. This leads to the well-known “pressure solution,”

which is generally accepted as an adequate approximate approach for calculating the vertical stiff-

ness. It is shown that the extensional flexibility of the fiber reinforcement can be incorporated into

this approach, and that predictions of the resulting vertical stiffness can be made.

The theoretical analyses have been supplemented by experimental work, and while the tests

are only preliminary, they indicate that the concept is viable. The vertical stiffness of the model

isolators is in the range of stiffnesses of practical designs of steel-reinforced bearings, with the

same diameter (300 mm) and the same thickness of rubber (100 mm). The hysteresis loops gener-

ated under combined compression and shear have effective stiffnesses that are somewhat (~20%)

less than the equivalent steel-reinforced bearing, but have the same general characteristics and

show stable behavior up to a peak shear strain of 150%.

The development of lightweight, low-cost isolators is crucial if this method of seismic pro-

tection is to be applied to a wide range of buildings, such as housing, schools, and medical cen-

ters, in earthquake-prone areas of the world.
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2  Vertical Stiffness of Fiber-Reinforced Bearings

The essential characteristic of the elastomeric isolator is the very large ratio of the vertical stiff-

ness relative to the horizontal stiffness. This is produced by the reinforcing plates, which in cur-

rent industry standard are thin steel plates. These plates prevent lateral bulging of the rubber, but

allow the rubber to shear freely. The vertical stiffness can be several hundred times the horizontal

stiffness. The steel reinforcement has a similar effect on the resistance of the isolator to bending

moments, usually referred to as the tilting stiffness. This important design quantity makes the iso-

lator stable against large vertical loads.

2.1  Compression of Pad with Rigid Reinforcement

Before developing the solution for flexible reinforcement, it is useful to review the theory for

rigid reinforcement. A linear elastic theory is the most common method used to predict the com-

pression and the tilting stiffnesses of a thin elastomeric pad. The first analysis of the compression

stiffness was done using an energy approach by Rocard (1937); further developments were made

by Gent and Lindley (1959) and Gent and Meinecke (1970). The theory given here is a simplified

version of these analyses and is applicable to bearings with shape factors greater than around five. 

The analysis is an approximate one based on a number of assumptions. The kinematic

assumptions are as follows:

(i) points on a vertical line before deformation lie on a parabola after loading

(ii) horizontal planes remain horizontal
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We consider an arbitrarily shaped pad of thickness t and locate a rectangular Cartesian coordinate

system, , in the middle surface of the pad, as shown in Fig. 2.1a. Figure 2.1b shows the

displacements,  in the coordinate directions under assumptions (i) and (ii):

(2.1)

This displacement field satisfies the constraint that the top and bottom surfaces of the pad are

bonded to rigid substrates. The assumption of incompressibility produces a further constraint on

the three components of strain, , in the form

(2.2)

and this leads to

Figure 2.1  Constrained rubber pad and coordinate system
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t2
--------–
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w x y z, ,( ) w z( )=

εxx εyy εzz, ,
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u0 x, v0 y,+( ) 1 4z2

t2
--------– 

  w z,+ 0=

A

X, u
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Z, w

t
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(b)
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∆/2
∆/2



7

where the commas imply partial differentiation with respect to the indicated coordinate. When

integrated through the thickness this gives

(2.3)

where the change of thickness of the pad is  (  > 0 in compression).

The stress state is assumed to be dominated by the internal pressure, p, such that the normal

stress components, , differ from -p only by terms of order , i.e.,

where  is a typical dimension of the pad. The shear stress components,  and , which are

generated by the constraints at the top and bottom of the pad, are assumed to be of order ;

the in-plane shear stress, , is assumed to be of order .

The equations of equilibrium for the stresses

reduce under these assumptions to

(2.4)

Assuming that the material is linearly elastic, then shear stresses  and  are related to the shear

strains,  and , by

with G being the shear modulus of the material; thus,

u0 x, v0 y,+ 3∆
2t
-------=

∆ ∆

τxx τyy τzz, , t 2 l 2⁄( ) p

τxx τyy τzz p 1 O
t 2

l 2
----

 
 +–≈ ≈ ≈

l τxz τyz

t l⁄( )p

τxy t 2 l 2⁄( ) p

τxx x, τxy y, τxz z,+ + 0=

τxy x, τyy y, τyz z,+ + 0=

τxz x, τyz y, τzz z,+ + 0=

τxx x, τxz z,+ 0=

τyy y, τyz z,+ 0=

τxz τyz

γxz γyz

τxz Gγxz= , τyz Gγyz=
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(2.5)

From the equilibrium equations, therefore,

(2.6)

which when inverted to give  and inserted into the incompressibility condition gives

(2.7)

In turn, by identifying both  and  as -p, this reduces to

(2.8)

where  is the compression strain. The boundary condition, p = 0, on the perimeter, C, of

the pad completes the system for .

The vertical stiffness of a rubber bearing is given by the formula

where A is the area of the bearing, tr is the total thickness of rubber in the bearing, and Ec is the

instantaneous compression modulus of the rubber-steel composite under the specified level of

vertical load. The value of Ec for a single rubber layer is controlled by the shape factor, S, defined as

which is a dimensionless measure of the aspect ratio of the single layer of the elastomer. For

example, in an infinite strip of width 2b, and with a single layer thickness of t, , and for

a circular pad of radius R and thickness t,

and for a square pad of side a and thickness t,

τxz 8Gu0
z
t 2
----–= , τyz 8Gv0

z
t 2
----–=

τxx x,
8Gu0

t 2
-------------= , τyy y,

8Gv0

t 2
-------------=

u0 v0,

t 2

8G
------- τxx xx, τyy yy,+( ) 3∆

2t
-------=

τxx τyy

p xx, p yy,+ ∇2
p 12G∆

t 3
--------------– 12G

t 2
----------– εc= = =

εc ∆ t⁄=

p x y,( )

KV

EcA

tr
---------=

S loaded area/free area=

S b t⁄=

S R 2t⁄=
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To determine the compression modulus, Ec, we solve for p and integrate over A to determine

the resultant normal load, P; Ec is then given by

(2.9)

where A is the area of the pad.

For example, for a circular pad of radius R, as shown in Fig. 2.2, Eq. (2.8) reduces to

The solution is

where A and B are constants of integration; because p must be bounded at  and  at

, the solution becomes

(2.10)

It follows that

Figure 2.2  Coordinate system for a circular pad of radius R

S a 4t( )⁄=

Ec P Aεc⁄=

Z

Y

t

R

X

∇2p d2p
dr2
-------- 1

r
---dp

dr
------+ 12G

t2
----------– εc          r; x2 y2+= = =

p A r B
3G
t2

-------r2εc–+ln=

r 0= p 0=

r R=

p
3G
t2

------- R2 r2–( )εc=
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(2.11)

and with  and , we have .

The shear stresses in the rubber exert a shear force on the reinforcing sheet that can be com-

puted from equilibrium, and this shear force, in turn, produces internal tension stresses in the

plate. In polar coordinates , the equations of equilibrium for the stresses in the rubber are,

using the notation of Timoshenko (1970),

(2.12)

We have assumed that , so that from the first

(2.13)

and with , then

(2.14)

The internal forces on the reinforcement are , and are caused by the shear stresses, ,

on the top and bottom of the shim plate. The internal forces satisfy the equilibrium equation

(2.15)

or

P 2π p r( )r rd

0

R

∫
3GπR4

2t2
-----------------εc= =

S R
2t
-----= A πR2= Ec 6GS2=

r θ,

σr∂
r∂

--------
τrz∂
z∂

---------
σr σθ–

r
------------------+ + 0=

τrz∂
r∂

---------
σz∂
z∂

--------
τrz

r
------+ + 0=

σr σθ σz p–= = =

τrz∂
z∂

--------- p∂
r∂

-----=

p
3G
t2

------- R2 r2–( )εc=

τrz
6G
t2

-------rzεc–=

Nr Nθ, τrz

dNr

dr
---------

Nr Nθ–

r
------------------ τrz

z t
2
---–=

τrz
z t

2
---–=

–+ + 0=

dNr

dr
---------

Nr Nθ–

r
------------------+ 6G

t
------- r εc⋅ ⋅=
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If the plate is assumed to be rigid, there is no unique solution of the equilibrium equation; but if we

assume it to be deformable, even if the deformations are negligible, we can obtain a unique

solution.

The problem is the same as that for the stresses in a thin disk due to centrifugal forces. The

solution (Timoshenko 1970) is as follows:

(2.16)

At the center of the plate we have

(2.17)

By expressing the maximum value of the stresses in terms of the average pressure over the

plate, , given by

then

(2.18)

which can be used to determine the maximum pressure needed to cause yield in the shim at the

center. It shows why, under normal circumstances, consideration of the stresses in the shims due to

the pressure is not considered important. For example, for steel shims 2.5 mm thick and having 13

mm thick rubber layers, the stresses in the steel due to a pressure of 6.90 MPa (which is standard)

are only 56.90 MPa.

σr

Nr

tf
----- 6G

ttf
------- 3 ν+

8
------------ R2 r2–( )εc= =

σθ
Nθ
tf

------ 6G
ttf
------- 3 ν+

8
------------ R2 1 3ν+

8
--------------- r2⋅–

 
  εc= =

σmax σr σθ
6G
ttf
------- 3 ν+

8
------------R2εc= = =

pave

pave Ecεc 6GSεc= =

σmax

pave
-----------

6G
ttf
------- 3 ν+

8
------------ R2 εc⋅

6GS2εc

-------------------------------------- 3 ν+
2

------------ t
tf
---= =
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3  Compression Stiffness with 
Flexible Reinforcement

The solution for the compression of a pad with rigid reinforcement is algebraically simple enough

to be treated in two dimensions and for an arbitrary shape. The problem for the pad with flexible

reinforcement is more complicated, however; for simplicity, the derivation will be developed for a

circular pad. As before, the rubber is assumed incompressible and the pressure is assumed to be

the dominant stress component. The kinematic assumption of quadratically variable displacement

is supplemented by an additional displacement that is constant through the thickness and is

intended to accommodate the stretching of the reinforcement. Thus

(3.1)

The constraint of incompressibility means

where

(3.2)

ur r z,( ) u0 r( ) 1 4z2

t 2
--------– 

  u1 r( )+=

w x z,( ) w z( )=

εr εθ εz+ + 0=

εr

ur∂
r∂

-------
du0

dr
-------- 1 4z2

t2
--------–

 
  du1

dr
--------+= =

εθ
1
r
---ur

1
r
---u0 1 4z2

t2
--------–

 
  1

r
---u1+= =

εz
dw
dz
-------=
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leading to

Integration through the thickness with respect to z leads to

(3.3)

The equations of stress equilibrium in the rubber are

Under the basic assumption that the normal stresses, , are all of the same order and

approximately equal to the negative of the pressure (i.e., ), and that  is one

order of magnitude small than , these reduce to the single equation

(3.4)

The assumption of elastic behavior means that

(3.5)

which with

(3.6)

gives

(3.7)

du0

dr
-------- 1

r
---u0+ 

  1 4z2

t2
--------– 

  du1

dr
-------- 1

r
---u1

dw
dz
-------+ + + 0=

du0

dr
-------- 1

r
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  3
2
---

du1

dr
-------- 1

r
---u1+ 

 + 3∆
2t
-------=

σr∂
r∂

--------
τrz∂
z∂

---------
σr σθ–

r
------------------+ + 0=

τrz∂
r∂

---------
σz∂
z∂

--------
τrz

r
------+ + 0=

σr σθ σz, ,

σr σθ σz p–≈ ≈ ≈ τrz

p

τrz∂
z∂

--------- p∂
r∂

-----=

τrz Gγrz=

γrz
8z
t2
-----– u0=

dp
dr
------

8Gu0

t2
-------------–=
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The internal forces per unit length in the reinforcing sheet are denoted by  in the radial

direction and  in the tangential direction. If the sheet is made of fiber reinforcement, the indi-

vidual fibers are replaced by an equivalent sheet of reinforcement of thickness . The internal

forces of the equivalent reinforcing sheet are related to the shear stresses on the top and bottom of

the pad through the equilibrium equation

as shown in Fig. 3.1.

From Eqs. (3.5) and (3.6) we have

giving

(3.8)

Figure 3.1  Force in equivalent sheet of reinforcement

Nr

Nθ

tf
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The extensional strains in the reinforcement,  and , are related to the internal forces through

the elastic modulus  and Poisson’s ratio  of the equivalent sheet, and its thickness  such that

(3.9)

and by inversion

(3.10)

Substitution of these relationships into the equilibrium [Eq. (3.8)] gives

Thus

which reduces to

(3.11)

In turn substitution of this into the incompressibility relation [Eq. (3.3)], gives

We define a reciprocal length  by

leading to

εr
f εθ

f
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r
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t
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(3.12)

The solution of this equation is

(3.13)

where , , and  are constants of integration, and  are modified Bessel functions of

the first and second kind of order .

By using Eq. (3.7), the relationship between  and  given in Eq. (3.11) can be rewritten

as a relationship between  and  in the form

which on integration gives

(3.14)

where  is another constant of integration.

If the pad is annular, , then there are four boundary conditions for the four constants

, , , and , namely,

If the pad is a complete circle of radius , i.e., , then  and , and

boundedness of  and  at . In fact, by the assumption of radial symmetry, .

Since  and  as , we must have  and .

The remaining constant of integration in Eq. (3.14) must be determined from the requirement

that the radial stress in the reinforcement is zero at the edge, . From Eq. (3.2) we have
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Thus

The requirement that  means

(3.15)

leading to

(3.16)

(3.17)

(3.18)

The other displacement field needed is , which can be obtained by directly substituting

Eq. (3.16) into Eq. (3.11). We find that
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with  given by Eq. (3.15) above.

To calculate the effective compression modulus, , it is necessary to calculate the pressure

distribution, , given by Eq. (3.14). The constant of integration, , can be obtained by the

requirement that . The result is

(3.19)

The total axial load P is

which with Eq. (3.19) becomes

which, when  is substituted from Eq. (3.15), becomes

(3.20)

When we equate P with , where

is the compression strain, we have

(3.21)
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By making use of , this can also be written in the form

(3.22)

When the reinforcement stiffness tends to rigidity, then  tends toward zero. Using the power

series for  and  we have 

(3.23)

The magnitude of the second term in the bracket relative to one is the determining parameter

for the importance of the flexibility of the reinforcement. Using the definitions of  and , this

term can be written as

Thus, for a typical example of a steel shim 2.5 mm thick and a 13 mm rubber layer, with the steel

properties , and a rubber shear modulus of  MPa and

, then , showing that flexibility is not important.

The compression modulus, , normalized with respect to the compression modulus for rigid

reinforcement, , is plotted in Fig. 3.2 for  and . The figure shows how the

modulus decreases with decreasing reinforcement stiffness, , and thickness . The parameter

 can be written in terms of the shape factor, , as
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showing that the importance of the flexibility of the reinforcement increases with increasing shape

factor (i.e., with thinner layers of elastomer).

Figure 3.2  Normalized compression modulus Ec / (6GS2) vs. αR 

Returning to the pressure distribution as given by Eq. (3.19) and inserting the value of A from

Eq. (3.15), we have
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If we define the average pressure, , by , we have

which is the result [Eq. (2.10)] for rigid reinforcement. It is also possible to show by use of the

asymptotic expansions for  and  that as  tends to infinity, the pressure tends to be uniform

with the value , i.e., .

The pressure distribution in the elastomer for various values of  is shown in Fig. 3.3. The

pressure is normalized with respect to the average pressure, . The effect of the flexibility of

the reinforcement is to make the pressure more uniform and to decrease the maximum value.

Figure 3.3  Distribution of pressure in pad normalized with respect to average pressure:
p / (Ec εc) (solid horizontal line corresponds to )

pave pave Ecεc=
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3.1  Stresses in the Reinforcement

The distribution of the in-plane forces in the reinforcement are given by Eqs. (3.17) and (3.18).

The quantities  and  have units of force per unit length. Dividing them by the reinforcement

thickness  produces the reinforcement stresses,  and , which can be normalized by divid-

ing by the average pressure, . The resulting normalized stresses are proportional to

, so that it is convenient to show plots of  and  to illustrate the stress

behavior.

Using the expressions in Eqs. (3.17) and (3.18) and the expression for  given in Eq. (3.21),

we have

and

When , the two stresses are equal and given by
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These are the largest values and vary from  when  to  as . At

the edge of layer , we have, of course,  and  becomes

The stress distributions for several values of , , and  are shown in Figs. 3.4a

and 3.4b and 3.5a and 3.5b.

Figure 3.4a Normalized radial stress σr
f tf / (p t) in reinforcement ν = 0
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Figure 3.4b Normalized tangential stress σθ
f tf / (p t) in reinforcement ν= 0

Figure 3.5a Normalized radial stress σr
f tf / (p t) in reinforcement ν = 1/3
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Figure 3.5b Normalized tangential stress σθ
f tf / (p t) in reinforcement ν = 1/3
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4 Experimental Results 

Several samples of fiber-reinforced bearings were constructed and tested in compression 

to verify if the approach was practical. These bearings were 305 mm in diameter, 140 

mm thick, and reinforced by twisted strands of Kevlar. The total thickness of rubber in 

the bearing was 102 mm. The experimental research was conducted in two stages. During 

the first stage, the four 305 mm diameter isolators were tested under applied 

compression. The isolators were tested in shear in pairs (for example, specimen J05 and 

specimen J06) under a vertical load equivalent to a pressure of 6.90 MPa. The second 

stage of the experimental study was conducted on only one isolator, specimen J07. The 

specimen was monotonically loaded up to 6.90 MPa vertical pressure and then three 

cycles with amplitude ±1.73 MPa were performed. In the final stage the specimen was 

studied in horizontal shear tests with 6.90 MPa and 3.45 MPa vertical pre-load.  

4.1 Performance Parameters of Fiber-Reinforced Bearings 

The hysteresis loops obtained during the tests were analyzed to obtain a number of 

different performance parameters for the fiber-reinforced bearings. 

Depending on the loading conditions (axial load and shear strain), the bearing 

stiffness as revealed by the test hysteresis loops was nonlinear. It is clear that the bearing 

undergoes a substantial change of stiffness from the small strain to the large strain parts 

of the test. Two different shear stiffnesses were defined for the test bearings and these 

were defined for all of the shear tests. 

A simple calculation of the effective stiffness based on values of peak force and peak 

displacement is defined as 

Kh
eff =(Fmax – Fmin )/( dmax – dmin ) (4.1) 



 

 

 

28 

Where Fmax, Fmin, dmax, and  dmin are the maximum and minimum values of shear force 

and displacement, respectively. This stiffness is interpreted as the effective or overall 

stiffness of the bearing during the test. 

The other stiffness, Kh
av, is defined as the slope of a straight line interpolating the 

hysteresis loops obtained during cyclic tests. The least squares method was used to 

calculate this horizontal stiffness and this stiffness is referred to here as the average 

stiffness of the specimens during cyclic reversals.   

The hysteresis loops were also analyzed to obtain the equivalent viscous damping 

ratio of the bearing for each test. A hysteresis loop represents the plot of force against 

displacement, and, therefore, the area contained within such a loop represents the energy 

dissipated by the bearing. 

The equivalent viscous damping ratio exhibited by the bearing is evaluated in the 

usual structural engineering fashion (Clough and Penzien 1975): 

 ξ = Wd /(4πWs) (4.2) 

where Wd represents a dissipated energy equal to the hysteresis loop area and Ws 

corresponds to stored or elastic energy defined by the following formula: 

 Ws= (Kh
eff  ( ∆max )

2)/2. (4.3) 

Here, ∆max is the average of the positive and negative maximum displacements and 

defined as 

 ∆max = ( dmax +| dmin| )/2. (4.4) 

The linear viscous model assumes that the energy dissipated in each cycle is linear with 

the frequency and quadratic with the displacement. 

4.2 Experimental Results of the First Series 

The force-displacement curves for the three tests at the first stage of the experimental 

study are shown in Figures 4.1 though 4.3.  

The four 305 mm diameter isolators were tested in shear in pairs under a vertical 

load equivalent to a pressure of 6.90 MPa. They were tested in cyclic shear, with three 

fully reversed cycles at three maximum strain levels of 50%, 100%, and 150% (based on 

102 mm rubber thickness). The results of the tests for one pair (J05/J06) are shown in 

Figures 4.1 though 4.3.  
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Figure 4.1 Compression-shear test of 305 mm diameter bearings to 50% shear strain 
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Figure 4.2 Compression-shear test of 305 mm diameter bearings to 100%  
shear strain 
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Figure 4.3 Compression-shear test of 305 mm diameter bearings to 150% shear strain 
(one half-cycle was to 175% shear strain due to operator error) 

 

The dashed straight line corresponds to the horizontal average stiffness of the 

specimens during the cyclic shear tests. The least squares method was used to calculate 

this stiffness of the specimens during cyclic reversals. In order to calculate an effective 

viscous damping ratio of the specimens during the shear tests in the first series, the 

hysteresis loop of the middle (second) cycle was used. 

A short summary of the experimental study on the specimens in the first series is 

presented in Table 4.1. 

 
Table 4.1 Horizontal test results in the first series (J05 and J06 pair test) 

      
Specimen Vertical 

pressure 
MPa 

Shear strain 
magnitude 

% 

Effective 
stiffness*, Kh

eff 
kN/m 

Average 
stiffness*, Kh

av  
kN/m 

Equivalent 
damping, ξ 

% 
J05/J06 6.90 50 434 354 17.7 
J05/J06 6.90 100 390 293 15.3 
J05/J06 6.90 150 345 284 15.5 

*The stiffness values represent half of the stiffness calculated for joint shear test of specimens J05 
and J06 (the hysteresis loop for the middle cycle was used during calculation). 
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4.3 Experimental Study during the Second Series 

This section summarizes the results of cyclic testing of a fiber-reinforced rubber bearing, 

namely, specimen J07, which was tested without bonding to the end plates. The tests 

were carried out in the Structural Research Laboratory of the Pacific Earthquake 

Engineering Research Center, University of California at Berkeley.  

4.3.1 Test Specimen 

The photo of the specimen installed in the testing machine is shown in Figure 4.4. It had 

a cylindrical shape that was 305 mm in diameter with a total height of 140 mm. The total 

thickness of rubber layers in the bearing was 102 mm. 

 

 

 

Figure 4.4 Fiber-reinforced rubber bearing installed in the test machine 

 

 

 



 

 

 

32 

4.3.2 In-plane Test Machine  

The test machine was designed to conduct in-plane vertical and horizontal cyclic loading 

tests, as shown in Figure 4.5. The vertical load was applied to the specimen by two 570 

kN hydraulic actuators, through a stiff frame. The horizontal load was applied to the same 

frame by a 450 kN hydraulic actuator. The test machine had a displacement capacity of 

±254 mm in the horizontal direction and a load capacity of ±1,140 kN in the vertical 

direction. Two sets of tests were conducted. The vertical test was conducted using a 

vertical load control, and the horizontal test was performed using a horizontal 

displacement control. The photograph in Figure 4.6 shows a global view of a test in 

progress. 
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Figure 4.5 Testing setup 
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Figure 4.6 Test in progress 

 

4.3.3 Instrumentation 

Many sensors were used to monitor the response of the specimen during the test in order 

to understand the specimen behavior. The instrumentation allocation was slightly 

different for the vertical and horizontal tests. Tables 4.2 and 4.3 present information on 

the instrumentation, with the channel number, name of the measuring device, and device 

location.
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Table 4.2. Instrumentation setup for vertical test 
 
Channel 

No. 
Device Measuring Response Location Notations 

0 LVDT Horizontal displacement Horizontal actuator #3 δ 
1 LC Horizontal load Horizontal actuator #3 H 
2 LC Vertical load Vertical actuator #1 V1 
3 LC Vertical load Vertical actuator #2 V2 
4 WP Vertical displacement Vertical actuator #1  
5 WP Vertical displacement Vertical actuator #2  
6 DCDT Vertical displacement Vertical actuator #1  
7 DCDT Vertical displacement Vertical actuator #2  
8 LC Shear force Load cell on support frame (left) S1 
9 LC Shear force Load cell on support frame (right) S2 
10 LC Axial load Load cell on support frame (left) A1 
11 LC Axial load Load cell on support frame (right) A2 
12 DCDT Vertical displacement Between isolator’s base plates δ1 

13 DCDT Vertical displacement Between isolator’s base plates δ2 
14 DCDT Vertical displacement Between isolator’s base plates δ3 
15 DCDT Vertical displacement Between isolator’s base plates δ4 

 
Table 4.3. Instrumentation setup for horizontal test 
 
Channel 

No. 
Device Measuring Response Location Notations 

0 LVDT Horizontal displacement Horizontal actuator #3 δ 
1 LC Horizontal load Horizontal actuator #3 H 
2 LC Vertical load Vertical actuator #1 V1 
3 LC Vertical load Vertical actuator #2 V2 
4 WP Vertical displacement Vertical actuator #1  
5 WP Vertical displacement Vertical actuator #2  
6 DCDT Vertical displacement Vertical actuator #1  
7 DCDT Vertical displacement Vertical actuator #2  
8 LC Shear force Load cell on support frame (left) S1 
9 LC Shear force Load cell on support frame (right) S2 
10 LC Axial load Load cell on support frame (left) A1 
11 LC Axial load Load cell on support frame (right) A2 
12 DCDT Vertical displacement Support frame flexibility δ8 

13 WP Vertical displacement Backup δ7 
14 DCDT Vertical displacement Used in out-of-plane rotation calc. δ6 
15 DCDT Vertical displacement Used in out-of-plane rotation calc. δ5 
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Figure 4.7 shows the location of displacement and load measuring instruments for the 

vertical testing setup. The imposed vertical loads were measured by load cells built into 

hydraulic actuators #1 and #2 (V1 and V2). The vertical displacement between the base 

plates of the specimen was averaged from the data of four DCDTs (δ1 , δ2 , δ3  and δ4) 

located at four different corners of the bearing base-plates. The horizontal displacement 

was measured by an LVDT (Linear Variable Differential Transformer) built into 

hydraulic actuator #3. This displacement is denoted by δ, and a load cell in-line with the 

actuator measured the axial horizontal force H. The shear (S1 , S2 ) and axial loads  

(A1, A2 ) were measured by two load cells located under the test specimen. The vertical 

displacement of the top moving frame was measured at two vertical actuator locations.  
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Figure 4.7 Instrumentation setup for vertical test 
 
 

The instrumentation for the horizontal test is presented in Figure 4.8 with the channel 

description in Table 4.3, and differs from the previous one. Four channels for measuring 

the vertical displacement between base plates were exchanged in the following way. Two 

DCDTs were assigned to measure out-of-plane rotation of the top loading frame (δ5 and 

δ6). One channel was used to measure the horizontal displacement of this frame as a 

backup channel, δ7 . One DCDT was used to measure the horizontal flexibility of the 

bottom support frame, δ8 . 
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Figure 4.8 Instrumentation setup for horizontal test 
 

 

4.3.4 Data Acquisition 

The test control and the data acquisition system were run by a PC Windows-based control 

and acquisition program called Automated Testing System (ATS) developed by SHRP 

Equipment Corporation of Walnut Creek, California. This program is capable of signal 

generation, four-channel servo-actuator command, and 16-channel data acquisition. The 

ATS system was used to monitor and control the displacement and force-feedback signals 

during the tests.  

4.3.5 Loading History 

The specimen was tested under vertical load control during the vertical test. The 

specimen was monotonically loaded up to 6.90 MPa vertical pressure, and three fully 

reversed cycles with amplitude ±1.73 MPa were performed. In the final stage the 

specimen was monotonically unloaded. The loading history of the vertical test is 

presented in Figure 4.9.  
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Figure 4.9 Imposed load in vertical testing program 
 

The horizontal test was performed under horizontal displacement control. The 

specimen was tested in cyclic shear, with three fully reversed cycles at three maximum 

strain levels of 50%, 100%, and 150% (based on 102 mm rubber thickness). The loading 

history of the horizontal test is presented in Figure 4.10. These cycles were applied at two 

values of the equivalent vertical pressure: 6.90 MPa and 3.45 Mpa. 
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Figure 4.10 Imposed displacement in horizontal test program  
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Table 4.4 presents the testing program for the specimen in the vertical and horizontal 

tests. 

 

Table 4.4 Test program for specimen J07 
 

No Type of testing Vertical pressure* 
MPa 

Number of 
cycles 

Cycle 
magnitude 

Shear strain 
magnitude  

1 Vertical test 6.90  3 1.73 MPa N/A 
6.90 3 51 mm 50 % 
6.90 3 102 mm 100 % 

 
2 
 

 
Horizontal test 

 6.90 3 153 mm 150 % 
3.45 3 51 mm 50 % 
3.45 3 102 mm 100 % 

 
3 
 

 
Horizontal test 

 3.45 3 153 mm 150 % 
* The vertical load was monotonically applied from 0 to target value; the vertical 
pressure represents average pressure on the top of the bearing at the target value.  
 

4.3.6 Data Processing 

The specimen behavior was characterized by the following parameters during the vertical 

test: applied load and vertical displacement between top and bottom end plates.  The 

applied vertical load was averaged from the two load cells located under the specimen 

(A1 , A2). The relative vertical displacement between the end plates of the specimen was 

averaged from four DCDT data (δ1 , δ2 , δ3  and δ4) that were located at the four corners 

of the end plates. 

During the horizontal test the specimen behavior was characterized by the applied 

horizontal load and the horizontal displacement of the top frame. The imposed horizontal 

load was computed as a sum of two shear loads measured by two load cells located under 

the test specimen (S1 , S2 ). The relative horizontal displacement of the top loading frame 

was obtained from the horizontal displacement (δ7) of the frame minus the horizontal 

displacement of the loading table (δ8 ).  

The least squares method was used to calculate the average stiffness of the specimen 

during cyclic reversals. The average stiffness was calculated for the vertical and 

horizontal directions. For both directions the data from the corresponding cyclic test were 

used. In order to calculate an effective viscous damping ratio of the specimen during the 

shear tests with different vertical pre-load, the hysteresis loops of three cycles with the 

same shear deformation magnitude were used. 
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A set of programs for the MATLAB 5.3 environment was created to process the data 

and to plot results in accordance with the procedure described above. 

4.3.7 Test Results 

The specimen was tested on January 19, 2001. The specimen sustained all loading steps 

up to and including the 150% shear deformation cycles with no damage. Figures 4.11– 

4.13, respectively, show the specimen under 50%, 100%, and 150% shear deformation 

during the horizontal tests with vertical pressure of 6.90 MPa.  

 

 

 

Figure 4.11 Specimen J07 at 50% shear deformation 
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Figure 4.12 Specimen J07 at 100% shear deformation 

 

 

Figure 4.13 Specimen J07 at 150% shear deformation 
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The results of the vertical test are presented in Figure 4.14. The vertical axis 

represents the vertical imposed load and the horizontal axis represents the relative 

displacement between base plates. The dashed straight line corresponds to the average 

stiffness of the specimen during the cyclic part of testing. 
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Figure 4.14 Imposed vertical load versus vertical displacement diagram 

 

The bearings were handmade. The top and bottom surfaces were not very flat, and 

the reinforcement was not taut before loading, causing significant run-in before the 

bearings began to develop vertical stiffness. The vertical stiffness shows a certain amount 

of scatter, reflecting the amateurish method of construction, but the average effective 

modulus, Ec , is 466 MPa, which, with a steel reinforced bearing and a rubber modulus of 

0.69 MPa, would mean a shape factor of 10. Clearly, these bearings prove that it is 

relatively easy to match the vertical stiffness of a typical steel bearing with fiber 

reinforcement. 

The results of the horizontal test are presented in Figures. 4.15 and 4.16. The vertical 

axis represents the horizontal imposed load, and the horizontal axis represents the 

horizontal displacement. The dashed straight line corresponds to the horizontal average 

stiffness of the specimen during the cyclic part of testing. Figure 4.15 shows the 
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horizontal imposed load versus horizontal displacement during the test with the 6.90 MPa 

initial vertical load. The result of the next test with a 3.45 MPa initial vertical load is 

presented in Figure 4.16. A short summary of the experimental study on specimen J07 is 

presented in Tables 4.5a and 4.5b. 
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Figure 4.15 Horizontal test result for 6.90 MPa initial vertical pressure 
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Figure 4.16 Horizontal test result for 3.45 MPa initial vertical pressure 
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Table 4.5a Vertical test result in the second series 

      
Specimen Initial vertical 

pressure 
MPa 

Vertical pressure 
magnitude 

MPa 

Average vertical stiffness during 
cyclic reversals 

kN/m 

J07 6.90 1.73 340,375 
 
 
 
Table 4.5b Horizontal test results in the second series 

      
Specimen Vertical 

pressure 
MPa 

Shear strain 
magnitude 

% 

Effective stiffness, 
Kh

eff 
kN/m 

Average stiffness, 
Kh

av  
kN/m 

Equivalent 
damping*, ξ 

% 

J07 3.45 501) 552 510 14.7 
J07 3.45 1002) 353 327 14.2 
J07 3.45 1503) 304 256 12.8 
J07 3.45 50, 100, 1504) 304 278 7.6 
J07 6.90 501) 896 752 14.2 
J07 6.90 1002) 536 427 13.5 
J07 6.90 1503) 377 273 13.9 
J07 6.90 50, 100, 1504) 377 319 8.6 

(1)Three cycles with 50% shear deformation magnitude were chosen to calculate these parameters. 
(2) Three cycles with 100% shear deformation magnitude were chosen to calculate these 

parameters. 
(3) Three cycles with 150% shear deformation magnitude were chosen to calculate these 

parameters. 
(4) Data from all nine cycles were used to calculate these parameters. 
 

 

A seismic isolator must provide a very high vertical stiffness and a low horizontal 

one. The behavior of the fiber-reinforced bearing satisfies these demands: the shear 

horizontal stiffness is more than 1000 times less than the vertical one. The specimen 

behavior during the test clearly proves that it is relatively easy to match the shear 

stiffness of a typical steel bearing with fiber reinforcement.  

The other distinguishing property of the specimen is a difference in the energy 

dissipation for various vertical pre-loads, which can be seen by comparing Figures 4.15 

and 4.16 and from results presented in Table 4.5b. In both figures there is a distinct 

thickening of the hysteresis loop that is caused by an increase in the equivalent viscous 

damping ratio, as shown in Table 4.5b. This has been observed in many other test 
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programs on elastomeric steel-reinforced bearings, e.g., (Kelly 1991; Taniwangsa, Clark, 

and Kelly 1995), where an increase in pressure produces an increase in damping. 

4.4 Discussion of the Experimental Results 

The results of these tests indicate that the flexibility of the fiber reinforcement has only a 

small effect on the shear stiffness of a bearing. The stiffness is reduced to around 80–85% 

of that of the steel-reinforced bearing of the same size and thickness of the elastomer.  

An unexpected factor, however, is the level of damping shown by the fiber-

reinforced bearings. The compound used in these bearings is an early example of a high-

damping bearing with an equivalent viscous damping of around 8% at 100% shear strain. 

In the tests the damping is around 18% at 50% shear, 15% at 100% shear, and from 13% 

to 15% at 150% shear, implying that the energy dissipation of the composite bearings 

significantly exceeds that of the rubber compound. A possible explanation for this effect 

is that each individual fiber of a single plane of reinforcement is made up of an extremely 

large number of single fibers twisted into a thread. The modulus of elasticity of the fiber 

material is extremely high, on the order of 120,000 MPa, and the possibility of extending 

or compressing fibers at the outer edges of a thread is extremely unlikely. Therefore, the 

flexure of the thread is likely caused by an interfacial slip of one fiber over another. The 

tension on the thread, induced by the vertical load through the lateral bulging of the 

rubber, causes an interfacial shear stress between the fibers in a single thread. This 

frictional stress must be overcome before the threads can bend to accommodate the 

warping of the cross section. 

Clearly more experimental work is needed to verify this hypothesis and to determine 

the various parameters that influence energy dissipation. The concept is very promising 

because currently it is difficult to incorporate high levels of intrinsic damping into natural 

rubber compounds by conventional means (i.e., adding carbon, oils, or resins) without 

degrading some of the advantageous properties of the elastomer. For isolators to be used 

for small buildings in highly seismic environments where the isolators are lightly loaded, 

it is advantageous to use an elastomer with a very low shear modulus 0.3–0.4 MPa, but 

such a compound will have low damping. If the fiber reinforcement can add significant 

damping (in the range of 13–18%, which is all that is needed in an isolation system 
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(Kelly 1999)) then even lower modulus elastomers could be used. The possibility then 

exists for using continuous strip isolators to isolate multi-story masonry wall buildings. 

The incentives for using fiber-reinforced isolators are twofold: (1) they are much 

lighter than steel-reinforced isolators and (2) they could be less costly, if made by a mass 

production manufacturing process like tires. However, if bonding to steel end plates is 

required, these advantages would be considerably lessened due to the cost and weight of 

the steel end plates and the need for a more elaborate bonding process. 

The test results show that it is possible to use unbonded isolators. Although a 

considerable amount of edge uplift occurs, the force-displacement curve always has 

positive stiffness, indicating that the bearing is still stable at 150% shear deformation 

even though it appears to be rolling. These test bearings were circular and are more 

susceptible to rollout than a long strip isolator would be. The goal of this research is to 

promote the use of long strip isolators. 

Long strip isolators would be more stable than circular isolators and their stiffness 

less sensitive to vertical load. It will be necessary to have strip isolators made and tested 

for both in longitudinal and lateral displacements to verify that a stable and effective 

isolation system is feasible. 
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5 Concluding Remarks 

Both the analytical and experimental work demonstrate that for the seismic protection of 

buildings it is possible to replace the steel reinforcement currently used in isolators with 

fiber reinforcement. The resulting isolator is certainly much lighter than the steel-

reinforced bearing. Further studies must address the manufacturing process and whether  

the process of assembling and vulcanizing the isolator can be streamlined. Whether strip 

isolators can be produced at a much reduced cost must also be assessed. 

If these issues are successfully addressed, then seismic isolation can be extended to 

developing countries where the housing, schools, and other public buildings are not 

seismically safe. It can be argued that the technology to build isolators is not available in 

these countries. The process envisaged for manufacturing strip isolators in such countries 

is very similar to the manufacturing process for tires. There are many highly seismic 

countries, for example, India and Iran, where the rural population live and work in unsafe 

buildings. Both India and Iran have very highly developed tire industries. 

An enormous amount of research funding has been spent over the past ten years on 

attempting to develop and implement active control techniques for the seismic protection 

of buildings, and several buildings using active control systems have been built in Japan. 

There have also been proposals to develop smart isolators and intelligent isolation 

systems. The value of this research endeavor is questionable. It is unlikely to prove 

practical even for large, expensive structures and will definitely never be of any use in 

developing countries. On the other hand, development of lightweight, cost-effective 

isolators is crucial if this method of seismic protection is to be applied to a wide range of 

buildings, such as public housing, schools, and medical centers, in earthquake-prone 

areas of the world. 
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