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ABSTRACT 

 

A comprehensive Bayesian methodology for developing probabilistic capacity and demand 

models for structural components and systems is formulated. The methodology is employed to 

develop probabilistic models for reinforced concrete (RC) columns and multi-bent bridges. The 

probabilistic models are used to objectively assess the seismic fragilities of RC structural 

components and systems, in particular, of highway bridge systems. 

The approach seeks to properly account for both aleatory and epistemic uncertainties. 

The probabilistic models developed are similar to deterministic capacity models or demand 

procedures commonly used in practice, but have additional correction terms that explicitly 

describe the inherent systematic and random errors. Through the use of a set of “explanatory” 

functions, the terms that correct the bias in the existing models are identified. These functions 

provide means to gain insight into the underlying behavioral phenomena and to select ground 

motion parameters that are most relevant to the seismic demands. Systematic assessment of a 

measure of model quality can be made; thus, it is possible to differentiate between alternative 

candidate models. The approach takes into account information gained from 

scientific/engineering laws, observational data from laboratory experiments or field 

investigations, and engineering experience and subjective judgment. Methods for assessing the 

model parameters on the basis of the available information are described. 

The probabilistic capacity models are combined with the probabilistic demand models to 

construct limit-state functions that are used to construct point and interval estimates of the 

fragilities of structural components and systems, with special attention given to the treatment and 

quantification of aleatory and epistemic uncertainties. First, the probabilistic capacity models are 

used to estimate the fragilities of a typical bridge column in terms of maximum deformation and 

shear demands. Next, the probabilistic demand models are used in conjunction with the 

component capacity models to objectively assess the seismic fragilities of an example RC bridge 

bent for a given set of ground motion parameters. Finally, the analysis is extended to the fragility 

assessment of bridge systems. Two configurations of typical new California highway overpass 

bridges are considered. Fragility estimates are computed both at the component level and at the 

system level. 
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1 Introduction 

 

1.1 OBJECTIVES AND SCOPE 

 

Recent earthquakes have emphasized the vulnerability of lifeline systems and the need to 

mitigate the risk consequent to the failure of these systems. Highway transportation systems are 

critical lifelines and their functionality after an earthquake is of primary importance for life 

safety and economic recovery of a community. The assessment and prediction of damage to 

highway systems from an earthquake and the estimation of consequent losses provide valuable 

information for pre-earthquake planning and risk mitigation, and for post-earthquake response 

and recovery purposes. 

The reliability of a highway bridge for post-earthquake service depends on its damage 

state. Fragility is defined as the conditional probability of attaining or exceeding a specified 

damage state for a given set of input variables. More specifically, in earthquake engineering, 

fragility is defined as the conditional probability of failure of a structural component or system 

for given measures of ground motion intensity, e.g., peak ground acceleration or spectral 

acceleration, the frequency content of the ground motion, or duration of strong ground motion. 

The fragility of a bridge system is an important ingredient in assessing the seismic vulnerability 

of a highway transportation system. 
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1.1.1 Review of the Past Work 

 

In the past, there have been several studies on seismic fragility of structures. Different authors 

have followed different strategies and approaches. Hwang and Huo (1994), Fukushima et al. 

(1996), Kai and Fukushima (1996), Shinozuka et al. (2000a), and Karim and Yamazaki (2001) 

have used Monte Carlo simulations for specific structural models. In particular, Hwang and Huo 

(1994) have presented an analytical method for generating fragility curves based on numerical 

simulations of the dynamic behavior of specific structures. The uncertainties in the earthquake-

site-structure system are quantified by considering the parameters in the system as random. In 

order to save computational time in the Monte Carlo simulations, Fukushima et al. (1996) and 

Kai and Fukushima (1996) have proposed a fragility analysis method where random vibration 

theory in the frequency domain is used to evaluate the structural response. Shinozuka et al. 

(2000a) have examined the fragility curves of a bridge by Monte Carlo simulations, where the 

structural response is computed by two different approaches: the first uses the time-history 

analysis and the second uses the capacity spectrum method according to the ATC-40 (1996). 

Accounting for the uncertainties in the structure and ground motion have been made by 

considering an independent sample of 10 “nominally identical but statistically different” bridges 

and 80 ground motion time histories. The comparison between the two approaches has indicated 

that for the state of major damage and collapse the agreement is not as good as for the state of 

minor damage. This can be explained by the inaccuracy of the ATC-40 procedure when 

nonlinear effects play a crucial role. To overcome this problem, in Chapter 6 a method proposed 

by Chopra and Goel (1999) is considered that improves upon the ATC-40 and FEMA-273 

capacity-demand diagram methods (ATC 1996; FEMA 1997). Finally, Karim and Yamazaki 

(2001) have developed an analytical approach to construct fragility curves for highway bridge 

piers of specific bridges. The simulation method makes use of the nonlinear dynamic response of 

an equivalent single-degree-of-freedom system of the pier obtained by static pushover analysis. 

Fragility estimates have also been developed based on expert opinion. In the ATC-13 

(1985) an advisor Project Engineering Panel has developed the damage probability matrices for 

78 different facility types based on consensus estimates. 

Another approach, pursued by Singhal and Kiremidjian (1998), has developed fragility 

estimates by Bayesian analysis of observed damage data for subclasses of structural systems. 
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Singhal and Kiremidjian (1998) have used the Park and Ang damage index (Park and Ang, 1985) 

to quantify damage to a structure as a function of structural capacity and demand. The fragility is 

then defined as the conditional probability that the damage index exceeds a certain threshold for 

a given ground motion. Singhal and Kiremidjian have assumed that the randomness in the 

damage index at a specified ground motion level can be represented by a lognormal distribution 

with unknown median and known constant standard deviation. Observed damage data from past 

earthquakes have been used to update the distribution of the median of the lognormal distribution 

of the damage index by using conjugate distributions. 

Other authors have developed empirical fragility curves on the basis of the records of 

damage resulting from past earthquakes. Basoz and Kiremidjian (1997) have developed 

empirical fragility curves by logistic regression based on the bridge damage observations after 

the Northridge earthquake. After defining 11 bridge classes based on substructure material (e.g., 

concrete, steel, concrete/steel, timber, masonry, etc.) and on superstructure material and type 

(e.g., concrete girder, steel girder, concrete truss, suspension/cable stayed, arch, etc.), empirical 

fragility curves have been developed for bridges grouped by these structural characteristics. 

Mander and Basoz (1999) have estimated fragility curves with an approach similar to the one 

used by Singhal and Kiremidjian (1998). Each fragility curve is assumed to be a standard 

lognormal cumulative distribution function with unknown location parameter (e.g., mean) and 

known constant scale parameter (e.g., standard deviation), meant to incorporate epistemic and 

aleatory uncertainty of both capacity and demand. The unknown location parameter has been 

assessed by using ground motion data, geological maps, and the National Bridge Inventory 

(NBI) records that collect bridge attributes and geographical location. Shinozuka et al. (2000b) 

have developed empirical fragility curves for columns assuming that the curves can be expressed 

in the form of two-parameter lognormal distribution functions. The location and scale parameters 

of the distribution have been estimated by maximizing the likelihood of observing the damage 

data from the 1995 Hyogo-ken Nanbu (Kobe) earthquake. The same authors have also developed 

analytical fragility curves on the basis of nonlinear dynamic analysis. In this case, the location 

and scale parameters have been estimated by fitting a lognormal distribution to the failure/no 

failure data obtained from the numerical simulations of the nonlinear dynamic response of 2 

bridges in the Memphis area having random material properties. Tanaka et al. (2000) have 

estimated the seismic fragility of highway systems by assuming that the fragility can be 
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expressed in the form of a two-parameter normal distribution function. The authors have 

estimated the unknown parameters by using the damage data after the 1995 Hyogo-ken Nanbu 

(Kobe) earthquake. A total of 3,683 bridges were grouped into 5 structure types and the damage 

level was ranked into 5 levels. Similarly, Yamazaki et al. (2000) have developed a set of 

empirical fragility curves based on the actual damage from the 1995 Hyogo-ken Nanbu (Kobe) 

earthquake considering 216 bridge structures and assuming a lognormal distribution for the 

fragility curves. 

Several studies have focused on reviewing approaches of fragility analysis. Casciati and 

Faravelli (1991) have summarized several viable approaches; some have been already outlined 

above and some are more original, such as methods using artificial intelligence techniques. 

Williams and Sexsmith (1995) have given a review of local and global seismic damage indices 

with emphasis on their use in decision making under uncertainties. 

A common characteristic of these approaches is that the modeling and estimation is 

carried out at the structural system level. Because of this, the fragility models developed are not 

transportable. That is, the fragility estimate for a specific structural system cannot be used to 

assess the fragility of another structure, except as a crude approximation when the two structures 

are of similar type or by an arbitrary combination of fragility curves developed for example 

bridges within a specified category (Shinozuka et al., 2000a). A further disadvantage of these 

approaches is that the fragility models cannot take advantage of experimental test data that are 

normally available at the structural component, not system, level. While ideally the fragility 

models should be derived from first principles, e.g., the rules of mechanics, these formulations 

generally assume an arbitrary distribution function (either normal or lognormal) to express the 

fragility curve and simply estimate its distribution parameters that have no direct physical 

interpretation. Finally, these approaches do not properly account for all the uncertainties that are 

involved, particularly the uncertainty in the idealized mathematical model used to describe 

structural systems and their behavior. 
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1.1.2 Proposed New Approach 
 

In order to implement Performance-Based Earthquake Engineering (PBEE) within a probabilistic 

framework, the assessment methodology should seek to explicitly account for all the prevailing 

uncertainties, including uncertainties in structural properties and loading characteristics, 

statistical uncertainty, measurement errors, modeling errors arising from inaccurate model forms 

or missing variables, and inaccuracies in the methodology itself. 

In this report, a methodology is developed for constructing component and system 

fragility estimates by solving reliability problems that involve the structural capacities at the 

component level, ),,,,( 1 qk CCC KK=C , and the corresponding demands, =D  

),,,,( 1 qk DDD KK , due to an earthquake ground motion. Component capacities are defined as the 

set of forces and deformations that a component can carry without failing, e.g., maximum shear 

force or deformation that a column can sustain. The component demands are defined as the 

forces and deformations to which a component is subjected to for a given system demand, e.g., 

an earthquake ground motion characterized by its intensity, frequency content, and duration of 

strong motion. The probability of failure of a component is then defined as the probability that 

the demand measure kD  is larger than or equal to the corresponding capacity measure kC , 

where k  ranges over all the possible modes of failure (e.g., failure in shear or excessive 

deformation). The failure of the structural system is defined in terms of component failure 

events, and the corresponding probability is computed by use of the methods of structural system 

reliability. 

Predictive capacity and demand models in current structural engineering practice are 

typically deterministic and on the conservative side. These models have been commonly 

developed by using simplified mechanics rules and conservatively fitting to available 

experimental data. As a result, they do not explicitly account for the uncertainty inherent in the 

model and they provide biased estimates of the quantities of interest. While these deterministic 

models have been successfully used to design safe structures, the demands of modern structural 

engineering practice and, in particular, the advent of the performance-based design concept 

require predictive capacity models that are unbiased and explicitly account for all the prevailing 

uncertainties. The same applied to demand models. 
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This report presents a Bayesian framework for the development of multi-variate 

probabilistic capacity and demand models that properly account for all the prevailing 

uncertainties and correct the conservatism inherent in the deterministic models. With the aim of 

facilitating their use in practice, rather than developing new models, correction terms to existing 

deterministic capacity and demand models in common use are developed. Methods for assessing 

the model parameters on the basis of observed experimental data are described. Through the use 

of a set of “explanatory” functions, terms that correct the bias in these existing models are 

identified. Moreover, these functions provide means to gain insight into the underlying 

behavioral phenomena and to select ground motion parameters that are most relevant to the 

seismic demands. Although the methodology described in this report is aimed at developing 

probabilistic capacity and demand models, the approach is general and can be applied to the 

assessment of models (i.e., model selection and parameter estimation) in many engineering 

problems. 

The probabilistic capacity models are combined with the probabilistic demand models to 

construct limit-state functions that are used to estimate the fragility of structural components and 

systems, with special attention given to the treatment of aleatory and epistemic uncertainties. 

Different fragility estimates are developed for reinforced concrete (RC) bridge components and 

systems following this methodology. First, the probabilistic capacity models are used to estimate 

the fragility of a typical bridge column in terms of maximum deformation and shear demands. 

Next, the probabilistic demand models are used in conjunction with the capacity models to 

objectively assess the seismic fragility of a RC bridge bent for a given set of ground motion 

parameters. Finally, the analysis is extended to the fragility assessment of bridge systems. Two 

configurations of typical new California highway overpass bridges are considered and fragility 

estimates are computed both at the component and system levels. 

 

 

1.2 Organization of the Report 

 

Following the general introduction given in this chapter, Chapter 2 discusses a Bayesian 

approach for the statistical analysis along with a philosophical justification for selecting this 

among three alternative approaches (frequentist, Bayesian, and likelihood). The problem of 
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constructing a prior distribution that properly reflects the present state of knowledge is discussed 

and numerically efficient simulation methods for computing the posterior statistics are presented. 

In Chapter 3, a framework is formulated for constructing probabilistic capacity models 

for structural components that are unbiased, i.e., correct the conservatism inherent in the 

deterministic capacity models, and explicitly account for the most relevant uncertainties, 

including model errors arising from an inaccurate model form or missing variables, measurement 

errors, and statistical uncertainty. With the aim of facilitating their use in practice, rather than 

developing new capacity models, we actually develop correction terms to existing commonly 

used deterministic models to account for the inherent bias and uncertainty in these models. 

Through the use of a set of “explanatory” functions, we are able to identify terms that give rise to 

the bias in an existing model form and gain insight into the underlying behavioral phenomena.  

In Chapter 4, the methodology presented in Chapter 3 is used to develop multi-variate 

probabilistic deformation and shear capacity models for RC columns under cyclic loads. An 

objective assessment of the relative qualities of alternative models is made. 

In Chapter 5 a Bayesian framework is developed for the formulation of demand models 

for structural components and systems that is consistent with the one used in Chapter 3 to 

construct the capacity models. The deterministic “model” used here is a set of procedures used in 

practice to assess demands. The “explanatory” functions in this case not only identify terms that 

are significant in correcting the bias in the existing deterministic procedures and provide insight 

into the underlying behavioral phenomena, but also are used to select ground motion parameters 

that are most relevant to the seismic demands. 

In Chapter 6, the methodology presented in Chapter 5 is used to construct multi-variate 

probabilistic deformation and shear demand models for RC bridge bents and bridge systems by 

Bayesian statistical inference. Existing observational data and data generated by simulation are 

used. 

In Chapter 7, the fragility for structural components and systems is defined along with 

alternative estimates that differ according to how the parameter uncertainties are treated. By 

using the capacity models described in Chapters 3 and the demand models described in Chapters 

5, limit-state functions are constructed with special attention devoted to the treatment of aleatory 

and epistemic uncertainties. 
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Following the theory presented in Chapter 7, in Chapter 8 fragility estimates are 

developed for RC bridge components and systems. First, the fragility of a typical bridge column 

is estimated in terms of maximum deformation and shear demands by using the probabilistic 

capacity models developed in Chapter 4. Next, the seismic fragility of an RC bridge bent is 

objectively assessed for a given set of ground motion parameters by using limit-state functions 

that properly account for all the relevant uncertainties. The limit-state functions are constructed 

by combining the probabilistic capacity models (Chapter 4) and the demand models (Chapter 6). 

Finally, the analysis is extended to the fragility assessment of bridge systems. Two 

configurations of typical new California highway overpass bridges are considered and fragility 

estimates are computed both at the component level and at the system level. 

Chapter 9 contains the overall summary and conclusions of the report. 

In Appendix A, after a brief description of invertible transformations, a convenient form 

of the non-informative multi-variate Jeffreys's prior density function is derived. This form is 

applicable for estimating unknown standard deviations and correlation coefficients instead of 

variances and covariances. 

 



 

2 Statistical Analysis 

 

2.1 INTRODUCTION 

 

In the context of data analysis based on probability models, three principal approaches are 

possible: frequentist, Bayesian, and likelihood. The frequentist approach is based on imagining 

repeated sampling from a particular model (the likelihood), which defines the probability 

distribution of the observed data conditional on unknown parameters. The Bayesian approach 

requires a sampling model and, in addition, a prior distribution for the unknown parameters. The 

prior and the likelihood are combined to construct the posterior distribution. In particular the 

empirical Bayes (EB) approach allows estimating the prior distribution on the basis of observed 

data. Finally, the “likelihood” (or “Fisherian”) approach is based on a sampling model, as is the 

Bayesian approach, but without a prior distribution. The inferences are based only on the 

likelihood function. 

The philosophical framework for the approach presented in this report is based on the 

Bayesian notion of probability. The eventual goal of developing probabilistic capacity and 

demand models and fragility estimates is seen in the context of making decisions with regard to 

the performance-based design of new structures or the retrofit and rehabilitation of existing 

structures. In this context, it is essential for the approach to be capable of incorporating all types 

of available information, including mathematical models of structural behavior, laboratory test 

data, field observations, past experience, and engineering judgment. It is equally important that 

the approach explicitly account for all the relevant uncertainties, including those that are aleatory 

in nature and those that are epistemic. The Bayesian framework employed in this work is ideally 

suited for this purpose. In this chapter a full Bayesian approach is presented. 
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2.2 BAYESIAN INFERENCE 

 

This section presents the fundamental concepts of Bayesian inference closely following Box and 

Tiao (1992). We start our discussion by introducing the well-known updating rule that is used in 

Bayesian inference. Suppose that ),,( 1 nyy K=′y  is a vector of n  observations, where the 

superscript )( ′  indicates the transpose, and that its probability density function, )|( θyp , 

depends on the values of k  unknown parameters ),,( 1 kθθ=′ Kθ  having a probability 

distribution )(θp . Then,  

( ) ( ) ( ) ( ) ( )yyθθyθθy ppppp == ,  (2.1) 

From (2.1) the conditional distribution of θ  for given observed data y  can be written as 

( ) ( ) ( )
( )y

θθy
yθ

p
pp

p =        with  ( ) 0≠yp  (2.2) 

And  

( ) ( )[ ] ( )
( ) ( )

( ) ( )







∆

=κ==

∑

∫
−

discrete  

continuous       
1

θθθθy

θθθθy
yθyy θ

pp

dpp
pEp  (2.3) 

can be written where the sum or the integral is taken over the admissible range of θ , and where 

)]([ θθ fE  is the mathematical expectation of )(θf  with respect to the distribution )(θp .By 

using (2.3), (2.2) can be written as  

( ) ( ) ( )θθyyθ ppp κ=  (2.4) 

Equations (2.2) and its equivalent (2.4) are expressions of the Bayes theorem, where )(θp  can be 

viewed as the prior distribution reflecting our state of knowledge about θ  prior to obtaining the 

observations and )|( yθp  is the posterior distribution of θ  given y , which in a sense tells us 

what is known about θ  given knowledge from the data. In practice, the prior might incorporate 

any subjective information about θ  that is based on our engineering experience and judgment. 
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The quantity )(yκ=κ  is a normalizing factor necessary to ensure that the posterior distribution 

)|( yθp  integrates or sums to one. 

Following Fisher (1922), )|( θyp  in (2.4) may be viewed as a function of θ , for given 

data y . In that case, it is called the likelihood function of θ  for given y  and is written )|( yθL . 

After introducing the likelihood function, we can write Bayes’s formula as 

( ) ( ) ( )θyθyθ pLp κ=  (2.5) 

This formulation of the Bayes theorem says that our prior knowledge about θ , which is 

expressed in the prior distribution, is updated into the posterior probability distribution by 

multiplying the prior distribution by the likelihood function for θ  given y . That is  

posterior distribution ∝ likelihood ×  prior distribution 

According to this interpretation, the likelihood function can be seen as representing the 

information about θ  coming from the new data. 

Furthermore, application of the rule in (2.5) can be repeated to update our present state of 

knowledge every time new knowledge becomes available. For example, if an initial sample of 

observations, 1y , is originally available, then application of the Bayes formula gives 

( ) ( ) ( )11 yθθyθ Lpp ∝  (2.6) 

If a second sample of observations, 2y , distributed independently of the first sample, becomes 

available, ( )1yθp  can be updated to account for the new information such that 

( ) ( ) ( ) ( )

( ) ( )21

2121 ,

yθyθ

yθyθθyyθ

Lp

LLpp

∝

∝

 (2.7) 

Expressions (2.6) and (2.7) are applications of (2.5) where the posterior distribution in (2.6) now 

plays the role of the prior distribution in (2.7). 

Of course, the same updating process can be repeated any number of times. For example, 

if we have m  independent samples of observations, the posterior distribution can be updated 

after each new sample becomes available; that is, the likelihood associated with the q -th sample 
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is combined with the posterior distribution of θ  that accounts for the information content of the 

previous 1−q  samples. Mathematically, we can write 

( ) ( ) ( ) mqLpp qqq ,,2,,,, 111 KKK =∝ − yθyyθyyθ  (2.8) 

where )|( 1yθp  is given as in (2.6). Repeated applications of Bayes’s theorem can then be seen 

as a learning process, where our present knowledge about the unknown parameters θ  is updated, 

as new data become available. 

 

 

2.2.1 Prior Distribution 

 

Historically, selection of a prior distribution that properly reflects the present state of knowledge 

gave rise to several disputes. The Bayesian approach was often criticized as subjective and too 

fragile in its dependence on a specific prior. For this reason it became essential to be able to 

construct prior distributions that could reflect a situation where little is known a priori. Bayes 

himself made the first attempt to construct such a non-informative prior. He suggested that in 

case of lack of previous knowledge one could use a uniform distribution. This is usually referred 

to as “Bayes’s postulate.” 

However, a simple example can show a fundamental inconsistency of Bayes’s postulate: 

suppose that the distribution of a continuous parameter θ  is taken locally uniform, then the 

distribution of a transformation of θ , e.g., θln  or 1−θ , would not be locally uniform. Different 

prior distributions would lead to inconsistent posteriors even for the same data depending on the 

choice of parameterization. 

In general, formulation of any statistical model requires some degree of subjectivity, so 

this inconsistency does not mean that Bayes’s postulate should not be used in practice. 

Furthermore, the logarithmic and reciprocal transformations are sometimes nearly linear over a 

range of uncertainty for θ  that is not large compared to the mean value; therefore, approximate 

uniformity of θ  would imply approximate uniformity for the transformed θ . 

In selecting a prior distribution note that for a sample size that is even moderately large, 

fairly drastic changes in the prior distribution can lead to only minor changes in the posterior 

distribution. That is, in this case, the information content introduced by the likelihood tends to 
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overwhelm the information content of the prior. An illustration of the robustness of inference, 

under sensible modification of the prior, is provided by the study of Mosteller and Wallace 

(1964). 

These considerations indicate that arbitrariness in the choice of the transformation in 

terms of which the prior is locally uniform is often acceptable. In light of this consideration, the 

next section of this report explores whether there is a way to better approximate the situation in 

which “little is known a priori.” 

 
Non-informative Prior Distributions 
 

As remarked by Box and Tiao (1992), we can never be in a complete state of ignorance and the 

statement “knowing little a priori” has only a relative meaning compared to the information 

content of an experiment. In order to explore the possibility of providing a prior that has little 

information relative to an intended experiment, we start by considering an example for a single 

parameter. 

 

The Normal Mean θ (σ2 Known) 
 

Let ),,( 1 nyy K=′y  be a random sample from a normal distribution ),( 2σθN , where σ  is 

known. The likelihood function for the mean θ  for given y  can be written as 

( ) 





∑ θ−
σ

−∝σθ 2
22

1exp),( iyL y ,                ∞<θ<∞−  (2.9) 

Let y  be the sample mean. Then 

( ) ( ) ( )222 ynyyy ii −θ+∑ −=∑ θ−  (2.10) 

and, since given the data ( )∑ − 2yyi  is a fixed constant, the likelihood reduces to  

( ) ( ) 



 −θ

σ
−∝σ 2

22
exp, ynθL y  (2.11) 

The likelihood function of θ , standardized such that it integrates out to one, is graphically 

represented by a normal curve centered at y , with standard deviation nσ . Figure 2.1.a shows 
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the standardized likelihood curves for three hypothetical experiments with sample means 6=y , 

9=y , and 12=y , 10=n , and 1=σ . 

In case the quantity of immediate interest is not the mean θ  itself, but, for example, its 

reciprocal 1−θ=ξ , the likelihood is written as 

( ) ( ) 



 −ξ

σ
−∝σξ − 21

22
exp, ynL y  (2.12) 

and the standardized likelihood curves appear as in Figure 2.1.b. Figure 2.1 also shows that a 

prior for the mean that is locally uniform in θ  is not uniform in ξ . 

The information content of the data is brought in by the likelihood function, and from 

(2.11) we see that the data enter only via y . Figure 2.1.a shows that when the likelihood is 

expressed in terms of θ , the sample average y  affects only the location of the likelihood curve 

but not its shape. That is, different y  only translate the likelihood curve on the θ  axis but leave 

it otherwise unchanged. Figure 2.1.b shows that, on the contrary, the likelihood in (2.12) is 

affected both for location and for spread by a change in y . 



 15

 

 

 

 

 

 

 

(a) The normal mean θ . 

 

 

 

 

 

 

 

 

 

(b) Reciprocal of the normal mean 1−θ=ξ  

Figure 2.1. Non-informative prior distributions and standardized likelihood curves: (a) 

for the normal mean θ , and (b) for 1−θ=ξ . 

In light of the above observation, a hypothetical scale )(θφ is introduced such that the 

corresponding likelihood is data translated. That is, such that the shape of the likelihood curve 

does not depend on the data but only its location, as it was the case for the normal mean. In this 
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new scale knowing little a priori, relative to the information content of the data, is translated in 

our indifference for the value of )(θφ . That is, a non-informative prior about )(θφ  with respect 

to the data is simply a locally uniform distribution. 

Going back to our example, the likelihood of θ  is completely known a priori except for 

its location that is determined by y . So in this case, the likelihood are data translated in the 

original scale θ . That is, θ=θφ )(  and a non-informative prior is locally uniform in θ  itself. 

That is, locally, 

( ) costant=σθp  (2.13) 

Figure 2.1 shows this non-informative prior distribution with a dotted line. On the other hand, in 

case of ξ , where 1)( −θ=θφ , we can write that  

( ) ( ) ( ) 22 −ξ∝θσθ=
ξ
θ

σθ=σξ p
d
dpp  (2.14) 

So the corresponding non-informative prior for ξ  is not uniform but is locally proportional to 
2θ , that is, to 2−ξ . From (2.14) we can draw a more general conclusion: if the non-informative 

prior for θ  is locally uniform in )(θφ , then the corresponding non-informative prior for θ  is 

locally proportional to |/| θφ dd , assuming the transformation is one to one. 

In the new scale )(θφ  we need to assume a uniform distribution only over the region of 

interest but not over the entire range of definition of θ . The dashed lines in Figure 2.2 indicate 

the proper distributions )|( σθp , flat only over the region of interest, and )|( σξp , obtained by a 

transformation that is proportional to 2−ξ  only over the region of interest. However, it would be 

inappropriate mathematically and not necessary in practice to suppose, for example, that )|( σθp  

was uniform over an infinite range, or that )|( σξp  was proportional to 2−ξ over an infinite 

range. 
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 (a) The normal mean θ  

 

 

 

 

 

 

 

 

 

 

(b) Reciprocal of the normal mean 1−θ=ξ  

Figure 2.2. Non-informative prior distributions (dashed lines) and standardized 

likelihood curves (solid lines) for normal distribution with known standard 

deviation. 
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The Normal Standard Deviation σ (θ Known) 
 

To gain more insight into the problem of constructing non-informative priors, we consider a 

second case by choosing a non-informative prior distribution for the standard deviation, σ , of a 

normal distribution that has known mean θ . In this case, the likelihood can be written as 

( ) 







σ

−σ∝θσ −
2

2

2
exp, nsL ny  (2.15) 

where 

( ) nys i
22 ∑ θ−=  (2.16) 

Figure 2.3.a shows the standardized likelihood curves for σ  with 5=s , 10=s , and 20=s  in 

case of 10=n  observations. It is evident that in the original scale, σ , the likelihood curves are 

not data translated, i.e., different values of s  change both the location and the shape of the 

likelihood curves. So a locally uniform distribution in σ  would not be non-informative. 
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(a) Normal standard deviation σ  

 

 

 

 

 

 

(b) Log of normal standard deviation, σln  

Figure 2.3. Non-informative prior distributions (dashed lines) and standardized 

likelihood curves (solid lines) for normal distribution with known mean. 
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However, the logarithmic transformation σln  makes the likelihood curves exactly data 

translated as shown in Figure 2.3.b. To mathematically verify this, we note that multiplication by 

the constant ns  leaves the likelihood in (2.15) unchanged. Taking the logarithm we have 





























σ

−σ=




























σ

−σ −−
2

2

2

2

2
explnexp

2
expexpln nssnss nnnn  (2.17) 

Therefore, the likelihood of σln  can be expressed as 

( ) ( ) ( )[ ]






 −σ−−−σ−∝θσ snsnL lnln2exp

2
lnlnexp,ln y  (2.18) 

In this new scale the data entering through s  simply relocate the likelihood. We then conclude 

that a non-informative prior should be locally uniform in σln . Going back to the original scale 

σ , the non-informative prior is thus locally proportional to 1−σ , 

( ) 1ln −σ=
σ
σ

∝θσ
d

dp  (2.19) 

 
Exact Data-Translated Likelihoods and Non-informative Priors 
 

A general rule obtained from the above discussion is that given a one-to-one transformation of 

θ , )(θφ , a prior distribution of θ  that is locally proportional to |/| θφ dd  is non-informative for 

the parameter θ  if, in terms of φ , the likelihood curve is (data) translated, that is, the location 

but not the shape of the likelihood )|( yφL  changes with the data. Mathematically, a data-

translated likelihood can be written as 

( ) ( ) ( )[ ]yy fgL −θφ=θ  (2.20) 

where )(g  is a known function independent of the data y  and )(yf  is a function of y .  

 

Note that the examples in the previous sections are in fact special cases of (2.20). For the 

normal mean, θ=θφ )( , yf =)(y , and for the normal standard deviation σ=σφ ln)( , 

sf ln)( =y . 
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Derivation of Transformations Yielding Approximate Data-Translated Likelihoods 

 

In general a transformation )(θφ  that allows the likelihood to be expressed exactly in the form 

(2.20) may not be available. In these cases, the property of the posterior distribution of being 

insensitive to minor changes in the prior can be used even for a moderate-size sample to 

construct a transformation )(θφ  in terms of which the likelihood is nearly independent of the 

data y  except for its location. 

Suppose ),,( 1 nyy K=′y  is a random sample from a distribution )|( θyp . According to 

Johnson (1967, 1970), under certain regularity conditions on )|( θyp , for sufficiently large n , 

the likelihood function of θ  is approximately normal, and remains approximately normal under 

approximate one-to-one transformations of θ . The logarithm of the likelihood is then 

approximately quadratic:  

( ) ( ) ( )

( ) ( )
θ








θ∂
∂

−θ−θ−θ≈

θ=θ=θ ∏

ˆ
2

22 1ˆ
2

ˆ

lnln

l
n

nl

ypLl
n

i
i

y

yy
 (2.21) 

where θ̂  is the maximum likelihood estimate of θ , defined as the point where the likelihood 

function attains its maximum value, so that 

0
ˆ
=







θ∂
∂

θ

l  (2.22) 

In general, the quantity 

( )
θ








θ∂
∂

−=θ
ˆ

2

21ˆ l
n

J  (2.23) 

is a positive function of y  and assume for the moment that for given n , it can be expressed as a 

function of θ̂  only. On the other hand, the logarithm of a normal density function ( )yp  is of the 

form 
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( ) ( ) 22

2
1ln σµ−−∝ yyp  (2.24) 

and, given the location parameter µ , it is completely determined by its standard deviation σ . A 

comparison of (2.21) and (2.24) shows that the standard deviation of the likelihood curve is 

approximately equal to )ˆ(2121 θ−− Jn . If )(θφ  is a one-to-one transformation we can write 

( ) ( )
2

ˆ

2

ˆˆ
2

2

ˆ
2

2
ˆ11ˆ

θθθφ








φ
θ

θ=







φ
θ









θ∂
∂

−=







φ∂
∂

−=φ
d
dJ

d
dl

n
l

n
J  (2.25) 

and so if )ˆ(θφ  is chosen such that 

( )θ∝
φ
θ −

θ

ˆ21

ˆ
J

d
d  (2.26) 

)ˆ(φJ  will be a constant independent of φ̂ , and the likelihood will be approximately data 

translated in terms of φ . This means that a scale for which a locally uniform prior is 

approximately non-informative is obtained as 

( ) ( ) dttJJ
d
d

∫
θ

∝φθ∝
θ
φ 2121 or  (2.27) 

where the integral is the improper integral evaluated at θ  and that the corresponding non-

informative prior for θ  is  

( ) ( )θ∝
θ
φ

∝θ 21J
d
dp  (2.28) 

In the above we have assumed that the quantity in (2.22) is a function of θ̂  only. More 

generally (Box and Tiao, 1992), this holds if the observations y  are drawn from a distribution of 

the form 

( ) ( ) ( ) ( ) ( )[ ]yucwyhyp θθ=θ exp  (2.29) 

This is the form for which a single sufficient statistic for θ  exists, where a sufficient statistic is 

defined according to Box and Tiao (1992) as follows: 
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Definition (2.1)  Let ),,( 1 nyy K=′y  be a vector of observations whose distribution depends 

upon the k  parameters ),,( 1 kθθ=′ Kθ . Let ),,( 1 qtt K=′t  be q  functions of y . Then the set of 

statistics t  is said to be jointly sufficient for θ  if the likelihood function )|( yθL  can be 

expressed in the form 

( ) ( )tθyθ gL ∝  (2.30) 

and provided the ranges of θ , if dependent on the observations, can also be expressed as 

functions of t . 

 

 
Jeffreys’s Rule, Information Measure, and Non-informative Priors 

 

More generally, )|( θyp  is not of the form in (2.29) and the quantity in (2.22) is a function of all 

the data y . In this case, we start by noting that, for given θ , 

( )
∑
= θ∂

θ∂
−=

θ∂
∂

−
n

u

uyp
n

l
n 1

2

2

2

2 ln11  (2.31) 

is the average of n  identical functions of ),,( 1 nyy K , respectively. We also suppose that oθ  is 

the true value of θ  so that y  are drawn from )|( oyp θ . It follows that as ∞→n  the average in 

(2.31) converges in probability to the expectation of the function, that is, to 

( ) ( ) ( ) ( )∫ θθ=θ
θ∂

θ∂
−=













θ∂

θ∂
−θ ooy adyyp

ypyp
o

,
lnln

E 2

2

2

2

 (2.32) 

assuming that the expectation exists. Furthermore, as ∞→n , the maximum likelihood estimate 

θ̂  converges in probability to oθ . We can then write, approximately,  

( ) ( ) ( )θ=θθ≈θθ≈







θ∂
∂

−
θ

ˆˆ,ˆ,ˆ1
ˆ

2

2

Jaal
n o  (2.33) 

where )(θJ = ),( θθa  is defined as 



 24

( )θJ =
( )













θ∂

θ∂
−θ 2

2 ln
E

yp
y  (2.34) 

Now, using )ˆ(θJ , which depends only on θ̂ , to approximate (2.22) and arguing as before, we 

can find that the scale )(θφ  for which a locally uniform prior is approximately non-informative 

is such that  

( ) ( ) dttor
d
d

∫
θ

∝φθ∝
θ
φ 2121 JJ  (2.35) 

and that the corresponding non-informative prior for θ  is  

( ) ( )θ∝θ 21Jp  (2.36) 

It can be easily shown that, when )|( θyp  is of the form in (2.29), )ˆ()ˆ( θ≡θ JJ . Thus the prior 

in (2.36) can be used generally. 

The quantity )(θJ  in (2.34) is known as Fisher’s measure of information about θ  in a 

single observation y  (Fisher, 1922, 1925). More generally, Fisher’s measure of information 

about θ  in a sample ),,( 1 nyy K=′y  is defined as  

( )θnJ = 







θ∂
∂

−θ 2

2

E l
y  (2.37) 

where the expectation is taken with respect to the distribution )|( θyp . When y  is a random 

sample we have )()( θ=θ JJ n n ; thus, (2.36) can be expressed by Jeffreys’s rule that says that the 

prior distribution for a single parameter θ  is approximately non-informative if it is taken to be 

proportional to the square root of Fisher’s information measure. 

 
 

Non-informative Priors for Multiple Parameters 
 

This section describes how to construct non-informative priors for multi-parameter models that 

are used in the applications presented in the following chapters. Consider a general multi-variate 

model with an observable vector y  of q  components, having the multi-normal distribution 
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( ) ( )[ ]Σ,θµΣ,θµy N~  (2.38) 

where )](,),(),([)( 2211 qqµµµ θθθθµ K=  is a vector-valued function of unknown parameters 

),,( 1 qθθθ K= , where ),,1,( kkik pi K=θ=θ , qk ,,1 K= , and Σ  is a qq ×  variance-covariance 

matrix, which is symmetric and positive definite. For constructing the prior distribution of the 

parameters ),( ΣθΘ = , we assume that θ and Σ  are approximately independent, so that  

( ) ( ) ( )ΣθΘ ppp ≈  (2.39) 

We also assume that the parameterization in terms of θ  is such that it is appropriate to take θ  as 

locally uniform (over the region θI ),  

( ) constant=θp ,                 θIθ∈  (2.40) 

For the prior distribution of the 2/)1( +qq  distinct elements of Σ , application of similar 

arguments as in the previous section (Gelman et al., 1998, and Box and Tiao, 1992) lead to the 

non-informative multi-variate Jeffreys’s prior density 

( ) 21)( +−∝ qp ΣΣ  (2.41) 

or equivalently (See Appendix A) to 

( ) ∏
=

+−

σ
∝

q

i i

qp
1

21 1)( RΣ  (2.42) 

where 2
iσ  denote the variances, ][ ijρ=R  denotes the qq×  correlation matrix and ||⋅  denotes the 

determinant. 

The above results are valid only for multi-parameter models with a multi-normal 

observable vector. In case of other distributions, approximately non-informative priors can be 

derived extending Jeffreys’s rule to general multi-parameter models (Box and Tiao, 1992). 
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2.2.2 Likelihood Function 

 

As mentioned earlier, the likelihood is a function that is proportional to the conditional 

probability of the observations for given values of the model parameters. Formulation of the 

likelihood function depends on the type and form of the available information. We now consider 

the problem of formulating the likelihood function for a set of n  q -variate observations with no 

censored data. We assume that for given ),,( 1 qθθθ K=  and covariance matrix Σ  the error 

vector 

( )

( )

( )
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e
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M

M

M
11111

,        ni ,,1 K=  (2.43) 

is distributed as the q -variate normal ),(N Σ0q , and that the n  q -variate observations are 

independent. 

To construct the likelihood function, we start from the joint distribution of the n  vectors 

of errors ),,,,(' 1 ni eeee KK=  with ),,,,(' 1 iqikii eeee KK=  

( ) ( )∏
=

=
n

i
ipp

1

,, ΣθeΣθe        niqke ik ,,1,,,1, KK ==∞<<∞−  

                       ( ) 







−π= ∑

=

−−−
i

n

i
i

nqn eΣeΣ
1

122 '
2
1exp2  

(2.44) 

Introducing the quantity )(θS  defined as the qq×  symmetric matrix 

[ ]),()( lklkS θθθS =  (2.45) 

with 
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∑
=

=
n

i
iliklklk eeS

1
),( θθ  (2.46) 

and using (2.44), the likelihood can be written as 

( ) ( ) ( )





−∝∝ −− θSΣΣΣθeyΣθ 12 tr

2
1exp,, npL  (2.47) 

2.2.3 Posterior Distribution 

 

Combining the likelihood function in (2.47) and the prior distribution in (2.41) according to the 

Bayes updating rule, the posterior distribution for the parameters ),( Σθ  of the multi-variate 

normal model can be written as 

( ) ( ) ( )





−∝ −++− θSΣΣyΣθ 121 tr

2
1exp, qnp  (2.48) 

where each parameter in θ  can vary from ∞−  to ∞  and Σ  is positive definite. In particular, it 

can be shown (Box and Tiao, 1992) that for qn ≥ , the marginal posterior distribution of θ  is 

given by 

( ) ( ) ( ) 2np −∝ θSyθ  (2.49) 

This simple expression is valid even when the expectation functions 

[ ])(,),(),()( 2211 qqµµµ θθθθµ K=  are not linear in the parameters. 

For a general uni-variate model under the assumption of linearity of the expectation 

function in the unknown parameters θ , the model can be written as 

εθHy σ+=  (2.50) 

where y  is the 1×n  vector of observations, H  is a kn×  matrix of known regressors, θ  denotes 

the set of unknown model parameters, ε  is a 1×n  vector of independent random variables 

having the normal distribution with zero mean and unit variance, and σ  represents the standard 

deviation of the model errors. Expanding the matrices, (2.50) can be written as 
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 (2.51) 

As shown by Box and Tiao (1992), for kn > , the posterior distribution of the unknown model 

parameters ),( 2σθ  can be written as 

( ) ( ) ( ) ( )22222 ,ˆ,, σσσ∝σ θθθyθ psppp  (2.52) 

where 

( )

( ) ( )

θHy

yyyy

DHHHθ

ˆˆ

ˆˆ1

ˆ

2

1

=

−=η

−′−
η

=

′′= −

kn

s

 (2.53) 

Box and Tiao (1992) show that, assuming a non-informative prior with θ  and )ln(σ  

approximately independent and locally uniform, i.e., 

( ) ( ) ( ) 222, −σ∝σ=σ ppp θθ  (2.54) 

one can rewrite the joint posterior distribution in (2.52) as 

( ) ( ) ( )2222 ,ˆ, σσ∝σ θθyθ pspp  (2.55) 

Furthermore, under the normality assumption on ε , the marginal posterior distribution of 2σ  is 
22 −

ηχηs  and the marginal posterior distribution of θ  is 
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which is the multi-variate t  distribution, ],)(,ˆ[ 12 η′ −HHθ stk . We note that θ̂  is the mode and the 

mean of θ  and its covariance matrix is )2/()( 12 −η′η −HHs , and the mean and variance of 2σ  

are )2/(2 −ηηs  and )]4()2/[(2 242 −η−ηη s , respectively. 

A relevant property of the multi-variate t  distribution that is used in this study is that the 

marginal distribution of an r -dimensional subset, 1θ , has the multi-variate t  distribution, 

],,ˆ[ 11
2

1 ηCθ str , that is,  
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where 

rk

r

rk

r

−−








=








=

2

1

2

1

ˆ
ˆˆ
θ
θθ

θ
θ

θ  

( )

rkr

rk

r

−

−

−








=′

2221

12111

CC
CC

HH
 

(2.58) 

In particular i1θ  has the distribution ),,ˆ( 2
1 ηθ iii cst , that is  

ii

ii

cs
t 11 θ̂−θ
=  (2.59) 

has the t  distribution with kn −=η  degrees of freedom. 
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2.2.4 Computation of Posterior Statistics Using Importance Sampling 

 
There are cases for which the closed form solutions presented in the previous sections are not 

valid. For example, if censored data are present, then the error vector is not distributed as the q -

variate normal ),(N Σ0q  as we assumed before. In these cases, once the posterior distribution of 

Θ  is derived, one can still compute its mean vector ΘM  and covariance matrix ΘΘΣ . However, 

computation of these quantities, assuming they exist, as well as the normalizing constant κ  in 

(2.5), may not be a simple matter as it requires multifold integration over the Bayesian kernel 

)()( ΘΘ pL . An algorithm for computing these statistics is described in this section. 

In the application of the Bayes formula, we need to compute integrals of the form 

∫= ΘΘ dBI )(  (2.60) 

where )()()()( ΘΘΘΘ pLwB =  is the Bayesian integrand. The choice of the vector-valued 

function )(Θw  depends on the desired posterior statistic. If 1)( ≡Θw  is selected, the integral 

yields κ= /1I  as the inverse of the normalizing constant in the Bayesian updating formula. If 

ΘΘ κ=)(w  is selected, the integral yields the posterior mean vector ΘM  of the parameters. 

Finally, if ΘΘΘ ′κ=)(w  is selected, I  yields the mean square matrix ][E ΘΘ ′ , from which the 

covariance matrix can be computed as ΘΘΘΘ MMΘΘΣ ′−′= ][E . 

An algorithm for computing the integral in (2.60) using multi-dimensional Gauss 

quadrature rules is developed by Geyskens et al. (1993). The approach works well for small a 

number of parameters, about up to 4. For a larger number of parameters, which is the case for the 

applications described in the following chapters, an alternative approach is needed. In the 

following, we describe an importance sampling method (Ditlevsen and Madsen, 1996) that we 

have successfully used for as many as 12 parameters. For the purpose of these applications, the 

algorithm was programmed in Matlab (1999). 

By using an importance sampling density )(ΘS , such that 0)( ≠ΘS  wherever 

0)( ≠ΘB , the Bayesian integral (2.60) is modified to read  

( )
( ) ( )∫ 








= ΘΘ

Θ
Θ dS

S
BI  (2.61) 
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It is seen that the value of the integral is equivalent to the expectation of the ratio )(/)( ΘΘ SB  

relative to the sampling density. By using this property, the integral is estimated by randomly 

sampling realizations iΘ , Ni ,,1 K= , of Θ  according to the sampling density )(ΘS , and 

computing the sample mean 

∑
=

=
N

i i

i

S
B

N
I

1 )(
)(1

Θ
Θ  (2.62) 

The sample variance, divided by N, can be used as a measure of accuracy of the estimate. In 

particular, since κ  is also unknown and has to be estimated along with Θ , the estimate of the 

coefficient of variation (c.o.v.) of ]/[E κΘ  is used to formulate a criterion for terminating the 

simulation. The c.o.v. is estimated as 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
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(2.63) 

We terminate the simulation when the above c.o.v. is sufficiently small, about less than 0.10 or 

0.05. 

The key issue in this approach is the selection of an appropriate sampling density such 

that the ratio )(/)( ΘΘ SB  remains more or less constant at all sampling points. Obviously, the 

best choice is a sampling density that is proportional to the Bayesian integrand )(ΘB . Of course 

this choice is not practical, but we must try to be as close to it as possible. An effective choice for 

the sampling density is described below. 

It is well known (Richards, 1961) that under some mild conditions, the difference 

between the value of Θ  that maximizes the likelihood function, i.e., the so-called maximum-

likelihood estimator, and the posterior mean ΘM  asymptotically approaches zero as the number 

of observations grow. Furthermore, the negative of the inverse of the Hessian of the log-

likelihood function, 1)](ln[ −∇∇− ΘL , evaluated at the maximum-likelihood estimator, 

asymptotically approaches the posterior covariance matrix, ΘΘΣ . We use these approximate 

second moments to construct the sampling density )(ΘS . For this purpose, we make use of the 

Nataf joint distribution model developed by Liu and Der Kiureghian (1986), which is completely 
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defined by the second moments and marginal distributions of the random variables. In case of a 

q -variate model, we define ),,,,( 1 ρσθθΘ qK= , where ),,1,( kkik pi K=θ=θ , qk ,,1 K= , 

),,1,( qkk K=σ=σ  and ρ  represents the set of 2/)1( −qq  unique correlation coefficients 

klρ= (ρ , 1,,1 −= qk K , qkl ,,1 K+= ). (See Chapter 3 for details.) Owing to the applicable 

ranges of the parameters, we select the marginal sampling distributions of kiθ , qk ,,1 K= , 

kpi ,,1 K= , to be normal, the marginal sampling distributions of kσ , qk ,,1 K= , to be 

lognormal, and the marginal sampling distributions of klρ , 1,,1 −= qk K , qkl ,,1 K+= , to be 

beta within the interval ]1,1[ +− . In application, this choice of the sampling density has been 

found to be effective in reducing the required number of simulations for accurate estimation of 

the integral value in (2.61). 

 

 

2.2.5 Computation of Posterior Statistics Using Bootstrap Methods 

 

Another approach to estimate the statistics of the regression parameters is by resampling 

procedures, such as the jackknife and delta method that have been used starting from the late 

1940s. These computer-intensive methods make use of extensive repeated calculations to explore 

the sampling distribution of a parameter estimator Θ̂ . In particular, bootstrap methods go back 

to Efron (1979), who unified the concepts of several resampling procedures and introduced the 

idea of resampling the data with replacement. 

To introduce the general idea of bootstrap methods, suppose we have a random sample 

nyy ,,1 K  drawn independently from one member of a parametric family { ΘΘ Θ IF ∈ } of 

distributions and suppose that )(yT=Θ  is a symmetric function of the sample, i.e., it does not 

depend on the order of the sample. Based on Efron’s idea (Efron, 1982; Efron and Tibshirani, 

1993; Davison and Hinkley, 1997), the bootstrap procedures assess the variability of Θ̂  about 

the unknown true value Θ  by the variability of bΘ̂ , Bb ,,1K= , about Θ̂ , where bΘ̂  is 

calculated based on the b -th of B  samples from y  with replacement. 

Bootstrap methods are very general (Chernick, 1999). They can be applied to linear and 

nonlinear regression models and can be used for least-squares or for any other estimation 
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method. In this section a bootstrap method for a general uni-variate regression model is 

described. The extension to the multi-variate case is straightforward. 

Similar to (2.50), a general regression model can be written as 

( ) εθHy σ+=  (2.64) 

where y  is a 1×n  vector of observations, H  is a 1×n  vector of functions ih  of known form 

and may depend on a fixed vector of covariates, θ  denotes the set of unknown model 

parameters, ε  is a 1×n  vector of random variables having zero mean and unit variance, and σ  

represents the standard deviation of the model errors. Expanding the matrices (2.64) can be 

written as 
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The unknown parameters ),( σ= θΘ  can be estimated by various procedures, e.g., by minimizing 

some measure of distance, by maximum likelihood, or as the mean or mode of the posterior 

distribution (Cano, 1992). If we call the general estimate Θ̂ , the residuals are obtained as 

( )
σ

−
=

ˆ

ˆ
ˆ θHyε  (2.66) 

One bootstrap procedure consists then in bootstrapping the residuals, that is, we construct the 

distribution nF  placing probability n1  on each iε̂ , and we generate bootstrap residuals ∗ε i  for 

ni ,,1K=  by sampling independently from nF  (i.e., we sample with replacement from 

nεε ˆ,,ˆ1 K ). We then generate a bootstrap sample data set as 

( ) ∗∗ σ+= εθHy ˆˆ  (2.67) 
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For each generated bootstrap data set ∗y , we obtain the estimate ∗Θ̂ , with the same technique as 

before. This procedure is repeated B  times, obtaining the bootstrap replications ∗
1Θ̂ ,…, ∗

BΘ̂ . 

Then, according to Efron (1982), we can take as an estimate of the covariance matrix of Θ̂   

( )( )Tb

B

b
bB

∗∗

=

∗∗ −−
−

= ∑ ΘΘΘΘΣ ˆˆˆˆ
1

1ˆ
1

 (2.68) 

where  

∑
=

∗∗ =
B

b
bB 1

ˆ1ˆ ΘΘ  (2.69) 

 



 

3 Probabilistic Capacity Models 

 

3.1 INTRODUCTION 

 

Predictive capacity models in current structural engineering practice are typically deterministic 

and on the conservative side. These models were developed using simplified mechanics rules and 

conservatively fitting to available experimental data. As a result, they do not explicitly account 

for the uncertainty inherent in the model and they provide biased estimates of the capacity. While 

these deterministic models have been successfully used to design safe structures, the needs of 

modern structural engineering practice, and especially the advent of the performance-based 

design concept, require predictive capacity models that are unbiased, that is, on the average 

correctly predict the mean, and which account for all the prevailing uncertainties. 

This chapter presents a Bayesian framework for the development of multi-variate 

probabilistic capacity models for structural components that account for the most relevant 

uncertainties, including model errors arising from an inaccurate model form or missing variables, 

measurement errors, and statistical uncertainty. With the aim of facilitating their use in practice, 

rather than developing new capacity models, we employ existing deterministic capacity models 

in common use but add correction terms to properly account for the inherent bias and uncertainty 

in these models. Through the use of a set of “explanatory” functions, we are able to identify 

terms that correct the bias in an existing model and provide insight into the underlying 

behavioral phenomena. Although the methodology described in this chapter is aimed at 

developing probabilistic capacity models, the approach is general and can be applied to the 

assessment (i.e., model selection and parameter estimation) of models in many engineering 
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problems. In Chapter 4, the methodology presented here is applied to develop probabilistic shear 

and deformation capacity models for RC columns under cyclic loading. 

 

 

3.2 CAPACITY MODELS 

 

In the context of this work, a “model” is a mathematical expression relating one or more 

quantities of interest, e.g., the capacities of a structural component, to a set of measurable 

variables ),,( 21 Kxx=x , e.g., material property constants, member dimensions, or imposed 

boundary conditions. The main purpose of the model is to provide a means for predicting the 

quantities of interest for given deterministic or random values of the variables x . The model is 

said to be uni-variate when only one quantity is to be predicted and multi-variate when several 

quantities are to be predicted. We begin our discussion with the uni-variate form of the model 

and then generalize to the multi-variate case. 

A uni-variate capacity model has the general form  

),( ΘxCC =  (3.1) 

where Θ  denotes a set of parameters introduced into the model to “fit” the model to observed 

data and C  is the capacity quantity of interest. The function ),( ΘxC  can have a general form 

involving algebraic expressions, integrals, or derivatives. Ideally, it should be derived from first 

principles, e.g., the rules of mechanics. For the applications described in Chapter 4, rather than 

developing new models, we adopt commonly used deterministic models, to which we add 

correction terms. We believe this approach will facilitate the use of the resulting probabilistic 

models in practice. With this in mind, we adopt the general uni-variate model form  

( ) ( ) ( ) σε+γ+= θxxΘx ,ˆ, cC  (3.2) 

where )(ˆ xc  is a selected deterministic model, ),( θxγ  is a correction term for the bias inherent in 

the deterministic model that is expressed as a function of the variables x  and parameters 

),,( 21 Kθθ=θ , ε  is a normal random variable with zero mean and unit variance, σ  represents 

the standard deviation of the model error, and ),( σ= θΘ  denotes the set of unknown model 
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parameters. Note that for given x , θ , and σ , we have [ ] 2),(Var σ=ΘxC  as the variance of the 

model. 

The above additive model correction form is valid under the following assumptions: (a) 

the model standard deviation is independent of x  (homoskedasticity assumption) and (b) the 

model error has the normal distribution (normality assumption). Employing a suitable 

transformation of each capacity measure approximately satisfies these assumptions. For a 

positive-valued quantity Y , Box and Cox (1964) have suggested a parameterized family of 

transformations of the form  

0ln

01

=λ=

≠λ
λ
−

=
λ

Y

YC

 (3.3) 

where Y  denotes the quantity of interest in the original space and λ  is a parameter that defines a 

particular transformation. As special cases, 0=λ  specifies the logarithmic transformation, 

2/1=λ  specifies the square-root transformation, 1=λ  is the linear transformation, and 2=λ  

specifies the quadratic transformation. Under the assumptions of homoskedasticity and 

normality, one can formulate the posterior distribution of λ  by use of Bayes’s theorem and 

estimate its value for given data. However, in many practical situations, the model formulation 

itself often suggests the most suitable transformation. Diagnostic plots of the data or the residuals 

against model predictions or individual regressors can be used to verify the suitability of an 

assumed transformation (Rao and Toutenburg, 1997). 

As defined earlier, the function ),( θxγ  corrects the bias in the deterministic model )(ˆ xc . 

Since the deterministic model usually involves approximations, the true form of ),( θxγ  is 

unknown. In order to explore the sources of bias in the deterministic model, we select a suitable 

set of p  “explanatory” basis functions )(xih , pi ,,1 K= , and express the bias correction term 

in the form 

∑
=

θ=γ
p

i
iih

1
)(),( xθx  (3.4) 
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By examining the posterior statistics of the unknown parameters iθ , we are able to identify those 

explanatory functions that are significant in describing the bias in the deterministic model. Note 

that while the bias correction term is linear in the parameters iθ , it is not necessarily linear in the 

basic variables x . 

A structural component may have several capacity measures with respect to the demands 

placed on it. For example, a RC column has different capacities relative to failure in shear, 

bending, reinforcing bar pullout or buckling, or excessive deformation. For the analysis of such a 

component, a q -dimensional multi-variate capacity model is formulated in the form 

( ) ( ) ( ) qkcC kkkkkkk ,,1,,ˆ,, K=εσ+γ+= θxxΣθx  (3.5) 

where 

( ) ( )∑θ=γ
=

kp

i
kikikk h

1
, xθx ,        qk ,,1 K=  (3.6) 

With the exception of the new term Σ , all entries in the above expressions have definitions 

analogous to those of the uni-variate model. Σ  denotes the covariance matrix of the variables 

kkεσ , qk ,,1 K= , with its ( lk, ) element being lkkl σσρ , where klρ  denotes the correlation 

coefficient between kε  and lε . The set of unknown parameters of the model in (3.5) is 

),( ΣθΘ = , where ),,( 1 qθθθ K=  and ),,( 1 kkpkk θθ= Kθ . Considering symmetry, Σ  includes q  

unknown variances 2
kσ , qk ,,1 K= , and 2/)1( −qq  unknown correlation coefficients klρ , 

1,,1 −= qk K , qkl ,,1 K+= . 

 

 

3.3 UNCERTAINTIES IN MODEL ASSESSMENT AND PREDICTION 

 

In assessing a model, or in using a model for prediction purposes, one has to deal with two broad 

types of uncertainties: aleatory uncertainties (also known as inherent variability or randomness) 

and epistemic uncertainties. The former are those inherent in nature; they cannot be influenced 

by the observer or the manner of the observation. Referring to the model formulations in the 

preceding section, this kind of uncertainty is present in the variables x  and partly in the error 
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terms kε . The epistemic uncertainties are those that arise from our lack of knowledge, our 

deliberate choice to simplify the model, from errors that arise in measuring observations, and 

from the finite size of observation samples. This kind of uncertainty is present in the model 

parameters Θ  and partly in the error terms kε . The fundamental difference between the two 

types of uncertainties is that whereas aleatory uncertainties are irreducible, epistemic 

uncertainties are reducible, e.g., by use of higher-order models, more accurate measurements, 

and collection of additional samples. The specific types of uncertainties that arise in assessing 

capacity models are described below. For simplicity in the notation, we use the formulation of a 

uni-variate model. 

Model inexactness: Mathematical models are used in all aspects of performance-based 

earthquake engineering (PBEE), starting from the modeling of the input motion, characterization 

of the ground effects and structural response, and assessment of decision variables. For example, 

an attenuation law used to predict the spectral displacement at a site for a given earthquake 

magnitude and location is a mathematical model. Similarly, a finite element model of the site and 

the structure, including the employed material laws, geometric configurations, and simplified 

mechanics rules, is a mathematical model. So is a rule describing the down time of a structure for 

a given level of structural damage. 

Without exception, all mathematical models are idealizations of reality and, therefore, 

implicit with error and uncertainty. The uncertainty associated with some of the models used in 

PBEE is well known and quantified. For example, the error inherent in an attenuation law is 

quantified in the process of fitting the model to observed data. In other cases, the model 

uncertainty remains completely unknown.  

An important area where the model uncertainty remains largely unknown is where 

models are used to predict the response of soils and structures. If the soil/structure remains 

within the linear elastic range, the existing models of linear theory are fairly accurate. These 

models have been validated against numerous laboratory and field observations. However, when 

the soil or structure behavior is in the inelastic range, the behavior is a lot more complex and our 

mathematical models are unable to capture that complexity. As a general rule, model uncertainty 

tends to increase with the severity of structural response. This is the subject of most interest in 

PBEE. Models used in the current practice to assess damage and collapse of structures are likely 
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to have large errors relative to real structures. This uncertainty is likely to be far greater than the 

uncertainty arising from the natural variability in materials and some loads. 

The only way to assess model uncertainty is to compare model predictions with real-

world observations, either in the field or in the laboratory (with proper account of the departure 

of laboratory specimens from field reality). Observations of building response after major 

earthquakes, including the occurrence or non-occurrence of damage or collapse, provide valuable 

information for model assessment. Although detailed measurements are most informative, 

observations without measurements can also be used. Note that observations of no damage or no 

collapse after an earthquake can be as informative as the observation of damage or collapse. 

Laboratory observations can be used to assess models at component level, as most laboratory 

tests are conducted for structural components.  

With our notation, this type of uncertainty arises when approximations are introduced in 

the derivation of the deterministic model )(ˆ xc . It has two essential components: error in the form 

of the model, e.g., a linear expression is used when the actual relation is nonlinear, and missing 

variables, i.e., x  contains only a subset of the variables that influence the quantity of interest. In 

(3.2), the term ),( θxγ  provides a correction to the form of the deterministic model, whereas the 

error term σε  represents the influence of the missing variables as well as that of the remaining 

error due to the inexact model form. Since the effect of missing variables are inherently random, 

that component of ε  that represents the influence of the missing variables has aleatory 

uncertainty, whereas the component representing inexact model form has epistemic uncertainty. 

In practice, it is difficult to distinguish the two uncertainty components of ε . However, after 

correction of the model form with the term ),( θxγ , one can usually assume that most of the 

uncertainty inherent in ε  is of aleatory nature. The coefficient σ  represents the standard 

deviation of the model error arising from model inexactness. 

Measurement error: Uncertainty arises from errors inherent in our laboratory or field 

measurements. This kind of uncertainty is also present when certain variables in a model remain 

unknown, such as in the case of assessing the capacity of an existing building where the material 

strength cannot be directly measured. Measurement uncertainty can be reduced by use of more 

accurate measurement devices and procedures. 
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As we shall shortly see, the parameters of the model are assessed by use of a sample of 

observations iC  of the dependent variable (corresponding to observed values iY  in the original 

space) for observed values ix , ni ,,1 K= , of the independent variables. These observed values, 

however, could be inexact due to errors in the measurement devices or procedures. To model 

these errors, let Ciii eCC += ˆ  and iii xexx += ˆ  be the true values for the i -th observation, where 

iĈ  and ix̂  are the measured values and Cie  and ixe  are the respective measurement errors. The 

statistics of the measurement errors can be obtained through calibration of measurement devices 

and procedures. The mean values of these errors represent biases in the measurements, whereas 

their variances represent the uncertainties inherent in the measurements. In most engineering 

problems the random variables Cie  and ixe  can be assumed to be statistically independent and 

normally distributed. The uncertainty arising from measurement errors is epistemic in nature, 

since improving the measurement devices or procedures can reduce it. 

Statistical uncertainty: Statistical uncertainty arises from the sparseness of data. 

Gathering more data can reduce it. If additional data cannot be gathered, then one must properly 

account for the effect of this uncertainty in all predictions. 

In particular, the accuracy of estimation of the model parameters Θ  depends on the 

observation sample size, n , among other things. The smaller the sample size, the larger the 

uncertainty in the estimated values of the parameters. This uncertainty can be measured in terms 

of the estimated variances of the parameter. Statistical uncertainty is epistemic in nature, as it can 

be reduced by further collection of data. 

 

 

3.4 LIKELIHOOD FUNCTION 

 

As mentioned earlier, the likelihood is a function that is proportional to the conditional 

probability of the observations for given values of the model parameters. Formulation of the 

likelihood function depends on the type and form of the available information. Here, we start by 

considering the uni-variate model with exact measurements. Next, the effect of measurement 
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error is then incorporated in an approximate manner. The formulation is extended to multi-

variate models. 

In observing the state of a structural component in a laboratory test or in the field with 

respect to a specific mode of failure, one of three possible outcomes may be realized: (a) the 

demand is measured at the instant of failure, in which case the measured demand represents the 

component capacity; (b) the component does not fail, in which case the measured demand 

represents a lower bound to the component capacity; and (c) the component has failed under a 

lower demand than measured, in which case the measured demand represents an upper bound to 

the component capacity. These observations are categorized as three types of data, as described 

below. 

Failure datum — observed value of the capacity iC  for a given ix , measured at the 

instant when the component fails. By using (3.2), we have ),()(ˆ θxx iii cC γ+=  iσε+  or 

)(θii r=σε , where 

( ) ( ) ( )θxxθ ,ˆ iiii cCr γ−−=  (3.7) 

denotes the outcome of the model error term at the i -th observation. 

Lower-bound datum — observed value of a lower-bound iC  to the capacity for a given 

ix , when the component does not fail. In this case we have iiii cC σε+γ+< ),()(ˆ θxx  or 

)(θii r>σε . 

Upper-bound datum — observed value of an upper-bound iC  to the capacity for a given 

ix , when the component is known to have failed at a lower demand level. In this case we have 

iiii cC σε+γ+> ),()(ˆ θxx  or )(θii r<σε . Lower- and upper-bounded data are often referred to 

as “censored data.” 

With exact measurements, and under the assumption of statistically independent 

observations, the likelihood function for the uni-variate model has the general form 

( ) [ ] [ ] [ ])()()(,
data

 boundupper 
data

 boundlower data failure

θθθθ iiiiii rPrPrpL <σε×>σε×=σε∝σ ∏∏∏  (3.8) 
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Since ε  has the standard normal distribution, we can write 

( ) ∏∏∏ 





σ

Φ×





σ

−Φ×














σ

ϕ
σ

∝σ
data boundupper data boundlower data failure

)()()(1,
θθθ

θ iii rrr
L  (3.9) 

where )( ⋅ϕ  and )( ⋅Φ  denote the standard normal probability density function and the 

cumulative distribution function, respectively. 

Now consider the case where measurement errors are present. Denote iĈ  and ix̂  as the 

measured values in the i -th observation and Cie  and ixe  as the corresponding measurement 

errors. Without loss of generality, we assume the measurements have been corrected for any 

systematic error, so that the means of Cie  and ixe  are zeros. Let 2
is  and iΣ  denote the variance of 

Cie  and the covariance matrix of ixe , respectively. As should be evident, we allow  

dependence between the measurement errors for different variables at each observation; 

however, we assume independence between the measurement errors at different  

observations, i.e., for different i . We also assume that the error terms are normally  

distributed. For the failure data we have )ˆ(ˆˆ
iiCii ceC xex +=+ iii σε++γ+ ),ˆ( θex x , for the 

lower-bound data ),ˆ()ˆ(ˆˆ θexex xx iiiiCii ceC +γ++<+ iσε+  and for the upper-bound data 

>+ Cii eĈ iiiiic σε++γ++ ),ˆ()ˆ(ˆ θexex xx . Defining 

( ) ( ) ( )θexexeθ xxx ,ˆˆˆˆ, iiiiiii cCr +γ−+−=  (3.10) 

the conditions for the three types of data can now be written as ),( iiCii re xeθ=−σε , 

),( iiCii re xeθ>−σε , and ),( iiCii re xeθ<−σε , respectively. Unfortunately ),( iir xeθ  in general is 

a nonlinear function of the random variables ixe , which makes the computation of the likelihood 

function enormously more difficult. To overcome this difficulty, under the assumption that the 

errors ixe  are small in relation to the measurements ix̂ , a first-order approximation is used to 

express ),( iir xeθ  as a linear function of ixe . Using a Maclaurin series expansion around 0ex =i , 

we have  
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( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) iii

iiiiiiii

rr

ccCr

i

ii

xx

xxxx

eθθ

eθxxθxxeθ
ˆˆ

,ˆˆˆ,ˆˆˆˆ,

ˆ

ˆˆ

∇+=

γ∇+∇−γ−−≅
 (3.11) 

where x∇  denotes the gradient row vector with respect to x  and  

( ) ( ) ( )θxxθ ,ˆˆˆˆˆ iiii cCr γ−−=  (3.12) 

The conditions for the three types of data can now be written as iiCii re
i xx eθ)(ˆˆ∇−−σε )(ˆ θir= , 

)(ˆ)(ˆˆ θeθ xx iiiCii rre
i

>∇−−σε , and iiCii re
i xx eθ)(ˆˆ∇−−σε  )(ˆ θir< , respectively. The left-hand sides 

of these expressions are a normal random variable with zero mean and variance 

)(ˆ)(ˆ),(ˆ ˆˆ
222 ′∇∇++σ=σσ θΣθθ xx iiii rrs

ii
. Hence, in presence of measurement errors, the 

likelihood function approximate takes the form 

( ) ( )
( )

( )
( )

( )
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( )∏∏∏ 
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L  (3.13) 

We now consider the multi-variate model in (3.5) under exact measurements. For the i -th 

observation, any of the q  capacity measures can be either directly observed, observed from 

below (lower-bound data), or observed from above (upper-bound data). However, these 

observations in general are dependent because of the correlation between the model error terms 

kε . As mentioned earlier, this correlation arises from the missing variables that may be common 

to all the capacity models. Figure 3.1 illustrates a conceptual representation of the various ways 

that the data for a bi-variate capacity model may appear. The curved lines indicate the limit states 

for the two failure modes and the areas with varying intensities of shading indicate regions of 

failure and non-failure with respect to each mode. The dots indicate hypothetical data points. It 

can be seen that the data points can be in 932 =  different categories (i.e., lower-bound lower-

bound data, lower-bound failure data, lower-bound upper-bound data, etc.). More generally, the 

data points for a q -variate model can be of at most q3  different types.  
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Figure 3.1. Representation of data types. 

 

For the i -th observation of the k -th capacity model, define 

( ) ( ) ( )kikikkikki cCr θxxθ ,ˆ γ−−=  (3.14) 

where kiC  is the measured value of the k -th capacity or its lower or upper bound. Also, let kiε  

be the outcome of the error term for the k -th capacity model in the i -th observation. Noting that 

any of the q  capacity terms can be measured as a failure datum, lower-bound datum or upper-

bound datum, the likelihood function takes the form 

( ) ( )[ ] ( )[ ] ( )[ ]∏
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where ),,,( 1 ΣθθΘ qK= . The events in the above expression in general are dependent because of 

the correlation between kiε  for different indices k . The probability term for each observation can 

be computed by using the multi-normal probability density and cumulative distribution 

functions. As an example, Table 3.1 lists the expressions for these terms for a bi-variate model 

with only lower-bound and failure data. 

 

Table 3.1. Probability terms for a bi-variate capacity model with  

lower-bound and failure data. 

Capacity model 1  
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Note: lilkkllk r)/(| σσρ=µ , 2
| 1 klklk ρ−σ=σ , 2,1, =lk , and ζσσρ=µ ζ )/( 2112|1 . 

Chapter 4 describes an application that uses these formulations for assessing a bi-variate 

capacity model for RC columns. Naturally, the required computational effort for evaluating the 

likelihood function grows with increasing dimension of the model. 

In the presence of measurement error, the likelihood function for the multi-variate model 

remains similar to that in (3.15) with the term kik εσ  for the i -th observation of the k -th model 

replaced by ikkiCkikik re
i xx eθ )(ˆˆ∇−−εσ  and )( kkir θ  replaced by )(ˆ kkir θ , which is equivalent to 

(3.12) for the k -th model. This former term is a zero mean normal random variable with 

variance )(ˆ)(ˆ),(ˆ ˆˆ
222 ′∇∇++σ=σσ kkiikkikikkkk rrs

ii
θΣθθ xx  for the i -th observation. Furthermore,  

the terms for the k -th and l -th models have the covariance 
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)(ˆ)(ˆˆˆˆ ˆˆ ′∇∇+σσρ=σσρ lliikkilkkllkkl rr
ii

θΣθ xx , where klρ̂  denotes the correlation coefficient. For the 

bi-variate model described in Table 3.1, the formulation remains the same with kσ , klρ , and 

)( kkir θ  replaced by kσ̂ , klρ̂ , and )(ˆ kkir θ , respectively.  

 

 

3.5 MODEL SELECTION 

 

For the sake of simplicity of notation, the discussion in this section is focused on the uni-variate 

model. However, the concepts discussed are equally applicable to a multi-variate model. 

The probabilistic model in (3.2) and (3.4) requires the selection of the deterministic 

model )(ˆ xc  and a set of explanatory functions )(xih , pi ,,1 K= . For practical prediction 

purposes, the selection process should aim at a model that is unbiased, accurate, and can be 

easily adopted in practice. Furthermore, from a statistical standpoint, it is desirable that the 

correction term ),( θxγ  has a parsimonious parameterization (i.e., has as few parameters iθ  as 

possible) in order to avoid loss of precision of the estimates and of the model due to inclusion of 

unimportant predictors and to avoid over-fit of the data.  

The model form in (3.2) is unbiased by formulation. Furthermore, a good measure of its 

accuracy is represented by the standard deviation σ . Specifically, among a set of parsimonious 

candidate models (in terms of the selected forms of )(ˆ xc  and )(xih ), the one that has the 

smallest σ  can be considered to be the most accurate. Therefore, an estimate of the parameter σ  

and of its standard deviation, e.g., its posterior mean and standard deviation, can be used to select 

the most accurate model among several viable candidates. This procedure is followed in Chapter 

4 to compare two existing models for the shear capacity of RC columns. 

The explanatory functions )(xih  should be selected to enhance the predictive capability 

of the deterministic model )(ˆ xc . It is appropriate to select terms that are thought to be missing in 

)(ˆ xc . Ideally, rules of mechanics should be used in formulating the explanatory functions. 

However, in many cases reliance on engineering judgment is necessary. It is also desirable that 

)(xih  have the same dimension as )(ˆ xc  so that iθ  are dimensionless. It is best to start the model 
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assessment process with a comprehensive candidate form of ),( θxγ  and then simplify it by 

deleting unimportant terms or combining terms that are closely correlated. A step-wise deletion 

process may proceed as follows: 

1. Compute the posterior statistics of the model parameters ),,( 1 pθθ= Kθ  and σ . 

2. Identify the term )(xih  whose coefficient iθ  has the largest posterior coefficient of variation. 

The term )(xih  is the least informative among all the explanatory functions, so one may 

select to drop it from ),( θxγ . 

3. If )(xii hθ  is retained, determine the largest absolute value correlation coefficient 

│
jiθθ

ρ │
ik≠

= max│
kiθθρ │ between iθ  and the remaining parameters kθ , ik ≠ . A value of 

│
jiθθρ │ close to 1, say ≤7.0 │

jiθθρ │, is an indication that the information contents in )(xih  

and )(xjh  are closely related and that these two explanatory functions can be combined. On 

the other hand, a value of │
jiθθρ │ small in relation to 1, say │

jiθθρ │ 5.0≤ , is an indication 

that the information content in )(xih  is not closely related to that in the remaining terms. If 

≤7.0 │
jiθθρ │, one can choose to replace iθ  by  

( )
j

j

i

jii ji θ
θ

θ
θθθ µ−θ
σ

σ
ρ+µ=θ̂  (3.16) 

where 
iθ

µ  and 
iθ

σ  are the posterior mean and standard deviation of iθ , respectively. The 

above expression provides the best linear predictor of iθ  as a function of jθ  (Stone, 1996). 

This reduces one parameter in ),( θxγ . 

4. Assess the reduced model of step 2 or 3 by estimating its parameters. If the posterior mean of 

σ  has not increased by an unacceptable amount, accept the reduced model and return to step 

2 or 3 for possible further reduction of the model. Otherwise, the reduction is not desirable 

and the model form before the reduction is as parsimonious as possible. 

There is considerable room for judgment in the above procedure. This is a part of the art 

of model building. Applications in Chapter 4 demonstrate this step-wise model reduction 

procedure. 



 

4 Applications of Probabilistic 
Capacity Models 

 

4.1 INTRODUCTION 

 

A Bayesian framework for the development of probabilistic capacity models for structural com-

ponents was presented in Chapters 2 and 3. This approach seeks to explicitly account for the 

most relevant uncertainties, including errors arising from an inaccurate model form or missing 

variables, measurement errors, and statistical uncertainty. Moreover, systematic assessment of a 

measure of model quality can be made, thus allowing a comparison of the accuracy of alternative 

candidate models. Through “explanatory” functions in a model correction term, insight into the 

underlying behavioral phenomena is gained. 

Large uncertainty is inherent in predicting the capacity of RC structural components un-

der repeated cyclic loading (Park and Ang, 1985). At the same time, a large body of valuable ex-

perimental data is available that has not been fully utilized. These facts have motivated us to em-

ploy the methodology presented in the previous chapters to develop probabilistic deformation 

and shear capacity models for RC circular columns (Gardoni et al., 2002). This specific class of 

structural components is selected because of their predominant use for bridge structures in many 

seismically active regions of the world. 

As described in Chapter 3, the probabilistic models can be built upon existing determinis-

tic models. The deformation capacity model used in this study is based on the notion of decom-

posing the total displacement of the RC column into its basic components. Specifically, the col-

umn displacement is considered to be composed of elastic and inelastic components, with the 

elastic component itself consisting of contributions from the flexural and shear deformations and 

from the slip of the longitudinal reinforcing bars. For the shear capacity model, owing to the 

complex nature of the underlying load transfer mechanisms, a unique consensus model does not 
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exist. Here, we consider two alternative deterministic models used in practice and assess objec-

tive measures of their relative qualities. The more accurate shear capacity model is subsequently 

used together with the deformation capacity model to formulate a bi-variate deformation-shear 

capacity model. 

 

 

4.2 EXPERIMENTAL DATA 

 

The behavior of RC columns under the effect of repeated cyclic loading has been the focus of 

experimental research by a large number of investigators for many years. A large collection of 

these experimental data is organized at the World Wide Web site 

http://maximus.ce.washington.edu/~peera1/ where references to the original publications for 

each tested column are listed. At the time of this writing, the database contained the results of 

cyclic lateral load tests on 134 circular or octagonal columns, 188 rectangular columns, 11 retro-

fitted columns, and 4 spliced columns from 74 different experimental studies conducted by 115 

investigators. During these experiments, all columns were subjected to constant axial loads. For 

the purpose of this study, out of the 134 tested columns with circular or octagonal cross sections, 

we originally considered the first 117 that were available at the time (June 2000). In this data-

base, columns 38, 69, 75, and 82 did not include spiral reinforcement; column 106 had missing 

data; and columns 108 and 111 were subjected to tensile axial load. These columns were ex-

cluded in the present study. Furthermore, column 53 was selected as a sample column for the 

subsequent fragility analysis and, hence, was also excluded. Following an initial analysis, the 

data for columns 50, 51, and 52 were identified as outliers because the reported test data ap-

peared to be inconsistent with reasonable predictions. These columns were also excluded from 

further consideration. Thus, the analysis reported in this study is based on the data from the re-

maining 106 columns. 

Reported in the database are the material properties and geometry of each test column. 

The ranges of the important variables for the considered columns are listed in Table 4.1.  
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Table 4.1. Ranges of the variables from the database. 

Variable Symbol Range 

Compressive strength of concrete [MPa] cf ′  18.9-42.2 

Yield stress of longitudinal reinforcement [MPa] yf  207-607 

Ultimate strength of longitudinal reinforcement [MPa] suf  396-758 

Yield stress of transverse reinforcement [MPa] yhf  207-607 

Longitudinal reinforcement ratio [%] lρ  0.53-5.50 

Volumetric transverse reinforcement ratio [%] sρ  0.17-3.00 

Slenderness ratio 
gDH /  1.09-10.00 

Ratio of gross to core diameters cg DD /  1.05-1.31 

Axial load ratio cg fDP ′π 24  0.00-0.87 

 

In this table, H  represents the equivalent cantilever length (clear column height) and gD  and 

cD  are the gross and core column diameters, respectively. For octagonal cross sections, the larg-

est circle that can be included in the cross section is used. The database reports the applied con-

stant axial load P , the cyclic lateral load-deformation relationships, and the mode of failure 

(shear, flexure, or combined shear-flexure) for all the tested columns. Since these are all labora-

tory experiments, the measurement errors were judged to be small in relation to the uncertainties 

in the models and were neglected. 

 

 

4.3 DEFORMATION CAPACITY MODEL  

 

Following common practice (Park and Paulay, 1975; Lynn et al., 1996), the deformation capac-

ity of a column is defined as the displacement ∆  corresponding to a drop in the lateral force re-
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sistance equal to 20% of its peak value. Figure 4.1a illustrates this definition for a cyclically 

loaded structural component. 

The lateral load-deformation relationships from the experimental database were exam-

ined to determine ∆  for each of the 106 tested columns. Three categories of observations were 

identified. First are columns for which the lateral force resistance is reached and followed by 

strength degradation up to the threshold drop of 20%. Figure 4.1b illustrates a representative 

case. This type of observation is identified as “failure” datum. Second are columns whose lateral 

force resistance is not reached because of premature load reversal. Figure 4.1c illustrates such a 

case, where stiffness deterioration occurs without reaching the lateral force resistance. The meas-

ured displacement in this case (i.e., that corresponding to 80% of the peak lateral load) is 

obviously a lower bound to the deformation capacity ∆ . This type of observation is identified as 

“lower-bound” datum. Third are columns whose deformation capacity is not reached because of 

possible limitation in the applied maximum displacement. Figure 4.1d illustrates such a case. 

Obviously, the measured maximum displacement provides a lower bound to the deformation ca-

pacity ∆ . This kind of observation is also a “lower-bound” datum, just described. 
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(a) Definition of deformation capacity ∆  (b) Typical failure datum 

 

 

 

 

 

 

(c) Censored datum due to premature (d) Censored datum due to limited 

 load reversal   applied displacement 

Figure 4.1. Deformation capacity definition and data types. 

To develop the deformation capacity model, we employ the drift ratio capacity H/∆=δ , 

where H  is the column height from its base to the centerline of the bridge deck. This is a dimen-

sionless quantity, convenient for model formulation. Let )(ˆ xδ  be an existing deterministic model 

for predicting δ , where =x  ),,,,,,( PDHff gyc KK′  is the set of constituent material, geometry, 

and load variables. Considering the non-negative nature of the deformation capacity, the loga-

rithmic variance-stabilizing transformation is selected among other possible transformations to 

formulate a homoskedastic model. Thus, we adopt the model form 

[ ] [ ] σε+γ+δ=δ δ ),()(ˆln),(ln θxxΘx  (4.1) 

V

V8.0  

∆  
0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

V8.0

∆

V

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15

V8.0  

∆  

V  

0

50

100

150

200

250

0 10 20 30 40

V8.0

∆  

V



 54

where ),( σ= θΘ  is the set of unknown model parameters, ),( θxδγ  is a correction term for the 

bias inherent in the deterministic model, and ε  is a standard normal random variable (i.e., with 

zero mean and unit variance). As described in Chapter 3, σε  represents the random component 

of the model error. Thus, σ  denotes the standard deviation of the model error and is a measure 

of the quality of the model. Because of the employed logarithmic transformation, one can show 

that σ  is approximately equal to the coefficient of variation (c.o.v.) of the drift ratio. What re-

mains to be defined in the model are )(ˆ xδ  and ),( θxδγ . These are developed in the following 

two sections. 

 

 

4.3.1 Deterministic Model 

 

As stated earlier, )(ˆ xδ  on the right-hand side of (4.1) represents the drift ratio capacity predicted 

by a deterministic model. It is a common practice to decompose the ultimate displacement capac-

ity of a column into two components: the elastic component y∆̂  due to the onset of yield, and the 

inelastic component p∆̂  due to the plastic flow, as illustrated in Figure 4.2 for a single RC col-

umn bridge bent. Accordingly, 

( )pyH
∆+∆=δ ˆˆ1)(ˆ x  (4.2) 
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Figure 4.2. Decomposition of lateral displacement of a single-column bridge bent. 
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For an RC column responding as a cantilever (i.e., with a single curvature) with fixed 

base, the yield displacement is comprises a flexural component f∆̂  based on a linear curvature 

distribution along the full column height (Figure 4.2), a shear component sh∆̂  due to shear distor-

tion, and a slip component sl∆̂  due to the local rotation at the base caused by slipping of the lon-

gitudinal reinforcing bars. These three components are illustrated in Figure 4.3.  

S lip

α s l

sl∆̂

S hear

sh∆̂

F lexu re

f∆̂

 
 

Figure 4.3. Components of yield displacement y∆̂  for RC column. 

Thus, we have 

slshfy
ˆˆˆˆ ∆+∆+∆=∆  (4.3) 

Given the curvature yφ  at yield, the flexural component of the displacement is given by 

2

3
1

effyf lˆ φ=∆  (4.4) 

where YPHleff +=  is the effective length of the column, in which YP  denotes the depth of the 

yield penetration into the column base (Figure 4.2). The latter term accounts for the additional 

rotation of the critical section resulting from yield penetration of the longitudinal reinforcement 

into the column footing. According to Priestley et al. (1996), YP  is estimated as  

by df0.022YP =  (4.5) 
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where bd  is the diameter of the longitudinal reinforcement having yield stress yf  which must 

be expressed in units of MPa. 

The shear deformation is obtained from the well-known expression 

ve

y
sh GA

HVˆ =∆  (4.6) 

where yV  is the shear force at yield, G  is the shear modulus of concrete, and Ave is the effective 

shear area. The latter is computed as gsIve AkkA = , where gA  is the gross cross-sectional area, 

9.0=sk  is the shape factor for a circular cross section, and the factor Ik  reflects the increased 

shear deformation in a flexurally cracked RC column. Owing to lack of specific research data, it 

is usually assumed that the reduction in shear stiffness is proportional to the reduction in flexural 

stiffness (Priestley et al., 1996) such that geI IIk /= , where eI  is the effective moment of inertia 

determined from the moment-curvature relationship of the column cross section, as demonstrated 

in Figure 4.4, and gI  is the gross moment of inertia of the cross section.  
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Figure 4.4. Generic moment-curvature diagram. 

The contribution to the yield deformation due to slippage of the column longitudinal rein-

forcing bars is related to the local rotation at the base of the column slα , (Figure 4.3). We adopt 

the assumptions by Pujol et al. (1999) whereby the bond stress at yielding is uniformly distrib-

uted and is given by cf ′=µ 08.1  when MPa units are used, and the column rotates about the 
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neutral axis of the flexurally critical section when slip takes place. These assumptions lead to 

)8/()( µφ=α byysl df . Accordingly, 

'
c

byy
sl

f.

Hdfˆ
648

φ
=∆  (4.7) 

The contributions from post-elastic flexural behavior, diagonal tension cracking, and 

yield penetration are manifested in the so-called plastic hinge rotation, pα , as shown in Figure 

4.2. An equivalent rectangular plastic curvature is commonly assumed (Park and Paulay, 1975). 

Accordingly, the plastic deformation p∆̂  in (4.2) is obtained from 

HlHˆ
pppp φ=α=∆  (4.8) 

where byp df0.044YP0.08Hl ≥+=  is the equivalent plastic hinge length (Priestley et al., 

1996), in which yf  in the lower-bound limit must be expressed in units of MPa, and 

yup φ−φ=φ  is the plastic curvature where uφ  denotes the ultimate curvature.  

A generic moment-curvature relationship with an elastic-perfectly plastic idealization is 

illustrated in Figure 4.4 showing the definitions of yφ  and uφ . In this figure, yM  is the moment 

that induces the first yielding in the column longitudinal reinforcement, yφ′  is the corresponding 

curvature, and IM  is the ideal (theoretical) moment capacity corresponding to the idealized yield 

curvature yφ . In experiments on RC columns conducted by Priestley and Park (1987) and Wat-

son and Park (1994), spalling of the concrete cover, which normally precedes the yielding of the 

longitudinal reinforcement, was found to take place when 005.0≥εc , where cε  is the longitudi-

nal compressive strain of the extreme concrete fiber. In the present study IM  and the corre-

sponding yφ  are conservatively determined by using 005.0=εc . For each tested RC column, all 

the moments and the corresponding curvatures defined above are computed by using fiber-

element section analysis (Thewalt and Stojadinović, 1994). 

From the elastic-perfectly plastic idealization in Figure 4.4, yφ  is determined from the 

linear extrapolation 



 58

y

I

y

y
e

MM
EI

φ
=

φ′
=  (4.9) 

On the other hand, the ultimate curvature uφ  corresponds to cuc ε=ε , where cuε  accounts for the 

confining effects of the transverse reinforcement. This is conducted using the energy balance ar-

gument of Mander et al. (1988) leading to the conservative estimate 

cc

suyhs
cu f

f
′
ερ

+=ε
4.1

004.0  (4.10) 

where SDA chs /4=ρ  is the volumetric ratio of the confining steel, in which hA  is the cross-

sectional area of the transverse reinforcement and S  is the longitudinal spacing of the hoops or 

spirals, suε  is the strain at the maximum tensile stress of the transverse steel, which is commonly 

taken as 0.12 (Priestley et al., 1996), and ccf ′  is the compressive strength of the confined con-

crete, defined according to Mander et al. (1988) as 
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where 2syhel fKf ρ=′  is the effective lateral confining stress, in which 950.Ke =  is the con-

finement effectiveness coefficient for circular sections. 

 

 

4.3.2 Model Correction 

 

The term )( θx,γδ  on the right-hand side of (4.1) is intended to correct the bias inherent in the 

deterministic model )](ˆln[ xδ . As described in Chapter 3, we use the form 

∑=
=

δ

p

i
ii hθ,γ

1
)()( xθx  (4.12) 

where ),,( 1 pθθ= Kθ  is a vector of unknown model parameters and )(,),(1 xx phh K  are selected 

“explanatory” functions. To capture a potential bias in the model that is independent of the vari-
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ables x , we select 1)(1 =xh . To detect any possible under- or overestimation of the individual 

contributions defined in the deterministic models (4.2) and (4.3) to the total deformation, we se-

lect the next four explanatory functions as Hh f /ˆ)(2 ∆=x , Hh p /ˆ)(3 ∆=x , Hh sh /ˆ)(4 ∆=x  and 

Hh sl /ˆ)(5 ∆=x . Additional explanatory functions are selected to capture the possible dependen-

cies of the bias in )](ˆln[ xδ  on different factors characterizing the behavior of the column. We 

select HDh g /)(6 =x  to account for the possible effect of the aspect (slenderness) ratio. To cap-

ture the possible effect of the idealized elastic-perfectly plastic shear force HMV II /= , we in-

troduce )/(4)( 2
7 tgI fDVh ′π=x , where ct ff ′=′ 5.0  in MPa units is the tensile strength of con-

crete. To account for the possible influences of the confining transverse reinforcement and the 

core size, )/()/()(8 gccyhs DDffh ′ρ=x  are selected. To explore the effect of the longitudinal 

reinforcement, we choose cyl ffh ′ρ= /)(9 x . Finally, to capture the effects of the material prop-

erties, cy ffh ′= /)(10 x  and cuεh =)(11 x  are employed. Note that these explanatory functions are all 

dimensionless. As a result, the parameters θ  are also dimensionless. While additional explana-

tory functions or different forms of these functions could be selected, we believe that the selected 

ones are sufficiently broad to capture all the factors that may significantly influence the deforma-

tion capacity of the column. 

 

 

4.3.3 Parameter Estimation 

 

Having defined the deterministic model )(ˆ xδ  and the correction term )( θx,δγ , we are now ready 

to assess the probabilistic model in (4.1), i.e., estimate its parameters ),,,( 111 σθθ= KΘ  by the 

Bayesian updating formula described in Chapter 2. For this purpose, the statistical algorithms are 

programmed in Matlab (1999). Having no prior information on these parameters, we select a 

non-informative prior probability density function )(Θp . As described in Section 2.2, this im-

plies a diffuse prior for θ  and a prior for σ  that is proportional to 1−σ . Hence, we use 
1)( −σ∝Θp . We note that given the large amount of observed data, any reasonable choice of the 

prior has practically no influence on the posterior estimates of the parameters. 
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In Chapter 3, a step-wise deletion procedure was described for reducing the number of 

terms in )( θx,δγ  to achieve a compromise between model simplicity (few correction terms) and 

model accuracy (small σ ). In essence, we eliminate each term )(xii hθ  when the coefficient of 

variation of iθ  is large in comparison to σ . Because of the logarithmic transformation in (4.1), 

σ  is approximately equal to the c.o.v. of the predicted drift ratio. In general, the accuracy of the 

model is not expected to improve by including a term that has a c.o.v. much greater than σ . 

Figure 4.5 summarizes the step-wise term deletion procedure for the deformation model. 

For each step, the figure shows the posterior c.o.v. of the model parameters iθ  (solid dots) and 

the posterior mean of the model standard deviation σ  (open squares).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Step-wise deletion process for the deformation capacity model. A superposed 

cross (×) indicates the term to be removed in the subsequent step. 

 

0 1 2 3 4 5 6 7 8 9

10
0

10
1

C
oe

ff
ic

ie
nt

 o
f v

ar
ia

tio
n 

of
 θ

i (
   

i) 

10 
0 

10 
1 

Po
st

er
io

r m
ea

n 
of

 σ
 ( 

  )
 

10 
0 

10 
1 

Step 

9 

2 

10 

3 

6 4

5 

Po
st

er
io

r m
ea

n 
of

 σ
 ( 

  )
 a

nd
 

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n 
of

 θ
i (

  i
) 



 61

At Step 1 with the complete 12-parameter model, the posterior mean of σ  is 0.306 and the pa-

rameter with the largest c.o.v. (≅ 0.70) is 9θ . To simplify the model, we drop the term ( )x99hθ . 

This is indicated by a cross symbol in Figure 4.5. In Step 2, we assess the reduced 11-parameter 

model. The posterior mean of σ  now is 0.314, which indicates no appreciable deterioration of 

the model, and the parameter with the highest c.o.v. (≅ 0.42) now is 2θ . At the next step, we re-

move the term ( )x22hθ  and continue the same procedure. After 8 steps, we find the largest c.o.v. 

(for parameter 7θ ) to be nearly equal to σ . This is an indication that further reduction may dete-

riorate the quality of the model. Stopping at this step, we are left with the terms )(11 xhθ , )(77 xhθ , 

)(88 xhθ  and )(1111 xhθ . At this stage the mean of σ  is 0.379. 

Analysis with the above reduced model reveals that 8θ  and 11θ  are strongly correlated 

( 85.0−=ρ ) with the posterior statistics 687.0
8
=µθ  and 9.13

9
=µθ , respectively. Considering 

the definitions of )(8 xh  and )(11 xh  and the expression given in (4.10), a strong correlation be-

tween these parameters is not surprising. As a further simplification, by using the above posterior 

estimates of the 4-parameter model, 8θ  is expressed by its linear regression in 11θ  (see (3.16)) as 

118 034.1035.6ˆ θ−−=θ  (4.13) 

Thus, the reduced correction term takes the form  

( ) ( ) cu
gc

cyhs

tg

I

Df
Df

fD
V

εθ+
′

ρ
θ+−+

′π
θ+θ=γδ 1111271 034.1035.64,θx  (4.14) 

with only three unknown parameters.  

Table 4.2 lists the posterior statistics of the remaining parameters ),,,( 1171 σθθθ=Θ  of 

the reduced model. 
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Table 4.2. Posterior statistics of the parameters in the deformation model. 

Correlation coefficient Parameter Mean St. dev. 
1θ  7θ  11θ  σ  

1θ  0.531 0.119 1.0    

7θ  0.701 0.204 −0.37 1.0   

11θ  −48.4 13.6 −0.59 −0.38 1.0  

σ  0.383 0.050 −0.04 0.14 0.20 1.0 

 

The following observations derived from the parameter estimates in Table 4.2 are note-

worthy: (a) The positive mean of 1θ  indicates that, independent of the variables x , the determi-

nistic model )(ˆ xδ  tends to underestimate the deformation capacity of the column. (b) The posi-

tive estimate of 7θ  indicates that the deterministic model tends to underestimate the effect of the 

idealized shear force IV  (corresponding to IM ). This is expected in view of the conservative 

assumption regarding the concrete strain in determining IM  and yφ , as described in Section 

4.3.1. (c) The negative estimate of 11θ  indicates that the deterministic model tends to underesti-

mate the contribution of the transverse reinforcement and overestimate the contribution of the 

ultimate concrete strain. 

Figure 4.6 shows a comparison between the measured and predicted values of the drift ra-

tio capacities for the test columns based on the deterministic (top chart) and the probabilistic 

(bottom chart) models. For the probabilistic model, median predictions )0( =ε  are shown. The 

failure data are shown as solid dots and the censored data (lower bounds) are shown as open tri-

angles. For a perfect model, the failure data should line up along the 1:1 dashed line and the cen-

sored data should lie above it. The deterministic model on the top is strongly biased on the con-

servative side, since most of the failure and many of the censored data lie below the 1:1 line. The 

probabilistic model on the bottom clearly corrects this bias. The dotted lines in the bottom figure 

delimit the region within one standard deviation of the model. We note that a majority of the 
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failure data points fall within the one-standard deviation limits and that most of the censored data 

are above the 1:1 line. 

While the conservatism inherent in the deterministic deformation capacity model might 

be appropriate for a traditional design approach, for a performance-based design methodology, 

unbiased estimates of the capacity are essential. The constructed probabilistic model is unbiased 

and properly accounts for all the underlying uncertainties. 
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Figure 4.6. Comparison between measured and median predicted drift ratio capacities 

based on the deterministic (top) and probabilistic (bottom) models. 
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Figure 4.7. Comparison between measured and median predicted drift ratio capacities 

based on the probabilistic model assessed with only failure data. 

Figure 4.7 explores the information content of the censored data by showing the median 

predicted drift ratio capacities versus the measured capacities for the probabilistic model as-

sessed using only the failure data. We see that the predictions for the failure data alone are unbi-

ased; however, there is no significant improvement on the prediction of the censored data com-

pared to the deterministic model. This shows that the censored data have a relevant information 

content that is not included in the failure data. The region within one standard deviation of the 

model is now narrower ( 272.0=σ ) than in Figure 4.6 ( 383.0=σ ). This is because in combin-

ing the information content of both samples of observations, we have more data points but the 

same flexibility of the model (i.e., the number of free parameters) in fitting the data as before. 
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4.4 SHEAR CAPACITY MODELS 

 

In this section we construct and compare two probabilistic shear capacity models for RC circular 

columns. For this purpose, the maximum lateral load measured in each experiment is classified 

as a “failure” datum if the tested column failed in shear, and as a lower-bound “censored” datum 

if the tested column failed in flexure or in a combined flexural-shear failure mode. In the data-

base used for this analysis, 57 out of the 106 tested columns are in the latter category. 

To develop a dimensionless model for the shear force capacity V , we consider the nor-

malized quantity ) /( tg fAVv ′= , where gA  is the gross cross-sectional area and ct ff ′=′ 5.0  is 

the tensile strength of concrete in MPa units. Owing to the non-negative nature of the shear ca-

pacity, we choose the logarithmic variance-stabilizing transformation to make the model ho-

moskedastic. Thus, we adopt the model form 

( )[ ] ( )[ ] ( ) σε+γ+= θxxΘx ,ˆln,ln vvv  (4.15) 

where ),( σ= θΘ  is the set of unknown model parameters, ( )xv̂  is an existing deterministic 

model for predicting v , ),( θxvγ  is a correction term for the bias inherent in the deterministic 

model, ε  is a standard normal random variable andσε  represents the random component of the 

model error. Owing to the logarithmic transformation used, σ  is approximately equal to the co-

efficient of variation of v . Furthermore, it is a measure of the quality of the model and can be 

used for selection among the competing models. The following sections describe the formula-

tions of ( )xv̂  and ),( θxvγ . 

 

 

4.4.1 Deterministic Models 

 

We consider and compare two predictive models for the shear capacity of RC columns. The first 

model was proposed by the ASCE-ACI Joint Task Committee 426 (1973) and is widely used in 

practice. The second model, proposed by Moehle et al. (1999, 2000), is a refinement of the 

FEMA 273 (1997) model. 
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The ASCE-ACI model is based on the well-known approach of considering the shear ca-

pacity as the sum of a contribution from the concrete, cV̂ , and a contribution from the transverse 

reinforcement, sV̂ , i.e., 

sc VVV ˆˆˆ +=  (4.16) 

where V̂  denotes the deterministic prediction of the shear capacity (often denoted nominal shear 

capacity nV ). According to Priestly et al. (1996), in circular bridge columns, the contribution 

from the concrete is governed by the shear force required to initiate flexure-shear cracking and 

can be expressed as 

a
MAvV d

ebc +=ˆ  (4.17) 

where cctb ffv ′≤′ρ+= 2.0)10067.0(  with units of MPa is the “basic” shear strength of con-

crete, in which lt ρ=ρ 5.0  is the longitudinal tension reinforcement ratio, eA  is the effective 

shear area taken as gA8.0  for circular sections (Priestly et al., 1996), 

=dM 8/)/( gtgg DPyAIP =  is the decompression moment with the axial load P  and 

2/gt Dy = , and VMa /=  is the shear span expressed as the ratio of the moment to shear at the 

critical section, which is taken to be equal to H  for a cantilever column. The contribution from 

the transverse steel in (4.16) is based on the well-known truss analogy and is given by 

S
DfA

V eyhv
s =ˆ  (4.18) 

where hv AA 2=  is the total area in a layer of the transverse reinforcement in the direction of the 

shear force, eD  is the effective depth commonly taken as gD8.0  for circular cross sections, and 

S  is the spacing of transverse reinforcement. Substituting (4.17) and (4.18) in (4.16), we have 

S
DfA

H
DP

AvV gyhhg
gb 6.1125.08.0ˆ ++=  (4.19) 

The second deterministic model, proposed by Moehle et al. (1999, 2000), is a refinement 

of the FEMA 273 (1997) model. This model accounts for the reduction in the shear strength due 

to the effects of flexural stress and redistribution of internal forces as cracking develops. Here the 
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concrete contribution cV̂  is obtained by setting the principal tensile stress in the column equal to 

tf ′ . Considering the stress transformation in Figure 4.8a, interaction between flexural and shear 

stresses, and strength degradation within the plastic hinge, the final form of this model is 

e
gte

t
c A

Af
P

Da
f

kV 










′
+

′
= 1ˆ  (4.20) 

where the aspect ratio eDa /  is limited to the range 1.7–3.9, (Moehle et al., 2000) and k  is a fac-

tor included to account for the strength degradation within the plastic hinge region as a function 

of the displacement ductility yy δδ=∆∆=µ∆
ˆ/ˆ/ , as defined in Figure 4.8b. 

Two alternatives are considered for the drift ratio to be used in the expression for ∆µ . 

The first is simply )(ˆ xδ=δ , the deterministic deformation model described in Section 4.3.1. The 

second is the median of the probabilistic deformation capacity model )],(exp[)(ˆ
ΘMxx δγδ=δ , 

where the parameters are fixed at the posterior mean estimates, ΘM . Note that because the 

probabilistic deformation model was developed making the normality assumption on )ln(δ , its 

mean (obtained by setting 0=ε  and fixing the parameters at their posterior mean estimates ΘM ) 

corresponds to the median of δ . 
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(a) Stress state in the column at shear failure. 

 

 

 

 

 

 

 

(b) Degradation of cV  with displacement ductility. 

Figure 4.8. Shear failure model by Moehle et al. (1999, 2000) 

In the two papers by Moehle et al. (1999, 2000), different approaches are proposed to in-

troduce the effect of strength degradation on, sV̂ . In Moehle et al. (1999), a reduction factor of 

0.5 is applied to sV̂ , whereas in Moehle et al. (2000) sV̂  is reduced by the factor k . In this study, 

although we do not introduce any reduction factor for sV̂  in the deterministic model, we do as-
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sess possible modification of sV̂  due to strength degradation through a properly selected explana-

tory function in the model correction term, as discussed in the following section. 

 

 

4.4.2 Model Correction 

 

As in the deformation capacity model, the model correction term ),( θxvγ  in (4.15) is intended to 

capture the inherent bias in )](ˆln[ xv . As described in Chapter 3, we use the linear form 

∑
=

=
p

i
iiv hθ,γ

1
)()( xθx  (4.21) 

where ),,( 1 pθθ= Kθ  is a vector of unknown parameters of the model and )(,),(1 xx phh K  are 

selected “explanatory” functions. To capture a potential constant bias in )](ˆln[ xv , we select 

1)(1 =xh . To account for a possible correction in the contribution of the longitudinal column re-

inforcement we select lh ρ=)(2 x , and to account for any correction in the effect of the axial load 

we select HfAPDh tgg ′= /)(3 x . Furthermore, to account for any needed modification in the con-

tribution from the transverse reinforcement and, in particular, to investigate the effects of 

strength degradation on sV̂ , we select )/()(4 SfADfAh tggyhv ′=x . Note that the explanatory func-

tions are again dimensionless, making the parameters iθ  also dimensionless. While additional or 

different explanatory functions could be selected, we believe that the above functions capture the 

most significant factors that may influence the shear capacity of RC columns. 

 
 
4.4.3 Parameter Estimation 
 
We are now prepared to estimate the parameters ),,,( 41 σθθ= KΘ  for the shear capacity model 

by using Bayesian inference. Owing to the lack of prior information, the non-informative prior 
1)( −σ∝Θp  is selected. 

Following the step-wise deletion procedure described in Chapter 3 and in Section 4.3.2 

for the deformation capacity model, we use the posterior statistics of the parameters to detect the 

superfluous explanatory functions, which are then dropped to simplify each model. The reduced 
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form of ),( θxvγ  is different for the two deterministic shear capacity models. Furthermore, the 

parameter estimates depend on whether )(ˆ xδ=δ  or )],(exp[)(ˆ
ΘMxx δγδ=δ  is used to compute 

the factor k . Table 4.3 lists the expression of ),( θxvγ  and the posterior mean and standard de-

viation of σ  for each model, computed according to Section 2.2.4.  

As mentioned earlier, a measure of the predictive accuracy of each model is the posterior 

mean estimate of σ . The last two columns of Table 4.3 show that the deformation-dependent 

shear capacity model with [ ]);(exp)(ˆ
ΘMxx δγδ=δ  used in computing the factor k  has the 

smallest error standard deviation and, therefore, is the most accurate model. In the remainder of 

this chapter, we present results only for this model. 

 

Table 4.3. Reduced model correction terms and posterior means and standard 

deviations of σ  for the selected shear models. 

Deterministic model );( θxvγ  Mean 

of σ  

St. dev. 

of σ  

ASCE-ACI 426 model 221 hθ+θ  0.189 0.019 

Deformation-dependent model with )(ˆ xδ=δ  

used in computing k  
4422 hh θ+θ

 
0.179 0.019 

Deformation-dependent model with 

[ ]);(exp)(ˆ
ΘMxx δγδ=δ  used in computing k  

4422 hh θ+θ
 

0.153 0.013 

 

Figure 4.9 summarizes the step-wise deletion process for the selected shear capacity 

model. For each step, the figure shows the c.o.v. of the model parameters iθ  (solid dots) and the 

mean of the model standard deviation σ  (open square). At Step 1 with the complete 5-parameter 

model, the c.o.v. of 3θ  is 0.340 and the mean of σ  is 0.136. To simplify the model, we drop the 

term ( )x33hθ  from the model correction term. This is indicated by a cross symbol at Step 1 in 

Figure 4.9. In Step 2 for the reduced 4-parameter model, the mean of σ  is 0.144, which indicates 
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an insignificant deterioration of the model. The parameter with the highest c.o.v. (=0.348) now is 

1θ . We remove the term ( )x11hθ  and continue the same procedure. At Step 3 we find the largest 

c.o.v. (for parameter 4θ ) to be of the same order of magnitude as the mean of σ , which indicates 

that further simplification is not justified. Thus, the reduced model correction term is 

( ) SfADfA tggyhvlv ′θ+ρθ=γ /, 42θx  (4.22) 

Table 4.4 lists the posterior statistics of the parameters 2θ , 4θ , and σ  for the reduced model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.9. Step-wise deletion process for the shear capacity model. A superposed cross 

(×) indicates the term to be removed in the subsequent step. 
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Table 4.4. Posterior statistics of the parameters in the selected shear model. 

Correlation coefficient 
Parameter Mean St. dev. 

2θ  4θ  σ  

2θ  23.1 1.2 1   

4θ  −0.614 0.120 −0.87 1  

σ  0.153 0.013 −0.13 0.06 1 

 

The following noteworthy observations can be made from the preceding results: (a) The 

fact that the explanatory function 11 =h  is not informative suggests that there is no constant bias 

in the deterministic model. (b) The presence of lh ρ=)(2 x  with a positive coefficient in (4.22), 

equal to 23.1, is an indication that the contribution of the longitudinal reinforcement to the shear 

capacity is underestimated in the deterministic model. This could be because the deformation-

dependent model was calibrated using rectangular column data (Moehle et al., 1999), for which 

the contribution of longitudinal reinforcement is known to be less important than that for circular 

columns, where longitudinal reinforcement is uniformly distributed around the circumference. 

Interestingly, for the ASCE-ACI 426 model, which includes a term representing the contribution 

of lρ , the posterior mean of 2θ  is 4.43, which is far smaller than that for the selected model, i.e., 

23.1. (c) The fact that the explanatory function HfAPDh tgg ′= /)(3 x  appears not informative is 

an indication that the effect of the axial force is accurately accounted for in the deterministic 

model through the transformation of stresses by the Mohr’s circle (Figure 4.8a). (d) The presence 

of the explanatory function SfADfAh tggyhv ′= /)(4 x  with a negative coefficient in (4.22) might 

represent the effect of strength degradation in the contribution from the transverse steel that is 

needed for a more accurate prediction. However, we should note that there are substantial diffi-

culties that arise in interpreting the numerical values of empirical regression coefficients in case 

of high positive or negative correlation between the parameters. Owing to the high negative cor-

relation between 2θ  and 4θ , observations (b) and (d) suggest the need for further experimental 

investigations. 
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Figure 4.10 shows a comparison between the measured and predicted values of the nor-

malized shear capacities for the test columns based on the deterministic (top chart) and probabil-

istic (bottom chart) deformation-dependent shear capacity models. The same definitions as in 

Figure 4.6 apply. It is seen that the deterministic model on the top is strongly biased on the con-

servative side. The probabilistic model on the bottom clearly corrects this bias. The dotted lines 

in this figure delimit the region within one standard deviation of the model. 
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Figure 4.10. Comparison between measured and median predicted shear capacities based 

on the deterministic (top) and probabilistic (bottom) models. 
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As stated for the deformation capacity, while the conservatism inherent in the mechanical 

model might be appropriate for a traditional design approach, for a performance-based design 

methodology unbiased estimates of the capacity are essential. As for the deformation model, the 

Bayesian estimates for the shear model are unbiased and properly account for the underlying un-

certainties. 

Figure 4.11 explores the information content of the censored data by showing the median 

predicted shear capacities versus the measured capacities for the probabilistic model assessed 

using only the failure data. The predictions for the failure data now are unbiased, but a signifi-

cant improvement can be seen in the prediction of the censored data compared to the determinis-

tic model in Figure 4.10 (top). This improvement should not be surprising. As we can see in Fig-

ure 4.10 (top) the censored data lie above an imaginary line going through the failure data, so 

correction for the bias for the failure data also corrects for bias in the censored data. It appears 

that, in this case, the censored data do not provide a significant information content that is not 

already included in the failure data. For the same reason the regions within one standard devia-

tion of the two models are essentially the same in Figures 4.10 (bottom) ( 153.0=σ ) and 4.11 

( 152.0=σ ). 

 

 

 

 

 

 

 

 

Figure 4.11. Comparison between measured and median predicted shear capacities based 

on the probabilistic model assessed with only failure data. 
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4.5 BI-VARIATE DEFORMATION–SHEAR CAPACITY MODEL 

 

In this section a bi-variate deformation-shear capacity model is constructed that accounts for the 

correlation between the two models. The subscripts δ  and v  are used to indicate quantities re-

lated to the deformation and shear capacity models, respectively. By using (4.1) and (4.15), the 

bi-variate capacity model is written as 

( )[ ] ( )[ ] ( )

( )[ ] ( )[ ] ( ) vvvvvv vσv

σ

εσ+γ+=

εσ+γ+δ=δ δδδδδδ

θxxθx

θxxθx

,ˆln,,ln

,ˆln,,ln
 

(4.23a) 

(4.23b) 

where ),,( δδδ σθx , )(ˆ xδ , ),( δδγ θx , ),,( vv σv θx , )(ˆ xv , and ),( vv θxγ  are as defined in Sections 

4.3 and 4.4. Also let ρ  be the unknown correlation coefficient between the model errors δε  and 

vε . The unknown model parameters ( )ρσσ= δδ ,,,, vvθθΘ  are estimated by Bayesian inference. 

Having already determined the informative explanatory functions for each model, the reduced 

model correction terms in (4.14) and (4.22) are used. Owing to the lack of prior information, we 

select the non-informative prior ( ) )()1( 232
vp σσρ−∝ δ

−Θ  (see (2.42) specialized for 2=q ). 

Table 4.5 shows the posterior statistics of the parameters Θ . As expected, the estimates of δθ , 

vθ , δσ  and vσ  are nearly the same as the estimates based on the marginal models. The negative 

sign of the posterior mean of the correlation coefficient shows that the deformation and shear 

capacities are negatively correlated. This indicates that, relative to their median values, a column 

with high deformation capacity is likely to have a low shear capacity, and vice versa. 
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Table 4.5. Posterior statistics of the parameters in the bi-variate deformation– 

shear model. 

 
1,δθ  7,δθ  11,δθ  δσ  2,vθ  4,vθ  vσ  ρ  

Mean 0.512 0.828 −50.8 0.383 43.2 −0.584 0.189 −0.535 

St.dev. 0.0537 0.198 11.5 0.0485 2.73 0.180 0.0187 0.166 

Correlation coefficients 

7,δθ  −0.38        

11,δθ  −0.60 −0.51       

δσ  −0.41 0.36 0.065      

2,vθ  0.021 −0.10 0.066 −0.058     

4,vθ  0.12 0.0019 −0.11 −0.0077 −0.84    

vσ  0.059 0.045 −0.095 0.061 0.017 0.031   

ρ  0.14 −0.29 0.12 −0.26 0.12 0.006 −0.15  

 

 
4.6 SUMMARY 

 

Uni-variate and bi-variate probabilistic models for the deformation and shear capacity of RC cir-

cular columns subjected to cyclic loading are developed by a Bayesian approach using existing 

experimental data for cyclically tested columns. The models are unbiased and explicitly account 

for all the relevant uncertainties, including errors arising from an inaccurate model form or miss-

ing variables, and statistical uncertainty. With the aim of facilitating their use in practice, the 

models are constructed by developing correction terms to existing deterministic models. Through 

a model selection process that makes use of a set of “explanatory” functions, the terms that effec-
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tively correct the bias in the existing model are identified and insight into the underlying behav-

ioral phenomena is gained. However, we should note that there are substantial difficulties that 

arise in interpreting the numerical values of empirical regression coefficients in case of high 

positive or negative correlation between the parameters. In this case, further experimental inves-

tigations may be necessary to gain insight into the physical phenomenon. 



 

 

5 Probabilistic Demand Models 

 

5.1 INTRODUCTION 
 

Predictive demand models in current structural engineering practice are deterministic. Typically, 

they provide biased estimates (i.e., the mean over many trials is different from the true mean) 

and do not account for uncertainties inherent in the modeling process. The advent of a 

performance-based design approach requires unbiased predictive capacity and demand models 

that explicitly account for all the relevant uncertainties. This chapter presents a comprehensive 

Bayesian methodology to construct probabilistic demand models that explicitly account for all 

the relevant uncertainties, including model errors arising from an inaccurate model form or 

missing variables, measurement errors and statistical uncertainty. 

Similar to the formulation of the capacity models (Chapter 3), the probabilistic demand 

models are developed by use of deterministic demand models or procedures used in practice, 

with additional terms that explicitly describe the inherent systematic and random errors. In 

contrast to the deterministic capacity models, the deterministic demand models are not analytical 

expressions. Rather, they are “procedural” models. Two possible practical alternatives are 

considered: (a) Pushover analysis following a prescribed set of rules (e.g., how to select the 

magnitude and distribution of the equivalent loads, what material models to use to approximately 

account for cyclic effects, and how to account for vertical accelerations) followed by nonlinear 

response spectrum analysis; (b) nonlinear time-history dynamic analysis using an “equivalent” 

SDOF hysteretic model, again following prescribed rules (e.g., how to determine the equivalent 

mass, stiffness, damping, and hysteretic properties). Of course these estimates of the demand are 
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typically biased and in error. After some initial investigations, option (a) was selected as the 

“deterministic model” for probabilistic analysis. 

Through the use of a set of “explanatory” functions, we are able to identify terms in the 

selected model that are significant in correcting the bias in the existing deterministic model. 

Moreover, these functions provide means to gain insight into the underlying behavioral 

phenomena and to select ground motion parameters that are most relevant to the seismic demand 

of interest. 

 

 

5.2 PROBABILISTIC DEMAND MODELS FOR COMPONENTS 
 

A demand “model” is a mathematical expression relating the structural demands at the 

component level, e.g., shear and deformation demands of each column of a bridge bent, to the 

demand at the system level, i.e., measures of intensity of the earthquake ground motion. The 

main purpose of the model is to provide a means for predicting the demand on each component 

for given deterministic or random values of a set of basic variables ),,( 21 Kxx=x  representing, 

e.g., material property constants, member dimensions, imposed boundary conditions and 

measures of intensity of the earthquake ground motion. As asserted in Chapters 3 and 4, for 

practical implementation, it is desirable that the model form be based on an existing 

deterministic model. With this in mind, the following form is adopted for a q -dimensional 

demand model 

( ) ( ) ( ) qkdD kkkkkkk ,,1,,ˆ,, K=εσ+γ+= θxxΣθx  (5.1) 

In the above expression, kD  is the k -th demand measure (or a suitable transformation of it, see 

Section 3.2), ( )xkd̂  is the selected deterministic demand model (or the corresponding 

transformation), and ( )kk θx,γ  and kkεσ  are terms that respectively correct for the bias and the 

random error in ( )xkd̂ , in which kε  is a standard normal random variable and kσ  is the standard 

deviation of the model error. The above additive model correction form is valid under the 

following assumptions: (a) the model standard deviation is independent of x  (homoskedasticity 

assumption) and (b) the model error has the normal distribution (normality assumption). 
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Employing a suitable transformation of each demand measure approximately satisfies these 

assumptions (see Section 3.2). In order to explore the sources of bias in the deterministic model, 

the bias correction term is written in the form 

( ) ( )∑
=

θ=γ
kp

j
kjkjkk h

1
, xθx ,            qk ,,1 K=  (5.2) 

where kjθ  and )(xkjh , kpj ,,1 K= , are a set of kp  model parameters and “explanatory” basis 

functions, respectively, for the k-th demand model. By examining the posterior statistics of the 

unknown parameters kjθ , we are able to identify those explanatory functions that are significant 

in describing the bias in the deterministic model. Ideally, the “explanatory” basis functions 

should be selected based on first principles, i.e., laws of structural dynamics, making use of the 

most appropriate parameters that are essential for describing the important characteristics in a 

compact form. 

The eventual goal of developing probabilistic demand models is to construct fragility 

estimates for structural systems. In this context, it is essential to select variables for constructing 

the demand models that reduce the overall aleatory uncertainty both in the demand models and in 

the predictive relationships that are used to estimate the variables within the model, e.g., an 

attenuation relationship for computing peak ground acceleration or spectral ordinate for an 

earthquake with given magnitude and location. Selection of variables that are strongly correlated 

with the component demand but that are difficult to predict for a given earthquake are useless, 

since all the uncertainty would be lumped into the predictive relationship. Similarly, selection of 

variables that can be predicted easily but that are not significant in estimating the component 

demands would shift all the uncertainty to the demand models. The selection of the model 

variables should be based on our engineering judgment guided by statistical analyses. 

Finally, the random error terms kε , qk ,,1 K= , for the different models in general can 

be correlated. Let Σ  denote the covariance matrix of the variables kkεσ , qk ,,1 K= . The set of 

unknown parameters of the model in (5.1) then is ),( ΣθΘ = , where ),,( 1 qθθθ K=  and 

),,( 1 kkpkk θθ= Kθ . Considering symmetry, Σ  includes q  unknown variances 2
kσ , qk ,,1 K= , 

and 2/)1( −qq  unknown correlation coefficients klρ , 1,,1 −= qk K , qkl ,,1 K+= . 
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Having defined the deterministic models )(ˆ xkd  and explanatory functions )(xkjh , we 

assess the probabilistic model in (5.1) by estimating its parameters Θ  through Bayesian 

inference as described in Chapter 2. 

 

 

5.3 PROBABILISTIC DEMAND MODELS FOR SYSTEMS 
 

A structural system may consist of several structural components and, as seen in Section 5.2, 

each structural component may have different demands (e.g., relative to failure in shear, bending, 

reinforcing bar pullout or buckling, or excessive deformation). For the analysis of such a system 

consisting of s  components each having q  different demands, we formulate a qs× -dimensional 

multi-variate demand model in the form 

( ) ( ) ( ) qksidD ikkkiikiikkiik ,,1,,1,,ˆ,, KK ==εσ+γ+= θxxΣθx  (5.3) 

where  

∑θ=γ
=

kp

j
ijkjkkiik h

1
)(),( xθx ,             qksi ,,1,,1 KK ==  (5.4) 

and kσ  represents the standard deviation of the model error for the k -th demand, which is 

assumed to be the same for different components. This notation assumes that component demand 

modes are an ordered set, so that the k -th demands for all components correspond to the same 

mode. 

All entries in the above expressions have definitions analogous to those of the q -

dimensional demand model presented in the previous section. The term Σ  denotes the 

covariance matrix of the variables ikkεσ , si ,,1K= , qk ,,1 K= , and it accounts for the possible 

correlation between the demands on various components. Let ),( jilk xxρ  be the correlation 

coefficient between demand k  of component i  and demand l  of component j , then the equality 

),( jilk xxρ = ),( ijkl xxρ  holds for any structural configuration. In the particular case of 

symmetric structural systems (in terms of geometry and material properties), the equality 

),( jilk xxρ = ),( jikl xxρ  also holds. In the following analysis we assume that this equality is 



 85

approximately true for non-symmetric structures. Hence, Σ  includes q  unknown variances 2
kσ , 

qk ,,1 K= , and, considering the symmetry assumption, 4/)3( −+×+× qqssqs  unknown 

correlation coefficients ),( jilk xxρ . 

In order to explore the sources of correlation in the multi-variate model, we select a 

suitable set of Rp  “explanatory” basis functions ),( jiwRh xx , Rpw ,,1 K= , =ji,  ,,,1 sK  and 

express the correlation coefficient between demand k  of component i  and demand l  of 

component j  in the form 

( )
( )

( )
sjiqlk

h

h

R

R

p

w
jiRwwlk

p

w
jiRwwlk

lkjilk ,,1,,,1,,
,1

,
,,

1

1 KK ==
∑θ+

∑θ
=ρ

=

=

xx

xx
θxx  

(5.5) 

This form was selected because, while ∑
=

θ
Rp

w
jiRwwlk h

1

),( xx  can be greater than 1 or smaller than 

−1, the resulting model for the correlation coefficient, ),,( θxx jilkρ , has the property of ranging 

over ]1,1[− . Also note that the dependence of the correlation coefficients on the component 

properties (e.g., geometry and material properties) is lumped in the known explanatory functions, 

while the unknown parameters =lkθ ),,1,( Rwlk pw K=θ  vary with the demands, k and l , under 

consideration. This formulation is convenient because, since lkθ  are independent from the 

geometry, once they have been estimated, they can be used to construct the correlation 

coefficients for any other structure with given geometry. By examining the posterior statistics of 

the unknown parameters wlkθ , we are able to identify those explanatory functions that are 

significant in describing the correlation between the model error terms ikε , si ,,1K= , 

qk ,,1 K= . The set of unknown parameters of the multi-variate model is then 

),,,,,,,,( 1111 qqqq θθθσθθΘ KKK= , where ,( jkk θ=θ  ),,1 kpj K= , qk ,,1 K= , 

),,1,( qkk K=σ=σ  and =lkθ ),,1,( Rwlk pw K=θ . Applications in Chapter 6 demonstrate 

specific formulations of the probabilistic demand models presented here. 



 

 

6 Applications of Probabilistic 
Demand Models 

 

6.1 INTRODUCTION 

 

In Chapter 5 a Bayesian framework was developed for the formulation of demand models for 

structural components and systems. In this chapter probabilistic deformation and shear demand 

models for RC bridge bents and bridge systems are developed by use of existing observational or 

simulated data. Explicit account of all the prevailing aleatory and epistemic uncertainties is 

made. 

As described in Chapter 5, the probabilistic models are akin to deterministic demand 

models or procedures used in practice, but they have additional terms that explicitly describe the 

inherent systematic and random errors. Through the use of a set of “explanatory” functions, we 

are able to identify terms in the model that are significant in correcting the bias in the existing 

deterministic model. Moreover, these functions provide means to gain insight into the underlying 

behavioral phenomena and to select ground motion parameters that are most relevant to the 

seismic deformation and shear demands. 

 

 

6.2 THE PROBLEM 

 

The structure of interest is a general RC highway bridge with single-column bents (Figure 6.1). 

For this purpose, we want to construct probabilistic models to predict the deformation demand, 
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δiD , and the shear demand, ivD , on each column i , si ,,1K= , of the bridge during an 

earthquake event, where s  denotes the number of bents. 

 

 

 

 

 

Figure 6.1. RC highway bridge with single-column bents. 

Figure 6.2 shows the quantities of interest for the highway bridge in Figure 6.1. In 

general, the demands ikD  and jlD , for failure modes δ= ,, vlk  on columns sji ,,1, K= , are 

correlated due to the presence of the deck. The correlation coefficients ( )jikl xx ,ρ  are unknown 

and need to be estimated along with the model parameters. 

 

 

 

 

 

 

Figure 6.2. Representation of unknown quantities to be estimated. 

The structure in Figure 6.1 can be idealized as a series system of bents with correlated 

dynamic responses. In common engineering practice, each bent is idealized as a single-degree-
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of-freedom (SDOF) system with nonlinear force-displacement relation. An idealized SDOF 

system is shown schematically in Figure 6.3. It consists of a mass m concentrated at the deck 

level and a massless equivalent column that provides stiffness and damping to the system. The 

column is usually assumed to be inextensible in the axial direction. This system may be 

considered as an idealization of a bridge bent, where each structural member (beam, column, 

etc.) of the actual structure contributes to the inertia (mass), stiffness (or flexibility), and energy 

dissipation (damping) properties of the system. The equivalent SDOF system and the manner in 

which its properties are determined represent the “deterministic model” in this case. 

 

 

 

 

 

 

 

 

Figure 6.3. Idealized single-degree-of-freedom system. 

Figure 6.4 summarizes the topic of this chapter. Given an earthquake ground motion 

characterized by a set of parameters, we want to predict ivD  and δiD  on each column i , 

si ,,1K= , along with their correlation structure, by use of the equivalent SDOF model. 

massless
column

mass 

idealization

bridge bent i  degree-of-freedom 
δiD  

viD



 90

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Illustration of the quantities of interest (maximum deformation and shear 

demands) on an equivalent SDOF system subjected to an unknown 

earthquake ground motion with specified characteristics. 

 

6.3 DETERMINISTIC DEMAND MODELS 

 

Ideally, the selected deterministic model for predicting the demand on each component of the 

system should be simple, yet accurate in estimating the quantities of interest. Moreover, it should 

account for the interaction of the components that constitute the structural system. In the present 

study the method proposed by Chopra and Goel (1999) is proposed. The procedure is an 

improvement of the ATC-40 (ATC, 1996) and FEMA-273/FEMA-274 (FEMA, 1997) capacity-

demand diagram methods, which use the well-known constant-ductility spectrum for the demand 

diagram. In this procedure, first, a nonlinear static analysis of the structure subjected to a 

monotonically increasing lateral load is performed (pushover analysis). The distribution of the 

lateral forces corresponds to an assumed displacement shape weighted by tributary masses. Then, 

an equivalent single-degree-of-freedom (SDOF) system with a bilinear force-displacement 
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relationship is derived from the pushover curve of the structure. The deformation demand of the 

equivalent SDOF system is estimated by response spectrum analysis using inelastic spectra. 

Finally, the local seismic demands are determined by pushing the original structure to the 

maximum displacement determined in the previous step. In our study, this procedure is 

implemented numerically using the ny TR −µ−  equations proposed by Krawinkler and Nassar 

(1992). For the sake of completeness, a summary of this procedure is given below: 

1. Consider a bilinear hysteretic system with known properties: nT , natural vibration period, 

ζ , viscous damping ratio of linear elastic system, yV , yield strength, α , strain hardening 

ratio, and mgw = , weight of the system, where m  is the mass and g  is the acceleration 

due to gravity. 

2. Determine the pseudo-acceleration spectrum ordinate (in units of g ) from the given 

elastic response spectrum (following the standard pseudo-acceleration format) for a 

linear-elastic system with period nT  and damping ratio ζ . 

3. Determine the pseudo-acceleration (in units of g ) corresponding to the yield deformation 

wVA yy = . 

4. Determine the yield deformation ( ) gAT yny
2/2π=∆ . 

5. Determine the yield reduction factor yy AAR = . 

6. Compute the ductility factor by using the Krawinkler and Nassar (1992) ny TR −µ−  

equation ( )[ ] cR c
y 11 −+=µ , where ( ) ( )

( ) n
a

n

a
n

n T
b

T
TTc +

+
=α

1
,  with the numerical 

coefficients a  and b  depending on the hardening slope kα  as follows: 0.1=a  and 

42.0=b  for %0.0=α , 0.1=a  and 37.0=b  for %0.2=α , and 8.0=a  and 29.0=b  

for %0.10=α .  

7. Estimate the required deformation demand as y∆µ=∆ . 

This procedure can be numerically implemented and the results are equivalent to those obtained 

from the graphical approach by using the well-known constant-ductility design spectrum 

(Chopra and Goel, 1999). 
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Chopra and Goel’s work focuses on buildings. For buildings, the pushover curve is 

simply the base shear force V  versus the top displacement ∆  (Figure 6.5), where the employed 

distribution of the lateral forces iP  corresponds to the fundamental mode shape 1φ  weighted by 

the tributary mass of each floor. As demonstrated above, the backbone of the method is the 

development of the idealized force-deformation relationship of the SDOF system based on 

utilization of a nonlinear static procedure to develop what is commonly known as the pushover 

curve. This approach can subsequently be combined with the capacity spectrum method 

originally developed by Freeman et al. (1975). In this approach, the following approximations or 

assumptions are implied:  

1. A fixed lateral force distribution derived from the fundamental vibration mode is used. 

2. The earthquake-induced deformation of the inelastic SDOF can be estimated by a 

nonlinear static procedure without the need for dynamic analysis of the inelastic SDOF 

system. 

Several attempts have been made to include the effect of higher modes, e.g., (Paret et al., 1996) 

and rationalize the nonlinear static procedure, e.g., (Chopra and Goel, 1999). 

 

 

 

 

 

 

Figure 6.5 Development of the pushover curve for buildings. 

Fajfar et al. (1997) extended a similar methodology (the N2 method, Fajfar and 

Fischinger, 1987, 1989; Fajfar 2000) to bridges. In the case of bridges, the properties of the 

equivalent SDOF system are determined based on a characteristic force-displacement 

relationship of the bridge system in the transverse direction. The force is the sum of all the lateral 

V  

∆  

iP  

V

∆
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forces (total force) and the displacement is monitored at a “characteristic point” at the deck level, 

where the largest lateral displacement is expected. Note that these selections are rational 

extensions to bridges of base shear (sum of all the lateral forces) and top displacement used for 

buildings. According to Fajfar (2000), the distribution of lateral loading iP  should correspond to 

an assumed displacement shape (not necessarily the first mode shape) weighted by the tributary 

masses. Figure 6.6a shows the displacement shapes φ  suggested by Fajfar for different bridge 

configurations, together with the location of the characteristic point (solid cross). In the case of a 

three-bent bridge with columns close to the abutments shorter than the center column (top 

figure), Fajfar suggests using a triangular displacement shape. In the case of a bridge with more 

than three columns (center figure), the displacement shape is taken as trapezoidal, so that the 

deformations at all the degrees of freedom are equal. A similar trapezoidal displacement shape is 

suggested for a three-bent bridge with columns close to the abutments taller than the center 

column (lower figure). 

In our study, we follow Fajfar’s extension of the capacity-demand diagram method to 

bridges but with one fundamental modification: since we are interested in the shear forces in the 

columns, the force V  is taken as the sum of all the shear forces in the columns, but not including 

the forces taken by the abutments (Figure 6.6b). This approach provides more accurate estimates 

of the shear force demands on the bridge columns. 
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 (a) Forces used in the pushover analysis 

according to Fajfar (2000). 

(b) Forces used in the pushover 

analysis in the present study. 

Figure 6.6 Displacement shapes for different bridge configurations and 

locations of the characteristic point (solid cross). 

6.4 MODEL CORRECTION 

 

The term ),( kiik θxγ  on the right-hand side of (5.3) is intended to correct for the bias inherent in 

the deterministic model )(ˆ
iikd x . We select the linear form in (5.4) for this function, where 

),,1,( kjkk pj K=θ=θ , qk ,,1 K= , is a vector of unknown parameters and )(1 ikh x ,K , 

)( ipk k
h x , si ,,1 K= , qk ,,1 K= , are selected “explanatory” functions. To capture a potential 

constant bias in the model that is independent of the variables x , we select 1)(1 =ikh x . To detect 

any possible under- or overestimation of the deterministic model, we select )(ˆ)(2 iikik dh xx = , 

vk = , or δ  for shear or deformation demands. Additional explanatory functions are selected to 

capture the possible dependence of the residuals on ground motion parameters, which may not be 

properly included or accounted for in the deterministic model. 
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From an earthquake-engineering standpoint, the most important characteristics of a 

strong ground motion are the amplitude, the frequency content, and the duration (Kramer, 1996). 

These characteristics can significantly influence earthquake demand. Nevertheless, knowledge of 

these quantities alone is not sufficient to accurately describe the damage potential of a ground 

motion. 

With this in mind, we select the following candidate explanatory functions: (a) To 

provide information on the amplitude and frequency content of an earthquake ground motion we 

select aik Sh =)(3 x , where aS , in units of g , is the spectral acceleration ordinate at the natural 

period nT  of the system vibrating within its linear elastic range. (b) For a simple harmonic 

oscillation with peak velocity maxv  and peak acceleration maxa , we know that maxmax / av π= 2/T , 

where T  is the period of oscillations. For an earthquake ground motion that includes many 

frequencies, the quantity )/(2 maxmax avπ  can be interpreted as the period of vibration of an 

equivalent harmonic wave. This measure can be used as an indication of the predominant period 

of the ground motion. For this reason we select nik Tavh /)/(2)( maxmax4 π=x . Finally, many 

physical processes, such as stiffness and strength degradation are related to the number of load 

reversals that occur during an earthquake. Since the number of load reversals is related to the 

duration of an earthquake as well as to the period of the structure, we select nDik Tth /)(5 =x , 

where Dt  is the ground motion duration defined by Trifunac and Brady (1975) as the time 

interval between the points at which 5% and 95% of the total energy has been recorded. Note 

that these explanatory functions are all dimensionless. While additional or different explanatory 

functions could be selected, we believe that the above functions capture the most significant 

factors that may influence the demands of RC bridge systems. 

 

 

6.5 CORRELATION MATRIX 

 

In order to explore the sources of correlation in the multi-variate model, we select a suitable set 

of Rp  “explanatory” basis functions ),( jiwRh xx , Rpw ,,1 K=  and sji ,,1, K= , and express the 

correlation coefficients as in (5.5). To capture a potential correlation that is independent of the 

variables x , we select 1),(1 =jiRh xx . To detect any possible dependence of the correlation on 
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the distance between two bents, we select aveijjiR LLh =),(2 xx , where ijL  is the distance 

between bent i  and bent j , and aveL  is the average span length along the longitudinal axis of the 

bridge. We select aveijjiR HHh ∆=),(3 xx  to capture the possible dependence of the correlation 

on the difference in height between bent i  and bent j , ijH∆ , where aveH  is the average bridge 

bent height. Finally, to capture the influence of the spectral acceleration aS , we employ 

ajiR Sh =),(4 xx . Note that these explanatory functions are all dimensionless. As a result, the 

parameters ),,( 1 Rplklklk θθθ K= , qlk ,,1, K= , are also dimensionless. While one could select 

additional explanatory functions or different forms of these functions, we believe the selected 

ones are sufficiently broad to capture all the factors that may significantly influence the 

correlation between the quantities of interest. Table 6.1 summarizes our selection of the 

explanatory function for the correlation matrix. 

Table 6.1. Selected explanatory functions for the correlation matrix. 

Explanatory functions 
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With the above selection of explanatory functions, the correlation coefficient between 

deformation and shear demands of a single column i  reduces to  

 

( ) si
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v
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=
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=
δ

δ x  (6.1) 

and the correlation coefficients between different columns i  and j  reduce to 
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(6.2) 

 

 

6.6 EXPERIMENTAL DATA 

 

The predictive demand models are assessed empirically by using “observed” values of the 

dependent or endogenous variable ikD  and of the independent, exogenous, or explanatory 

variables ix , for an observed sample size n . Unfortunately, data for full-scale bridge systems are 

not available except for ground motions with small intensity (e.g., see Arici and Mosalam, 2000), 

which are not relevant for our study. For this reason, we make use of shake-table tests on single-

column bridge bents and “virtual experiments” on full bridge systems. By “virtual experiments” 

we mean nonlinear dynamic analysis performed on detailed bridge models subjected to selected 

ground motions. 
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6.6.1 Experimental Observations 

 
Existing data on tests of bridge bents are organized at the World Wide Web site 

http://www.ce.berkeley.edu/~gardoni/, where references to the original publications for the tests 

are given. The database currently contains the results of 51 shake-table tests on single-column 

bridge bents with circular cross section. Included in the database are the material properties and 

geometry of each bent, the table motion parameters, and the deformation and shear demands 

defined, respectively, as the maximum deformation to which the column is subjected and the 

maximum applied shear force. Unfortunately no experiments on multi-column bents have been 

conducted. 

It is well known that in short-period structures the displacement ductility factor µ  rapidly 

varies with the natural period nT  (Krawinkler and Nassar, 1992). As a result, a small error in 

estimating nT  could make a significant error in the ductility estimate. Preliminary analysis of the 

bridge bent data revealed that the test data for columns with nT  ≤ 0.14 seconds were largely 

inconsistent with predictions. These data (6 data points) were considered as unreliable and were 

excluded from consideration in this study. Thus, the probabilistic model assessed using the 

remaining 45 data points is not appropriate for very short-period ( nT  ≤ 0.14 seconds) structures. 

Since all tests were conducted under careful laboratory conditions, measurement errors were 

judged to be small in relation to other sources of model uncertainty and were accordingly 

neglected. 

The nonlinear pushover analyses of the bents needed to compute the deterministic 

deformation and shear demands are performed using a nonlinear finite element model 

implemented in the PEER’s OpenSees platform (McKenna and Fenves, 2000). In this model, the 

column is modeled using a two-dimensional nonlinear beam-column fiber element with a 

circular cross section having one layer of steel evenly distributed around the perimeter of the 

confined core. The concrete is modeled using the Kent-Scott-Park stress-strain relation (Kent and 

Park, 1971) with degraded linear unloading/reloading and no strength in tension, and a uni-axial 

bilinear steel model with kinematic hardening with a post-yield stiffness equal to 5% of the pre-

yield stiffness. 
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6.6.2 Virtual Experiments 

 

To assess the unknown parameters lkθ , qlk ,,1, K= , in the correlation coefficients 

),,( lkjilk θxxρ  defined in (5.5) and to include the overall system behavior in the estimates of the 

parameters kθ  in ),( kiik θxγ , si ,,1K= , qk ,,1K= , defined in (5.4), we consider detailed 

nonlinear finite element dynamic analyses performed on a selected bridge system for a suite of 

earthquakes. 

For this purpose, we considered the analyses performed by Fenves and Ellery (1998) on a 

three-dimensional nonlinear model of the Route 14/Interstate 5 separation and overhead bridge. 

As described in Fenves and Ellery (1998), the structure is a curved, ten-span, 483 m long bridge 

with cast-in-place structural concrete box girder superstructure, which partially collapsed in the 

1994 Northridge earthquake. Figure 6.7 shows the elevation and plan of this bridge system. The 

bridge has five frames with single-column piers, connected at four intermediate hinges. The 

column heights vary over the bridge. Pier 7 has the tallest column (37 m) and Pier 2 has the 

shortest (8.7 m). The upper 4.3 m of all the columns are tapered at the soffit of the bridge deck. 

Piers 6 through 9 have internal voids for their entire length. All the columns continue into the 

ground with a 3.7 m diameter cast-in-place drilled shaft. 

The nominal compressive strength of Piers 1 through 7 and 10 is 28 MPa and the one of 

Piers 8 and 9 is 21 MPa. The longitudinal reinforcement is grade 60 and assumed to have an 

actual yield stress of 460 MPa. The column transverse reinforcement is assumed to have an 

actual yield stress of 310 MPa. 

The superstructure is a five-cell box girder, 16.2 m wide and 2.1 m deep. The two end 

frames and the central frame have prestressed box girder superstructures with the deck, soffit, 

and web thickness of 180 mm, 150 mm, and 300 mm, respectively. Six tendons per web prestress 

the section; each of the tendons consists of ten 13 mm nominal diameter strands. The 

conventionally reinforced box girder has a deck, soffit, and web thickness of 180 mm, 160 mm, 

and 200 mm, respectively. 

Fenves and Ellery used the DRAIN-3DX computer program to carry out nonlinear time 

history analyses for a suite of four recorded and two simulated ground motions. The recorded 

motions are from the 1994 Northridge earthquake. They were recorded at Arleta Nordhoff 

Avenue Fire Station (located 10 km from the epicenter), at Jensen Filter Plant (located above the 
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fault rupture zone with an epicentral distance of 12 km), at Newhall Los Angeles County Fire 

Station (located 20 km from the epicenter) and at the Sylmar County Hospital Parking lot 

(approximately 16 km from the epicenter). These ground motions have the largest strong motion 

acceleration recorded near the interchange site during the Northridge earthquake and are 

generally characteristic of the earthquake motion in the epicentral region. The simulated ground 

motions were developed by Horton et al. (1995) at bent 2 and by Hutchings et al. (1996) at ICN 

Station. The motions were assumed to be free-field and uniform for all supports. 

The earthquake analyses provided estimates of the force and deformation demands at the 

component level. The finite element models used by Fenves and Ellery (1998) for the time 

history analyses and for the pushover analyses in the present study are identical. This model is 

illustrated in Figures 6.8 and 6.9. 
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Figure 6.8. Model of separation and overhead bridge (Fenves and Ellery, 1998). 

 
 Figure 6.9. Typical pier model showing node location in column and shaft  (Fenves and 

Ellery, 1998). 

Figure 6.10 shows the values of the “measured” normalized shear and deformation 

demands (solid dots) for two example piers (Piers 7 and 10) when the structure is subjected to 

the 1994 Northridge earthquake recorded at Sylmar Hospital. These are the values estimated by 

Fenves and Ellery (1998). The solid lines represent the force-displacement relationships obtained 

from the pushover analysis of the same structural model and the open circles represent the 

normalized shear force and deformation demands as predicted by the deterministic procedure 
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described in Section 6.3. The disparity between the “measured” and predicted demands is due to 

the error in the deterministic model, i.e., the procedure described in Section 6.3. Similar results 

are obtained for the other piers of the bridge and other ground motions. In the next section we 

construct correction terms that explicitly describe the inherent systematic and random errors in 

the deterministic procedure relative to the “measured” demands. 

 

 

 

 

 

 

 

Figure 6.10. Force-displacement relationship for Piers 7 (left) and 10 (right) and 

comparison between measured (•) and predicted demands (○) based on the 

deterministic models. 

 

 

6.7 PROBABILISTIC DEMAND MODELS FOR COMPONENTS 

 

The experimental observations on single-column bridge bents and the virtual experiments on the 

three-dimensional nonlinear model of the Route 14/Interstate 5 separation and overhead bridge 

are treated as two independent samples of observations. They were used in two stages to assess 

the probabilistic deformation and shear demand models for RC single-column multi-bent bridge 

systems with circular cross section subjected to earthquake ground motion. In this section, uni-

variate and bi-variate probabilistic models are developed for single bents by using only the first 

sample of observations, i.e., the experimental observations described in Section 6.6.1. Then, in 
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the next section, the overall system behavior is included in the estimates of the unknown 

parameters by updating their posterior distribution based on the first sample of observations by 

the information content of the second sample of observations, i.e., the virtual experiments 

described in Section 6.6.2. This application is an example of the versatility of the Bayesian 

approach in combining information coming from different sources in a consistent manner. 

 

 

6.7.1 Deformation Demand Model 

 

To develop the deformation demand model we employ the drift demand ratio, δ , defined as the 

deformation demand, ∆ , normalized by the equivalent cantilever length (clear column height), 

H , of the column. This is a dimensionless quantity, thus convenient for model formulation. 

Diagnostic plots show that the variance is increasing with the demand level, which is a sign of 

heteroskedasticity, so a simple linear regression model is not appropriate. Consequently, 

considering the non-negative nature of the deformation demand, the logarithmic variance-

stabilizing transformation is selected among other possible transformations to formulate a 

homoskedastic model. Diagnostic plots show that the variance in this case can be considered 

approximately independent of the demand level. Note that this transformation is consistent with 

the one used in Chapter 3 in the formulation of the deformation capacity model. 

Diagnostic plots of the residuals from the model versus the explanatory functions 

)(ˆ)(2 xx δδ = idh , aSh =δ )(3 x , nTavh /)/(2)( maxmax4 π=δ x , and =δ )(5 xh  nD Tt /  show no evident 

trend and there is no suggestion of dependence of the residuals on these candidate explanatory 

functions. Evidently, none of the selected ground motion parameters add information to the 

model beyond that already present in the model. The lack of dependence of the residuals on these 

explanatory functions lead us to consider the following simple form for the probabilistic model 

without including terms explicitly involving the ground motion parameters: 

( ) ( ) ( ) ( ) εσ+θ+θ+= δδδδδδδδ xxxΘx 2211
ˆ, hhdD  (6.3) 

In the above, ),( δδ ΘxD  is the natural logarithm of the predicted deformation demand, )(ˆ xδd  is 

the natural logarithm of the deterministic demand estimate, and ),( δδδ σ= θΘ  is the set of 

unknown model parameters. Substituting the expressions for )(xjhδ  in (6.3), one can write 
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( ) ( ) ( )

( ) ( ) εσ+θ+θ+=

εσ+θ+θ+=

δδδδ

δδδδδδδ

12

21

ˆ1

ˆˆ,

x

xxΘx

d

ddD
 (6.4) 

The algorithms needed for the statistical analyses are programmed in Matlab (1999). In 

this statistical analysis, no prior information on the parameters is available. Therefore, we select 

a non-informative prior probability density function for )( δΘp , constructed assuming δθ  and 

δσ  are approximately independent, so that )()(),( δδδδ σ≅σ ppp θθ , δθ  locally uniform, 

=δ )(θp constant, and taking 1)( −
δδ σ∝σp . According to Section 2.2.3, the posterior distribution 

of 2
δσ  is then 22 −

ηδ χηs  where 43245 =−=η , and the posterior distribution of ),( 21 δδδ θθ=θ  is 

],)(,ˆ[ 12
2 η′ −

δδ HHθ st . Table 6.2 lists the posterior statistics of δθ  and 2
δσ  based on the 

experimental observations. 

 

Table 6.2. Posterior statistics of the parameters in the component deformation model 

based on the experimental observations. 

Parameter 1δθ  2δθ  δσ  

Mean 0.012 −0.153 0.216 

St. dev. 0.116 0.028 0.022 

Correlation coefficients 

2δθ  0.96   

δσ  0.05 0.00  

 

From Table 6.2, we note that 1δθ  and 2δθ  are strongly correlated, 0.96=ρ ; such that, according 

to Section 3.5, one can use the approximation  

21 90.361.0ˆ
δδ θ+=θ  (6.5) 

By using this relation, the demand model in (6.4) simplifies to 
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( ) ( ) ( ) εσ+θ++θ+= δδδδδδ xΘx dD ˆ190.361.0, 22  (6.6) 

Figure 6.11 shows a comparison between the measured versus the predicted demands for the test 

single-column bents based on the deterministic (top chart) and median probabilistic models 

( 0=ε ) (bottom chart). The dotted lines in the bottom chart delimit the region within one 

standard deviation of the model. The constructed probabilistic model is unbiased and properly 

accounts for all the underlying uncertainties. 
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Figure 6.11. Comparison between the measured versus the median predicted 

(logarithmic) deformation demands on the deterministic (top) and 

probabilistic (bottom) models. 

Predicted, δd  

M
ea

su
re

d,
 d

δ 

-8 -7 -6 -5 -4 -3 -2 -1
-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

M
ea

su
re

d,
 d

δ 

Median predicted, δd  

-8 -7 -6 -5 -4 -3 -2 -1
-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 



 108

6.7.2 Shear Demand Model 

 

To develop the shear demand model we employ the normalized quantity )/( tgv fAVd ′= , where 

V  is the shear demand, gA  is the gross cross-sectional area, ct ff ′=′ 5.0  is the nominal tensile 

strength of concrete in MPa units, and cf ′  is the compressive strength of concrete in MPa units. 

This is a dimensionless quantity, thus convenient for model formulation. The deterministic shear 

demand is taken as the shear force that corresponds to the deformation demand in the 

approximate bilinear force-displacement relationship used in the deterministic analysis procedure 

proposed by Chopra and Goel (1999). 

 After stabilizing the variance of the model by the logarithmic transformation, we 

investigate the dependence of the residuals on the explanatory functions )(ˆ)(2 xx vv dh = , 

)(ˆ)(2 xx δδ = dh , =)(3 xvh  aS , nv Tavh /)/(2)( maxmax4 π=x , and Tth Dv /)(5 =x . Starting from the 

complete first-order model in the explanatory functions, a step-wise deletion process is 

performed while keeping the hierarchy of terms. Owing to the lack of prior information, the non-

informative prior 1)( −σ∝ vvp Θ  is selected. The reduced model after deleting insignificant terms 

has the form 

( ) ( ) ( ) ( ) ( ) εσ+θ+θ+θ+= δ vvvvvvvvv hhhdD xxxxΘx 232211
ˆ,  (6.7) 

where ),( vvD Θx  is the natural logarithm of the predicted shear demand, )(ˆ xvd  is the natural 

logarithm of the deterministic demand estimate, and ),( vvv σ= θΘ  is the set of unknown model 

parameters. Substituting the expressions for the explanatory functions in (6.7), one can write 

( ) ( ) ( ) ( ) εσ+θ+θ+θ+= δ vvvvvvvv dddD xxxΘx ˆˆˆ, 321  (6.8) 

Again it can be seen that none of the selected ground motion variables provide additional 

information to correct the model beyond that already included in the model. According to 

Section 2.2.3, the posterior distribution of 2
vσ  for the reduced model is 22 −

ηχη vs  where 

42345 =−=η  and the posterior distribution of ),,( 321 vvvv θθθ=θ  is ],)(,ˆ[ 12
3 η′ −HHθ vv st . 
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Table 6.3 lists the values of the posterior statistics of vθ  and vσ  based on the experimental 

observations.  

 

Table 6.3. Posterior statistics of the parameters in the shear demand  

 model based on the experimental observations. 

 

Parameter 1vθ  2vθ  3vθ  vσ  

Mean −0.526 −1.161 0.375 0.278 

St. dev. 0.193 0.152 0.052 0.029 

Correlation coefficients 

2vθ  0.58    

3vθ  0.19 −0.66   

vσ  −0.01 0.03 −0.06  

 

In Chapter 4 we considered a deterministic model from Moehle et al. (1999, 2000) for the 

shear capacity of an RC circular column that accounted for the reduction in the shear strength 

due to the effects of flexural stress and redistribution of internal forces as cracking developed. A 

factor was included in the model (see (4.20)) to account for the strength degradation within the 

plastic hinge region as a function of the displacement ductility, yy δδ=∆∆=µ∆
ˆ/ˆ/ . The 

presence of the explanatory function )(ˆ)(2 xx δδ = dh  with a positive coefficient in the shear 

demand model (6.8) may similarly represent the dependence of the error in the deterministic 

model, ( ) ( )xΘx vvv dD ˆ, − , on the deformation demand. 

Figure 6.12 shows a comparison between the measured and predicted values of the shear 

demands based on the deterministic (top chart) and the probabilistic (bottom chart) models. For 

the probabilistic model, median predictions are shown ( 0=ε ). The dotted lines in the bottom 

chart delimit the region within one standard deviation of the model. We observe that the 
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Bayesian estimates are unbiased and properly account for the underlying uncertainties in the 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12. Comparison between the measured versus the median predicted 

(logarithmic) shear demands based on the deterministic (top) and 

probabilistic (bottom) models. 
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6.7.3 Bi-variate Deformation–Shear Demand Model 

In this section a bi-variate deformation-shear demand model is constructed that accounts for the 

correlation between the two models. By using (6.4) and (6.8), the bi-variate demand model is 

written as 

( ) ( ) ( )

( ) ( ) ( ) ( ) vvvvvvvvvv dddρD

ddρD

εσ+θ+θ+θ+=σ

εσ+θ+θ+=σ

δ

δδδδδδδδδ

xxxθx

xxθx

ˆˆˆ,,,

ˆˆ,,,

321

21

 (6.9) 

The unknown parameters are ),( vθθθ δ= , where ),( 21 δδδ θθ=θ  and =vθ  ),,( 321 vvv θθθ , the 

standard deviations are δσ  and vσ , and the correlation coefficient ρ  is between δε  and vε . The 

posterior distribution of the unknown parameters is given by (2.48) where 45=n  and 2=q . 

Table 6.4 shows the posterior statistics of ),,,( ρσσδ vθ . Since the parameter estimation is based 

on the same set of data as in Sections 6.7.1 and 6.7.2, the estimates of ),( δδδ σ= θΘ  and 

),( vvv σ= θΘ  are nearly the same as the estimates based on the individual models. No 

significant correlation between the errors in the deformation and shear demand models is 

estimated (see the last column of Table 6.4). 
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Table 6.4. Posterior statistics of the parameters in the component bi-variate 

 model based on the experimental observations. 

 1δθ  2δθ  1vθ  2vθ  3vθ  δσ  vσ  ρ  

Mean 0.012 −0.152 −0.510 −1.138 0.369 0.213 0.275 0.033 

St. dev. 0.118 0.029 0.207 0.196 0.060 0.021 0.029 0.185 

Correlation coefficients 

2δθ  0.96        

1vθ  0.04 0.04       

2vθ  0.02 0.007 0.67      

3vθ  0.02 0.03 −0.07 −0.77     

δσ  0.08 0.07 0.01 0.01 −0.02    

vσ  −0.07 −0.07 0.00 0.01 −0.02 0.03   

ρ  0.04 0.00 0.48 0.69 −0.51 0.00 0.00  

 

 

6.8 PROBABILISTIC DEMAND MODELS FOR BRIDGE SYSTEMS 

 

In this section the bi-variate probabilistic demand model introduced in the previous section (see 

(6.9)) is extended to multi-bent bridge systems subjected to earthquake ground motion. To assess 

the unknown parameters lkθ , qlk ,,1, K= , in the correlation coefficient ),,( lkjilk θxxρ  defined 

in (5.5) and to include the overall system behavior in the estimation of the parameters kθ  in 

),( kiik θxγ  and kσ , si ,,1K= , qk ,,1K= , defined in (5.4), we consider the virtual experiments 

described in Section 6.6.2. The nonlinear pushover analyses of the Route 14/Interstate 5 

separation and overhead bridge needed to compute the deterministic deformation and shear 

demands are performed using the same nonlinear finite element model as the one used for the 
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virtual experiments. The algorithms needed for the statistical analyses are programmed in Matlab 

(1999). 

Following the updating process illustrated in Section 2.2, we use as prior distribution for 

the parameters kθ  the posterior distribution derived in the previous section. The updated 

posterior distribution of the unknown parameters is proportional to the likelihood function for the 

virtual experiments multiplied by the previous posterior distribution. This application is an 

example of the versatility of the Bayesian approach in combining information coming from 

different sources in a consistent way. 

For a bridge system with s  single-column bents, (6.9) can be generalized as 

( ) ( ) ( )

( ) ( ) ( ) ( ) sidddD

siddD

viviivivivvivivvivi

iiiiiii

,,1ˆˆˆ,,,

,,1ˆˆ,,,

321

21

K

K

=εσ+θ+θ+θ+=σ

=εσ+θ+θ+=σ

δ

δδδδδδδδδ

xxxρθx

xxρθx

 
(6.10a) 

(6.10b) 

After removing the non-informative terms, the correlation coefficients for the deformation-shear 

model in (6.1) and (6.2) reduce to 
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(6.11a) 

(6.11b) 

(6.11c) 

(6.11d) 

The unknown parameters are then ),( vθθθ δ= , where ),( 21 δδδ θθ=θ  and =vθ  ),,( 321 vvv θθθ , 

and the entries of the covariance matrix ),,,,,( 1111 δδδ
=
δδ θθθθσσ vvv

ji
vv . Table 6.5 shows the 

posterior statistics of ),,,,,,( 1111 δδδ
=
δδ θθθθσσ vvv

ji
vvθ . The posterior means were estimated by 

maximizing the posterior distribution of the parameters and the standard deviations and 
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correlation coefficients were estimated by bootstrapping the residuals with 300 repetitions (see 

Section 2.2.5). For the purpose of these applications, the bootstrapping algorithms are 

programmed in Matlab (1999). 

 

Table 6.5. Posterior statistics of the parameters in the multi-variate system model 

based on the experimental observations and the virtual experiments. 

 
1δθ  2δθ  1vθ  2vθ  3vθ  δσ  vσ  ji

v
=
δθ 1  1δδθ  1vvθ  1δθv  

Mean −1.512 −0.388 −0.076 −0.764 0.278 0.639 0.598 −0.005 0.008 −0.008 0.002 

St. dev.1 0.041 0.025 0.027 0.077 0.045 0.054 0.043 0.137 0.206 0.224 0.179 

Correlation coefficients1 

2δθ  −0.96           

1vθ  0.64 −0.68          

2vθ  −0.74 0.77 −0.90         

3vθ  −0.17 0.19 −0.05 −0.02        

δσ  −0.42 0.45 −0.62 0.74 −0.05       

vσ  −0.45 0.47 −0.47 0.60 0.29 0.81      

ji
v
=
δθ 1  −0.74 0.74 −0.40 0.53 0.16 0.16 0.31     

1δδθ  −0.61 0.65 −0.62 0.75 0.10 0.87 0.90 0.38    

1vvθ  −0.56 0.59 −0.65 0.77 0.00 0.93 0.86 0.29 0.97   

1δθv  −0.59 0.60 −0.63 0.76 0.02 0.87 0.84 0.49 0.90 0.89  

1. By bootstrapping the residuals. 

If there were no information content in the virtual experiments, the posterior statistics in 

Table 6.4 and Table 6.5 would be exactly the same. The numerical differences in the estimates 

then reflect the added information content of the virtual experiments that was not included in 

Table 6.5. In particular, the following observations are noteworthy: (a) The posterior means of 

),( vθθθ δ=  are vastly different in the two cases. This indicates that it is important to include the 

overall system behavior in the model assessment and that the information content of the virtual 

experiments is quite relevant. (b) Combining the information content of both samples, we 
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increase the number of data points while maintaining the number of degrees of freedom of the 

model (the number of parameters) in fitting the data. This increases the values of δσ  and vσ  in 

Table 6.5 with respect to the values in Table 6.4. (c) Using the expressions of the correlation 

coefficients in (6.11) and the posterior estimates of ),,,( 1111 δδδ
=
δ θθθθ vvv

ji
v  in Table 6.5, we have 

005.0−=ρ δv  for ji = , and 008.0=ρ δδ , 008.0−=ρ vv  and 002.0=ρ δv  for ji ≠ . The 

corresponding standard deviations are relatively small, i.e., of order 0.2. These indicate that the 

error terms ikε  and jlε , sji ,,1, K= , qlk ,,1, K= , are practically uncorrelated. The next 

section further explores the effects of the information content of the two samples of observations 

by examining different predictions of the demands. 

 

 

6.9 EFFECTS OF THE TWO INDEPENDENT SAMPLES OF OBSERVATIONS 

 

This section explores the effects of the information content of the first sample of observations, 

the experimental observations described in Section 6.6.1, and of the second sample of 

observations, the virtual experiments described in Section 6.6.2. 

Figure 6.13 shows a comparison between the measured versus the predicted demands for 

the tested single-column bents (open circles) and the results from the virtual experiments (solid 

dots), based on the deterministic and median probabilistic models. For a perfect model, the data 

would line up along the 1:1 dashed line. The dotted lines delimit the region within one standard 

deviation of the probabilistic model. Figure 6.13a shows a comparison between the measured 

and predicted values of the deformation demands based on the deterministic model. In Figure 

6.13b the measured values are plotted versus the median predicted demands based on the 

probabilistic model assessed using only the first sample (single-column experiments) of 

observations. It can be seen  that the probabilistic prediction for the data on single- column bents 

are unbiased, as already pointed out in Section 6.7.1; however, for the virtual experiments the 

median of the probabilistic model overestimates the deformation demand. Figure 6.13c shows 

the measured values plotted versus the median predicted demands based on the probabilistic 

model estimated now using only the second sample (virtual experiments) of observations. 

Clearly, this is the opposite case of the one just described: the predictions for the virtual 

experiments are unbiased, while for the experimental data on single-column bents the median of 
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the probabilistic model underestimates the deformation demand. Finally, Figure 6.13d shows the 

measured values plotted versus the median predicted demands estimated using both samples of 

observations. The latter are based on the posterior statistics in Table 6.5. In this case, if we do not 

distinguish between solid dots and open circles, the predictions are overall unbiased. If we just 

look at the estimates for the data on single-column bents or at the estimates for the data from the 

virtual experiments, we see a worsening from their best estimates shown respectively in Figures 

6.13b and 6.13c. This is because in combining the information content of both samples of 

observations we have more data points but we have used the same degrees of freedom of the 

model (number of parameters) in fitting the data as before. While one would expect the region 

within one standard deviation of the model to be narrower in Figures 6.13b and 6.13c than in 

Figure 6.13d, we note that, since most of the uncertainty is coming from the virtual experiments, 

they are essentially the same in Figures 6.13c ( 627.0=σδ ) and 6.13d ( 639.0=σδ ). 

Figure 6.14 shows the same comparison between measured and predicted demands as 

Figure 6.13 but now for the shear demands. Similar remarks on the effects of the two samples of 

observations can be made. 
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(a) Measured values versus deter-
ministic predictions 

 (b) Measured values versus 
median probabilistic predictions 
using single-column experiments 

 

 

 

 

 

 

 

 

 

 

 

(c) Measured values versus median 
probabilistic predictions using virtual 
experiments 

 (d) Measured values versus 
median probabilistic predictions 
using all data 

Figure 6.13. Comparison between measured and median predicted (logarithmic) 

deformation demands for the tested single-column bents (ο) and the virtual 

experiments (•), based on the deterministic and median probabilistic models. 
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(a) Measured values versus deter-
ministic predictions 

 (b) Measured values versus 
median probabilistic predictions 
using single-column experiments 

 

 

 

 

 

 

 

 

 

 

(c) Measured values versus median 
probabilistic predictions using virtual 
experiments 

 (d) Measured values versus 
median probabilistic predictions 
using all data 

Figure 6.14. Comparison between measured and median predicted (logarithmic) shear 

demands for the tested single-column bents (ο) and the virtual experiments 

(•), based on the deterministic and median probabilistic models. 
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Figure 6.15 shows the deformation demands in the transverse direction for each bent for 

each of the virtual experiments. The solid dots represent the observed demands while the open 

circles are the median predicted values. The dotted lines delimit the region within one standard 

deviation of the model. Each row of charts corresponds to a different excitation among a suite of 

four recorded and two simulated ground motions. From top to bottom, the rows correspond to the 

free-field ground motions recorded at Arleta, Sylmar, Jensen, and Newhall stations and to the 

ground motions simulated by Horton et al. (1995) at bent 2 and by Hutchings et al. (1996) at 

ICN Station. The first column to the left of the chart shows the observed deformation demands 

and the predicted demands based on the deterministic model. For a perfect model the solid dots 

should nail the open circles. We see that the choice of the deterministic method was appropriate 

because, despite its simplicity, it produces fairly accurate results. The second column shows the 

observed deformation demands and the median predicted demands based on the probabilistic 

model assessed using only the first sample of observations (single-column experiments). The 

third column shows the observed deformation demands and the median predicted demands based 

on the probabilistic model assessed using only the second sample of observations (virtual 

experiments). Since the model is assessed based only on the data that are shown here, the model 

corrects the inaccuracies of the deterministic model over the entire length of the bridge. Finally, 

the fourth column shows the observed deformation demands and the median predicted demands 

for the model assessed using both independent samples of observations. In this case, a worsening 

of the predictions can be seen with respect to column 3. As we previously noted, this is because 

in combining the information content of both samples of observations, we have more data points 

but the same degrees of freedom (i.e., number of parameters) of the model as before. A similar 

remark as for Figure 6.13 can be made about the variation of the width of the region within one 

standard deviation of the models. 

For all the ground motions, we note that the closer the pier is to the abutments the larger 

the discrepancy between its observed deformation demands and its median predicted demands. 

This may be due to the use of a trapezoidal displacement shape function, which implies constant 

displacement for each pier. In reality, the short piers close to the abutments tend to displace less 

than the taller piers closer to the center-span of the bridge. The assumed displacement shape is 

more reasonable on the right side of the bridge, where the pier close to the abutment (Pier 10) is 

almost as tall as the tallest pier (Pier 7), than it is on the left side of the bridge where Piers 2, 3, 

and 4 are all significantly shorter than Pier 7. As a result, while the deterministic predictions of 
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the deformation demands on the piers close to the center span are quite accurate, the predictions 

close to the abutments overestimate the actual demands, especially for the piers close to the left 

abutment. A deformation function tapered to the left could give better estimates. These 

discrepancies are also indications that the deterministic procedure employed for the analysis 

provides a poor model of the influence of the abutments. 

Figure 6.16 shows the same comparison between measured and (median) predicted 

demands as Figure 6.15 but now for the shear demands. Similar remarks can be made for Figure 

6.16 as for Figure 6.15. Note, however, that in this case the discrepancies between the observed 

shear demands and the median predicted demands do not increase when approaching the 

abutments as much as before and that these discrepancies are almost completely removed after 

assessing the model by using the virtual experiments (see the last two columns). 
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Figure 6.15. Observed (•) and median predicted (ο) deformation demands for the virtual 

experiments. 
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Figure 6.16. Observed (•) and median predicted (ο) shear demands for the virtual 

experiments. 
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6.10 SUMMARY 

 

Probabilistic models for the deformation and shear demands of RC bridge components and 

systems subjected to earthquake ground motion are developed by a Bayesian approach using 

existing experimental observations on single-column bridge bents and virtual experiments on a 

three-dimensional nonlinear model of the Route 14/Interstate 5 separation and overhead bridge. 

First, uni-variate and bi-variate probabilistic models for single bents are developed using only the 

experimental observations on single-column bridge bents. Then, the overall system behavior is 

included in the estimates of the unknown parameters by updating their posterior distribution 

based on the experimental observations by the information content of the virtual experiments. 

This application is an example of the versatility of the Bayesian approach in combining 

information coming from different sources in a consistent manner. 

The probabilistic models are unbiased and explicitly account for all the relevant 

uncertainties, including errors arising from an inaccurate model form or missing variables, and 

statistical uncertainty. The correlation coefficients between demand measures are also assessed. 

With the aim of facilitating their use in practice, the models are constructed by developing 

correction terms to an existing deterministic procedure. Through the use of a set of “explanatory” 

functions, we are able to identify the terms that effectively correct the bias in the existing models 

and to gain insight into the underlying behavioral phenomena. 



 

7 Fragility Estimates for Structural 
Components and Systems 

 

7.1 INTRODUCTION 

 

In this chapter we define the fragility of structural components and systems along with providing 

alternative estimates that differ according to how parameter uncertainties are treated. By using 

the capacity models described in Chapters 3 and the demand models described in Chapters 5, 

limit-state functions are constructed and fragility estimates are given with special attention given 

to the treatment of aleatory and epistemic uncertainties. 

 

 

7.2 FRAGILITY ASSESSMENT 

 

For structural components and systems, fragility is defined as the conditional probability of 

attaining or exceeding prescribed limit states for a given set of demand variables. Following the 

conventional notation in structural reliability theory (Ditlevsen and Madsen, 1996), let ),( Θxikg  

be a mathematical model for the i -th structural component ( si ,,1K= ) of a general system, 

describing its k-th limit state of interest ( qk ,,1 K= ). The limit-state function is defined such 

that the event }0),({ ≤Θxikg  denotes the attainment or exceedance of the k-th limit state by the 

i -th structural component. As in the previous chapters, x  denotes a vector of measurable 

variables and Θ  denotes a vector of model parameters. Usually x  can be partitioned in the form 

),( srx = , where r  is a vector of material and geometrical variables, and s  is a vector of demand 

variables such as boundary forces or deformations. 



 126

By using the capacity models described in Chapter 3 and the demand models described in 

Chapter 5, the limit-state functions for a structural component can be formulated as  

),,(),,(),,( DikCikik DCg ΘsrΘsrΘsr −=           qksi ,,1,,,1 KK ==  (7.1) 

where ),,( DikD Θsr  denotes the demand value relative to the capacity ),,( CikC Θsr  for the k-th 

failure mode of the i -th structural component. For example, for the failure in shear of an RC 

column i , ),,( CikC Θsr  may be expressed in terms of the maximum shear force that the column 

can sustain, whereas ),,( DikD Θsr  may denote the maximum applied shear force. Note that both 

quantities can be functions of demand variables, e.g., the applied axial force. Therefore, both 

functions ),,( CikC Θsr  and ),,( DikD Θsr  generally could include s  as an argument. 

Most generally, the fragility of a series structural system (e.g., a bridge constituted by 

single-column bents) can be stated as 

{ } 







≤=

= =
UU
s

i

q

k
ikgF

1 1

,0),,(P),( ΘsΘsrΘs  (7.2) 

where ]|[P bA  denotes the conditional probability of event A  for the given values of variable(s) 

b . The uncertainty in the event for the given s  arises from the inherent randomness in the 

capacity variables r , variability in the actual demand for the given s , which is caused by the 

inexact nature of the limit-state model ),,( Θsrikg  (or its sub-models), and the uncertainty 

inherent in the model parameters Θ . We have expressed the fragility as a function of the 

parameters to emphasize that an estimate of the fragility depends on how the model parameters 

are treated. 

Various estimates of fragility can be developed depending on how the parameter 

uncertainties are treated (Der Kiureghian, 1999). These are described in the following sections. 

 

 

7.2.1 Point Estimates of Fragility 

 

A point estimate of the fragility is obtained by ignoring the uncertainty in the model parameters 

and by a point estimate Θ̂  in place of Θ . Most commonly the posterior mean, ΘM , or the 
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maximum likelihood estimate, MLEΘ , is used. The corresponding point estimate of the fragility is 

denoted as  

)ˆ,()(ˆ Θss FF =  (7.3) 

The uncertainty in this estimation arises from the intrinsic variability in r  and from the random 

model correction term ikgε , arising from the correction terms of the capacity and the demand 

models, which is essentially aleatory in nature. In the special case when variables r  are 

deterministically known, )(ˆ sF  can be computed in terms of the multi-normal probability 

distribution of ikgε . More generally, a multifold integral involving the joint distribution of r  and 

ikgε  over the failure domain must be computed. Methods for the numerical computation of such 

probability terms have been well developed in the field of structural reliability (Ditlevsen and 

Madsen, 1996). 

 

 
7.2.2 Predictive Estimate of Fragility 

 

The point estimate of fragility in (7.3) does not incorporate the epistemic uncertainties inherent 

in the model parameters Θ . To incorporate these uncertainties, Θ  must be considered as random 

variables. The predictive estimate of fragility, )(~ sF , is the expected value of ),( ΘsF  over the 

posterior distribution of Θ , i.e., 

( ) ( ) ΘΘΘss dfFF )(,~
∫=  (7.4) 

where )(Θf  is the posterior density of Θ . This estimate of fragility incorporates the epistemic 

uncertainties in an average sense, but it does not distinguish between the fundamentally different 

natures of the aleatory and epistemic uncertainties. 
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7.2.3 Bounds on Fragility 

 

In some applications, it is desirable to determine the uncertainty inherent in the fragility estimate 

due to the epistemic uncertainties. This uncertainty is reflected in the probability distribution of 

),( ΘsF  relative to the parameters Θ , as shown in Figure 7.1. As stated above and shown in the 

figure, )(~ sF  is the mean of this distribution. Exact evaluation of this distribution unfortunately 

requires nested reliability calculations (Der Kiureghian, 1989). Approximate confidence bounds 

can be obtained by first-order analysis in the manner described below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Fragility estimates incorporating epistemic uncertainties. 

 

Consider the reliability index corresponding to the conditional fragility in (7.2), which is 

defined as  

( ) ( )[ ]ΘsΘs ,1, 1 F−Φ=β −  (7.5) 
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where ][1 ⋅Φ−  denotes the inverse of the standard normal cumulative probability. In general 

),( Θsβ  is less strongly nonlinear in Θ  than ),( ΘsF . By using a first-order Taylor series 

expansion around the mean point, the variance of ),( Θsβ  is approximately given by 

( ) ( ) ( )T2 sΣss ΘΘΘΘ β∇β∇≈σβ  (7.6) 

where )(sΘβ∇  is the gradient row vector of ),( Θsβ  at the mean point ΘM , and ΘΘΣ  denotes the 

posterior covariance matrix of Θ . The gradient vector )(sΘβ∇  is easily computed by first-order 

reliability analysis (see Ditlevsen and Madsen, 1996). Bounds on the reliability index can now be 

expressed in terms of a specified number of standard deviations away from the mean. For 

example, ( )ss βσ±β )(~ , where )](~1[)(~ 1 ss F−Φ=β − , denotes the mean plus/minus one standard 

deviation bounds of the reliability index. Transforming these back into the probability space, one 

obtains 

( ) ( )[ ] ( ) ( )[ ]{ }ssss ββ σ+β−Φσ−β−Φ
~  ,~  (7.7) 

as the “one standard-deviation” bounds of the fragility estimate, as illustrated in Figure 7.1. 

These bounds approximately correspond to 15% and 85% probability levels. Applications in 

Chapter 8 demonstrate the theoretical formulation presented here. 



 

8 Fragilities of Reinforced Concrete Bridge 
Components and Systems 

 

8.1 INTRODUCTION 

 

In this chapter fragility estimates are developed for RC bridge components and systems 

following the theory presented in Chapter 7. First, the probabilistic capacity models developed in 

Chapter 4 are used to estimate the fragilities of a typical bridge column in terms of maximum 

deformation and shear demands. Point and interval estimates of the fragilities are computed that 

implicitly or explicitly reflect the influence of epistemic uncertainties. The fragility estimates 

account for the effect of cyclic loading, since the experimental data used in developing the 

probabilistic capacity models (Chapter 4) are obtained from tests on RC columns subjected to 

cyclic loading. 

Next, the probabilistic demand models developed in Chapter 6 are used in conjunction 

with the capacity models (Chapter 4) to construct limit-state functions that properly account for 

all the relevant uncertainties and to objectively assess the seismic fragilities of an example RC 

bridge bent for a given set of ground motion parameters. Predictive estimates of the fragilities are 

computed, where the influences of aleatory and epistemic uncertainties are explicitly reflected. 

For a typical bridge bent in California, the deformation failure mode dominates the fragility 

estimate. 

Finally, this analysis is extended to the fragility assessment of bridge systems. Two 

configurations of typical new California highway overpass bridges are considered and fragility 

estimates are computed both at the component level and at the system level. 
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8.2 FRAGILITY ESTIMATES FOR RC BRIDGE COLUMNS 

 

The probabilistic deformation and shear capacity models developed in Chapter 4 can be used to 

assess the fragility for any circular column with specified geometry, material properties and 

applied compressive axial force. In this section we estimate two uni-variate fragility curves and a 

bi-variate fragility surface for an example column with geometry and material properties that are 

representative of currently constructed RC highway bridge columns in California (Naito et al., 

2000). The considered column has the longitudinal reinforcement ratio %99.1=ρ l , gross 

diameter 520,1=gD  mm with the ratio of gross to core diameters 07.1/ =cg DD , clear height 

140,9=H  mm, and volumetric transverse reinforcement ratio %65.0=ρ s  with yield stress of 

transverse reinforcement 493=yhf  MPa. Furthermore, to account for material variability we 

assume the compressive strength of concrete, cf ′ , to be described by a lognormal distribution 

with mean 35.8 MPa and 10% coefficient of variation, and the yield stress of longitudinal 

reinforcement, yf , to be lognormally distributed with mean 475 MPa and 5% coefficient of 

variation. To account for variability in the axial load, we assume P  to be normally distributed 

with mean 4,450 kN (corresponding to 7% of the axial capacity based on the gross cross-

sectional area) and 25% coefficient of variation. Finally, to account for variability in 

construction, we assume that the effective moment of inertia, eI , is lognormally distributed with 

mean 2.126×1011mm4 and 10% coefficient of variation.  

As defined in the Chapter 7, fragility is the conditional probability of failure given one or 

more measures of demand ),,( 21 Kss=s . The predictive fragility estimate )(~ sF  is the expected 

fragility estimate with respect to the distribution of the model parameters Θ . This estimate 

accounts for the effect of epistemic uncertainties (uncertainty in the model parameters) in an 

average sense. Explicit account of the variability in the fragility estimate due to epistemic 

uncertainties is provided by confidence bounds at specified probability levels. For the purpose of 

these applications, the probabilities of failure are computed with CalREL (Liu et al., 1989) by 

Monte Carlo simulation and the confidence bounds are computed according to Section 7.2.3 by 

using first-order reliability analysis. In the following, these estimates are presented for the 

example column.  
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15%, 85%  
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Predictive, )(~ δF  

Figures 8.1 and 8.2, respectively, show the uni-variate fragility curves with respect to 

drift demand, δ , and normalized shear demand, v , for the example column. The solid lines 

represent the predictive estimates )(~ δF  and )(~ vF  and the dashed lines indicate the approximate 

15% and 85% confidence bounds. The dispersion indicated by the slope of the solid curve 

represents the effect of aleatory uncertainties (those present in cf ′ , yf , P , eI , dε , and vε ) and 

the dispersion indicated by the confidence bounds represents the influence of the epistemic 

uncertainties (those present in the model parameters Θ ). 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 

 

 
Figure 8.1. Fragility estimate for deformation failure of the example circular  

RC column. 
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Normalized shear demand, tg fAVv /=  
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Figure 8.2. Fragility estimate for shear failure of the example circular RC column. 

 

The bi-variate deformation-shear fragility estimates for the example column are obtained 

using the bi-variate capacity model developed in Chapter 4. The fragility in this case is defined 

as failure of the column, in either deformation or shear mode, for a given pair of deformation and 

shear demands. Figure 8.3 shows contour plots of the predictive fragility surface ),(~ vF δ  in 

terms of the drift ratio demand δ  and the normalized shear demand v . Each contour in this plot 

connects pairs of values of the demands δ  and v  that give rise to a given level of fragility in the 

range 0.1–0.9. Significant interaction between the two failure modes, particularly at high demand 

levels, is observed. 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 

0.2 

0.4 

0.6 

0.8 

1 

0.2 0.4 0.6 0.8 1 

10-10

10-5

100



 135

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3. Contour plot of the predictive deformation-shear fragility surface of the 

example circular RC column. 

 

8.3 FRAGILITY ESTIMATES FOR RC BRIDGE BENTS 

 

The probabilistic demand models developed in Chapter 6 can be combined with the probabilistic 

capacity models (Chapter 4) to construct limit-state functions that properly account for all the 

relevant uncertainties. Such limit-state functions can be used to assess the structural fragilities of 

any single-column bent with circular cross section with specified geometry and material 

properties for a given set of ground motion parameters. 

As an example, consider a column with the same geometry and material properties as 

defined in the previous section. The nonlinear pushover analysis of the bent that is now needed 

to compute the deterministic deformation and shear demands, kd̂ , vk ,δ= , is performed using a 

nonlinear finite element model implemented in the PEER’s OpenSees platform (McKenna, 

2000). In this model, the column is represented using a two-dimensional nonlinear beam-column 

element with circular section having one layer of steel evenly distributed around the perimeter of 
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the confined core. The concrete is modeled using the Kent-Scott-Park stress-strain relation (Kent 

and Park, 1971) with degrading linear unloading/reloading and no strength in tension, and a uni-

axial bilinear steel model with kinematic hardening with a post-yield stiffness equal to 5% of the 

pre-yield stiffness. 

The probabilities of failure are computed with the Reliability module in OpenSees 

(Haukaas and Der Kiureghian, 2001) with an external limit-state function evaluator implemented 

in Matlab (1999). The reliability module in OpenSees provides a comprehensive tool for 

uncertainty analysis. Material, geometry, or load variables can be declared as random quantities 

with distributions assigned from a library or provided by the user. Dependence between random 

variables is accounted for. By specifying a set of “limit-state” functions that describe an event of 

interest, e.g., exceeding a deformation threshold, formation of a mechanism, the probability of 

the event or the mean rate of its occurrence in time can be computed. The statistical and model 

uncertainties, introduced in Chapter 3, are accounted for within a Bayesian reliability framework. 

The solid line in Figure 8.4 indicates the predictive fragility estimate, )(~ sF , for the 

example bent defined as the conditional probability of attaining or exceeding the deformation or 

shear limit states (series system) for a given value of aS , where aS , in units of g , is the spectral 

acceleration ordinate at the natural period nT  of the system vibrating within its linear elastic 

range. Note that nT  is not a constant but a function of the basic random variables previously 

defined. In this figure aS  ranges between 0.2 and 1.4, and these limits are within the range of 

values of aS  for the experimental data used to assess the probabilistic demand models. The 

dashed curve indicates the deformation fragility alone and the dotted curve indicates the shear 

fragility alone. We note that for a typical bridge bent in California, the deformation failure mode 

dominates the fragility estimate as intended in the design. 
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Figure 8.4. Fragility estimates for the example single-column bridge bent. 

 

8.4 FRAGILITY ESTIMATES FOR RC BRIDGES 

 

Two configurations of typical new California highway overpass bridges are considered. These 

have been designed by Mackie and Stojadinović (2001) according to Caltrans’s Bridge Design 

Specification and Seismic Design Criteria (Caltrans, 1999), which incorporate recommendations 

from ATC-32 (1996). The first configuration (Figure 8.5) is a single-bent overpass and the 

second (Figure 8.6) is a two-bent overpass. Both configurations have single-column bents, Type 

I integral pile-shaft foundations extending the columns with the same cross sections into the soil, 

as designed by Caltrans (Yashinsky and Ostrom, 2000). The bridge decks have a typical Caltrans 

box section for a three-lane wide roadway. The circular column cross sections have perimeter 

longitudinal bars and spiral confining reinforcement. The design parameters for the example 

overpass bridges are defined in Figures 8.5 and 8.6, and the numerical values are listed in  

Table 8.1. 
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Figure 8.5. Design parameters for the example single-bent overpass bridge (not to scale). 

 

 

 

 

 

 

 

 

 

Figure 8.6. Design parameters for the example two-bent overpass bridge (not to scale). 
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we assume the additional bridge dead load (e.g., weight of vehicles) deadweightload dead additional /WWr =  

is normally distributed with mean equal to 10% of the dead weight and a 25% coefficient of 

variation. For the two-bent overpass, in order to account for the variability in the axial load of the 

two bents, we assume the additional dead loads for bent 1, 1r , and for bent 2, 2r , to be 

statistically independent and identically distributed random variables with the same distribution 

as .r  

Table 8.1. List of the important variables for the systems considered. 

Description Parameter Value/Distribution 

Span length (right and left) L  [mm] 18,300 

Center span length CL  [mm] 44,200 

Span-to-column height ratio HL , 1HL  

2HL  

2.4 

2.0 

Column-to-superstructure dimension ratio sDD  0.75 

Concrete nominal strength  cf ′  [MPa] ( )2.76, 27.6LN  

Reinforcement nominal yield strength yf  [MPa] ( )22.4448.2,LN  

Column longitudinal reinforcement ratio lρ  2.0% 

Column transverse reinforcement ratio sρ  0. 7% 

Soil stiffness based on NEHRP groups 

(FEMA-273, 1996) 
soilK  B 

Additional bridge dead load (as a ratio of 

the deadweight) 
,r  1r , 2r  ( )0.025, 0.1IN  

 

The nonlinear pushover analyses in the transverse direction of the two structures needed 

to compute their deterministic deformation and shear demands, kd̂ , vk ,δ= , are performed with 

PEER’s OpenSees platform (McKenna, 2000) by using a nonlinear model developed by Mackie 

and Stojadinović (2001). In these models, the columns and pile shafts are modeled using a three-

dimensional flexibility-based nonlinear beam-column element with fiber cross section. A simple 
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elastic-plastic material with a post-yield stiffness equal to 1.5% of the pre-yield stiffness is used 

to model all reinforcing steel. The confined concrete is modeled using the Kent-Scott-Park 

stress-strain relation (Kent and Park, 1971). Similarly to the analysis by Fenves and Ellery 

(1998), used in Chapter 6 as virtual experiments, the soil-structure interaction is modeled using 

bilinear springs located along the pile shaft length. The deck is modeled as a linear elastic beam 

with cracked section stiffness. In order to account for the opening and closing of the gap between 

the deck and the abutments, the abutments are modeled using nonlinear elastic-perfectly plastic 

spring-gap elements. 

The probabilities of failure are computed by important sampling centered around the 

origin with the Reliability toolbox of OpenSees (Haukaas and Der Kiureghian, 2001) with an 

external limit-state function evaluator implemented in Matlab (1999).  

The solid line in Figure 8.7 indicates the predictive fragility estimate, )(~ sF , for the 

single-bent overpass defined as the conditional probability of attaining or exceeding the 

deformation or shear limit states (series system) for a given value of the spectral acceleration aS . 

The dashed curve indicates the deformation fragility alone and the dotted curve indicates the 

shear fragility alone. Note that the deformation failure is dominant over the shear failure. This is 

consistent with the displacement-based capacity design approach used by Caltrans. Increasing 

aS , we observe a more gradual increase of the failure probabilities than observed for the single-

bent  bridge (Figure 8.4). This difference is possibly due to the higher redundancy of the bridge 

structure due to the presence of the two abutments, which allows redistribution of the loads near 

failure. 
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Figure 8.7. Fragility estimates for the example single-bent overpass bridge. 
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deformation of bent 2 is smaller then the corresponding probability of failure for bent 1. Finally, 

the solid line in Figure 8.9 indicates the predictive fragility estimate, )(~ sF , for the bridge system 

defined as a series system of the two bents. The dashed curve indicates the deformation fragility 

alone of the bridge and the dotted curve indicates its shear fragility alone. Note that both at the 

component level and at the system level, the deformation failure mode dominates the fragility 

estimate, as intended by the design. 
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Figure 8.8. Fragility estimates for bent 1 (top) and bent 2 (bottom) for the example two-

bent overpass bridge. 
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Figure 8.9. Fragility estimates for the example two-bent overpass bridge. 

 

8.5 SUMMARY 

 

First, the probabilistic capacity models developed in Chapter 4 are used to estimate uni-variate 

fragility curves and bi-variate fragility contours for an example RC bridge column for given 

shear and deformation demands. Point estimates of the fragility curves based on predictive 
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high demand levels, is observed. 

Then, the probabilistic demand models developed in Chapter 6 are combined with the 

probabilistic capacity models to construct limit-state functions that properly account for all the 
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failure is dominant over the shear failure. This is consistent with the displacement-based capacity 

design approach used by Caltrans. 

Finally, the analysis is extended to the fragility assessment of two configurations of 

typical new California highway overpass bridges. Fragilities are estimated both at the component 

level and at the system level. Consistent with the displacement-based capacity design approach 

used to design the bridge systems, the deformation failure mode dominates the fragility estimate. 



9 Conclusions 

 

9.1 SUMMARY OF MAJOR FINDINGS 

 

A methodology is developed for constructing component and system fragility estimates that is 

based on solving reliability problems that involve the structural capacities at the component level 

and the corresponding demands due to an earthquake ground motion. The probability of failure 

of a component is computed as the probability that at least one demand measure is larger or 

equal to the corresponding capacity measure considering different modes of failure. Similarly, by 

means of the concepts of structural reliability, the probability of failure of a structural system is 

defined as the failure of one or more components. 

A comprehensive Bayesian framework for constructing probabilistic capacity and de-

mand models is formulated. The models correct the conservatism inherent in the deterministic 

models and explicitly account for the most relevant uncertainties: model errors arising from an 

inaccurate model form or missing variables, measurement errors, and statistical uncertainty. With 

the aim of facilitating their use in practice, the models are constructed by developing correction 

terms for existing deterministic models derived from first principles, e.g., rules of mechanics. 

The deterministic deformation capacity model used in this study is based on the notion of de-

composing the total displacement of the RC column into its basic components. Specifically, the 

column displacement is considered to be composed of elastic and inelastic components, with the 

elastic component itself consisting of contributions from the flexural and shear deformations and 

from the slip of the longitudinal reinforcing bars. For the shear capacity model, owing to the 

complex nature of the underlying load transfer mechanisms, a unique consensus model does not 

exist. Here, two alternative deterministic models used in practice are considered and objective 

measures of their relative qualities are assessed. The deterministic procedure used to develop the 

demand models was proposed by Chopra and Goel (1999). The procedure is an improvement of 
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the ATC-40 (ATC, 1996) and FEMA-273 (FEMA, 1997) capacity-demand diagram methods, 

which use the well-known constant-ductility spectrum for the demand diagram. In this proce-

dure, first, a nonlinear static analysis of the structure subjected to a monotonically increasing lat-

eral load is performed (pushover analysis). The distribution of the lateral forces corresponds to 

an assumed displacement shape weighted by tributary masses. Then, an equivalent single-

degree-of-freedom (SDOF) system with a bilinear force-displacement relationship is derived 

from the pushover curve of the structure. The deformation demand of the equivalent SDOF sys-

tem is estimated by response spectrum analysis using inelastic spectra. Finally, the local seismic 

demands are determined by pushing the original structure to the maximum displacement deter-

mined in the previous step. 

Through a model selection process that makes use of a set of “explanatory” functions, the 

terms that effectively correct the inherent conservatism in the existing model forms are identi-

fied. Moreover, the explanatory functions provide means to gain insight into the underlying be-

havioral phenomena and to select ground motion parameters that are most relevant to the seismic 

demands. Methods for assessing the unknown model parameters on the basis of observational 

data are described. 

Although the methodology presented is aimed at developing probabilistic capacity and 

demand models, the approach is quite general and can be applied to the assessment of models 

(i.e., model selection and parameter estimation) in many engineering problems.  

As the principal application of the methodology, probabilistic models for the deformation 

and shear capacities of RC circular columns subjected to cyclic loading are developed using ex-

isting experimental data for cyclically tested columns. Probabilistic models for the deformation 

and shear demands of RC bridges subjected to earthquake ground motions are developed using 

experimental observations on single-column bridge bents and virtual experiments on a bridge 

system. The conceptual idea of virtual experiments is introduced and the effectiveness of ground 

motion parameters in improving the predictive models is explored. 

The probabilistic capacity and demand models are used in a formulation to assess the fra-

gility of structural components and systems, with due consideration given to the different natures 

of aleatory and epistemic uncertainties. Point estimates of the fragility based on posterior esti-

mates and predictive analyses, as well as confidence intervals on fragility that reflect the influ-

ence of epistemic uncertainties are presented. 
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First, the probabilistic capacity models developed are used to estimate uni-variate defor-

mation and shear fragility curves and bi-variate deformation-shear fragility contours for an ex-

ample RC bridge column. Significant interaction between the two failure modes, particularly at 

high demand levels, is observed. Point estimates of the fragility curves based on predictive 

analysis are derived together with confidence intervals on the fragilities that reflect the influence 

of epistemic uncertainties. 

Then, the probabilistic demand models developed are combined with the probabilistic ca-

pacity models to construct limit-state functions that properly account for all the relevant uncer-

tainties and are used to assess the structural fragilities of an example RC single-column bent for a 

given set of ground motion parameters. The deformation failure is found to be dominant over the 

shear failure. This is consistent with the displacement-based capacity design approach followed 

by Caltrans and used to design the example bent. 

Finally, the analysis is extended to the fragility assessment of two configurations of typi-

cal new California highway overpass bridges. Fragilities are estimated both at the component 

level and at the system level. Consistent with the displacement-based capacity design approach 

used to design the bridge systems, the deformation failure modes dominate the fragility estimates 

both at the component and at the system level. 

The developed probabilistic models are properly applicable only to components and 

structural systems that have geometry and material properties within the range of the observa-

tions used to assess the models. The normalized form that is used in the model formulation al-

lows the extension of the applicability to cases in which at least the values of the normalized 

quantities that enter in the models are within the range of the observations. Application of these 

models to components and systems significantly different from the ones used for the model as-

sessment (e.g., multi-column bents) is not appropriate without further investigation. 

 

 

9.2 FURTHER STUDY 

 

In order to increase the range of applicability of the models and to improve their quality, reduc-

ing the statistical uncertainty, more data should be collected and used in the model assessment. 

In particular tests on the system level and instrumentation of actual structural systems would 

provide additional data that would allow estimating the component demands accounting for the 
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system interaction without having to use virtual experiments that have an intrinsic model error. 

Furthermore, data for different structural configurations (e.g., multi-column bents) would 

broaden the applicability of the models. The Bayesian approach used in this work is perfectly 

suited to incorporate new information, as they become available. This can simply be done by up-

dating the latest posterior distribution of the parameters. 

The uncertain or random nature of phenomena that are of interest in the engineering prac-

tice make probabilistic analysis methods and statistics essential in decision-making and risk as-

sessment. Furthermore, structural reliability and reliability/probabilistic-based design require ex-

perience both in engineering mechanics to properly model the structural behavior and limiting 

states and in statistics and probability in order to estimate and predict under conditions of uncer-

tainty. The methodology presented here is general and can be applied to the assessment of mod-

els and limit states in many engineering problems. 

In particular, in civil engineering statistics is a fundamental tool for constructing a prob-

abilistic foundation for the development of performance-based guidelines, and for building a 

structure for coordinating, combining, and assessing the many considerations implicit in per-

formance-based seismic assessment and design. Performance-based earthquake engineering 

(PBEE) implies design, evaluation, and construction of engineered facilities whose performance 

under common and extreme loads responds to the diverse needs and objectives of owner, users, 

and the society. PBEE is based on the premise that performance can be predicted and evaluated 

with sufficient confidence for the engineer and client jointly to make intelligent and informed 

decisions based on building life-cycle considerations rather than on construction costs alone. Im-

plementation of such a design decision process necessitates a shift away from prescriptive codes 

and toward a design and assessment process more firmly rooted in the realistic prediction of 

structural behavior and load environment, with full account of the underlying uncertainties. This 

process implies a shift toward a probabilistic-oriented design approach, with an emphasis on ac-

curate characterization and prediction that employs statistics more than it did in the past. In par-

ticular, a probabilistic approach is essential for a consistent treatment of risk and uncertainties, 

for the identification and quantification of performance parameters, for the assessment of uncer-

tainties in demands and capacities, for addressing life-cycle cost issues, for the formulation of 

engineering limit states, and for the fragility assessment of structural components and systems. 

Together with the increasing need of reliability/probabilistic-based design and analysis 

methods in engineering, the advent of new technologies that enable engineers to collect, manipu-
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late, and display extensive data with minimal human intervention will drastically increase the 

diffusion and implementation of probabilistic methods and statistics in the future. 
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Appendix Invertible Transformations 

 

After a brief description on invertible transformations, the probability density function in (2.42) 

is derived from (2.41). 

Following Stone (1996), we start by considering a vector of random variables 
T

qXX ],,[ 1 K=X , distributed with probability density function Xp  on ℝq, and an open set X in 

ℝq such that 0=Xp  on its complement Xc. Let T
qgg ],,[ 1 K=g  where kg , qk ,,1K= , are real-

valued functions on X and let T
qYY ],,[ 1 K=Y  be the transform of X  defined by )(XgY = , so 

that )(Xkk gY =  for qk ,,1K= . Then, under appropriate conditions on g , Y  has a probability 

density function that can be expressed explicitly in terms of g  and Xp . 

As a first assumption, let g  be a one-to-one mapping from X onto an open set Y in ℝq 

(i.e., for each outcome x  of X  there is one and only one outcome y  of Y ), so g  has an inverse 

mapping ],,[ 1
1

qff K== −gf  from Y to X. 

Second, assuming that g  is continuously differentiable on X, that is, for qlk ≤≤ ,1 , the 

partial derivative of )(xkk gy =  with respect to lx  exists for ∈x  X and is a continuous function 

of x . These partial derivatives define the derivative matrix of g  at x  as 
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The Jacobian of g  at x  is then the determinant of the derivative matrix of g  at x  
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Thirdly, we assume that the derivative matrix of g  is invertible everywhere on X, that is, 

its Jacobian is nonzero everywhere on X. It follows that f  is continuously differentiable on Y, the 

derivative matrix of f  at y  





















∂
∂

∂
∂

∂
∂

∂
∂

q

qq

q

y
x

y
x

y
x

y
x

L

MM

L

1

1

1

1

 (A.3) 

is the inverse of the derivative matrix of g  at )(yfx =  (by using the chain rule) and the Jacobian 

of f  at y  

( )
( )q
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1
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 (A.4) 

is the reciprocal of the Jacobian of g  at )(yfx = . 

Under these three assumptions on g  (or the equivalent assumptions on the inverse map-

ping f ), the transformation of )(XgY =  has the density function on ℝq given by 
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and 0)( =yYp  for ∉y  Y, where  indicates the absolute value. A rigorous proof of this result 

can be found in Stone (1996). 

Let T
qqqqqqq ],,,,,,,[ 11112121

22
1 σσρσσρσσρσσ= −−KKKx  have probability density function 

( ) 21+−∝ qp ΣX  (see equation (2.41)). Introducing the diagonal matrix of standard deviations, D , 

and the correlation coefficient matrix, R , as 





















σ

σ
σ

=

q00

00
00

2

1

OMM

L

L

D        





















ρρ

ρ
=

1

01
sym.01

21

12

qq

OMM
R  (A.6) 

Σ  can be written as 

DRDDRDΣ ==  (A.7) 

Therefore, X  can be obtained as a transform of =Y  T
qqqq ],,,,,,,[ 11211 −ρρρσσ KKK  

that satisfies the three assumptions listed above. Hence, (A.5) and (A.7) can be used to obtain the 

density function )(yYp  on ℝq as 

( ) ( )
( ) ( ) ( ) 21

11211

11112121
22

1

,,,,,,,
,,,,,,, +−

−

−−

ρρρσσ∂
σσρσσρσσρσσ∂

= q

qqqq

qqqqqqqp DRDyY
KKK

KKK
 (A.8) 

and 0)( =yYp  for ∉y  Y. Since the derivative matrix of the transformation at x  is a lower tri-

angular matrix, it follows that the Jacobian in (A.8) is simply the product of its diagonal elements 

),,,,,2,,2( 11211 qqqq σσσσσσσσ −KKK  that is 
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For the right-hand side of (A.9), the following proportionality holds 

qq
q

qq D∝σσ L12  (A.10) 

Substituting (A.10) in (A.8), the probability density of )(yYp  is given by  

( ) ( ) ( ) ( ) ( ) ∏
=

+−−+−+−

σ
==∝

q

i i

qqqqp
1

2112121 1RDRDRDDyY  (A.11) 

According to the above result, we conclude that the non-informative prior density in (2.42) ex-

pressed in terms of variances and covariances is equivalent to the density function in (2.41) when 

working with standard deviations and correlation coefficients. 
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