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ABSTRACT 

Prediction of the performance of structures during earthquakes requires accurate modeling of the 

geotechnical components of soil-structure systems.  Geotechnical performance is strongly de-

pendent on the properties of the soil beneath and adjacent to the structure of interest.  These soil 

properties can be described by using deterministic and probabilistic models.  Deterministic mod-

els typically use a simple discrete descriptor for the parameter of interest.  Probabilistic models 

account for uncertainty in soil properties by describing those properties by using discrete statisti-

cal descriptors or probability distribution functions.   

This report describes sources and types of uncertainty in geotechnical engineering prac-

tice, and introduces the basic concepts and terminology of the theory of probability.  Statistical 

parameters and the probability distributions most commonly used to describe geotechnical pa-

rameters are reviewed.  The report then presents tabulated statistical parameters for soil proper-

ties that have been reported in the literature; both laboratory and field-measured parameters de-

scribing moisture-density, plasticity, strength, and compressibility characteristics are presented.  

The theory of regionalized variables, including concepts of autocorrelation, variograms, and sta-

tionarity are presented, along with tabulated values of parameters describing spatial variability 

that have been reported in the literature.  Finally, procedures and tools for estimation and simula-

tion of spatially variable soil properties are presented. 
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1 Introduction   

Prediction of the performance of structures during earthquakes requires accurate modeling of the 

geotechnical components of soil-structure systems.  Geotechnical performance is strongly de-

pendent on the properties of the soil beneath and adjacent to the structure of interest.  These soil 

properties can be described using deterministic and/or probabilistic models.  Deterministic mod-

els typically use a single discrete descriptor for the parameter of interest.  Probabilistic models 

describe parameters by using discrete statistical descriptors or probability distribution (density) 

functions.  The spatial variation of the properties can be described by using stochastic interpolation 

methods. 

This overview provides a basis for describing the spatial uncertainty of geotechnical soil 

properties.  Sources and types of uncertainty are first presented, followed by a discussion of the 

probabilistic treatment of geotechnical data using geostatistics.  Finally, generation of realiza-

tions of random functions using simulation is discussed.  The latter two topics are the primary 

focus of this overview. 

The spatial distribution of geotechnical properties in natural soil deposits is difficult to 

predict deterministically. Limited sampling, especially in subsurface drilling, further complicates 

prediction of soil properties.  Prediction of the spatial occurrence of soil properties in either an 

optimal best estimate or within a probabilistic framework is necessary for effective numerical 

modeling of soils with heterogeneous properties. 

Applied geostatistical estimation and simulation techniques can be used to model spatial 

variability from limited sample sets (or from known distributions of data). While traditional sta-

tistics generally assumes independence between samples, geostatistics takes advantage of the fact 

that samples located in proximity to one another are often more similar than those obtained at 

large separation distances. Geostatistics provides a means of quantifying this spatial correlation 

in soil properties and then of using that information for both estimation and stochastic simula-

tion. 
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Geostatistical estimation refers to techniques that provide the best linear unbiased estima-

tors of unknown properties.  When the structural information of the data is known, then the esti-

mator can be defined.  This description requires more than the simple first-order moments of the 

random variable of interest.  Geostatistical simulation is a spatial Monte Carlo process where a 

random “draw” from a local cumulative distribution function simulates a value of a property at a 

given location. The simulation process is run multiple times to produce a series of realizations all 

of which correspond to the observed data at the sample locations, the univariate distribution, and 

the spatial correlation of the observed data. In essence, each realization is a probable representa-

tion of the underlying reality given the available data.  These multiple realizations can be used as 

input to a transfer function (e.g., multiple realizations of shear strength as input to slope stability 

analyses), or processed to provide a map of the probability of a given situation being true (e.g., a 

plot of the probability that a given factor of safety will be exceeded). The results of the transfer 

function can often be evaluated in terms of economic loss and/or risk. 

This report is organized into several distinct sections.  The next section discusses the 

sources and types of uncertainty.  The following section discusses the theory of probability and is 

followed by a qualitative summary of soil property variability.  Soil property variability is fol-

lowed by a discussion of the theory of regionalized variables and a quantitative presentation of 

values for soil property spatial dependence.  The section following discusses estimation and 

simulation, and is followed by a summary of available tools and examples. 



2 Sources and Types of Uncertainty 

“Certainty” refers to situations in which the outcome of an event or the value of a parameter is 

known with unit probability.  Conversely, uncertainty occurs when a collection of values associ-

ated with respective uncertain “states of nature” occur with strictly non-negative probabilities for 

at least two different possible values; the simplest examples are tossing a coin or rolling a die.  

Uncertainty analysis is an emerging approach that uses estimation and simulation techniques to 

consider the variability of available data and to estimate the frequency with which values of in-

terest are likely to be exceeded.  While it has not yet been widely applied in geotechnical engi-

neering practice, this approach offers insight into existing data for heterogeneous geotechnical 

systems.  

Uncertainty pervades many aspects of geotechnical earthquake engineering, particularly 

in the characterization of soil properties.  In general, some of this uncertainty may be due to the 

difficulty in making accurate measurements and some may be due to uncertainty in the models, 

equations, and understanding of the systems involved.  Additional uncertainty can result from the 

spatial variability of the system.   

Uncertainty in geotechnical soil properties can be formally grouped into aleatory and 

epistemic uncertainty (Lacasse et al., 1996).  Aleatory uncertainty represents the natural random-

ness of a property and, as such, is a function of the spatial variability of the property.  Recogniz-

ing spatial variability is important because it can help distinguish the distances over which it oc-

curs compared to the scale of the data of interest (Whitman, 1996).  Epistemic uncertainty results 

from a lack of information and shortcomings in measurement and/or calculation.  Epistemic un-

certainty includes the systematic error resulting from factors such as the method of property 

measurement, the quantity of available data, and modeling errors.  Figure 2.1 illustrates the types 

of uncertainty in geotechnical soil properties.  Human error would be considered a third source 

of uncertainty, however it is not considered in this overview because it is difficult to isolate and 

its effects on probability are usually included in compilations of statistics on aleatory uncertainty. 
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Fig. 2.1 Sources of uncertainty in geotechnical soil properties (adapted from Whitman, 
1996) 

 

As an example, consider SPT sampling in a deposit of loose sand.  Sources of aleatory 

uncertainty in the measured SPT resistance would include the natural variability of the soil de-

posit and random testing errors, such as that caused by a single soil defect (e.g., an erratic boul-

der).  Sources of epistemic uncertainty could include non-standard equipment (such as the sam-

pler size, deformed samplers or rods, rod length, hammer drop system, hammer weight, etc., not 

conforming to the SPT standard), and insufficient data to form reasonable statistics, such as one 

boring over a large site.  It is important to note that epistemic uncertainty can usually be reduced 

by acquisition of additional data or improvements in measurement procedures.  Aleatory uncer-

tainty, on the other hand, is inherent to the variable and cannot be reduced by additional informa-

tion. 

Spatial Variability Random Testing Errors

Aleatory

Measurement Procedures Statistical Error (Too Few Data)

Epistemic

Uncertainty in Soil Properties



 

 

3 The Theory of Probability 

A basic understanding of some fundamental aspects of probability is required to quantify the un-

certainty in geotechnical soil properties.  These concepts include probability space, distributions, 

and moments.  A brief overview of the basic concepts and terminology of probability are pre-

sented in the following sections; more detailed descriptions of this information can be found in 

numerous introductory textbooks on probability such as Benjamin and Cornell (1970), Ott 

(1984), Kelly (1994), and Mendenhall and Beaver (1991). 

3.1 PROBABILITY SPACE 

The notion of probability space is fundamental to probability theory.  Probability space consists 

of: 

(1) An outcome set, Ω, that contains all elements of all sets of data under consideration; 

(2) A collection of events, ϑ, which are subsets of Ω; and 

(3) A procedure for computing the probabilities of events called the probability mass 
function, p(x), or the probability density function, fX(x).  Mass functions and density 
functions are discussed in Section 3.3. 

R is defined as the set of all real numbers.  In R, {x: 3 ≤ x < 6} is the set of all real x 

greater or equal to three and less than six.  The terms sample space and the outcome set are syn-

onymous.  Note that for sets (events) to be useful, they must have an assignable probability.  

Two general types of probability space exist: 

(1) Finite space (also known as discrete space) is comprised of a known, finite number 
of possible samples.  An example might be the percentage of drill holes at a site that 
penetrate a peat layer.  If N borings are drilled, there are exactly N+1 possible val-
ues of the percentage of borings that penetrate peat.  In a finite space, the probability 
of an event, ϑ, occurring is equal to or greater than zero, and the sum of all prob-
abilities of each event occurring is 1: 
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 0)( ≥ϑp  for all Ω∈ϑ    and   ∑
Ω∈

=
ϑ

ϑ 1)(p . (3.1) 

(2) Infinite space (also known as continuous space) consists of an infinite, unknown 
number of possible samples taken from a continuous interval.  An example in terms 
of geotechnical soil properties would be the distribution of shear strength in a soil 
layer across a site.  In terms of probability, an absolutely continuous probability 
space in R consists of the outcome set, Ω, which is an interval, and a function fX(x) 
such that: 

 0)( ≥xfX  for all Ω∈x    and   ∫
Ω

= 1)( dxxf X . (3.2) 

 In other words, continuous probability space contains an unknown number of possible 
samples and the samples are not countable, but are taken from a continuous interval.  
Most geotechnical phenomena occur in continuous space.   

3.2 RANDOM VARIABLES 

A random variable is a variable that can take on multiple values.  The domain of a random vari-

able is the outcome set and its range is the set of possible values.  Mathematically, a random 

variable can be expressed as a real function, Z(x), that associates a real number, xi, with each 

element in the outcome set, Ω∈ix .  The real number, xi, will correspond to every outcome of an 

experiment, the function { ixxZ ≤)( } is an event for any real number xi, and the probabilities 

})({})({ −∞=+∞= xZPandxZP  will be zero for the random variable.  The random variable 

can be visualized as a function that maps a sample space onto a real line as shown on Figure 3.1.   

 

 

                                                       Ω 

                                 Z(x) 

 

                                     xi                              R               

Fig. 3.1 Schematic illustration of random variable — each element of the sample space, Ω, 
corresponds to a real value, xi, of the random variable 

 

 

Two types of random variables exist: discrete and continuous.  Discrete random variables 

take on values from discrete probability space, i.e., they represent quantities, such as SPT resis-
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tance or USCS soil type, that can assume only a finite number of different values.  Continuous 

random variables take on values from continuous probability space; common examples include 

undrained strength, friction angle, permeability, exit gradients at the toe of a levee, and time to 

occurrence of any event.  

3.3 PROBABILITY DISTRIBUTIONS 

Probability distributions are recipes for computing the probabilities of all possible events for a 

particular random variable.  These recipes will specify the probabilities over the entire sample 

space.   

3.3.1 Probability Functions 

The probability mass function (pmf) and the probability density function (pdf) are functions that 

assign a probability to every interval of the outcome set for discrete and continuous random vari-

ables, respectively.  The pmf and the pdf are denoted pX(x)and  fX(x), respectively, where X is the 

random variable itself and x is the value that the random variable can take on.  Probability func-

tions have the following properties: 

(1) 0)( ≥xpX  (discrete)  

0)( ≥xf X  (continuous) 
 

(2) 1)( =∑
Ω∈X

xp  (discrete) 

 ∫
∞

∞−

= 1)( dxxf X  (continuous) 

 
(3) ∑

∈
=

Ix
xpIP )(][ (discrete) 

∫=≤≤
b

a X dxxfbxaP )(][  (continuous) 

  
It is important to note that any single value in a continuous probability space has zero 

probability and that the probabilities of intervals are the same whether they contain their end-

points or not. 
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3.3.2 The Cumulative Distribution Function 

The cumulative distribution function (CDF) of a probability distribution is a function that defines 

the probability of the random variable taking on values less than x, or: 

 )()( xXPxF ≤=  (3.3) 

is commonly referred to as the distribution function, and is denoted FX(x).  It is appropriate to in-

clude the descriptor cumulative to remind us that FX(x) is the accumulated probability of all 

numbers less than or equal to x.  As x increases, the probability continues to correspondingly in-

crease.  The CDF applies to both discrete and continuous random variables; FX(x) is a non-

negative, monotonically increasing function such that 1)(0 ≤≤ xFX , 0)( =−∞XF  and 

1)( =+∞XF .  For real a and b, with a < b, )()()( aFbFbXaP XX −=≤≤ . 

Many distributions can be systematically grouped into customary distributions.  These 

distributions are covered later in this chapter. 

3.4 MATHEMATICAL EXPECTATION 

The predicted value of random variables is generally described using mathematical expectation.  

The expected value of a random variable, X, is a number computed from the pdf of x that repre-

sents the expected long-term average observed value of X.  The expected value of a continuous 

random variable is given by: 

 ∫
∞

∞−

= dxxfxXE X )()( . (3.4) 

The expected value is commonly referred to as the mean or average, and is given the symbol, µ. 

 

3.5 VARIANCE AND MOMENTS 

The “dispersion” of the random variable about the mean is described by the variance, which is 

defined as: 

 ∫
∞

∞−

−= dxxfxXV X )()()( 2µ . (3.5) 
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The variance can also be described as the expected square, minus the squared expected 

value (or as some remember it, mean square minus squared mean), i.e., 

 22 )]([)()( XEXEXV −= . (3.6) 

 

It is more common to express dispersion using the standard deviation, σ= )(XV , so 

that the units of the descriptor and the random variable are the same.  Random variables are often 

acted upon by functions, and it is useful to be able to relate the expectation of the function to that 

of the random variable.  For example, a linear function of the random variable X will describe a 

transformed function.  The mean and variance of the function exhibit the following important 

properties: 

 bXaEbaXE +=+ )()( , and (3.7) 

 )()( 2 XVabaXV =+ . (3.8) 

 

Many of the essential characteristics of a pdf can be described by a set of relatively sim-

ple scalar quantities.  The expected value of the various powers of a random variable, X, E(X), 

E(X2), E(X3), etc.) are called the moments of X.  Moments are important in describing regional-

ized variables discussed later in this text.  For any non-negative integer k, the kth moment of X is 

defined by: 

 )( k
k XE=µ . (3.9) 

 

The moments of the random variable X – E(X) are also important.  They are called the 

central moments of X, because E(X) is regarded as the “center” for the distribution X.  The cen-

tral moments are also referred to as the moments of X about E(X), and are denoted by c0, c1, c2, 

and so forth, where:  

 ck = E(X – µk)k, where µk = E(X). (3.10 ) 

 

Note that the zero-th and first central moments are 1 and 0, respectively.  The second cen-

tral moment is the variance, the third central moment measures skewness, and the fourth central 

moment measures the steepness of the peak of the pdf near its center (kurtosis).   In terms of 

moments, the mean and variance can be expressed as E(X)  = µ1 and V(X) = E(X – µ1)2.   
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The coefficient of variation represents a relative (and dimensionless) measure of disper-

sion and is expressed as: 

 %100×=
X

XCOV
µ
σ . (3.11 ) 

The COV has been commonly used to describe the variation of many geotechnical soil 

properties and insitu test parameters.  Note that the mean, standard deviation, and COV are inter-

dependent — knowing any two will give the third. 

In practice, it becomes convenient to estimate moments of geotechnical soil parameters 

where little data are available (sparse data) by assuming that the COV is similar to previously 

measured values from other data sets of the same parameter.  A summary of COV values re-

ported in the literature is presented in the next chapter. 

The dispersion of sparse data can also be estimated by using other methods such as the 

“three-sigma rule.”  This method for approximating the variance recognizes that 99.73% of all 

values of a normally distributed parameter are within three standard deviations of the average.  

According to the three-sigma rule, the standard deviations can be approximated by dividing the 

range (highest value minus the lowest value) by 6.  Duncan (2000) points out that engineers have 

a tendency to underestimate the range between the lowest and highest conceivable values, there-

fore, a conscious effort should be made to make the range between the two as high as seemingly 

possible.  Christian et al. (2001) also caution that engineers with less experience in statistics will 

estimate the lowest and highest conceivable values with significant unconservative bias.  The 

field of order statistics offers an alternative to the three-sigma rule that accounts for the quantity 

of available data.  According to Burlington and May (1978), the standard deviation of a normally 

distributed random variable can be estimated by dividing the range of measured values by the 

value N shown in Table 3.1. 

. 



11 

Table 3.1 Number of standard deviations, N, in expected sample range as function of 
number of measurements, n (after Burlington and May, 1978) 

n N 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
30 

1.128 
1.693 
2.059 
2.326 
2.534 
2.704 
2.847 
2.970 
3.079 
3.472 
3.735 
4.090 

 

In the above discussion, it is implicitly assumed that random variables are normally dis-

tributed as discussed in Section 3.6.2.  If the variables are not normally distributed, Equation 

3.11 cannot be used.  To solve this problem, the technique of normal tail approximation can be 

used to transform a non-normal distribution into an equivalent normal distribution.  This results 

in the concept of the equivalent COV.  The reader is referred to Paleheimo and Hannus (1974) 

for this procedure. 

3.5.1 Moments of Two Random Variables 

Joint moments can be used to describe the relationship between two random variables.  The first 

joint moment about the mean is a measure of the interdependence between two random vari-

ables, X and Y, and is called the covariance of X and Y.  The covariance between two random 

variables is defined as: 

 ( ) ( )( )[ ] YXYX XYEYXEYX µµµµ −=−−= )(,cov . (3.12) 

 

If X and Y are independent, cov(X,Y) = 0; however, the converse is not true.  A positive 

covariance means that one random variable increases as the other increases.  A negative covari-

ance means that one random variable increases when the other decreases.  Therefore, the covari-

ance is said to be a relative measure of the degree of positive or negative correlation between X 

and Y.   

For n random variables, the set of covariances can be expressed in the form of a covari-

ance matrix: 
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 (3.13) 

 

where: ( )jiij xxc ,cov= , and 22
222

2
111 ,,, nnnccc σσσ === K .  To obtain a relative measure of 

correlation between X and Y, the covariance is divided by the square root of the product of the 

variances to yield the correlation coefficient: 

 
)()(

),cov(
YVXV

YX
=ρ . (3.14) 

 

The correlation coefficient will take on values between –1 and 1.  In general, the correlation co-

efficient expresses the relative strength of the association between two parameters.  The distribu-

tion of one of a group of correlated parameters, given specific values of the other parameters, 

will be influenced by the degree of correlation.  For example, Lumb et al. (Lumb, 1970; Grivas, 

1981 and Wolff, 1985) have shown that the shear strength parameters c and φ are often nega-

tively correlated with correlation coefficient ranging from -0.72 to 0.35.  The distribution of c for 

a particular φ value and will be different than the distribution of all c values.   

Consider a boring in which samples have been obtained at eight different depths within 

the same soil unit (Harr, 1987).  Water contents are measured for each of the samples, with the 

results plotted as shown in tabular form in Figure 3.2. 
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Fig. 3.2  Measured water content data  

 
 

Water content, w (%) Depth, d (ft) wd w2 d2 

     
30.0 5 150 900.00 25 
28.9 10 289 835.21 100 
29.0 15 435 841.00 225 
26.0 20 520 676.00 400 
25.4 25 635 645.16 625 
25.0 30 750 625.00 900 
24.8 35 868 615.04 1225 
24.6 40 984 605.16 1600 

Σw = 213.7 Σd = 180 Σwd = 4631 Σw2 = 5742.57 Σd2 = 5100 
 

( )[ ] ( )[ ] =
−−

−
==

∑∑∑∑
∑ ∑ ∑

2222)()(
),cov(

ddNwwN

dwwdN
YVXV

YXρ  

 

[ ][ ] 937.0
)180()5100(8)7.213()57.5742(8

)180(7.213)4631(8
22

−=
−−

− . 

 

The correlation coefficient shows strong negative correlation: the water content decreases 

as the depth increases. 
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3.5.2 Moment-Generating Functions 

A moment-generating function (MGF) is used to find the moments of a particular distribution.  

Although MGFs apply to both discrete and continuous probability spaces, this summary focuses 

on continuous distributions because they are more applicable to geotechnical soil properties.  The 

MGF is defined by: 

 )()( sXeEsm =  (3.15) 

 

for only those numbers s for which this expected value exists.  Moments can be generated by us-

ing the nth derivative to find the nth moment, or expected values to the power n.  In general, 

)( sXn
n

n

eXE
ds

md
= , and )( n

n

n

XE
ds

md
=  evaluated at s = 0.  Therefore, )(XE

ds
dm

=  and 

)( 2
2

2

XE
ds

md
=  evaluated at s = 0. 

3.6 SPECIAL PROBABILITY DISTRIBUTIONS 

Many special probability distributions exist, most notably the family of normal distributions.  

Other important distributions include the uniform, exponential, and gamma distributions.  Rather 

than focus on the derivations, this section presents useful properties of these distributions.  Be-

cause few, if any, geotechnical properties will behave as a discrete probability space, special dis-

crete distributions are not presented herein.  The reader is referred to Ott (1984) and Kelly (1994) 

for a discussion of discrete systems. 

3.6.1 Uniform Distribution 

Some random variables are equally likely to take on any value within an interval.  The uniform 

distribution models a number chosen at random from the interval (a,b) such that no part of the in-

terval is favored over any other part of the same size.  Such a random variable, X, is said to be 

uniformly distributed with parameters a and b, and is denoted X ~ U(a,b).  The probability den-

sity function (pdf), cumulative distribution function (CDF), moment-generating function (MGF), 

E(X), and V(X) are shown in Table 3.3.  The pdf and CDF for a uniform distribution are illus-

trated in Figure 3.3. 
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 (a) (b) 

Fig. 3.3 Uniform distribution:  (a)  probability density function, (b) cumulative 
distribution function 

 

3.6.2 Normal Distribution 

A family of random variables called “normal random variables” model randomly chosen mem-

bers of some large population as outlined in the Central Limit Theorem (refer to Kelly, 1984 or 

Ott, 1984).  The random variable X is said to be normally distributed with parameters µ (mean) 

and σ2 (variance), and is denoted X ~ N(µ,σ2).  The pdf, CDF, MGF, E(X), and V(X) are shown 

in Table 3.3.  The pdf and CDF for a normal distribution are illustrated in Figure 3.4.  Normally 

distributed random variables vary from – ∞ to + ∞. 

 

x

f X (x)

µ µ + σµ − σ     
x

F X (x)

1.0

 
 (a) (b) 

Fig. 3.4  Normal distribution:  (a) probability density function, (b) cumulative distribution 
function 
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The moment-generating function can be used to find the mean and variance.  For a nor-

mal distribution, the MGF is 2/22

)( ssesm σµ += .  To find E(X), the first derivative is evaluated at s 

= 0.  Therefore, 2/2 22

)2/2()(' ssessm σµσµ ++= evaluated at s = 0 is µ=)(XE .  By using this 

methodology, the variance, σ2, can be obtained.  The E(X2) is first obtained by taking the second 

derivative of m(s) and evaluating at s = 0.  This results in 22 µσ + .  By definition, the variance is 

])([)( 22 XEXE − ; therefore the variance is σ2. 

 Any normally distributed random variable, X, can be transformed to a standard normal 

variable, Z, by Z = (X- µ )/ σ.  The standard normal variable has the properties µ = 0 and σ2 = 1; 

its distribution is called the “standard normal distribution.”  The CDF of the standard normal dis-

tribution is given in Table 3.2. 
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Table 3.2  Values of the CDF of the standard normal distribution, FZ(Z) = 1 - FZ(-Z) 
 

 Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

 

  -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 

  -3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 

  -3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0005 .0005 .0005 .0005 

  -3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007 

  -3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 

 

  -2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 

  -2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 

  -2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 

  -2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 

  -2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 

 

  -2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 

  -2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 

  -2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110 

  -2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 

  -2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 

 

  -1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 

  -1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0304 .0301 .0294 

  -1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 

  -1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 

  -1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 

 

  -1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681 

  -1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0859 .0853 .0838 .0823 

  -1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 

  -1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170 

  -1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 

 

  -0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 

  -0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 

  -0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 

  -0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451 

  -0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 

 

  -0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 

  -0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483 

  -0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859 

  -0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4365 .4325 .4286 .4247 

  -0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 
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3.6.3 Lognormal Distribution  

A parameter is said to be lognormally distributed if its logarithm is normally distributed.  The log 

normal distribution is shown in Figure 3.5.  Therefore, if X is lognormally distributed, then Y = 

lnX is normally distributed.  In this case, the statistical parameter Z, is: 

 
x

xX
Z

ln

lnln
σ

µ−
= . (3.16) 

Therefore, the lower bound of the lognormal distribution is zero and the upper bound is 

infinite.  The lognormal distribution provides a convenient model for random variables with rela-

tively large coefficients of variation (> 30%) for which an assumption of normality would imply 

a significant probability of negative values (USACE, 1999).  Random variables often assumed to 

be lognormally distributed include the coefficient of permeability, the undrained shear strength 

of clay, and factors of safety (USACE, 1999). 

 

ln(x)

f X (x)

x

f X (x)

 
Fig. 3.5 Lognormal distribution:  (a)  probability density function of ln X, (b) probability 

density function of X showing no negative values and asymmetry 

3.6.4 Exponential Distribution 

The exponential distribution can be used to model a number of physical phenomena, such as the 

time, t, for a component to fail, or the distance, d, that an object travels before a collision.  Expo-

nential random variables are most commonly used to model a time-dependent process (e.g., Pois-

son process) with an arrival rate of λ arrivals per unit time.  The random variable X is said to be 

exponentially distributed with parameter λ, and is denoted X ~ exp(λ).  The pdf, CDF, MGF, 
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E(X), and V(X) are shown in Table 3.3.  The pdf and CDF for an exponential distribution are il-

lustrated in Figure 3.6. 

 

 
x

fX(x)

      
x

FX(x)

1.0

 
 (a) (b) 

Fig. 3.6 Exponential distribution:  (a) probability density function, (b) cumulative  
distribution function 

3.6.5 Gamma Distribution 

The gamma distribution is the distribution of the sum of the squares of n independent, normally 

distributed random variables.  Gamma distributions with various combinations of parameters are 

useful to model properties with positive values that tend to cluster near some value, but tend to 

have some very large values that produce a long right tail.  The random variable X is said to be 

gamma distributed with parameters α and λ, and is denoted X ~ gam(α, λ).  The pdf, CDF, 

MGF, E(X), and V(X) are shown in Table 3.3.  The pdf and CDF will vary for varying α and λ 

values as shown in Figure 3.7.  Note that when α = 1, the gamma density becomes the exp(λ) 

density. 

 

   
x

f X(x ) α = 0.5
λ = 0.5 α = 10

λ = 2

α = 5
λ = 1

α = 27
λ = 3

          
x

F X(x ) α = 0.5
λ = 0.5 α = 5

λ = 1

α = 10
λ = 2

α = 27
λ = 3

 
 (a)                   (b) 

Fig. 3.7 Gamma distribution:  (a)  probability density function, (b) cumulative distribution 
function 
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Table 3.3  Properties of special distribution functions 
Distribu-

tion Name 
pdf, fX(x) CDF, FX(x) MGF, m(s) E(X) V(X) 

Uniform 
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3.6.6 Estimating Probability Distributions 

It is sometimes adequate to know only estimates of the mean and standard deviation of the ran-

dom variable, and knowledge of the form of the probability density function may not be neces-

sary.  However, in order to ensure that these estimates are reasonable and check assumptions re-

garding the shape of the distribution, it is recommended that the shape of the distribution be 

plotted as a check.  A suggested method to assign or check assumed moments of random vari-

ables (USACE, 1995) is to: 

• Assume trial values for the expected value and standard deviation and take the 
random variable to be normal or lognormal. 

• Plot the resulting density function, and tabulate and plot the resulting CDF. 
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• Assess the reasonableness of the shape of the pdf and the values of the CDF. 

• Repeat the above steps with successively improved estimates of the expected 
value and standard deviation until and appropriate pdf and CDF are obtained. 

3.7 SUMMARY 

A basic understanding of the theory of probability can be used to compute basic statistical pa-

rameters of a soil property.  Probability distributions, expectation, and moments are the basic sta-

tistical descriptors of a random variable.  These descriptors can be used to estimate the variability 

of geotechnical soil properties. 

 



 

4 Uncertainty in Soil Properties 

Most soils are naturally formed in many different depositional environments; therefore their 

physical properties will vary from point to point.  This variation can exist even in an apparently 

homogeneous soil unit.  Variability of soil properties is a major contributor to the uncertainty in 

geotechnical engineering analyses.  Laboratory test results on natural soils indicate that most soil 

properties can be considered as random variables conforming to the normal distribution function  

(Lumb, 1966; Tan et al., 1993).   This section summarizes modeling of uncertainty in soil proper-

ties and presents values of COV from various sources for index properties, laboratory-measured 

properties, and field-measured properties. 

4.1 QUANTIFYING UNCERTAINTY IN SOIL PROPERTIES  

Insitu soil properties may vary vertically and horizontally for a variety of reasons, including: 

• Depositional environment — in general, fine-grained soils are deposited in low-
energy environments and are therefore more uniform than course-grained soils, 
which are usually deposited in high-energy environments. 

• Degree of weathering — soil properties can be influenced by weathering, a factor 
that affects soil at the ground surface most strongly and that decreases with depth 
below the ground surface.  However, factors such as erosion and locally variable 
rates of deposition can produce soil profiles with variable weathering effects. 

• Physical environment — most soils exhibit properties, such as inherent and in-
duced anisotropy, that are influenced by their physical environment.  Because 
stress changes can occur locally during the lifetime of a soil deposit, their effects 
can introduce uncertainty into measured soil properties. 

 
The spatial variation of soil properties consists of several components and can be represented by 

a simple model (Phoon and Kulhawy, 1999): 

 )()()()( zezwztz ++=ξ  (4.1) 
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where ξ  = insitu soil property, t = deterministic trend component, w = random component, e = 

measurement error, and z = depth.  The trend and random components are illustrated graphically 

in Figure 4.1. 

Basic principles of soil mechanics indicate that many soil properties of interest are 

strongly influenced by effective confining pressure.  Because effective confining pressures gen-

erally increase with depth, these properties should be expected to exhibit some regular, predict-

able trend with depth.  The trend can be determined by fitting (in a least squares sense) a smooth 

deterministic function (e.g., a straight line, parabola, or exponential) to the data or by a moving 

average procedure. 

The random component of soil variability is also referred to as “inherent soil variability,” 

which is expressed relative to the deterministic trend of the property as illustrated in Figure 4.1.   

Measurement error, whether it be from laboratory or field measurements, can introduce addi-

tional variability into soil properties.   Measurement error can arise from equipment, operator, 

and random testing effects (Phoon and Kulhawy, 1999). 

The scale of fluctuation is a term that describes the spatial fluctuation of the property of 

interest about the trend (Fig. 4.1).  A parameter with a short scale of fluctuation changes rapidly 

with position, one with a long scale of fluctuation changes over greater distances.  A procedure 

for calculation of the scale of fluctuation is described in Chapter 5, and typical values of the scale 

of fluctuation are presented in Chapter 6. 
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Fig. 4.1  Inherent soil variability (after Phoon and Kulhawy, 1999) 

 

The following sections present a summary of text and tables to assist PEER researchers in 

estimating variability in geotechnical soil properties.  Soil properties are summarized in three 

main categories:  laboratory-measured properties, field-measured properties, and properties ob-

tained from other types of testing.  Each category presents various forms of variability consisting 

of inherent variability, measurement variability, and an estimate of spatial correlation (as ex-

pressed in terms of scale of fluctuation).  The primary purpose of these sections is to present 

COV data; parameter values are presented to simply allow PEER researchers to judge the condi-

tions for which the COV values are applicable.  Total variability can be computed using the fol-

lowing equation: 

 22 )()()( randomCOVtmeasuremenCOVtotalCOV += . (4.2) 
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4.2 LABORATORY-MEASURED PROPERTIES 

Laboratory measured soil properties are important for determining soil indices, strength parame-

ters, and consolidation characteristics. 

4.2.1 Inherent Variability 

This section presents tabulated COV values of inherent variability of various laboratory-

measured properties. 

4.2.1.1 Moisture-Density Characteristics 

The unit weight (or density) of a soil is important for determining states of stress beneath and ad-

jacent to structures.  Unit weights are typically determined by measuring the weight and volume 

of soil samples in the laboratory. 

Lacasse and Nadim (1996) suggest the pdf for unit weight is normally distributed for all 

soil types.  Table 4.1 presents tabulated COV data for natural water content, wn, total unit weight, 

γ, dry unit weight, γd, buoyant (submerged) unit weight, γb, relative density, Dr, specific gravity, 

Gs, and degree of saturation, S. 
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Table 4.1 COV of inherent soil variability for moisture content, unit weight, and  
relative density 

No. of Tests Per 
Group 

Property Value Property COV  
(%) 

Property 
(units) 

Soil Type No. of 
Data 

Group
s 

Range Mean Range Mean Range Mean 

Note 

Fine-grained 40 17 – 439 252 13 – 105 29 7 – 46 18 1 
Silty clay * * * * * 20 * 

clay * * * * * 13 * 
3 

wn (%) 

* 18 * * * * * 17.7 4 
γ (kN/m3) Fine-grained 6 5 – 3200 564 14 – 20 17.5 3 – 20 9 1 

γ  * * * * * * 3 * 3 
γ  * 12 * * * * * 7.1 4 

γd (kN/m3) Fine-grained 8 4 – 315 122 13 – 18 15.7 2 – 13 7 1 
γb

 (kN/m3) All soils * * * 5 – 11 * 0 – 10 * 2 
Dr

(a) (%) Sand 5 * * 30 – 70 50 11 – 36 19 
Dr

(b) (%) Sand 5 * * 30 – 70 50 49 – 74 61 
1 

Gs * * * * * * 2 * 3 
S * * * * * * 10 * 3 

*Not reported. 
(a) Total variability for direct method of determination. 
(b) Total variability for indirect determination using SPT values. 
Notes: 
(1) Phoon and Kulhawy (1999). 
(2) Lacasse and Nadim (1996).  No comments made on whether measurement variability was included. 
(3) Harr (1987). No comments made on whether measurement variability was included. 
(4) Kulhawy (1992). No comments made on whether measurement variability was included. 

4.2.1.2 Plasticity Characteristics 

Plasticity characteristics are important for classification of soil types and for determining engi-

neering behavior.  Plasticity indices are usually measured in terms of Atterberg limits in the labo-

ratory. 

Lacasse and Nadim (1996) suggest that the plastic limit, PL, and the liquid limit, LL, are 

normally distributed in clays.  Table 4.2 presents tabulated COV data for liquid limit, plastic 

limit, plasticity index, PI, and liquidity index, LI. 
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Table 4.2  COV of inherent soil variability for plasticity indices 
No. of Tests Per 

Group 
Property Value Property COV  

(%) 
Property 

(%) 
Soil Type No. of 

Data 
Groups Range Mean Range Mean Range Mean 

Note 

Fine-grained 38 15 – 299 129 27 – 89 51 7 – 39 18 1 
Clay * * * 30 – 80 * 3 – 20 * 2 

LL 

* 28 * * * * * 11.3 4 
Fine-grained 23 32 – 299 201 14 – 27 22 6 – 34 16 1 

Clay * * * 13 – 23 * 3 – 20 * 2 
PL 

* 27 * * * * * 11.3 4 
PI Fine-grained 33 15 – 299 120 12 – 44 25 9 – 57 29 1 
LI Clay, silt 2 32 – 118 75 * 0.094 60 – 88 74 1 

* Not reported. 
Notes: 
(1) Phoon and Kulhawy (1999). 
(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was included. 
(3) Harr (1987). No comments made on whether measurement variability was included. 
(4) Kulhawy (1992). No comments made on whether measurement variability was included. 

4.2.1.3 Strength Characteristics 

Strength parameters of soils are probably the most important parameters used in geotechnical 

engineering.  Most design methodologies rely on the strength of soils as input.  Therefore, recog-

nition of uncertainty in soil strength properties is very important.  Various laboratory methods 

exist for measuring strength parameters, and the inherent variability in the strength parameters 

they produce is summarized in this section. 

Lacasse and Nadim (1996) and Wolff et al. (1996) suggest that the pdf for friction angle, 

φ, is normally distributed in sands.  They also suggest that a lognormal pdf be used for undrained 

shear strength, su, in clays, and that a normal pdf be used for su in clayey silts.  Lacasse and 

Nadim (1996) suggest the pdf for undrained strength ratio, su/σ’v0, is either normally or lognor-

mally distributed for clay soils.  Table 4.3 presents tabulated COV data for drained friction angle, 

φ , tangent drained friction angle, tanφ , undrained shear strength, cohesion, c, and undrained 

strength ratio. 



29 

Table 4.3  COV of inherent soil variability for strength parameters 
No. of Tests 
Per Group 

Property Value Property COV  
(%) 

Property 
(units) 

Soil Type No. of 
Data 

Groups Range Mean Range Mean Range Mean 

Note 

Sand 7 29 – 136 62 35 – 41 37.6 5 – 11 9 
Clay, silt 12 5 – 51 16 9 – 33 15.3 10 – 56 21 
Clay, silt 9 * * 17 – 41 33.3 4 – 12 9 

1 φ  (°) 

* 20 * * * * * 12.6 4 
tanφ  Clay, silt 4 * * 0.24 – 0.69 0.509 6 – 46 20 

tanφ  Clay, silt 3 * * * 0.615 6 – 46 23 

1 

Sand 13 6 – 111 45 0.65 – 0.92 0.744 5 – 14 9 1 tanφ  
* 7 * * * * * 11.3 4 

φ  (°) Sand * * * * * 2 – 5 * 2 

Gravel * * * * * 7 * φ  (°) 
Sand * * * * * 12 * 

3 

su
(a) (kPa) Fine-grained 38 2 – 538 101 6 – 412 100 6 – 56 33 

su
(b) (kPa) Clay, Silt 13 14 – 82 33 15 – 363 276 11 – 49 22 

su
(c) (kPa) Clay 10 12 – 86 47 130 – 713 405 18 – 42 32 

Clay 42 24 – 124 48 8 – 638 112 6 – 80 32 

1 

su
(d) (kPa) 

* 38 * * * * * 33.8 3 
su

(e) (kPa) Clay * * * * * 5 – 20 * 
su

(f) (kPa) Clay * * * * * 10 – 35 * 
su

(d) (kPa) Clayey silt * * * * * 10 – 30 * 

2 

c(g) * * * * * * 40 * 3 
su/σ’v0 Clay * * * * * 5 – 15 * 2 

* Not reported. 
(a) Unconfined compression test. 
(b) Unconsolidated-undrained triaxial compression test. 
(c) Consolidated isotropic undrained triaxial compression test. 
(d) Laboratory test not reported. 
(e) Triaxial test. 
(f) Index su. 
(g) No specification on how the parameter was defined. 
Notes: 
(1) Phoon and Kulhawy (1999). 
(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was included. 
(3) Harr (1987). No comments made on whether measurement variability was included.  
(4) Kulhawy (1992). No comments made on whether measurement variability was included. 
 

4.2.1.4 Consolidation and Permeability Characteristics 

Consolidation and permeability characteristics are important to quantify stress/strain relations 

and the time-dependent behavior of soils.  This section presents typical uncertainties in the vari-

ous laboratory parameters that are used to characterize consolidation and permeability behavior.   

Lacasse and Nadim (1996) suggest that the pdf for the overconsolidation ratio is either 

normally or lognormally distributed for clay soils.  They also suggest (1996) that the pdf for void 
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ratio, porosity, and initial void ratio is normally distributed for all soil types.  Table 4.4 presents 

tabulated COV data for compression index, Cc, preconsolidation pressure, pc′, overconsolidation 

ratio, OCR, coefficient of permeability, k, coefficient of consolidation, cv, void ratio, e, and po-

rosity, n. 

Table 4.4  COV of inherent soil variability for consolidation and permeability parameters 
No. of Tests Per 

Group 
Property Value Property COV  

(%) 
Property 
(units) 

Soil Type No. of 
Data 

Groups Range Mean Range Mean Range Mean 

Note 

Sandy clay * * * * * 26 * 
Clay * * * * * 30 * 

1 Cc 

* * * * * * 37 * 2 
pc′ * * * * * * 19 * 1 

OCR * * * * * * 10 – 35 * 3 
* * * * * * 240(a) * k 

* * * * * * 90(b) * 
1 

cv * * * * * * 33 – 68 * 4 
e, n, eo All soil types * * * * * 7 – 30 * 5 

n * * * * * * 10 * 1 
* Not reported. 
(a) 80% saturation. 
(b) 100% saturation. 
Notes: 
(1) Harr (1987). 
(2) Kulhawy (1992). No comments made on whether measurement variability was included. 
(3) Lacasse and Nadim (1996).  No comments made on whether measurement variability was included. 
(4) Duncan (2000). 
(5) Lacasse and Nadim (1996). 
 

4.2.1.5 Stiffness and Damping Characteristics 

The seismic response of soil deposits is strongly influenced by the stiffness and damping charac-

teristics of the soil.  These characteristics are typically described in an equivalent linear frame-

work, i.e., by maximum shear modulus, modulus reduction curves, and damping curves.  While 

data and procedures for deterministic prediction of these parameters have been reported, very lit-

tle explicit information on their uncertainty is available. 

 Seed and Idriss (1970) presented experimental data on the variation of shear modulus 

and damping ratio with cyclic strain amplitude, and used the data to develop their widely used 

modulus reduction and damping curves for sands and clays.  The data for sands came from many 

sources that used different types of testing equipment and different (and, in many cases, large) 

ranges of effective confining pressure.  For sands, shear modulus results were expressed in terms 
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of the parameter K2 = G/1000(σ’m)1/2 where G and σ’m are in psf.  Shear moduli for clays were 

normalized by undrained strength.  Damping ratios for sands and clays were also presented 

graphically.  The plots of experimental modulus reduction and damping data in Seed and Idriss 

(1970) suggest substantial uncertainty, but the ranges of effective confining pressures (for tests 

on sands) and plasticity characteristics (for clay specimens) are now known to have a systematic 

effect on modulus reduction and damping behavior.  As a result, statistical parameters computed 

directly from this data would likely overpredict the inherent variability of these properties. 

 About ten years ago, the Electric Power Research Institute (EPRI) undertook an inves-

tigation of appropriate methods for estimating earthquake ground motion in eastern North Amer-

ica.  This work, which involved numerous investigators, included extensive, high-quality field 

and laboratory testing of soils at more than 200 different sites.  The measured shear wave veloci-

ties were shown to be lognormally distributed with σlnV = 0.39 (velocity measured in m/sec).  

Laboratory modulus reduction and damping data were used to estimate and model variability in 

modulus reduction and damping curves.  The modulus reduction ratio, G/Gmax, at a cyclic shear 

strain of 0.03% was determined to be lognormally distributed with σln G/Gmax = 0.35 (truncated at 

2σ).  Monte Carlo analyses were performed with the median modulus reduction and damping 

curves scaled by a constant value (thereby retaining the shapes of the median curves) that pro-

duced the target variability at γ = 0.03%.  It should be noted that the characterization of constant 

standard deviation implies that the COV of G/Gmax increases relatively rapidly with increasing 

shear strain amplitude.  

Very high-quality testing (resonant column and torsional shear) has been performed un-

der the direction of Prof. Kenneth H. Stokoe at the University of Texas for many research pro-

jects including the previously described EPRI project, a Savannah River Site investigation, and 

the ROSRINE program (http://rccg03.usc.edu/Rosrine/).  Darendian (2001) used data from more 

than 20 sites to develop a model for modulus reduction and damping behavior that included es-

timates of uncertainty in G/Gmax and damping ratio.  The model, which expresses G/Gmax as a 

function of shear strain, plasticity index, OCR, effective confining pressure, and soil type, was 

calibrated using a first-order, second-moment Bayesian technique.  The variance in G/Gmax and 

damping ratio was observed to vary with strain level and with soil type; examples are presented 

in Figure 4.2.  Details of the Darendian-Stokoe model will be presented in technical papers that 

are nearing completion at the time of this report. 
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Fig. 4.2 Variation with shear strain amplitude of mean and standard deviation of typical 
modulus reduction and damping curves (Darendian, 2001) 

  

4.2.2 Measurement Variability 

The process of quantifying uncertainty includes a component due to measurement variability, 

which can arise from errors in the laboratory equipment, errors by the person conducting the 

laboratory test, and random testing effects that cannot be separately measured.  Table 4.5 pre-

sents tabulated COV data for measurement error for some laboratory-measured properties. 

 

Table 4.5 Summary of total measurement error for laboratory-measured properties 
(after Phoon and Kulhawy (1999) 

No. of Tests Per 
Group 

Property Value Property COV  
(%) 

Property 
(units) 

Soil Type No. of 
Data 

Groups Range Mean Range Mean Range Mean 
su(a) (kPa) Clay, silt 11 * 13 7 – 407 125 8 – 38 19 
su(b) (kPa) Clay, silt 2 13 – 17 15 108 – 130 119 19 – 20 20 
su(c) (kPa) Clay 15 * * 4 – 123 29 5 – 37 13 
φ (a) (°) Clay, silt 4 9 – 13 10 2 – 27 19.1 7 – 56 24 

φ (b) (°) Clay, silt 5 9 – 13 11 24 – 40 33.3 3 – 29 13 

φ (b) (°) Sand 2 26 26 30 – 35 32.7 13 – 14 14 

tanφ (a) (°) Clay, silt 6 * * * * 2 – 22 8 

tanφ (b) (°) Clay 2 * * * * 6 – 22 14 

wn (%) Fine-grained 3 82 – 88 85 16 – 21 18 6 – 12 8 
LL, (%) Fine-grained 26 41 – 89 64 17 – 113 36 3 – 11 7 
PL, (%) Fine-grained 26 41 – 89 62 12 – 35 21 7 – 18 10 
PI, (%) Fine-grained 10 41 – 89 61 4 – 44 23 5 – 51 24 

γ, (kN/m2) Fine-grained 3 82 – 88 85 16 – 17 17.0 1 – 2 1 
* Not reported. 
(a) Triaxial compression test. 
(b) Direct shear test. 
(c) Laboratory vane shear test. 
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4.3 FIELD-MEASURED PROPERTIES 

In many cases, soil properties are determined or inferred from the results of field tests.  Insitu 

field tests can be quite useful, particularly in soils that are difficult to sample without distur-

bance.  This section presents a discussion of uncertainty for insitu testing and estimated values 

for quantifying uncertainty in the form of summarized COV values for various properties. 

4.3.1 Inherent Variability 

This section presents tabulated COV values of inherent variability of various insitu measured 

properties. 

4.3.1.1 Standard Penetration Test (SPT) Resistance 

SPT resistance is one of the most common forms of insitu testing conducted for geotechnical en-

gineering.  Therefore, quantifying uncertainty for SPT resistance is particularly useful.   SPT re-

sistance is typically collected using standardized sampling equipment consisting of a hammer, 

rods and split-spoon sampler.   Table 4.6 presents tabulated data for SPT measured resistance, N. 

Table 4.6  COV of inherent soil variability for SPT resistance 
No. of Tests Per 

Group 
Property Value Property COV  

(%) 
Property Soil Type No. of 

Data 
Groups Range Mean Range Mean Range Mean 

Note 

N Clay & Sand * * * 10 – 70 * 25 – 50 * 1 
N Sand 22 2 – 300 123 7 – 74 35 19 – 62 54 
N Clay Loam 2 2 – 61 32 7 – 63 32 37 – 57 44 

2 

N * * * * * * 26 * 3 
Notes: 
(1) Phoon and Kulhawy (1996). 
(2) Phoon and Kulhawy (1999). 
(3) Harr (1987).  No comment made on whether measurement variability was included. 

4.3.1.2 Cone Penetration Test (CPT) and Electric Cone Penetration Test (ECPT) Resistance 

CPT resistance is probably the second most frequently used test for collecting insitu soil meas-

urements.  CPT resistance is usually measured using mechanical means (MCPT) or electrically 
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(ECPT).  CPT testing is usually conducted by pushing a standardized cone into the soil subsur-

face to measure resistance of the tip and friction of the sleeve. 

Lacasse and Nadim (1996) suggest that a lognormal pdf be used for MCPT testing in 

sands and a normal or lognormal pdf be used for MCPT testing in clays.  Table 4.7 presents tabu-

lated COV data for CPT-corrected tip resistance, qT, and tip resistance, qc. 

Table 4.7  COV of inherent soil variability for CPT measurements 
No. of Tests Per 

Group 
Property Value Property COV  

(%) 
Property 
(units) 

Soil Type No. of 
Data 

Groups Range Mean Range Mean Range Mean 

Note 

Clay * * * 0.5 – 2.5 * < 20 * 1 qT (MPa) 
Clay 9 * * 0.4 – 2.6 1.32 2 – 17 8 2 
Clay * * * 0.5 – 2.0 * 20 – 40 * 1 
Sand * * * 0.5 – 30.0 * 20 – 60 * 1 
Sand 57 10 – 2039 115 0.4 – 29.2 4.10 10 – 81 38 2 

qc (MPa) 

Silty Clay 12 30 – 53 43 0.5 – 2.1 1.59 5 – 40 27 2 
* * * * * * * 37 * 3 

* Not reported 
Notes: 
(1) Phoon and Kulhawy (1996). 
(2) Phoon and Kulhawy (1999).  
(3) Harr (1987).  No comment made on whether measurement variability was included. 

4.3.1.3 Vane Shear Testing (VST) Undrained Shear Strength 

Table 4.8 presented tabulated COV data of inherent soil variability for undrained shear strength 

as measured by VST measurement. 

Table 4.8 COV of inherent soil variability of undrained shear strength using VST  
measurement 

No. of Tests Per 
Group 

Property Value Property COV  
(%) 

Property 
(units) 

Soil Type No. of 
Data 

Groups Range Mean Range Mean Range Mean 

Note 

su (kPa) Clay * * * 5 – 400 * 10 – 40 * 1 
su (kPa) Clay 31 4 – 31 16 6 – 375 105 4 – 44 24 2 

* Not reported 
Notes: 
(1) Phoon and Kulhawy (1996). 
(2) Phoon and Kulhawy (1999). 

4.3.1.4 Dilatometer Test (DMT) Parameter 

Table 4.9 presents tabulated COV data for DMT measurement parameters, A and B, material in-

dex, ID, horizontal stress index, KD, and modulus, ED. 
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Table 4.9  COV of inherent soil variability of DMT measurement parameters 
No. of Tests Per 

Group 
Property Value Property COV  

(%) 
Note Property 

(units) 
Soil Type No. of 

Data 
Groups Range Mean Range Mean Range Mean  

Clay * * * 100 – 450 * 10 – 35 * 
Sand * * * 60 – 1300 * 20 – 50 * 

1 

Sand to 
clayey sand 

15 12 – 25 17 64 – 1335 512 20 – 53 33 

A 
(kPa) 

Clay 13 10 – 20 17 119 – 455 358 12 – 32 20 

2 

Clay * * * 500 – 880 * 10 – 35 * 
Sand * * * 350 – 2400 * 20 – 50 * 

1 

Sand to 
clayey sand 

15 12 – 25 17 346 – 2435 1337 13 – 59 37 

B 

(kPa) 

Clay 13 10 – 20 17 502 – 876 690 12 – 38 20 

2 

Sand * * * 1 – 8 * 20 – 60 * 1 
Sand to 

clayey sand 
15 10 – 25 15 0.8 – 8.4 2.85 16 – 130 53 

ID
 

Sand, silt 16 * * 2.1 – 5.4 3.89 8 – 48 30 

2 

Sand * * * 2 – 30 * 20 – 60 * 1 
Sand to 

clayey sand 
15 10 – 25 15 1.9 – 28.3 15.1 20 – 99 44 

KD
 

Sand, silt 16 * * 1.3 – 9.3 4.1 17 – 67 38 

2 

Sand * * * 10 – 50 * 15 – 65 * 1 
Sand to 

clayey sand 
15 10 – 25 15 9.4 – 46.1 25.4 9 – 92 50 

ED
 

(MPa) 

Sand, silt 16 * * 10.4 – 53.4 21.6 7 – 67 36 

2 

* Not reported 
Notes: 
(1) Phoon and Kulhawy (1996). 
(2) Phoon and Kulhawy (1999). 

4.3.1.5 Pressuremeter Test (PMT) Parameters 

Table 4.10 presents tabulated COV data for PMT limit stress, pL, and modulus, EPMT.  

Table 4.10  COV of inherent soil variability of PMT parameters 
No. of Tests Per 

Group 
Property Value Property COV  

(%) 
Note Property 

(units) 
Soil Type No. of 

Data 
Groups Range Mean Range Mean Range Mean  

Clay * * * 400 – 2800 * 10 – 35 * 
Sand * * * 1600 – 

3500 
* 20 – 50 * 

1 

Sand 4 * * 1617 – 
3566 

2284 23 – 50 40 

pL (kPa) 

Cohesive 5 10 – 25 * 428 – 2779 1084 10 – 32 15 

2 

Sand * * * 5 – 15 * 15 – 65 * 1 EPMT (MPa) 
Sand 4 * * 5.2 – 15.6 8.97 28 – 68 42 2 

* Not reported. 
Notes: 
(1) Phoon and Kulhawy (1996). 
(2) Phoon and Kulhawy (1999). 
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4.3.2 Measurement Variability 

Measurement variability arises from errors in insitu testing equipment, by the person operating 

the equipment, and by random testing effects that cannot be separately measured.   

4.3.2.1 Standard Penetration Test (SPT) Resistance 

A number of factors can influence the measurement variability of SPT results; the most impor-

tant of these are presented in Table 4.11.  Uncertainty estimates of the COV (in percent) for the 

various factors include the following (Kulhawy and Trautmann, 1996): 

(1) Equipment: 5 – 75 (best to worst case); 

(2) Procedure: 5 – 75 (best to worst case); 

(3) Random: 12 – 15; 

(4) Total: 14 – 100, where the total is computed by 
[ ] 2/1222 )()()()( randomCOVprocedureCOVequipmentCOVtotalCOV ++= ; and 

(5) Range: 15 – 45 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV. 

Table 4.11  Sources of variability in SPT test results (Kulhawy and Trautmann, 1996) 
SPT Variable 

Type Item 
 

Relative Effect on Test Results 
Non-standard sampler Moderate 

Deformed or damaged sampler Moderate 
Rod diameter/weight Minor 

Rod length Minor 
Deformed drill rods Minor 

Hammer type Moderate to significant 
Hammer drop system Significant 

Hammer weight Minor 
Anvil size Moderate to significant 

Equipment 

Drill rig type Minor 
Borehole size Moderate 

Method of maintaining hole Minor to significant 
Borehole cleaning Moderate to significant 

Insufficient hydrostatic head Moderate to significant 
Seating of sampler Moderate to significant 

Hammer drop method Moderate to significant 

Procedural/ 
Operator 

Error in counting blows Minor 

4.3.2.2 Cone Penetration Test (CPT) Resistance 

The major factors influencing the variability of CPT results are presented in Table 4.12.   
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Table 4.12  Sources of variability in CPT test results (Kulhawy and Trautmann, 1996) 
CPT Variable 

Type Item 
 

Relative Effect on Test Results 
Cone type (MCPT or ECPT) Moderate to significant 

Cone size Minor 
Cone angle Moderate to significant 

Rod compression (MCPT) Significant 
Manufacturing defects Minor to moderate 
Leaky seals (ECPT) Minor 

Equipment 

Excessive cone wear Minor to moderate 
Telescoping vs. continuous penetration Moderate to significant 

Calibration error Minor to moderate 
Penetration rate Minor 

Procedural/ 
Operator 

Inclined penetration Moderate to significant 
 

MCPT 

Uncertainty estimates of the COV (in percent) for the various factors include the following (Kul-

hawy and Trautmann, 1996): 

(1) Equipment: 5; 

(2) Procedure: 10 – 15 (tip and side resistances, respectively); 

(3) Random: 10 – 15 (tip and side resistances, respectively); 

(4) Total:  15 – 22 (tip and side resistances, respectively), where the total is computed 
by [ ] 2/1222 )()()()( randomCOVprocedureCOVequipmentCOVtotalCOV ++= ; 
and 

(5) Range: 15 – 25 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV. 

 
ECPT 

Uncertainty estimates of the COV (in percent) for the various factors include the following (Kul-

hawy and Trautmann, 1996): 

(1) Equipment: 3; 

(2) Procedure: 5; 

(3) Random: 5 – 10 (tip and side resistances, respectively); 

(4) Total:  8 – 12 (tip and side resistances, respectively), where the total is computed by 
[ ] 2/1222 )()()()( randomCOVprocedureCOVequipmentCOVtotalCOV ++= ; and 

(5) Range: 5 – 15 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV. 
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4.3.2.3 Vane Shear Testing (VST) Undrained Shear Strength 

The major factors influencing the variability of VST undrained shear strength are presented in 

Table 4.13.  Uncertainty estimates of the COV (in percent) for the various factors consist of the 

following (Kulhawy and Trautmann, 1996): 

(1) Equipment: 5; 

(2) Procedure: 8; 

(3) Random: 10; 

(4) Total:  14, where the total is computed as above; and 

(5) Range: 10 – 20 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV. 

Table 4.13  Sources of variability in VST test results (Kulhawy and Trautmann, 1996) 
VST Variable 

Type Item 
 

Relative Effect on Test Results 
Vane length Minor 

Height/diameter ratio Moderate 
Blade thickness Moderate 

Torque measuring device Moderate to significant 

Equipment 

Damaged vane Moderate to significant 
Vane insertion method Moderate to significant 
Rod friction calibration Moderate to significant 

Time delay between insertion and test-
ing 

Minor to moderate, to significant in 
soft clays 

Procedural/ 
Operator 

Vane rotation rate Moderate 

4.3.2.4 Dilatometer Test (DMT) Parameter 

The major factors influencing the variability of DMT results are presented in Table 4.14.  Uncer-

tainty estimates of the COV (in percent) for the various factors consist of the following (Kul-

hawy and Trautmann, 1996): 

(1) Equipment: 5; 

(2) Procedure: 5; 

(3) Random: 8; 

(4) Total:  11, where the total is computed as above; and 

(5) Range: 5 – 15 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV. 
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Table 4.14  Sources of variability in DMT test results (Kulhawy and Trautmann, 1996) 
DMT Variable 

Type Item 
 

Relative Effect on Test Results 
Leaking seals Minor 

Deformed membrane Moderate 
Bent or deformed push rods Minor to moderate 

Equipment 

Damaged blade Minor 
Push rod inclination Minor to moderate 

Testing rate Moderate to significant 
Driving method Minor to moderate 

Rod friction Minor 

Procedural/ 
Operator 

Calibration error Minor to moderate 

4.3.2.5 Pressuremeter Test (PMT) Parameter 

The major factors influencing the variability of PMT results are presented in Table 4.15. 

Table 4.15  Sources of variability in PMT test results (Kulhawy and Trautmann, 1996) 
PMT Variable 

Type Item 
 

 Relative Effect on Test Results 
Gage error Minor 

Expansion of tubing Minor to moderate 
Friction loss in tubing Minor 

Probe dimensions Minor to moderate 
Probe design (PMT) Minor 

Membrane aging Minor 
Cutting shoe size (SBPMT) Minor to moderate 
Cutting position (SBPMT) Minor 

Probe shape (SBPMT) Minor to moderate 
Drilling equipment (SBPMT) Minor to moderate 

Equipment 

Electrical sensor compliance (SBPMT) Minor 
Drilling method and borehole prepara-

tion (PMT) 
Significant 

Probe inflation rate Minor to moderate 
Relaxation time (SBPMT) Moderate to significant 

Procedural/ 
Operator 

Probe advance rate (SBPMT) Moderate to significant 
 

PMT 

Uncertainty estimates of the COV (in percent) for the various factors include the following (Kul-

hawy and Trautmann, 1996): 

(1) Equipment: 5; 

(2) Procedure: 12; 

(3) Random: 10; 

(4) Total:16, where the total is computed by 
[ ] 2/1222 )()()()( randomCOVprocedureCOVequipmentCOVtotalCOV ++= ; and 
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(5) Range: 10 – 20 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV.  
Results may differ for p0, pf, and pl, but data are insufficient to clarify. 

SBPMT 

Uncertainty estimates of the COV (in percent) for the various factors include the following (Kul-

hawy and Trautmann, 1996): 

(1) Equipment: 8; 

(2) Procedure: 15; 

(3) Random: 8; 

(4) Total:  19, where the total is computed by 
[ ] 2/1222 )()()()( randomCOVprocedureCOVequipmentCOVtotalCOV ++= ; and 

(5) Range: 15 – 25 where the range represents probable magnitudes of field test 
measurement error considering limited data and judgment involved in estimating 
COV.  Results may differ for p0, pf, and pl, but data are insufficient to clarify. 

4.4 OTHER TYPES OF TESTING 

Values for fractal dimensional data are given by Vallejo (1996).  Fractal dimension is a measure 

of the degree of the irregularity of plots representing the variability of engineering properties 

verses the depth of a soil profile.  Values for variability of ground-penetrating radar in sands are 

given by Young and Doucette (1996). 



 

 

5 Spatial Variability 

The terms used to characterize uncertainty thus far have disregarded correlation in space.  Soil 

properties, however, can be expected to be spatially correlated.  Characterization of the spatial 

distribution of soil properties requires the use of regionalized variables, which have a particular 

structure with properties between a truly random variable and one that is completely determinis-

tic.  This means that the properties of a regionalized variable at locations X and X + ∆h, where 

∆h is a separation distance, are correlated.  The correlation of a variable with itself is referred to 

as autocorrelation.   The autocorrelation depends on the relative positions of Xi and Xi + ∆h, both 

in distance and direction, and on the particular property being considered.  The size, shape, ori-

entation, and spatial arrangement of the samples constitute supports of the regionalized variable, 

therefore; the regionalized variable will change if any of the supports change (Davis, 1986).  The 

independence of the property at Xi and Xi + ∆h beyond a certain distance is simply a particular 

case of autocorrelation, in which the properties are purely random.  

This chapter introduces some basic terms and procedures that can be used to describe the 

spatial variability of soil parameters.  These include trends, scales of fluctuation, and correlation 

functions/variograms. 

5.1 TREND OR DRIFT 

The trend or drift is the expected value of the random variable at a point, iX , or computation-

ally, the weighted average of all the points within the neighborhood around point i (Davis, 1986).  

If the drift is subtracted from the regionalized variable, Xi, the residuals, ii XX − , will also be a 

regionalized variable with a local mean equal to zero.  If the residuals are stationary, a 

semivariogram can be computed.  Trends can be modeled as linear, quadratic, or higher-order 
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functions in one or more dimensions using least-squares techniques.  Davis (1986) outlines trend 

surface models and statistical tests of those types of trends. 

5.2 SCALE OF FLUCTUATION 

The scale of fluctuation (Fig. 4.1) provides a measure of the estimated distance over which a soil 

property shows strong correlation.  The scale of fluctuation uses the behavior of the normalized 

variance under successive local averaging or smoothing to describe the distance over which the 

soil properties show strong correlation.  A high value of the scale of fluctuation, δ, indicates the 

slowly varying nature of the property about the trend (low spatial variability).  The steps in-

volved in calculating the scale of fluctuation are as follows: 

(1) Calculate the variance for the series of data; this is the reference variance, σr; 
(2) Smooth the series of data by applying a moving average window of length w and 

substitute the original data value with the new smoothed value, xn* (e.g., for a win-
dow size, w = 3, xn* = (xn-1 + xn + xn+1)/w); 

(3) Calculate the variance for the smoothed data: this is the windowed variance, σw and 
will be lower than σr due to canceling out of fluctuations due to spatial averaging 
(Wickremesinghe, 1993); 

(4) Normalize the windowed variance by the reference variance and multiply by the 
window length to obtain: SOF = (σw /σr) * w; 

(5) Repeat Steps 2 – 4 incrementing the width of the window until the smoothing win-
dow is greater than about half the length of the data series; 

(6) Plot out the SOF as a function of window length; 

(7) Observe the behavior of the curve and take the first peak value as an estimate of the 
correlation length or scale of fluctuation, δ. 

 

As an example, Figure 5.1 presents tip resistance of an electric cone penetration test (CPT) for a 

site on an alluvial plain where soils consist of interbedded loose sands and soft silts.  The data set 

consists of 498 measurements of tip resistance, qc, digitized at a 0.02 m interval.  Note that the 

data in Figure 5.1 exhibit significant variability, particularly in the top meter of the soil profile.  

However, there are ranges of depth in which the tip resistance seems to be relatively uniform.  

To determine the average length of those depth ranges when observations are likely to be corre-

lated, the procedure outlined above is used to calculate the scale of fluctuation.  Figure 5.2 shows  

how the scale of fluctuation varies with the length of the moving average window.  The plot 

peaks at 0.26 m; therefore the scale of fluctuation is taken to be 0.26 m.  This estimate of correla-
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tion length in the tip resistance corresponds to the average thickness of interbedded layers of the 

sand and silt. 
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Fig. 5.1  CPT tip resistance log 
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Fig. 5.2  Plot of scale of fluctuation 

Tabulated values of scale of fluctuation reported in the literature are presented in  

Chapter 6. 
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5.3 CORRELATION FUNCTIONS AND VARIOGRAMS 

In spatial analysis, it becomes convenient to use a notation that represents data separated by a 

predefined distance, called the “separation distance” (also referred to as the lag distance), de-

noted h.  Furthermore, it is also convenient to use a notation where data points Xi and Xi+h are 

separated by h intervals.  In this notation, Xi is a measurement of the random variable at location 

i, and Xi+h is another measurement taken at h intervals.  When h appears in an equation other 

than a subscript, it represents the numbers of data points separated by the interval.  This short-

hand notation becomes convenient when presenting functions in future sections of this report. 

Correlation of spatial data uses a subset of the probability space called the sample popu-

lation.  Sampling distributions of the random variable X is also a random variable with a sample 

mean and variance calculated from a finite set of data.  The sample mean, )(XE , and variance, 

)(XV are given by: 
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where n is the number of samples in the finite probability space.  The covariance between sam-

ples of population random variables, X and Y, would correspondingly be: 
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Therefore, the autocovariance of X as a function of the separation distance, ∆h, becomes: 
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and is illustrated in Figure 5.3.  The autocovariance is calculated between a support or series and 

itself displaced by a lag of distance.  The autocovariance at lag 0 is simply the variance of the 

random variable.  The autocovariance is typically calculated for lags from about 0 to n/4.  
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Fig. 5.3 (a) Spatial covariance represented by data points, x, and separation distances 
of h;  (b) hypothetical data showing that autocorrelation should be higher for 
low h than for high h 

 

The autocovariance can be symbolically represented by covh, C(h), or σ2
h.  The autocor-

relation function is obtained by normalizing the autocovariance by the variance of the variable it-

self: 

 
)(

),cov(
XV

XXr hii
h

+= . (5.5) 

It should be clear that for h = 0, the value of cov(Xi, Xi+h) is equal to V(X) and the auto-

correlation function has a value of 1.0.  As the lag distance increases, the autocorrelation func-

tion should be expected to decrease (unless the variable happens to have a constant value), at 

least for small lag distances.  Variables with periodic characteristics will have autocorrelations 

functions that decrease and increase periodically with lag distance. 

5.3.1 Autocorrelation Functions 

Autocorrelation functions can be plotted as a function of the lag distance to produce an autocor-

relogram.  Figures 5.4 through 5.9 show several idealized time series and their corresponding 

autocorrelograms (adapted from Davis, 1986).  Figures 5.4 and 5.5 show a constant and linearly 

increasing value property, respectively.  For a constant function, the autocorrelation function is 

always equal to 1 because a shift in the function of any lag distance does not change the value of 

the function.  The linearly increasing time series shown in Figure 5.5 will have negative, or lin-

ear decreasing, correlation with increasing separation distance.  Zero correlation will occur at the 
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point where the property is zero.  Beyond a value of 50, the autocorrelation function would then 

become negative. 
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Fig. 5.4  Idealized autocorrelogram showing a constant property variable 
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Fig. 5.5  A linear increasing time series with its autocorrelation function 
 

Figure 5.6 shows a sinusoidal time series with a wavelength of 20 units.  Therefore, the 

autocorrelation function will exhibit sinusoidal correlation across the expected wavelength.  The 

autocorrelation function has a value of 1 at zero lag distance, a value of –1 at one-half wave-

length (at which point the lagged function is equal to the negative of the original function), and a 

value of 1 again at a lag distance of one wavelength (at which point the lagged function is identi-

cal to the original function). 
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Fig. 5.6 An idealized time series and autocorrelogram consisting of a sine wave with 

wavelength of 20 units 

In reality, perfectly sinusoidal data are rarely encountered.  The addition of random noise 

to a sinusoidal function keeps the function from being strictly periodic, and therefore prevents 

the autocorrelation function from ever reaching a value of 1 or –1 at non-zero lag distances.  Fig-
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ure 5.7 shows a sinusoidal function to which random noise has been added.  The sinusoidal na-

ture of the original function can be seen, and its effect is still reflected in the autocorrelation 

function. 
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Fig. 5.7 An idealized time series consisting of a sine wave plus random “noise” and its 

corresponding autocorrelogram 
 

Another function could include a linear trend in addition to sinusoidal and random com-

ponents.  Figure 5.8 shows a time series that has linear, sinusoidal, and random components, and 

its corresponding autocorrelogram.  The autocorrelogram shows more rapid decay in autocorrela-

tion than would have occurred without the linear trend. 
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Fig. 5.8 A linear increasing, sinusoidal time series with noise and its corresponding auto-

correlogram 
 

A completely random function would be expected to show no autocorrelation.  Figure 5.9 

shows a sequence of random numbers in the form of a time series that exhibits no autocorrela-

tion.  The autocorrelogram can be seen to decay very quickly to near-zero autocorrelation values, 

even at short lag distances. 
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Fig. 5.9  A random times series and corresponding autocorrelogram 

 

Using the example CPT data shown in Figure 5.1, Figure 5.10 presents an autocorrelogram of the 

tip resistance.  The plot begins at a maximum value at zero lag, drops and then rises at a lag of 

about 3 m.  This corresponds to a positive correlation at that distance and is likely the vertical 

distance between interbedded sand and silt layers in the CPT profile. 
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Fig. 5.10  Example autocorrelogram for CPT data shown in Figure 5.1 

 

Many specific standardized expressions are proposed for the autocorrelation function.  

Four are given in Table 5.1 where each is characterized by a parameter (a through d, respec-

tively).  The relationship between the scale of fluctuation and the autocorrelation function pa-

rameters is also given in Table 5.1. 



49 

 

Table 5.1 Autocorrelation functions and corresponding scale of fluctuation (after  
Vanmarcke, 1977) 

Correlation Function Scale of Fluctuation 
ahe /||−  2a 

2)/( bhe−  bπ  

)/cos(/|| Che ch−  C 





 +−

d
he dh ||1/||  4d 

 

5.3.2 Variograms 

The variogram function is a more appropriate way to describe spatial relations, as it is not related 

to the sample mean or variance, and allows the use of standardized spatial models.  The 

variogram function is a measure of the degree of spatial dependence between samples along a 

specific support.  The variogram function is defined as the variance between data at a particular 

lag distance, Z(X1) – Z(X2): 

 

 [ ]{ }2)(2),(2 hiihii XXEhXX ++ −== γγ  (5.6) 

 

with the function γ(h) called the semivariogram function (due to the 2).  The reader should be 

aware that conflict exists between variogram terminologies found in the literature.  While γ(h) is 

defined as the semivariogram function, many authors also refer to it as the “variogram function.”  

This summary will use the term “semivariogram function” to describe γ(h).  Computationally, 

the semivariogram is given by: 

 ∑
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where N(h) is the number of data pairs separated by h.  The contrasting autocovariance function 

is: 

 [ ][ ]{ }
hii XhiXi XXEhC

+
−−= + µµ)( . (5.8) 

Therefore, the relationship between the variogram function and the autocovariance is: 

 )()( 2
0 hCh −= σγ  (5.9) 
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where 2
0σ is the variance at h = 0, or V(X) as discussed above.  The relationship between γ(h), 

C(h) and 2
0σ  is shown graphically in Figure 5.11. 

 
Fig. 5.11  Relationship between variogram and autocovariance 
 

Consider an illustrative simple data set (e.g., SPT values) containing (N1)60 resistance 

values equally spaced at depth intervals of one meter.  To compute the semivariogram, the trend 

must first be removed and the semivariogram calculated suing the residuals.  The original data 

and trend are shown in Figure 5.12. 
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Fig. 5.12  Illustrative SPT data set 
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There are 12 data points, which produce 11 pairs of points, hence N(h) = 11.   
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The corresponding variogram calculation for a lag of 1 m (h = 1) is as follows: 
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Similarly, for a lag of h = 2, N(2) = 10, and the calculation becomes: 
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where Xi are the residuals after removal of the trend.  The plotted semivariogram values are pre-

sented in Figure 5.13. 

 

 
Fig. 5.13  Semivariogram for SPT data shown in Fig. 5.12 

 

Most geotechnical sample data are not uniformly spaced; therefore a method to compute 

variogram and autocorrelation functions for irregularly spaced data is needed.  The most com-

mon method is to calculate separation distances (lags) and the value difference [Xi – Xi+h] for the 

calculated lags.  The lags and differences are then sorted into ranges.  The sample pairs corre-

sponding to a given range are then used to compute the variogram function for that range, using 

the center of the range for h.  For example, if a particular range were considered between lag dis-

tances of 3 m and 5 m, then the computed variogram function value would be plotted at 4 m.  

Ranges of lags are usually referred to as “classes.”  Other methods use weighting functions (e.g., 

Journel and Huijbregts, 1978). 
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5.3.3 Stationarity 

Given that regionalized variables are spatially continuous, it is not possible to know their values 

everywhere.  Instead, the values are known through samples at specific locations; therefore, the 

covariance and variogram functions depend simultaneously on two supports, for example, X1 and 

X2.  Furthermore, these functions depend only on the distance between the two supports.  This 

means that for a pair of random variables, the correlation that exists between the data values does 

not depend on their positions in the support, but on the distance that separates them (Journel and 

Huijbregts, 1978).  To that end, it is important to define the four basic conditions regarding spa-

tial stationarity: 

1. Strict Stationarity — A random variable has strict stationarity when the CDF (of the 
stochastic process) is invariant over all shifts or changes in location.  This means that 
the two random variables (xi and xi+h) have the same distribution regardless of the dis-
tance between them. 

2. Second-Order Stationarity — The mean of the process is constant and does not de-
pend on the location, and the covariance exists and depends only on the separation 
distance, h, for each pair of random variables [Z(x), Z(x+h)].  Other than assuming the 
existence of the covariance, an a priori variance is also assumed to exist [V(x) = 
C(0)]: 

  µ=)}({ xZE , and  (5.10) 

  ]})(][)({[)( µµ −+−= hxZxZEhC . (5.11) 

 

3. Intrinsic Hypothesis — The mean of the process is constant and does not depend on 
location and the increment of V(x) – V(x+h) has finite variance that does not depend 
on x.  Thus: 

  )(2})]()({[)]()([ 2 hhxZxZEhxZxZV γ=+−=+− . (5.12) 

 

 Therefore, second-order stationarity satisfies the intrinsic hypothesis, but the converse 
is not true. 

4. Quasi-stationarity — Quasi- stationarity assumes second-order stationarity of the in-
trinsic hypothesis to be applied to a local region only, i.e., bh ≤ , where b is a limit-
ing distance that represents the neighborhood of estimation or simulation. 
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5.3.4 Properties of the Variogram Function 

Given the basic definitions and assumptions regarding spatial analysis, it is appropriate to sum-

marize the properties of the variogram function.  The variogram (as well as the spatial variance) 

is actually two-sided, with a negative part that is a mirror image of the positive part (resulting 

from reversal of the lag sequence).  In practice, the negative part is not considered in spatial 

analysis of geotechnical soil properties; however it must be considered when applying these con-

cepts to Fourier transforms of time series. 

In general, γ(h) increases from its initial value at γ(0) as h increases.  For continuous ran-

dom variables, the variogram function levels off and becomes stable about a limiting value called 

the sill, which is generally at, or near, the variance of the stochastic process.  The separation dis-

tance where the variogram function approaches the sill is called the range of influence, desig-

nated a or hr.  Where the variogram approaches zero autocorrelation ( ( ) )0(C=∞γ ) at lags 

greater than the range of influence is called a “transition phenomenon.”  The autocovariance dis-

tance, r0, is the distance at which the spatial variance has decayed by 1/e (37%).  In practice, the 

initial value of the sill is taken as the sample variance, but as stated earlier, can be greater for ac-

tual data. Variograms that have a sill and a range of influence are called “transition variograms” 

and represent stochastic processes that are not only intrinsic but second-order stationary.  This is 

shown in Figure 5.14 in that the covariance depends only on the separation distance, and that the 

process has a finite variance that does not depend on the increment between lags. 

 

 
Fig. 5.14  Properties of the variogram function 
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In some cases, the behavior of the variogram near the origin (h = 0) can have a disconti-

nuity.  The discontinuity near the origin is called the nugget effect, and can result from (a) the 

variability between two values taken at two very close points, (b) differences in sample values 

that are not measurable at the scale of data collection, i.e., small-scale effects or (c) be partially 

attributed to measurement errors.  The nugget effect produces an apparent intercept at zero sepa-

ration distance, i.e., γ(0) = a2. 

5.3.5 Standard Variogram Models 

It is common to use standard variogram models to characterize spatial variability of geotechnical 

soil properties.  Variogram models typically use functions that are positive definite.  Commonly 

used models are categorized into transition models with and without sills.  A special class uses 

models that do not monotonically increase. 

5.3.5.1 Transition Models with a Sill 

One class of transition models uses relatively simple functions to describe a smooth variation of 

the variogram function between zero (or a2 if the nugget effect is present) and the sill.  Typical 

transition models with a sill include simple linear, spherical, exponential, and Gaussian models.   

A simple linear model increases linearly from zero lag to the sill.  Its semivariogram 

function is given by: 
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where a2 is the nugget, hr is the range, and σ2 is the sill. 

A modified linear model includes a normal transition at the origin and increases linearly 

from zero lag to the sill but.  Its semivariogram function is given by: 
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where hmin is the lag at which the transition takes place. 
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A spherical model increases linearly from the origin (zero lag) and includes a normal 

transition at the range of influence.  Its semivariogram function is given by: 
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The corresponding scale of fluctuation is rh
4
3 . 

A modified spherical model includes a normal transition at the origin and a normal transi-

tion at the range of influence.  Its semivariogram function is given by: 
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An exponential model approaches the sill asymptotically.  Its semivariogram function is 

given by: 
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where c is a constant related to an “effective,” range as this model never theoretically reaches the 

sill.  For geotechnical purposes, the effective range, hr′ is the lag at which the exponential 

variogram function reaches 95% of the sill, or where h = 3c = hr ′(given that 1-e-3 = 0.95).  There-

fore, c = hr′/3.  The corresponding scale of fluctuation is 2hr 

A Gaussian model is parabolic at the origin.  Its semivariogram function is given by: 
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where the effective range is at '3 rhch == , therefore c = hr’/ 3 .  The corresponding scale of 

fluctuation is rhπ .  These models are shown in graphical form in Figure 5.15. 
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Fig. 5.15  Transition variogram models with sills 

5.3.6 Nested Structures 

When applied to soil properties, the variability between Xi and Xi+h (characterized by the 

variogram) is due to different causes at different scales: 

• at the level of support (e.g., at a separation distance of almost zero), variability is 
primarily due to measurement (sampling and measurement errors); 

• at the small visible level or observable level (e.g., h < 1 cm), variability can result 
from transition from one particle to the next, or from one pore to the next, etc.; 

• at the local level (e.g., h <100 m to 500 m), geologic heterogeneities (lithologic 
changes, lens or anomalies, etc.) produce additional variability; 

• at the regional level (e.g., h <1000 km), there are also large-scale variabilities. 

From a practical standpoint, all these variabilities are never observed simultaneously, but 

can certainly occur simultaneously.  These scale-dependent sources of variability are contained 

within the spatial system as nested structures.  Nested structures can be represented as the sum of 

several variograms at different separation distances as shown in Figure 5.16. 
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Fig. 5.16  Idealized nested structures 

5.3.7 Spatial Anisotropy 

A spatial phenomenon is said to be anisotropic if its variability is not the same in every direction.  

For example, a preferred direction to hydraulic conductivity is commonly observed in soil depos-

ited by sedimentation.  Differences in grain size distribution and other properties such as perme-

ability would be more pronounced perpendicular to the bedding planes.  Anisotropies can be 

handled by reducing the isotropy by a linear transformation of the rectangular coordinates in the 

case of geometric anisotropy.  Geometric anisotropy is present if n-directional variograms can be 

represented by n-transition-type models of the same type with the same sill, with varying ranges.  

This is similar to the way permeabilities are considered in two dimensions.   

A more commonly used method for anisotropic conditions is to treat the anisotropy as a 

series of zones, called zonal anisotropy.  In this method, the variable will exhibit different sills in 

different directions while the range remains constant; therefore a nested structure is used in 

which each component will have its own anisotropy.  A model of zonal anisotropy built from 

nested structures having their own anisotropies is flexible enough to be used for most types of 

experimental anisotropy. 

Anisotropies can be accounted for by using anisotropic variograms. To detect anisot-

ropies, variograms are typically calculated in different directions and a rose diagram (a diagram 

of ranges in the different directions) is plotted. The anisotropy ratio is the ratio between the 

smallest and largest range (these directions are assumed to be approximately perpendicular to 



58 

each other and are termed the major and minor axes).  An anisotropy ratio of one would denote 

an isotropic variogram (same variogram for both the major and minor axes). 



 

 

6 Spatial Variability of Soil Properties 

The spatial variability of soil properties is highly dependent on soil type or the method of soil 

deposition or formation.  As a result, good geologic characterization is an important part of any 

effort toward modeling spatial variability.  Measured soil properties can also be influenced by 

method of measurement, measurement errors, etc.  It is important to realize that the values of the 

parameters used to model spatial variability of geotechnical soil properties will be highly site 

specific. 

Spatial variability in the values of soil properties is a major contributor to spatial analysis 

in geotechnical engineering.  Nevertheless, relatively little quantitative data on the spatial vari-

ability of soil properties have been reported.  This chapter summarizes values of scale of fluctua-

tion, and the parameters used to define variogram models for various soil properties from sources 

that have been reported in the literature. 

6.1 SCALE OF FLUCTUATION 

The scale of fluctuation provides a measure of how rapidly a parameter varies with position 

about a trend.  Several studies have reported scale of fluctuation values for laboratory- and field-

measured properties.  Table 6.1 presents a tabulated scale of fluctuation data for some labora-

tory-measured properties.  



60 

 

Table 6.1 Scale of fluctuation values for some laboratory-tested properties (after Phoon 
and Kulhawy (1999) 

Scale of Fluctuation  
(m) 

Fluctuation 
Direction 

Property Soil Type No. of  
Studies 

Range Mean 
su (kN/m2) Clay 5 0.8 – 6.1 2.5 

wn (%) Clay, loam 3 1.6 – 12.7 5.7 
LL (%) Clay, loam 2 1.6 – 8.7 5.2 

γ  (kN/m3) Clay 1 * 1.6 

Vertical 

γ (kN/m3) Clay, loam 2 2.4 – 7.9 5.2 
Horizontal wn (%) Clay 1 * 170.0 

* Not reported. 
 

Scales of fluctuation have also been computed for insitu test data.  Phoon and Kulhawy 

(1996) suggest the values of scale of fluctuation for SPT, CPT, and VST parameters presented in 

Table 6.2. 

Table 6.2  Scale of fluctuation values for insitu testing  
Scale of Fluctuation 

(m) 
Test 
Type 

Fluctuation 
Direction 

Property Soil Type No. of 
Studies 

Range Mean 
SPT Vertical N * 1 2.4 * 

qc  Sand, Clay 7 0.1 – 2.2 0.9 Vertical 
qT Clay 10 0.2 – 0.5 0.3 
qc Sand, Clay 11 3.0 – 80.0 47.9 

CPT 

Horizontal 
qT Clay 2 23.0 – 66.0 44.5 

Vertical su  Clay 6 2.0 – 6.2 3.8 VST 
Horizontal su Clay 3 46.0 – 60.0 50.7 

 

The amount of information on the scale of fluctuation is limited in comparison to the 

COV of inherent variability.  Therefore, the actual values of scale of fluctuation used in geotech-

nical engineering analyses should be carefully chosen.  Note that for both laboratory- and field-

measured data, the scale of fluctuation in the horizontal direction is much higher than in the ver-

tical direction.  Also note that the scale of fluctuation for the CPT is much lower than the scale of 

fluctuation for SPT, very likely because the sampling interval of the CPT is less than that of the 

SPT. 
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6.2 VARIOGRAM MODEL, NUGGET, AND SILL 

A number of researchers have investigated the spatial variability of soil properties, and inter-

preted those data in terms of standard variogram models and identified representative values of 

the variogram model parameters.  Such studies, however, require detailed subsurface investiga-

tions with closely spaced data (in at least one direction) in order to accurately resolve the spatial 

variability.  Data of this type are most conveniently (and economically) acquired using CPT; 

hence the majority of the available data is based on CPT parameters.  Table 6.3 provides typical 

values for the variogram model, nugget, and sill for CPT parameters in different soil conditions. 

Table 6.3 Tabulated Values for variogram model, nugget, and sill for various CPT  
parameters (after Hegazy et al., 1996) 

Soil Prop-
erty 

Soil Type Direction Variogram 
Model 

Nugget 
(atm2) 

Sill 
(atm2) 

CPT Tip Re-
sistance 

Sandy fill 
Sandy clay 
Clayey sand to 

silty sand 
Clays 
 
Sandy fill 
Sandy clay 
Clayey sand to 

silty sand 
Clays 

Vertical 
Vertical 
Vertical 

 
Vertical 

 
Non-directional 
Non-directional 
Non-directional 

 
Non-directional 

Spherical 
Spherical 

Exponential/ 
Spherical 

Exponential/ 
Spherical 

Exponential 
Spherical 
Spherical 

 
Exponential 

0 – 7 
0 
0 
 

0 – 4 
 

0.00 
0.00 
0.00 

 
4.50 

2.8 – 127 
14 – 2000 

1940 – 3312 
 

0.6 – 21.6 
 

70 
4200 
1700 

 
27 

CPT Sleeve 
Friction 

Sandy fill 
 
Sandy clay 
 
Clayey sand to 

silty sand 
Clays 
 
Sandy fill 
Sandy clay 
Clayey sand to 

silty sand 
Clays 

Vertical 
 

Vertical 
 

Vertical 
 

Vertical 
 

Non-directional 
Non-directional 
Non-directional 

 
Non-directional 

Exponential/ 
Spherical 

Exponential/ 
Spherical 
Spherical 

 
Exponential/ 

Spherical 
Exponential 

Spherical 
Exponential 

 
Exponential 

0.00 – 0.03 
 

0 
 

0.00 – 0.05 
 

0 
 

0.00 
0.00 
0.00 

 
0.00 

0.03 – 0.13 
 

0.03 – 0.80 
 

0.13 – 0.83 
 

0.00 – 0.26 
 

0.12 
0.85 
0.47 

 
0.25 

CPT Pore 
Pressure 

Sandy fill 
 
Sandy clay 
 
Clayey sand to 

silty sand 
Sandy fill 
Sandy clay 
Clayey sand to 

silty sand 

Vertical 
 

Vertical 
 

Vertical 
 

Non-directional 
Non-directional 
Non-directional 

 

Exponential/ 
Spherical 
Spherical/ 
Gaussian 

Exponential/ 
Spherical 

Exponential 
Spherical 

Exponential 

0 
 

0 
 

0 
 

0.00 
0.00 
0.00 

0.00 – 0.12 
 

0.02 – 0.37 
 

0.03 – 7.17 
 

0.05 
1.16 
0.10 
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6.3 RANGE/AUTOCOVARIANCE DISTANCE 

Data on the distances over which various soil properties remain correlated have also been re-

ported in the literature.  By fitting such data to standard variogram models, values of the model 

parameters that describe the variation of autocorrelation with distance can be determined.  Tables 

6.4 and 6.5 present typical values of the range and autocovariance distance.  
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Table 6.4 Tabulated values of range and autocovariance distance for SPT and  
CPT parameters 

Soil Property Soil Type Direction Range (a) or Autocovari-
ance Distance (r0) (m)* 

Note 

SPT N Value Dune sand 
Alluvial sand 

Horizontal 
Horizontal 

r0 = 20 
r0 = 17 

1 

CPT Resistance Offshore soils 
Offshore soils 
Silty clay 
Clean sand 
Mexico clay 
Clay 
Sensitive Clay 
Silty Clay 

Horizontal 
Horizontal 
Horizontal 

Vertical 
Vertical 
Vertical 
Vertical 
Vertical 

r0 = 30 
r0 = 14-38 
r0 = 5-12 

r0 = 3 
r0 = 1 
r0 = 1 
r0 = 2 
r0 = 1 

2 

North Sea clay 
Copper tailings 
Clean sand 
North Sea 
Sensitive Clay 

Horizontal 
Vertical 
Vertical 

Horizontal 
Vertical 

r0 = 30 
r0 = 0.5 
r0 = 1.6 

r0 = 14 – 38 
a = 2 

1 CPT Tip Resistance 

Sandy fill 
Sandy clay 
Clayey sand to silty sand 
Clays 
Sandy fill 
Sandy clay 
Clayey sand to silty sand 
Clays 

Vertical 
Vertical 
Vertical 
Vertical 

Non-directional 
Non-directional 
Non-directional 
Non-directional 

a = 0.27 – 0.94 
a = 0.30 – 1.22 
a = 1.83 – 2.90 
a = 0.70 – 2.65 

a1 = 1.07, a3 = 0.57(a) 

a1 = 0.98, a3 = 0.69(b) 

a1 = 3.05, a3 = 2.32(c) 

a1 = 3.05, a3 = 1.32(d) 

3 

Sandy fill 
Sandy clay 
Clayey sand to silty sand 
Clays 
Sandy fill 
Sandy clay 
Clayey sand to silty sand 
Clays 

Vertical 
Vertical 
Vertical 
Vertical 

Non-directional 
Non-directional 
Non-directional 
Non-directional 

a = 0.61 – 0.82 
a = 0.34 – 1.77 
a = 1.37 – 3.05 
a = 0.46 – 4.42 

a1 = 1.83, a3 = 0.74(a) 

a1 = 1.22, a3 = 1.20(b) 

a1 = 3.66, a3 = 2.36(c) 

a1 = 4.57, a3 = 2.39(d) 

3 CPT Sleeve Fric-
tion 

Sensitive Clay Vertical a = 2  
Sandy fill 
Sandy clay 
Clayey sand to silty sand 
Sandy fill 
Sandy clay 
Clayey sand to silty sand 

Vertical 
Vertical 
Vertical 

Non-directional 
Non-directional 
Non-directional 

a = 0.46 – 1.68 
a = 0.37 – 1.37 
a = 2.59 – 3.66 

a1 = 1.52, a3 = 1.04 

a1 = 1.22, a3 = 0.81 

a1 = 3.96, a3 = 2.16 

3 CPT Pore Pressure 

Sensitive Clay Vertical a = 2 1 
* a1 = major range, a3 = minor range. 
(a) 312 points. 
(b) 126 points. 
(c) 450 points. 
(d) 636 points. 
Notes: 
(1) DeGroot (1996) 
(2) Lacasse and Nadim (1996) 
(3) Hegazy, et al. (1996) 
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Table 6.5 Tabulated values of autocovariance distance for additional soil parameters 
(after DeGroot, 1996) 

Soil Property Soil Type Direction Autocovariance Distance (r0) 
(m) 

DMT P0 Varved clay Vertical r0 = 1.0 
FVT Undrained 
Shear Strength 

Clay 
Sensitive clay 
Sensitive clay 
Sensitive clay 

Vertical 
Vertical 

Horizontal 
Vertical 

r0 = 1 – 3 
r0 = 1 

r0 = 23 
a = 2 

Laboratory 
Undrained Shear 

Strength 

Chicago clay 
 
Offshore sites 

Vertical 
 

Vertical 

r0 ~ 0.5 
(Unconfined Compression) 

r0 = 0.3 – 3.6 
(Triaxial and DDS) 

Hydraulic 
Conductivity 

Salt dome 
Compacted clay 
Sand aquifer 

Horizontal 
Horizontal 
Horizontal 

r0 = 1.5 km 
r0 = 0.5 – 2 
r0 = 1 – 2.5 



 

7 Estimation and Simulation 

Previous chapters presented techniques for characterizing the spatial correlation of regionalized 

variables such as soil properties.  In cases where soil property data are available at specific loca-

tions, it is frequently desirable to want to know the value of that property at a different location.  

Estimation techniques can be used to determine the desired value.  In other cases, discrete data 

may not be available, but the CDF and autocorrelation function for the data are known or can be 

assumed.  In such cases, simulation techniques can be used to generate spatial variable values of 

the property of interest. 

7.1 ESTIMATION 

If measurements have been made at random locations and the form of the autocorrelation is 

known, it is generally possible to estimate the value of the random variable at other locations 

through a process called kriging.  Kriging is a weighted, moving average interpolation (or ex-

trapolation) procedure that minimizes the estimated variance of the interpolated (extrapolated) 

value with the weighted average of its neighbors.  The weighting factors and the variance are 

computed using the variogram model.  Since the autocorrelation is related to distance, the 

weights depend on the spatial arrangement of the locations of interest.  Significantly, kriging 

provides an unbiased estimator of the mean characteristic of the random field. 

Local estimation is used to find the best estimator over a limited domain of the regional-

ized variable, i.e., at small lags compared to the dimensions at which the homogeneous property 

is measured.  Global estimation considers lags larger than the limits of quasi-stationarity and 

therefore reduces the estimation to computation of general statistics such as a mean and variance. 

The goal of kriging is to predict the average value of X within a block, B, over a volume, 

area, or point.  Simple kriging assumes that the covariance is second-order stationary, and that 
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the mean and variance of the data being considered are constant.  The true average value of B is 

∫==
B

B dxxZ
B

Z )(1µ , but an approximation of the true average can be estimated from: 
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For an unbiased estimator: 
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therefore ∑
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1

0.1 .  Therefore, minimizing the squared error can be accomplished by finding a 

set of ai values for which 0=
∂
∂

ia
Q .  By using the method of Lagrangian multipliers, the solution 

to this partial differential equation can be obtained from the following set of simultaneous equa-

tions: 
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where Cij = C(h), the autocovariance between the data values, λ is a Lagrangian multiplier,  

CBi = C(h) between the block B and all data values, and ai are the kriging weights.  In matrix 

form, the equations are: 
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Therefore, the solution, which yields the weighting factors, ai, is given by: 
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The kriging variance, an estimate of the estimation variance, can be obtained as: 
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The information needed as input to kriging estimation includes the sample values and their spa-

tial coordinates, locations of blocks or points to be estimated, and an estimated variogram func-

tion.  Computationally, the process consists of the following steps: 

(1) Entry in the data file of data points and selection of samples that influence the block 
of interest, 

(2) Computation of covariances between the selected samples, 

(3) Computation of covariances between the selected samples and the estimation point, 

(4) Assembly of the kriging equations, 

(5) Solution of the kriging equations to obtain the weights, 

(6) Computation of estimated values using computed weights, and 

(7) Calculation of kriging variance. 

Many forms of kriging exist, and more detained explanations may be found in Journel 

and Huijbregts (1978), Davis (1986), and Carr (1995).  The simplest form has been presented 

here for illustration.  Figure 7.1 shows an example of kriging where the known data are at equal 
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distances from the location of where estimation is desired.  In this example, all known points are 

separated from xi by 100 m.  However, in Cases (a) and (b), points 2 and 3 are separated by 20 m 

and 174 m, respectively.  The use of kriging discriminates the spatial structure of the known data 

resulting in an estimated value, xest, of 1.767 for Case (a) and a value of 2.000 for Case (b). 

 

Case (a) 

xest

20 m
100 m

100 m

100 m

x2 = 2

x3 = 3

x1 = 1

Equal 
angles  

Case (b) 

xest

100 m

100 m

100 m

x2 = 2

x3 = 3

x1 = 1

All angles 
equal

 
 

Fig. 7.1  Hypothetical kriging Cases (a) and (b) 
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7.2 SIMULATION 

A regionalized variable, Z(X), can be interpreted as one realization of a random function Z(x) 

that can be characterized by a distribution function and variogram model.  The goal of simulation 

is to create other realizations of the random function and retain only those realizations that meet 

the requirements set forth, such as the experimental values in a known data set or a pdf.  Two 

simulation techniques are discussed in detail in this section: random fields and Monte Carlo 

methods.   

It is important to understand the difference between estimation and simulation.  Unbiased 

estimators and properly simulated data should have the same values at the experimental data lo-

cations and/or should also have the same or specified dispersion (variability in a particular direc-

tion) characteristics.  The goal of estimation is to provide an unbiased estimate of the actual data 

with minimal variance across the support.  However, this does not mean that the estimators will 

reproduce the true variability of the property.  This is why estimation typically has a smoothing 

effect on the real data.  Conversely, the goal of simulation is to produce a set of data with the 

same two moments (mean and covariance) and spatial variation (variogram) as the known distri-

bution. 

7.2.1 Random Fields 

Simulation of random fields can be useful to quantify uncertainty in probabilistic terms.  This 

simulation technique generates a number of realizations of random fields that describes the data 

at hand.  The data from each realization can be used to solve the deterministic problem of inter-

est.  From the set of solutions obtained, inferences of the design problem can then be made in a 

probabilistic manner (Hasofer, 1993).  The optimum design can then be made by ascertaining 

probabilities or by balancing safety or cost.  Simulation of random fields is a broad subject in and 

of itself.  The materials presented in this section are a brief summary of the work by Vanmarcke 

(1983), Yamazaki and Shinozuka (1988), and Hasofer (1993). 
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7.2.1.1 Gaussian versus Non-Gaussian Fields 

The assumption of Gaussian behavior greatly simplifies stochastic problems.  Most simulation 

methods produce fields which are either approximately or exactly Gaussian.  However, the dis-

tributions of many geotechnical soil properties may be far from Gaussian.  To determine whether 

or not to use Gaussian or non-Gaussian random fields, one must look at the specified probabilis-

tic structure of the random field.  A Gaussian field requires only that the mean and covariance 

function at each pair of points be specified. Conversely, for a general, non-Gaussian field, a full 

specification requires that all n-dimensional joint distribution functions (a function that defines 

how all distributions are dependent on each other) at n arbitrary points in the field be given.  This 

is generally impractical so portions of the distributions of the field are adjusted to conform to the 

required specification. 

7.2.1.2 Methods of Random Field Generation 

The two most common types of random field simulation are (a) discretization in the time domain 

and (b) discretization in the spatial domain.  Because geotechnical soil properties are inherently 

spatial, the following discussion will be limited to the spatial domain and, further, to two spatial 

dimensions.  Spatial models are extensions of one-dimensional, time series models and will yield 

discrete realizations.   

The simplest model is the moving average (MA) model given by the formula: 

 ∑∑
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where n and m are the field dimensions, r and s are dimensions of the moving average, and Ui,j 

are independent standard normal variables.  The optimum choice for the weighting function, brs, 

is given by: 
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where λ1 and λ2 are wavelengths, ( ){ }∑ ∑ +=
r s rsD sriRS 2121 exp),( λλλλ  is the spectral density 

function of the discrete field Xij, and [ ]ijsjrirs XXER ++= , .  The numbers n and m are chosen so 

that the brs values are negligible outside the summation range.  Autoregressive (AR) models are 

also used, as well as combined autoregressive, moving average (ARMA) models. 
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Generation of non-Gaussian, random fields is accomplished by generating a Gaussian 

field and then transforming it into a non-Gaussian field by a mapping technique on the probabil-

ity distribution function.  However, the spectral density of the mapped field does not match the 

target spectral density because the transformation is nonlinear.  Therefore, an iterative algorithm 

is required to match the target spectral density.  Such an iterative method is outlined in Yamazaki 

and Shinozuka (1988).  

7.2.2 Monte Carlo Methods 

Simulation by Monte Carlo methods (MCM) solves problems by generating suitable random 

numbers (or pseudo-random numbers) and observing that fraction of the numbers that obey some 

property or properties. The methods are useful for obtaining numerical solutions to problems that 

are too complicated to solve analytically.  Given a function Y = g (Z(x1, x2, ....... xn)), where x1, x2, 

...xn are random variables with known statistics, the MCM can be used to find the statistics of Y.  

The MCM is a simple but versatile computational procedure that is well suited for numerical 

analysis.  In general, the implementation of the method (Yang, et al., 1993) involves: 

• Selection of a model that will produce a deterministic solution to a problem of in-
terest. 

• Decisions regarding which input parameters are to be modeled probabilistically 
and the representation of their variabilities in terms of probability distributions. 

• Repeated estimation of input parameters that fit the appropriate probability distri-
butions and are consistent with the known or estimated correlation between input 
parameters. 

• Repeated determination of output using the deterministic model. 

• Determination of the pdf of the computed output, Y.  The pdf may be approxi-
mated by a histogram from which useful statistics of Y can be computed. 

 

For example, in probabilistic slope stability analyses, a critical slip surface can first be 

determined based on the mean value of the input parameters using appropriate deterministic 

(limit equilibrium or finite element) analyses.  Probabilistic analysis can then be performed, tak-

ing into consideration the variability of the input parameters on the critical slip surface.  In most 

cases, a distribution of the variability of the soil input properties is assumed with user-specified 

parameters, such as mean values and standard deviations.  During each Monte Carlo trial, the in-

put parameters are updated based on a normalized random number.  The factors of safety are 
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then recomputed based on the updated soil input parameters.  The result is a mean and standard 

deviation of the factor of safety.  The probability distribution function is then obtained from the 

normal curve.  The number of Monte Carlo trials in an analysis of this type will be dependent on 

the number of variable input parameters and the expected probability of failure.  In general, the 

number of required trials increases as the number of variable input increases or the expected 

probability of failure becomes smaller.  It is not unusual to do thousands of trials in order to 

achieve an acceptable level of confidence in a Monte Carlo probabilistic slope stability analysis 

(Mostyn and Li, 1993). 

7.2.2.1 Random Number Generation 

Fundamental to the Monte Carlo method are the randomly generated input parameters that are 

used in the deterministic model.  In general, this is accomplished using a random number genera-

tion function, with random numbers generated during each analysis run.  To ensure that new ran-

dom numbers are generated for each run, the random number function is “seeded” with the cur-

rent time of a computer clock. 

The random numbers generated from the function are uniformly distributed with values 

between 0.0 and 1.0.  In order to use the generated random number in calculations of other dis-

tribution, the random number needs to be parameterized to the distribution of interest.  For ex-

ample, to generate a normally distributed random number, the uniform random number is trans-

formed to a normally distributed one.  For the normal distribution, the normalization process is 

done using the transformation equation suggested by Box and Muller, (1958): 

 )2sin()ln2( 21 rrN π−=  (7.13) 

where N  = normalized random number, r1 = uniform random number 1, and r2 = uniform random 

number 2. 

The transformation equation requires the generation of two uniform random numbers to 

generate a parameterized random number with a standard normal distribution (mean value of 0 

and standard derivation of 1 as discussed in Section 3.6.2). 
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7.2.2.2 Estimation of Input Parameters 

At the beginning of each Monte Carlo trial, all uncertain input parameters are re-evaluated based 

on the specified distribution.  For ease of computation, the mean value, µ, the standard deviation, 

σ , and the normalized random number, N, are used.  The general equation for updating the pa-

rameters is simply: 

 σµ NP +=  (7.14) 

where P is the new trial value of any of the parameters specified with a standard deviation as-

suming a normal distribution.  For example, consider undrained shear strength, su, with a speci-

fied mean value of 2200 psf and a standard deviation of 250 psf.  In a particular Monte Carlo 

trial, if the normalized random number is –2.0, the trial su will be 1700 psf.   

It is important to consider the parameter of interest relative to common probability distri-

butions.  For example, Lumb (1966) has shown that the tangent of the friction angle (tanφ) con-

forms better than the friction angle itself to the normal probability distribution function.  There-

fore, it may be appropriate to use the tangent of the friction angles in the estimation of all trial 

friction angles. 

7.2.2.3 Adjustments for Correlation 

When soil properties are not independent, the normalized random number should be adjusted to 

consider the effect of correlation.  The following equation is used in the adjustment for two cor-

related properties (Lumb, 1970): 

 ( ) 21 1 NNN a ρρ −+=  (7.15) 

where Na = adjusted parameterized random number for the second property, ρ  = correlation co-

efficient between the first and second properties, N1 = normalized random number for the first 

property (assuming independence), and N2 = normalized random number for the second property 

(assuming independence).  For the adjustment of the more than two correlated properties, the co-

variances from the covariance matrix can be used for the adjustment. 
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7.2.2.4 Statistical Analysis 

Assuming that the trial model is normally distributed, statistical analysis can be conducted to de-

termine the mean, standard deviation, probability density function, and the cumulative distribu-

tion function of the model output.  The equations used in the statistical analysis are summarized 

as follows (Lapin, 1983): 
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where Yi = the output from the trial model, N = number of trial runs, and F = output parameter 

of interest.  Note that these equations are derived from those presented in Chapter 3. 

7.2.2.5 Number of Monte Carlo Trials 

Probabilistic analysis using the MCM involves many trial runs.  The more trial runs used in an 

analysis, the more accurate the statistics will be.  The number of required Monte Carlo trials is 

dependent on the desired level of confidence in the solution as well as the number of variables 

being considered (Harr, 1987), and can be estimated from: 
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where Nmc = number of Monte Carlo trials, d = the standard normal deviate corresponding to the 

level of confidence, ε = the desired level of confidence (0 to 100%) expressed in decimal form; 

and m = number of variables.  This relationship is shown graphically in Figure 7.2. 

The number of Monte Carlo trials increases geometrically with the level of confidence 

and the number of variables.  For example, if the desired level of confidence is 90%, the normal 

standard deviate will be 1.64, the number of Monte Carlo trials will be 67 for one variable, 4,521 
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for two variables, and 304,007 for three variables.  Theoretically, for a 100% level of confidence, 

an infinite number of trials would be required.   
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Fig. 7.2  Number of required Monte Carlo trials 

 

For practical purposes, the number of Monte Carlo trials is usually in the order of thou-

sands.  This may not correspond to a high level of confidence when multiple variables are being 

considered; however, the statistics computed from the MCM are typically not very sensitive to 

the number of trials after a few thousands trials.  

7.2.2.6 Reducing the Number of Monte Carlo Trials 

For geotechnical earthquake engineering in which a nonlinear, dynamic finite element analysis 

may be required for each realization, minimizing the number of Monte Carlo trials can be criti-

cally important. Techniques such as the Latin hypercube and importance sampling can be used to 

reduce, in some cases substantially, the number of Monte Carlo trials.   
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Latin Hypercube 

Simulation can be used to study how the outcome of a model, g(Z), depends on the distribution 

of a random variable, Z, with known distribution, FZ.  This can be done using simple random 

sampling (Monte Carlo simulation) by randomly drawing values from FZ.  However, if the func-

tion g(Z)  is computationally expensive to evaluate, other sampling strategies may be more effi-

cient.  One method is the use of stratified sampling.  This method can characterize the population 

equally well as simple random sampling with a smaller sample size. Stratified sampling works as 

follows: 

(1) The distribution of Z is divided into m segments; 

(2) The distribution of n samples over these segments is proportional to the probabilities 
of Z falling in the segments; and 

(3) Each sample is drawn from within its segment by simple random sampling. 

 

Maximum stratification takes place when the number of segments (strata), m, equals the number 

of data, n, and when Z has probability m-1 of falling in each segment, as this is the most efficient.  

When the model depends on two variables, h(Z1, Z2), then values of both Z1 and Z2 can be 

drawn by simple random sampling or by stratified random sampling. The most efficient sample 

is maximally stratified for both Z1 and Z2 simultaneously. This means that a sample of size n of 

pairs (z1, z2) is marginally stratified for both Z1 and Z2.  Such a sample is called a Latin hyper-

cube sample and is outlined in McKay et al. (1979).  The model need not depend only two vari-

ables only. 

For the spatially distributed case, multiple Gaussian simulations can be created.  The 

simulations are independent in the sense that they are a random sample from the ensemble of all 

realizations that were possible under the specified model (Pebesma, 2001).  At a specific loca-

tion, x0, the subsequently realized values of the variable Z(x0), (z1(x0),…,zn(x0)), are a simple ran-

dom sample from the distribution of Z(x0).  When a stratified sample of Z(x0) is desired, then this 

could  be drawn when )( oxZF was known.  However, this is less trivial when Zi(x0) and Zi(x’) have 

to obey the specified spatial correlation.  A procedure for obtaining a Latin hypercube sample in 

this context (multiple, spatially correlated variables) is presented by Stein (1987).  
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Importance Sampling 

Monte Carlo calculations can be carried out using sets of random points sampled from any 

arbitrary probability distribution. The choice of distribution obviously makes a difference to the 

efficiency of the method.  In most cases, Monte Carlo calculations carried out using uniform 

probability distributions give very poor estimates of high-dimensional integrals and are not a 

useful method of approximation.  Metropolis et. al. (1953) introduced a new algorithm for 

sampling points from a given probability function. This algorithm enabled the incorporation of 

”importance sampling” into Monte Carlo integration. Instead of choosing points from a uniform 

distribution, they are now chosen from a distribution which concentrates the points where the 

function being integrated is large. Sampling from a non-uniform distribution for this function 

should therefore be more efficient than doing a crude Monte Carlo calculation without 

importance sampling.  

7.2.3 Other Methods 

The turning bands method (TBM) is based on the theory of random fields.  The basic concept of 

TBM is to transform a multidimensional simulation into the sum of a series of equivalent unidi-

mensional simulations.  The purpose is to preserve the statistics of the true field, particularly the 

variogram of the stationary random field.  In the TBM, the simulated field is assumed to have 

second-order stationarity and to be isotropic.  Techniques are available to transform the uniform 

or normal distribution at each point to other distributions.  The basic TBM uses realizations of 

the random function generated on lines rotating in space to produce a three-dimensional realiza-

tion.   

A more advanced approach has been recently used, called the “Intrinsic Random Func-

tion of Order k” (IRF-k), to accommodate the varying nature of the trend in a regionalized soil 

variable (McBratney et al., 1991). The term k represents the order of polynomial trends where k 

= 0 means constant drift, and the IRF-k is equivalent to the ordinary kriging system of equations.  

Therefore, if k = 1, linear drift exists; k = 2 yields quadratic drift.  But when the deterministic re-

lationships are with some known or readily available and inexpensive covariates or other easy-

to-measure soil variables, co-kriging has played a major role in efficiently predicting the target 

soil variable (Odeh et al., 1995). 
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7.3 AVAILABLE TOOLS 

There are many currently existing software tools to complete many types of the statistical and 

spatial analyses presented in this report.  This chapter provides several sources of open source 

software that exist in the public domain. 

7.3.1 StatLib Website http://lib.stat.cmu.edu 

StatLib is a WWW clearinghouse for distributing statistical software, datasets, and information 

by electronic mail, FTP, and WWW hosted by the statistics department at Carnegie Mellon Uni-

versity.  Software can be downloaded in Fortran, C++, Matlab, etc.  The site can also be used to 

search for statistical functions at other sites.   

7.3.2 GSLIB Website http://www.gslib.com 

GSLIB is an acronym for Geostatistical Software LIBrary.  The GSLIB website serves to point 

researchers and practitioners to the public domain GSLIB programs for geostatistical problem 

solving.  It also informs users of commercial supplements to GSLIB and announces training and 

support.   

 

7.3.3 AI-GEOSTATS Website http://www.ai-geostats.org 

AI-GEOSTATS is the central server for GIS and spatial statistics on the Internet administered by 

the University of Lausanne in Switzerland.  The purpose of the site is to provide information on 

available open source and commercial software commonly used in spatial data analysis and spa-

tial statistics. The site also administers a discussion mailing list.   

7.3.4 Gstat Software  http://www.gstat.org/ 

“Gstat” is a computer program for geostatistical modeling, prediction, and simulation. Gstat 

works on many platforms and is open source software (Pebesma and Wesseling, 1998).  The 
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domain, www.gstat.org, is hosted by the Department of Geography at Utrecht University, the 

Netherlands.  The software can be downloaded for free.  

7.4 EXAMPLES 

PEER’s PBEE framework accounts for uncertainties at all stages of the design/evaluation proc-

ess.  These uncertainties include those associated with earthquake ground motions, with the re-

sponse of soils and foundations to ground motions, with the response of structures and their con-

tents to soil and foundation motions, and with the assignment of economic losses to various 

levels of structural and nonstructural performance. 

A number of sophisticated deterministic procedures for analysis of soil and soil-structure 

systems have been developed by PEER researchers.  Implementation of these models within the 

PEER framework requires an understanding of their performance, and of the variability of the re-

sponses they predict when used with uncertain soil parameters.  The various procedures de-

scribed in the earlier chapters of this report will allow PEER researchers to study the influence of 

uncertain and spatially variable soil parameters on performance. 

These examples illustrate how deterministic models can be used in conjunction with 

simulation models to investigate the uncertainty in output associated with uncertain and spatially 

variable soil properties. 

7.4.1 One-Dimensional Lateral Spreading Analysis 

The performance of structures during earthquakes is strongly influenced by the seismic response 

of the underlying soil.  Performance evaluations, therefore, should account for the spatial vari-

ability of the soil.  In many cases, site response can be reasonably modeled as a one-dimensional 

problem, i.e., as a series of horizontal soil layers subjected to vertically propagating shear waves.  

To model the important problem of lateral spreading, initial (static) shear stresses can be im-

posed on the soil profile.  Such shear stresses will, under reasonably symmetric ground motions, 

cause permanent deformations to develop in liquefied soils. 
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7.4.1.1 Soil Profile 

This example is based on a site along the waterfront of Seattle, Washington.  Soils at the site 

consist of loose natural and hydraulically placed fill deposits to a depth of 9 m, with static 

groundwater at about 3 m in depth (Fig. 7.3).  A sloping ground surface of 3% was used to im-

pose initial shear stresses.  Prior SPT explorations showed a mean (N1)60 of 10 and a COV of 

40%.   

7.4.1.2 Method of Analysis 

One-dimensional site response analyses were performed using the computer program WAVE, a 

one-dimensional, nonlinear, effective stress-based site response analysis program.  Originally 

developed by Horne (1996), it has been extended with a new constitutive model, UWsand, which 

captures important elements of liquefiable sand behavior in a manner that can easily be cali-

brated.   

7.4.1.3 Deterministic Analysis 

In typical engineering practice, it is common to perform analyses deterministically using average 

soil properties.  For this example, a deterministic site response analysis, performed using the 

mean value of (N1)60, produced the permanent displacement profile shown in Figure 7.3.  The de-

terministic analysis predicts that permanent displacements of slightly more than 30 cm would 

develop in the loose, saturated sand above the till.  Most of this displacement results from strain-

ing of the lower half of the loose, saturated sand. 
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Fig. 7.3  Displacement profile of example soil profile 

 

7.4.1.4 Simulation 

Based on the statistics determined from the available field data, 100 one-dimensional Gaussian 

random fields of SPT profiles were generated similarly to Section 7.2.1 and outlined in Yama-

zaki (1988).  A mean of 10, COV of 40%, and a Gaussian spectral density function (standard de-

viation of 1 and a correlation decay coefficient equal to 1 for the spectral density function) were 

used to generate the profiles.  These profiles are shown in Figure 7.4.  A histogram plot of the 

simulated (N1)60 values shown in Figure 7.5 (a) confirms that the SPT resistances were normally 

distributed.  A plot of an individual variogram for a particular profile in Figure 7.5(b) shows the 

spatial distribution of (N1)60. 
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Fig. 7.4  Variation of (N1)60 with depth for 100 simulated soil profiles 

 
 (a) (b) 

Fig. 7.5  (a) Histogram of all (N1)60 data and (b) variogram of individual (N1)60 profile 
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7.4.1.5 Monte Carlo Analyses 

The 100 soil profiles were then analyzed using WAVE.  These analyses produced 100 lateral 

ground displacement profiles for end-of-shaking conditions.  Figure 7.6(a) shows the permanent 

displacements predicted by all of the site response analyses. 

 
 (a) (b) 

Fig. 7.6 Results of site response analysis: (a) profiles of permanent lateral displacement for 
all analyses and (b) comparison of deterministic profile with µ and µ ± σ profiles 

 

Figure 7.6(b) shows that the displacement of the deterministic profile (based on (N1)60 = 10 with 

depth) is significantly greater than the average of the displacement profiles from the Monte Carlo 

analyses.   

The results of the Monte Carlo analyses, however, allow evaluation of conditions such as 

the probability that lateral displacement will exceed 0.5 m at a depth of 3 m.  This probability 

can be determined by constructing a cumulative distribution function for lateral displacement 

from the histogram of lateral displacement at 3 m.  The CDF for the example problem is shown 

in Figure 7.7.  Based on the CDF, the probability that the permanent lateral displacement at 3 m 
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depth will exceed 0.5 m is 41%.  The probability that displacement is greater than the determinis-

tic value of lateral displacement at a depth of 3 m (0.607 m) is about 7%. 
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Fig. 7.7  CDF for lateral displacement at a depth of 3 m 

7.4.2 Two-Dimensional Analysis 

In many cases one-dimensional models are not sufficient for characterization of the response of 

soil-structure systems.  Often, spatially varying boundary or loading conditions dictate the need 

for two- and three-dimensional numerical simulations. 

7.4.2.1 Soil Profile 

The example presented in this section represents a hypothetical footing subjected to oscillatory 

loading at the edge of a vertical cut in cohesive soil. The geometry and loading conditions were 

selected to clearly show the effect of spatial variability of soil properties on the response of the 

system. They do not represent any specific or real case. The geometry, shown in Figure 7.8, con-

sists of a 10 ft vertical cut in a 20 ft thick soil deposit resulting in a 20 ft high, unsupported slope. 

Vertical boundaries are placed 20 ft from the cut. Soil conditions at the site consist of cohesive 

material with mean undrained shear strength, su, of 2200 psf. A COV of 30% was selected based 

on data collected from the literature (Table 4.3).   
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20 ft 20 ft

10 ft 

10 ft 

 
Fig. 7.8  Two-dimensional slope geometry 

 

7.4.2.2 Method of Analysis 

Two-dimensional numerical analyses were performed using the finite element tool OpenSees. 

OpenSees (Open System for Earthquake Engineering Simulation) is a PEER-developed software 

framework for simulating the seismic response of structural and geotechnical systems. OpenSees 

is intended to serve as the computational platform for research in performance-based earthquake 

engineering at PEER. OpenSees is open source, i.e., the source code is freely available to anyone 

who wishes to use it. 

 Linear equation solvers, time integration schemes, and solution algorithms are the core 

of the OpenSees computational framework. The components of a solution strategy are inter-

changeable, allowing analysts to find sets suited to their particular problem. Separate from the 

computational and problem solving classes, are classes for building models (termed Model-

Builder classes). The latest release of OpenSees includes a general model-builder for creating 

two- and three-dimensional frame and continuum models using TCL. Several elements, material 

constitutive models, and loading conditions are available. More information on OpenSees can be 

found at http://opensees.berkeley.edu. 

The example presented in this section uses 2-D quadrilateral elements for the geometry, 

and a J2 elasto-plastic model to characterize the material behavior.  J2 plasticity characterizes 

fairly well the undrained shear strength of cohesive soils. The version used in this example does 

not consider kinematic hardening and therefore underestimates undrained strength during dy-

namic loading. However, its current implementation in OpenSees is very robust and produces re-
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sults that are sufficient for the purposes of this example. Figure 7.9 shows the mesh, boundary 

conditions, and loading for the hypothetical cut slope problem.  

10 20 25 sec 

40
61

F [Kip]

 
Fig. 7.9  Two-dimensional OpenSees finite element mesh and loading condition 
 

The loading condition consists of a vertical static load of 40 kips applied using a ramp function, 

and a superimposed harmonic load with an amplitude of 42 Kips and a frequency of 1.0 Hz.  

7.4.2.3 Deterministic Analysis  

For this example, a deterministic dynamic analysis, performed using the mean value of cu = 2200 

psf produced the permanent displacement time history shown in Figure 7.10. The deterministic 

analysis predicts a maximum displacement of slightly more than 0.2 ft would develop. Most of 

this displacement results from straining of the upper 10 ft of soil beneath the footing. 
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Fig. 7.10 Displacement time history of top of the footing — homogeneous soil undrained 

shear strength 

7.4.2.4 Simulation 

Based on the statistics determined from the available field data, 100 two-dimensional Gaussian 

random fields of undrained shear strength were generated in a manner similar to that in Section 

7.2.1 and outlined in Yamazaki (1988). A mean of 2200 psf, a COV of 30%, and a Gaussian 

spectral density function (standard deviation of 1.0 and a correlation decay coefficient equal to 

4.0 for the spectral density function) were used to generate the soil profiles. Six of these soil pro-

files are shown in Figures 7.13(a) and 7.14. The histogram plots of the simulated undrained shear 

strength, su, shown in Figures 7.13(b) and 7.14, confirm that the undrained shear strength was 

normally distributed for each case.  A minimum value of su = 1000 psf was used to avoid nu-

merical instabilities. This is clearly reflected in the histograms presented in Figures 7.13(b) and 

7.14.  

7.4.2.5 Monte Carlo Analyses 

The 100 soil profiles were analyzed using OpenSees.  These analyses produced 100 vertical dis-

placement time histories for the footing at the top of the open cut. Figure 7.11(a) shows the dis-

placement time histories induced by the oscillatory loading component as predicted by all of the 

numerical analyses. Figure 7.11(b) shows the time history of the mean displacement of the foot-
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ing at the top of the cut. Comparison of Figure 7.10 and 7.11(b) shows that the displacement time 

history of the deterministic analysis (based on su = 2200 psf) is significantly less that the average 

of the displacement time histories from the Monte Carlo analyses. 

 

 
 (a) (b) 

Fig. 7.11  Displacement of top of the footing (a) displacement time histories corresponding 
to all stochastic fields; (b) average time history of displacements 

 

The results of the Monte Carlo analyses, however, allow estimation of the probability dis-

tribution of footing displacement.  Therefore, quantities such as the probability that maximum 

vertical displacements of the top of the cut slope will exceed 6 in. (0.5ft) can be determined.  The 

CDF of footing displacement for the example problem, which corresponds to the histogram of 

maximum displacements shown in Figures 7.12(a), is shown in Figure 7.12(b). Based on this 

CDF, the probability that the maximum vertical displacement of the top of the cut slope will ex-

ceed 6.0 in. is 32%. The probability that the maximum vertical displacement is greater than the 

deterministic value of the maximum vertical displacement (0.2 ft) is about 53%.  
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 (a) (b) 

Fig. 7.12  (a) Histogram of maximum displacements for the footing at the top of the cut 
slope; (b) cumulative distribution function (CDF) of maximum displacements 
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 (a) (b) 

Fig. 7.13  (a) Spatial variation of undrained shear strength, su; (b) cumulative histogram 
    of undrained shear strength 
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 (a) (b) 

Fig. 7.14  (a) Spatial variation of undrained shear strength, su; (b) cumulative histogram of 
undrained shear strength 



 

 

8 Summary 

Prediction of the performance of structures during earthquakes requires accurate modeling of the 

geotechnical components of soil-structure systems.  Geotechnical performance is strongly de-

pendent on the properties of the soil beneath and adjacent to the structure of interest.  These soil 

properties can be described using deterministic and probabilistic models.  Deterministic models 

typically use a simple discrete descriptor for the parameter of interest.  Probabilistic models ac-

count for uncertainty in soil properties by describing those properties by using discrete statistical 

descriptors or probability distribution functions.   

This report is intended to provide PEER researchers with background information and 

available data on the uncertainty and spatial variability of soil properties.  Such data will be use-

ful in the evaluation of the effects of geotechnical uncertainty and variability on the performance 

of structures during earthquakes.  It is anticipated that the information presented in this report 

will be used with deterministic analyses being developed by PEER researchers, both within and 

outside the OpenSees framework, to investigate the sensitivity of performance to geotechnical 

uncertainty. 

The report describes sources and types of uncertainty in geotechnical engineering prac-

tice, and introduces the basic concepts and terminology of the theory or probability.  Statistical 

parameters and the probability distributions most commonly used to describe geotechnical pa-

rameters are reviewed.  The report then presents tabulated statistical parameters for soil proper-

ties that have been reported in the literature; both laboratory- and field-measured parameters de-

scribing moisture-density, plasticity, strength, and compressibility characteristics are presented.  

The theory of regionalized variables, including concepts of autocorrelation, variograms, and sta-

tionarity are presented, along with tabulated values of parameters describing spatial variability 

that have been reported in the literature.  Finally, the procedures and tools for estimation and 

simulation of spatially variable soil properties are presented. 
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