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ABSTRACT

The 2001 Nisqually earthquake, which had a moment magnitude of 6.8, damaged at least 78
bridges in western Washington State. Reports of damage sustained by bridges during this
earthquake were used to correlate the likelihood of damage with the following parameters.
distance to the epicenter, estimated peak ground acceleration, estimated spectral acceleration at
periods of 0.3 s, 1.0 s, and 3.0 s; year built; and type of bridge. This goal was accomplished by
collecting reports of bridge damage from state and local agencies, and comparing them with the
population of bridges listed in the Washington State Bridge Inventory. The level of ground
shaking at each bridge site was estimated from ShakeMaps, which were developed from data
from the Pacific Northwest Seismic Network.

Of the four ground-motion parameters considered, the likelihood of bridge damage was
best correlated with spectral acceleration at a period of 0.3 s.  For a given level of spectral
acceleration, bridges constructed before 1940 were the most likely to be damaged, while those
constructed after 1975 were the least vulnerable. Although the number of movable bridges was
small, this type of bridge was particularly vulnerable. Bridges with a steel main span were more
likely to be damaged than those constructed of reinforced concrete. However, the number of
steel bridges was small, and the most common type of damage to steel-span bridges was actually
damage to the reinforced concrete substructure.
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1 Introduction

The vulnerability of bridges in the Puget Sound area was investigated by analyzing reports of
damage to bridges during the 2001 Nisqually earthquake. By correlating damage with bridge
and ground-motion characteristics, it was hoped that the characteristics that most contributed to
the damage would be identified. The characteristics that were explored included

e theyear that the bridge was constructed;

¢ thedistance from the bridge to the earthquake epicenter;

¢ theestimated peak ground acceleration (PGA) at the location of the bridge;

e the spectral acceleration at the site of the bridge (SA), and;

e thetype of bridge that was damaged.
In the future, the observed trends could be used to prioritize post-earthquake inspections if maps

of shaking intensity were available shortly after an earthquake.

1.1 Background

At 10:54:32 AM local time on February 28, 2001, the Nisqually earthquake of magnitude 6.8
occurred at location 47.1525° N, 122.7197° W. The epicenter was approximately 17.6 km
northeast of Olympia, 23.7 km SW of Tacoma, and 57.5 km SW of Seattle, Washington
(EERI 2001). The Nisqually earthquake occurred deep below the earth’s surface, within the
subducting Juan de Fuca plate. Because of the depth of the hypocenter, approximately 52.4 km,
the damage throughout the area was only moderate. Slight to moderate damage was reported to
78 bridges, with no collapses. Had the earthquake been more shallow, damage in the Olympia
and Seattle regions might have been much more severe.

1.2 Research Methodology

Because the state, counties and cities keep separate records, each agency was contacted
independently to obtain detailed damage descriptions and photographs of bridges that were



damaged during the Nisqually earthquake. To help with this process, a damage report form was
composed to consistently extract pertinent information. A copy of the form is provided in
Appendix B. Appendix D provides a list of individuals who contributed data or comments to
thisreport.

Concurrently, the Washington State Department of Transportation (WSDOT) provided
the Washington State Bridge Inventory (WSBI) in electronic form. This database provides
physical and geographical information for nearly all of the bridges in the state. The WSBI was
used to normalize the damaged bridge data (WSDOT 2000). The WSBI categories considered
in this study were

e |atitude and longitude of bridge;

e typeof bridge (e.g., movable, truss, etc.);

e material used for the main span (reinforced concrete, prestressed concrete, or steel);

and

e year of construction.

These data are provided in Appendix C for all of the damaged bridges. The average daily traffic
data are also included in this appendix. Although this information was not used in this analysis,
it could be used to analyze the economic impacts of bridge closures.

To analyze the data, each bridge had to be located, and the corresponding values for the
peak ground acceleration and the spectral acceleration had to be estimated. These parameters
were extracted from ShakeMaps developed by the Pacific Northwest Seismograph Network
(PNSN 2001a), which are shown in Figs. 1-1 and 1-2. The PNSN, centered at the University of
Washington, operates a network of seismograph stations throughout the Northwest. It is
operated through a joint effort by the University of Washington, the University of Oregon, and
Oregon State University, and is funded by the United States Geological Survey (USGS), the
United States Department of Energy (USDOE), and the State of Washington. PNSN devel oped
maps of earthquake intensity (ShakeMaps) by interpolating between numerous stations within
the network, taking into account geologic conditions.

Access to the ShakeMap data was provided by the Federal Emergency Management
Agency (FEMA), which aso provided GIS support. The maps provided approximate values for
the peak ground acceleration and the spectral acceleration at the location of each damaged and
undamaged bridge. The map used to extract the estimated values for each bridge had a range of



48.4125° N - 46.3875° N in latitude, and 124.1125° W — 121.0875° W in longitude. Damaged

bridges are identified by trianglesin the figures.

PNSN Peak Accel. Map (in %g) Epicenter: 17.6 km NE of Olympia, WA
Wed Feb 28, 2001 10:54:00 AMPST M 6.8 N47.15 W122.72 1D:0102281854
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PROCESSED: Thu Apr 19, 2001 03:39:38 AM PDT.

Fig. 1-1: ShakeMap showing estimated peak ground acceleration (PNSN 2001b)



PNSN 0.3 s Pseudo-Acceleration Spectra (%g) Epicenter: 17.6 km NE of Olympia, WA
Wed Feb 28, 2001 10:54:00 AM PST M 6.8 N47.15 W122.72 ID:0102281854
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PROCESSED: Thu Apr 19, 2001 03:39:38 AM PDT.

NOTE: These are automated maps based on instrumental response spectra,
and may not be appropriate for comparison with design spectral values.

Fig. 1-2: ShakeMap showing estimated spectral acceleration at T = 0.3s (PNSN 2001b)



2 Observed Damage

The reports of bridge damage were collected from the city, county, and state governments
(Appendix D). From these data, it was determined that 78 bridges had been damaged as a result
of the Nisgqually earthquake (Appendix C). The mgority (46) of these bridges were owned and
maintained by the WSDOT, and were either overpasses or underpasses along the interstate and

state highway systems. The City of Seattle reported damage to 18 bridges.

2.1 Classification of Damage

The damage repair cost for each bridge was classified as slight, mild, or moderate, based on
damage estimate ranges of $30,000 or less, $30,001 to $100,000, and above $100,000,
respectively. The estimates provided by the individual bridge agencies are listed in Appendix C.
In cases where an estimate was not provided, but where the level was obvious, the researchers
categorized the damage levels themselves. According to these definitions, the number of bridges
in each category is

e Slight (52 bridges)

e Mild (16 bridges)

e Moderate (10 bridges)
No damage was reported to timber or masonry bridges. The four types of bridges (categorized
according to material used for main span) that were damaged were

¢ Reinforced concrete bridges (36)

e Prestressed concrete bridges (20)

e Stedl bridges (16)

e Movable bridges (6)



The movable bridges were classified separately because of their particular vulnerabilities, e.g.,
lack of alignment. For the remaining 72 fixed bridges, the types of damage were classified as

e Damage to concrete (48)

e Damage to steel (6)

e Damage to beams, restrainers or joints (11)

e Settlement damage (7)

The distribution of damage type, sorted primarily by the type of bridge, is shown in
Fig. 2-1. For each type of bridge, Fig. 2-1 displays the type of damage as a percentage of the
total amount of damage for that type of bridge. For example, of the 36 reinforced concrete
bridges that were damaged, 26 sustained damage to the reinforced concrete elements, resulting in

a damage percentage of 72%.
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Fig. 2-1: Distribution of types of damage for each type of bridge



According to the figure, concrete damage was the
most prevalent type of damage for each of the three types
of bridges. It had been expected that concrete damage
would predominate in reinforced concrete and pre-
stressed concrete bridges. More surprising is that damage
to steel components represented only 30% of the damage
to steel bridges. In comparison, 40% of damaged steel
bridges were reported to have damage primarily to the

Fig. 2-2: Damage to a movable bridge (099/530w)

reinforced concrete substructure. Most of the concrete
damage to the steel bridges consisted of minor spalling of
the concrete columns.

A complete list of damaged bridges, along with
their physical and geographical characteristics is presented
in Appendix C. Numerous photographs of bridge damage
areavailable at
http://www.ce.washington.edu/~nisqually.

2.2 Damage to Movable Bridges

Of the 78 bridges that were damaged by the earthquake,

six were classified by the WSBI as movable bridges. Fig. 2-3: Damage due to settlement of
approach (Chambers Creek Bridge)

L weeswe Cluniversity-place waus |

Typica types of damage that were reported for these
bridges include: damage to the leafs, dislodging of the
counterweights, damage to the centerlock, and lateral
shifting to the bascule towers. An example of damage to a
movable bridge is shown in Fig. 2-2.

2.3  Damage due to Settlement

Significant settlement was reported for seven bridges. Six ; i L e
Fig. 2-4: Damage due to liquefaction on
bridge 002/6s-w (WSDOT)

of these bridges reported settlement at the approach or
within the bridge embankment. This type of damage



ranged from minor differential settlement to a reported

movement of 100 yards of the approach. An example of
approach settlement can be seen in Fig. 2-3.

The seventh reported sighting of settlement was attributed
to ligquefaction around one of the piers, as shown in
Fig. 2-4.

2.4  Damage to Reinforced or Prestressed Concrete

Of the 72 fixed (not movable) bridges that were damaged,
48 had damage to a concrete element. The types of
damage included spalling and cracking of columns,
diaphragms, and abutments. An example of concrete
damageisshownin Fig. 2-5.

2.5  Damage to Steel

Only six fixed bridges sustained damage to the steel

superstructure.  Such damage usually consisted of bent |

and broken cross frames and bearing stiffeners.  An
example of steel damage isshown in Fig. 2-6.

2.6  Damage to Restrainers, Joints, or Bearings

Damage to the restrainers, joints, or bearings included
elongated or broken restrainers, damage to movement
joints, and excessive tipping of rocker bearings. Eleven of
the damaged bridges sustained one of these types of
damage. An example of adamaged bearing is displayed in
Fig. 2-7.

Fig. 2-5: Damage to concrete on
Spokane St. Viaduct (WSDOT)

Fig. 2-6: Damage to steel on bridge
005/322 (WSDOT)

Fig. 2-7: Damage to bearing on bridge
005/221 in Chehalis (WSDOT)



3 Damage Analysis

This chapter identifies correlations between the percentage of bridges that were damaged, and
the properties of the bridge and ground motion. Specifically, the analysis considered the effects
of the year of construction of the bridge, the type of bridge, the distance between the bridge and
the epicenter, the estimated peak ground acceleration at the location of the bridge, and the
spectral acceleration at the location of the bridge. To express the outcome of these analysesin a
consistent manner, the data were normalized by dividing the number of damaged bridges by the
total number of bridges in the Washington State Bridge Inventory (WSBI) for each category. A
total number of 8,445 bridges are listed in the WSBI. However, in each analysis, only the
portion of these bridges that fell within each sorting category was used to normalize the results.
For each anaysis, a series of three plots are presented. The first plot shows the total
number of bridges listed in the WSBI that fit into the categories that are being analyzed. The
second plot reports the number of damaged bridges in each category. The third plot shows the
percentage of bridges that were damaged within each category, which corresponds to the values
in the second plot divided by the values in the first plot, expressed as a percentage. The damage
category “Damage to restrainers, joints, or bearings’ could not be expressed in this graphical

format, because there was virtually no information in the WSBI on these elements.



3.1 Effect of Year of Construction

Bridges were first sorted by the decade in which each was built. The results of thisanalysisfor
the 78 damaged bridges are shown in Fig. 3-1.
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Fig. 3-1: Effect of year of construction, separated into decades
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According to Fig. 3-1, the number of bridges constructed increased dramatically at the
beginning of the 1950s, and then decreased at the beginning of the 1980s. This range of time
coincides with the construction of the interstate highway system. The figure also shows that the
percentage of the bridges that were damaged was largest for bridges constructed before 1940,
averaging approximately 4.5%. Between 1940 and 1970, the percentage of bridges that were
damaged were half that value, averaging approximately 2%. After 1970, this percentage was
again reduced in half, averaging approximately 1%. Although the causes of the decline at the
beginning of the 1940s are unclear, the drop at the beginning of the 1970s was expected. The
San Fernando Earthquake occurred on February 9, 1971, and during the next few years, codes
and practices were changed to reduce damage to structures (Moehle and Eberhard 1999).

Because of the dramatic differences between the percentage of bridges that were
damaged before 1940 and after 1975, these years will serve to categorize the bridges in

upcoming analyses.

3.2  Effect of Epicentral Distance

The distance of the bridge to the epicenter was the second factor considered. The distance was
calculated based on the coordinates of both the bridge and the epicenter, following the procedure
described in Appendix A. In this analysis, the bridges were grouped into categories that span 15
radial kilometers. The result of thisanalysisisdisplayed in Fig. 3-2.

11



800

600

400

200

Total Number of Bridges

<15 15-30 30-45 45-60 60-75 75-90 90-105 105-120 120-135 135-150
Distance from Epicenter (km)

25

20

15

10

Number of Damaged Bridges

I
<15 15-30 30-45 45-60 60-75 75-90 90-105 105-120 120-135 135-150

Distance from Epicenter (km)

Percent of Bridges Damaged (%)
w

<15 15-30 30-45 45-60 60-75 75-90 90-105 105-120 120-135 135-150
Distance from Epicenter (km)

Fig. 3-2: Effect of distance to epicenter

As shown in Fig. 3-2, many bridges were damaged within the ranges of 15-30 km and
45-60 km. The range of 15-30 km corresponds to the distance to the City of Olympia, while the
range of 4560 km corresponds to the distance to the City of Seattle. As expected, the
percentage of bridges that were damaged was largest near the epicenter. However, as the

distance to the epicenter increased, the damage percentage did not decrease consistently. If the

12



intensity of the earthquake had depended only on the distance from the epicenter, the trend
would have been more consistent. The correlation between damage and epicentral distance was
weak, because epicentral distance does not account for the local geology. For example, the City
of Seattle has alarge number of bridges situated on soft soils.

3.3 Effect of Peak Ground Acceleration

To investigate the effect of the estimated peak ground acceleration (PGA), the PGA a every
bridge location was estimated from ShakeMaps, as described in Section 1.2. The ground-motion
characteristics for seven of the damaged bridges could not be estimated from the ShakeMap,
because they were located outside of the boundaries of the map (Section 1.2). Overdl, 3,312
bridges (of which 71 were damaged) were located within the range of the ShakeMap, which
corresponds to an average damage percentage of 2.1%. The analysis of the percentage of bridges
damaged as a function of the PGA is shown in Fig. 3-3. As shown in Fig. 3-4, thereisonly a
weak correlation between the level of the estimated peak ground acceleration and the percentage
of bridges that were damaged. From this figure, one can only conclude that bridges with peak
ground accel erations above 0.2g were more likely to be damaged than bridges subjected to lower
peak accelerations.

13



Total Number of Bridges

2000

1500

10

5

Number of Damaged Bridges

Percent of Bridges Damaged (%)

00

00

35

30

25

20
15

<5 5-10 10-15 15-20 20-25 25-31
Peak Ground Acceleration (%g)

<5 5-10 10-15 15-20 20-25 25-31
Peak Ground Acceleration (%g)

<5 5-10 10-15 15-20 20-25 25-31
Peak Ground Acceleration (%g)

Fig. 3-3: Effect of peak ground acceleration




3.4  Effect of Spectral Acceleration

The correlation between spectral acceleration and damage was also investigated. The PNSN
ShakeMap provided data for the spectral acceleration at periods of 0.3, 1.0, and 3.0 s. However,
damage frequency did not correlate well with the spectral acceleration at periods of 1.0 and 3.0 s.
Therefore, further analysis was performed only on the data for the spectral acceleration at a
period of 0.3 s.

Analyses were conducted to identify: the effect of spectral acceleration; the combined
effects of spectral acceleration and year of construction; and the combined effects of spectral
acceleration and bridge type.

The percentage of the bridges that were damaged correlated well with the magnitude of
the spectral acceleration at 0.3 s, as shown in Fig. 3-4. An exception to this trend was the
decrease at the highest range of the spectral acceleration. This anomaly is most likely
attributable to the small number of bridgesin each category.

15
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Fig. 3-4: Effect of spectral acceleration at a period of 0.3 s

3.4.1 Combined effect of spectral acceleration and year constructed

Taking into account the year of construction further refined the spectral-acceleration analysis.
As discussed in Section 3.1, bridges were classified into three categories according to the year of
construction: before 1940, 1940-1975, and after 1975. The results of this analysis are displayed
inFig. 3-5.
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Fig. 3-5: Combined effect of spectral acceleration and year of construction

As noted before, the bridges with high spectral accelerations were more likely to be
damaged. Moreover, at each level of spectral acceleration, the bridges that were built before
1940 had the highest percentage of damaged bridges, and in general, those built after 1975 were
the least likely to be damaged.
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3.4.2 Combined effect of spectral acceleration and bridge type

The movable bridges were the most vulnerable type of bridge. Of the 42 movable bridges within
the boundaries of the ShakeMap, six were damaged, resulting in an average damage percentage
of 14%. Fig. 3-6 shows that the percentage of damaged movable bridges tended to increase with
spectral acceleration. For example, of the nine bridges with estimated spectral accelerations
above 0.49, three (33%) were reported to have suffered damage. There was a notable exception
to this trend. None of the eight movable bridges with estimated spectral accelerations in the

range 0.30g to 0.40g were reported to suffer any damage. Such exceptions should be expected
for small data sets.

18
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Fig. 3-6: Effect of spectral acceleration on movable bridges

Damage to the three types of immobile bridges (reinforced concrete, prestressed concrete
and steel) were analyzed as a function of spectral acceleration. Settlement damage would not be
expected to depend on bridge type. As a result, movable bridges (6), bridges with settlement (7),
and bridges outside the limits of the ShakeMap (7) were not considered in this analysis. The
results of the analysis for the remaining 58 bridges are reported in Fig. 3-7.
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Fig. 3-7: Combined effect of spectral acceleration and bridge type

Despite the small number of damaged bridges in each category, Fig. 3-7 shows a clear
correlation between the percentage of bridges that were damaged and the level of spectral
acceleration. Based on this breakdown, it appears that the steel bridges were more vulnerable

20



than those constructed of reinforced or prestressed concrete. However, this observation is not
attributable solely to the type of bridge, but to the year that the bridges were constructed, as
shown in Fig. 3.8. As shown in this figure, both reinforced concrete and steel bridges that were
constructed before 1940 were much vulnerable than bridges constructed later. In addition, 40%
of the damage to steel bridges consisted of damage to the reinforced concrete substructure

(Fig. 2-1).
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Fig. 3-8: Combined effects of spectral acceleration, year of construction, and bridge type
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4 Conclusions

The 2001 Nisgualy earthquake damaged at least 78 bridges, of which 68 had dlight or mild
damage, and 10 had moderate damage. The most common type of reported damage (48 bridges)
consisted of concrete cracking and spalling.

Reports of bridge damage were combined with the Washington State Bridge Inventory
and ShakeMaps produced by the Pacific Northwest Seismic Network to identify factors that
made bridges most vulnerable. If ShakeMaps were available immediately after an earthquake in
the future, the results of this study could be used to prioritize post-earthquake inspections.

The percentage of bridges that were damaged did not correlate well with the distance
from the bridge to the epicenter or the estimated peak ground acceleration at the bridge site. The
estimated spectral acceleration at 0.3 s was a better indicator of the likelihood of bridge damage.

The year in which the bridge was constructed and the type of bridge were also important
factors, with the highest percentages of damage reported for bridges that were built before 1940
and those that were movable. For estimated spectral accelerations above 0.4g, damage was
reported to 33% of the movable bridges, 29% of the reinforced concrete bridges built before
1940, and 50% of steel bridges built before 1940. Although the damage percentage for bridges
with a steel main span was generally higher than for other types of bridges, the number of such
bridges was small, and the most common type of damage in these bridges was not to the steel

superstructure, but rather, to the reinforced concrete substructure.
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Appendix A: Distance Calculation

The distance from each bridge to the earthquake epicenter was calculated based on their
respective latitudes and longitudes. By knowing the approximate radius of the earth, as well as
the latitude and longitude of the point, it is possible to construct the spherical coordinates of this
location on the earth’s surface. These can then be converted into Cartesian coordinates by the
following set of equations.
x = Rcosg cosé
y=Rcosgsing (A-1)
z=RsSng
where R is the radius of the earth, ¢ isthe latitude and 6 is the longitude. ¢ is positive above the
eguator, and 0 is considered positive if east of the International Date Line.
From the rectangular coordinates, the vector formed by connecting the origin to the point

on the earth’ s surface can be determined.

Xy X,
P=|y P,=|y, (A-2)
<1 <y

P1 denotes the location of the epicenter, and P, denotes the location of the bridge.

The distance between these two points can be calculated as an arc along the earth’s
surface, or as a straight line (chord) beneath the earth’s surface. Because the waves of an
earthquake do not follow either of these exactly, and because both calculations would yield
approximately the same answer, the arc-based measurement was chosen to estimate epicentral
distances.

The angle between the two vectors can be determined by using the equation

PP, =l R |l#| P, [lcos (A-3)
where B3 is the angle between the two vectors. Since both the points lay on the Earth’s surface,

IP1]l = |IP2|| = R. Solving for j3,



B= cos‘l(—PlR' 2P 2] (A-4)

Once the angle between the two vectors is known, the arc length between the two points can be
determined by the equation
D=Rp (A-5)

where D is the distance between the epicenter and the point of interest. Combining Equations A-
1, A-2, A-4 and A-5,
Rcosg, cosé, | | Rcosg, cosd,
Rcosg, sing, |-| Rcosg,sing,
RsSing, RsSng,

RZ
Simplifying the above equation, and using the trigonometric identity

D =Rcos™ (A-6)
Cc0S(A— B) =COSACOSB+SNnASNnB
the epicentral distance can be calculated as follows.

D =Rcos™ [(cos¢1 cos¢, )(cos(6, —6,)) +sing, sin ¢)2] (A-7)
With this equation, the distance from the epicenter to the point of interest can be directly linked
to the latitude and longitude of the two points.
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Appendix B: Data Collection Inquiry Form

Contact

Name:

Agency:

Phone Number:

Fax Number:

AGENCY INFORMATION

Total Number of Bridgesin Agency

Total Number of Damaged Bridgesin Agency

BRIDGE IDENTIFICATION

Bridge Name Bridge Number/Designation

Latitude Longitude Y ear of Construction

National Bridge Inventory Number

Physical Description of Location

BRIDGE DAMAGE

Description of Damage

Have Photograph of Bridge (Y/N) Have Photograph of Damaged Section (Y/N)
CONSEQUENCES OF DAMAGE

Duration of Closure

Average Daily Traffic

Repair Date (Actual or Anticipated)

Cost of Repair

Bridge Value

Please return care of
Marc O. Eberhard or R. Tyler Ranf
University of Washington Department of Civil Engineering.
Fax: (206) 543-1543 Phone: (206) 543-4815




Appendix C: Characteristics of
Damaged Bridges

KEY

PGA = Estimated peak ground acceleration

PSA03 = Estimated spectral acceleration at aperiod of 0.3 s
PSA10 = Estimated spectral acceleration at aperiod of 1.0 s
PSA30= Estimated spectral acceleration at aperiod of 3.0 s
Damage level = amount of damage ($)

sustained by the bridge

1 = $30,000 and under

2 = $30,001 - $100,000

3 = more than $100,000 Main Span Design = the type of bridge
1=Sab

Damage category = the type of damage that 2 = Stringer/multi-beam or girder

the bridge sustained 3 = Girder and floor beam system

1 = Settlement damage 4 = tee beam

2 = Concrete damage 5 = box beam/box girder — multiple

3 = Steel damage 6 = Box beam/box girder — single or spread

4 = Damage to restrainers, bearings, or 7 =Rigid frame

joints 8 = Orthotropic

5 = Damage to movable bridges 9 = Truss—deck
10 = Truss—through

Main Span Material = the materia for the 11 = Arch —deck

load bearing member of the main spanis 12 = Arch —through

made 13 = Suspension

2 = Reinforced concrete 14 = Stayed girder

4 = Stedl 15 = Movable —lift

6 = Prestressed concrete 16 = Movable — bascule

17 = Movable — swing
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