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ABSTRACT 

As a part of an experimental program investigating the effects of a variable axial load on the 

seismic behavior of bridge piers, six scaled reinforced concrete bridge columns with circular 

sections were tested at the Structural Laboratory of the University of Southern California (USC). 

The primary experimental parameters were the axial load and loading pattern. The loading 

program included a combination of a constant, proportionally or nonproportionally variable axial 

load and a monotonic or cyclic lateral displacement. The objectives were to study the effects of 

different loads and the displacement paths for both the axial and lateral loading directions, to 

provide the benchmark data for dynamic and large-scale tests, and to evaluate existing material 

models and analytical methods.  

The effects of the axial load and loading pattern were observed to be significant in the 

flexural strength capacity, the failure pattern, and the ductility and deformation of the columns. 

The plastic hinge formation was significantly different in the case of a variable axial load, requiring 

a modification of the existing plastic hinge models. The conventional analytical methods 

underestimated the flexural strength for high compressive axial loads in a monotonic analysis. 

Based on the experimental observations, several models for steel and concrete stress-strain 

behavior and two plastic hinge methods were developed and then employed in a computer 

program developed to address the analytical needs of the research. 

Chapters 1 to 5 cover the preparation and phases of the experimental studies. Problem 

areas, research objectives, previous research on the subject, the development of experimental 

methods, the method developed and implemented in this research, the experimental program, and 

results are discussed. Chapters 6 to 9 discuss different material models and various analytical 

methods, and the models and methods developed in the research. The main features of USC_RC, 

the application developed to address the analytical needs of this research, are discussed, and the 

experimental results are compared with the analytical evaluations.  

The experimental and analytical studies and conclusions are summarized in Chapter 10. 

Test results are included in terms of different graphs in Appendix 1. The computer code written 

in FORTRAN 95 and used in the aforesaid application is included as Appendix 2. Appendix 3 

explains the simple multispring model developed to simulate a circular reinforced concrete 

section for a nonlinear degrading hysteretic moment-curvature analysis. 
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1 Introduction 

Compared to steel and other building materials, many factors make the response of reinforced 

concrete complicated: cracking and crushing of concrete, yielding, strain hardening of 

reinforcing steel, bond between steel and concrete, buckling and rupture of the reinforcement, 

confinement, creep, and shrinkage of concrete. Understanding the inelastic cyclic behavior of 

reinforced concrete (RC) structures subjected to different loading conditions has been the main 

subject of extensive research, and this research has led to significant improvements in the design 

practice. 

Columns are the most essential and important structural elements in buildings and 

bridges. Structural columns are subjected not only to vertical loading effects due to gravity, but 

also to combined variable axial forces, moment, and shear due to actions such as earthquake 

loading. Owing to the “overturning moment,” columns or piers in multi-column bents are 

subjected to variable axial forces corresponding to the direction of, and typically proportional to, 

the lateral forces. In a seismic event, the columns in a bridge are also subjected to vertical ground 

motions, which are nonproportional to the horizontal loading. It has been shown that in some 

cases, particularly for near-fault situations, vertical ground motions cannot be ignored 

(Bozorgnia, 1995). The effects of vertical ground motions are equally important for the design of 

buildings and bridge piers. 

 

 

1.1 PROBLEM AREAS 
 

A comprehensive research program was carried out at the University of Southern California, as 

part of a collaborative project with UCB, UCSD, UCI, and the Pacific Earthquake Engineering 

Research Center (PEER). The central focus of the research was to experimentally and 
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analytically address the problems associated with the capacity assessment and performance of 

bridge piers. The main problem areas addressed by the team at USC are related to: 

1. Insufficient testing data on bridge piers subjected to various nonsequential types of 

loading paths: Such data are needed to provide a more realistic characterization of 

performance of bridge piers. This characterization is important in development of the 

design guidelines, considering the effect of different loading paths, and in the validation 

and refinement of analytical models and tools. The response of bridge piers, subjected to 

pulse type loading, is quite different as compared with the response in typical sequential 

loading tests. Additionally, the behavior of columns in the “C”-type bents, frequently 

used in the construction of several bridge types, behave completely different depending 

on the direction and sequence of the horizontal displacement input. 

2. Variable axial loads: Owing to the overturning moment, columns in multiple-column 

bents experience variable vertical forces corresponding to the direction of, and typically 

proportional to, the horizontal forces. Columns are also subjected to the vertical 

components of ground motion, which is nonproportional to the horizontal loading. Past 

earthquake records have shown that in some cases, vertical ground motions cannot be 

ignored, particularly for near-fault situations. For example, the lateral displacement 

ductility in a column, designed based on constant axial load, with a relatively low axial 

load ratio, can become unsatisfactory when the actual axial load due to the overturning 

effects or the vertical ground motion exceeds the balance axial load. The problem 

becomes even more significant when shear design is considered. The increase of axial 

load from the design level (typically 5% to 10% axial load ratio) to the level of the 

balance axial load results in the increase of column flexural capacity, thus increasing 

shear demand. On the other hand, changes of axial load from compression to tension can 

result in significant decreases in column shear strength.  

3. In terms of capacity, both the strength and deformation of columns is dependent on the 

magnitude and direction of axial load. The loading path of the axial force also has 

significant effects on the hysteretic behavior. 

4. Design implementation of the effects of various loading paths: The above effects need to 

be considered in the design of bridge piers. This is not only important for the design of 

new bridges, but also for the retrofitting of existing deficient structures.  

 



 3

1.2 RESEARCH OBJECTIVES 
 
The overall objective of this research project is to investigate the seismic performance of RC 

bridge columns with circular sections, subjected to different loading conditions.  

The experimental tasks are:   

• to study the effects of different, quasi-statically loaded displacement paths. 

• to study the effects of combined, nonproportional cyclic loading inputs for both the axial 

and lateral directions of columns. 

From the analytical perspective, the experimental results are essential for 

• the assessment of the adequacy and the calibration of the existing analytical tools.  

• the evaluation of analytical methods. For example, the plastic hinge method in calculating 

the flexural deflection of an RC column is suspect for its adequacy for columns subjected to 

variable axial load. 

• the assessment of various material models for their effectiveness in predicting moment-

curvature or force-displacement responses.  



 

2 Review of Experimental Research 

Columns with circular sections reinforced transversally by spiral steel, which enhances the 

strength and ductility of concrete, have been used both in bridges and high-rise buildings. 

However experimental data on the performance of this type of section under different loading 

conditions are insufficient, specifically, on bridge piers subjected to nonsequential types of 

loading paths. The role of the axial load is very important in the ductility, strength, and stiffness, 

and energy dissipation. Most of the previous works in this regard has been limited to the effects 

of constant axial load on the flexural behavior of the RC members. The effects of a variable axial 

load on the general performance of RC structures has not been studied enough in comparison.  

In terms of the type of the axial load, experimental works may be organized into two 

main categories: (1) all the works considering a constant axial load and (2) cases with a 

proportionally or nonproportionally variable axial load. The second category may be divided into 

two sub-categories, namely, cases with proportionally variable axial load and those with 

nonproportionally variable axial load.  

 
 
2.1 CONSTANT AXIAL LOAD 
 
Wong, Paulay, and Priestley (1993) studied the response of circular RC columns under multi-

directional seismic forces. Sixteen circular RC column models with an aspect ratio of 2 and 

different spiral reinforcement were tested to investigate the sensitivity of the strength and 

stiffness of shear-resisting mechanisms to various displacement patterns and axial compression 

load intensities. Shear deformations were expected to be significant for these columns, 

particularly under low axial compression. The hysteretic performance and displacement ductility 

capacity of the columns were improved by increased spiral steel content or by increased axial 

compression. In comparison with uniaxial displacement paths, biaxial displacement patterns have 

led to more severe degradation of strength and stiffness. However, the displacement ductility 

capacity has not been observed to be sensitive to the type of biaxial displacement pattern. Simple 
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orthogonal displacement patterns have been found to be sufficient to represent horizontal two-

dimensional seismic effects. Current code provisions were found to underestimate the shear 

strength of circular columns. The authors propose a shear design procedure that enables the 

shear-strength displacement-ductility relationship to be estimated, while also including the 

effects of displacement history. 

Priestley and Park (1987) through a review of a wide-ranging research project aimed at 

improving understanding of seismic performance of bridge substructures, have shown that 

current methods for predicting flexural strength invariably underestimate the true flexural 

strength by a substantial margin, particularly when axial load levels are high. They proposed a 

new design method for predicting the flexural strength and ductility of confined bridge columns.  

Lehman and Moehle (1998) conducted an experimental study at the University of 

California, Berkeley, to explore the issues of actual column performance and the adequacy of 

available analytical methods, but their emphasis was mainly on the effect of the reinforcement 

ratio on column response. Their specimens were subjected to a constant axial load and a reversed 

cyclic lateral load. They concluded that variation of the longitudinal reinforcement ratio alters 

the column response. In particular, increased pinching was noted in the response of columns with 

low levels of longitudinal reinforcement ratios (0.75%). The displacement capacity was noted to 

decrease with a decrease in quantity of the longitudinal reinforcement. The largest ductility in 

their three tests on the scaled specimens occurred at a reinforcement ratio of 1.5% with a slight 

decrease in ductility capacity with a positive or negative deviation. They also concluded that 

assuming that the displacement capacity is limited by the compressive strain capacity of the 

confined core inaccurately predicts a trend of increasing displacement capacity with a decrease 

in the longitudinal reinforcement. 

El-Bahy et al. (1999), in experimental studies on the cumulative seismic damage of 

circular bridge columns under earthquake excitation, showed two potential failure modes: low-

cycle fatigue of the longitudinal reinforcing bars, and confinement failure due to rupture of 

confining spirals. They developed a fatigue life expression that they claim may be used in the 

damage-based seismic design of circular, flexural bridge columns.  

Jaradat et al. (1998) studied the performance of existing bridge columns under cyclic 

loading with a constant axial load. The flexural and shear performance of older columns for 

purposes of seismic assessment and retrofit design particularly has been studied with regard to 

assessing the residual strengths present in degraded hinge regions. Their test variables included 
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column aspect ratio, longitudinal reinforcing ratio, lap splice length, and retrofitting detail. Shear 

failures were observed both outside and within the plastic hinge regions. In the specimens failing 

in flexure, plastic hinge regions with poor confinement and lap splices experienced rapid flexural 

strength degradation. However, the degraded spliced region continued to carry the shear and 

axial loads applied through the column. They concluded that increasing amounts of longitudinal 

reinforcement resulted in a shear failure in the shorter specimens due to the increase in shear 

demand. In the specimens that had flexural-dominated failures, larger amounts of longitudinal 

reinforcement resulted in lesser pinching in the hysteretic curves but a higher rate of moment 

degradation. A smaller shear span-to-depth ratio caused an increase in the column shear demand. 

The specimens with larger span-to-depth ratios dissipated more energy and experienced less 

pinching in the hysteretic curves. Increasing the splice length at the column base resulted in a 

slight increase in column strength and a delay in the onset of splice degradation. On the basis of 

the presented experimental results of their study and comparisons of performance with the 

existing and proposed shear and flexural strength models, they concluded that the Priestley and 

Seible flexural strength model closely predicts the peak moment strength of the column plastic-

hinge region with poor confinement and no lap splice. The model proposed by Priestley and 

Seible also underestimates the point of moment degradation due to bar buckling. This model also 

closely predicts the moment capacity, onset point and rate of degradation, and the eventual 

residual moment strength at large displacement levels for the column plastic-hinge region 

incorporating the poorly confined 20d and 35d lap splices.  

Saatcioglu and Baingo (1999) experimentally studied the behavior of high-strength 

concrete columns with concrete strengths of up to 90 MPa. Large-scale columns were tested 

under different levels of constant axial compression and incrementally increasing lateral 

deformation reversals. The columns had a circular cross section and circular transverse 

reinforcement. Different volumetric ratios and grades of steel were used to confine the core 

concrete. Their results indicate that the deformability of high-strength concrete columns can be 

improved significantly through confinement. The inelastic drift capacity of columns can be 

improved to levels well beyond those usually expected during strong earthquakes.  

Jaradat, McLean, and Marsh (1988) conducted a study to investigate the flexural and 

shear performance of existing columns for purposes of seismic assessment and retrofit design. 

The test variables included column aspect ratio, longitudinal reinforcing ratio, lap splice length, 

and retrofitting detail.  
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Numerous other studies relate to different aspects of piers, with either a circular section 

or other sections, under a constant axial load, and mostly subjected to a quasi-statically variable 

lateral load. Kowalsky, Priestley, and Seible (1999) conducted research on the shear and flexural 

behavior of lightweight concrete bridge columns in seismic regions; Priestley and Benzoni 

(1996) focused on the seismic performance of circular columns with low longitudinal 

reinforcement ratios; and Nadim, Saiidi, and Sanders (1999) studied the performance of 

rectangular piers with moderate confinement. Since the main framework of these studies has 

already been introduced, no further description will be presented except when necessary for 

details regarding a specific study.  

 
 
2.2 VARIABLE AXIAL LOAD (PROPORTIONAL AND NONPROPORTIONAL) 
 
Sheikh and Toklucu (1993) studied the behavior of RC columns confined by circular spirals and 

hoops. Their research has mainly focused on investigating the effect of the type, amount, and 

also the configuration of the lateral reinforcement on the behavior of the column under a 

monotonically varying axial load. No lateral force was applied, and the main concept has been 

directly related to the confinement effects. 

Few analytical works have been done considering the effects of a variable axial load 

proportional to the moment of the lateral force on the response of RC structures. Benzoni et al. 

(1996) conducted research on the seismic performance of RC columns under varying axial load 

by studying the behavior of four circular RC bridge columns with different axial load regimes. 

The four columns were 0.46m (18 in.) in diameter and 1.83m (72 in.) high, tested in double 

bending. They were 0.4:1 scale models of 1.15m (45 in.) diameter bridge columns with 2.5 % 

and 5% longitudinal steel ratio. The specimens were tested under cyclic inelastic lateral 

displacements with axial loads either constant or varying as a function of the horizontal forces.  

Gilbertsen and Moehle (1980), Abrams (1987), Emori and Schnobrich (1978), and 

Keshavarzian and Schnobrich (1984) considered the variation of axial load in their studies. 

Krenger and Linbeck (1986) are among the few researchers who have considered uncoupled 

variation of axial and lateral loads. Sadeghvaziri, Icriegh, and Fouch (1988, 1990) conducted 

analytical work investigating the effects of independently variable axial and lateral loads on the 

behavior of RC members. In Behavior of RC Columns under Non-proportionally Varying Axial 

Load, they developed a uniaxial flexural model in which the columns are represented with an 
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assemblage of plane-stress and bar elements to model the concrete and the reinforcing steel. 

They have shown that nonproportional fluctuations in the axial force have a significant effect on 

the post-elastic cyclic response of RC columns. The results show that the hysteresis loops are not 

of the conventional type. Considering the lateral shear versus lateral displacement, the hysteresis 

loops demonstrate anomalies such as negative energy-dissipation capacity. The causes of these 

abnormal behavioral characteristics are explained in light of axial deformation and axial 

hysteresis energy. Furthermore, as a result of phasing, the hysteresis loops do not follow a unique 

pattern. Thus, the current discrete models are not adequate for the analysis of RC structures 

under uncoupled variations in axial and lateral loads. 

Those properties of RC columns that are affected by such a loading condition are very 

important factors for seismic performance. They showed that as a result of this, the response of 

RC structures is significantly altered under biaxial earthquake motions. They concluded that 

there is a great need for further analytical and experimental studies on this subject especially 

considering other parameters. The effects of different degrees of concrete confinement must be 

investigated. The importance of this parameter on the flexural behavior of RC columns under 

zero or constant axial force is well established. They anticipated that it will have an even more 

pronounced effect under nonproportional variation of the axial force. The bond stress-slip 

relationship is significantly affected by cyclic loading. Under fluctuating axial force, 

considerably more alternate yielding in tension and compression will occur compared to the case 

of constant axial force. The effects of these and other parameters, such as the biaxial state of 

stress, must be investigated. Furthermore, they concluded that discrete analytical models must be 

developed that can account for the effects of changes in axial rigidity on flexural behavior. 



 

3 Development of Experimental Methods 

This chapter discusses existing methods used to test columns under simulated seismic loads. In 

particular the treatment of P-delta effects is specifically discussed. A large-scale testing facility 

developed at the USC Structural Laboratory was upgraded for testing columns subjected to 

variable axial load. 

 

 

3.1 LATERAL LOADING UNDER CONSTANT AXIAL LOAD 
 
Most of the research on the behavior of RC columns has been restricted to cyclic lateral loading 

with a constant axial load, as described in the previous chapter. However, different testing 

configurations are adopted depending on the nature of the equipment available.  

 

 
3.1.1 Direct Axial Loading 

 

Application of a direct axial load by an actuator or hydraulic testing machine is the first 

straightforward method. The key point in this method is that the axial load is perpendicular to the 

critical section under investigation; for example, the lateral load is applied to a point between the 

top and bottom of a specimen by an actuator (or a jack), while the top and bottom are fixed. 

Figure 3.1 shows the test setup used for testing high-strength concrete columns under simulated 

earthquake loading by Byrak and Sheikh (1997). The axial load is applied directly on the 

specimen, which is hinged at the two ends, where no lateral displacement is allowed. The point 

of application of the lateral load (or displacement) is between the two ends. 
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Figure 3.1  Schematic of Byrak and Sheikh (1997) test setup for direct axial loading  

 

Figure 3.2 shows the loading arrangement by Park (Park and Joen, 1990) and others in 

tests on prestressed concrete piles. The two ends are pinned and the axial load is applied on one 

end while its direction is always kept vertical. Figure 3.3 shows the setup at the University of 

Canterbury for direct axial loading.  

 



 13

 
 

Figure 3.2 Loading arrangements by Park et al. (1990) for direct axial loading in 
their simulated seismic load tests on prestressed concrete piles 

 
 

 
Figure 3.3  Direct axial loading arrangement used at the University of Canterbury 
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3.1.2 Post-tensioning 
 

Another widely used method is to test a column in a cantilever configuration and to apply the 

axial load by the post-tensioning method. In this method, leftmost in Figure 3.4, an axial load is 

applied by a jack, which provides a post-tensioning force to the bars. The bars are hinged to the 

strong floor or frame at one end and to the jack at the other. The direction of this force follows 

the direction of the post-tensioning bar and varies according to the lateral displacement. 

Depending on the horizontal displacement and the corresponding angle, the load can be 

decomposed into the horizontal and vertical components, and the resulting P-∆ effect can be 

calculated at any point, namely the column interface with its footing. 
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Figure 3.4  Effects of P-∆ in the conventional setup, as discussed here 

 

A detailed discussion is provided here on the method used by Mander (Dutta, Mander, 

and Kokorina, 1999), where a complicated test configuration compared to the aforesaid post-

tensioning method was employed to apply a vertical axial load so that the possible P-∆ error is 

avoided. 

 

 

3.1.3 Mander et al.:  Method and Discussions 
 
Mander (Dutta, Mander, and Kokorina, 1999) proposed that then-existing test methods did not 

correctly model the P-∆ effects. Figure 3.5 shows the effects of axial loading on the specimen 

and contrasts them with how the tests should be conducted to properly reflect the true P-∆ 

effects.  
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Figure 3.5  Effects of P-∆ in the conventional and modified setup, as discussed by Mander 

 

From Figure 3.5 it is evident that at the base of the column where the bending moments 

are the largest when under lateral load, there is an additional secondary moment due to the 

column’s lateral deflected shape. This secondary moment is equal to P-∆ that arises from the 

deviation in the axial force vector from the bent column axis. The experimental P-δ moment is 

less than the correct P-∆ moment, where P should always be aligned vertically. 
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Figure 3.6 Modifications in test setup, proposed by Mander, for the application of 
the axial load 

 

To rectify the experimental deficiency in the secondary P-∆ moments, it is necessary to 

ensure that the experimental axial load (as applied by an actuator system) be truly vertical. To 

this end a strong-floor-based column testing rig at the State University of New York, Buffalo, 

was modified as shown in Figure 3.6. The vertical load is applied by a lever beam system 

connected to a secondary frame. This frame is connected to a second (lower) actuator. The 

displacements of this actuator are slaved to the top actuator that is the primary driver in the 

experiment. The axial load is controlled by a vertical servo-hydraulic actuator (250 kN) mounted 

on the secondary frame at the eastern end and a 35 mm diameter high-strength threadbar at the 

western end via a lever beam mounted on top of the column. The frame is supported by two 32 

mm diameter high-strength threadbars at the western end and two 25.4 mm diameter bars of the 

same variety at the eastern end. These bars in turn pass through specially constructed I-beams 

with oversized tubular gaps along the web and anchored at the bottom via washers and locking 

nuts. The I-beams were supported on elastomeric bearings and prestressed to the laboratory 

strong floor. The lateral load was applied to the specimen by a 500 kN capacity ±127 mm stroke 

MTS servo-hydraulic actuator at a height of 2712 mm from the top of the foundation beam. One 
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end of the actuator was attached to the specimen through the actuator end plate and another end 

of the actuator was bolted to the extension and connected to the reaction frame. The angle of 

inclination of this top actuator was varied from 0 degrees in the variable amplitude testing to 

26.2 degrees in the random seismic input testing. This was deliberately done to model the effect 

of uplift forces that arise from a combination of the framing action and vertical motion. A second 

“horizontal” actuator with a load capacity of 1100 kN and ±102 mm displacement capacity was 

attached to the horizontal frame and traced the same displacement pattern (displacement 

“slaved”) as the top actuator. This automatically ensured that the line of application of the axial 

load was kept vertical at all times, thereby eliminating any possibilities of P-∆ error. To prevent 

sliding of the specimen under lateral load, the foundation beam was anchored to the laboratory’s 

457 mm thick strong floor by applying prestress of 250 kN to each of the 25 mm diameter high-

strength threadbars. These threadbars passed through 76 mm steel pipes that were cast in the 

foundation beam, giving a total hold-down prestress of 1000 kN. Therefore, by assuming a 

conservative value for the coefficient of friction of about 0.5 between the concrete specimen and 

the concrete strong floor, the dependable resistance against sliding is 500 kN. This was 

considerably greater than the lateral load capacity expected for this class of specimen. 

 

3.1.4 Discussion and Comments 
 
The P-∆ effect, the primary issue discussed by Mander et al., can be viewed from a different 

perspective. The P-∆ errors in a conventional test setup with post-tensioning bars can be 

corrected by properly interpreting the data. There is no difference between the patterns of force 

application in Figure 3.4 and Figure 3.7, while the P − ∆  effect may be considered as shown in 

Figure 3.7, where M VH P= + ∆ , and δ  is as indicated in the figure. Now, even if the sameδ  is 

used as in Figure 3.4, as shown in the figure: 
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Figure 3.7  P − ∆  effect as in Figure 3.4 
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and the corresponding moment at the column base is: 
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or 

cos( ) sin( )P P P Hδ α α= ∆ − ∆       (3.3) 

Now, considering the moment at the column interface with the footing: 

( ) ( )
[ ( )] ( )
M VH P VH PCos PSin H
V PSin H PCos

δ α α
α α

= + = + ∆ − ∆ =
− + ∆

    (3.4) 

Let ' [ ( )]V V PSin α= −  and ' ( )P PCos α= , therefore: 

' 'M V H P= + ∆         (3.5) 

In the above equation, P.sin(α) is the restoring force of the post-tensioning bar, and 

P.cos(α) is the vertical load. As shown in Figure 3.5(b), it is clear that the true lateral force to the 

column is: 
' sin( )V V P α= −          (3.6) 
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and the vertical load is: 
' cos( )P P α=           (3.7) 

Note that 'P P≈ , since α is typically small. It can be concluded that the conventional method of 

post-tensioning is valid without any deficiency so long as the true forces are used in data 

analysis. 

 

 

3.1.5 Method Developed at USC Structural Lab 
 
A system that enables testing of concrete columns in a large-scale model has been developed at 

the University of Southern California (Xiao and Henry, 2002). As shown in Figure 3.8, the 

testing system utilizes two actuators with 1,334 kN (300 kips) capacity for cyclic loading in both 

the lateral and axial directions of the column specimen. An axial force as large as 6,000 kN 

(about 1,300 kips) can be loaded through a specially designed lever arm that amplifies the force 

output of one of the actuators by six times. Figure 3.9 schematically illustrates the concepts of 

the lever arm system for axial loading. By setting the distance between the axis of vertical 

connectors and the column axis to be l/5 of the distance between the vertical actuator and the 

column axis, a force of 5 times the actuator force can be generated in the vertical connectors. By 

considering the vertical equilibrium condition of the lever arm, one can easily understand that the 

axial load applied to the column specimen is 6 times the vertical actuator force. As also shown in 

Figure 3.9, if a lateral displacement ∆ is induced, the applied axial load becomes inclined, and 

thus the true vertical load subjected to the column is the vertical component of the applied axial 

load. It can be shown that for a small deformation (∆ <5%h), the true vertical load and the 

applied axial load can be considered approximately the same. On the other hand, the inclination 

of the applied axial load corresponding to ∆ has a horizontal component (V1 and V2, Figure 

3.10). Because this horizontal component is not negligible compared with the lateral load 

capacity of the column, it must be subtracted from the applied lateral load to obtain the true 

lateral force carried by the column specimen. 
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Figure 3.8 Outline of test setup for application of lateral force (displacement) and a 
constant, proportionally variable, or nonproportionally variable axial load 
 

 

 

 

 

Figure 3.9  Lever arm system for axial loading 
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Figure 3.10  Restoring forces resulting from inclination 
 

 

Figure 3.11  Overturning moment and resulting axial load 
 

3.2 PROPORTIONALLY VARIABLE AXIAL LOADING 
 
In a multicolumn bent, as a consequence of the overturning moment, F.H, axial forces, which are 

proportional to the lateral force, are imposed in the outermost columns (Figure 3.11). If the 

horizontal member is assumed to be rigid enough, the resulting reactions are as shown in the 

figure, in which 

N=FH/2S  and   M=FH/4 

Therefore to simulate the aforesaid loading case, for a lateral force V applied on the 

column, we should apply an axial load proportional to the lateral force so that   

N/V=H/S  

where N is the axial force. Such a condition can be simulated by controlling the applied forces 

following the proportion (Figure 3.8). This proportionality can also be realized through an 

inclined force, where the angle of inclination is determined based on the actual structure to be 

simulated. The angle of inclination θ, has a tangent equal to the height/span ratio of H/S. The 
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inclination angle of the actuator determines the coefficient of proportionality, which is 

approximately constant for small deflections.  

For a case in which H=2S, the angle is tan-1(2)=63.43 degrees and for a case in which 

H=S, the angle is tan-1(1)=45 degrees. Figure 3.12 shows the setup configuration used for a 

proportionally variable axial load in the current study. The angle is 47.3 degrees, which is used 

as an angle close to 45 degrees due to instrument limitations. 
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Figure 3.12  Setup configuration for a proportionally variable axial load 
 
 

3.3 NONPROPORTIONALLY VARIABLE AXIAL LOADING 
 
Besides the overturning effect where an axial load proportional to the lateral force is imposed, as 

discussed previously, columns are also subjected to axial loads that are nonproportional to 

horizontal loading due to the vertical ground motions. It has been shown that in some cases 

particularly for near-fault situations, the vertical ground motions cannot be neglected. The effects 

of vertical motions are equally important to the design of bridge piers. In this study, the large-

scale testing facility at the USC Structural Lab was upgraded to simulate loading conditions with 

cyclic lateral forces and nonproportionally variable axial loads. As shown in Figure 3.8, the axial 

load applied by the vertical actuator and the horizontal force applied by the horizontal actuator 

were controlled to follow a predetermined path. To simulate a certain loading pattern, the effect 

of the restoring forces should be considered and implemented in the process of loading control.  

 



 23

3.3.1 Multi-Axis Loading Control System 
 
The objectives of the overall research program required testing several specimens under specific 

loading patterns, in addition to the cases with a constant axial load and a proportionally variable 

axial load. To achieve a predetermined loading pattern in a test, a control system was developed. 

A brief description is presented here of the requirements for a simple case of the load or 

displacement control pattern, for which the actuators can be programmed through an interface 

with a computer. 

One Cycle
Force or 
Displacement

(D1) or F1

(D2) or F2

Repeat or 
change to 
new 
program

T0 T1 T2
T3 T4

T5

T0 T1
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D1

T1 T3T2

D2

0,0

Actuator 1

T1 T2 T3 T4 T5

Program Time

Real Time

Actuator 2

Force

 
Figure 3.13 Requirement for the control system, and a sample of two axis controls 

(displacement and force) 
 

General Requirements 

Force Control 

Control Input Parameters: 

1. Target Force, F1, (can be tension, compression, or zero) 
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2. Loading rate to reach F1; or T1, time required to reach F1 

3. Time: T2 or (T2-T1); i.e., the duration for maintaining F1 

4. Target Force, F2 (can be tension, compression, or zero) 

5. Loading rate to reach, F2   or T4 

6. T5 or  (T5-T4), i.e., the duration for maintaining F2 

7. Number of Repeating Cycles 

8. Termination Command (the choice of terminating the process, if necessary, at any time.) 

 

Displacement Control 

Same as (1 to 8) above, except for target displacement ∆1 and ∆2  (instead of F1 and F2). Note 

that the two actuators may be used at the same time with different control parameters (force and 

displacement) and patterns. Figure 3.13 shows the requirements as stated above, and a sample 

application in which the first actuator is displacement control and the second one is force control. 

 
Devices 
 
The system, implemented at the USC Structural Lab for conducting tests with a 

nonproportionally variable axial load, consists of two actuators, the PMC-6270 Motion Control 

Box, and a PC (or a terminal). This system is used to operate the two existing actuators with 

predetermined load or displacement patterns. Each actuator can be in either force or 

displacement control mode, independently and simultaneously. This section provides a brief 

description of the system. The system has different features and capabilities that may be utilized 

based on the needs.  

 

Actuators 

The horizontal actuator has a stroke of 18 inches, with a valve that requires a voltage of 24 DC-V 

and a current of 2 amps for operation, and a servo (that drives the valve) which in turn is 

commanded by a command voltage of –10 Volts to +10 Volts, in the two different directions. 

The voltage and current required for valve operation are independent of the command voltage. It 

means that the current or voltage to control the valve comes from the control box and is 

programmed based on test requirements. This current or voltage directs the movement of the 

actuator and its rate, while the current and voltage for valve operation provides the energy for the 
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operation and can be supplied by any other reliable source. The vertical actuator has a stroke of 9 

inches, with a valve that does not require an external voltage and current for operation. 

 

Figure 3.14  Internal linear displacement transducer 

 

Both actuators have an internal LDT (Linear Displacement Transducer) which is actually 

a resistor installed along the longitudinal direction of the actuator. When a constant base voltage 

is applied to the resistor (e.g., constant voltage=b-a, as in Figure 3.14), the position of the 

actuator can be detected by the return voltage (feedback voltage) from the actuator, which comes 

from a sliding contact on the resistor. As an example, suppose that the total stroke of an actuator 

is L inches and that the LDT (actually the resistor) exactly covers this stroke length. It means that 

when the actuator is not stretched, the sliding contact is at the beginning, resulting in zero 

resistance between the initial point and the contact point; and when it is completely stretched 

(maximum stroke) the sliding contact is at the end of the resistor, resulting in the maximum 

possible resistance which is equal to the total resistance of the LDT resistor. Also assume that the 

actuator has been stretched for m inches from the completely unstretched condition. Since there 

is a linear relation between the resistance, current, and voltage (V=IR, where V=Voltage, 

I=Current, R=Resistance), the actuator position (amount of stretch) can easily be detected by the 

feedback voltage from the sliding contact. 

( )cm L
b a

=
−

         (3.8) 

This feedback is used by the control box to determine the command, considering the 

commanded position, the required velocity, and other parameters.  

A homemade load cell is installed on each actuator, which can be used as a feedback 

device, for the applied force by the actuator when the actuator is used in the force control mode. 
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By using the base voltage and the load factor of the load cell, the coefficient to convert the 

feedback voltage to force can easily be obtained. 

Each actuator has three main sets of wires.  The first set includes 3 wires coming from the 

internal LDT, which are connected to the initial, sliding contact, and final points. The second set 

has 2 wires for the command, one (red wire) for the positive (+) command line, the other (black) 

for the negative (–). The third set includes the two outputs of the homemade load cell consisting 

of 16 electrical resistant strain gauges configured in two full-bridge circuits. The two outputs of 

the load cell can be used independently for measurement of the applied load by the 

corresponding actuator, or as a feedback for the force control mode cases, when a proper base 

voltage is used. The horizontal actuator has one more set of wires, used solely to provide the 

voltage and current required for the valve operation.  

 

Control Box (PMC-6270) 

The control box is a stand-alone, two axis motion controller. It does not need any computational 

device, like a PC, except as a terminal. This box provides sophisticated two axis control of any 

servo system driven by a voltage (from –10 to +10 volts) or a current (at different levels).  The 

box implements a dual processor approach, comprising a microprocessor for executing high-

level motion programs, and a digital signal processor (DSP) for high-speed, sophisticated servo 

control. The box can handle three different types of feedback: linear displacement transducers 

(LDTs), incremental encoder, or analog inputs (with the ANI option installed, as for the box). It 

should be mentioned that the internal LDTs of the existing actuators fall in the third group, 

which provide an analog signal feedback, while the external LDTs are usually digital, or pulse-

based.  

The control box has its own programming language. The user has the option of inputting 

a direct command. The single command issued by the user will only be executed and the process 

will stop until the next command. The commands can also be grouped as a program that can be 

saved either in the box or on the connected computer.  In this case when the program is loaded, 

the commands within it will be executed in turn like any other procedural program on a 

computer. When using programs, special care should be given to the process and to the way the 

actuators are interrelated in terms of the movement or force in the program. It is always a good 

idea to interrelate the axes in the program so that failure of either one stops the whole process. 
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This guarantees that the test either proceeds on the proper path or, otherwise, stops. Support 

software for the Microsoft Windows and DOS operating environments is a standard provision 

with the 6270.  

 

The features of the box may be summarized as follows: 

• 1 or 2 axes of control for current-driven or voltage-driven servo systems; feedback from 

linear displacement transducer (LDT) or incremental encoder feedback (or voltage feedback 

with ANI option, as is the case for the system used in current study) 

• Controls electric servo drives in the velocity or torque mode 

• Digital signal processor (DSP) for servo control (digital proportional, integral, and velocity 

feedback, plus acceleration and velocity feedforward-PIV&F) 

• DOS support disk  

• Motion Architect for Windows 

• Windows-based visual data gathering and tuning aid available when using the Motion 

Architect Servo Tuner option (can be ordered for an easier operational interface) 

• 40,000 bytes of nonvolatile memory for storing programs; 150,000 bytes are available with 

the -M option (optional) 

• Capability to interrupt program execution on error conditions 

• Multi-axis teaching mode 

• S-curve motion profiling 

• 2-axis linear interpolation 

• Ratio following, position following, advance and retard variable storage, conditional 

branching, and math capability 

• Program debug tools, single-step and trace modes, breakpoints, and simulation of I/O 

• Internal universal power supply 

• Direct interface to RP240 remote operator panel (optional) 

• Operates stand-alone or interfaces to PCs & PLCs 

• 3-wire, RS-232C interface to PC or dumb terminal 
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• I/O capabilities (all I/O are optically isolated): 

o ±10V analog control output (both axes) 

o Shutdown output when there is no feedback or signals are contradictory (both axes) 

o Drive fault input (both axes) 

o LDT input (both axes) 

o Incremental encoder input (axis 1 only) 

o CW & CCW end-of-travel limit inputs (both axes) 

o Home limit input (both axes) 

o 38-bit analog inputs for joystick control and variable input (0.0V–2.5V) 

o 2 (trigger) inputs—used for hardware position latch 

o 24 programmable inputs (Opto-22TM compatible) 

o 24 programmable outputs (Opto-22TM compatible) 

o 2 auxiliary programmable outputs that can be configured for accurate output on 

position  

• 6270-AM Option offers two ±10V, 14-bit analog inputs; can be used for position feedback 

(currently installed in the box) 

The control box has several ports. Some are always used, while others are for advanced 

applications.. The ports DRIVE1 and DRIVE2 are used for axes commands and feedback. The 

AUX port is used for connecting the terminal or computer to the box. These three ports are the 

main ones needed in a test. The LDT1 and LDT2 ports can provide zero to 15, or –15 to +15 DC 

V, respectively, as a reliable constant DC base voltage for the LDTs (or load cells). 

 

Computer 

The computer serves mainly as a terminal but when loaded with the Motion Architect Software, 

may also be used to implement functions such as storing programs and manipulating output data. 

The computer should have the proper port for connection with the box. Although a standard 25-

node-port can be used, a 9-node-port is preferable.  



 

4 Experimental Program 

Throughout the experimental program, six one-quarter-scale model columns were constructed 

and tested under the following loading conditions:  

1. Constant axial load, with a displacement-controlled cyclic quasi-static lateral force  

2. An axial load proportional to the displacement-controlled cyclic quasi-static lateral force 

simulating the actual loading of the columns, considering the overturning moment  

3. A monotonic displacement-controlled lateral force with a constant axial load  

4. A monotonic displacement-controlled lateral force without any axial load 

5. A monotonic displacement-controlled lateral force, with a nonproportionally variable axial 

load 

6. Same as case 5, with a difference in the pattern of the axial load. 

The objective of the research was to study the overall performance of the RC columns 

with circular sections transversally reinforced by spiral under different loading conditions. The 

experimental data were also used to verify the analytical models and methods. 
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Figure 4.1  Details of the specimens 

 
4.1 MODEL COLUMN 
 
Five of the model columns had a circular section with a diameter of 406.4 mm (16 in.), and a 

total height of 2082.8 mm (82 in.) above the top of the footing. The effective length of the 

column was 1828.8 mm (72 in.) from the top of the footing to the application point of the lateral 

force. The footing was 863.6 mm (34 in.) wide, 1219.2 mm (48 in.) long with a thickness of 

457.2 mm (18 in.). The longitudinal reinforcement consisted of 12 #13 (#4 English) Grade 60 

bars equally distributed around the section. The confinement was a W2.5 Grade 60 spiral, spaced 

at 31.75 mm (1.25 in). The clear cover to the spiral was 12.7 mm (0.5 in.). For the sixth 

specimen, the diameter of the column was 432 mm (17 in.) with all other specifications the same 

as for the other five specimens. Details are shown in Figure 4.1 and tabulated in Table 4.1. 
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Table 4.1 Reinforcement details of specimens 
Reinforcement Steel Ratio(%) 

Specimen Name Grade 
Longitudinal TransverseLongitudinal Transverse 

Concrete

Type 

Lateral 

Force 
Axial Load 

PEER-Column #1 G60 12#4 
W2.5 

@1.25" 
Spiral 

1.17 0.52 1 Cyclic 30% 'g cA f  

PEER-Column #2 G60 12#4 
W2.5 

@1.25" 
Spiral 

1.17 0.52 1 Cyclic 
0tan(47.32 )

LateralForce

PEER-Column #3 G60 12#4 
W2.9 

@1.25" 
Spiral 

1.17 0.52 2 Monotonic 30% 'g cA f  

PEER-Column #4 G60 12#4 
W2.9 

@1.25" 
Spiral 

1.17 0.52 2 Monotonic None 

PEER-Column #5 G60 12#4 
W2.5 

@1.25" 
Spiral 

1.17 0.52 2 Monotonic 
Non-

Proportionally 
Variable 

PEER-Column #6 G60 12#4 
W2.5 

@1.25" 
Spiral 

1.17 0.52 2 Monotonic 
Non-

Proportionally 
Variable 

Note: 1 inch =  25.4 mm, bar  #4 = #13 in SI. 

 

 

Table 4.2 Experimental material properties 
Actual Yield 
Strength (ksi)

Actual Ultimate Strength 
(ksi) 

Modulus of 
Elasticity (103 ksi) 

Specimen Grade 

Nominal 
Yield 

Strength 
(ksi) 

Nominal Modulus 
of Elasticity (ksi) Average 

 
 

Average 
 
 

Average 
 
 

Rebar, #4 G60 60 29000 71 84 20 

Spiral, W2.5 G60 60 29000 68 107 23.8 

Spiral, W2.5 G60 60 29000 68 107 23.8 

Concrete-Type1 NS N/A N/A N/A 7.3 N/A 

Concrete-Type2 NS N/A N/A N/A 7.15 N/A 

Note: 1 ksi = 6.9 MPa 

 
4.2 MATERIAL PROPERTIES 
 
The material properties are summarized in Table 4.2. The steel grade was G60 with a nominal 

yield stress of 414 MPa (60 ksi). The steel was tested at the USC Structural Lab. The actual yield 

strength, ultimate strength, and the modulus of elasticity of the rebar and the spiral are 

summarized in Table 4.2. The normal-strength concrete was obtained from a local ready-mix 

plant. The concrete strength was tested to be 49.34 MPa (7.15 ksi), using 6 cylindrical specimens 

for the first two specimens (tested on the first phase of testing) and 50.37 MPa (7.3 ksi) for the 

other four specimens (tested in the second phase). 
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4.3 CONSTRUCTION  
 
The specimens were constructed in the Structural Lab at USC. The strain gages were applied at 

the predetermined locations of selected rebars and then the steel cages were made, including the 

longitudinal and transverse reinforcement. The columns were fixed at the center of the footing 

cage, as the footing cages were constructed. Casting using ready-mix concrete was done in two 

steps: first the footings and then the column with the top stub. Before casting the column and top 

stub concrete, the strain gages were applied at the proper locations on the spiral.  

 

    
Figure 4.2  Construction of specimens 

 

The top stub was constructed as a 508 by 508 mm (20 in. by 20 in.) cube centered at a 

height of 1829 mm (72 in.) with respect to the footing top surface. Four threaded bars were 

placed in the top stub to be used for connections required when a variable axial load was applied. 

Figure 4.2  shows the columns during construction, before casting concrete, and after the footing 

was completed, before casting concrete for the main column and the top stub.  
 

 
4.4 INSTRUMENTATION 

 

The applied forces were measured using calibrated load cells. The horizontal displacement was 

detected using a linear potentiometer with a travel stroke of 457 mm (18 in.). Two other linear 

potentiometers were used to measure the axial deformation of the columns during the test. In 

order to have a good understanding of the behavior of the column and the section, it is important 

to have enough experimental data to study the flexural deformation, curvature at different levels, 

and strain distribution over the cross section at different levels. To achieve this goal, 5 levels 

equally spaced at 8 inches apart, starting on the top of the footing were determined as shown in 
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Figure 4.3, and 3 strain gages were applied on the spiral at three locations at each level. At each 

level, 3 longitudinal bars were also gaged. The total number of the gages adds up to 30. Besides 

the strain gages, 10 linear sensors were installed on two opposite sides of the column, shown in 

Figure 4.3. The curvature of the sections at different levels can be calculated both by using the 

data from the linear sensors at two opposite sides, and by the strain gages applied at the same 

positions on the rebars. The first is an average of a certain length of the column, while the second 

is the curvature at a specific level provided the strain gage data are within a reliable range. 
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Figure 4.3  Location of strain gages, and linear potentiometers on the specimens 

 
 
4.5 TEST SETUP 

 

Two different testing configurations were designed for the six specimens. For the first test, a 

constant axial load equal to 30% of the g cA f ′ was applied during the test. The test setup is shown 

in Figure 4.4. The axial load was applied by a vertical actuator, which was force controlled, so 

that a constant axial force was applied. The horizontal or lateral quasi-static cyclic load was 

applied by the horizontal actuator as shown in the figure. For the second column, the axial load 

was variable and proportional to the cyclic lateral load. The test setup for the second column is 

shown in Figure 4.5 in which an inclined actuator force was applied to produce an axial force 

proportional to the horizontal lateral force, simulating the actual case of lateral load with the 

overturning moment. The loading condition for the columns is schematically shown in Figure 4.6 

(left and right).  
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Figure 4.4  Test setup for tests 1, 3, 4, 5, and 6 

 

 
Figure 4.5  Test setup and configuration for test 2 

 

4.6 LOADING PROGRAM  
 
As shown in Figure 4.7 (a), the standard lateral loading procedure used for the first two tests was 

based on the lateral drift ratio, ∆/H, defined as the ratio of the lateral displacement divided by 

column height. Displacement reversals in the push and pull directions were symmetric. One 
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loading cycle applied corresponded to an increment of 0.25% drift ratio until ∆/H=1% was 

reached. Three cycles were attempted thereafter for each of the peak drift ratios, ∆/H=1%, 1.5%, 

2%, 3%, 4%, 6%, etc. The vertical loads were different in the first two cases. For the first 

specimen, a constant axial load, equal to 30% of Agf'c was applied. For the second specimen the 

axial load was proportional to the lateral force.  

The third specimen was tested under a constant axial load of 30% of Agf'c and a 

monotonically increasing lateral displacement controlled load up to the failure of the specimen. 

The loading condition for the fourth specimen was like that of the third except for the axial load, 

which was zero. The fifth test was carried out under a monotonically increasing lateral 

displacement controlled force, while the axial load was nonproportionally variable, fluctuating 

between +30% and –10% of Agf’c. The loading condition for the sixth test was like that of the 

fifth test except for the pattern of the axial load. Figure 4.7 shows the general loading conditions 

for tests one through six.  
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Figure 4.6 Loading condition for specimens 1,3,4 (without axial load P), 5, 6 (top), and 
specimen 2 (bottom) 
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Figure 4.7  Loading condition for tests 1 and 2(a), 5(b), and 6(c) 
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4.7 PRELIMINARY ANALYSIS 
 
Before the two tests, the yield strength corresponding to the first yield of the critical section and 

the maximum flexural strength and corresponding deflections were estimated for the specimens 

using the computer program USC_RC that was developed to analyze the behavior of RC 

members with different sections subjected to various quasi-static loading conditions. USC_RC is 

a user-friendly Windows-based application capable of working in either the SI (Système 

International) or English Units system. The program can handle RC columns with different cross 

sections and axial loads. The analysis can be done both for monotonic and cyclic (employing the 

hysteretic behavior of the material) cases, and the hysteretic response of the member can be 

predicted. The analysis is based on the fiber model, in which the section is divided into 

infinitesimal elements, which in turn replaces the member with longitudinal fibers.  

For the first specimen, due to the high axial load the crushing of the concrete proceeded 

the yielding of the longitudinal bars, and was predicted to be at a force of 129 kN (28.75 kips) 

and a displacement of 15.11 mm (0.595 in.), corresponding to a drift ratio of 0.82%. All the 

predicted values are summarized in Table 4.3 for the first test. These predictions were compared 

to the experimental results to investigate the analytical tools used in the prediction, especially in 

cases of cyclic loading and to consider the hysteretic response of the material. 

Table 4.3  Analytical predictions (by USC_RC) for the first test 
Analytical Predictions Displacement 

mm (In) 

Drift ratio 

(%) 

Horizontal Force kN 

(Kips) 

Axial Load kN 

(Kips) 

First Yield 15.11 (0.595) 0.82 129 (28.75) 1917 (431) 

Maximum Strength 24.13 (0.95) 1.32 171.2 (38.5) 1917n(431) 

Failure 53.44 (2.1) 3 169 (38) 1917n(431) 

 

An estimate of the maximum horizontal force and corresponding displacements in the 

two different directions for the second specimen, where the axial load varies proportionally with 

the horizontal force, can be made manually as follows. First, the moment-axial force interaction 

curve for the section is calculated when the strain in the outermost concrete fiber is equal to the 

strain of confined concrete at maximum strength.  Based on the test setup, the relationship 

between the moment and axial force, ignoring the geometrical nonlinearity and also small angle 

variations imposed by the deflection, is derived as follows: 
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cos( )hF F α=           (4.1)  

 

sin( )N F α=          (4.2) 

where F is the inclined applied force,  Fh is the horizontal force and N is the proportional axial 

load.   

' hM L F=          (4.3) 

where M is the moment at critical section. Therefore : 

1 tan( )
'

N M
L

α=         (4.4) 

If a constant initial axial load is present, then: 

01 tan( )
'

N M P
L

α= +         (4.5) 

where P0 is the initial axial force. In our case, the initial axial load was zero. By using the proper 

values, the interaction curve and moment axial force relationship curves could be plotted and the 

intersection points predicted as the maximum lateral force and corresponding axial force in the 

two opposite directions. For the case of the test, the predictions were made by USC_RC, which 

can handle cases with proportionally variable axial loads. The predictions for this test are 

summarized in Table 4.4. 

 

Table 4.4  Analytical predictions for the test with proportionally variable axial load 
Push Direction  (Negative Axia Load) Pull Direction (Positive Axial Load) Analytical 

Predictions Displacement  mm(In) Drift Ratio(%) Horizontal Force 

kN (Kips) 

Axial Load 

kN (Kips) 

Displacement Drift 

Ratio(%) 

Horizontal Force Axial Load 

First Yield 10.36 (0.408) 0.57 37 (8.33) -40 (-9) -10.72 (-0.422) -.58 -43.4 (-9.75) 46.7(10.53)

Maximum  120.4 (4.78) 6.63 73.7 (16.56) -79.6 (-17.9) -111.5 (-4.39) -6.1 -89.34 (-19.63) 94.33(21.2)

Failure 147.1 (5.79) 8 71.7 (16.1) -77.34(-17.4) -138.43 (-5.45) -7.6 -86.5 (-19.4) 93.4 (21) 

 

During the test, the angle changes as the horizontal deflection is imposed, but the effect is 

relatively small and is ignored.  Analytical predictions for the third test are similar to those 

predicted for the first test, as shown in the Table 4.3.  The results of the analytical predictions for 

test 4 with zero axial load are summarized in Table 4.5. 
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For tests 5 and 6, the analytical predictions were made by analyzing the response under a 

monotonically increasing lateral displacement subjected to a predetermined axial load pattern. 

The results of the analysis will be discussed when the experimental results are compared with 

analytical predictions. 

Table 4.5  Analytical predictions by USC_RC for the fourth test 
 

The computer program developed and used to address the analytical needs and the 

material models and analytical methods developed and used during the analytical phase of this 

research are discussed in detail in the analytical part of this report. 

Analytical Predictions Displacement 

mm (In) 

Drift ratio (%) Horizontal Force 

kN (Kips) 

Axial Load 

kN (Kips) 

First Yield 10.5  (0.415) 0.58 40 (8.9) 0. 

Maximum Strength 117.3 (4.62) 6.4 80 (18) 0. 

Failure 149. (5.86) 8.1 78 (17.5) 0. 



 
 
 

5 Experimental Results 

5.1 OBSERVATIONS 
5.1.1 Specimen One 
 

The displacement in the first step of loading cycles was approximately 25% more than the 

predicted displacement at the first yield. Concrete crushing proceeded the yielding of the 

longitudinal reinforcement due to the high level of axial load.  So at the first step, with a drift 

ratio of 0.5%, slightly visible cracks formed near the footing. At a drift ratio of 1% (1.8 mm 

deflection) the cracks widened more and spread to a height of 81 mm above the footing surface. 

As the displacement reached a drift ratio of 2% (3.66 mm), slight crushing was observed due to 

spalling of the cover concrete within a height of 200 mm above the footing. At a drift ratio of 

3%, the spalling spread up to a height of 400 mm, but no flexural failure due to compressive 

failure of the confined concrete was observed. At this stage, the cover concrete of the footing 

near the column was partially removed. The rupture of the spiral at 2 consecutive levels near the 

footing, followed by buckling of the furthermost rebar, occurred at the first cycle of a drift ratio 

equal to 4% (73 mm), causing crushing of the concrete near the footing and a severe degradation 

in strength. The total length of the crushed concrete was about 400 mm near the footing surface, 

implying formation of a plastic hinge near the footing. The test was continued for the 2 

consecutive cycles, when the column failed in flexural mode. During all the tests, no damage was 

observed for the column portion above a length of 810 mm. From the ductility standpoint, 

assuming the first yield of the longitudinal steel as the yield point, corresponding to a drift ratio 

of 0.72%, the column achieved a ductility of slightly more than 6 before the flexural failure. 

Figure 5.1 shows different stages during the first test, and Figure 5.2 shows the failure pattern of 

the specimen. As was observed during the test, the concrete has crushed over the same height at 

the two opposite sides of the column, as expected, due to a constant axial load. 
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Figure 5.1 Specimen one at drift ratios of 1%, 2%, and 4%. Expansion of the confined 

concrete near the footing is visible at a drift ratio of 4%(d). 
 

    
 
Figure 5.2 Failure pattern of specimen one. Expansion of the confined concrete, rupture 

of spiral, and buckling of the main bars. Specimen failed in the flexural mode 
under a relatively high axial load. 

 
 

 
 
5.1.2 Specimen Two 
 

The axial force in the push and pull directions for test 2 was small enough for the steel to yield 

first. This occurred at a horizontal displacement of about 9 mm (0.5 % drift ratio) in the push 

direction and at a horizontal displacement of 9.7 mm (0.53 % drift ratio) in the pull direction. In 

the first step of the displacement control load, the applied displacement was approximately 

around the first yield displacement (0.5% drift ratio) in the push and pull directions. After the 

third cycle of the first step the cracks were visible all the way up to the top of the column, which 

distinguishes this test from the first one because of the tensile axial load in the push direction. At 

the first cycle of a drift ratio of 3%, minor concrete crushing occurred at the interface of the 
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column and footing, on the pull side, where the axial load is compressive; in the following cycles 

of this step, no further crushing of the concrete was observed. At a drift ratio of 4% the concrete 

crushed within a height of about 100 mm on the pull side while the height of the crushed 

concrete was around 70 mm on the push side. At the first cycle of 6% drift ratio, the concrete 

crushed more over a length of approximately 178 mm near the column bottom in the pull 

direction, and about 130 mm in the push direction. Apparently, the differences in direction and 

magnitude of the axial load caused significantly different damage patterns in the column. At the 

second cycle of 6% drift ratio, the furthermost rebar on the push side buckled and when the load 

was reversed, straightened leaving a gap between the rebar and the spiral. The same behavior 

was observed on the other side when the reversal load was applied. At the third cycle of 6% drift 

ratio, two adjacent spirals ruptured followed by the buckling of the nearby rebars. At this stage, 

even if the crushing of the concrete was considerable in a relatively small region near the 

footing, compared with the first column, no spalling was observed. The test was continued for 

the next step at a drift ratio of 8%, at which the two buckled rebars ruptured, followed by a 

severe degradation in the horizontal load capacity. The specimen failed in the flexural mode. 

Figure 5.3 shows different stages of the test, and Figure 5.4 the failure pattern of the column. As 

observed during the test, the difference in the length of the crushed concrete at opposite sides of 

the column was slightly visible. The figure shows the first crushing on the pull side, whereas no 

crushing was observed on the push side.  

 

    

 
Figure 5.3 Specimen two at drift ratio of (a) 1% (b) 4%, (c) 6%, and (d) 8% 
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Figure 5.4 Failure pattern of specimen two. Buckling of the main bar and straightening in 

reversal at a drift ratio of (a and b) 6%, (c) different crush pattern on the two 
opposite sides of the column and, (d) rupture of the main bars at a drift ratio  
of 8%.  

 

 

5.1.3 Specimen Three 
 

This specimen was subjected to a monotonic lateral displacement and a constant axial load of 

30% Agf’c.  At a displacement of 14.7 mm (0.58 in.) corresponding to a drift ratio of 0.8%, the 

first flexural cracks were formed. As stated, the high level of the axial load was the reason for the 

concrete to start crushing before yielding of the longitudinal bars. The onset of crushing was at a 

drift ratio of 2% and spread upward from the column-footing interface as the drift ratio was 

increased to 3% and consequently 4%. Right after the occurrence of the 4% drift ratio, the first 

rupture of the spiral close to the column-footing interface occurred, which caused a loss in the 

horizontal force. At drift ratios of 5% to 6% more transverse reinforcement rupture occurred and 

at a drift ratio close to 6%, the longitudinal rebars buckled at two locations near the footing. 

Then a reversal displacement was applied up to the point where the lateral load vanished. The 

test was concluded at this point. 

 

5.1.4 Specimen Four 
 

This test was done without any axial load, and with a monotonically increasing lateral 

displacement. The displacement was increased up to a drift ratio of 10%, where the limit of the 

horizontal actuator was reached and a reversal displacement was applied up to –10% drift ratio, 

and then back to zero, forming one full cycle. At a drift ratio of 0.5% the first flexural cracks 

were formed. This value was close to the predicted yield displacement. The onset of crushing of 

the concrete near the column-footing area was observed between the drift ratios of 2% and 3%. 
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As the displacement was increased to 7% drift ratio, more crushing of the concrete occurred at 

the front face of the column where the concrete was under compression. No failure was detected 

up to the drift ratio of 10%, which was the limit imposed by the testing equipment. The test was 

continued by applying a reversal displacement up to –10% drift ratio, during which the same 

behavior was observed as in the push direction. Then the displacement was pushed back to zero 

at the end of the test. 

 

    
 
Figure 5.5 Different instances from test 3: onset of spalling, buckling of the rebars, 

rupture of spiral, and complete failure 
 
 
 
5.1.5 Specimen Five 
 

In this test the specimen was subjected to a monotonically increasing lateral displacement and a 

nonproportionally variable axial load, changing from between +30% and –10% of Agf’c. The rate 

of change of the axial load with respect to the lateral displacement was so that at least one whole 

cycle of axial loading was completed within the first yield of the section. The first yield was 

analytically chosen to be the least value of the yield displacements at the column with the axial 

load changing between +30% and –10% of Agf’c. Fulfilling this condition and following the exact 

path of the predetermined loading pattern was achieved by using the newly developed multi-axis 

loading control system. The actual pattern of the axial load is shown in Figure 3.7(b), which is 

plotted based on the experimental data. The axial load of  +20% Agf’c at the beginning of the test 

was reduced to –10% Agf’c at the same displacement and then increased to +20% Agf’c, while the 

displacement was increased to 0.1% drift ratio. When the axial load was decreased to –10% 
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Agf’c, slightly visible cracks were observed. The first crushing was observed at 2% drift ratio and 

increased as the drift ratio increased at the peak levels of the axial load. Despite the tests under a 

constant or proportionally variable axial load, the analytical strength of the column under a 

corresponding axial load in a case of constant axial load with the same level was not reached. 

This issue encouraged the researchers to plan a different pattern of axial load so that the effect of 

the axial loading pattern could be investigated more. At drift ratios close to but more than 3%, a 

sudden increase in crushing of the concrete within the vicinity of the column-footing interface 

was observed, and some inclined cracks were formed. The rupture of the spiral steel occurred at 

a drift ratio close to 6%, and the second was observed at a drift ratio of slightly more than 8%. 

The test was continued up to a drift ratio of 8.5%.  

 

5.1.6 Specimen Six 
 

The lateral displacement and level of axial load for this test were similar to those of the previous 

test except for the pattern of the axial load. This difference caused a significant change in the 

response of the specimen. At drift ratios of 0.5% cracking was visible on the push side of the 

column. Crushing of the concrete near the column-footing interface started at a drift ratio close to 

1.5%. At a drift ratio of 2% slight inclined cracks were formed. There were more cracks and 

crushing of the concrete as the lateral displacement was increased under the variable axial load. 

Rupture of the spiral occurred at a drift ratio of 6.5%. The test was continued up to a drift ratio of 

close to 8% and then the displacement was decreased to zero under zero axial load. The test was 

continued with the same pattern in the pull direction for close to 4 cycles of axial load change, 

then the displacement was brought back to zero at the end of testing. Figure 5.6 shows different 

instances of tests 5 and 6. 
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Figure 5.6 Different instances from tests 5 and 6: Initial cracking at tensile axial load all 
over the column; spalling, crushing, and rupture of spiral 

 
 
 
5.2 HORIZONTAL-FORCE DRIFT-DEFORMATION RESPONSE 
 

The curves showing the hysteretic behavior of the columns are plotted based on the drift defined 

as: 

(%) 100d
L
δ

=          (5.1) 

where δ is the total horizontal deflection and L is the effective height of the column, from the top 

of the footing to the force application point. The ductility factor is defined as: 

y

δµ
δ

=          (5.2) 

where δ is the total horizontal deflection and δy is the horizontal deflection at the first yield of the 

tensile steel or crushing of concrete at the critical section of the column. The first experimental 

yield point was determined when the tensile strain at the furthermost rebar of the section at the 

interface of the footing and column reaches the yield strain of steel. For the horizontal-force drift 

ratio hysteretic curves, the horizontal axis is the drift, and the vertical axis is the horizontal force 

in kN. The dotted line is the analytical prediction considering confinement and the effect of the 

axial load. 
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5.2.1 Specimen One 

 

Figure 5.7 shows the horizontal-force drift-ratio hysteretic relationship resulting from test one. 

Compared with the test results on a similar specimen with zero axial load, the flexural strength 

has increased as the axial force has increased, but with a decrease in ductility. That is because the 

failure of the concrete precedes the failure or even yield of the rebars, due to a high level of axial 

load.  

Increasing the confinement both in strength and amount leads to an increase in ductility, 

which is most important for seismic design. At a horizontal force of about 170 kN and a drift of 

0.73%, the column reached the first yield, and at a drift ratio of 2.5% achieved its maximum 

capacity, which was about 220 kN. The maximum ductility achieved was around 6, and the 

maximum drift was 4%, corresponding to a deflection of 73 mm. The dotted lines show the 

predicted capacity for the specimen considering the effects of confinement and axial force. The 

prediction is conservative compared with the experimental results.  

 

Experimental Horizontal Force-Drift Ratio (Specimen One) and 
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Figure 5.7  Horizontal force vs. drift ratio for specimen one 
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Experimental Horizontal Force-Drift Ratio (Specimen two) and 
Theoretical Predictions 
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Figure 5.8  Horizontal force vs. drift ratio for specimen two 

 
 
5.2.2 Specimen Two 

 
Figure 5.8, shows the hysteretic response for test two. Since the axial force was proportional to 

the horizontal force and its value has opposite signs in two opposite directions, the behavior of 

the column was different in the pull and push directions, as expected from the analytical 

prediction. In the push direction, where there was a tensile axial load, the first yield occurred at a 

drift ratio of 0.49% and a horizontal force of 25.3 kN, while in the pull direction with a 

compressive axial load, it was at a drift ratio of 0.53% corresponding to a horizontal force of 

44.3 kN. In the push direction, the capacity was 60.5 kN at a drift of  6.11%, while in the pull 

direction the capacity increased to 80 kN at a drift of 6.12%. The dotted lines show the estimated 

capacities in the two directions. The estimation was based on the predicted capacity and the 

corresponding axial load. As shown in the figure, in the push direction where the axial force is 

tensile, the capacity is well estimated, while in the opposite direction with a compressive axial 

load, it has been underestimated. The column achieved a ductility of about 11 in the push 

direction and 15 in the pull direction during the test. The column failed at a drift ratio of 6% (137 

mm) in the push and at 8% (183 mm) in the pull direction.  
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Comparing Test 1 and Test 3 Horizontal Forces
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Figure 5.9  Comparison of lateral forces in tests one and three 
 
 
5.2.3 Specimen Three 

 

This specimen was under a monotonically increasing lateral displacement and a constant axial 

load equal to 30% Agf'c. The observed peak strength of the column in this case was less than for 

specimen one, which was under the same level of axial load but a cyclic lateral displacement. In 

Figure 5.9 the results of the two tests are compared. The displacement capacity for this column 

was slightly more than for the first specimen, while it reached its maximum capacity in a smaller 

drift ratio compared to test one. Figure 5.10 shows the experimental horizontal force versus drift 

ratio and the expected analytical capacity. 
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Experimental Horizontal Force vs Drift Ratio (Test 3) and the Predicted 
Capacity
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Figure 5.10  Horizontal force vs. drift ratio, specimen three 
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Figure 5.11  Horizontal force vs. drift ratio, specimen four 
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The analytical capacity is evaluated for the column under axial load, and the dotted line is 

plotted considering the effect of axial load. The capacity is underestimated, as in the first test 

where a similar axial load was applied. 

 

5.2.4 Specimen Four 
 

Specimen 4 was applied with monotonic lateral loading without any axial force. The first yield of 

the longitudinal steel occurred at a drift ratio of 0.5%. Its experimental strength was beyond the 

predicted analytical strength and the drift ratio reached 10%, more than the analytically predicted 

drift ratio at failure, when the reversal displacement was applied due to the stroke limit of the 

actuator. The specimen did not fail at this drift ratio, and the strength increased without any 

degradation up to the maximum practical stroke. In the pull direction, while the drift ratio was 

applied up to the end of the stroke limit of the actuator, the strength was close to that analytically 

predicted but less than the strength in the push direction. This was because of the degradation 

imposed while the push drift was applied. Figure 5.11 shows the horizontal force versus drift 

ratio for this specimen. 

Horizontal Force vs Drift Ratio (Test 5) and Capacity Predictions
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Figure 5.12  Horizontal force vs. drift ratio, specimen five 
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5.2.5 Specimen Five 
 

Figure 5.12 shows the lateral-force drift-ratio response of specimen five. The horizontal force 

fluctuation follows the axial load variation. Since the P-∆ effect when the level of axial load 

reaches its maximum or minimum peaks is significantly large, its effect on the horizontal force is 

considerable. The horizontal force depends on the level of axial load from the perspective of 

strength , the amount of the lateral displacement to reach its proper value for a certain level of 

strength, and the level of the P-∆ effect. These are the facts that can justify the appearance of the 

horizontal force response curve. Figure 5.13 shows the curves with and without the P-∆ effect, 

and the scaled axial load for comparison purposes. The figure is self-explanatory and the effect 

of axial load on increasing the strength and the P-∆ effect is obvious. 

 

Horizontal Force and scaled axial load (Test 5) with and without P-Delta
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Figure 5.13 Horizontal force with and without (solid) P-∆ effect, and the scaled axial 

load (dotted) vs. drift ratio, specimen five 
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Horizontal Force vs Drift Ratio (Test 6) and Capacity Predictions
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Figure 5.14  Horizontal force vs. drift ratio, specimen six 

 
 
5.2.6 Specimen Six 

 

The loading pattern for the axial load was different from the previous specimen considering the 

cycle and duration, while all other parameters, such as the peak values, are the same. All the 

aforesaid observations are also true for this case. The main difference in this case is that the 

lateral load had enough space in terms of lateral displacement under a certain level of axial load 

to reach its maximum value. In other words, when the axial load is reversed from its negative 

value and increased to its positive value, while the lateral displacement is increasing 

independently, the horizontal force increases, but for a certain level of the axial load, it cannot 

reach its peak value, except for the cases when the axial load is kept constant at that level while 

the lateral displacement is increased until the peak value is reached. Figure 5.14 shows the 

horizontal force versus drift ratio, and Figure 5.15 compares the horizontal force, with and 

without the P-∆ effect, and the scaled axial load. 
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Horizontal Force and Scaled Axial Load (Test 6) with and without P-delta
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Figure 5.15 Horizontal force with and without P-∆ effect (solid), and the scaled axial load 
(dotted) vs. drift ratio, specimen six 

 

5.3 EFFECTS OF VARIABLE AXIAL LOAD 
 

Figure 5.16 shows the critical moment versus drift ratio for column two. Owing to the 

proportionality of the axial load with the horizontal force, in the push direction the axial force is 

tensile, in the pull direction compressive. The variation of the axial load resulted in different 

responses in the push and pull directions. The experimental values corresponding to the first 

yield of the longitudinal rebar, and the peak flexural strength of the specimen are summarized in 

Table 5.1 The first yield of the longitudinal bar occurred at a drift ratio of 0.4677% 

corresponding to a horizontal force of 31.22 kN (7.02 kips) in the push direction when the axial 

load was –27.28 kN (-6.13 kips), while in the pull direction, the first yield of the longitudinal bar 

was at a drift ratio of –0.53% corresponding to a horizontal force of –55.43 kN (-12.46 kips) 

when the axial load was 47.91 kN (10.77 kips). Experimentally, there was a difference of 24.21 

kN between the yield forces in the two opposite directions. The difference between the 

corresponding displacements was around 1.14 mm (0.045 in.) due to the variation of the axial 

load between the values stated above. The specimen reached its maximum capacity at a drift 

ratio of 6.11% corresponding to a horizontal force of 75.65 kN (17.0 kips) with an axial load of 
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 –70.45 kN (-15.84 kips) in the push direction. The maximum capacity of the specimen in the 

pull direction was reached at a drift ratio of –6.17%, corresponding to a horizontal force of –100 

kN (-22.48 kips) under an axial load of 81.52 kN (18.32 kips).  The variation of the axial load 

caused this difference between the capacities in the two opposite directions. The difference 

between the displacements, as for the yield point, is not significant, and the experimentally 

detected difference was around 1.09 mm (0.043 in.). The ductility of the specimen in the two 

opposite directions was slightly different. In the push direction the ductility, defined as the 

ultimate displacement divided by the yield displacement was 13, in the pull direction 11.6. The 

increase in the axial load led to a decrease in ductility. 

 
Table 5.1  Experimental forces and displacements in opposite directions, test 2 

Push Direction  (Negative Axial Load) Pull Direction (Positive Axial Load) Experimental 

Data Test 2 Displacement  

mm(In) 

Drift Ratio(%) Horizontal Force 

kN (Kips) 

Axial Load 

kN (Kips) 

Displacement Drift 

Ratio(%) 

Horizontal 

Force 

Axial Load 

First Yield 8.55 (0.336) 0.4677 31.22 (7.02) -27.28(-6.13) -9.69(-0.3816) -.53 -55.43 

(-12.46) 

47.91(10.77)

Maximum  111.74 (5.39) 6.11 75.65 (17.0) -70.45(-15.84) -112.84 (-4.44) -6.17 -100.   

(-22.48) 

81.52 (18.32)
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Figure 5.16  Critical moment vs. drift ratio, specimen two 

 
Experimental Horizontal Force-Drift Ratio (Test 1 solid, 2 dotted) 
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Figure 5.17  Comparison of tests one and two 
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Experimental Horizontal Force vs Drift Ratio (Test 3 solid, and 4 dotted) 
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Figure 5.18  Comparison of tests three and four 

 

In general the test results show that the compressive axial load in the pull direction led to 

an increase in the capacity, and that the tensile axial load in the push direction reduced the 

capacity.  

Figure 5.17 compares the horizontal force of tests one and two, and Figure 5.18 compares 

the same values for specimens 3 and 4. The effect of the axial load on the flexural strength and 

ductility of the column is clearly visible. The significant increase in strength costs a significant 

decrease in ductility. This effect can also be seen in Figure 5.13 and Figure 5.15, where the 

horizontal force has been plotted for tests 5 and 6, respectively, compared to the scaled value of 

the axial load. If we correct the P-∆ effect, the effect of the axial load is explicitly shown in the 

figures. The other important issue is the effect of the pattern of axial load.  
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Critical Moment, tests 5 and 6
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Figure 5.19  Comparison of tests five and six 
 

Figure 5.19 compares the critical moments for tests 5 and 6. In Figure 5.20 the variation 

of the axial load with respect to the drift ratio is compared for tests five and six. The level of 

peak values for the axial load remained the same for both tests, the only difference being the 

pattern of loading. As shown, the pattern of the axial load with respect to the lateral displacement 

had a significant effect on the strength of the member. The reversal strain and strain hardening of 

steel, the compressed concrete, and the utilization of confining the steel are the main issues in 

this regard that should be addressed in this case. In general the effect of the axial load on the 

overall response of the column is significant, especially when the amount of the force is large 

and may not be ignored. The pattern of loading affects the response of the member.  
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Axial load (Test 5 and Test 6) vs Drift Ratio
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Figure 5.20  Comparison of variation of axial load in tests 5 and 6 with respect to drift ratio 
 
 
 
5.4 RECORDED MOMENT-CURVATURE RESPONSE 
 

The evaluation of the moment-curvature at different heights along the column can be carried out 

through two different methods. In the first method, an average curvature of a segment of the 

column is obtained using the longitudinal deformations measured by a pair of linear 

potentiometers, as shown in Figure 3.3. The average curvature can be expressed as: 

1 2
'

1

( )
.ave D l

ϕ ∆ −∆
=         (5.3) 

where ϕave is the average curvature over the specified length, ∆1 and ∆2 are the measured 

longitudinal deformations on two sides, D’ and l1 are the distance of the linear potentiometers 

and the length of the segment, respectively. The corresponding moment is calculated at the 

middle height of the segment, using the recorded values for the horizontal force and axial load, 

and the relative horizontal deflection at the corresponding step. In the second method, the 

curvature at a certain height level is evaluated. Here, the recorded strain at the two opposite 

longitudinal reinforcements at that level are employed and the curvature is evaluated as follows: 
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2 1( )
( 2 )ave D c
ε εϕ −

=
−

        (5.4) 

where ε1 and ε2 are the recorded strains at the two strain gages installed at the opposite sides of 

the column on the rebars, D is the column diameter, and c is the cover concrete thickness. The 

moment is calculated at the same level, using the recorded values for the horizontal force and 

axial load, and the relative horizontal deflection at the specific step. This method is reliable only 

within the elastic range of the strain, otherwise the residual strains when the reversal load is 

applied will be included in the measurements. In this report, the first method is used in 

evaluating the average curvature over a segment, and the second method is used solely to ensure 

the consistency of the data. 

Figure 5.21 shows the moment-curvature response of the first specimen at segment one. 

This specimen was under a relatively high compressive axial load, and as a result, the maximum 

curvature achieved in the average section in segment one was about 0.0032 (1/in.). The section 

tolerated a moment of 3920 kip/in., corresponding to a lateral force of 57.5 kips.  
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Figure 5.21  Experimental moment curvature of specimen one 
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Experimental Moment Curvature (Test 2) at first segment
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Figure 5.22  Experimental moment curvature of specimen two 

 

Experimental Moment Curvature (Test 1 and 2) at first segment
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Figure 5.23 Comparison of the moment-curvature response at the first segment for tests 
one and two 
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In Figure 5.22 the experimental moment-curvature curve at the first segment for test two 

is plotted. In this test the axial load was proportionally variable with respect to the lateral force 

with a proportionality or tan( 43 ) 0.9325°− = − , so that in the push direction, where the lateral 

force was positive, the column experienced a negative axial load approximately equal to the 

lateral force in terms of magnitude, and in the pull direction, where the lateral force was 

negative, the exerted axial load on the column was positive. The ratio of the bending moment to 

the axial load at the critical section was –66.67, while at a section in the middle of the first 

segment (at a height of 100 mm [4.0 in.] above the critical section) this ratio was –63. 

In Figure 5.23 the moment-curvature responses of the average section on segment one for 

tests one and two are compared. For test one, the high level of axial load caused an increase in 

the moment capacity of the section, while the ultimate curvature was limited to 0.0032 1/in. On 

the other hand, specimen two under a relatively low level of axial load could utilize its flexural 

ductility in terms of curvature at the mid-section on the first segment, while the moment capacity 

was lower than in the first test. As was observed for the horizontal-force drift-ratio hysteretic 

response of the columns, increasing the level of the axial load within a range, which is usually 

the balance point, increases the capacity in terms of the force or moment, while decreasing it in 

terms of displacement, curvature, or rotation.   

Figure 5.24 shows the distribution of curvature along the column height at different drift 

ratios for specimens one and two. The horizontal axis is the curvature in terms of 1/m and the 

vertical axis is the column height in mm. The scale on the axes is chosen the same so that the 

curvature distribution can be compared for the two cases. The distribution of curvature along the 

height of the first specimen is symmetric for equivalent negative and positive drift ratios, as was 

expected due to a constant axial load. As shown in the figure, the distributions for the drift ratios 

of –4% and +4% have the same pattern. The effect of variation of the axial load in the push and 

pull directions on the curvature distribution for specimen two is shown in the figure. 
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Figure 5.24  Distribution of curvature along the column at different drift ratios for test one 

and two 
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Figure 5.25  Experimental moment curvature of specimen three 
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Figure 5.26  Experimental moment curvature of specimen four 
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Figure 5.27 Comparison of the moment-curvature response at the first segment for tests 

three and four 
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Experimental Moment Curvature (Test 1 and 3) at first segment
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Figure 5.28 Comparison of moment-curvature response of the mid-section on segment one 
for specimens one and three 

 
 

Figure 5.25 shows the moment-curvature response of specimen three at the first segment. 

This specimen was under a high level of axial load, identical to the first specimen and a 

monotonic lateral displacement. Figure 5.26 shows the moment-curvature response of specimen 

four at the first segment. In this case the monotonic lateral displacement was applied without any 

axial load.  

Figure 5.27 compares the moment-curvature response of specimens three and four at an 

identical section. The same phenomenon is observed here as was for tests one and two. Test three 

was under a high axial load compared to test four under no axial load. The two tests are 

compared in terms of the moment curvature at the first segment as for tests one and two.  

Figure 5.29 shows the distribution of curvature along the column height at different drift 

ratios for specimens three and four. The horizontal axis is the curvature in meter-1 (1/meter) and 

the vertical axis is the column height in millimeters. For specimen three, the curvature at the 

segment above the footing is less than the curvature at the next segment. This is because of the 

high level of axial load and the effect of footing in providing confining stresses for the segment 

in the vicinity of the column-footing interface. Specimen four was tested without axial load, and 

the pattern of curvature distribution for identical positive and negative drift ratios are fairly close. 
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Figure 5.29 Distribution of curvature along the column at different drift ratios for tests 

three and four 
 

The experimental moment-curvature responses of specimens five and six are shown in 

Figure 5.30 and Figure 5.31. The period of variation of the axial load in terms of curvature was 

0.00045. In other words, one cycle of axial load variation between '10% g cA f− and 

'30% g cA f+ was completed within a curvature variation of 0.00045 1/in. For test six, the same 

variation of axial load happened in a curvature range of 0.00062 1/in., but this difference was 

due to keeping the level or axial load at peak points constant for a short time. So, the slopes for 

both tests are the same and this difference is due to the aforesaid action. The rate of change of 

axial load with respect to curvature, or in other words, the period, was constant from zero up to a 

curvature of 0.0022. The rate was then changed at various instances. In Figure 5.32 the variation 

of the axial load with respect to curvature at the first segment for tests five and 6 is compared. 

Figure 5.33 compares the moment-curvature response of tests 5 and 6 at the first segment, and 

the significant effect of the pattern of the axial load is shown. Within a curvature of 0.002, the 
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only difference between the two patterns of axial loads is the short pause of the axial load at peak 

points for test 6. This small difference caused a relatively significant difference in the moment-

curvature response of the two tests within this range. Between curvatures 0.0022 and 0.0030, the 

level of the axial load was kept at the peak value in test 6, resulting in a very significant 

difference in the moment-curvature response. 
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Figure 5.30  Experimental moment curvature of specimen five 
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Experimental Moment Curvature (Test 6) Segment 1
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Figure 5.31  Experimental moment curvature of specimen six 
 

Axial load (Test 5 and Test 6) vs Curvature at Segment 1

-1000

-500

0

500

1000

1500

2000

2500

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

Curvature (1/M)

Fo
rc

e 
(K

N
)

Test 5
Test 6

 
Figure 5.32  Comparing axial load for tests 5 and 6 considering curvature at first segment 

 

After the curvature of 0.003, the pattern of variation of the axial load for the two tests 

with respect to curvature is different and at a curvature close to 0.004, the axial load level was 
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fixed at the peak compressive value. Again, the difference in the response of the two tests is 

shown in Figure 5.33. 

 

Experimental Moment Curvature (Test 5 and 6) Segment 1

-150

-50

50

150

250

350

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Curvature (1/M)

M
om

en
t (

kN
-M

)

test 5 segment 1
Test 6 segment 1

 

Figure 5.33  Comparison of moment-curvature response of tests 5 and 6 at the first segment  

 
 

Figure 5.34 shows the distribution of curvature over the column height at different drift 

ratios and under various axial loads. The horizontal axis is the curvature (inch-1) and the vertical 

axis is the column height. The figures show that for the same drift ratio, the pattern of curvature 

distribution along the column varies for different axial loads. 
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Figure 5.34 Distribution of curvature along the column at different drift ratios and axial 

forces for tests five and six 
 
 
 
5.5 STEEL STRAIN RESPONSE 
 

The steel strain response was determined from the results obtained from a total of 30 strain gages 

applied on the rebars and the spiral at 5 levels for specimen one, and from 24 gages for specimen 

two.  

Figure 5.35 (a) shows the strain distribution on the spiral at the footing surface, a height 

of 8", and 16", for a drift ratio of -1.5% for specimen one.  
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Strain Distribution on the spiral on the height 0,8, and 16" at 
drift -1.5% (Specimen One)
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Figure 5.35  Specimen one 

 
In Figure 5.35(b), the strain distribution along the column for drift ratios -0.5% and -1.5% 

on the tensile face is shown for the first specimen. At -0.5% drift, due to a high level of 

compressive axial load and relatively low moment, all the section is under compression at a 

height of 32 in. Figure 5.36(a) shows the strain distributions on the spiral and along the height 

for specimen two. In Figure 5.36(b), the strain distribution along the column for drift ratios of  

-1% and -1.5% is shown for a rebar on the tensile side. It should be noted that for both specimens 

the strain on the footing is shown to be less than at the next level, while the moment is greater 

and apparently a larger amount is expected. This is due to the plastic strain of the concrete and 
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the total deformation in the section on the footing that results in a smaller portion of the moment 

carried by the steel compared to the section at a height of 203 mm (8 in.).  
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Figure 5.36  Specimen two 
 

Figures 5.37 to 5.40 show the distribution of strain along the height of the column for the 

specimens at different drift ratios. The distribution of the tensile and compressive strain is 

completely different for different axial loading patterns. For the cases with a relatively high axial 

load, the strain at the location close to the column footing interface is less than the strain at the 

neighboring point above it on the column; while for the tests with zero, negative or a very low 
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axial load level, this strain is more than at the neighboring point above, provided the rebar 

location on which the strain is recorded is in the compression side of the section. For tests 5 and 

6, the distribution depends on the axial load level at the instance the data were captured and 

plotted. As shown, at different drift ratios the distribution from this perspective is different, 

corresponding to different levels of axial load. As an example of this phenomenon, the 

distribution of the strain on the compression side of specimen five is always such that the strain 

at the column-footing interface is less than at the location above it. In general, the strain at the 

column-footing interface is less when the location falls within the compression zone and is more 

when in the tensile zone, compared to the strain at the neighboring point above on the same 

rebar, but if the level of axial load is extremely high or low, the strain at the interface is lower or 

higher, respectively, throughout the section. The figures in Appendix I for each test show all the 

experimental responses of the specimens under the respective loading and displacement 

conditions. 
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Figure 5.37  Strain distribution along the column height, specimen three 
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Strain distribution along the column 4 
(Tension "R" and Compression "L" 

sides)
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Figure 5.38 Strain distribution along column 4 (no axial load) at different drift ratios on 

compression and tension sides 
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Figure 5.39 Strain distribution along column 5 at different drift ratios and various axial 
load levels 
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Strain distribution along the column (tension 

"R" and compression "L" sides), Test 6 
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Figure 5.40 Strain distribution along column height, specimen 6, on compression and 
tension sides at different drift ratios and axial loads 

 



 

6 Analytical Material Models 

6.1 INTRODUCTION 
 

The analysis of the behavior and the design of any RC structure or element, namely bridge 

substructures, the piles and columns of piers, requires analytical models and methods that 

accurately reflect the true nonlinear cyclic loading behavior of the element. Current analytical 

modeling techniques of structural elements use either a macro–modeling approach or a micro–

finite element approach. It is evident that a coarse macro-approach, in which lumped plasticity 

within elements is used for the prediction of the response behavior, is too crude in many cases 

for investigating the detailed behavior of joints and plastic hinges. On the other hand, 

sophisticated finite element models may require a very fine mesh representation, prohibiting 

analysis of large- or even moderate-size bridges. Combining these two approaches has been 

considered the most appropriate compromise. This is also true for the analytical models for 

material behavior. While in some cases a simplified model for simulating the monotonic stress-

strain relationship of a material in an approximate way may be adequate, in many other cases, 

where a detailed study of the response is expected, and especially in the case of a hysteretic 

response, more accurate and reliable models are required. 

USC_RC, a tool developed to address the analytical needs of research on the seismic 

behavior of bridge piers, employs analytical models and methods that in some cases are the same 

as, or a revision of, existing conventional models and methods, and in others are specifically 

developed based on observations and experimental data. 

The following reviews existing analytical models for material behavior, both monotonic 

and hysteretic response, and also models employed in the analytical part of the current research 

on the seismic behavior of bridge piers.  
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6.2 MATERIAL MODELS 
 
Many different models have been proposed so far for the stress-strain relationship of the material 

used in an RC member. In general, for each material the model for the monotonic response of the 

material serves as the envelope curve for the hysteretic behavior model.  

 
 
6.2.1 Monotonic Response 
 

Typical monotonic stress-strain curves for steel and concrete have been obtained from steel bars 

loaded monotonically in tension, or concrete specimens loaded monotonically in compression. 

 
 
6.2.1.1 Steel 
 
Steel can be categorized into two major distinct groups in terms of its ductility. Figure 6.1 shows 

a typical stress-strain curve for cast iron that has a brittle nature, and a typical stress-strain curve 

for mild steel. Since the reinforcing steel used in RC structures and members is generally from 

the latter type, all the models discussed here fit this category. 

 

 

Figure 6.1  Typical stress-strain curves for cast iron and mild steel 
 

Numerous tests have shown that the monotonic stress-strain curve for reinforcing steel 

can be described by three well-defined branches. This is generally the case for approximately all 

kinds of the reinforcing steel used in RC members. Different models are proposed for monotonic 

stress-strain response of steel. Some of these models are briefly discussed. 
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(a) Multilinear Model 
 
A multilinear model has been used widely by researchers in analytical studies. In this model, 

several straight lines approximate the stress-strain curve. The slope of the first segment is equal 

to the modulus of elasticity of the steel, and the slope of the following segments are defined to be 

either a portion of the initial slope or zero, depending on the real observed stress-strain curve for 

which the approximation is applied. In most cases, two lines approximate the curve, the first 

segment having the modulus of elasticity of the steel as the slope, while the second has either a 

smaller slope or a slope equal to zero. Figure 6.2 shows two cases of a bilinear (A) and trilinear 

(B) modeling of the stress-strain behavior of steel. In most engineering cases, the former model 

has been used with results accurate enough for practical purposes. 

 

 

 

Figure 6.2 Typical multilinear stress-strain relationship curves used to model the stress-
strain relationship of steel 

 

 (b) Park and Paulay Model 
 

The actual stress-strain curve of steel, in its general shape, has been modeled by Park and 

Paulay (1975). The governing equations are as follows: 

region AB  s s sf Eε=        (6.1) 

region BC s yf f=        (6.2) 

region CD 2

( ) 2 ( )(60 )[ ]
60( ) 2 2(30 1)

s sh s sh
s y

s sh

m mf f
r

ε ε ε ε
ε ε
− + − −

= +
− + +

   (6.3) 
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where  
2

2

( / )(30 1) 60 1
15

su yf f r r
m

r
+ − −

=     (6.4) 

 su shr ε ε= −          (6.5) 

 

(c) Mander Model 
 
To have a better agreement with the actual behavior of mild steel, in some cases, the strain-

hardening portion of the curve may be approximated by a curve. The following model is a 

sample that yields results close to real behavior when the proper parameters are used. 

Mander et al. (1984) found that the strain-hardening region (εsh<εs<εsu) in the stress-strain 

curve can be predicted with good accuracy by: 

 

Figure 6.3 The proposed stress-strain curve for steel by Mander et al. (1984) and Park 
and Paulay (1975) 

 

 

( )( ) psu s
s su su y

su sh

f f f f ε ε
ε ε

−
= − −

−
      (6.6) 

where εs is the steel strain; εsh is the steel strain at the commencement of strain hardening; εsu is 

the steel strain at fsu ; fs is the steel stress; fsu is the ultimate tensile strength of the steel; fy is the 

yield strength of the steel; Esh is the strain-hardening modulus of steel; and: 



 81
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ε ε−
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−

        (6.7) 

(d) Model Developed and Used in the Analytical Program 
 
The model developed and used in the analytical program in the second and third phases is 

different from the aforesaid models and yields results that comply well with the material test 

results. This model is flexible, and by adjustment of its parameters can be used to simulate the 

behavior of different types of steel, even if the main intension has been in simulating the mild 

steel cases. In this model, four parameters are used.  

1. K1 is the ratio of the strain at the start of the strain hardening to the yield strain.  

2. K2 is the ratio of the strain at the ultimate stress to the yield strain. 

3. K3 is the ratio of the ultimate strain to the yield strain.  

4. K4 is the ratio of the ultimate stress to the yield stress. 

The curve is assumed to be linear up to the yield point, which is the case for 

approximately all kinds of steel, and to have a pure plastic deformation from the yield point up to 

a strain of K1 times the yield strain. The maximum strength is assumed to occur at a strain of K2 

times the yield strain, and is equal to K4  times the yield stress, and steel rupture occurs at a strain 

of K3 times the yield strain. A quadratic curve joins the start of the strain-hardening point, the 

maximum strength point, and the rupture point. The parameters of the model employed in the 

analytical works of this study have been scaled so that the resulting curve is very close to the 

experimental curve resulting from the material tests on the sample bars and spiral used in the 

construction of columns. Figure 6.6 and Figure 6.7 show the experimental stress-strain curves for 

the longitudinal reinforcement and confining steel, respectively, resulting from the material tests 

conducted at the USC Structural Lab. Figure 6.4 shows the USC_RC monotonic stress-strain 

curve for steel. The four different parameters used to adjust the model to fit the experimental 

data are shown in the figure. By adjusting these parameters the experimental curves for either the 

longitudinal or transverse reinforcement can be successfully simulated. The mathematical 

formulation of the model is as follows: 

• For  0 y sEε ε σ ε< < ⇒ =  whereε  is the strain, yε is the yield strain of steel, σ  is the 

stress, and sE is the modulus of elasticity of steel. 

• For 1y s yk Eε ε σ ε≤ < ⇒ =  
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• For 1 3k kε ε ε≤ < ⇒   
2 22

4 2 4 1 4 1 2 4 2
2 2
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• For 3 0.ykε ε σ> ⇒ =  

A flowchart for the monotonic stress-strain response of steel, as modeled in USC_RC is 

shown in Figure 6.5. 

USC_RC Steel Stress-Strain Curve
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Figure 6.4  USC_RC model for monotonic stress-strain curve of steel 
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Figure 6.5  Flowchart for steel monotonic stress-strain response as modeled in USC_RC 
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Experimental Stress-Strain Curve for Rebar #13 (#4 English)
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Figure 6.6  Experimental stress-strain curve for longitudinal bars 

 
 
 

Spiral (W2.5) Experimental Stress-Strain Curve
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Figure 6.7  Experimental stress-strain curve for confining steel (spiral) 
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6.2.1.2 Concrete 
 

Concrete is composed of two parts, confined concrete and cover concrete. Various models have 

been proposed to model the stress-strain relationship of confined and in turn unconfined 

concrete. The model employed in theoretical predictions plays a basic role in the compatibility of 

the data with the test results. Each model seems to have efficiency for a specific situation, while 

not for others. The following reviews the existing models, including the model employed in the 

first stage of the analytical works related to the tests. 

  

(a) Richart Model 
 
The pioneer work on the effect of transverse reinforcement on concrete compression behavior 

was conducted by Richart et al. (Richart, 1928).  Based on the test results of 100 mm×200 mm (4 

in.×8 in.) concrete cylinders subjected to different types of transverse pressure, he discovered 

that the strength and corresponding strain of concrete were increasingly proportional to the 

increase in transverse pressure, a phenomenon then that seems obvious nowadays. Based on 

those early studies, the compression strength of the concrete was expressed as: 

 ' 'cc co rf f kf= +         (6.8) 

where f’
cc is the compression strength of the concrete with transverse pressure; f’

co is the strength 

without pressure; fr is the transverse pressure; and k is the experimental coefficient, which was 

proposed as being 4.1 by Richart et al. The peak strain, ccε , at the compression strength of 

confined concrete was expressed as: 

 
'

'1 5 1cc
cc co

co

f
f

ε ε
  

= + −  
  

       (6.9) 

where coε  is the peak strain at the strength of plain concrete cylinders. This equation, essentially 

represents the simplest form of the Mohr-Coulomb two-parameter criterion, which defines the 

shear stress as the function of the normal stress (Chen, 1982). 
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(b) Fafitis and Shah Model 
 
Fafitis and Shah et al. (Fafitis and Shah, 1985) proposed a confinement model based on the 

results of their tests.  The model was initially developed for circular columns confined with spiral 

reinforcement.  They suggested that columns with square sections can be treated as circular 

columns with the core diameter equal to the side of the square core.  The confinement index to 

estimate the effective confining pressure was defined as: 

 yhsh
r

c s
fAf d

=          (6.10) 

where Ash is the total section area of the transverse reinforcement in the vertical cross section 

within spacing s; dc is the equivalent diameter for a square column section assuming it equals the 

side of the confined square concrete core; fyh is the yield strength of the confinement steel.  The 

complete stress-strain curve consists of two parts, ascending and descending branches.  Both 

branches meet at the peak point with a zero slope, which avoids any discontinuity.  The 

ascending branch in fact is a parabolic function with its extreme point coinciding with the peak 

of the stress-strain curve.  The main parameters used in the ascending parts are the modulus of 

elasticity for unconfined concrete Ec, confined concrete strength f’
cc, and strain at confined 

strength εcc. The peak coordinates f’
cc and εcc are calculated based on the unconfined concrete 

cylinder strength f’
c and the confinement index fr.  The descending branch is an exponential curve 

asymptotically approaching zero, while the strain tends to infinity.  The parameters used for 

calculating the descending branch are the same as for the ascending one, plus the modulus of 

elasticity of the unconfined concrete.  The complete mathematical expressions describing Fafitis 

and Shah’s model are: 
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f f ε
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where 
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The factor λ1 depends on the concrete strength and degree of the confinement.  This 

model can easily be used for unconfined concrete by taking fr = 0.  The value of the parameter k 

equal to zero corresponds to perfectly brittle behavior, while an infinitely large k corresponds to 

perfectly plastic behavior of confined concrete. 

 

(c) Sheikh and Uzumeri Model 
 
The model of Sheikh and Uzumeri et al. (1982) is one of the earliest developed for the prediction 

of the stress-strain relationship of confined concrete in tied columns.  The model was developed 

based on the experimental results from 24 tests conducted by them, as well from a number of 

tests conducted before 1982 by other researchers.  The complete stress-strain curve consists of 

three main sections.  The first section represents a parabolic curve with its center coordinates (fcc, 

εs1), the second part is a horizontal line up to the strain εs2, and the third section represents an 

inclined line with a slope Z.  It continues up to the point where the stress becomes 0.3fcc, after 

which it again continues horizontally.  The fcc is the strength of the confined concrete, and εs1 and 

εs2 are the minimum and maximum strains, respectively, corresponding to the maximum stress of 

the confined concrete. They are expressed as follows: 
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f’
co is cylinder strength in psi. 
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       (6.19) 

Here all stresses are in psi and C is in inches. εoo is the strain corresponding to the maximum 

stress in a plain concrete specimen.  The parameter Ks, which is called the strength gain factor, 

was determined from regression analysis based on tests of confined concrete columns: 
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      (6.20)  

where f’
s is in ksi and Pocc is in kips.  The slope Z for the third section of the stress-strain curve is 

expressed as: 

 0.5
3
4 s

Z
B
sρ

=          (6.21)  

The many parameters used in these equations depend mainly on the geometry of the 

specimen, amount of reinforcement, etc.  Thus, s is the spacing of the transverse reinforcement; 

ρs is the volumetric ratio of transverse reinforcement; C is the center-to-center distance between 

longitudinal bars; and n is the number of curvatures between the longitudinal bars.  This takes 

into account that some of the concrete at the surface of the core remains unconfined.  For square 

columns n  coincides with the number of the longitudinal bars. f’
s is the stress in the lateral 

reinforcement, which is recommended to take as the yield stress of the lateral reinforcement.  

Pocc is described by the following equation: 

 ( )'

occ co scofP A A= −         (6.22) 

where 
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co B HA = ×          (6.23) 

As is the total sectional area of the longitudinal steel bars; Aco is the area of the confined concrete 

core; B and H are the center-to-center distance of the perimeter hoop of the rectangular concrete 

core.  According to Sheikh and Uzumeri et al. the maximum error in the predicted Ks value on 

the unsafe side is less than 4%, and the maximum conservative error is about 7%.  They also 

proposed a parameter εs85 for confined concrete strain corresponding to 85% of maximum 

concrete stress on the unloading branch of the stress-strain curve: 

 
85 20.225s ss

B
sρε ε= +         (6.24) 

It is assumed as the ultimate strain of confined concrete. 

 
 
(d) Mander, Priestley, and Park Model 
 
Mander, Priestley, and Park (1988) and others have developed a general model for concrete 

confined by various types of transverse reinforcements (Mander, Priestley, and Park, 1988).  The 

Mander model has been widely used in analyzing columns with both circular and rectangular 

cross sections (Xiao, Priestley and Seible, 1994; 1996).  The load application can be either static 

or dynamic, applied monotonically or by load cycles.  The transverse reinforcement can also be 

of different types: circular or spiral, rectangular hoops with or without cross ties.  In this report 

only the stress-strain relationship for rectangular columns confined with rectangular hoops under 

monotonically applied load is considered.  To develop the model, Mander conducted tests on 

full-scale confined RC columns, with a concrete strength of 30 MPa and steel yield strength of 

about 300 MPa.  The main equation describing the monotonic stress-strain relationship for 

confined concrete is: 

'

1
cc

rc r
xrff
x

=
− +

         (6.25) 

where x is the ratio of strain (εc) to the strain at peak stress (εcc), f’
cc  is the peak stress for 

confined concrete; r  is the ratio of the concrete’s initial modulus to the difference of the initial 

and secant moduli of elasticity.  These parameters and their components are mathematically 

expressed by: 
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In the above equations f’
co and εco are, respectively, the concrete cylinder strength and 

corresponding strain.  The parameter R is an empirical value determined experimentally. 

According to Mander et al., it varies from 3 for high-strength concrete to 6 for normal-strength 

concrete.  The main parameter figuring in the equations is the peak longitudinal compressive 

stress for confined concrete.  It is expressed as: 

' '
' '

' '

7.94 2
2.254 1 1.254l l

cc co
co co

f ff f
f f

 
 = + − − 
 
 

      (6.31) 

where f’l is the effective lateral confining stress, defined as: 

' 1
2 el s yhf fK ρ=         (6.32) 

The most important parameter in Mander’s model is the confinement effectiveness 

coefficient Ke.  It takes into account the efficiency of different types of transverse reinforcement.  

Mander et al. proposed different equations for Ke for different types of transverse reinforcement,  

particularly for circular sections and the spiral-shaped transverse reinforcement:  
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Figure 6.8 Mander et al. (1988) model for monotonic response of confined and unconfined 
concrete 

 

Here ρcc is the ratio of the area of the longitudinal reinforcement to the area of the core section, 

and  ρs is the ratio of the volume of the transverse confining steel to the volume of the confined 

concrete core. The expression fyh is the yield strength of the transverse reinforcement. The model 

is valid only within a certain range of confinement steel; otherwise the results are not realistic 

and valid. Also there is a deficiency in the model regarding the descending part of the confined 

concrete stress-strain curve. The experimental results (Martirossian, 1996) show that some 

modifications as proposed by Martirossian and others are required to make it more realistic.  

Also, as already mentioned, the model may be applied only for a confinement range for which f'l  
is between zero and about 2.3; otherwise the method will not yield realistic behavior. 
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(e) Li and Park Model 
 
Li and Park et al. have conducted numerous tests on circular and square RC columns (Li and 

Park, 2001). Based on the test results, they modified Mander’s model for predicting the 

performance of high-strength concrete columns with various types of reinforcement 

configurations.  The Li and Park model can be used for the cases of both unconfined and 

confined concrete. Since their model is mainly for regarding the performance of high-strength 

concrete, it will not be explained here. 

 

(f) Cusson and Paultre Model 
 
Recent research projects conducted in the field of confined high-strength concrete include studies 

done by Cusson and Paultre (1993) on the development of a stress-strain model and its 

calibration against test results from 50 large-scale high-strength concrete tied columns tested 

under concentric loading. From those 50 test specimens, 30 high-strength concrete confined 

columns were experimented on by Cusson and Paultre, whereas the other 20 tests were 

conducted earlier by others. Since their work is mostly about the behavior of, and effect of 

confinement on high-strength concrete, the model will not be explained in further detail.  

 

(g) Saatcioglu and Razvi Model 
 
An interesting analytical model was proposed by Saatcioglu and Razvi. (Saatcioglu and Razvi, 

1992) to construct a stress-strain relationship for confined concrete. The model consists of two 

parts: a parabolic ascending branch, followed by a linear descending branch. Lateral 

reinforcement in the sense of equivalent uniform lateral pressure in both circular and rectangular 

columns was used to develop the model characteristics for the strength and ductility of the 

confined concrete. The model has been compared with different types of column tests, including 

circular, square, and rectangular, as well as welded wire fabric. Spirals, rectilinear hoops, and 

cross ties have been used as lateral reinforcement in confined columns. Concentrating on the part 

of the model representing square columns, the confined concrete strength is calculated as: 
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 ' '
1cc co lf f k f= +         (6.34) 

where ccf ′ and cof ′  are the confined and unconfined strengths of concrete in a member, 

respectively. Coefficient 1k varies with different values of lateral pressure lf . Based on the test 

data, a relationship between these two parameters has been established as: 

 ( ) 0.17
1 6.7 lk f −=         (6.35) 

where fl is the uniform confining pressure in MPa. 

Unconfined concrete strength cof ′  is the plain concrete strength in a member under 

concentric loading. It might be different than the standard cylinder strength. 

While the lateral confining pressure can easily be obtained from circular column tests, 

that is not the same for square and rectangular columns. Therefore, the term “effective lateral 

pressure” fle has been proposed as: 

 2le lf k f=          (6.36) 

and 

 
sins yt
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A f
f
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α

= ∑         (6.37) 

where 2k  is the 1.0 for circular columns and square columns with closely spaced lateral and 

laterally supported longitudinal reinforcement, α is the angle between the transverse 

reinforcement and cb , and is equal to 90 degrees if they are perpendicular. 

In general 2k  is expressed as: 

 2
10.26 1.0c c

l l

b bk
s s f

   = ≤   
   

      (6.38) 

 

where pressure is in MPa.  The strain corresponding to the peak stress of confined concrete ( ccf ′ ) 

is denoted as ε1 and is calculated as similar to that found by previous researchers (Balmer 1949; 

Mander et al. 1988): 
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 ( )1 01 1 5Kε ε= +         (6.39) 

where  
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         (6.40) 

In the above equations, 01ε  is the strain corresponding to the peak stress of unconfined 

concrete, which should be determined under the same rate of loading used for the confined 

concrete. In the absence of experimental data the value 0.002 may be used. This concludes the 

first part of the model, i.e., the ascending branch of the stress-strain curve.  

The descending branch of the curve is linear and connects the points ( 1,ccf ε′ ) and 

( 850.85 ,ccf ε′ ) on the plane of the stress-strain curve. The value of strain corresponding to 85% of 

confined concrete strength is calculated as: 

 85 1 085260ε ρε ε= +        (6.41)   

 where ρ is the volumetric ratio of transverse reinforcement and is expressed as:
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∑         (6.42) 

and 085ε  is the strain corresponding to 85% of the strength level beyond the peak stress of 

unconfined concrete. Again it should be determined under the same rate as for the confined 

concrete specimen. If no test data are available the value 0.0038 might be used. 

Based on all the above-mentioned parameters, a stress-strain relationship for confined 

concrete has been proposed: 
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      (6.43) 

This is a parabolic relationship and is valid up to the peak stress point, after which the 

relationship is converted to a linear descending one. 

 

(h) Sakino Model 
 
Much research conducted in the field of confined concrete has been by Japanese researchers. 

This study will discuss research by Sakino et al. (1993). Many of these tests have been conducted 
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on circular as well as rectangular confined RC columns under axial loading. Different types of 

transverse reinforcement have been used to obtain effective confinement for an RC column. The 

main stress-strain equation is represented as follows: 

 ( )
( )

2

2

1
1 2c c cB

AX D X
A X DX

σ σ
+ −

=
+ − +

      (6.44) 

where c cBσ  is the confined concrete strength and is determined as: 

 c cB p h yhσ σ κρ σ= +         (6.45) 

where yhσ  is the steel strength. The expression pσ  stands for plain concrete stress and is 

determined as: 

 p c Bσ µ σ=          (6.46) 

where c Bσ  is the strength of a standard concrete cylinder, and µ is a coefficient which is equal to 

0.8 for circular columns, and 1.0 for square columns. The coefficient κ is determined differently 

for circular and square columns.  For square columns it is equal to: 

 1
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  
       (6.47) 

where 11.5sk = ; cD  is the center-to-center dimension of a steel hoop; and C is the transverse 

distance between any two anchored longitudinal bars. 

Three parameters used in expressions X, A, and K are proposed as follows: 

                     c c co c cB

co c cB p

EX A Kε ε σ
ε σ σ

= = =      (6.48) 

coε  is the strain corresponding to the peak stress of a confined concrete member and is 

determined as: 
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     (6.49) 

 

εo is cylinder strain at peak stress: 
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Ec is Young’s modulus, which is calculated as: 
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and k is an empirical coefficient expressed as follows,  depending on the type of raw materials in 

the concrete mix. 
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         (6.52) 

The variable D in the main stress-strain equation is calculated as: 

 ( )1
23

c B
c B

K
D

σ
α β σ γ

−
= + +       (6.53) 

where 1.5α = ; 31.68 10β −= − × ; and γ is equal to 0.75 for the steel tube and 0.50 for square 

hoops. 

 

(i) Yong, Nour, and Nawy Model 
 
This model was developed based on empirical results of a test program studying the effects of 

rectilinear confinement in high-strength concrete subjected to a monotonically increasing 

compressive axial load (Yong, Nour, and Nawy et al., 1988). Twenty-four columns of high-

strength concrete were tested. The concrete strength ranged from 12,130 to 13,560 psi. The 

columns were rectilinearly confined with lateral ties and longitudinal rebars. All specimens 

failed in a single shear plane. #3 longitudinal steel bars were used with 61.5 ksi yield strength, 

92.0 ksi ultimate stress, and 28,000 ksi Young’s modulus. Since this model is closely related to 

the models already mentioned in detail, and is mostly for high-strength concrete, the model will 

not be explained here any further. 
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(j) Martirossian Model 
 

Martirossian (1996) proposed a model for confined high-strength concrete that may be 

considered as a revised version of the aforementioned Mander's model for confined concrete. 

The revisions have been based on the results from extensive experimental tests on high-strength 

concrete columns at the USC Structural Lab. Since Martirossian’s model is mainly for the 

behavior of high-strength concrete, no further discussion will follow.  

 
(k) USC_RC Model 
 
The model for the monotonic stress-strain relationship of confined and cover concrete employed 

in the USC_RC model for the analysis of the seismic behavior of bridge piers under different 

loading conditions is as proposed by Mander, Priestley, and Park, and is shown in Figure 6.8. 

Figure 6.9 shows a case of the confined and cover concrete envelope curves for the material 

strengths and section geometry for the column specimens. The ultimate strain for cover and 

confined concrete is determined based on the energy-based principle proposed by Mander (1988) 

By equating the ultimate strain energy capacity of the confining reinforcement per unit volume 

of concrete core (Ush) to the difference in area between the confined (Ucc) and the unconfined 

(Uco) concrete stress-strain curves, plus additional energy required to maintain yield in the 

longitudinal steel in compression (Usc), the longitudinal concrete compressive strain 

corresponding to hoop fracture can be calculated. Therefore: 

  sh cc sc coU U U U= + −         (6.54) 

Substituting corresponding values in Equation (6.54) gives: 

0 0 0 0

. . . .
sf spcu cu

s cc s s cc c c cc cc sl c cc c cA f d A f d A f d A f d
ε εε ε

ρ ε ε ρ ε ε= + −∫ ∫ ∫ ∫    (6.55) 

where sρ = ratio of volume of transverse reinforcement to volume of concrete core; ccA = area of 

the concrete core; sf  and sε = stress and strain in transverse reinforcement; sfε = fracture strain 

of transverse reinforcement; cf  and cε = longitudinal compressive stress and strain in concrete; 

cuε = ultimate longitudinal concrete compressive strain; ccρ = ratio of volume of longitudinal 

reinforcement to volume of concrete core; slf = stress in longitudinal reinforcement; and spε = 

spalling strain of unconfined concrete. 
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In the first term of the left-hand side of Equation (6.55), the expression: 

0

sf

s s sff d U
ε

ε =∫          (6.56) 

is the total area under the stress-strain curve for the transverse reinforcement up to fracture strain 

sfε . Mander et al. concluded from several test results that the above value is independent of bar 

size or yield strength and could be considered accurate within 10% as: 

3110 /sfU MJ m=         (6.57) 

The area under the stress-strain curve for unconfined concrete may be approximated as: 

' 3
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where '
cof =quasi-static compressive strength of concrete in MPa (1 MPa=145 psi). Thus 

Equation (6.56) simplifies to: 

' 3

0 0

110 0.017 /
cu cu

s c c cc sl c cof d f d f MJ m
ε ε

ρ ε ρ ε= + −∫ ∫     (6.59) 

So, from the preliminary data, the ultimate confined concrete strain at the first rupture of 

transverse steel can be evaluated numerically. This method has been implemented in USC_RC to 

evaluate the ultimate confined concrete strain. 

Figure 6.10 shows some of the models proposed for the confined concrete stress-strain 

curve, and Table 6.1 summarizes some of these models. 
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Figure 6.9  Confined and cover concrete envelope curves as used in USC_RC for analysis 
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Figure 6.10  Stress-strain models proposed for confined concrete by different researchers 
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Table 6.1  Summary of several models for confined concrete response 

Researcher Confined Concrete 
Strength 

Strain at Strength Ultimate Strain 
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6.2.2 Hysteretic Response 
 
The hysteretic behavior of the reinforcing steel and concrete, especially the core concrete, has a 

remarkable effect on the hysteretic response of an RC member. Accurately modeling the 

hysteretic behavior is therefore crucial. General observations show that three basic components 

can be observed in the hysteretic response curve of any material or even of a structural member. 

These basic components may be described as follows. 
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Figure 6.11  Relationship between curves in a rule-based hysteretic model  
 
 
• Envelope curves can be fixed or re-locatable, or fixed or scalable. These curves are the 

backbones of the general hysteretic response. The degradation of material is usually 

simulated by shifting and scaling the envelope curves. The degradation can also be 

simulated by shifting the returning point. This means that the point of return to an envelope 

curve is different compared to the point where the last reversal occurred, a phenomenon 

that was observed during all the experiments discussed in this report. 

• Connection curves are the connections between the envelope curves. There may be several 

points of inflation in these curves, as when used to represent pinching, and other softening 

and hardening phenomena within the material or structural element. Usually more than one 

equation should be employed to simulate these kinds of curves. 

• Transition curves are those used when a reversal from a connecting curve takes place to 

make the transition to the connecting curve that goes in the opposite direction.  

Different hysteretic models have been proposed both as a general hysteretic model, and 

as models to simulate the hysteretic response of steel or concrete.  

Table 6.2 summarizes some general hysteretic models proposed by different researchers. 

These models cannot be regarded as both general and accurate. Each model may be applied in a 

specific case relatively successfully, while failing in others. As shown in the table, some models 

may be tuned to suit a particular case. Since in the current research the main goal is a detailed 

study of the seismic behavior of bridge columns, none of these models may be used to simulate 

the hysteretic response of a column. On the other hand, proper hysteretic models for materials, 
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namely steel, confined concrete, and unconfined concrete are employed for a detailed analysis. 

The results show that this approach yields results that are closer to the experimental results, 

rather than simulating the hysteretic response of the whole column by using a tuned version of 

any general hysteretic model. 

 

Table 6.2  Summarized specifications of some general hysteretic models  
Controlled Parameters Comparative Remarks Model Type 
Stiffness 
Degradation 

Pinching Strength 
Deterioration 

Additional 
*parameters 

Overall 
Versatility 

Overall 
Complexity 

Sketch 

Clough S N N N 0 L L  

Fukada S Y N N 0 L L  

Aoyama S N Y Y 4 M H  

Kustu S N Y N 4 M H  

Tani S Y N N 2 H M  

Takeda S Y N N 1 L M  

Park C Y N N 2 H H  

Iwan S N Y N 1 L M  

Takayanagi S Y Y Y 3 M M  

Muto S Y N N 0 L L  

Atalay C Y Y N 4 L H  

Nakata C Y Y Y 6 H H  

Blakeley S Y N Y 0 L L  

Mo S Y Y N 2 L L  

Pivot S Y Y N 0 M L  

Notations:  Y: Yes, N: No, S: Straight, C: Curved Line, L: Low, M:Medium, H: High,   
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6.2.2.1 Steel 
 
(a) Simple Bilinear Hysteretic Model 
 
Figure 6.12 shows a simple hysteretic model for steel. The envelope of this model is the bilinear 

stress-strain relationship of steel as described and shown in Figure 6.2 (A). Using this model in a 

hysteresis analysis provides results that are not as accurate as the results from a more realistic 

model. In this simple model, no degradation in strength or stiffness is considered and the strain-

hardening effect is also ignored, as for the bilinear monotonic stress-strain curve. 

 

Figure 6.12  Simple bilinear hysteretic model for steel 

 
(b) Ramberg-Osgood Model 
 
Ramberg-Osgood (1943) equations can be used to get a reasonably good simulation for the 

hysteretic behavior of reinforcing steel. Figure 6.13 (Park and Paulay, 1975) shows this model 

compared with the experimental data on a sample with the same specifications in terms of yield, 

ultimate strength, and modulus of elasticity In fact fch and r in the following equation have been 

chosen empirically. The Ramberg-Osgood equation is as follows: 
1

1
r

s s
s si

s ch

f f
E f

ε ε
− 

 − = +
 
 

       (6.60) 

where εs = steel strain, εsi =steel strain at zero stress at the beginning of loading run, fs = steel 

stress, Es= modulus of elasticity of steel, fch= stress dependent on the yield strength and the 

plastic strain in the steel produced in the previous loading run, and r= parameter dependent on 

the loading run number. 
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Figure 6.13  Hysteretic response of steel, based on Ramberg-Osgood equations 

 
(c) Shibata Trilinear Model 
 

Figure 6.14 shows the Shibata (1982) trilinear hysteretic curve for reinforcing steel. As shown in 

this figure, the yield strength in both the positive and negative (tension and compression) sides is 

assumed to be equal. The model is flexible in terms of the second and third level stiffness, and 

can be tuned to get close to a desired response. Kuramoto and Kabeyasawai (Kuramoto, 

Kabeyasawa, Shen, 1995), in their research on the influence of axial deformation on the ductility 

of high-strength RC columns under varying triaxial forces, took the post-yield stiffness,Es3, and 

the reduced stiffness due to the Bauschinger effect, Es2, as 1/200 and 1/10 of the elastic stiffness, 

Es1, respectively. The incline of stiffness changing line C was taken as –1/200 of Es1. The model 

used to simulate the hysteretic behavior of reinforcing steel in USC_RC is very similar to the 

Shibata model, but its flexibility is more comparable to this model, as will be discussed. 
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Figure 6.14  Shibata trilinear hysteretic curve for reinforcing steel 

 
(d) Steel Hysteretic Model Developed and Used in USC_RC 
 

The model developed and used in USC_RC is similar to the model proposed by Shibata (1982) 

but more flexible. The model has three major parts, common for any hysteretic model. Before 

any strain reversal, the stress and strain follow the monotonic stress-strain curve of steel as 

described in the USC_RC program and shown in Figure 6.4. At the turning point (strain reversal) 

the modulus of elasticity is assumed to be the same as the initial modulus of elasticity of steel. 

As shown in Figure 6.15 the same elasticity is assumed up to a stress after the sign of the 

transition of stress (after the stress sign changes from either  positive to negative or vice versa) 

where the stress absolute value is a portion of the yield strength of the steel. This value can be 

tuned by a parameter, “P1”, and the value of this stress is “P1.fy”, where “fy” is the yield strength 

of steel. At this point the stiffness changes to a fraction of the initial stiffness. The value of the 

secondary rigidity can be tuned by changing parameter “P2.” In the model the secondary stiffness 

would be “(P1/P2.).Es”, if in the first or third quarter of the coordinate plane, and “(P1/(2.P2.)).Es” 

if in the second and fourth quarter of the coordinate plane, where “Es” is the modulus of the 

elasticity of steel. This change in stiffness is to consider a better effect for the strain hardening. 

Finally the stress-strain curve follows a linear path on a line lying on the same stress side that 

connects the point of ultimate strength and corresponding strain to the point with 1/9 times the 

yield strength of steel on the opposite strain side and at the ultimate strain. Figure 6.16 shows a 

sample curve of the steel hysteretic response as modeled in USC_RC. At the time just two 

parameters have been implemented in the model, but if necessary, increasing the number of 
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parameters to four gives enough flexibility to tune the hysteretic response of the model to 

comply well with any desired hysteretic response for steel. The model can be mathematically 

explained by defining the stress and strain situation for the states where the initial (previous) 

stress-strain state is point 1, 2, or 3. Note that the behavior of the model is symmetric with 

respect to the origin because of assuming a symmetrical stress-strain curve for steel. Also, the 

direction of movement is shown in Figure 6.15. 

• For point 1, provided no strain reversal has occurred previously for strains more than the 

yield strain in either the positive or negative (tension or compression) directions, the 

movement follows the monotonic stress-strain curve of steel. This curve is described in this 

chapter and shown in Figure 6.4. 

• For point 2: 

If 1p y
p

s

P f
E

σ
ε ε

+
> −  then ( ) ( )line

p s pE fσ σ ε ε ε+= + − ≤   (6.61) 

If  1p y
p

s

P f
E

σ
ε ε

+
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where: 
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α α
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 

      (6.64) 

where pε  is the strain at the initial (previous) point, pσ  is the stress at the initial (previous) 

point, uf  is the ultimate strength of steel, yf  is the yield stress of steel, uε  is the rupture strain of 

steel, and α  is a parameter which can be tuned as desired. This parameter has been chosen as 0.9 

in the model used in USC_RC for analysis.  

• For point 3, the behavior is as explained for point 2 with the exception that: 

If  1p y
p

s

P f
E

σ
ε ε

+
≤ −  then: 
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11
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σ ε ε ε−+
= + − + ≤    (6.65) 

Note that the situation for point 2 moving in the other direction (increase in strain) is identical 

with a decrease in strain for point 3 and vice versa. In other words, the behavior is symmetric 

with respect to origin. 
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Figure 6.15  Steel hysteretic curve as modeled in USC_RC 
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Figure 6.16  A sample hysteretic curve based on the USC_RC data 
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6.2.2.2 Concrete 
 

Hysteretic models developed and proposed by different researchers are more comparable to the 

models proposed for the hysteretic behavior of steel. Each model has been developed based on 

the specific needs of the researcher. Most of the models are backed by empirical parameters and, 

in some cases, theoretical explanation. The following addresses some of the models and the 

method used in USC_RC. 

 
 
(a) Park, Kent, and Sampson Model  
 
A typical curve for the model proposed by Park, Kent, and Sampson (1972) is shown in Figure 

6.17. The envelope curve for the compressive stress is represented by the relationship determined 

by Kent and Park (1969–1990) for concrete confined by hoops under monotonic loading. A 

linear stress-strain curve for concrete in tension may be assumed, having the same slope as the 

curve for compression at zero stress. The actual response of the concrete in this model, at the 

reversal of strain and stress, is approximated by a bilinear curve as demonstrated in the figure. 

 

 

 
 

Figure 6.17  Hysteretic behavior of concrete as modeled by Park, Kent, and Sampson 
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(b) Kuramoto and Kabeyasawa Model 
 
Figure 6.18 shows the hysteretic model for confined and cover concrete used by Kuramoto and 

Kabeyasawa (1991). Their hysteretic model is a divided linear model. As shown in the figure, σB 

is the cover concrete strength, K is the confinement coefficient, and Ec1 is the initial stiffness of 

cover concrete, which is taken to be the same for confined concrete. All other parameters are self 

evident and their values can be tuned as needed, as was done by Kuramoto and Kabeyasawa. 

 

 

Figure 6.18  Kuramoto and Kabeyasawa model for hysteretic behavior of concrete 

 
 
(c) Mander et al. Model 
 

The procedure adopted by Mander et al. to simulate the hysteretic behavior of reinforced 

concrete is similar to the approach used by Takiguchi et al. (1976) but modified to be suitable for 

both unconfined and confined concrete. Figure 6.19 shows the model for the unloading branch 

and determination of plastic strain. In the figure .εun and fun are the unloading strain and stress, 

respectively; plε  is the plastic strain. Mander et al. proposed a relatively complicated procedure 

to define the hysteretic curve. 
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Figure 6.19 Stress-strain curves for unloading branch and determination of plastic strain 
as Mander model. 

 

 

Figure 6.20 Assumed deterioration in tensile strength of concrete due to prior compression 
loading in the Mander model. 

 

 



 111

Figure 6.20 demonstrates the deterioration in the tensile strength of concrete due to prior 

compression loading.. In this figure εt is the tensile strain and f’t is the initial tensile strength.   

The compressive strength of concrete is f’cc. 

Figure 6.21 shows a sample hysteretic stress-strain curve proposed by Mander et al. 

(1988) for the reloading curves in particular.  

 
Figure 6.21 Stress-strain curves for reloading branch in the model proposed by Mander et 

al. (1988) 
 

 
(d) Model Developed and Used in USC_RC 
 

The envelope for the model is the monotonic stress-strain curve as shown in Figure 6.9, which is 

based on the model proposed by Mander et al. The response of the model is very similar to the 

model proposed by Mander et al. (1988), but requires much less computational effort. The 

USC_RC model can be very close to the Mander model by tuning the pertinent parameters. At a 

strain reversal the curve follows a parabolic path that is concave upward. The initial slope of the 

reversal curve is taken to be equal to the initial stiffness of the confined concrete. As the strain is 

decreased, the slope is gradually reduced and will be close to zero when the stress approaches 

zero. The stress remains zero for strains less than this value. At the second reversal of strain, the 

stress remains zero up to a strain where the stress had vanished in the first reversal, and then it 

grows with a slope equal to the initial stiffness of the confined concrete in the beginning. The 

slope decreases as the strain and corresponding stress increase. The stress increases up to the 

envelope curve and then follows that curve. It should be added that for the ascending and 
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descending paths of the hysteretic curve, we may apply two different initial stiffnesses that in 

turn may be different from the initial stiffness of the confined concrete. In the analysis of the 

experimental results reported here and implemented by USC_RC, these values have been chosen 

to be identical. The model developed and used in USC_RC mathematically is as follows: 

• For ascending and descending within the elastic range of the confined concrete response 

(defined here within a strain of 0.015 for confined concrete) the path follows the monotonic 

stress-strain curve as described earlier. 

• For ascending from a point with a strain of pε and a stress of pσ , as shown in Figure 6.22, 

the stress is evaluated as: 
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     (6.66) 

where ( )0 confσ ε≤ ≤ , 1cE  is the slope when the stress is zero, ccf is the confined concrete 

strength, ε  is the new strain, and ( )conf ε  is the monotonic stress of the confined concrete at the 

new strain. 

• For descending from a point with a strain of pε and a stress of pσ as shown in Figure 6.23, 

the stress is evaluated as follows: 
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For 
2

2 cc p
p

c

f
E
σ

ε ε≤ − , 0.σ =        (6.68) 

In this model, 1cE  and 2cE can be provided as is proper by the user. In USC_RC these 

values have been chosen to be the same as the initial stiffness of the confined concrete. Although 

the tensile stress of concrete has been ignored, it is not difficult to include in the model. 

Considering the tensile strength of concrete with the deterioration caused by the previous 

compressive loading, and replacing the ascending curve with a line, makes the model very close 

to what Mander et al. proposed for the hysteretic behavior of concrete. Another model similar to 
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this but with a linear path for the descending and ascending branches was developed for the very 

preliminary testing of the code. Since this preliminary simple hysteretic model is not used in 

USC_RC, it will not be discussed. 

 

 

 

Figure 6.22  USC_RC confined concrete hysteretic model, ascending path 

 

 

 

Figure 6.23  USC_RC confined concrete hysteretic model, descending path 
 



 114

Sample USC_RC Confined Concrete Hysteresis
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Figure 6.24 Confined concrete hysteretic behavior curve: a sample based on the data from 

USC_RC 
 

 
(e) USC_RC Cover Concrete 

 
The hysteretic model for cover concrete is, in general, similar to the model used for confined 

concrete. The differences are the envelope curve, and initial stiffness, and ultimate strength. The 

envelope for the cover concrete is also based on the model proposed by Mander et al. In this 

model, if the confinement coefficient is taken to be zero, the resulting curve can be used to 

simulate the envelope for the cover concrete stress-strain curve, with the exception that the tail of 

the curve at strains beyond 0.004 is replaced by a straight line. Figure 6.25 shows a sample of the 

hysteretic response of the model used for cover concrete in USC_RC. 
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Figure 6.25  Cover concrete hysteretic behavior as modeled in USC_RC 



 

7 Analytical Methods 

In general the number of analytical methods developed for treating different cases is not limited, 

and based on the nature of the problem each researcher has developed an analytical tool and 

proposed a method to predict the behavior of a member or structure. These kinds of methods or 

tools may not be considered as the main standard tools, even if the predictions made using them 

were successful for some experiments. A method for treating a problem may be considered 

reliable if supported efficiently by a theoretical background, while yielding a good prediction for 

all the actual situations within the framework of the problem. However, all these mathematical 

models attempt to represent the gross structural response accurately. The aspects of methods 

dealing with the structural behavior of reinforced concrete can be classified into three categories: 

(a) modeling of material properties, (b) studies at the micro-structural level, and (c) studies at the 

macro-structural level. Considering the aforesaid, these models will be considered as analytical 

tools and some proposed methods will be reviewed for predicting the flexural strength and 

behavior of the members. The modeling of material properties was detailed in the previous 

chapter.  

 
 

7.1 FINITE ELEMENT METHODS 
 
The finite element method has been used under different assumptions and various methods as an 

analytical tool for RC members and structures. The shape of the element, number of nodes, linear 

or nonlinear approximations for displacement or strain within the element, as some basic 

assumptions, have led to many analytical methods within this category. As already mentioned, 

each individual method suits its corresponding application. The main concept, however, is 

dividing the member into elements small enough to yield the desired accuracy, with specified 

node number, proper displacement approximation, and finally, a suitable constitutive law. 
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Ngo and Scordelis (1967) developed a finite element model for reinforced concrete and 

carried out an analysis of beams with a predefined crack pattern. The first model included a 

cracking and bond simulation capability so that the stresses in the crack vicinity can be 

computed. This model was called the “discrete crack model.” Since the publication of this 

pioneering work, the analysis of reinforced concrete has received great interest. Soon after the 

discrete crack model, a second approach was developed by Rashid (1968), who looked at the 

problem in a more global sense. This approach represented cracked concrete as an elastic 

orthotropic material with reduced elastic modulus in the direction normal to the crack plane. 

Within the finite element, the cracked concrete behavior was represented by the average stress-

strain relation. It located zones of cracking and how crack development affected the overall 

response of the structure. This model was called “the smeared crack model.”  

Ignatakis et al. (1989) used this model (Figure 7.1) for RC columns under axial and shear 

loading. In this study, the concrete was represented by rectangular elements with smeared 

cracking, each one of which was subdivided by its diagonals into four simple triangular 

elements. The steel reinforcement was represented by separated one-dimensional elements. The 

interaction between concrete and steel was connected by a nonlinear spring linkage element for 

the bond-slip effect. It was reported that the model was capable of accounting for the 

complicated stress and strain distribution of a short column under axial and shear loading to 

failure, including the crack pattern. The advantages for this model are that the local behavior can 

be monitored and used for arbitrary shapes. The major disadvantages are the large amount of 

computation required and lack of capability for determining the behavior under cyclic loading. 

Furthermore, it is not obvious how the stress-strain relationship should be modified for biaxial 

loading. 

In 1929, Wagner proposed the “diagonal tension field” for the post-buckling shear 

resistance of thin webbed metal beams. He assumed that the thin web could not resist 

compression after buckling, and that the shear would be carried by diagonal tension.  

Mitchell and Collins (1991) applied Wagner's model to reinforced concrete assuming that 

concrete carries no tension after cracking and that the shear is carried by a field of diagonal 

compression. This model called the “diagonal compression field theory,” was based on the 

smeared-crack concept, with equilibrium, compatibility, and stress-strain relationships 

formulated in terms of the average strains and average stresses. Uniform normal stress, shear 

stresses, and deformation are assumed in the elements. The basic assumptions are: 
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Figure 7.1  Finite element mesh: (1) concrete, (2) steel, (3) linkage elements 

 
Figure 7.2  Compression field theory for reinforced concrete element 

 
1. For each strain state there exists only one corresponding stress state. 

2. Stresses and strains are considered in terms of average values over areas or distances large 

enough to include several cracks. 

3. The average stress and strain can be expressed by using Mohr's circle. 

4. Concrete and reinforcing bars are perfectly bonded together. 

5. The longitudinal and transverse reinforcement are uniformly distributed. 

6. Concrete and steel have the same average strain. 
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7. The cracked concrete has the same principal axes direction for stress and strain.  

8. The deformation is assumed so that the edges remain straight and parallel.  

The concept of this theory is to establish the relationship between the stress circle and the 

co-existing strain circle. The theory is schematically summarized in Figure 7.2, where: 

εx,εy,γxy = plane strain components 

fx,fy,νxy = plane stress components 

ε1,ε2 = principal tensile and compressive strain in concrete 

fc1,fc2 = principal tensile and compressive stress in concrete 

ρsx,ρsy = reinforcement ratio in x and y directions 

fxy,fyy = yield stress of x and y reinforcement 

 

Ghee et al. (1985) used this theory and subdivided a circular column section into a series 

of concrete laminate and reinforcement elements for ultimate strength analysis. Recently, Collins 

and Vecchio (1986) modified this by considering the average tensile stress in the cracked 

concrete, called “Modified Compression Field Theory” (MDCFT). Collins and others used this 

theory to study different loading in reinforced concrete, including reinforced concrete subjected 

to shear and cyclic loading. Seible and others also incorporated the MDCFT in developing an in-

plane nonlinear finite element method for the modeling of a concrete and masonry system. The 

model can predict the structural behavior from the initial undamaged condition to the ultimate 

collapse, including simulation of cracking, yielding, and crushing. Good agreement was reported 

between the predicted response and observed tests. It was shown that the modified compression 

field theory is capable of predicting the response of reinforced concrete to in-plane shear, 

flexural, and axial stresses by considering equilibrium conditions, compatibility requirements, 

and average stress-strain relationships. Although this model is complex for the design of a single 

member, the procedure has the capability to provide a rational method for the analysis and design 

of members having unusual geometry or loading. The disadvantages of this model are the 

computational time and that the influence of intersecting cracks under biaxial loading have not 

been considered. 

Zeris and Mahin (1991) proposed a kind of finite element model for the analysis of the 

nonlinear behavior of RC columns under biaxial excitation. The formulation accounts for most 

aspects of axial-flexural behavior. Their biaxial beam-column element models prismatic 

members with a straight longitudinal axis. The typical column is discretized into individual steel 
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and concrete fibers located in sections monitored along the member. In their method, at least two 

sections must be defined. At the section level, the basic assumption of plane remaining plane is 

applied. Linear flexibility variation is assumed between monitored sections. So, even if the 

location of the interior section is arbitrary, it is dictated by the need for realism in establishing 

the flexibility distribution. In general, this method is very close to the fiber model, the only 

difference being the way strain variation or rotation of the section is approximated. In some cases 

a Hermitian approximation for the rotation has been properly applied. If the number of elements 

along the member is such that a linear approximation can be used for variation of rotation or 

curvature within the element, there is no difference between this method and the conventional 

fiber model, i.e., in other words, the fiber model may be regarded as a finite element method with 

its own approximations. 

 

 
 

Figure 7.3 Discretization of circular member cross section into concrete laminate and 
longitudinal steel elements 
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Figure 7.4  Element and section representation in the Zeris and Mahin method 
 

Assa and Nishiyama (1998) presented an analytical method for the prediction of load-

flexural deformation curve of RC columns subjected to simulated seismic loading. Their method 

is based on a finite element approach that allows for spreading of inelasticity along the member. 

The effect of the transverse reinforcement is considered in the uniaxial stress-strain relationship 

of the confined concrete. Their method is actually a kind of matrix analysis in which plastic 

hinges are also assumed at the proper nodes. 

A constitutive model for RC finite element analysis, presented by Collins et al. (1991), 

may be implemented into a finite element formulation. The proposed approach works strictly in 

terms of the average stresses and average strains for both the concrete and the reinforcing steel. 

A result of the approach is that the proposed concrete tensile response must reflect the influence 

of the amount, distribution, and orientation of the reinforcement. For example, if the concrete is 

not reinforced, the average tension in the concrete must reduce rapidly to zero. On the other 

hand, if a large amount of well-distributed reinforcement is present, then considerable average 

tension should remain in the concrete after cracking.  

Braga and Laterza (1998) proposed a new constitutive law that is valid for confined 

concrete. The transverse stresses induced by a hoop, either square or circular, in the cross section 

of axially loaded RC columns or beams are evaluated using Airy's functions relevant to plane 

strain states. The results for the square or circular hoops are then extended to hoops of polygonal 

shape, with or without bindings, and to a combination of hoops of different shapes. The 

formulation, valid for the cross section containing the hoop, is extended to the overall volume of 

the member through the interaction between hoops and longitudinal reinforcement.   
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Arya and Hegemier (1982) investigated a constitutive model for masonry concrete 

analysis. In this model, cracking and debonding were modeled by a double-node pair. It was 

reported that this model could rationally predict complex nonlinear behavior of concrete masonry 

assemblages such as shear walls and piers under both monotonic and cyclic loading.  

Hegemier et al. (1986) introduced a “mixture model” to combine the concrete and steel 

nonlinear material properties for RC behavior, accounting for the steel-concrete interaction. The 

major advantage of this model is that the bond slip mechanism was integrated with a general 

nonlinear finite element from material properties, instead of introducing a special element. It 

should also be noted that the local behavior of the reinforced concrete could be monitored. This 

bond slip model has been successfully used to simulate the response of full-scale RC panels 

subjected to monotonic pull-out and tension tests and cyclic tension-compression loading. All the 

tests included debonding, slip, and concrete cracking. A major disadvantage of this constitutive 

model approach for practical application is the need for extensive computational power. It is also 

apparent that the application of this model to biaxial lateral force needs more investigation. 

One of the finite element methods closely related to the analytical work done in this 

report is the method of evaluating the flexural deformation of an RC member by using a one-

dimensional element, proposed by Golafshani et al. (2000). The scope of their research was to 

develop a one-dimensional element to demonstrate the nonlinear behavior of concrete filled 

tubes under cyclic as well as monotonic loads. Their one-dimensional element works in plane 

and extension to the three-dimensional case is claimed to be straightforward. In their method, a 

beam-column fiber element for the large displacement, inelastic strain analysis was implemented 

for the cyclic analysis of concrete-filled steel tubes (CFT). The method of displacement 

approximation was a total Lagrangian formulation. An eight-degree-of-freedom element with 

three nodes was chosen. The nodes at the ends have three degrees of freedom, while the node in 

the middle has two degrees of freedom. The quadratic Lagrangian shape functions for axial 

deformation and the cubic quadratic Hermitian shape function for the transverse direction were 

used. It was assumed that a perfect bond is maintained between the steel shell and concrete core.  

In formulating the problem, the following assumptions were proposed: 

• Plane sections before and after banding remain plane. 

• Shear deformations due to the size of the sections are negligible. 

• During loading history the shell will not buckle. This assumption has had a negligible effect 

on the results for moderate and low ratios. 
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• Effects of confinement on the concrete and biaxial state of stress in the steel shell have been 

accounted for through the uniaxial models for confined concrete and employment of proper 

coefficients. 

• Effects of creep and shrinkage have been neglected because of their small influence on the 

behavior of concrete-filled tubes. 

• Effects of residual stresses have been neglected. 

These assumptions make their method very close to a perfect fiber model analysis, and 

the only difference is the application of the finite element method through a one-dimensional 

element as a substitute for the plastic hinge assumption and method. 

 

7.2 YIELD SURFACE MODEL 
 
In 1976, Takizawa and Aoyama (1976) introduced a biaxial trilinear degrading model, using the 

plasticity theory. The model was developed with stress-strain corresponding to the member end-

moment, M, and end-rotation, θ. The basic curve for this model is a trilinear curve, which was 

derived from sectional analysis and characterized by crack and yield points. The crack and yield 

conditions were postulated to be represented by ellipses in the moment space. In the biaxial 

moment space are two yield surfaces, an inner cracking surface and an outer yield surface. 

Figure 7.5 shows the yield surfaces in the stress space and the related trilinear skeleton curves for 

uniaxial flexure in the principal directions X and Y. Two yield functions were established to 

check the stress stage for the cracking surface: 
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and for the yield surface: 
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       (7.2) 

where: 

xM , yM  = current bending moments about the X and Y axes; 

CxM , CyM  = crack moments about the X and Y axes; 



 123

YxM , YyM  = yield moments about the X and Y axes. 

The following criteria of three-part plasticity were used for loading during biaxial 

flexure. 

1 elastic range
1 and 1 cracked and unyielded range
1 and 1 yielding range

f
f g
f g

<
 ≥ <
 ≥ ≥

    (7.3) 

 

Figure 7.5  Skeleton curves and yield surfaces for yield surface model 
 

Here, the elastic stiffness is modified once the cracking surface is reached, beyond which 

the cracking surface translates without changing shape. Upon reaching the yield surface, both the 

cracking and yielding surfaces are allowed to expand along the direction of yielding. Ziegler's 

hardening rule was used for the translation of the crack surface and the expansion for the crack 

and yield surfaces. Degradation is achieved by factoring the unloading stiffness with a 

degradation factor.  
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Chen and Powell (1986) continued the study of this model, using two approaches: (a) the 

distributed plasticity approach that assumes that yielding is distributed over the element. The 

element stiffness is determined by integrating along the member. The multidimensional action-

deformation relationship must be specified for the cross section. (b) The lumped plasticity 

(plastic hinge) approach in which yield is assumed to take place only at the plastic hinge region 

of zero length, and the beam between the hinges is assumed to remain linearly elastic. In this 

approach, the multidimensional action-deformation relationship must be specified for the hinges. 

Takizawa and Aoyama (1976), as well as Chen and Powell verified the lumped plasticity 

by comparison with the experimental data obtained by Takizawa and Aoyama at the University 

of Tokyo. The tests included uniaxial and biaxial bending. It has been shown that the lumped 

plasticity model was able to capture certain essential features of three-dimensional beam-column 

behavior. In addition to the lumped plasticity model, Chen and Powell studied the model of 

distributed plasticity to determine whether it produced results in agreement with the experimental 

results for the inelastic response of braced structures. The analytical results were compared with 

the test conducted by Zayas, Mahin, and Popov (1981). Even though the overall response was 

similar, it was found that the analysis predicted substantially less stiffness and strength 

degradation.  

Lumped plasticity modeling is particularly suitable for the analysis of building frames 

under seismic loads because plastic action in such a structure is usually confined to small regions 

at the beam and column ends; the distributed plasticity model is preferable for structures in 

which the plastic zone locations are not known in advance. The advantage of the lumped 

plasticity model is the efficiency in computation. The disadvantages are that the local effect of 

the analysis cannot be monitored, the strength degradation due to crushing and spalling of the 

concrete cover cannot be considered, and the debonding behavior is not addressed.  

 

7.3 FIBER MODEL 
 
In this model, and in its commonly used version for the flexural analysis of a prismatic or 

cylindrical member, the fundamental assumption of plane remaining plane is employed. The 

Zeris and Mahin model (1991),  already described in Section 7.1, may also be considered as a 

kind of fiber model. In the fiber model, the section is divided into some small elements, which 

may be considered as the cross section of the fibers making the column. Figure 7.6 shows a 

sample case where the cross section of a rectangular RC concrete member has been divided into 
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steel and concrete fibers. For a force-deflection analysis, the fiber can then be divided along the 

member,  so that the member is divided into fiber elements with a specific length. Afterwards, 

the axial deformation of each fiber is formulated, which in turn provides the axial-flexural 

behavior of the section. The finer the mesh, the more precise the results. The fiber model is in 

fact a finite element method in which some constraints have been applied. The main condition is 

the assumption of plane remaining plane, the other is the linear approximation of deformation 

along each fiber element. There are some other versions of the fiber model in which the aforesaid 

constraints are not strictly applied. This methodology is actually more finite element than fiber 

model, but may be categorized as the latter considering the fiber elements employed. 

 

Figure 7.6  A section divided into longitudinal fibers along the member, as in fiber model 
 

Chang et al. (1994) proposed a fiber-element modeling of the cyclic biaxial behavior of 

RC columns to examine the computational aspects of simulating the moment-curvature and 

force-displacement behavior of RC columns subjected to cyclic biaxial bending and axial load. 

Starting from first principles the basic equations of biaxial behavior are derived. Advanced 

constitutive models for normal and high-strength concrete, and for the cyclic and low-cycle 

fatigue behavior of reinforcing and prestressing steel bars are integrated in a fiber-element 

procedure for the simulation of the cyclic and fatigue behavior of columns subjected to biaxial 
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loading.  Chang et al. presented two different implementations of the fiber-element modeling 

procedure. The first uses a five-node rectangular element using a quadratic interpolation 

function, the second a five-node circular-trapezoidal element more appropriate for circular 

columns. The use of quadratic interpolation functions in both elements improves convergence, 

and thus fewer elements are needed in the discretization process. 

 

7.4 MULTISPRING MODELS 
 

Lai et al. (1984) developed an analytical model to simulate the hysteretic and stiffness degrading 

behavior of RC members subjected to axial load and biaxial bending interaction. The model 

separates the member into two inelastic elements. Each inelastic element, composed of 

individual spring elements simulates the inelastic effects of the member as well as the cumulative 

slip of the anchored bars in the beam-column joint. The formulation of the spring model is based 

only on the static equilibrium of the cross section according to the current ACI code. The model 

does not provide any information about the moment-curvature of the section and works only for 

modeling the end parts of the element. The area of the concrete springs is assigned based on the 

current axial force and bending moment, and evaluated according to the ACI stress block 

concept, and is variable in each step. Therefore, in each time increment during the analysis, the 

spring area should be updated in addition to the material property. If the section is not 

symmetric, an approximation is applied by averaging the scaled values for the concrete springs 

in the x and y directions.  The model cannot be applied for moment-curvature.  
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Figure 7.7  A cross section divided into steel and concrete springs, as proposed by Lai et al. 
 

Li (1988) proposed a practical multispring model to simulate the behavior of a section 

subjected to varying axial load and bilateral bending moment. The model is used mainly to 

model the nonlinear behavior of the end parts but can still be used to model the moment-

curvature of the section. Getting a reasonable result requires a large number of springs, which are 

usually located at the center of the corresponding parts of the section they replace. This model is 

actually a kind of the aforesaid fiber model with the same computational deficiency. 

A refinement of this model by Lai, Will, and Otani (1984) was provided by Ghusn and Saiidi, 

(1986) and Jiang and Saiidi (1990), who considered four corner composite springs (1, 2, 3, and 4 

in Figure 7.8c) instead of separating them into steel and concrete and one concrete spring (5 in 

Figure 7.8c) at the center of the member as with the original model described above.  

Thus, the nine-spring model was reduced to a five-spring model. When the composite 

springs are subjected to tension, a steel member representing the longitudinal reinforcement 

resists the force. A compression force on these springs, however, is resisted by the composite 

action of the concrete and steel. Because of the difference in the tensile and compressive 

behavior, the stress-strain curve for the composite springs is unsymmetrical.  

Furthermore, Saiidi and Jiang improved the model by using only four corner spring 

elements (1, 2, 3, and 4 in Figure 7.8d), and compared the results with biaxially loaded columns 

with a constant or variable axial force. Compared with the five-spring model, the major 

advantage of this model is that only one type of spring is used, the composite spring. Even 

though the spring number had been reduced, the comparison between analytical results and 

experimental data was still good and the computation more efficient. It was shown that this 
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model can simulate the stiffness degrading behavior of RC members with ductile flexural 

behavior. Compared with the fiber model previously discussed, the multispring model is a 

simplified fiber model with more efficient computation. Shear effects in this model were ignored 

as in the fiber model.  

A very simple multispring model, simulating the moment-curvature behavior of RC 

circular sections, is developed. This model is presented in Appendix 3.  

 

Figure 7.8  Multispring model 

 



 129

7.5 PLASTIC HINGE ASSUMPTION AND METHODS 
 

The calculation of the flexural deflection of an RC member can be carried out by two different 

main methods. The first uses the finite element approach but needs a huge amount of 

computational effort, even for the fiber-model-based analysis. When the number of fibers in the 

cross section and the number of segments, along the member length, are not low, and a hysteretic 

analysis for a cyclic loading with a variable axial load is needed, the amount of required memory 

and computation are not comparable with other methods based on the assumption of a plastic 

hinge. It is evident that in the finite element method, the method of displacement approximation 

plays a significant role in the accuracy of the results. This is a major issue especially within the 

“transition length,” described later, where elementary assumptions cannot be applied. In other 

words, in the finite element method, even with a very fine mesh, when the curvature at the 

critical section falls on the descending branch of the moment-curvature response of the section, 

the corresponding stiffness matrix is not positively definite anymore, and analytically we cannot 

go beyond the maximum moment point without resorting to some trial and error or, as called in 

finite element analysis texts, “adaptive methods.” So, the concept of a plastic area, or transition 

area, where the stress and strain distribution over the cross section becomes normal when the 

curvature at the critical section falls on the descending branch of the analytical moment 

curvature, should somehow be employed and a proper curvature (displacement) approximation 

should be applied to solve the problem. Considering this, one way of reducing the number of the 

segments along the member is to have some idea about the maximum level of the lateral load 

that may occur, and then limit the part that falls within the elastic part to just a single element in 

the longitudinal direction. This will drop the generality of the solution and also divides the 

element into elastic and plastic regions. The plastic region will not be constant in length and has 

a variable length depending on many factors, namely the axial load level, and the lateral force 

and its corresponding moment at different sections. The overall picture of the problem leads us to 

the most popular approach, the plastic hinge method. 

In this method, the deformation is divided into elastic and plastic parts, as is described in 

the following. 
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7.5.1 General Description of Plastic Hinge Method 
 

Figure 7.9 is a typical illustration of the plastic hinge method (Priestley and Park, 1987). In this 

method, the flexural deflection is divided into two main parts: 

 e p∆ = ∆ + ∆          (7.4) 

where e∆  is the elastic flexural deflection or contribution of the member flexural deflection 

excluding the plastic hinge length. This deflection may either be calculated exactly based on the 

moment-curvature relationship or based on the assumption that the curvature distribution within 

the yield curvature is linear. p∆  is the deflection resulting from the plastic hinge and is 

calculated as follows:  

 

 

Figure 7.9  Typical plastic hinge method (Priestley and Park) 
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p p p t

l
l lφ∆ = −         (7.5) 

where lp is the plastic hinge length, and lt is the total length (which can be different from the column 

length as will be mentioned later). If the curvature distribution within the elastic range is assumed to 

be linearly distributed, ∆e  can be calculated as follows at the yield point: 

 21 ( )
3e y t pl lφ∆ = −         (7.6) 
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It should be noted that several versions of the plastic hinge method have been proposed 

and that the above is the main framework of the method. In some older versions of this method, 

the yield curvature is always assumed to be at the interface of the column (or the section of 

critical moment for a member), and when there is some plastic deformation, the extra curvature 

is applied within the plastic hinge length. Figure 7.10 shows the way the concept has been used 

to get the total deformation by Park and Paulay (1975). As shown, the length used to evaluate the 

elastic deflection is kept as the total length for any length of plastic hinge, while in the previously 

mentioned method, this length is the total length (total effective length as described) minus the 

plastic hinge length. It is obvious that the former method fits real situations more than the older 

versions, especially when a relatively high level of curvature is imposed on the critical section 

and the situation falls on the descending branch of the moment-curvature curve. In this region the 

former method also needs some revision, which will be discussed shortly. 

 

Figure 7.10  Plastic hinge assumption proposed by Park and Paulay (1975). 
 

 

7.5.2 Empirical Expressions for Plastic Hinge Length 
 

Various empirical expressions have been proposed by investigators for the equivalent length of the 

plastic hinge lp and the maximum concrete strain εc at ultimate curvature. In all these older methods, 

the total length is used for evaluating the elastic deflection part of the total deflection. These 
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methods cannot be applied when a relatively high curvature is present at the critical section. As 

described, the concrete strain must be limited to a certain value, while for a high level of curvature, 

the strains usually exceed far beyond the values proposed in these methods. Following is a brief 

review of these methods. 

 
7.5.2.1 Baker 

 

Baker (1956) proposed the following equations for plastic hinge length based on experiments. 

 
For members with unconfined concrete: 

 
1
4

1 2 3( )p
zl k k k d
d

=         (7.7) 

where k1 = 0.7 for mild steel or 0.9 for cold-worked steel, 

 k2 = 1 + 0.5Pu/P0,  

where Pu = axial compressive force in a member, and P0 = axial compressive strength of the 

member without bending moment 

k3 = 0.6 when f’c = 5100 psi (35.2 N/mm2) or 0.9 when f'c = 1700 psi (11.7 N/mm2), assuming f'c = 

0.85 cube strength of concrete 

z = distance of critical section to the point of contra flexure  

d = effective depth of member 

Baker indicated that for the range of span/d and z/d ratios normally found in practice, lp lies in the 

range between 0.4d and 2.4d. 

 

For members confined by transverse steel 

More recent work by Baker (1964) proposes an expression for θp  implying that for 

members with tension over part of the section: 

  1 30.8 ( )p
zl k k c
d

=         (7.8) 
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where c is the neutral axis depth at the ultimate moment and the other symbols have the previous 

meaning. There are some restrictions stated for the values of the concrete strain, and also for the 

steel ratio for the aforesaid equations to be valid and applicable. 

 

7.5.2.2 Corley 

From the results of tests on simply supported beams, Corley (Corley, 1966) proposed the following 

expression for the equivalent length of the plastic hinge: 

 0.5 0.2 ( )p
zl d d
d

= +         (7.9) 

He also suggested the following as a lower bound for the maximum concrete strain: 

 20.003 0.02 ( )
20
s y

c

fb
z

ρ
ε = + +        (7.10) 

where z = distance from the critical section to the point of contra-flexure, b = width of beam, d = 

effective depth of beam in inches (1 in. = 25.4 mm), ρs = ratio of volume of confining steel 

(including the compression steel) to volume of concrete core, and fy = yield strength of the 

confining steel in kips per square inch (1 kip/in.2 = 6.89 N/mm). In discussing Corley's work, other 

investigators proposed simpler forms of equations that fitted the trend of the data reasonably well, 

such as: 

 lp = 0.5d + 0.05z        (7.11) 

 0.003 0.02 0.2c s
b
z

ε ρ= + +        (7.12) 

This modification to the equation for εc makes it more conservative for high values of ρs. 

 

7.5.2.3 Priestley and Park 

Priestley and Park (1987) proposed a plastic hinge length that considers the strain penetration into 

the footing for columns, and is dependent on the rebar diameter and column length. The plastic 

hinge length proposed is: 

 0.08p yl l f dξ= +         (7.13) 
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in which l is the length of the column, ξ is a coefficient that is 0.15 in. (0.022 mm), σs  is the steel 

stress in the furthest rebar, and d is the diameter of the main rebar. If the curvature distribution 

within the elastic range is assumed to be linearly distributed, ∆e can be calculated as follows at yield 

point: 

 21 ( )
3e y t pl lφ∆ = −          (7.14) 

where: 

  t yl l f dξ= +          (7.15) 

The plastic deflection is: 

 ( )
2
p

p p p t

l
l lφ∆ = −         (7.16) 

and the total deflection is the sum of the elastic and plastic deflections: 

 e p∆ = ∆ + ∆          (7.17) 

 
 
7.5.3 Discussion of Plastic Hinge Method 
 
As stated earlier, in the oldest versions of the plastic hinge method, it is assumed that for the elastic 

part of deformation, the curvature at the critical section is equal to the curvature corresponding to 

the first yield of the longitudinal steel. This is not a realistic assumption because as the moment gets 

larger (which is usually due to a lateral force), the section where the first yield of the longitudinal 

steel occurs shifts away from the critical section, which results in a smaller length of elastic 

deformation calculation. It seems that besides the experimental results, due to this reason 

analytically all the investigators have somehow related the plastic hinge length to the total length of 

the member.  

For all the proposed methods, the plastic hinge length is constant except for the model 

proposed by Baker, where it is related to the level of axial load, but for a fixed axial load, the 

plastic hinge length is constant. This means that for any level of lateral load (or critical moment) 

the plastic hinge length does not change, having a constant axial load. This is not consistent with 

the experimental observations and analytical findings.  Figure 7.11 compares the required plastic 

hinge length in the Priestley and Park method based on the experimental data for test 3 where the 

axial load is 30%Agf’c and test 4 where the axial load is equal to zero, and the constant plastic 
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hinge length as proposed by the model. Note that the horizontal axis for both figures is the drift 

ratio, and that the vertical axis is the plastic hinge length in inches for the length cases and in 

kips for the horizontal force. These figures are provided based on the experimental data and for 

comparison purposes. The method used to evaluate the equivalent experimental plastic hinge 

length for the Priestley and Park method is as follows: 

Each test specimen is idealized as a cantilever column. Assuming linear elastic behavior 

up to the point where yielding occurs at the base of column, the yield displacement at the tip of 

the column can be computed as: 
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3
y

y

Lϕ
∆ =          (7.18) 

where yϕ is the yield curvature at the column base. Byrak and Sheikh (1997), in their method for 

evaluating the equivalent plastic hinge length, assumed that the plastic hinge rotation at the base 

is concentrated at the center of the plastic hinge, and decomposed the total displacement max∆  

into two components y∆  and p∆ , the plastic displacement. p∆ was calculated as: 

 max( ) ( 0.5 )p y p pL L Lϕ ϕ∆ = − −       (7.19) 

Here they assumed a curvature equal to the yield curvature at the column base for 

calculating the yield displacement, while the curvature at the top of the plastic hinge will be 

equal to p
y

L L
L

ϕ
−

; this is different from the method proposed by Park and Priestley, where the 

curvature at the top of plastic hinge is equal to the yield curvature. Byrak and Sheikh concluded 

that the equivalent plastic hinge length for all their cases is slightly less than the section depth. 

The method used to evaluate the equivalent plastic hinge here is based on the Park and Priestley 

method, which yields the following equation for the equivalent plastic hinge length: 
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    (7.20) 

where L is the column length, in the case of a cantilever case, or the distance between the critical 

section and the contra-flexure point in the case of a double-curvature member, uϕ is the curvature at 

the critical section, and yϕ is the curvature corresponding to the first yield of the section, which 

is defined to be the curvature at the first yield of the longitudinal steel for a specific level of axial 

load. To evaluate the experimental plastic hinge length, the experimental values for the ultimate 
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and yield curvatures are evaluated based on the experimental data. In other words, the recorded 

strain on the furthermost bar on the critical section is used to locate the first yield instance. Then 

the corresponding curvature can be calculated either by using the recorded strains on the 

furthermost bars at the two opposite sides of the critical section or by using the data recorded by 

the linear extensometers at the two opposite sides of the column on the segment near the critical 

section. This process is applicable only for the cases where the level of axial load is constant so 

that an experimental value for the yield curvature is available; otherwise the experimental yield 

curvature is valid only for the axial load level corresponding to the instance of the first yield of 

the longitudinal bar, and cannot be used for other values of the axial load. Figure 7.11 shows that 

for a constant axial load, the plastic hinge length is not constant and depends on the level of the 

lateral load, or the critical moment.  

None of the models discussed so far proposes a variable plastic hinge length as observed 

during the tests. Besides the aforesaid experimental evaluation of the plastic hinge length, it was 

observed during all tests that for the normally used ranges of the axial and lateral loads, as soon 

as the plastic hinge forms, its length grows to a maximum, and as the deflection is increased, the 

plastic region shortens very slightly compared to its maximum value, and that the high curvature 

imposed at the critical section is limited within this length. As a revision of the Priestley and 

Park method, Xiao et al. (1996) have proposed that the tensile stress in the furthermost rebar at 

the critical section be used instead of the yield stress of steel in the calculation of the plastic 

hinge length. Thus, the equation will be changed to: 

 0.08p sl l dξσ= +         (7.21) 

where σs is the tensile stress of the furthermost rebar at the critical section. The elastic part of the 

deflection is calculated with the same equation: 

 21 ( )
3e y t pl lφ∆ = −         (7.22) 

and the total deflection is the summation of the plastic deflection and the elastic part. This revision 

is more realistic from the experimental point of view, since a change in the plastic hinge length is 

observed for the members with an axial load below the balance value, and especially when the 

section undergoes strain hardening. For the cases with a high level of axial load, however, this 

method does not precisely predict the deflection.  
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All the aforesaid methods cannot be applied when the curvature at the critical section 

falls on the descending branch of the moment-curvature curve of the section. The method revised 

by Xiao needs a slight revision to be applicable in this region. The proposed revision is as 

follows: 
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Figure 7.11 Comparison of the required plastic hinge length in the Priestley and Park 

method based on the experimental data, and the constant value as proposed in 
the model, on the horizontal-force drift-ratio chart for tests 3 (top) and 4 
(bottom). (Note that the vertical axis is length in inches for the plastic hinge 
cases and force in kips for the horizontal force, serving just for comparison.) 
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7.5.3.1 Proposed Revision to Priestley and Park Method 
 

For the curvature falling on the ascending branch of the moment curvature, the equations 

proposed by Priestley and Park with the revision proposed by Xiao can be used, but for the 

descending part, the elastic part of the deformation will be revised as: 

 ( ) 21 ( )( )
3

t pl l
e y t p
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M
l l
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φ −

∆ = −        (7.23) 

where My is the moment at the first tensile yield of the furthermost longitudinal bar on the critical 

section, and:  
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−
=         (7.24) 

where l  is the length of the member for a cantilever case or the distance between the critical section 

and the contra-flexure point in a double curvature case, and Mu is the moment at the critical section. 

Applying this revision will enable the method to be used on the falling branch of the moment-

curvature curve, but for a relatively high level of axial load, where the tensile stress of steel is not 

high and in some cases does not even get close to the yield stress, the method does not conform well 

to the experimental observations. Here a method is proposed for calculating of the flexural 

deformation of an RC member with a revised plastic hinge approach. This method is more 

comparable to the experimental observations than other methods and can be sufficiently verified 

analytically.  
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Figure 7.12  A typical moment-curvature curve for a reinforced concrete section 

 
 

7.5.4 Proposed Plastic Hinge Methods  
 
Figure 7.12 shows a typical analytical moment-curvature response of an RC section. This curve has 

two branches, an ascending branch and a descending branch, for most cases of loading and material 

behavior. When a member (here the column) is subjected to a lateral force F, as shown in Figure 

7.13, the bending moment is linearly increased from zero to F.L, where L is the column height, and 

the distribution of the curvature follows the moment-curvature curve when the moment is mapped 

to the column height (when the section throughout the column height is the same, with a scale equal 

to F, the concentrated lateral force). As the force increases, the moment and curvature throughout 

the column increases. As long as the moment at the column toe remains within the yield moment, 

which corresponds to the first yield of the tensile steel at the section (or for very high axial loads, the 

yield of the concrete), the curvature distribution is linear, starting from zero at the top and linearly 

increasing to its value at the column and footing interface. When the force F is increased, the 

moment at the column toe exceeds the yield moment, and there is a nonlinearity in the moment-

curvature curve. For an exact solution (like a fiber-based finite element solution), there is no 

problem while the mesh is fine enough to provide the desired accuracy and the curvature is less than 

that corresponding to the maximum moment at the critical section, but in the case of a simplified 

method like what has been the case for the plastic hinge concept, this nonlinearity can be 

approximated well by assuming a linear distribution of the curvature from the yield point where the 

curvature is equal to the yield curvature to the toe of the column where the curvature is Φu. This 

approximation can be applied up to a force where the moment reaches its maximum value at the 
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column-footing interface. When the curvature exceeds the curvature corresponding to the maximum 

moment, the force and the moment at the column-footing interface drops as shown in Figure 7.14. 

 

Figure 7.13 Distribution of curvature along a cantilever case column, for a concentrated 
lateral load, where the moment is linearly distributed along the column height 
when the curvature at the critical section is less than the curvature 
corresponding to the maximum moment 

 

 

Figure 7.14 Distribution of curvature along a cantilever case column, for a concentrated 
lateral load, when the curvature at the critical section exceeds the curvature 
corresponding to the maximum moment 

 

Analytically, in this situation this lateral force and the corresponding moment at the 

critical section can exist for two curvatures, one before reaching the maximum moment, the other 

after passing it. Therefore, two states of stress distribution at the column-footing interface can 

represent the situations for the two different cases. In other words, consider a section very close 

to the column-footing interface but above it. Analytically, approaching from the top of the 
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column to this section the curvature is close to the curvature at the point marked by the hollow 

circle in Figure 7.12, while it jumps to uΦ  (or bΦ  as in the figure) at the critical section. If we 

look at these two very close adjacent sections analytically, the stress distribution is completely 

different. Since in reality this cannot happen, there is an ambiguous distribution of stress within a 

distance between two sections on the two different sides of the maximum point. According to the 

well-known and accepted “Sant Vennan’s rule,” in a case like this the stress distribution becomes 

normal within a reasonable distance. Figure 7.12 shows these two points: the point where the 

curvature is equal to b uΦ = Φ , and the point marked by the hollow circle. There is a transition 

length within which the curvature is changed from uΦ  to a curvature that falls on the left branch 

of the moment-curvature curve. It should be noted that the curvature at the point marked by the 

hollow circle is never present in reality, and the curvature will change within the transition 

distance so that the curvature at the top of the transition length is equal to what is analytically 

expected approaching from the top. This transition length is the area where the plastic 

deformation is present, and is treated as the plastic hinge length. This change of curvature from 

uΦ  to the curvature at the end of the transition length, considered as the plastic hinge length, 

which corresponds to the change of stress distribution configuration over the cross section to a 

stress distribution on the left branch on the curve, follows a pattern that can be approximated 

well by a line. Since the method proposed here should handle cases with a variable axial load, or 

a cyclic lateral load, the plastic hinge method cannot be as straightforward as the previous 

methods. Considering this fact, the definition of plastic hinge, i.e., defining the pattern of 

curvature distribution over the column height, has to be addressed for different loading and 

displacement cases. The basics of the proposed method will be explained here, and the algorithm 

applied in USC_RC for load displacement analysis will be summarized later. 

It is obvious that when the curvature in a section exceeds the yield curvature, the section 

undergoes some plastic curvature, and in reversal of loading the return path does not follow the 

initial curve and the plastic deformation will not be elastically recovered. In Figure 7.15 the 

return path at points A and B, the point corresponding to the maximum moment, and a point 

within the yield curvature are shown. As long as the return point is within the elastic range, the 

return path follows the initial elastic curve, while for other points the situation is as illustrated.  

Two different methods are proposed here. The first method is a simplified version of the 

second. Since the idea behind the plastic hinge method is to simplify analysis but still be capable 
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of handling a cyclic loading with a variable axial load condition, the first method is proposed  to 

fulfill the first goal, while the second method is more complicated and needs more computational 

effort.  

 

Figure 7.15  Return path on the moment-curvature curve of a section 

 
 
7.5.4.1 Method One 
 
This method assumes that the curvature between the point of first yield and the critical section is 

linearly distributed. The first yield point is either due to the first yield of the longitudinal bar on the 

section or to the first yield of the concrete. The yield of the concrete is defined to be at a strain of 

0.002 and when the furthermost fiber of the section undergoes this strain while the steel strain on the 

opposite side is still less than the yield strain, it is assumed that the section has experienced its yield, 

which is due to concrete. The distance between the section where the first yield occurs to the critical 

section is treated as the length on which the transition occurs and will be referred to as pl . As the 

lateral force grows for the first time, and while the moment at the critical section is less than the 

yield moment for the existing axial load, all the length is in a linear elastic state and there is no lp. 

The evaluation of the displacement for any situation is straightforward, in this case, a reversal of the 

loading. As the moment at the critical section reaches the yield moment, this value starts to increase 

and reaches its maximum when the critical section experiences the maximum moment. pl is 

evaluated as: 

 .(1 )y
p

u

M
l l

M
= −         (7.25) 
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where l is the total length, yM  is the yield moment for the existing axial load, and uM is the 

moment at the critical section. Let this maximum value be lp-max. Note that in this method it is 

assumed that when a section experiences a plastic deformation, it cannot be treated as elastic in a 

different situation, such as reversal of loading as explained earlier. So, the pl  is always either 

growing or constant with its maximum achieved value so far. When the curvature is less than the 

curvature corresponding to the maximum moment (for the existing force at the step) and no reversal 

has occurred, the curvature at the top of the plastic hinge is equal to the actual analytical value 

corresponding to the moment situation. Analytically, it is equal to the yield curvature, yΦ , and its 

corresponding moment is My, which is also equal to: 
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When the curvature on the critical section exceeds the curvature corresponding to the 

maximum moment or when a reversal of loading happens, the curvature at the top of this lp drops 

linearly with the part above it that has been within the elastic-linear range so far. Suppose that 

the moment at this instance is uM and the yield curvature and moment corresponding to the 

existing situation is yM and yΦ , respectively. Then the curvature at the top of lp is equal to: 
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where lpΦ  is the curvature at the top of the plastic hinge, yΦ  is the first yield curvature, Mlp   is the 

moment at the top of the plastic hinge and is calculated as: 
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Figure 7.16  USC_RC plastic hinge, method one 

 

therefore: 
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Then the displacement ∆  will be: 

  e p∆ = ∆ + ∆          (7.31) 

where ∆p is the plastic flexural deflection and is calculated as: 
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and e∆ is the elastic deflection which is evaluated as: 
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or 

21 .( )
3 pe l pl l∆ = Φ −         (7.35) 

 
The algorithm for the method can be summarized as follows: 

Initially pl is equal to zero. For a given displacement ∆  and axial load P , calculate y∆  as: 

21 .
3y y l∆ = Φ          (7.36) 

where yΦ is the yield curvature for the given axial load and l is the total length. If y∆ ≤ ∆ , then : 

2

3
u l

∆
Φ =          (7.37) 

where uΦ is the curvature at the critical section. Use  uΦ  to evaluate uM (moment at the critical 

section), and then the lateral force would be: 

uMF
l

=          (7.38) 

during a reversal of loading and while y∆ ≤ ∆  for the case, the problem is linear and the aforesaid 

process is applied. If y∆ > ∆ then by trial and error find the proper u yΦ > Φ  for which 

.(1 )y
p

u

M
l l

M
= − and the curvature at the top of pl is yΦ , as can also be calculated using Equation 

(7.30) so that proper ∆  is achieved. Then the corresponding lateral force is simply evaluated as 

above. During the process keep the record of the maximum and minimum achieved values for 

lateral force, and displacement, and the maximum achieved value for pl . When the value of lateral 

force falls below the maximum lateral load evaluated so far, or when there is a reversal of loading, 

pl  (as is the maximum evaluated value so far) is used and the same trial and error process is applied 

to find the proper uΦ , where the curvature at the top of pl  is calculated using Equation (7.30). 

A simplified general flowchart for the method is shown in Figure 7.17. Intermediate 

algorithms, namely trial and error on the plastic hinge length, or evaluation of the moment 

curvature, are not shown. 
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Figure 7.17  Flowchart summarizing the first method for plastic hinge  
 

7.5.4.2 Method Two 
 

As shown by Park and Priestley, a constant plastic hinge length works relatively well for a 

member under a constant axial load and a monotonic lateral displacement compared to 

experimental results. Park and Priestley have defined this constant length as 0.08 0.15 yl f d+ (or 

0.002 yf d in SI). Sheikh et al. also claimed that assuming a plastic hinge length equal to the 

section depth is a good assumption and yields results comparable to test results. The concept of a 

fixed plastic hinge length, specifically the Park and Priestley method, was applied by the authors 
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to the cases of pushover analysis under a fixed axial load, and the predictions were satisfactory. 

The only deficiency of the method in pushover cases under a constant axial load is that the 

variation of the plastic hinge length, which is evident in the experimental results, is ignored, as 

shown in Figure 7.11. On the other hand, for a case with a variable axial load and a cyclic lateral 

displacement or load, these methods are not applicable. The method presented here combines the 

idea of a constant plastic hinge length and the idea presented in the first method to account for 

the variation of the plastic hinge length due to both the lateral force and axial load. The total 

length of the member is divided into three different areas. A constant length (D, can be 

considered as 0.08 0.15 yl f d+ or the section depth) close to the critical section, a transition length 

taken as 0.15 y bf d  (or 0.022 y bf d  [SI]) and the rest of the member length that always stays within 

the elastic range. The curvature on the part close to the critical section is assumed to be uniform. 

The curvature on the transition part changes linearly from the curvature on the previous part to a 

curvature which depends on the level of the first yield curvature for the existing axial load and 

the level of the lateral force at the moment, as will be discussed. As previously explained, Figure 

7.18 shows the assumed distribution of curvature along the column height. At any level of axial 

load and displacement, depending on the previous conditions for the base curvature, the new 

curvature at the critical section is found by trial and error so that the desired displacement is 

achieved. The process needs a trial and error phase because the curvature tϕ  (curvature at the top 

of transL ) is dependent on the level of the base moment and the yield curvature for the existing 

axial load. The process may be summarized as follows. 
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Figure 7.18 Distribution of curvature along the column height as assumed in USC_RC 
second method 

 

1. Take consl D= , where D is the section depth. For columns with a height to depth ratio of 

more than 12.5 use 0.08consl l= . 

2. For a given axial load and lateral displacement, evaluate the first yield curvature yΦ  and 

moment yM . The process is to evaluate the curvature and moment corresponding to the first 

yield of the longitudinal steel, and also corresponding to a strain of 0.002 for the concrete 

under the existing axial load. Then, the yield moment and curvature for this level of axial 

load is the one having the smaller moment. 

3. Knowing the previous base curvature and lateral displacement (zero for the first point) and 

the new target lateral displacement, estimate a new base curvature and evaluate the 

corresponding moment. Note that the moment is evaluated using the moment-curvature 

analysis module, where the hysteretic behavior of the section is considered through 

implementing the hysteretic response of the material on the fiber-modeled section. So, the 

moment is dependent on the previous history of the curvature experienced by the section. 

4. For the base moment, knowing the yield moment and curvature and assuming that the 

height above the top of the transition length is linearly elastic, evaluate the curvature at the 

top of transition length tΦ . The value is evaluated as: 
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where yΦ is the yield curvature and yM is the yield moment for the current axial load level, uM is 

the base moment, l  is the column height, consl is the length of the segment close to the base, transl is 

the transition length, and 
tl

Φ is the curvature at the top of the transition length. 

5. Evaluate the lateral displacement. The lateral displacement consists of two elastic and 

inelastic parts. The inelastic part is evaluated as: 
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and the elastic part is: 

21 ( )
3e t cons transl l l∆ = Φ − −        (7.41) 

and the total deflection is: 

e p∆ = ∆ + ∆          (7.42) 

6. Compare the displacement with the desired value and repeat the process from number 2, 

until the lateral displacement is achieved with the desired accuracy. Then the corresponding 

lateral force is evaluated as: 
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        (7.43) 

 The second method is implemented in USC_RC as one of the options for the plastic 

hinge method when analyzing hysteretic cases. For a monotonic loading case under a constant or 

proportionally variable axial load, the first method applied is the USC_RC method, while the 

second is that proposed by Park and Priestley for a hysteretic or monotonic loading case. 

It should be noted that the pull-out action of the bars or, more precisely, the rotation 

imposed by the foundation is not explicitly considered in the two aforesaid methods. A third 

method addresses this effect explicitly by defining a penetration length, as in the Park and 

Priestley method ( 0.022 yf d [SI] or 0.15 yf d  [English System]). In this case the length denoted 

consL should be revised and the curvature linearly distributed over the penetration length, starting 

from uΦ at the column-footing interface to zero at the end of this length. 
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The second method is summarized in the flowchart of Figure 7.19.  

 

Figure 7.19  Flowchart summarizing the second method for plastic hinge 



8 USC_RC Application 

 
8.1 INTRODUCTION 
 

The USC Reinforced Concrete (USC_RC) software program was developed to address the 

specific analytical needs of the research program described. To the authors’ knowledge, none of 

the commercial or educational software available was suitable for this purpose. The need for the 

application became apparent during the two phases of the experimental work and when an 

analytical prediction was required of the behavior of the specimen under a cyclic lateral 

displacement and variable axial load. Based on test observations and lack of enough 

experimental support for the loading patterns studied, it was clear that a proper analytical tool 

with a user-friendly interface would remove these analytical limitations for the authors and other 

researchers conducting similar research. 

 The application began as nothing more than a FORTRAN program compiled and used as 

a console application. Keeping the basic functionality of the console application, a Windows 

interface was introduced, and more functionality was added later for both the interface and 

analytical engine. 

 USC_RC is a user-friendly, Windows-based application that can handle approximately 

all the needs for analyzing an RC member. Moment curvature, force-deflection, and axial-force 

bending-moment interaction are the main features. The program can handle both monotonic and 

hysteretic cases. Most of the models implemented in the program can be customized to fit 

specific needs. The interface provides enough functionality to view and change the analytical 

parameters, input data, and to revise and customize sections. 

The basic features of the application and the required analytical explanations will be 

provided in this chapter. The application manual is the basis of the software help file containing 
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the general features of the program and detailed instructions for use. The program can be 

installed from the installation CD-ROM or downloaded at: 

 http://www.usc.edu/dept/civil_eng/structural_lab/asad/usc_rc.htm 

 
8.2 BASIC FEATURES 
 
Figure 8.1 shows the main window of the application. The basic input data for the analysis is 

provided in this window. The input fields provide the selections and data as follows: 

Unit System 

USC_RC can handle the two different unit systems: All analysis can be carried out in either the 

SI or English unit system. In SI: 

• Force is measured in terms of kilo Newtons 

• Length in meters 

• Moment in kilo Newton-meters 

• Stress in kilo Newtons per square meter 

• Force in kips (1000 pound-force) 

• Length in inches 

• Moment in kip-inches 

• Stress in kips per square inch 

When an option is clicked, all the quantities change accordingly in the main window and 

subsequent windows. 
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Figure 8.1 The main window interface of USC_RC, the application developed for the 
analytical part of the research on bridge piers 

 
Cross-section Geometry 

At this time four different options are available for the cross-section geometry: 

1. rectangular section 

2. hollow rectangular 

3. circular 

4. hollow circular 

 For a section, there is an options are the two different directions. This is provided for a 

circular section also because a custom distribution of the bars will make the response of the 

section different about the two different axes.  

• X-Axis: This option conducts the analysis considering the X-axis. Note that depending on 

the way the height and width are determined in the input data, this axis is not necessarily the 

strong axis for a rectangular or hollow rectangular section. The user can visually detect it. 

• Y-Axis: This option conducts the analysis considering the X-axis. Note that depending on 

the way the height and width are determined in the input data, this axis is not necessarily the 

weak axis. The user can visually detect it. 
 
 



 154

Concrete Properties 

Here the strength of the concrete as measured in the lab or as desired for unconfined concrete is 

provided. The proper model for the confined concrete is also selected. For now, the “Mander 

model” is the only model available, but other models will be provided later. For the hysteretic 

behavior of concrete in USC_RC, a specific model is designed and used, which can be regarded 

as a revised version proposed by Mander et al. for the hysteretic stress-strain response of 

concrete. 

 

Steel Properties and Arrangement 

The steel properties, namely size, behavior, and the number and arrangement of the 

reinforcement for both the longitudinal and transverse steel are provided. The distribution of the 

bars for longitudinal reinforcement may be either evenly distributed or have a custom 

distribution. For the evenly distributed case and when the section is either circular or 

rectangular, the program will put the bars evenly distributed on the section, and for the evenly 

distributed case when the section is a hollow circular or hollow rectangular section, there are 

two options: (1) determine the number of bars on the outer and inner layers by the program 

(Automatic option) and  (2) select Custom. For the Automatic option, the program assigns the 

proper number of bars to the outer and inner layers based on their respective circumferences. For 

the Custom option, the user provides the number of bars on the outer and inner layers. 

Obviously, the sum of these two numbers should be equal to the total number of bars; otherwise, 

the application will ask the user to correct the input values. 

 

Size of Reinforcement 

The size of the reinforcement steel, for both the longitudinal and transverse directions, can be 

given either in terms of the size in the system (e.g., 3 for a #3 bar) or in terms of the area of the 

cross section of the bars. The user should make sure that proper quantities are used. When the 

number of the rebar in the system is provided, changing the system will change the bar number 

so that the selected number in the new system corresponds to the number in the old system. If 

there is no equivalent number in the new system, the closest number will be selected. (See: 

ASTM Soft Metric Reinforcing Bars for details of the standard)  
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Table 8.1  ASTM Standard metric reinforcing bars 

Nominal Dimensions 
Bar Size SI  [English] 

Diameter mm [in.] Cross-Sectional mm2 [in.2] Weight kg/m [lb/ft] 

#10     [#3] 9.5    [0.375] 71     [0.11] 0.560     [0.376] 

#13     [#4] 12.7    [0.500] 129     [0.20] 0.944     [0.668] 

#16     [#5] 15.9    [0.625] 199     [0.31] 1.552     [1.043] 

#19     [#6] 19.1    [0.750] 284     [0.44] 2.235     [1.502] 

#22     [#7] 22.2    [0.875] 387     [0.60] 3.042     [2.044] 

#25     [#8] 25.4    [1.000] 510     [0.79] 3.973     [2.670] 

#29     [#9] 28.7    [1.128] 645     [1.00] 5.060     [3.400] 

#32     [#10] 32.8    [1.270] 819     [1.27] 6.404     [4.303] 

#36     [#11] 35.8    [1.410] 1006     [1.56] 7.907     [5.313] 

#43     [#14] 43.    [1.693] 1452    [2.25] 11.38     [7.65] 

#57     [#18] 57.3    [2.257] 2581    [4.00] 20.24     [13.60] 

 

Also, when the number in a system is provided and the user changes the option to area, 

the corresponding area is calculated and shown accordingly. Here the user should note that the 

calculations for switching from the number to area (and vice versa) is done in a way which is 

completely consistent with the ASTM Standards.  

Assume that the user enters #19 in the SI:  when switching to the English system it 

becomes #6, and vice versa. It is important to note that the number gap for the bars in SI 

corresponding to the bars in the English system is more than one. This means that in some cases 

when the user provides the rebar number in the SI, and then switches to the English system, the 

closest English system number will be chosen, and when switching back to SI, the proper SI 

number will be shown, which may not be exactly the same as the initial number. For example, 

choosing #22 in SI then switching to the English system will get #7, and then when switching 

back to SI gets the initial #22. But choosing #24 in SI, then switching to the English system gets 

#8, and when switching back to SI gets #25, not 24. If the initial input number had been 23, after 

two switches we would get 22. These are all completely consistent with the standard and are 

required so that the user is aware of the standard being used. It is also important to note that the 
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area of the cross sections (in either system) is calculated based on the ASTM standards. It means, 

e.g., that for a #10 rebar (SI), the radius is not assumed to be 5 mm, but is first converted to the 

equivalent size in the English system (as suggested by the standard); then the area is evaluated 

and changed to the proper value in the SI. So, the cross-section area for this specific rebar is not 

3.14159*(0.01 m/2)2=0.00007854 m2, but 0.00007126, as seen in the table. 

When the user wants to use a specific size for the bar, regardless of the standard, the size 

should be entered in terms of the cross-section area. In this case (using this option), changing the 

system converts only the cross-section area to its new value in the new system without any 

change considering the standard. 

For the custom distribution case, a fully functional interface (Figure 8.2) provides the 

user with all the functionalities required for the desired custom size and location of the bars on 

the section. The user accesses this interface by choosing Custom distribution, different sizes on 

the main window. When these are determined by clicking “OK”, the main window activates 

Show custom distribution and size form to give the option of revising the custom arrangement 

and size, if needed. 

In this window, the bar location and size can be assigned in different ways. All of these 

options are properly interrelated and consistent. 

1. Clicking on the proper place on the section. Note that the coordinates of the point are 

always shown in the two X and Y windows below the section. Right-clicking a bar gives the 

options to resize or delete the bar. The size of the bar is always expressed in terms of the proper 

value already set according to the selected system or its cross-section area. It should be pointed 

out that if the size of a bar is not correct in the selected system, it will be switched to the proper 

value. If the entered size is not appropriate for the corresponding location, the user is notified but 

the size is not changed. 

2. Entering the location and size in the table. Again, if the size or location is not proper, the 

program does not accept it; if proper, it shows on the section. 

3. Reading data from a file. In this case, the file should be in text format and the data should 

be separated by either a comma or space. X, Y, and the size of bar for each bar is on the same 

line as the respective bar. 

 



 157

 

Figure 8.2  The fully functional interface makes it possible to customize a section 
 
To change a bar location or size, the corresponding values can be changed in the table or by 

dragging the bar to its proper location; the size can be changed by right-clicking the bar. At any 

time, the bars can be rearranged evenly on the section. 

The custom distribution and sizes can be saved for further use. Also the section can be 

saved in BMP format. 

 
 
8.2.1 Material Models 
 
The models developed and implemented in USC_RC for the monotonic and hysteretic stress-

strain relationship of steel and concrete are as explained in Chapter 1. Here the parameters used 

in USC_RC are provided. If necessary, the user based on the needs can change these parameters. 

The parameters have been determined based on the results from material tests carried out in the 

USC Structural Lab.  

For the monotonic stress-strain curve of steel, the input data and parameters are as 

follows: 

 469 [68 ]yf MPa ksi=  and 200000 [29000 ]E MPa ksi=   

 1 4.K =  

 2 25.K =  
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 3 40.K =  

 4 1.3K =  

and for the hysteretic behavior the parameters assigned are: 

 1 0.3333P =  

 2 2.0P =  

The unconfined concrete strength was ' 49.3 [7.15 ]cf MPa ksi=  for the first two tests and 

' 50 [7.3 ]cf MPa ksi= for the last four.. The default value is 50.3 MPa [7.3 ksi] as used for the last 

four tests. All other specifications for the monotonic and hysteretic curve of confined and 

unconfined concrete can be found in Chapter 1.  

 

Main Window Command Buttons 

There are 10 command buttons in the main window, and one button to show the Bar Custom 

Location and Size. The buttons are active only when the required data are provided. These 

buttons are as follows: 

 

 — saves the input data in a text file.  

 — restores the default values. The default values match the specifications of the 

specimens tested in the USC Structural Lab. 

 — loads the interface on which the analysis parameters can be adjusted.  
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Figure 8.3  Analysis parameters can be tuned based on analytical needs 

 

This interface is different at different instances of the process so that only the adjustable 

values at the time can be revised. Using this option allows the user to adjust the analysis 

parameters as desired. All the required information is provided in a dialog box and, if needed, 

additional information is provided by message boxes as a reaction to user input. The dialog box 

is shown here. For monotonic analysis in the cases of a constant or proportionally variable axial 

load, for both moment-curvature and force-deflection analyses, it is essential to have at least one 

of the second or third conditions in the first part for ending the analysis selected. Although the 

analysis will be carried out if no condition for ending analysis is selected, if necessary, the user 

can manually break the process selecting the break button. 

This dialog box can be accessed at any stage when the user is concerned about the 

analysis parameters. The window displays properly when showing only the necessary fields.  

 

The control parameters are: 

• Level of bending moment on the critical section of the member that can be used to decide if 

the analysis should be terminated compared to the maximum level achieved during the 

analysis. 

• Level of confined concrete strain. By using this option, termination can be set at the 

ultimate strain or a custom strain for confined concrete. 
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• Level of steel strain. By selecting this parameter, termination can be determined to be either 

at the ultimate strain of steel (rupture of the first bar) or a custom strain. 

• Number of fibers (divisions) on the cross section of the member. This value is 

recommended for the default value, and cannot be more than 500 in a direction. 

 

 

This button loads the window showing the section, steel, confined concrete and cover 

concrete stress-strain relationship based on the data provided by the user. 

The following is the window for viewing the selected section and material properties. This 

window is activated when View Section and Properties or the corresponding command from the 

menu bar is selected.  

Here a major part of the input data can be revised where the result is visually available 

for further judgment. The items that can be revised depend on the option already selected for a 

custom size and location for bars or even distribution of bars with the same size. The section can 

be saved in bitmap format. Note that after changing the data as desired, as soon as data are set 

and the focus is out of the corresponding data field, the section is redrawn accordingly. 

The stress-strain relationship for steel and cover and confined concrete can be saved both 

in terms of the actual calculated numbers and also graphically as shown in the window, but to see 

the updated curves, the user must push the “Refresh Plot” button. This button is active only when 

an update is required. The selection of the steel behavior is not available in this dialog box, but 

can be changed in the main dialog box and to revisit the section and material properties.  

Clicking View Hysteretic Behavior of Cover and Confined Concrete and Steel shows the window 

in which the user can examine the hysteretic response of material and, if necessary, adjust the 

steel hysteretic parameters. 

 



 161

 

Figure 8.4 Window to view the section, material stress-strain curves, and for revising 
some of the input data 

 

 
The two options for viewing the data on the charts are (1) to see the coordinates of the 

mouse moving on the chart and (2) to see the data points. 
 
 

 This button loads the window in which the hysteretic response of the material can be 

viewed and examined. The hysteretic parameters of steel can be adjusted in this window to 

achieve the desired behavior.  

 



 162

 

Figure 8.5  The hysteretic response of material can be examined and saved 
 

The user can experiment with either material to explore its hysteretic response. Clicking 

on each area will put the pointer on the origin, and initializes the curves. Hold down the left-

button of the mouse or push SHIFT and move the pointer in either direction of the strain axis to 

plot the response curve. By moving the mouse properly the hysteretic response of the material 

for any desired path can be examined. The stress and strain are shown numerically in their 

respective windows, and the resulting curve can be saved in terms of the produced data, or as a 

graphic. Note that when a material fails, you will get zero stress even if you return to its 

allowable range of strain, as in the real world. To capture the detailed response move the mouse 

slowly; otherwise, the curve will jump from the initial point to the next point and the two points 

will be connected by a straight line, which is not the real curve. To see how two materials behave 

simultaneously, the user has the options of seeing the behavior of steel and confined concrete or 

the steel and cover concrete at the same time. In these cases, the strains are scaled so that the 

same scale is used for both materials to provide a proper comparison. 
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The hysteretic parameters of steel can be adjusted here if needed. Right-clicking any 

window provides the user with enough tools, such as saving the curve either in a data file or as a 

picture, starting over the process or getting help. 

 

 This command button is used for the Axial-Force Bending-Moment Interaction Analysis. 

The axial-force bending-moment interaction curve can be obtained for any case. The options are 

as follows:  

1. ACI Axial-Force Bending-Moment Interaction Curve for unconfined concrete. The 

concrete is considered not to be confined, as for most design cases based on the code. For 

calculation, the concrete strain is kept at the level corresponding to the peak strength (usually 

0.002) at one end of the section, while the curvature is changed from zero up to a curvature 

where the strain at the other end of the confined core of the section reaches the ultimate strain of 

the longitudinal steel. The steel is assumed to have a bilinear stress-strain relationship curve.  

2. ACI Axial-Force Bending-Moment Interaction Curve for confined concrete. The same as 

above except for the ultimate strength, which will be the strength of the confined concrete based 

on the model used and the corresponding strain. 

3. When the concrete strain corresponds to the peak strength of confined concrete. This value 

is calculated by the program based on the data provided for the unconfined concrete strength, 

transverse reinforcement strength and ratio, and also the size and ratio of the longitudinal 

reinforcement.  The strain at one end of the confined core of the section is kept at this strain, 

while the curvature is started from zero up to a curvature where the strain at the other end of the 

confined core of the section is equal to the ultimate strain of the longitudinal steel. 

4. This option is used when a certain strain is desired for calculation of the axial-force 

bending-moment interaction curve. Here, if the input strain is negative, it is treated as the steel 

strain, and if positive, it is treated as the concrete strain. For these two cases the curvature is 

changed as described in options 2 and 3, depending on the sign of the input strain. 

5. Engineering Interaction occurs when the steel strain is limited to the longitudinal steel 

yield strain, and the confined concrete strain is limited to the confined concrete strain 

corresponding to the ultimate strength of the confined concrete. The curvature is changed from 

zero when the strain is the yield strain of steel and is increased up to a curvature when the 

confined concrete strain is the strain corresponding to the ultimate strength of confined concrete. 
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Then, the curvature is reversed and decreased to zero where the confined concrete strain is kept 

at the above-mentioned strain. 

 

 

Figure 8.6  Type of interaction analysis is selected through this interface 
 

 This command button is used for Force-Deflection Analysis. The window prompts the 

user for further selection. Here the analysis can be done for either a constant axial load, or a 

nonproportionally or a proportionally variable axial load. All options are similar to the Moment-

Curvature Analysis, with curvature replaced by displacement and moment replaced by force; 

namely, both monotonic and hysteretic analysis can be carried out depending on the axial load 

condition and selected options. Here the user has the option of different plastic hinge methods.  
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Figure 8.7 Force-deflection analysis can be done for any loading condition, using the 
desired plastic hinge method 

 

 

 This command button starts the Moment-Curvature Analysis. For a Monotonic Analysis: 

The analysis can be done either for a fixed axial load case, a nonproportionally variable, or a 

proportionally variable axial load.  

When the axial load is proportionally variable with respect to the bending moment, the 

program prompts the user for the proportionality value, the minimum (starting) and maximum 

(ending) values for the curvature, or lets the application set these values. Then, it starts the 

analysis from the least curvature and goes to the upper value for the curvature, as desired and 

provided by the user, and provides the analysis results in terms of a chart and a data file that can 

be saved. 
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.  

Figure 8.8  Moment-curvature analysis can be done for any loading condition 
 
 

For a hysteretic analysis, in case of a fixed axial load, the user should provide the level of 

the axial load. The path of curvature variation (cyclic or any other random movement) should be 

provided in a text file. Here the only data are curvature, and the data items should be separated 

by a comma or space. 

When a variable axial load case is selected, the axial load can be selected to be either 

variable with respect to the curvature or the moment. In this case, the data should be provided by 

the user by reading the data from the corresponding file. Note that the data items should be 

separated either by comma or space. Also, note that in any case, the application will guide the 

user through and in case of error, will guide the user with proper messages. Please see the “Axial 

Load Cases” for more detail on user-provided axial loads, and if it is not within a reasonable 

range for a case.  

Please note that like all other windows in this application (USC_RC Interfaces), a button 

for further steps is activated only when all the conditions are satisfied. When a single condition 

fails, the corresponding button is no longer active. Other than these instances the user is provided 

with enough prompts to get through the analysis properly. 
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 This button provides help for the current window. The USC_RC application provides help 

through a variety of ways at any stage, with different analytical methods. 

1. Help contents 

(a) Contents in the Help menu. 

(b) Contents on the Help window. 

2. Help on the current window 

(a) Help On This Window, in the Help menu of the Main Window. 

(b) Help on Help Menu. 

(c) F1 on other windows (except the Main Window) 

3. Context-sensitive Help 

(a) What’s This? 

• Right-click on any place and choose What’s This? from the popup Help Menu. 

• What’s This? In the Help Menu. 

(b) Using F1 Key 

• In the Main Window brings up context-sensitive help in a popup box.  

• In other windows brings up that window’s help. 

4. Tool Tip Texts 

(a) Place the mouse on an object where information is needed. The most convenient 

method is the Tool Tip Text. The required information is briefly provided in a 

popup box. It is obvious that all other helps are also available, so that the user will 

always have access to the required help information.  

Help is readily available, especially in the Main Window of the USC_RC Application. 

 

This button is used to exit the application. 

 

Main Window Menu Bar: 

The main window menu bar consists of the File, Run, and Help main menus. All the command 

buttons are available through the menu bar, including a Tune Analysis Parameters command for 

tuning the analysis parameters for the case. Like the command buttons, each command on the 
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menu bar will be active only if the corresponding action can be done (such as having all the 

required initial data); otherwise, it is inactive.  

 
 
8.2.2 Analysis 
 
The analysis, in general, is based on the fiber model. The main analysis types are Moment-

Curvature under a constant, proportionally or non-proportionally variable axial load, and a 

monotonic or cyclic curvature or moment; Force-Deflection analysis under a constant, 

proportionally or non-proportionally variable axial load, and a monotonic (pushover) or cyclic 

(hysteretic) lateral load or displacement; and Axial-Force Bending-Moment analysis for different 

conditions.  

 

8.2.2.1 Moment-Curvature Analysis 
 
Moment-Curvature Analysis can be done for three different cases. 

 
Fixed Axial Load 
 
For a fixed level of axial load (zero, positive, or negative), the analysis can be carried out for 

either for a monotonic or cyclic curvature case.  

 
Monotonic Analysis 
 
For a monotonic analysis, the starting and ending values for the curvature can either be set by the 

user or by the program using the default starting and ending values. The default starting value for 

the curvature is zero, and the analysis will continue up to a point where the steel strain or 

confined concrete strain exceeds the ultimate allowable strain (default) or the strains determined 

by the user when adjusting the analysis parameters, or when the moment falls below a certain 

percentage of the maximum moment as determined by the user when adjusting the analysis 

parameters. In any case, the analysis can be stopped or interrupted by the user. At the end of 

monotonic moment-curvature analysis under a constant axial load, some important points can be 

shown on the resulting curve that are internally evaluated by another module, as discussed later, 

certifying the validity of the analysis. Also, for any desired strain (either for concrete or steel) the 

corresponding curvature, moment, neutral axis position and the strains at the furthermost fibers 

and bars (concrete and steel) can be evaluated, and the corresponding point is marked on the 
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resulting moment-curvature curve. Note that the axial load cannot exceed the section capacity at 

any instance; namely, a positive axial load is limited to less than AgF’c+AsFu, and the negative 

axial load is limited to less than AsFu for zero curvature. Ag is the gross cross section (including 

unconfined and confined area, and F’c is the corresponding strength for each part), As is the net 

area of the longitudinal steel, and Fu is the ultimate strength of the steel. For each curvature the 

axial load limit is different, and the program compares the level of axial load provided by the 

user and the allowed level. The allowable ultimate axial load in either the positive or negative 

direction is evaluated during the analysis and when the input axial load exceeds this level, the 

maximum allowable axial load is employed and the point is marked to notify the user about the 

condition. The main concept of plane remaining plane is a basic assumption in analysis. 

 

 

Figure 8.9  Location of the neutral axis on the section and the assumed sign convention 
 
 
 

 

Figure 8.10  Typical section of the specimens tested 
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The algorithm for evaluating the moment for a given axial load and curvature in a direction is as 

follows: 

1. The section is divided into the required number of fibers in the analysis direction.  

2. For a specific curvature, a location for the neutral axis is estimated and the corresponding 

axial load is evaluated by integrating the forces of individual fibers on the section. 

3. If the evaluated axial load is equal to the axial load within a predetermined margin, the 

neutral axis has been found and then the corresponding moment is evaluated and will continue to 

the next point, if any. If the evaluated axial load is not equal to the axial load, the process will be 

repeated from step 2, and trial and error will continue until the desired level of axial load is 

achieved.  

Employing a proper method for this process is crucial. The variation of axial load for a 

specific curvature with respect to the neutral axis position is not a regular curve as shown in 

Figure 8.11, for the section shown in Figure 8.10, especially for high curvatures. That is why  

commonly used methods will fail to converge at some points. The routine used in USC_RC is 

such that it can roughly handle all the cases and will converge to the answer, if any, or will 

converge to the maximum possible value or minimum possible value if the level of the axial load 

is more or less than that, respectively. Figure 8.11 shows the huge difference between the 

maximum possible axial load for the same section with the same properties under different 

curvatures. 
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Figure 8.11 Variation of axial load with respect to the neutral axis location on circular 
section shown in Figure 8.10, for curvatures 0.0001 (top-left), 0.0005 (top-
right), 0.005 (bottom-left), and 0.009 (bottom-right) 

 

 

 
 

Figure 8.12 Result of a monotonic analysis under a fixed axial load, and the important 
points 
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The algorithm to evaluate the moment-curvature results for a specific strain is as follows: 

1. For the required strain (concrete when positive or steel when negative), select a position 

for the neutral axis, and the line connecting the point with the required strain and the 

neutral axis determines the plane for which the axial force should be evaluated. 

2. Evaluate the axial load. If it is equal to the desired level for the step (within the 

acceptable error margin), the neutral axis is found and the moment will be calculated. 

Otherwise, the process should be repeated for another location of the neutral axis, until 

the proper location is achieved.  

 

The module used to find the proper location of the neutral axis in USC_RC can converge 

to the proper value for all the cases, and when the level of the desired axial load is higher than 

the maximum possible or less than the minimum possible level, the program does the analysis for 

the highest or lowest possible level, accordingly, and marks the point to notify the user. In all 

cases, the data can be saved in a text file, and the actual axial load and the axial load as provided 

by the user are compared. Since the two methods are different in terms of finding the neutral axis 

location, in the first the curvature is fixed, in the second the strain at a specific point is fixed, and 

the curvature varies depending on the neutral axis location; matching the results confirms the 

accuracy of analysis. The important points that can be shown after a monotonic analysis include 

the first yield of the longitudinal steel where the confined concrete reaches the strain 

corresponding to its strength, and where the steel and the confined concrete fail.  
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Figure 8.13 Result of a moment-curvature analysis under a variable axial load. Points 
marked by a small triangle where the input axial load has been less than the 
minimum allowable axial load. 

 

Hysteretic Analysis 
 
For a hysteretic analysis under a constant axial load, the curvature path should be provided by 

the user in a text file. The algorithm is similar to that stated for the monotonic case, with the 

difference being that the curvature path can have reversal points and any arbitrary pattern. For 

each point (each pair or axial load and curvature) the stress-strain history of each single fiber on 

the section is recorded is used in evaluating the response for the next point. The hysteretic stress-

strain model of the material (steel, confined concrete, and cover concrete) plays the major role 

here in providing the hysteretic moment-curvature response of the section, but the response 

depends on the path of the applied curvature. If a monotonic curvature is applied (growing from 

a starting value to its final value), the result is the monotonic response even if the hysteretic 

model for the material is employed. The reason is that a monotonic strain in the hysteretic model 

is always on the monotonic stress-strain curve. A hysteretic (cyclic) curvature will bring up the 

hysteretic properties of the section as modeled in the hysteretic stress-strain response of the 

material. It should be added that the level of the axial load is also checked here and if not within 

the valid range for the curvature, the closest valid value is used and the user is notified by a mark 

on the curve at the corresponding point; the two values are saved when the data are saved in a 

text file. 
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Figure 8.14  Moment-curvature under a zero axial load and cyclic lateral displacement 

 
 

 

Figure 8.15 Monotonic moment-curvature analysis for a case with the moment to axial 
load proportionality of 10. Note the axial force and bending moment values for 
the arbitrary point on the chart. 
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Proportionally Variable Axial Load 
 
In this case the axial load varies proportionally with respect to the moment. The ratio or 

BendingMoment
AxialLoad

 should be provided. During analysis this ratio is a leading parameter, and the 

neutral axis is determined so that this ratio is satisfied. The options for this case are similar to 

those for a constant axial load. For a proportionality ratio, the analysis can be done either for a 

monotonic case or a cyclic (hysteretic) case. For the monotonic case, the starting and ending 

values can be set by the user by the program. The analysis parameters can be tuned as for the 

case of a constant axial load. After the monotonic analysis, the important points can be 

determined by the application, and the moment-curvature specifications for a certain strain can 

be evaluated, with the same method as was described for a constant axial load. For the hysteretic 

analysis, the user will provide the curvature path in a text file, and the analysis will be done 

based on the proportionality ratio already set by the user.  

The difference between the cases with a proportionally variable axial load and a constant 

axial load is the criteria used to find the neutral axis. In the case of a constant axial load, the axial 

load for each trial neutral axis is compared with the desired level of axial load, and the neutral 

axis is the point where the difference between the trial value and the desired axial load is less 

than a predetermined value. For a proportionally variable axial load, for each trial location for 

the neutral axis, the corresponding moment and axial load are evaluated and then the ratio is 

compared with the desired ratio. The neutral axis is found when the difference between the trial 

ratio and the desired ratio is within a predetermined value.  
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Figure 8.16 Result of the hysteretic analysis of the section, shown in Figure 8.10, under a 
proportionally variable axial load, with the ratio of –67% 

 

 
 Even if considering the above-mentioned basic rule, the process employed in USC_RC 

has a more sophisticated algorithm, so that converging toward the true location of the neutral 

axis is faster and also detects the validity of the user input data. Figure 8.17 to Figure 8.20 show 

the variation of axial force and bending moment for four different curvatures of 0.0001, 0.0005, 

0.005 and 0.009 (1/in.) with respect to the location of the neutral axis on the section shown in 

Figure 8.9 for the section shown in Figure 8.10. These figures show that the curves are not 

smooth and regular and that a standard routine may fail in converging to the proper value. As an 

example, for a certain level of axial force, analytically there may be two or more answers, or in 

some cases for high curvatures, the maximum axial force that can be achieved may be less than 

the desired level. The algorithm used in USC_RC is so that, as an example, for the case of a 

constant axial load, it will be detected if the level of axial load introduced by the user is not 

within the valid range. This fact has already been addressed. The reader is referred to Appendix 

II for details of the FORTRAN code for implementing different types of USC_RC analysis.  
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Figure 8.17 Variation of axial force (kips) and bending moment (kip-in.) for a curvature of 
0.0001 (1/in.) with respect to the location of neutral axis as shown in Figure 8.9
for the section shown in Figure 8.10 

 

 
 

Variation of Axial Force and Bending Moment for a Curvature of 0.0005 
w.r.t N.A. Depth
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Figure 8.18 Variation of axial force (kips) and bending moment (kip-in.) for a curvature of 
0.0005 (1/in.) with respect to the location of neutral axis as shown in Figure 8.9
for the section shown in Figure 8.10 
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Variation of Axial Force and Bending Moment for a Curvature 
of 0.005 w.r.t N.A. Depth
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Figure 8.19 Variation of axial force (kips) and bending moment (kip-in.) for a curvature of 

0.005 (1/in.) with respect to the location of neutral axis as shown in Figure 8.9 
for the section shown in Figure 8.10 
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Figure 8.20 Variation of axial force (kips) and bending moment (kip-in.) for a curvature of 
0.009 (1/in.) with respect to the location of neutral axis as shown in Figure 8.9
for the section shown in Figure 8.10 

 
 
Variable Axial Load 
 
In this case the level of the axial load is different for each curvature or bending moment. The 

variation of the axial load may be in terms of the curvature or the moment. In either case, the 
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data should be provided in a text file, with items separated by a comma or space, as described in 

the USC_RC help file. Here the axial load should not exceed the allowable maximum value in 

the positive or negative directions, as described for the case of a fixed axial load earlier. 

The process for the case when axial load varies with respect to the curvature or, in other 

words, when for each curvature an axial load is determined, is similar to the process for a 

constant axial load and a hysteretic analysis. The difference is that the axial load here is different 

for different curvatures, while for a constant axial load, the axial load level does not change; 

however, for a single point, the same process is applied.  

When the axial load varies with respect to the moment, for each moment there is an axial 

load. The process here is to find the proper curvature and the neutral axis location, so two levels 

of iteration are involved. For a trial curvature, the proper neutral axis location for which the 

desired axial load is achieved is found. Then the corresponding moment is compared to the 

desired level of moment and, if necessary, another trial value for the curvature is selected and the 

process repeated until the desired moment is achieved. It should be noted that for the case where 

the pair of input data is moment and axial load, when the level of the axial load is more than the 

maximum, or less than the minimum, possible value for a curvature, or if the moment is more 

than the moment that can be tolerated under its axial load, the closest proper values to the input 

values are found and used in the process, and the user is notified. The data points are marked at 

these locations and the analytical proper values and the values provided by the user are saved in 

the file when the analysis results are saved. 
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Figure 8.21 Analysis result for a case with a nonproportionally variable axial load. (Test 6, 
“see experimental program”) 

 

 

8.2.2.2 Force-Deflection Analysis 
 

Force-deflection analysis is carried out for a cantilever case where one end of the member is 

fixed, without any degree of freedom, and the other end is completely free. Since the direction of 

the lateral force or displacement is not dynamic, or in other words, the direction of the applied 

lateral force or displacement remains in one plane, the free end has three degrees of freedom: 

lateral displacement, vertical displacement, and rotation around the axis normal to the force 

plane. The cross section of the member is assumed to be uniform throughout the member. 

Therefore, in a case of a double-curvature member where the two ends are fixed and the force is 

exerted on the midpoint of the member, using half of the total length in the application and 

doubling the result gives the desired answer. Figure 8.22 compares these two cases. In this 

figure, F is the lateral force, δ  is the lateral displacement, N is the axial load, η  is the axial 

deformation, α  is the rotation, and L is the effective height of the column. Note that in the 

cantilever case (left), the bottom of the column (column-footing interface) is fixed, and no 

rotation or translation are allowed. The double-curvature column (right) is fixed at both ends. 
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Figure 8.22  Comparison of a cantilever and double-curvature column case 
 

Force-deflection analysis is similar to moment-curvature analysis in terms of its different 

types. It can be done under a fixed, proportionally variable or nonproportionally variable axial 

load, and a monotonic or cyclic lateral displacement or force. The nonproportional axial load 

may be defined in terms of lateral displacement or force. 

 
Fixed Axial Load 
 
For a fixed axial load case, the analysis is either monotonic or hysteretic. Before any kind of 

force-deflection analysis, a plastic hinge method should be selected. The existing plastic hinge 

methods in USC_RC are Park and Priestley’s, and the author’s method proposed in Chapter 2. 

The analysis is based on moment-curvature analysis. For each deflection and axial load, the 

corresponding lateral force is calculated as was described for different models of plastic hinge. 

For a cyclic analysis under a fixed axial load, the history of force and deflection, and the 

moment curvature at the proper sections, which in turn is dependent on the stress-strain history 

of the fibers on the section, is employed. Since a detail of the process has been explained in 

moment-curvature analysis and the plastic hinge methods, it will not be restated here.  
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Figure 8.23 Force-deflection analysis for a case with zero axial load, and monotonic (top) 
and cyclic (bottom) lateral displacement 

 

 

Proportionally Variable Axial Load 
 
In this case, the axial load changes proportionally with respect to the lateral load. Since the axial 

load is constant throughout the column for a specific instance, the proportionality is implemented 

at the critical section (column-footing interface) in terms of moment. So, for a proportionality of 

F
N

, where F is the lateral force and N is the axial load, the moment at the critical section would 

be FL  for a cantilever column where L is the height of the column, or in other words the 

distance between the point of application of the lateral force and critical section. During analysis 
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and based on the plastic hinge method under use, the curvature at the critical section determines 

the level of lateral force and axial load. For each curvature, the moment and axial load 

corresponding to this curvature are evaluated by the module used for moment-curvature analysis 

for a proportionally variable axial load, and then this axial load is used for moment-curvature 

analysis of other sections on the column at the instance. 

For a cyclic lateral displacement, the history of displacement, lateral force, moment, and 

curvature at the proper sections on the column, based on the plastic hinge method, are used for 

evaluating the next step. The algorithm is similar to the algorithm used for cyclic analysis under 

a constant axial load, and the difference is the moment-curvature analysis algorithm 

implemented in each case. The moment-curvature algorithm for a force-deflection analysis under 

a constant axial load case is the same algorithm as used for moment-curvature analysis under a 

constant axial load, while for a force-deflection analysis under a proportionally variable axial 

load, the moment-curvature algorithm in which the axial load is proportionally variable with 

respect to moment is employed. 
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Figure 8.24 Force-deflection analysis results for a case with a lateral force to axial load 
proportionality ratio of –1, and a monotonic lateral displacement (top), and a 
ratio of –9.3 and a cyclic lateral displacement. Note the level of force and axial 
load for the arbitrary point on the curves. 

 

Variable Axial Load  

The variation of the axial load can be in terms of the lateral displacement or lateral force. When 

defined in terms of displacement, the variation for each single lateral displacement an axial load 

is defined and the corresponding lateral force should be evaluated. If the variation of the axial 

load is defined in terms of lateral force, for each single lateral force an axial load is defined and 

the corresponding lateral displacement should be evaluated through analysis. 

The process for evaluating the lateral force for a given lateral displacement and axial load 

is similar to the case of cyclic analysis under a fixed axial load. The lateral force for each step is 
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evaluated based on the previous history of displacement, force, moment, and curvature at the 

critical and other pertinent sections. The distinction between this case and a cyclic analysis for a 

fixed axial load is that the first-yield curvature and moment for each step are different from other 

steps due to the level of axial load. So, the plastic hinge effect for each step is different from 

others, while for a constant axial load, this effect is similar in terms of the level of the axial load, 

and the corresponding first-yield moment and curvature. 

When the variation of the axial load is defined with respect to the lateral force, for each 

step, the corresponding moment at the critical section ( .uM F L= , F=Lateral Force, L=Column 

Height) is used to find the curvature at this section, using the moment-curvature analysis for the 

case of a variable axial load with respect to moment. Then, for this curvature and axial load, 

using previous values for displacement, force, curvature, and moment at pertinent locations on 

the column, the deflection is evaluated. 

 

Figure 8.25 Force-deflection analysis result for a case with a variable axial load (analytical 
result for test 5, see experimental part) 

 

8.2.2.3 Axial-Force Bending-Moment Interaction 
 

The axial-force bending-moment interaction curve is evaluated based on the option selected. The 

method used in USC_RC is briefly explained here. For all the cases, the axial load and bending 

moment for each curvature are evaluated by adding the corresponding values for individual 

confined concrete, cover concrete, and steel fibers. For the bending moment, the force in each 

fiber is multiplied by the distance between the fiber and the centroid of the section.  
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Figure 8.26 shows the case for a certain steel strain. The strain at the location of the 

furthermost bar on the section is set to the steel strain for which the interaction curve is to be 

evaluated. 

 
 

Figure 8.26  Evaluation of axial-force bending-moment interaction for a specific steel strain 
 

Then the axial load and bending moment is evaluated on a section passing through this 

point. In other words, the strain at the point of the furthermost bar on this section, which serves 

as the center of rotation, is always kept equal to the strain for which the interaction curve is to be 

evaluated. Curvature of this section is changed from zero (horizontal) to a curvature where the 

strain at the furthermost fiber of the confined concrete on the opposite side reaches its ultimate 

state. So, the curvature range of variation would be: 

0.
2

steel u Confined

D C
ε ε −+

≤ Φ ≤
−

 

where steelε is the steel strain, u Confinedε − is the ultimate confined concrete strain, D  is the section 

depth in the direction of analysis, and C  is the cover thickness. 

When the axial-force bending-moment interaction curve is to be evaluated for a specific 

strain of confined concrete, the strain at the furthermost fiber on the section is set to that strain, 

as shown in Figure 8.27, and then the axial force and bending moment are calculated on a section 

passing through this point as the center of rotation, for different curvatures. The curvature in this 

case varies as follows: 

0.
2

u steel Confined

D C
ε ε− +

≤ Φ ≤
−
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where u steelε −  is the ultimate steel strain, (equal to 3 yK ε  in USC_RC), Confinedε is the confined 

concrete strain for which the interaction curve is to be evaluated, D  is the section depth, and C  

the cover concrete thickness. 

 

Figure 8.27 Evaluation of axial-force bending-moment interaction curve for a certain 
confined concrete strain 

 

For the “engineering interaction curve,” the confined concrete strain is limited to the 

strain corresponding to the ultimate strength of the confined concrete, and the steel strain is 

limited to the yield strain. Figure 8.28 shows the variation of curvature for this case. The center 

of rotation is first on the furthermost bar on the section and a strain equal to the yield strain of 

steel. The curvature of the section is then varied from zero that where the strain on the 

furthermost confined concrete fiber on the opposite side reaches a strain corresponding to the 

ultimate strength of confined concrete. Then the center of rotation is switched to this point, and 

the strain on the fiber is kept at this strain and the section curvature is changed from its existing 

value to zero.  
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Figure 8.28 Variation of curvature for evaluating the engineering interaction in USC_RC

 

 

The variation of curvature in this case is as follows: 

0.
2

y cc

D C
ε ε+

≤ Φ ≤
−

 (center of rotation on left side) 

0.
2

y cc

D C
ε ε+

≤ Φ ≤
−

 (center of rotation on right side) 

where yε  is the yield strain of steel and ccε is the confined concrete strain corresponding to its 

ultimate strength. 

 

 

8.2.2.4 USC Viewer, a Byproduct Application 
 
As was stated in viewing the hysteretic response of material, the user of the USC_RC application 

can examine the hysteretic response of steel, confined and unconfined concrete in an interactive 

interface where some of the hysteretic parameters for steel can be adjusted. This feature in 

general can be used to view the response of any system in a two-dimensional space. At the time 

the USC_RC application was developed, some timber structures were being tested for another 

project. One of the analytical parts of that research was a hysteretic model developed for the 

hysteretic response of one of the timber structure. Examining the model for different paths of 

displacement or strain required providing a data file for a predetermined displacement or strain 

path, running the program for the model using this pattern, and then viewing the results using 
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other applications such as Excel. Examining the model for every pattern requires all these steps. 

One of the researchers suggested putting the aforesaid feature of the USC_RC in a separate, 

small application so that any material model or system response could be viewed for any 

arbitrary displacement or strain path without the necessity of going through all the steps.  

The result, the “USC_Viewer,” is actually a fully functional interactive interface for 

viewing the response of any material or system in a two-dimensional space. The user provides 

the model for the material or the system, as clearly stated in the help manual. As soon as the 

model is coded, as should be done anyway, its response can be viewed and examined just by 

moving the mouse appropriately and the response curve will be plotted. Figure 8.29 shows the 

main window of the USC_Viewer showing an instance of the default model, provided as a hint 

for the user. 

 

 

Figure 8.29  Main window of the USC_Viewer, showing an instance of the default model 
 

 

This small application can be used to examine and view 11 different models at the same 

time. Each model can have up to 22 different parameters that can be set by the user as needed. 

Each single model can be saved with the corresponding parameters, and the responses can be 

saved as a data file or a graph. The last-used parameters for each model are automatically saved 
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for each model and loaded whenever that model is chosen in the future. The names and labels for 

each model can be change accordingly. These changes will be effective as long as the user 

changes them again. The application has many other features for a proper interaction and 

viewing of a model, saving the data and switching between different models. All the features and 

explanations can be viewed by installing the USC_Viewer from the installation CD or 

downloading from http://www-scf.usc.edu/~esmaeily, running the application, and reading the 

context-sensitive help whenever needed. In Figure 8.30 the same instance of the default model is 

viewed in the enlarged viewing window. USC_Viewer is capable of providing a window as large 

as the screen for a better and detailed examination of the response. 

 

 

Figure 8.30 The same instance of the default model as in Figure 8.29 in the enlarged 
viewing window 

 

 



9 Comparison of Experimental and 
Analytical Results 

In this chapter the test results for the six tests are compared with the analytical results obtained 

by the USC_RC application. Because of the importance of material models and analytical 

methods in generating results close to experimental data, the parameters to model the stress-

strain response of material have been selected for good compatibility with the test results. The 

model used for the monotonic stress-strain response of confined and unconfined concrete is the 

model proposed by Mander et al., as described earlier in detail. The results of material tests on 12 

samples of concrete specimens determined the values used in the model for concrete strength. 

The model developed by the author simulates the monotonic stress-strain response of steel. This 

model simulates the strain hardening behavior of steel and has the flexibility to be used for 

roughly modeling any steel monotonic stress-strain curve. Also, models for the hysteretic 

response of steel, confined, and unconfined concrete were developed by the author and used to 

simulate the hysteretic response of steel and concrete. The parameters have been adjusted based 

on the tests of the material in the structural lab at USC.  

 

 

9.1 MOMENT-CURVATURE RESPONSE 
 

Figure 9.1 shows the moment-curvature response of the first specimen at segment one compared 

with the analytical curve. Note that the analytical moment-curvature response has been evaluated 

by USC_RC, the software developed for the analysis of RC members under various loading 

conditions. Moment-curvature analysis is based on a fiber model, as discussed in a previous 

chapter, and the section is divided into 100 confined and unconfined concrete fibers in the 

direction of the applied curvature or moment. The steel fibers on the section are the actual bars in 

their respective positions and cross-section areas.  
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The analytical response can be predicted by two approaches. The first approach, for the 

case in Figure 9.1, does the hysteretic analysis for a variable axial load case, where the curvature 

pattern and the axial load at any curvature are given as input data for analysis. In such a case, the 

actual axial load for each single curvature that occurred during testing is provided as input. The 

second approach considers a fixed axial load and provides it as a constant value for all the 

curvatures and provides only the curvature path as the input. In this case, the true axial load for 

each single curvature may be different within a small percentage compared with the fixed level 

used in the program. The difference in predicted values, however, is negligible as shown in 

Figure 9.2. The predictions compared to experimental results are conservative, especially for 

high curvatures, which has been the case for a high level of axial load. This issue will be 

discussed more when examining the response of other tests under different loading and 

displacement patterns. 

Analytical and Experimental Moment Curvature (Test 1) at First 
Segment
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Figure 9.1  Analytical and experimental moment curvature of specimen one 
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Moment Curvature Using Curvature Only and Curvature and Axial 
Load
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Figure 9.2 Evaluation of analytical response of test one using curvature path and axial load 

as input data, and using curvature path as input data with a single axial load of 
460 kips 

 
 

Analytical and Experimental Moment Curvature (Test 2) at First Segment
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Figure 9.3  Analytical and experimental moment curvature of specimen two 
 

Figure 9.3 shows the experimental moment-curvature curve at the first segment and the 

analytical output of USC_RC for the case considering a variable axial load proportional to the 

applied horizontal load. Compared to the experimental results, the analytical results are slightly 

conservative for the compressive axial load but close for the tensile axial load. The analytical 
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curve has been evaluated by providing the curvature and corresponding axial load for each 

curvature. Another approach to evaluate the analytical moment curvature is in providing the 

proportionality ratio and the curvature path. Here the proportionality ratio or moment to axial 

load is –66.67. Figure 9.4 compares the analytical results for test 2 using the two approaches. 

The solid curve is for the case where the curvature path and axial load have been provided as 

input data for analysis, and the dotted curve shows the case when the curvature path has been 

provided as input data using a single proportionality value.  

 

Moment Curvature Using Curvature Only and Curvature and Axial Load
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Figure 9.4 Comparing analytical moment curvatures for test 2, using proportionality value 
and curvature path, and using curvature path and corresponding axial load for 
each curvature 

 

Figure 9.5 shows the comparison of the moment-curvature response of specimen three at 

the first segment with the analytical results for the case. The difference between the slope of the 

two curves at the beginning is because the experimental curve has been plotted based on the data 

from the measurements at the first segment, which is closest to the column-footing interface and 

includes the pull-out effect of the bars, while the analytical curve has been evaluated without this 

effect. 
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Experimental and Analytical Moment Curvature (Test 3) Segment 1
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Figure 9.5  Analytical and experimental moment curvature of specimen three 
 
 

Analytical and Experimental Moment Curvature (Test 4) Segment 1
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Figure 9.6  Analytical and experimental moment curvature of specimen four 
 

Figure 9.6 shows the moment-curvature response of specimen four at the first 

segment. The dotted curve is the analytical value for the specimen under the same 
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loading and displacement conditions. The slope of the curve within the first yield is 

slightly different compared to the analytical results. The reason is the same as for test 3.  

Experimental Moment Curvature at Segments 1 and 2
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Figure 9.7  Comparison of experimental moment curvature at segments one and two 
 

The experimental curve was plotted based on the data recorded on the first segment of the 

specimen. This is the segment close to the column-footing interface, and the rotation caused by 

the pull-out action of the bars is included in the recorded data. So, as the curvature increases, the 

stress in the furthermost bar increases also, leading to an increase in the rotation caused by the 

pull-out action of the bars. This difference is zero at the beginning when there is no tensile stress 

in the bar and increases with tensile stress. Figure 9.7 shows the experimental moment curvature 

at segments one and two. As expected, the initial difference due to the aforesaid fact is shown for 

test 4. 
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Analytical and Experimental Moment curvature (Test 5) Segment 1
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Figure 9.8  Analytical and experimental moment curvature of specimen five 
 

The analytical and experimental moment-curvature responses of specimens five are 

shown in Figure 9.8. This test was under a variable axial load. The variation of the axial load 

with respect to the average curvature on the first segment of the specimen is shown in Figure 9.9. 

The analytical predictions are conservative for a negative (tensile) axial load, while 

overestimating the flexural strength for a positive (compressive) axial load. This is completely 

contrary to the observations in previous tests, where the analytical predictions for compressive 

axial load cases were conservative compared to test results. The reason for this phenomenon may 

be that in the case of a fixed axial load, the section has already experienced the full level of axial 

load without any curvature and the confinement is utilized at its highest possible level under this 

axial load; while in this case, the full axial load is reached at a specific curvature where only a 

part of the section is under compression. So, it is obvious that the effect of confinement and 

therefore the capacity will be lower than for the analytical prediction in which no difference is 

considered between this case and a fixed axial load in terms of the aforesaid condition. 

On the other hand, as shown in Figure 9.8, the analysis underestimates the capacity for a 

tensile axial load, while we have seen for the tests under a relatively constant axial load the 

predictions are close to test results. The reason for this phenomenon may be similar to what was 

stated for a compressive axial load.  It may be because for a case of constant axial load and at the 
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peak tensile value, the whole steel experiences the same strain when there is no curvature, and 

then when the curvature is applied, one side has a return strain and the strain at the other side 

grows, while for a varying axial load there is no reversal strain in any side of the section. This 

may cause the steel to provide more strength when compared to the constant axial load case. 

 

Axial load (Test 5) vs Curvature at Segment 1

-200

-100

0

100

200

300

400

500

0 0.05 0.1 0.15 0.2 0.25

Curvature (1/M)

Fo
rc

e 
(K

N
)

 
Figure 9.9 Variation of axial load with respect to the average curvature at the first segment 

for test 5 



 199

 
Analytical and Experimental Moment Curvature (Test 6) Segment 1
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Figure 9.10  Analytical and experimental moment curvature of specimen six 
 
 

Axial load (Test 6) vs Curvature at Segment 1
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Figure 9.11 Variation of axial load with respect to the average curvature at the first 

segment for test 6 
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Figure 9.10 shows the experimental moment-curvature results at the first segment of test 

6 compared to the analytical results under the same axial load variation and lateral displacement 

conditions. Figure 9.11 shows the pattern of axial load with respect to the curvature for this test. 

The axial load pattern in this test is different from that of in test 5 only in terms of the local stops 

at peak points, but this difference has caused a relatively significant difference in the response of 

the two specimens. During the few initial cycles of axial load that are identical for both 

specimens, the same response pattern is observed for both tests and the analytical and 

experimental responses are identical, while in test 6 the small difference in the pattern of the 

axial load caused a completely different response in this test, where the analytical results for the 

compressive axial load underestimate the capacity. 

 
 

9.2 HORIZONTAL FORCE-DEFLECTION RESPONSE 
 

The horizontal force-deflection analysis was based on the moment-curvature analysis for the 

sections as required for each plastic hinge method used in the analysis. Two plastic hinge 

methods were used for each case to examine the differences. The first is the method developed 

and used in the USC_RC application, as plastic hinge method 2, and the other method is that 

method proposed by Park and Priestley as a commonly used plastic hinge method for flexural 

deflection analysis. The analysis methods and details of the Park and Priestley, and USC_RC 

plastic hinge methods have been described in previous chapters. 

The analytical and experimental horizontal force-deflection responses of specimen one 

are compared in Figure 9.12 and Figure 9.13. The analytical predictions are conservative 

compared to the experimental results. The analytical results in Figure 9.12 are evaluated using 

the plastic hinge method developed and used in the USC_RC application, while in the latter 

figure the plastic hinge proposed by Park and Priestley has been used. The difference between 

the analytical predictions using the two different plastic hinge methods is negligible in this case. 
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Comparison of Force-Deflection
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Figure 9.12 Comparison of experimental and analytical force-deflection response of 
specimen one, using the USC_RC plastic hinge method 2 
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Figure 9.13 Comparison of experimental and analytical force-deflection response of 
specimen one, using the plastic hinge method proposed by Park and Priestley 
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Figure 9.14 compares the analytical and experimental results for test two where the axial 

load was proportionally variable with respect to the lateral force. The plastic hinge method used 

for the analytical evaluation in Figure 9.14 was the method developed in USC_RC, while for the 

analytical curve in Figure 9.15, the method proposed by Park and Priestley has been applied. In 

this case, the difference between the analytical results for these two methods is negligible. The 

prediction in the pull direction where a compressive axial load was involved is conservative, 

while in the push direction with a negative or tensile axial load the analytical predictions and 

experimental results are close. 
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Figure 9.14 Comparison of experimental and analytical force-deflection response of 
specimen two, using the USC_RC plastic hinge method 2  
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Figure 9.15 Comparison of experimental and analytical force-deflection response of 
specimen two, using the plastic hinge method proposed by Park and Priestley 
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Figure 9.16 Comparison of experimental and analytical force-deflection response of 
specimen three, using the USC_RC plastic hinge method 2 
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The experimental results are compared with the analytical results in Figure 9.16 and 

Figure 9.17 using the two different plastic hinge methods for test 3. The USC_RC plastic hinge 

method predicts the results better than the Park and Priestley plastic hinge method, but in both 

cases the analytical results are lower than in the experimental results. 

Figure 9.18 compares the experimental force-deflection curve with the analytical results 

using the USC_RC plastic hinge method for test 4. No axial load has been applied in this case, 

and a monotonic lateral displacement has been applied up to a drift ratio of 10% and then 

reversed to a drift ratio close to –10% and then back to zero. 
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Figure 9.17 Comparison of experimental and analytical force-deflection response of 
specimen three, using the plastic hinge method proposed by Park  
and Priestley 
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Figure 9.18 Comparison of experimental and analytical force-deflection response of 
specimen four, using the USC_RC plastic hinge method 2 
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Figure 9.19 Comparison of experimental and analytical force-deflection response of 
specimen four, using the plastic hinge method proposed by Park and Priestley 
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In Figure 9.19 the same comparison is made between the experimental and analytical 

results of test 4, using the plastic hinge method proposed by Park and Priestley. Figures 

comparing the force-deflections by the two plastic hinge methods show that the USC_RC 

method provides better prediction than the Park and Priestley method. The reason for this is that 

in the USC_RC method, the change of the plastic hinge length for various levels of lateral force 

was considered, while no variation in length was considered in the Park and Priestley method 

under any loading condition.  
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Figure 9.20 Comparison of experimental and analytical force-deflection response of 
specimen five, using the USC_RC plastic hinge method 2 

 

 

Figure 9.20 compares the experimental results for test five with the analytical results 

using the USC_RC plastic hinge method. The analytical results using the Park and Priestley 

method for this specimen are compared with the experimental results in Figure 9.21. 
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Comparison of Force-Deflection
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Figure 9.21 Comparison of experimental and analytical force-deflection response of 
specimen five, using the plastic hinge method proposed by Park and Priestley 

 

 
Predictions using the USC_RC plastic hinge method seem to be in better agreement with 

the experimental results. The trend of strength degradation is more consistent with the 

experimental curve. Also, even if in both methods the strength is underestimated for peak tensile 

axial loads, the results yielded by the USC_RC method are closer to the experimental values at 

these points.  

The experimental force-deflection response of specimen six is compared with the 

analytical results using the USC_RC plastic hinge method, in Figure 9.22. Figure 9.23 shows this 

comparison when the Park and Priestley method for a plastic hinge was used for evaluating the 

analytical results. Here again, the results from the USC_RC plastic hinge method better agree 

with the experimental results than those from the Park and Priestley method.  
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Figure 9.22 Comparison of experimental and analytical force-deflection response of 
specimen six, using the USC_RC plastic hinge method 2 
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Figure 9.23 Comparison of experimental and analytical force-deflection response of
specimen six, using the plastic hinge method proposed by Park and Priestley 

 

 
 
 



10 Summary and Conclusions 

Six scaled RC bridge columns with circular sections were tested at the USC Structural Lab as a 

part of an experimental program investigating the effects of a variable axial load on the seismic 

behavior of bridge piers. The primary experimental parameters were the axial load and loading 

pattern. The objectives of the overall research program on the seismic behavior of bridge piers, it 

required testing several specimens under specific loading patterns, in addition to the cases with a 

constant axial load, and a proportionally variable axial load. To achieve a predetermined loading 

pattern in a test, a control system was developed. For any case of the load or displacement 

control pattern, the actuators were programmed through an interface with the computer so that 

the desired pattern was achieved. 

For the first specimen, the axial load was a constant axial load equal to 30% of column 

axial load capacity, and for the second specimen a variable axial load proportional to the 

horizontal force was applied. The horizontal force for the first two tests was a quasi-static cyclic 

load. The third column was subjected to a constant axial load equal to 30% of the section 

capacity, and the fourth column was tested without any axial load. The horizontal force for these 

two tests was a monotonically increasing force starting from zero up to the failure of the column. 

The fifth specimen was tested under a monotonically increasing lateral displacement with a 

nonproportionally variable axial load, fluctuating between 30% and –10% of the section 

capacity. The overall objective of the tests was to study the effects of different quasi-statically 

loaded displacement paths, the effects of combined, nonproportional cyclic loading inputs for 

both the axial and lateral directions of columns, and to provide the benchmark data for dynamic 

and large-scale tests. 

The experimental results show that the axial force level and pattern play a significant role 

in the behavior of the column. An increase in axial load leads to an increase in the flexural 

capacity but a decrease in the ductility. A relatively high axial load makes the concrete enter the 

inelastic behavior range before the steel, and more confinement is required to achieve enough 
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ductility in a seismic region. The response is different if the axial load is not constant and is 

proportional to the horizontal load, as in real situations, and as shown in the experimental results 

of the second test. In the push direction, where the axial load was decreased to a negative value, 

the response was more ductile but the capacity was decreased, and in the pull direction, an 

increase in the axial load slightly increased the capacity without relatively any decrease in 

ductility. (due to the low level of axial force compared to the first test). A preliminary test with a 

nonproportional axial load confirmed the significant effect of the axial load on the overall 

response of the column.  

Based on the test results, under a constant axial load, the peak strength and displacement 

of the column under a cyclic lateral load is close to a monotonic case. The result is different 

when the axial load is the variable parameter. For the same peak maximum and minimum values, 

the response will be different under different axial loading patterns. As for tests five and six, 

reducing the rate of change of the axial load and fixing the level of axial load during the test at 

some points, resulted in a different response compared to that of test five.  

The flexural strength of a column under a variable axial load may be less than the 

predicted values using the conventional methods, assuming the same level of axial load as for the 

instance under consideration. This has been shown in the comparison of the analytical and 

experimental results of the last two tests where the specimens were under a variable axial load 

and a monotonic lateral displacement. For a variable axial load, the pattern of variation of the 

axial load with respect to the lateral displacement has a very significant effect on the response of 

the column.  Assessing the flexural strength of a column under seismic excitation when the 

vertical component cannot be ignored needs special consideration. The column may have a real 

flexural strength less than that predicted analytically under the same peak level of axial 

compressive load. 

Specimens under a variable axial load demonstrated a better ductility compared to the 

specimens under a constant axial load as shown by comparing the experimental results of a 

specimen under a fixed level of compressive axial load and a test under a variable axial load with 

the same peak value of compression. 

The transverse reinforcement when placed as spiral is utilized more than as a noncircular 

shape. In the first test where the axial load was high enough, the flexural failure of the column 

was initiated by the yield and rupture of the spiral, so in a case where the axial load is relatively 
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high, increasing the amount of confinement leads to an increase in the strength and ductility, and 

will delay the failure.   

The percentage of the energy absorbed by the column with a high level of axial load with 

respect to the applied energy to the column is less compared with the percent of the energy 

absorbed by the column with a proportional but low level axial load.  

The length of the plastic hinge is variable in the case of a variable axial load, and the 

existing plastic hinge model seems to be insufficient to give a realistic estimation for the plastic 

hinge length in the case of a variable axial load. Also, the location of the plastic hinge may vary 

if the applied loads are not purely static loads. 

One of the objectives of the experimental studies on the seismic behavior of bridge 

columns under various loading patterns was to investigate the existing analytical tools and 

models and the way they can address different analytical needs of the problem. First, a relatively 

good estimation of the behavior of each specimen was needed before each test so that the test 

setup could be designed properly. After the experimental phase, the models and methods needed 

to be judged compared to the test results. In this research the existing material models for steel, 

confined concrete, and unconfined concrete were reviewed, and a stress-strain model for the 

monotonic response of steel was developed. Also two models for the hysteretic stress-strain 

response of steel and concrete were developed and used for the hysteretic analysis of the 

specimens.  

Existing analytical methods such as the finite element method, the fiber model, the yield 

surface method, and the multispring model were briefly reviewed. A simple multispring model 

for RC circular sections was developed (see Appendix III). The plastic hinge method was 

discussed and different existing models were compared. To consider the variation of the plastic 

hinge length due to the level of the lateral force and axial load, a model was proposed for the 

plastic hinge method and implemented in the application developed for the analytical studies. 

The experimental results were compared with the analytical results. This comparison was 

done for the moment-curvature and lateral force-deflection response of the specimens. It has 

been shown that while for a constant compressive axial load case the analytical predictions are 

relatively conservative compared to the test results, for a variable axial load this estimation may 

be more than the actual response of the specimen at peak compressive values of a 

nonproportionally variable axial load. On the other hand, for a constant tensile axial load the 

analytical flexural strength of the specimens was in general slightly more than the experimental 
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values, while in the case of a variable axial load a different situation was observed. These 

phenomena are very important in the assessment of the seismic behavior of columns, especially 

where the vertical component of the excitation must be considered.   

When test results are compared, the proposed plastic hinge method has been shown to 

yield better results than the commonly used method.  
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ILLUSTRATIVE FIGURES FOR HELPING TO LOCATE PROPER GAGE 
AND LINEAR POTENTIOMETER AS IS TITLED IN TEST GRAPHS 

 

Level 5
Level 4
Level 3
Level 2

Level 1

Gages on the Rebars

203 mm

Top of the 
Footing

457 mm

203 mm

203 mm

203 mm

Push Pull

2

13

R-3-M=R-3-2=Gage on Rebar at Level 3, Location M(or 2)

Example:

381 mm

Gages on the Spiral

381 mm

R

M

L

Lp10

Lp9

Lp8

Lp7

Lp6

203 mm

18
29

 m
m

25
40

 m
m

203 mm

203 mm

203 mm

203 mm

45
7 

m
m

D

Lp2

Lp1

Lp4

Lp3

Lateral 
Load

254 mm

d

Lp5

Axial 
Load

H2
H1

Location of linear potentiometers

S-4-L=S-4-3=Gage on Spiral at Level 4, Location L(or 3)
Example:

 



 

223

 

 

 

 

 

 

 

 

 

 

 

 

TEST GRAPHS BASED ON THE EXPERIMENTAL DATA 
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lp1 vs drift ratio
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  strain at (S-1-R) vs drift ratio
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Inclined Force-Drift Ratio(based on 90")
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Linear Potensiometer 9 vs Drift Ratio
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Strain in R-5-L gage vs Drift Ratio
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Linear Potensiometer LP-7
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Strain in the Gage R-3-R 
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Horizontal and Vertical Force vs Drift Ratio 
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Critical Moment, tests 1 to 5
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Scaled (1000000) Strain in gage R5R, and 
Vertical Force 
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Critical Moment (and scaled Axial Load)
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Strain of Bar at Critical Section tension Side and 
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The Original “FORTRAN 95” Code, used to make the “Dynamic Link Library 
(dll)” File for the Functions and Subroutines used in USC_RC Application. 
 
!*********************************************************************************** 
!This subrouine is to exchange the section data between the window   
!interface routines and the FORTRAN analysis routines as seen here. 
!*********************************************************************************** 
subroutine sendsection(h,w,t,c,nd,a,nl,xxbb,yybb,mm,ms) 
!MS$ATTRIBUTES DLLEXPORT :: SENDSECTION 
 
real*8 h,w,t,c,a(200),xxbb(200),yybb(200) 
integer*2 nd,nl,mm,ms 
 
integer*2 ndiv,nlb,m,mstwe 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
hdir=h 
wdir=w 
thic=t 
cover=c 
ndiv=nd 
alb(1:nlb)=a(1:nlb) 
nlb=nl 
xb(1:nlb)=xxbb(1:nlb) 
yb(1:nlb)=yybb(1:nlb) 
m=mm 
mstwe=ms 
end subroutine 
 
!************************************************************************************* 
!This subrouine is to exchange the material data between the window   
!interface routines and the FORTRAN analysis routines as seen here. 
!************************************************************************************* 
subroutine sendmaterial(e,fs,ybbs,kk1,kk2,kk3,kk4,fco,fcc,ybbc,ybbcc,ult,rr,pow,ms) 
!MS$ATTRIBUTES DLLEXPORT :: SENDMATERIAL 
 
real*8 e,fs,ybbs,kk1,kk2,kk3,kk4,fco,fcc,ybbc,ybbcc,ult,rr,pow 
integer*2 ms 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
es=e 
fps=fs 
yebs=ybbs 
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k1=kk1 
k2=kk2 
k3=kk3 
k4=kk4 
fpco=fco 
fpcc=fcc 
yebc=ybbc 
ebcc=ybbcc 
ultebs=ult 
r=rr 
power=pow 
mshdg=ms 
ec=1.7*fco/ybbc 
end subroutine 
 
!************************************************************************************** 
!This subrouine is to exchange the steel hysteretic coefficients between    
!the window interface routines and the FORTRAN analysis routines as  
!seen here. 
!************************************************************************************** 
subroutine sendsteelzarib(z1,z2) 
!MS$ATTRIBUTES DLLEXPORT :: SENDSTEELZARIB 
real*8 z1,z2 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
zarib=z1 
zar2=z2 
end subroutine sendsteelzarib 
 
!************************************************************************************** 
!This subrouine is to exchange some of the required data for hysteretic  
!analysis between the window interface routines and the FORTRAN  
!analysis routines as seen here. 
!************************************************************************************** 
subroutine sendFDInfo(l,d,m,s) 
!MS$ATTRIBUTES DLLEXPORT :: SENDFDINFO 
real*8 l,d 
integer*2 m,s 
 
real*8 leng,dlb,lp 
integer*2 method,msys 
common/FDInfo/leng,dlb,lp,method,msys 
 
leng=l 
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dlb=d 
method=m 
msys=s 
lp=0. 
end subroutine sendFDInfo 

 
!************************************************************************************ 
!This subrouine is to initialize the data implemented in the hysteretic  
!analysis    
!************************************************************************************ 
subroutine initialize(an) 
!MS$ATTRIBUTES DLLEXPORT :: INITIALIZE 
integer*2 an 
real*8 d,aco,acc 
 
integer*2 ndiv,nlb,m,mstwe 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
real*8 cfiber(500,3),vfiber(500,3),rebar(200,2) !Note 3rd component is the area, 
makes faster, steel can be also later 
integer*2 cflag(500),vflag(500),sflag(200,2)   !also distances may be 
added to expedite execution 
common/hfiber/cfiber,vfiber,rebar,cflag,vflag,sflag 
 
!Added for analysis option used for updating hysteresis 
integer*2 anaop 
common/updateflag/anaop 
 
!Added for having previous NAxis and Curv. to expedite process 
real*8 naxis,pcurv 
common/axiscur/naxis,pcurv 
 
naxis=hdir/2. 
pcurv=0. 
 
anaop=an 
 
d=hdir/ndiv 
cfiber=0. 
vfiber=0. 
rebar=0. 
cflag=0 
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vflag=0 
sflag=0 
do i = 1,ndiv 
Select Case (m) 
Case (1) 
Call arearec((i - 0.5) * d, aco, acc) 
Case (2) 
Call areahrec((i - 0.5) * d, aco, acc) 
Case (3) 
Call areace((i - 0.5) * d, aco, acc) 
Case (4) 
Call areahce((i - 0.5) * d, aco, acc) 
End Select 
cfiber(i,3)=aco 
vfiber(i,3)=acc 
end do 
 
end subroutine 

 
!************************************************************************************** 
!This is to update the hysteresis record values at the end of each point 
!************************************************************************************** 
subroutine hupdate(phi,x) 
!MS$ATTRIBUTES DLLEXPORT :: HUPDATE 
 
real*8 phi,x,d,tempo 
 
integer*2 ndiv,nlb,m,mstwe 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 cfiber(500,3),vfiber(500,3),rebar(200,2) !Note 3rd component is the area, 
makes faster, steel can be also later 
integer*2 cflag(500),vflag(500),sflag(200,2)   !also distances may be 
added to expedite execution 
common/hfiber/cfiber,vfiber,rebar,cflag,vflag,sflag 
 
real*8 pstrain,pstress 
integer*2 flag,flag2 
common/strstate/pstrain,pstress,flag,flag2 
 
d=hdir/ndiv 
 
do i=1,ndiv 
 
pstrain=cfiber(i,1) 
pstress=cfiber(i,2) 
flag=cflag(i) 
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tempo=hconstr((x-(i-0.5)*d)*phi) 
cfiber(i,1)=pstrain 
cfiber(i,2)=pstress 
cflag(i)=flag 
 
pstrain=vfiber(i,1) 
pstress=vfiber(i,2) 
flag=vflag(i) 
tempo=hcovstr((x-(i-0.5)*d)*phi) 
vfiber(i,1)=pstrain 
vfiber(i,2)=pstress 
vflag(i)=flag 
end do 
 
do i=1,nlb 
pstrain=rebar(i,1) 
pstress=rebar(i,2) 
flag=sflag(i,1) 
flag2=sflag(i,2) 
select case (mstwe) 
case (2) 
tempo=hstrsteel(phi*(x+xb(i)-hdir/2)) 
case (1) 
tempo=hstrsteel(phi*(x+yb(i)-hdir/2)) 
end select 
rebar(i,1)=pstrain 
rebar(i,2)=pstress 
sflag(i,1)=flag 
sflag(i,2)=flag2 
end do 
end subroutine 
 
!****************************************************************************** 
!This is to initialize the demonstration hysteretic curves 
!****************************************************************************** 
subroutine dinitialize() 
!MS$ATTRIBUTES DLLEXPORT :: DINITIALIZE 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
integer*2 steelbreak,steelyr,flagccyield,flagcvyield 
real*8 pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress 
common/dhvalues/pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress,steel
break,steelyr,flagccyield,flagcvyield 
pcstrain=0. 
pvstrain=0. 
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psstrain=0. 
psstress=0. 
imagcstress=0. 
imagvstress=0. 
imagstress=0. 
SteelBreak=0 
steelyr=0 
flagccyield=0 
flagcvyield=0 
end subroutine 
 
!************************************************************************************* 
!This is to calculate moment curvature of a section under a specific  
!axial load and curvature. This subroutine works for all cases even for  
!a not allowed axial load. It will get the max possible (either + or -) for 
!the curvature and will continue the analysis. The situation is informed  
!by the !flag "msit". 
!************************************************************************************* 
Subroutine CalMomCur(phi, Axf, xres,msit) 
!MS$ATTRIBUTES DLLEXPORT :: CALMOMCUR 
real*8 xres(6),trval,trxx, xl,xr,xx,d,dd,ad,p,af,leftval,rigval,b 
real*8 phi,Axf 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe,msit 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
!This is added for updating flag 
integer*2 analop 
common/updateflag/analop 
 
 p = phi 
 af = Axf 
 xl = hdir/2. !naxis 
 trval=af-CalAxf(p, xl) 
 xr =xl+ 7.*hdir/ndiv  
 d = xr - xl 
 dd = d / ndiv 
10 leftval = af-CalAxf(p, xl) 
 rigval =  af-CalAxf(p, xr) 
 
!This if is added to catch the max during anal. when axial force exceeds allowables 
if(abs(leftval)<abs(trval)) then  
trval=leftval 
trxx=xl 
elseif(abs(rigval)<abs(trval)) then 
trval=rigval 
trxx=xr 
endif 



 

268

 If(d < dd)Then 
  goto 20 
endif 
If(leftval == 0) Then 
        xx = xl 
        GoTo 20 
        ElseIf(rigval == 0) Then 
         xx = xr 
         GoTo 20 
    ElseIf((leftval * rigval > 0).And.((leftval - rigval).ne.0)) Then 
       ad = d * Sign(1.,leftval * p) 
          
       xl = xl + ad 
       xr = xr + ad 
          
        ElseIf((leftval * rigval < 0).or.((leftval - rigval).eq.0.)) Then 
     xr = (xl + xr) / 2. 
        d = xr - xl        
end if 
   GoTo 10 
!here add to pick up the proper xx, msit=0 is the normal and msit=1 is when exceeds  
!allowable axial load 
20 if((DABS(leftval)<DABS(rigval)).and.(DABS(leftval)<=DABS(trval))) then 
      xx = xl 
    msit=0 
    elseif((DABS(leftval)>DABS(rigval)).and.(DABS(rigval)<=DABS(trval))) 
then 
    xx=xr 
    msit=0 
 
  elseif((DABS(leftval)>=DABS(trval)).and.(DABS(rigval)>=DABS(trval))) then 
  xx=trxx 
    !To check that it is actually the case, if statement is added  
  if((dabs(trxx-xl)>dd).and.(dabs(trxx-xr)>dd))then 
   msit=1 
   else 
   msit=0 
   endif 
  endif 
if((msit==0).and.(leftval.ne.rigval)) then 
 xx=xr+rigval*(xr-xl)/(leftval-rigval) 
endif 
xres(1) = p 
xres(2) = CalMom(p, xx) 
!If added to have the NA compression depth for any case 
if(p>0) then 
xres(3) = xx 
else 



 
269

xres(3)=hdir-xx 
end if 
xres(4) = xx * p 
xres(5) = (xx - hdir + cover) * p 
xres(6) = CalAxf(p, xx) 
 
!I add this to update based on the analysisop (To be added other options also) 
if((analop==12).or.(analop==111)) then 
call hupdate(p,xx) 
endif  
End Subroutine 
 
!*************************************************************************************** 
!This is to calculate axial force-bending moment interaction of a section  
!for a specific strain of steel or concrete. 
!*************************************************************************************** 
Subroutine Interaction(ebsilon, xint) 
!MS$ATTRIBUTES DLLEXPORT :: INTERACTION 
real*8 ebsilon,phim,e,d,p,x,xint(100,4) 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
e = ebsilon 
If(e > 0) Then 
phim = (k3 * yebs + e) / (hdir - 2 * cover) 
Else 
phim = (-e + ultebs) / (hdir - 2 * cover) 
End If 
 
d = phim / 99 
do i = 1,100 
p = sign(1.,e) * (i - 1) * d 
If(p == 0) Then 
p = 0.00000000001 
End If 
 
x = e / p 
xint(i, 1) = CalMom(p, x) 
xint(i, 2) = CalAxf(p, x) 
xint(i, 3) = p 
 if(p>0) then 
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 xint(i,4) = x 
 else 
 xint(i,4)=hdir-x 
 endif 
end do 
End Subroutine 
 
 
!******************************************************************************* 
!This is to calculate the engineering axial force-bending moment  
!interaction of a section. 
!******************************************************************************* 
Subroutine EngInteraction(xint) 
!MS$ATTRIBUTES DLLEXPORT :: ENGINTERACTION 
 
real*8 phim,d,p,x,xint(100,4) 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
phim = (yebs + ebcc) / (hdir - 2 * cover) 
d = phim / 49 
do i = 1,50 
p = (i - 1) * d 
If(p == 0)Then 
p = 0.00000000001 
End If 
x = ebcc / p 
xint(i, 1) = CalMom(p, x) 
xint(i, 2) = CalAxf(p, x) 
xint(i, 3) = p 
xint(i,4)=x 
end do 
 
do i = 1,50 
p = phim - (i - 1) * d 
If(p==0) Then 
p = 0.00000000001 
End If 
x = hdir - cover - yebs / p 
xint(i + 50, 1) = CalMom(p, x) 
xint(i + 50, 2) = CalAxf(p, x) 
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xint(i + 50, 3) = p 
xint(i+50,4)=x 
end do 
End Subroutine 
 
!*************************************************************************************** 
!This is the subroutine to calculate the axial load for a specific curvature   
!and neutral axis location. 
!*************************************************************************************** 
real*8 Function CalAxf(phi, x) 
!MS$ATTRIBUTES DLLEXPORT :: CALAXF 
 
real*8 s,d 
real*8 phi,x 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 cfiber(500,3),vfiber(500,3),rebar(200,2) !Note 3rd component is the area, 
makes faster, steel can be also later 
integer*2 cflag(500),vflag(500),sflag(200,2)   !also distances may be 
added to expedite execution 
common/hfiber/cfiber,vfiber,rebar,cflag,vflag,sflag 
 
real*8 pstrain,pstress 
integer*2 flag,flag2 
common/strstate/pstrain,pstress,flag,flag2 
d = hdir / ndiv 
!clockwise phi is positive and x starts from compression side 
!compressive strain is positive 
s = 0. 
do i = 1,ndiv 
pstrain=cfiber(i,1) 
pstress=cfiber(i,2) 
flag=cflag(i) 
s = s + cfiber(i,3) * hconstr((x - (i - 0.5) * d) * phi) 
end do 
do i=1,ndiv 
pstrain=vfiber(i,1) 
pstress=vfiber(i,2) 
flag=vflag(i) 
s=s+vfiber(i,3)*hcovstr((x-(i-0.5)*d)*phi) 
end do 
 
do i = 1,nlb 
pstrain=rebar(i,1) 
pstress=rebar(i,2) 
flag=sflag(i,1) 
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flag2=sflag(i,2) 
Select Case (mstwe) 
Case (2) 
s = s + alb(i) * hstrsteel(phi * (x + xb(i) - hdir / 2)) 
Case (1) 
s = s + alb(i) * hstrsteel(phi * (x + yb(i) - hdir / 2)) 
End Select 
end do 
CalAxf = s 
End Function 
 
!************************************************************************************* 
!This is the subroutine to calculate the bending moment for a specific  
!curvature and neutral axis location. 
!************************************************************************************* 
real*8 Function CalMom(phi, x) 
!MS$ATTRIBUTES DLLEXPORT :: CALMOM 
 
real*8 phi,x 
real*8 s,d 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 cfiber(500,3),vfiber(500,3),rebar(200,2) !Note 3rd component is the area, 
makes faster, steel can be also later 
integer*2 cflag(500),vflag(500),sflag(200,2)   !also distances may be 
added to expedite execution 
common/hfiber/cfiber,vfiber,rebar,cflag,vflag,sflag 
 
real*8 pstrain,pstress 
integer*2 flag,flag2 
common/strstate/pstrain,pstress,flag,flag2 
 
d = hdir / ndiv 
s = 0. 
 
do i = 1,ndiv 
 
pstrain=cfiber(i,1) 
pstress=cfiber(i,2) 
flag=cflag(i) 
s = s + (hdir / 2 - (i - 0.5) * d)*cfiber(i,3) * hconstr((x - (i - 0.5) * d) * phi) 
end do 
do i=1,ndiv 
pstrain=vfiber(i,1) 
pstress=vfiber(i,2) 
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flag=vflag(i) 
s=s+(hdir / 2 - (i - 0.5) * d)*vfiber(i,3)*hcovstr((x-(i-0.5)*d)*phi) 
end do 
do i = 1,nlb 
pstrain=rebar(i,1) 
pstress=rebar(i,2) 
flag=sflag(i,1) 
flag2=sflag(i,2) 
Select Case (mstwe) 
Case (2) 
s = s + xb(i) * alb(i) * hstrsteel(phi * (x + xb(i) - hdir / 2)) 
Case (1) 
s = s + yb(i) * alb(i) * hstrsteel(phi * (x + yb(i) - hdir / 2)) 
End Select 
end do 
CalMom = s 
End Function 
 
!************************************************************************************** 
!This is the subroutine for monotonic stress-strain relationship of steel. 
!************************************************************************************** 
real*8 Function strsteel(strain) 
!MS$ATTRIBUTES DLLEXPORT :: STRSTEEL 
real*8 strain 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
    strsteel = es * strain 
     
      If((Abs(strain) > yebs).And.(Abs(strain) < k3 * yebs)) Then 
       
      Select Case (mshdg) 
      Case (0) 
       strsteel = fps * sign(1.,strain) 
       Case (1) 
      If(Abs(strain) < k1 * yebs) Then 
       strsteel = fps * sign(1.,strain) 
       ElseIf(Abs(strain) > k1 * yebs) Then 
      strsteel = ((es * (1 - k4) / yebs) * (Abs(strain)**2) + 2 * k2 * (-es + k4 * es) * 
Abs(strain) + es * yebs * (k4 * k1**2 - 2 * k4 * k1 * k2 + k2**2)) * (strain / Abs(strain)) 
/ (k1**2 - 2 * k1 * k2 + k2**2) 
     End If 
     End Select 
      
     ElseIf(Abs(strain) > k3 * yebs) Then 
         strsteel = 0. 



 

274

          End If 
End Function 
 
!******************************************************************************** 
!This is the subroutine for monotonic stress-strain relationship of  
!unconfined concrete. Basic parameters are provided by interface !modules. 
!******************************************************************************** 
real*8 Function covstr(strain) 
!MS$ATTRIBUTES DLLEXPORT :: COVSTR 
real*8 strain 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
real*8 ss 
If((strain > 2 * yebc).Or.(strain < 0)) Then 
covstr = 0. 
ElseIf(0.004 < 2 * yebc) Then 
If(strain < 0.004) Then 
covstr = (fpco * power * strain / yebc) / (power - 1 + (strain / yebc)**power) 
Else 
ss = (fpco * power * 0.004 / yebc) / (power - 1 + (0.004 / yebc)**power) 
covstr = ss - (ss / (2 * yebc - 0.004)) * (strain - 0.004) 
End If 
Else 
covstr = (fpco * power * strain / yebc) / (power - 1 + (strain / yebc)**power) 
End If 
End Function 
 
!****************************************************************************************** 
!This is the subroutine for monotonic stress-strain relationship of confined 
!concrete.The basic parameters are provided by the interface modules. 
!****************************************************************************************** 
real*8 Function constr(strain) 
!MS$ATTRIBUTES DLLEXPORT :: CONSTR 
real*8 strain 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
If((strain > ultebs).Or.(strain < 0)) Then 
constr = 0 
Else 
constr = (fpcc * (strain / ebcc) * r) / (r - 1 + (strain / ebcc)**r) 
End If 
End Function 
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!******************************************************************************************* 
!This is the internal subroutine for calculating the confined and unconfined  
!area of a rectangular cross section. The initial data is provided by the  
!interface modules through the common blocks. 
!******************************************************************************************* 
Subroutine areact(aco, acc) 
!MS$ATTRIBUTES DLLEXPORT :: AREACT 
real*8 aco,acc 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
if (hdir>wdir) then 
aco = 3.14159 * ((hdir - 2 * cover) ** 2) / 4 
acc = 3.14159 * hdir ** 2 / 4 - aco 
else 
aco = 3.14159 * ((wdir - 2 * cover) ** 2) / 4 
acc = 3.14159 * wdir ** 2 / 4 - aco 
endif 
End Subroutine 
 
!******************************************************************************************* 
!This is the internal subroutine for calculating the confined and unconfined  
!area of a single fiber on a circular cross section. The initial data is  
!provided by the interface modules through the common blocks. 
!******************************************************************************************* 
Subroutine areace(x, aco, acc) 
!MS$ATTRIBUTES DLLEXPORT :: AREACE 
real*8  c,d,x,aco,acc 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
c = x 
d = hdir / ndiv 
If ((c <= cover) .or. (c > (hdir - cover))) Then 
acc = d * (((hdir / 2) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2 
aco = 0 
Else  
aco = d * (((hdir / 2 - cover) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2 
acc = d * (((hdir / 2) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2 - aco 
End If 
End Subroutine 
 
!******************************************************************************************* 
!This is the internal subroutine for calculating the confined and unconfined  
!area of a circular cross section. The initial data is provided by the  
!interface modules through the common blocks. 
!******************************************************************************************* 
Subroutine arearect(aco, acc) 
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!MS$ATTRIBUTES DLLEXPORT :: AREARECT 
real*8 acc,aco 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
aco = (wdir - 2 * cover) * (hdir - 2 * cover) 
acc = wdir * hdir - aco 
End Subroutine 
 
!******************************************************************************************* 
!This is the internal subroutine for calculating the confined and unconfined  
!area of a single fiber on a rectangular cross section. The initial data is  
!provided by the interface modules through the common blocks. 
!******************************************************************************************* 
Subroutine arearec(x, aco, acc) 
!MS$ATTRIBUTES DLLEXPORT :: AREAREC 
real*8 c,d,x,aco,acc 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
c = x 
d = hdir / ndiv 
If (c <= cover .or. c > (hdir - cover)) Then 
acc = d * wdir 
aco = 0 
ElseIf (c > cover .And. c <= (hdir - cover)) Then 
aco = d * (wdir - 2 * cover) 
acc = d * wdir - aco 
End If 
End Subroutine 
 
!******************************************************************************************* 
!This is the internal subroutine for calculating the confined and unconfined  
!area of a single fiber on a hollow rectangular cross section. The initial  
!data is provided by the interface modules through the common blocks. 
!******************************************************************************************* 
Subroutine areahrec(x, aco, acc) 
!MS$ATTRIBUTES DLLEXPORT :: AREAHREC 
real*8 c,d,x,aco,acc 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
c = x 
d = hdir / ndiv 
If((c < cover).Or.(c > (hdir - cover)).And.(c <= hdir)) Then 
            acc = wdir * d 
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            aco = 0. 
            ElseIf((c>cover).And.(c<=(thic - cover)).Or.(c>(hdir-
thic+cover)).And.(c<=(hdir-cover))) Then 
               acc = 2 * d * cover 
               aco = (wdir - 2 * cover) * d 
                
               ElseIf ((c> (thic - cover)).And.(c <= thic).Or.(c > (hdir - thic)).And.(c <= (hdir 
- thic + cover))) Then 
                  acc = (wdir - 2 * thic + 4 * cover) * d 
                  aco = (2 * thic - 4 * cover) * d 
                   
                  Else 
                     acc = 4 * cover * d 
                     aco = (2 * thic - 4 * cover) * d 
                     
                     End If 
End Subroutine 
 
!******************************************************************************************* 
!This is the subroutine for calculating the confined and unconfined area of  
!a single fiber on a hollow circular cross section. The initial data is  
!provided by the interface modules through the common blocks. 
!******************************************************************************************* 
Subroutine areahce(x, aco, acc) 
!MS$ATTRIBUTES DLLEXPORT :: AREAHCE 
 
real*8 c,d,x,aco,acc 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
c = x 
d = hdir / ndiv 
If((c < cover).Or.(c > (hdir - cover))) Then 
acc = d * (((hdir / 2) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2. 
aco = 0 
ElseIf ((c >= cover).And.(c <= (thic - cover)).Or.(c >= (hdir - thic + cover)).And.(c <= 
(hdir - cover))) Then 
aco = d * (((hdir / 2 - cover) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2. 
acc = d * (((hdir / 2) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2.- aco 
ElseIf((c > (thic - cover)).Or.(c < (hdir - thic + cover))) Then 
aco = d * (((hdir / 2 - cover) ** 2 - (hdir / 2 - c) ** 2) ** 0.5 - ((hdir / 2 - thic + cover) ** 
2 - (hdir / 2 - c) ** 2) ** 0.5) * 2. 
If((c > thic).And.(c < (hdir - thic))) Then 
     acc = d * (((hdir / 2) ** 2 - (hdir / 2 - c) ** 2) ** 0.5 - ((hdir / 2 - thic) ** 2 - (hdir / 2 - 
c) ** 2) ** 0.5) * 2. - aco 
   Else 
    acc = d * (((hdir / 2) ** 2 - (hdir / 2 - c) ** 2) ** 0.5) * 2.- aco 
  End If 
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End If 
End Subroutine 
 
!******************************************************************************************* 
!This is the subroutine for calculating moment curvature for a given axial  
!load and bending moment. This subroutine utilizes the moment curvature 
!subroutine which is used for a given axial load and curvature. 
!******************************************************************************************* 
Subroutine CalCurMom(them, Axf, xres,mist,mmst) 
!MS$ATTRIBUTES DLLEXPORT :: CALCURMOM 
real*8 xres(6), xl,xr,xx,d,dd,ad,ad1,p,af,leftval,rigval,b 
real*8 them,Axf 
integer*2 mist,mmst 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
!added for updating decision 
integer*2 analop 
common/updateflag/analop 
 
 p = them 
 af = Axf 
 xl = 0. 
xr=(yebs + ebcc) / (hdir - 2 * cover) 
 d = xr - xl 
  
 !Here the 10 can be changed to get better results 
 dd = d / (ndiv/10.)!* ndiv) 
10 call CalMomCur(xl,af,xres,mist) 
 
leftval = p-xres(2) 
call CalMomCur(xr,af,xres,mist) 
 
   rigval = p-xres(2) 
If(leftval == 0) Then 
        xx = xl 
        GoTo 20 
        ElseIf(rigval == 0) Then 
         xx = xr 
         GoTo 20 
         !added to avoid stucking when reached a constant state 
    ElseIf((leftval * rigval > 0).And.((leftval - rigval).ne.0)) Then 



 

279

       ad = d * Sign(1.,leftval * (leftval - rigval)) 
       If(ad1 * ad < 0) Then 
 
  !added for cases when the input moment is more than allowable at the stage 
    mmst=1 
         xr = (xl + xr) / 2. 
       GoTo 15 
         End If 
          
       xl = xl + ad 
       xr = xr + ad 
          
       Else 
       ad1 = 0. 
     xl = (xl + xr) / 2. 
       End If 
15       d = xr - xl 
          ad1 = ad 
       If (d < dd) Then 
       xx = xl 
       GoTo 20 
       Else 
       GoTo 10 
    End If 
 
20 if((mmst==0).and.(leftval.ne.rigval)) then 
 xx=xr+rigval*(xr-xl)/(leftval-rigval) 
endif 
call CalMomCur(xx,af,xres,mist) 
 
if(analop==13) then 
 if(xres(1)>0.) then 
 call hupdate(xres(1),xres(3)) 
 else 
 call hupdate(xres(1),hdir-xres(3)) 
 endif 
endif 
 End Subroutine 
 
!***************************************************************************************** 
!This is the subroutine for calculating moment curvature for a case when 
!the axial load is proportionally variable with respect to the moment. 
!***************************************************************************************** 
Subroutine ProMomCur(phi, AxfM, xres) 
!MS$ATTRIBUTES DLLEXPORT :: PROMOMCUR 
real*8 yres,xres(6), xl,xr,xx,d,dd,ad,ad1,p,af,leftval,rigval,b 
real*8 phi,AxfM 
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real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
integer*2 analop 
common/updateflag/analop 
  
 p = phi 
 af = AxfM 
d=hdir/7.  
 if(p>=0.) then 
 xl = 0.  
 else 
 xl=hdir 
 endif 
  xr=xl+d 
 dd = d / (4.* ndiv) 
10 leftval = af*CalAxf(p,xl)-CalMom(p,xl) 
 
   rigval =af*CalAxf(p,xr)-CalMom(p,xr) 
 
If(leftval == 0) Then 
        xx = xl 
        GoTo 20 
        ElseIf(rigval == 0) Then 
         xx = xr 
         GoTo 20 
         !added to avoid stucking when reached a constant state 
    ElseIf((leftval * rigval > 0).And.((leftval - rigval).ne.0)) Then 
       ad = d * Sign(1.,leftval * (leftval - rigval)) 
       If(ad1 * ad < 0) Then 
         xr = (xl + xr) / 2. 
       GoTo 15 
         End If 
          
       xl = xl + ad 
       xr = xr + ad 
          
       Else 
       ad1 = 0. 
     xl = (xl + xr) / 2. 
       End If 
15       d = xr - xl 
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          ad1 = ad 
       If (d < dd) Then 
       xx = xl 
       GoTo 20 
       Else 
       GoTo 10  
    End If 
 
20 xres(1) = p 
xres(2) = CalMom(p, xx) 
if(p>0) then 
xres(3) = xx 
else 
xres(3)=hdir-xx 
endif 
 
xres(4) = xx * p 
xres(5) = (xx - hdir + cover) * p 
xres(6) = CalAxf(p, xx) 
if(analop==141) then 
 if(xres(1)>0.) then 
 call hupdate(xres(1),xres(3)) 
 else 
 call hupdate(xres(1),hdir-xres(3)) 
 endif 
endif 
 
End Subroutine 
 
 
!***************************************************************************************** 
!This is the internal subroutine for calculating the hysteretic response of 
!confined concrete. The data is updated in update subroutine and the  
!initial data is provided by the common blocks of data. 
!***************************************************************************************** 
real*8 Function hconstr(strain) 
!MS$ATTRIBUTES DLLEXPORT :: HCONSTR 
real*8 strain,stress,a 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
real*8 pstrain,imagstress 
integer*2 flagconyield,flag2 
common/strstate/pstrain,imagstress,flagconyield,flag2 
a=3. 



 

282

if((strain>ebcc/a).or.(pstrain>ebcc/a))then 
flagconyield=1 
endif 
stress=imagstress+(strain-pstrain)*ec 
imagstress=stress 
 
if(stress<0.) then            
stress=0. 
elseif(stress>constr(strain))then 
 stress=constr(strain) 
 imagstress=stress 
elseif((strain<ebcc/a).and.flagconyield==0) then 
stress=constr(strain) 
imagstress=stress 
endif 
pstrain=strain 
hconstr=stress 
end function hconstr 
 
 
!**************************************************************************************** 
!This is the internal subroutine for calculating the hysteretic response of 
!unconfined concrete. The data is updated in update subroutine and the  
!initial data is provided by the common blocks of data. 
!**************************************************************************************** 
real*8 Function hcovstr(strain) 
!MS$ATTRIBUTES DLLEXPORT :: HCOVSTR 
real*8 strain,stress,a 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
real*8 pstrain,imagstress 
integer*2 flagconyield,flag2 
common/strstate/pstrain,imagstress,flagconyield,flag2 
 
a=3. 
if((strain>yebc/a).or.(pstrain>yebc/a))then 
flagconyield=1 
endif 
 
stress=imagstress+(strain-pstrain)*ec 
imagstress=stress 
if(stress<0.) then  
stress=0. 
elseif(stress>covstr(strain))then 
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stress=covstr(strain) 
imagstress=stress 
elseif((strain<yebc/a).and.flagconyield==0) then 
stress=covstr(strain) 
imagstress=stress 
endif 
pstrain=strain 
hcovstr=stress 
end function hcovstr 
 
!****************************************************************************************** 
!This is the internal subroutine for calculating the hysteretic response of 
!longitudinal steel. The data is updated in update subroutine and the initial 
!data is provided by the common blocks of data. 
!****************************************************************************************** 
real*8 Function hstrsteel(strain) 
!MS$ATTRIBUTES DLLEXPORT :: HSTRSTEEL 
real*8 strain,stress,trstr,conver 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
real*8 psstrain,psstress 
integer*2 steelBreak,steelyr 
common/strstate/psstrain,psstress,steelBreak,steelyr 
 
if(abs(strain)>=k3*yebs) then 
steelBreak=1 
endif 
if(steelBreak==1)then  
stress=0. 
goto 111 
endif 
 
if((abs(psstrain)>yebs).and.(abs(strain)<abs(psstrain))) then 
steelyr=1 
endif 
if(steelyr==0) then 
stress=strsteel(strain) 
goto 111 
else 
 conver=sign(1.,psstrain) 
 psstrain=conver*psstrain 
 psstress=conver*psstress 
 strain=conver*strain 
  
 if(psstress>zarib*fps) then 
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  if(strain>psstrain) then 
  stress=psstress+es*(zarib/zar2)*(strain-psstrain) 
  elseif(strain<(psstrain-psstress/es-(zarib/2.)*fps/es))  then 
  stress=-(zarib/2.)*fps+es*(zarib/(2*zar2))*(strain-
psstrain+psstress/es+(zarib/2.)*fps/es) 
  else 
  stress=psstress+es*(strain-psstrain) 
  endif 
 elseif(psstress<-(zarib/2.)*fps) then 
  if(strain<psstrain) then 
  stress=psstress+es*(zarib/(2*zar2))*(strain-psstrain) 
  elseif(strain>(psstrain-psstress/es+zarib*fps/es)) then 
  stress=zarib*fps+es*(zarib/zar2)*(strain-psstrain+psstress/es-
zarib*fps/es) 
  else 
  stress=psstress+es*(strain-psstrain) 
  endif 
 else 
  if(strain>(psstrain-psstress/es+zarib*fps/es)) then 
  stress=zarib*fps+es*(zarib/zar2)*(strain-psstrain+psstress/es-
zarib*fps/es) 
  elseif(strain<(psstrain-psstress/es-(zarib/2.)*fps/es))  then 
  stress=-(zarib/2.)*fps+es*(zarib/(2*zar2))*(strain-
psstrain+psstress/es+(zarib/2.)*fps/es) 
  else 
  stress=psstress+es*(strain-psstrain) 
  endif 
 endif 
 
if(stress>0.9*fps) then 
 trstr=fps*(0.45+0.5*k4)+fps*(-0.45+0.5*k4)*strain/(k3*yebs) 
 if(stress>trstr) then 
 stress=trstr 
 endif 
elseif(stress<(-0.9*fps)) then 
 trstr=fps*(-0.45-0.5*k4)+fps*(-0.45+0.5*k4)*strain/(k3*yebs) 
 if(stress<trstr) then 
 stress=trstr 
 endif 
endif 
stress=conver*stress 
strain=conver*strain 
endif 
111 hstrsteel=stress 
psstrain=strain 
psstress=stress 
end function hstrsteel 
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!**************************************************************************************** 
!This is the internal subroutine for calculating the hysteretic response of 
!confined concrete for viewing. The data is updated in update subroutine  
!and the initial data is provided by the common blocks of data. 
!**************************************************************************************** 
real*8 Function dhconstr(strain) 
!MS$ATTRIBUTES DLLEXPORT :: DHCONSTR 
real*8 strain,stress,a,b 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
integer*2 steelbreak,steelyr,flagccyield,flagcvyield 
real*8 pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress 
common/dhvalues/pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress,steel
break,steelyr,flagccyield,flagcvyield 
!These a and b are to adjust the hyst curve 
a=3. 
b=1.*fpcc 
if((strain>ebcc/a).or.(pcstrain>ebcc/a))then 
flagccyield=1 
endif 
if(imagcstress>=0.) then 
 if(strain<=pcstrain) then 
  if(strain>=(pcstrain-(0.004*imagcstress/ec)**0.5)) then 
   stress=(ec/0.004)*(strain-
pcstrain+0.0632456*(imagcstress/ec)**0.5)**2 
  else 
   stress=(strain-pcstrain+(0.004*imagcstress/ec)**0.5)*ec 
  endif 
 
 else 
  if(strain<(pcstrain-imagcstress/ec+2*b/ec)) then 
  stress=(-(pcstrain**2*ec**2)+4.*imagcstress*b+ec*strain*(4.*(b**2-
b*imagcstress)**0.5-ec*strain)+2.*pcstrain*ec*(-2.*(b**2-
b*imagcstress)**0.5+ec*strain))/(4.*b) 
  else 
  stress=imagcstress+(strain-pcstrain)*ec 
  endif 
 endif 
else 
 if(strain<=(pcstrain-imagcstress/ec)) then 
 stress=imagcstress+(strain-pcstrain)*ec 
 else 
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 stress=(-((pcstrain-imagcstress/ec)**2*ec**2)+ec*strain*(4.*b-
ec*strain)+2.*(pcstrain-imagcstress/ec)*ec*(-2.*b+ec*strain))/(4.*b) 
 endif 
endif 
 
imagcstress=stress 
 
if(stress<0.) then !if(stress<-0.1*fpcc) then 
  stress=0. 
elseif(stress>constr(strain))then 
 stress=constr(strain) 
 imagcstress=stress 
elseif((strain<ebcc/a).and.flagccyield==0) then 
stress=constr(strain) 
imagcstress=stress 
endif 
pcstrain=strain 
pcstress=stress 
dhconstr=stress 
end function dhconstr 
 
 
 
!****************************************************************************************** 
!This is the subroutine for calculating the hysteretic response of  
!unconfined concrete for viewing. The data is updated in update  
!subroutine and the initial data is provided by the common blocks of data. 
!****************************************************************************************** 
real*8 Function dhcovstr(strain) 
!MS$ATTRIBUTES DLLEXPORT :: DHCOVSTR 
real*8 strain,stress,a,b 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
integer*2 steelbreak,steelyr,flagccyield,flagcvyield 
real*8 pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress 
common/dhvalues/pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress,steel
break,steelyr,flagccyield,flagcvyield 
 
a=3. 
b=1.*fpco 
if((strain>yebc/a).or.(pvstrain>yebc/a))then 
flagcvyield=1 
endif 
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if(imagvstress>=0.) then 
 if(strain<=pvstrain) then 
  if(strain>=(pvstrain-(0.004*imagvstress/ec)**0.5)) then 
   stress=(ec/0.004)*(strain-
pvstrain+0.0632456*(imagvstress/ec)**0.5)**2 
  else 
   stress=(strain-pvstrain+(0.004*imagvstress/ec)**0.5)*ec 
  endif 
 else  
  if(strain<(pvstrain-imagvstress/ec+2*b/ec)) then 
  stress=(-(pvstrain**2*ec**2)+4.*imagvstress*b+ec*strain*(4.*(b**2-
b*imagvstress)**0.5-ec*strain)+2.*pvstrain*ec*(-2.*(b**2-
b*imagvstress)**0.5+ec*strain))/(4.*b) 
  else 
  stress=imagvstress+(strain-pvstrain)*ec 
  endif 
 endif 
else 
 if(strain<=(pvstrain-imagvstress/ec)) then 
 stress=imagvstress+(strain-pvstrain)*ec 
 else 
 stress=(-((pvstrain-imagvstress/ec)**2*ec**2)+ec*strain*(4.*b-
ec*strain)+2.*(pvstrain-imagvstress/ec)*ec*(-2.*b+ec*strain))/(4.*b) 
 endif 
endif 
 
imagvstress=stress 
if(stress<0.) then  
stress=0. 
elseif(stress>covstr(strain))then 
stress=covstr(strain) 
imagvstress=stress 
elseif((strain<yebc/a).and.flagcvyield==0) then 
stress=covstr(strain) 
imagvstress=stress 
endif 
pvstrain=strain 
pvstress=stress 
dhcovstr=stress 
end function dhcovstr 
 
!****************************************************************************************** 
!This is the subroutine for calculating the hysteretic response  
!oflongitudinal steel for viewing. The data is updated in update subroutine  
!and the initial data is provided by the common blocks of data. 
!****************************************************************************************** 
real*8 Function dhstrsteel(strain) 
!MS$ATTRIBUTES DLLEXPORT :: DHSTRSTEEL 
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real*8 strain,stress,trstr,conver 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
integer*2 steelbreak,steelyr,flagccyield,flagcvyield 
real*8 pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress 
common/dhvalues/pcstrain,imagcstress,pvstrain,imagvstress,psstrain,psstress,steel
break,steelyr,flagccyield,flagcvyield 
 
if(abs(strain)>=k3*yebs) then 
steelBreak=1 
endif 
if(steelBreak==1)then  
stress=0. 
goto 111 
endif 
 
if((abs(psstrain)>yebs).and.(abs(strain)<abs(psstrain))) then 
steelyr=1 
endif 
if(steelyr==0) then 
stress=strsteel(strain) 
goto 111 
else 
 conver=sign(1.,psstrain) 
 psstrain=conver*psstrain 
 psstress=conver*psstress 
 strain=conver*strain 
 if(psstress>zarib*fps) then 
  if(strain>psstrain) then 
  stress=psstress+es*(zarib/zar2)*(strain-psstrain) 
  elseif(strain<(psstrain-psstress/es-(zarib/2.)*fps/es))  then 
  stress=-(zarib/2.)*fps+es*(zarib/(2*zar2))*(strain-
psstrain+psstress/es+(zarib/2.)*fps/es) 
  else 
  stress=psstress+es*(strain-psstrain) 
  endif 
 elseif(psstress<-(zarib/2.)*fps) then 
  if(strain<psstrain) then 
  stress=psstress+es*(zarib/(2*zar2))*(strain-psstrain) 
  elseif(strain>(psstrain-psstress/es+zarib*fps/es)) then 
  stress=zarib*fps+es*(zarib/zar2)*(strain-psstrain+psstress/es-
zarib*fps/es) 
  else 
  stress=psstress+es*(strain-psstrain) 
  endif 
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 else 
  if(strain>(psstrain-psstress/es+zarib*fps/es)) then 
  stress=zarib*fps+es*(zarib/zar2)*(strain-psstrain+psstress/es-
zarib*fps/es) 
  elseif(strain<(psstrain-psstress/es-(zarib/2.)*fps/es))  then 
  stress=-(zarib/2.)*fps+es*(zarib/(2*zar2))*(strain-
psstrain+psstress/es+(zarib/2.)*fps/es) 
  else 
  stress=psstress+es*(strain-psstrain) 
  endif 
 endif 
if(stress>0.9*fps) then 
 trstr=fps*(0.45+0.5*k4)+fps*(-0.45+0.5*k4)*strain/(k2*yebs) 
 if(stress>trstr) then 
 stress=trstr 
 endif 
elseif(stress<(-0.9*fps)) then 
 trstr=fps*(-0.45-0.5*k4)+fps*(-0.45+0.5*k4)*strain/(k2*yebs) 
 if(stress<trstr) then 
 stress=trstr 
 endif 
endif 
stress=conver*stress 
strain=conver*strain 
endif 
111 dhstrsteel=stress 
psstrain=strain 
psstress=stress 
 
end function dhstrsteel 
 
!************************************************************************************* 
!This is the subroutine for calculating the moment and curvature for a  
!specific axial load and steel or concrete strain. This subroutine uses  
!monotonic material response through the "CalMonAxF" and  
!"CalMonMom", so that the first point of any specific situation can be  
!found.  
!************************************************************************************* 
Subroutine FindPoint(ebsilon, Axf, xres,msit) 
!MS$ATTRIBUTES DLLEXPORT :: FINDPOINT 
real*8 xres(6),trval,trxx, xl,xr,xx,d,dd,ad,af,leftval,rigval 
real*8 ebsilon,Axf 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe,msit 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
integer*2 analop 
common/updateflag/analop 
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integer*2 ntime 
ntime=0 
  
 af = Axf 
 xl = hdir/2. 
  
 xr =xl+ 11.*hdir/ndiv !7.*hdir / ndiv 
 d = xr - xl 
 dd = d / ndiv 
 
select case (analop) 
 
case (14) 
101 leftval = af*CalMonAxf(ph(ebsilon,xl),xl)-CalMonMom(ph(ebsilon,xl),xl) 
 
   rigval =af*CalMonAxf(ph(ebsilon,xr),xr)-CalMonMom(ph(ebsilon,xr),xr) 
 
If(leftval == 0) Then 
        xx = xl 
        goto 30 
        ElseIf(rigval == 0) Then 
         xx = xr 
         goto 30 
    ElseIf((leftval * rigval > 0).And.((leftval - rigval).ne.0)) Then 
       ad = d * Sign(1.,leftval * (leftval - rigval)) 
       If(ad1 * ad < 0) Then 
         xr = (xl + xr) / 2. 
       GoTo 151 
         End If 
          
       xl = xl + ad 
       xr = xr + ad 
          
       Else 
       ad1 = 0. 
     xl = (xl + xr) / 2. 
       End If 
151       d = xr - xl 
          ad1 = ad 
       If (d < dd) Then 
       xx = xl 
       goto 30 
       Else 
       GoTo 101  
    End If 
 
case default 
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 trval=af-CalMonAxf(ph(ebsilon,xl), xl) 
10 leftval = af-CalMonAxf(ph(ebsilon,xl), xl) 
   rigval =  af-CalMonAxf(ph(ebsilon,xr), xr) 
ntime=ntime+1 
!This if is added to catch the maximum during analysis, when 
!axial load level exceeds allowable levels. 
if(abs(leftval)<abs(trval)) then  
trval=leftval 
trxx=xl 
elseif(abs(rigval)<abs(trval)) then 
trval=rigval 
trxx=xr 
endif 
 If(d < dd)Then 
  goto 20 
endif 
if(ntime>ndiv)then 
 xx=trxx 
 msit=1 
 goto 30 
endif 
 
If(leftval == 0) Then 
        xx = xl 
        GoTo 20 
        ElseIf(rigval == 0) Then 
         xx = xr 
         GoTo 20 
    ElseIf((leftval * rigval > 0.).And.((leftval - rigval).ne.0.)) Then 
       ad = d * Sign(1.,leftval) 
          
       xl = xl + ad 
       xr = xr + ad 
          
        ElseIf((leftval * rigval < 0).or.((leftval - rigval).eq.0.)) Then 
     xr = (xl + xr) / 2. 
        d = xr - xl        
end if 
   GoTo 10 
 
20 if((DABS(leftval)<DABS(rigval)).and.(DABS(leftval)<=DABS(trval))) then 
      xx = xl 
    msit=0 
    elseif((DABS(leftval)>DABS(rigval)).and.(DABS(rigval)<=DABS(trval))) 
then 
    xx=xr 
    msit=0 
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  elseif((DABS(leftval)>=DABS(trval)).and.(DABS(rigval)>=DABS(trval))) then 
  xx=trxx 
  if((dabs(trxx-xl)>dd).and.(dabs(trxx-xr)>dd))then 
   msit=1 
   else 
   msit=0 
   endif 
  endif 
 
end select 
30 if((msit==0).and.(leftval.ne.rigval)) then 
 xx=xr+rigval*(xr-xl)/(leftval-rigval) 
endif 
 
 xres(1) = ph(ebsilon,xx) 
xres(2) = CalMonMom(xres(1), xx) 
xres(3) = xx 
if(ebsilon>0.) then 
xres(4) = ebsilon 
xres(5) = (xx - hdir + cover) *ebsilon/xx 
else 
xres(5)=ebsilon 
xres(4)=xx*ebsilon/(xx-hdir+cover) 
endif 
xres(6) = CalMonAxf(xres(1), xx) 
 
contains 
real*8 function ph(ebsil,x) 
real*8 ebsil,x 
if(x==0.) then 
ph=1. 
goto 11 
else 
 if(ebsil>0.) then  
 ph=ebsil/x 
 else 
 ph=ebsil/(x-hdir-cover) 
 endif 
endif 
11 end function ph 
 
End Subroutine 
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!****************************************************************************** 
!Force Deflection subroutines start from here: 

!****************************************************************************** 
 

!******************************************************************************************* 
!This is the subroutine for calculating the deflection, moment for a specific  
!curvature and axial load. This subroutine utilizes different plastic hinge 
!methods. The main methods are Park and Priestley method and the  
!method proposed by Asad for USC_RC. 
!******************************************************************************************* 
Subroutine CalDefCur(phi, Axf, dres,msit) 
!MS$ATTRIBUTES DLLEXPORT :: CALDEFCUR 
real*8 dres(11),sym,syc,trm,trc,trlp,ctlp,mtlp,trstrns 
real*8 phi,Axf,lp 
integer*2 msit,mt 
 
real*8 ydata(6) !used when FindPoint and CalMomCur 
 
!Note: dres(11) is 
(Deflection,Force,PlasticHingelength,cur_top,mom_top,Cur_bot,mom,naxis,s-
strain,c-strain,cal_axf) 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
real*8 leng,dlb,lpp 
integer*2 method,unsys 
common/FDInfo/leng,dlb,lpp,method,unsys 
 
integer*2 analop 
common/updateflag/analop 
 
call FindPoint(-yebs,axf,ydata,mt) 
syc=Abs(ydata(1)) !curvature at steel yeld****All methods 
sym=Abs(ydata(2)) !Moment at steel yield******All methods 
select case (method) 
case (4) 
!(Asad Method) 
lp=lpp 
call FindPoint(yebc/2.,axf,ydata,mt) !I replaced ebcc with yebc !This will consider 
propo. or non-prop inside 
if(sym<=Abs(ydata(2))) then 
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trm=sym 
trc=syc 
else 
trm=Abs(ydata(2)) 
trc=Abs(ydata(1)) 
endif 
 select case (analop) 
  case (21,211,22) 
  call CalMomCur(Phi,Axf,ydata,mt)   
  case (24,241) 
  call ProMomCur(phi, Axf, ydata) 
 end select 
dres(2)=ydata(2)/leng 
if(Abs(ydata(2))>trm) then !When moment at cr.Sec is more than yield 
trlp=leng*(1-trm/abs(ydata(2))) 
 if(trlp>lp) then  
 lp=trlp 
 ctlp=sign(trc,phi) !curv. at top of hinge with proper directio 
 mtlp=sign(trm,phi) !Mom at top of hinge 
 else 
 mtlp=dres(2)*(leng-lp) 
 ctlp=trc*mtlp/trm 
 endif 
else 
mtlp=(ydata(2))*(leng-lp)/leng 
ctlp=trc*mtlp/trm 
endif 
!Note that pull-out can be added here 
dres(1)=ctlp*lp*(leng-lp/2.)+(Phi-ctlp)*lp*(leng-lp/3.)/2.+ctlp*(leng-lp)**2/3.  
dres(3)=lp 
dres(4)=ctlp 
dres(5)=mtlp 
case (1) 
!(Piestly and Park 
 select case (analop) 
  case (21,211,22) 
  call CalMomCur(Phi,Axf,ydata,mt)   
  case (24,241) 
  call ProMomCur(phi, Axf, ydata) 
 end select 
 dres(2)=ydata(2)/leng  
 select case (unsys) 
 case (1) 
 trlp=0.022*fps*dlb 
 case (2) 
 trlp=0.15*fps*dlb 
 end select 
 lp=0.08*leng+0.022*fps*dlb 
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if(Abs(phi)<Abs(syc)) then 
dres(1)=phi*lp*(leng+trlp-lp/2.)+phi*(leng+trlp-lp)**2/3. 
else 
dres(1)=phi*lp*(leng+trlp-lp/2.)+Sign(syc,phi)*(leng+trlp-lp)**2/3. 
endif 
dres(3)=lp 
dres(4)=sign(syc,phi) 
dres(5)=sign(sym,phi) 
case (2) 
!(Priestly and Park revised by Xiao) 
 select case (analop) 
  case (21,211,22) 
  call CalMomCur(Phi,Axf,ydata,mt)   
  case (24,241) 
  call ProMomCur(phi, Axf, ydata) 
 end select 
dres(2)=ydata(2)/leng  
 select case (unsys) 
 case (1) 
 trlp=0.15*Abs(hstrsteel(phi*(hdir-cover-ydata(3)))*dlb) 
 case (2) 
 trlp=0.022*Abs(hstrsteel(phi*(hdir-cover-ydata(3)))*dlb) 
 end select 
 lp=0.08*leng+trlp 
 
dres(1)=phi*lp*(leng+trlp-lp/2.)+Sign(syc,phi)*(leng+trlp-lp)**2/3. 
dres(3)=lp 
dres(4)=sign(syc,phi) 
dres(5)=sign(sym,phi) 
 
case (3) 
!(Xiao Revised by Asad) 
 select case (analop) 
  case (21,211,22) 
  call CalMomCur(Phi,Axf,ydata,mt)   
  case (24,241) 
  call ProMomCur(phi, Axf, ydata) 
 end select 
dres(2)=ydata(2)/leng  
  trstrns=phi*(hdir-cover-ydata(3)) 
  if(abs(trstrns)>k3*yebs) then 
  trstrns=k3*yebs 
  endif 
 select case (unsys) 
 case (1) 
 trlp=0.15*Abs(strsteel(trstrns)*dlb) 
 case (2) 
 trlp=0.022*Abs(strsteel(trstrns)*dlb) 
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 end select 
 lp=0.08*leng+trlp 
dres(1)=phi*lp*(leng+trlp-lp/2.)+Sign(syc,phi)*Abs(ydata(2))*(leng-lp)*(leng+trlp-
lp)**2/(3.*leng*sym) 
dres(3)=lp 
dres(4)=sign(syc,phi) 
dres(5)=sign(sym,phi) 
end select 
dres(6)=ydata(1) 
dres(7)=ydata(2) 
dres(8)=ydata(3) 
dres(9)=ydata(4) 
dres(10)=ydata(5) 
dres(11)=ydata(6) 
msit=mt 
select case (analop) 
case (21,24) 
lpp=lp 
end select 
end subroutine CalDefCur 
 
!****************************************************************************************** 
!This is the subroutine for calculating the moment, curvature and the  
!pertinent information for a specific deflection and axial load. This  
!subroutine utilizes different plastic hinge methods. The main methods are  
!Park and Priestley method and the method proposed by Asad for  
!USC_RC. 
!****************************************************************************************** 
Subroutine CalForDef(def, Axf, dres,mt) 
!MS$ATTRIBUTES DLLEXPORT :: CALFORDEF 
real*8 dres(11),p,af,phi,trlp,syc,trdefl,d,ad,ad1,leftval,rigval,xl,xr 
real*8 def,Axf,lp 
integer*2 mt 
 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
 
integer*2 analop 
common/updateflag/analop 
  
real*8 leng,dlb,lpp 
integer*2 method,unsys 
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common/FDInfo/leng,dlb,lpp,method,unsys 
real*8 ydata(6) 
 
select case (method) 
case(1) 
p = def 
af = Axf 
call FindPoint(-yebs,af,ydata,mt) 
syc=Abs(ydata(1))  
 
select case (unsys) 
case (1) 
 lp=0.08*leng+0.022*fps*dlb 
 trlp=0.022*fps*dlb 
case (2) 
 lp=0.08*leng+0.15*fps*dlb 
 trlp=0.15*fps*dlb 
end select 
trdefl=syc*lp*(leng+trlp-lp/2.)+syc*(leng+trlp-lp)**2/3. 
if(Abs(p)<=trdefl) then 
phi=syc*p/trdefl 
syc=(leng+trlp-lp)*syc/(leng+trlp) 
else 
phi=(p-sign(syc*(leng+trlp-lp)**2/3.,p))/(lp*(leng+trlp-lp/2.)) 
endif 
 select case (analop) 
  case (21,211,22) 
  call CalMomCur(Phi,Af,ydata,mt)   
  case (24,241) 
  call ProMomCur(phi, Af, ydata) 
 end select 
dres(1)=p 
dres(2)=ydata(2)/leng 
dres(3)=lp 
dres(4)=syc 
dres(5)=ydata(2)*(leng+trlp-lp)/(leng+trlp) 
dres(6)=phi 
dres(7)=ydata(2) 
dres(8)=ydata(3) 
dres(9)=ydata(4) 
dres(10)=ydata(5) 
dres(11)=ydata(6) 
case default 
p = def 
af = Axf 
d=5*(yebs)/((hdir))  
 xl = d  
  xr=xl+d 
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dd = d / 50. 
10 call CalDefCur(xl,af,dres,mt) 
leftval =p-dres(1) 
call CalDefCur(xr,af,dres,mt) 
rigval =p-dres(1) 
If(leftval == 0) Then 
        xx = xl 
        GoTo 20 
        ElseIf(rigval == 0) Then 
         xx = xr 
         GoTo 20 
    ElseIf((leftval * rigval > 0).And.((leftval - rigval).ne.0)) Then 
       ad = d * Sign(1.,leftval * (leftval - rigval)) 
       If(ad1 * ad < 0) Then 
         xr = (xl + xr) / 2. 
       GoTo 15 
         End If 
       xl = xl + ad 
      xr = xr + ad      
       Else 
       ad1 = 0. 
     xl = (xl + xr) / 2. 
       End If 
15       d = xr - xl 
          ad1 = ad 
       If (d < dd) Then 
       xx = xl 
       GoTo 20 
       Else 
       GoTo 10  
    End If 
end select 
20 if(dres(6)>0.) then 
 call hupdate(dres(6),dres(8)) 
 else 
 call hupdate(dres(6),hdir-dres(8)) 
 endif 
lpp=dres(3) 
 end subroutine 
 
!*************************************************************************************** 
!This is the subroutine for calculating the deflection for a specific force  
!and axial load. This subroutine utilizes different plastic hinge methods.  
!The main methods are Park and Priestley method and the method  
!proposed by Asad for USC_RC. 
!*************************************************************************************** 
Subroutine CalDefFor(for, Axf, dres,mt,mst) 
!MS$ATTRIBUTES DLLEXPORT :: CALDEFFOR 
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real*8 dres(11),p,af,ydata(6) 
real*8 for,Axf 
integer*2 mt,mst 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
real*8 es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,power 
integer*2 mshdg 
common/material/es,fps,yebs,k1,k2,k3,k4,zarib,zar2,ec,fpco,fpcc,yebc,ebcc,ultebs,r,
power,mshdg 
real*8 leng,dlb,lp 
integer*2 method,unsys 
common/FDInfo/leng,dlb,lp,method,unsys 
integer*2 analop 
common/updateflag/analop 
for=for*leng 
call CalCurMom(for, Axf, ydata,mt,mst) 
call CalDefCur(ydata(1), Axf, dres,mt) 
20 if(dres(6)>0.) then 
 call hupdate(dres(6),dres(8)) 
 else 
 call hupdate(dres(6),hdir-dres(8)) 
 endif 
end subroutine CalDefFor 
!This two functions are needed to be used when we want to get stuff without  
!hysteresis for plastic hinge purposes, and also FindPoint for Monotonic 
real*8 Function CalMonAxf(phi, x) 
real*8 s,d 
real*8 phi,x 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
real*8 cfiber(500,3),vfiber(500,3),rebar(200,2) !Note 3rd component is the area, 
makes faster, steel can be also later 
integer*2 cflag(500),vflag(500),sflag(200,2) !also distances may be added to 
expedite execution 
common/hfiber/cfiber,vfiber,rebar,cflag,vflag,sflag 
d = hdir / ndiv 
!clockwise phi is positive and x starts from compression side 
!compressive strain is positive 
s = 0. 
do i = 1,ndiv 
s = s + cfiber(i,3) * constr((x - (i - 0.5) * d) * phi) 
end do 
do i=1,ndiv 
s=s+vfiber(i,3)*covstr((x-(i-0.5)*d)*phi) 
end do 
do i = 1,nlb 
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Select Case (mstwe) 
Case (2) 
s = s + alb(i) * strsteel(phi * (x + xb(i) - hdir / 2)) 
Case (1) 
s = s + alb(i) * strsteel(phi * (x + yb(i) - hdir / 2)) 
End Select 
end do 
CalMonAxf = s 
End Function 
real*8 Function CalMonMom(phi, x) 
real*8 phi,x 
real*8 s,d 
real*8 hdir,wdir,thic,cover,alb(200),xb(200),yb(200) 
integer*2 ndiv,nlb,m,mstwe 
common /section/hdir,wdir,thic,cover,alb,xb,yb,ndiv,nlb,m,mstwe 
real*8 cfiber(500,3),vfiber(500,3),rebar(200,2) !Note 3rd component is the area, 
makes faster, steel can be also later 
integer*2 cflag(500),vflag(500),sflag(200,2)   !also distances may be 
added to expedite execution 
common/hfiber/cfiber,vfiber,rebar,cflag,vflag,sflag 
d = hdir / ndiv 
s = 0. 
do i = 1,ndiv 
s = s + (hdir / 2 - (i - 0.5) * d)*cfiber(i,3) * constr((x - (i - 0.5) * d) * phi) 
end do 
do i=1,ndiv 
s=s+(hdir / 2 - (i - 0.5) * d)*vfiber(i,3)*covstr((x-(i-0.5)*d)*phi) 
end do 
do i = 1,nlb 
Select Case (mstwe) 
Case (2) 
s = s + xb(i) * alb(i) * strsteel(phi * (x + xb(i) - hdir / 2)) 
Case (1) 
s = s + yb(i) * alb(i) * strsteel(phi * (x + yb(i) - hdir / 2)) 
End Select 
end do 
CalMonMom = s 
End Function 
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Multispring Model for Moment-Curvature Analysis of Circular Reinforced 
Concrete Columns 

 

 

ABSTRACT 
 
A very simple multispring model is to be developed to simulate the nonlinear (elasto-plastic) 

stiffness- and strength-degrading hysteretic behavior of RC members with circular sections 

subjected to a combination of dynamic axial force and bilateral dynamic* bending moment. This 

report is a brief description of the first step of the research, in which a multispring model is 

proposed to replace a circular RC section. In this step, the model is scaled to have a moment-

curvature behavior very close to the results of the fiber model solution of the section, for known 

material properties (which may be considered as a kind of finite element analysis for the 

moment-curvature behavior of the RC sections). In subsequent steps, the model will be applied 

to simulate the nonlinear degrading hysteretic response of an RC circular section subjected to 

combined axial force bilateral moment, which in turn can be used to predict the flexural 

deformation of an RC member under the specified conditions. The validity of the model will be 

investigated by comparing it with the results of a sophisticated analysis and also with 

experimental data from ongoing tests on RC columns with circular sections subjected to axial 

force and bending moment. 

INTRODUCTION 
 
The moment-curvature characteristics of a section are necessary to obtain the rotational stiffness 

or, in general, the stiffness matrix of a member, which in turn is essential to analyze the behavior 

of an RC structure in which the nonlinear degrading property of the materials should be taken 

into account. This requires a great deal of computational effort and time. Getting precise 

analytical results for the moment-curvature relationship of an RC circular section with a 

nonlinear degrading material property requires sophisticated analytical methods. The finite 

_____________________________________________________________________________ 

*The bending moment and direction are both dynamic, meaning that the components of the bending moment are 
independently dynamic. 
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element method is the most sophisticated but has the deficiency of requiring a great deal of 

computational effort.  

 Zeris and Mahin (1991) proposed a kind of finite element model for the analysis of the 

nonlinear behavior of RC columns under biaxial excitation. Their formulation accounts for most 

aspects of axial-flexural behavior. 

 

  

Figure 1  Fiber model example, for division 
                of cross section 

Figure 2  Concrete and steel springs in a  
                 multispring model 

 

The section is divided into some small elements, which may be considered as the cross 

section of the fibers making the column. Under the assumption that plane remains plane, the 

axial deformation of each fiber is formulated, which in turn provides the axial-flexural behavior 

of the section. A sample section with the mesh is shown in Figure 1. The finer the mesh, the 

more precise the results. Again, the amount of computational effort to implement the problem is 

the main deficiency.  

Lai et al. (1984) developed an analytical model to simulate the hysteretic and stiffness 

degrading behavior of RC members subjected to axial load and biaxial bending interaction. The 

model separates the member into two inelastic elements. Each inelastic element, composed of 

individual spring elements, simulates the inelastic effects of the member as well as the 

cumulative slip of the anchored bars in the beam-column joint. The formulation of the spring 

model is based only on the static equilibrium of the cross section according to the current ACI 

Code. The model does not provide any information about the moment-curvature of the section 

and works only for modeling the end parts of the element. Figure 2 is a sample of the model with 

the springs. The area of the concrete springs is assigned based on the current axial force and 

bending moment, evaluated according to the ACI stress block concept, and is variable in each 

step. Therefore in each time increment during the analysis, the spring area should be updated in 

addition to the material property. If the section is not symmetric, an approximation is applied by 
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making an average between the scaled values for the concrete springs in the x and y directions. 

The model cannot be applied for moment-curvature purpose.  

Li et al. (1988) proposed a practical multispring model to simulate the behavior of a 

section subjected to varying axial load and bilateral bending moment. The model is used mainly 

to model the nonlinear behavior of the end parts, but it still can be used to model the moment-

curvature of the section. Getting a reasonable result requires a large number of springs, which are 

usually located at the center of the corresponding replaced parts of the section. It is actually a 

kind of the aforesaid fiber model with the same computational deficiency. To overcome this 

problem, the section is replaced with a comparatively small number of concrete-steel springs. 

The model is scaled so that the moment-curvature of the section for any axial load is well 

simulated by the model; therefore, the overall stiffness matrix of the element is more easily 

computed at any stage compared with other methods.  
 

PROPOSED MODEL 
 
Basic Idea  
 
The main idea is to have a very simple model consisting of a small number of springs for the 

section so that the moment-curvature curve derived by using the model is close to the one 

derived by using the fiber model (as a benchmark) for different axial loads. Therefore, the 

resulting flexural deflection for a beam or column subjected to an axial force and a bilateral 

moment is the same using either the fiber or multispring models in modeling the section. The 

moment-curvature curve of a concrete section always passes through a yielding region, the first 

point of which may be considered to correspond to the yield of the first longitudinal steel bar. If 

the moment-curvature curves of the fiber and multispring models have the same yield points for 

a specific axial force, it means that at the same curvature and moment the yielding process starts. 

Therefore the moment-curvature curves will approximately match in the linear part and will be 

close beyond the first yield. In addition, if the two curves match in a second or third point, they 

are more precisely close. 
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Figure 3  Typical moment-curvature curves, using fiber model and multispring model 
 

Figure 3 shows a typical moment-curvature curve for a section. The solid curve 

represents the fiber model and the dotted curve the multispring model. Points (1) and (2) 

represent the first yield and the second yield points, respectively, of the multispring model for a 

certain axial load for which the moment-curvature curves have been evaluated.  To have close 

yield points for the two models, for different axial forces we consider the axial force bending 

moment interaction curves for the two models at the first yield, and minimize the difference 

between the axial forces and bending moments for different curvatures. To do this minimization, 

the parameters are chosen based on the configuration of the multispring model evaluated through 

the aforesaid minimization. We can apply the same procedure of minimization to another 

situation, such as having the second yield point of the two moment-curvature curves close, by 

introducing new parameters, as will be shown in the two-layer model. Having all the parameters, 

we can construct the model so that the moment-curvature curves for the two models for different 

axial loads are close. This minimization procedure is done based on the configuration of the 

multispring model and also the material properties. From a mathematical standpoint, it can be 

shown that the procedure is practical and realistic considering the continuity of the stress-strain 

curve of the concrete and its first derivative with respect to strain, at the range where they are 

defined, and also having a single maximum stress in the stress-strain relationship of confined or 

unconfined concrete. 

General Model 

The configuration of the multispring model is different if the concrete and steel springs are 

combined (except for the concrete spring at the center, which is always only concrete) or 
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separated, and also if we have two parameters (minimizing for the first yield), or four parameters 

(minimizing for both the first yield and the maximum moment). Each selection has its 

advantages and disadvantages. Figure 4 and Figure 5 show four possible configurations of the 

model when concrete and steel springs are combined or separated. Figure 4 shows the case in 

which the concrete and steel springs are combined. On the left side of the figure one layer of 

springs and two parameters a and b are to be determined. However, on the right side two layers 

of springs and 4 parameters a, b, c, and d, are to be determined. In both configurations: 

 N: Number of total springs (a combined spring counts as one spring) 

R: Radius of the confined concrete core 

 As: Total area of the longitudinal steel bars in the section 

In the first configuration, with 2 parameters: 

a is the ratio of the radius of the circle on which the center of the combined concrete-steel 

springs are located, to R, and b is the ratio of the radius of the central concrete spring to R. 

Therefore:  

 2
1 ( )cA bRπ=   Area of the central pure concrete spring 

 
2 2

2
(1 )
( 1)c

b RA
N

π −
=

−
 Area of all other concrete springs 

 /( 1)ssp sA A N= −  Area of the steel spring 

In the second configuration, with 4 parameters: 

 a is the ratio of the radius of the circle on which the centers of the concrete springs of the 

outer layer are located to R.  

 b is the ratio of the radius of the circle on which the centers of the concrete springs of the 

second layer are located to R. 

 c is the ratio of the radius of the central concrete spring to R.  

 d is a number between zero and one, which determines the ratio of the area of the inner 

layer concrete springs to the total area of the outer and inner layer concrete springs. 

Therefore: 

 2
1 ( )cA cRπ=    Area of the central concrete spring 

 
2 2

2
(1 )

[( 1) / 2]c
d c RA

N
π −

=
−

  Area of the inner layer concrete springs 
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2 2

2
(1 ) (1 )

[( 1) / 2]c
d c RA
N
π− −

=
−

 Area of the outer layer concrete springs 

 /[( 1) / 2]ssp sA A N= −   Area of the steel springs, which are only on the outer layer 

The parameters to be determined are a and b in the first configuration, and a, b , c, and d 

in the second.. 

 

 

Figure 4 Combined one-layer multispring model, n=9, (left), and two-layer combined 
multispring model, n=9 

 

 
 

Figure 5 Uncombined one-layer multispring model, n=9 (left), and two-layer multispring 
model, n=9 
 

 

The Model Used Here 

The multispring model used here to demonstrate the proposed model is of the first configuration 

type with two parameters, as shown in Figure 4 (left). It consists of 9 concrete-steel springs, 
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which will replace the section. The number of the springs may be chosen according to the 

problem but, as will be shown, increasing the number of the springs beyond a certain level has a 

very negligible effect on the results and also may violate the basic purpose of the modeling, 

which is to simplify the section from the computational standpoint. An incidental fact is that 

instead of having concrete-steel springs, which means that a specific spring consists of both the 

designated amount of concrete and steel, steel and concrete springs may be considered in 

different locations. These two methods have their own advantages and disadvantages, which will 

be studied during this research. For the illustration purposes of this report, the concrete and steel 

springs are considered to be at the same location or, in other words, concrete-steel springs, 

except for the spring, at the center of the section, which is concrete only, in either method. Either 

way, keeping the model as simple as possible was a main goal so that the method is more 

efficient compared to others such as the fiber model analysis or other multispring models in 

which a greater number of springs replace the section. 

 

Material Properties 
 
The procedure is applicable for any reasonable model for material properties. For the purpose of 

demonstration, the material properties considered here are as follows: 

(a) Steel is assumed to have a bilinear stress-strain relationship, with a yield stress = 60 ksi 

and modulus of elasticity = 29000 ksi.  

(b) The confined concrete is assumed to behave according to the model proposed by Mander 

et al. In this model, '
1
cc

c r
f xrf

r x
=

− +
, where 'ccf  is the compressive strength of confined concrete 

and c

cc

x ε
ε

= , where cε  is the longitudinal compressive concrete strain and  

'[1 5( 1)]
'
cc

cc co
co

f
f

ε ε= + − , 'cof  and coε are the unconfined concrete strength and corresponding 

strain, which is generally taken as 0.002, and 
sec

c

c

Er
E E

=
−

, where 5,000 'c coE f MPa= , is the 

tangent modulus of elasticity of the concrete (1 MPa=145psi) and sec
'cc

cc

fE
ε

= . 'ccf  , is 
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calculated according to the longitudinal and transverse (confinement) reinforcement as described 

in the corresponding reference. 

(c) Regarding material properties, the factors affecting the result may be stated as: 

 Es: modulus of elasticity of steel 

 f’
c: compressive strength of concrete 

 ρcc: ratio of area of longitudinal reinforcement to area of core of section 

 ρs: ratio of the volume of transverse confining steel to the volume of confined 

concrete core 

 

Number of Springs 
 
The number of springs used for the model in this report is taken to be 9, but others may be used 

as long as the intended simplicity of the model is not violated from the computational standpoint.  

The number of springs may be considered different in two pre- and post-minimization stages. 

The number of springs is taken to be a large number, which makes the section to be composed of 

a ring with radius aR, measured from the center line of the ring as shown in Figure 4 and Figure 

5. So the parameters are evaluated independent of the number of springs. The reason is that for 

any finite number of springs, there are two distinct directions along which the most distinct 

behaviors are observed, shown in Figure 6. For any reasonable number of springs, the evaluated 

parameters along these two distinct directions are on the two different sides of the evaluated 

parameters when using a large number of springs or, i.e., the ring model. As a numeric example, 

for the section shown in Figure 9, and for N=9, the parameters are evaluated as follows: 

 Direction 1:   a=0.912   b=0.495 

 Direction 2:   a=0.868   b=0.319 

While the parameters evaluated by the ring model (for N=100) are: 

A=0.882   b=0.399 
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Figure 6 Two distinct directions for multispring model (1 and 2) and the average direction 
(3) 

 
 
 Therefore, to evaluate the parameters the ring model is used, or a large number for N is 

selected. The evaluated parameters work for any number of springs and the number of springs is 

thus a matter of precision for the output results. However, N has a very small effect beyond a 

certain number. For simplicity and reasonably precise results, we take N=9, as shown by 

investigations. 

 
 
Figure 7 Axial force bending moment interaction curves, at the first tensile yield of steel, 

for fiber model (solid curve) and multispring model (dotted curve), using the 
evaluated parameters a and b 
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Computation Method 
 
To get the closest result for the moment curvature of the model to that of the fiber model, 

considered as a benchmark, for different axial forces, the axial force bending moment interaction 

curve of the section, for the multispring and fiber models at the first yield of the tensile steel, the 

difference between the axial forces of the two models and also the difference between their 

bending moments at the first yield for different curvatures has been minimized.  This means that 

for a specific axial force, the two models reach the first yield at the same curvature and moment.  

The first yield for the fiber model is defined to be the first yield of steel, which in turn is when 

the strain of the fiber on the circumference of the confined concrete circle reaches the yield strain 

of steel. The first yield of the spring model is also defined to be when the strain at a point with 

the same distance from center reaches the yield strain of steel.  

 Figure 7 shows a portion of the axial force bending moment interaction curve of the 

section when the tensile strain is fixed at the yield strain of steel. Details of the section used here 

are shown in Figure 9. The fiber model is used to evaluate the interaction curve shown by the 

solid curve, while the multispring model is used to evaluate the interaction curve of the section 

shown by the dotted curve.  Parameters a and b have been determined by the aforesaid 

minimization procedure. These parameters are evaluated such that the two curves are as close as 

possible to each other. This may be done through minimizing the mean square error of the axial 

force and bending moment of the interaction curve of the multispring model compared to the 

fiber model as a benchmark, within a range of curvatures. The range of curvatures for this 

process is chosen to be from the point where the axial force is zero to the curvature where we 

have maximum bending moment for the fiber model.  A brief mathematical description of the 

problem is as follows: 

As shown in Figure 8, the strain may be calculated as: (2 ) yR xε φ ε= − −  at each point of 

the section. Then, the axial force and bending moment at the first yield for the fiber model may 

be computed as follows: 
2

2

0

2 ' [(2 ) ]. 2
R

c cc yP f R x Rx x dxφ ε= − − −∫        (A1.1) 

 where  Pc  is the axial force due to concrete. 

0

2 [ (1 ( )) ]. . .
2

s
st st y

AP f R Cos R d
R

π

θ φ ε θ
π

= + −∫       (A1.2) 
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where Pst  is the axial force due to steel. 
f

c stP P P= +             (A1.3) 

where Pf is the total axial force for a specific curvature, evaluated for the fiber model. 
2

2

0

2 ' [(2 ) ]. 2 .( )
R

c cc yM f R x Rx x R x dxφ ε= − − − −∫     (A1.4) 

0

2 [ (1 ( )) ]. . . . ( ).
2

s
st st y

AM f R Cos R R Cos d
R

π

θ φ ε θ θ
π

= + −∫    (A1.5) 

M f=Mc+Mst    is the total moment for the curvature evaluated for the fiber model, where Mc  is 

the moment due to concrete and Mst is the moment due to steel, respectively, which are functions 

of the specific curvature at which each is evaluated. Now, we evaluate the axial force and 

bending moment for the ring model: 
2 2

0

2 2

(1 )2 { [ (1 ( )) ]
2

[ (1 ( )) ] } [ ]
2
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cc y

s
st y cc y

b RP f R aCos

Af R aCos d f R b R

π πθ φ ε
π

θ φ ε θ φ ε π
π

−
= + −

+ + − + −

∫
   (A1.6) 

2 2
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2

[ (1 ( )) ] }
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s
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π πθ θ φ ε
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θ φ ε θ
π

−
= + −

+ + −

∫

   (A1.7) 

where Pms and Mms are the axial force and bending moment of the ring model, respectively, and 

are functions of the curvature. The parameters a and b are present here and will be evaluated 

during further steps. Now, we define the function: 
max

min

2 2( , ) {[ ( ) ( )] [ ( ) ( )] }f ms f msfun a b P P M M d
φ

φ

φ φ φ φ φ= − + −∫     (A1.8)     

where φmin and φmax are the lower and upper limits of integration, and correspond to the curvature 

where we have zero axial force, and where the moment is maximum for the fiber model. Then, 

solving the equations: 

( , ) 0fun a b
a

∂
=

∂
,  and    ( , ) 0fun a b

b
∂

=
∂

      (A1.9) 
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will give the parameters a and b , which minimize the square difference of the axial forces and 

bending moments of fiber and ring models, in the range of the aforesaid curvatures. Since the 

stress-strain relationship curves of steel and concrete are continuous where defined, fun(a,b), is a 

function of the parameters, which can be minimized in terms of the parameters. 

  
 

 

Figure 8  Ring model and corresponding strains for a specific curvature 
 

Section: 
 
The sections used here are shown in Figure 9. For the first section, ρcc is 0.031 and ρs is 0.005. 

For the given conditions and using Mander’s model for confined concrete, the compressive 

strength of confined concrete, f’cc, is 5.898 ksi (cover concrete strength is 5.0 ksi) and the 

corresponding strain for concrete, εcc, is 0.0045. For the second section, which is a typical 

Caltrans column section, ρcc is 0.023 and ρs is 0.0051. For the given conditions, and using 

Mander’s model for confined concrete, f’cc,  is 4.17446 ksi (cover concrete strength is 3.25 

ksi).and εcc is 0.004587.  

 

Figure 9 Details of the section used in this report: one, diameter=24″, cover concrete 
thickness= 1.5″, number of longitudinal bars=24, size=6, size of transverse 
bars=3, location=4″ c/c, and for two, the corresponding numbers are: 48″, 2″, 23, 
11, 4, 3.5″, respectively 
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Using Model for Engineering Solution 
 
Although the multispring model is provided to simulate the moment-curvature of a RC circular 

section, as the first step toward simulating the nonlinear stiffness and strength-degrading 

hysteretic response of an RC element, it may be used to provide engineering solutions for the 

moment-curvature and axial force bending moment interaction of a circular section. The 

following briefly describes the steps for getting the required data. 

Axial Force Bending Moment Interaction 
 
Having already determined the parameters a and b by the aforesaid method, or selected 

parameters a table providing the initial data, the interaction of the axial force and bending 

moment for a certain condition, e.g., a specific strain in concrete, may easily be evaluated. For 

example, if the interaction is to be evaluated for a strain of concrete, εcm, at the surface of the 

section: 

con stP P P= +          (A1.10) 

where Ncon is the axial force due to concrete and Nst is the axial force due to steel.  

And: 

Pcon=
1

' [ ]
N

i
con cc i

i
A f ε

=
∑ , and 

1

1
[ ]

N

st st st i
i

P A f ε
−

=

=∑     (A1.11) 

Where N is the number of springs: 

 i
conA  is the area of the ith concrete spring 

Ast is the area of the ith  steel spring 

 fst [εi]is the steel stress at a strain equal to εi based on the material model  

f’cc[εi] is the concrete stress at εi  based on  the material model 

{ }i cm Rε ε φ= −  for the central spring and 2{ [ ( )] }
1i cm
iR aRCos

N
πε ε φ= − −
−

 for  all other springs, 

and φ is a curvature for which we calculate the axial force and bending moment. By changing the 

curvature, we may calculate different points of the axial force bending moment interaction curve. 

Similarly: 
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con stM M M= +          (A1.12) 

where Mcon is the bending moment due to concrete and Mst is the bending moment due to steel. 

And: 

Mcon=
1

1

2' [ ]{ ( )}
1

N
i
con cc i

i

iA f aRCos
N
πε

−

= −∑  and      (A1.13) 

1

2[ ]{ ( )}
1

N

st st st i
i

iM A f aRCos
N
πε

=

=
−∑       (A1.14) 

with the same conditions already stated above. 

 

Figure 10  Numerical example 
 

Moment Curvature 
 
To get the moment-curvature curve for a specific axial force, by assuming a bilinear moment-

curvature curve with the same procedure as above, we calculate the interaction curve (sample 

points represent the curve) at the first yield of steel, and then for a specific axial force, we can 

get the corresponding curvature and moment, and the moment-curvature curve may be plotted. 

For a trilinear curve, we can get the interaction curve for another situation, such as the second 

yield of the multispring model, and pick up the corresponding curvature and moment for the 

axial force, and then plot the moment-curvature curve of the section. 
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Numerical Example 
 
As a numerical example, we used a typical Caltrans column, with the above details. For this 

section, the evaluated parameters are: a=0.875,and b=0.3733, and using the one-layer model 

with mixed steel and concrete springs. (So the model is composed of 9 springs, of which one is 

pure concrete at the center.) For calculation, we may choose any direction, e.g., 1,2, or 3 as 

already shown, but for simplicity, we chose direction 1 and evaluated the interaction curve when 

the concrete strain was equal to εcc .The concrete stress-strain relationship curve based on the 

Mander model and the section specifications is calculated to be: 

1.360796

0.814127281( )
0.0002372ccf εε

ε
+

=
+

 

and the concrete and steel spring areas are: 
2

1 ( )cA bRπ=  Area of the central pure concrete spring 

2
1 (0.37328 21.75) 207.08cA π= × = , 

2 2

2
(1 )
( 1)c

b RA
N

π −
=

−
  Area of other concrete springs  

2 2

2
(1 0.37328 )21.75 159.886

(9 1)cA π −
= =

−
 

/( 1)ssp sA A N= −  Area of the steel spring 

 34.15255 /(9 1) 4.26907sspA = − =  

Using the aforesaid relations and plugging in the corresponding data, we get the following 

results: 

 For case (1):     ϕ=0, P=8253.11 kips, M=0 

 For case (2)      ϕ=0.000105455, P=6387.46 kips, M=25774.86 kip-inch 

 For case (3)      ϕ=0.000153018, P=4018.82 kips, M=49857.08 kip-inch 

For the case when the axial force is equal to zero, ϕ=0.000464854, P=0 kips, M= 

40118.46 kip-inch 

For a curvature 1.5 times the curvature where axial force is zero, ϕ=0.00069728, P=-

39.63 kips, M=35332.57 kip-inch 

The corresponding axial forces and bending moments for the fiber model are as follows: 

 For case (1):     ϕ=0, P=8253.11 kips, M=0 

 For case (2)      ϕ=0.000105455, P=6505.37 kips, M=23665.62 kip-inch 
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 For case (3)      ϕ=0.000153018, P=3992.58 kips, M=49136.43 kip-inch 

 For the case when the axial force is equal to zero, ϕ=0.000464854, P=0.004 kips, 

M=36238.11 kip-inch. 
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Figure 11 Comparing the results for axial force bending moment interaction from 

multispring model in three different directions with fiber model 
 

For a curvature 1.5 times the curvature where the axial force is zero, ϕ=0.00069728, P=-

588.82 kips, M=27936.48 kip-inch. We can see the results are close for the multispring model 

and the fiber model. Figure 11 shows the graphs comparing the results in the three different 

directions.  
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Model Verification 

To verify the multispring model, the moment-curvature curve of the model and the benchmark 

fiber model for different axial forces in the two distinct directions and the average direction (see 

Figure 6) are compared. The axial forces are the ultimate balanced axial force*, half of this force, 

and zero. The figures starting on the next page show the moment-curvature curves in three 

different directions for the maximum, half of the maximum, and zero axial force. The dotted 

curve in each figure represents the multispring model’s curve, and the solid curve is the moment-

curvature curve of the fiber model. The curves are close for different axial loads and in different 

directions. Also, when the interaction curves of the multispring model and the fiber model 

solution in different directions are compared, shown in Figure 11, again the curves are close. The 

small difference seen between these two curves is because the yield strain is assumed to be at the 

same distance with respect to the center for both models, which is necessary for the moment-

curvature curves to match better. The section used here is a typical Caltrans column.  
 

 

_____________________________________________________________________________ 
* The axial force corresponding to the maximum bending moment in the interaction curve for the first yield of steel 
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Moment-Curvature of the Caltrans Typical 
Column, by Fiber Model and MS Model in 
direction 2 with axial force equal to zero
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