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ABSTRACT

Prediction of the performance of structures during earthquakes requires accurate modeling of the
geotechnical components of soil-structure systems. Geotechnical performance is strongly de-
pendent on the properties of the soil beneath and adjacent to the structure of interest. These soil
properties can be described by using deterministic and probabilistic models. Deterministic mod-
els typically use a simple discrete descriptor for the parameter of interest. Probabilistic models
account for uncertainty in soil properties by describing those properties by using discrete statisti-
cal descriptors or probability distribution functions.

This report describes sources and types of uncertainty in geotechnical engineering prac-
tice, and introduces the basic concepts and terminology of the theory of probability. Statistical
parameters and the probability distributions most commonly used to describe geotechnical pa-
rameters are reviewed. The report then presents tabulated statistical parameters for soil proper-
ties that have been reported in the literature; both laboratory and field-measured parameters de-
scribing moisture-density, plasticity, strength, and compressibility characteristics are presented.
The theory of regionalized variables, including concepts of autocorrelation, variograms, and sta-
tionarity are presented, along with tabulated values of parameters describing spatial variability
that have been reported in the literature. Finally, procedures and tools for estimation and simula-

tion of spatially variable soil properties are presented.
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1 Introduction

Prediction of the performance of structures during earthquakes requires accurate modeling of the
geotechnical components of soil-structure systems. Geotechnical performance is strongly de-
pendent on the properties of the soil beneath and adjacent to the structure of interest. These soil
properties can be described using deterministic and/or probabilistic models. Deterministic mod-
els typically use a single discrete descriptor for the parameter of interest. Probabilistic models
describe parameters by using discrete statistical descriptors or probability distribution (density)
functions. The spatial variation of the properties can be described by using stochastic interpolation
methods.

This overview provides a basis for describing the spatial uncertainty of geotechnical soil
properties. Sources and types of uncertainty are first presented, followed by a discussion of the
probabilistic treatment of geotechnical data using geostatistics. Finally, generation of realiza-
tions of random functions using simulation is discussed. The latter two topics are the primary
focus of this overview.

The spatial distribution of geotechnical properties in natural soil deposits is difficult to
predict deterministically. Limited sampling, especially in subsurface drilling, further complicates
prediction of soil properties. Prediction of the spatial occurrence of soil properties in either an
optimal best estimate or within a probabilistic framework is necessary for effective numerical
modeling of soils with heterogeneous properties.

Applied geostatistical estimation and simulation techniques can be used to model spatial
variability from limited sample sets (or from known distributions of data). While traditional sta-
tistics generally assumes independence between samples, geostatistics takes advantage of the fact
that samples located in proximity to one another are often more similar than those obtained at
large separation distances. Geostatistics provides a means of quantifying this spatial correlation
in soil properties and then of using that information for both estimation and stochastic simula-

tion.



Geostatistical estimation refers to techniques that provide the best linear unbiased estima-
tors of unknown properties. When the structural information of the data is known, then the esti-
mator can be defined. This description requires more than the simple first-order moments of the
random variable of interest. Geostatistical simulation is a spatial Monte Carlo process where a
random “draw” from a local cumulative distribution function simulates a value of a property at a
given location. The simulation process is run multiple times to produce a series of realizations all
of which correspond to the observed data at the sample locations, the univariate distribution, and
the spatial correlation of the observed data. In essence, each realization is a probable representa-
tion of the underlying reality given the available data. These multiple realizations can be used as
input to a transfer function (e.g., multiple realizations of shear strength as input to slope stability
analyses), or processed to provide a map of the probability of a given situation being true (e.g., a
plot of the probability that a given factor of safety will be exceeded). The results of the transfer
function can often be evaluated in terms of economic loss and/or risk.

This report is organized into several distinct sections. The next section discusses the
sources and types of uncertainty. The following section discusses the theory of probability and is
followed by a qualitative summary of soil property variability. Soil property variability is fol-
lowed by a discussion of the theory of regionalized variables and a quantitative presentation of
values for soil property spatial dependence. The section following discusses estimation and

simulation, and is followed by a summary of available tools and examples.



2 Sources and Types of Uncertainty

“Certainty” refers to situations in which the outcome of an event or the value of a parameter is
known with unit probability. Conversely, uncertainty occurs when a collection of values associ-
ated with respective uncertain “states of nature” occur with strictly non-negative probabilities for
at least two different possible values; the simplest examples are tossing a coin or rolling a die.
Uncertainty analysis is an emerging approach that uses estimation and simulation techniques to
consider the variability of available data and to estimate the frequency with which values of in-
terest are likely to be exceeded. While it has not yet been widely applied in geotechnical engi-
neering practice, this approach offers insight into existing data for heterogeneous geotechnical
systems.

Uncertainty pervades many aspects of geotechnical earthquake engineering, particularly
in the characterization of soil properties. In general, some of this uncertainty may be due to the
difficulty in making accurate measurements and some may be due to uncertainty in the models,
equations, and understanding of the systems involved. Additional uncertainty can result from the
spatial variability of the system.

Uncertainty in geotechnical soil properties can be formally grouped into aleatory and
epistemic uncertainty (Lacasse et al., 1996). Aleatory uncertainty represents the natural random-
ness of a property and, as such, is a function of the spatial variability of the property. Recogniz-
ing spatial variability is important because it can help distinguish the distances over which it oc-
curs compared to the scale of the data of interest (Whitman, 1996). Epistemic uncertainty results
from a lack of information and shortcomings in measurement and/or calculation. Epistemic un-
certainty includes the systematic error resulting from factors such as the method of property
measurement, the quantity of available data, and modeling errors. Figure 2.1 illustrates the types
of uncertainty in geotechnical soil properties. Human error would be considered a third source
of uncertainty, however it is not considered in this overview because it is difficult to isolate and

its effects on probability are usually included in compilations of statistics on aleatory uncertainty.



| Uncertainty in Soil Properties |

Aleatory Epistemic
| |

| Spatial Variability | | Random Testing Errors | | Measurement Procedures | |Statistical Error (Too Few Data)

Fig. 2.1 Sources of uncertainty in geotechnical soil properties (adapted from Whitman,
1996)

As an example, consider SPT sampling in a deposit of loose sand. Sources of aleatory
uncertainty in the measured SPT resistance would include the natural variability of the soil de-
posit and random testing errors, such as that caused by a single soil defect (e.g., an erratic boul-
der). Sources of epistemic uncertainty could include non-standard equipment (such as the sam-
pler size, deformed samplers or rods, rod length, hammer drop system, hammer weight, etc., not
conforming to the SPT standard), and insufficient data to form reasonable statistics, such as one
boring over a large site. It is important to note that epistemic uncertainty can usually be reduced
by acquisition of additional data or improvements in measurement procedures. Aleatory uncer-
tainty, on the other hand, is inherent to the variable and cannot be reduced by additional informa-

tion.



3 The Theory of Probability

A basic understanding of some fundamental aspects of probability is required to quantify the un-
certainty in geotechnical soil properties. These concepts include probability space, distributions,
and moments. A brief overview of the basic concepts and terminology of probability are pre-
sented in the following sections; more detailed descriptions of this information can be found in
numerous introductory textbooks on probability such as Benjamin and Cornell (1970), Ott

(1984), Kelly (1994), and Mendenhall and Beaver (1991).

3.1 PROBABILITY SPACE

The notion of probability space is fundamental to probability theory. Probability space consists
of:
(1) An outcome set, €, that contains all elements of all sets of data under consideration;

(2) A collection of events, 9, which are subsets of (2; and

(3) A procedure for computing the probabilities of events called the probability mass
function, p(x), or the probability density function, fx(x). Mass functions and density
functions are discussed in Section 3.3.

R is defined as the set of all real numbers. In R, {x: 3 < x < 6} is the set of all real x
greater or equal to three and less than six. The terms sample space and the outcome set are syn-
onymous. Note that for sets (events) to be useful, they must have an assignable probability.
Two general types of probability space exist:

(1) Finite space (also known as discrete space) is comprised of a known, finite number
of possible samples. An example might be the percentage of drill holes at a site that
penetrate a peat layer. If N borings are drilled, there are exactly N+/ possible val-
ues of the percentage of borings that penetrate peat. In a finite space, the probability
of an event, 9, occurring is equal to or greater than zero, and the sum of all prob-
abilities of each event occurring is 1:



p(9)>0 forall $eQ and Y p(I)=1. 3.1)

JeQ

(2) Infinite space (also known as continuous space) consists of an infinite, unknown
number of possible samples taken from a continuous interval. An example in terms
of geotechnical soil properties would be the distribution of shear strength in a soil
layer across a site. In terms of probability, an absolutely continuous probability

space in R consists of the outcome set, (2, which is an interval, and a function fx(x)
such that:

fx(x)>0 forall xeQ and ij (x)dx =1. (3.2)
Q
In other words, continuous probability space contains an unknown number of possible

samples and the samples are not countable, but are taken from a continuous interval.
Most geotechnical phenomena occur in continuous space.

3.2 RANDOM VARIABLES

A random variable is a variable that can take on multiple values. The domain of a random vari-
able is the outcome set and its range is the set of possible values. Mathematically, a random
variable can be expressed as a real function, Z(x), that associates a real number, x;, with each
element in the outcome set, x, € . The real number, x;, will correspond to every outcome of an
experiment, the function {Z(x) < x,} is an event for any real number x;, and the probabilities
P{Z(x)=+x}and P{Z(x)=—o} will be zero for the random variable. The random variable

can be visualized as a function that maps a sample space onto a real line as shown on Figure 3.1.

Z(X)

X R

Fig. 3.1 Schematic illustration of random variable — each element of the sample space, Q,
corresponds to a real value, x;, of the random variable

Two types of random variables exist: discrete and continuous. Discrete random variables

take on values from discrete probability space, i.e., they represent quantities, such as SPT resis-
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tance or USCS soil type, that can assume only a finite number of different values. Continuous
random variables take on values from continuous probability space; common examples include
undrained strength, friction angle, permeability, exit gradients at the toe of a levee, and time to

occurrence of any event.

33 PROBABILITY DISTRIBUTIONS

Probability distributions are recipes for computing the probabilities of all possible events for a
particular random variable. These recipes will specify the probabilities over the entire sample

space.

3.3.1 Probability Functions

The probability mass function (pmf) and the probability density function (pdf) are functions that
assign a probability to every interval of the outcome set for discrete and continuous random vari-
ables, respectively. The pmf and the pdf are denoted px(x)and fx(x), respectively, where X is the
random variable itself and x is the value that the random variable can take on. Probability func-
tions have the following properties:
(1) py(x)=0 (discrete)
fx(x) 20 (continuous)

2 D p(x)=1 (discrete)

XeQ

T fy(x)dx =1 (continuous)

(3) P[I]=)_ p(x)(discrete)

xel

Pla<x<b]= f,(x)dx (continuous)

It is important to note that any single value in a continuous probability space has zero
probability and that the probabilities of intervals are the same whether they contain their end-

points or not.



3.3.2 The Cumulative Distribution Function

The cumulative distribution function (CDF) of a probability distribution is a function that defines
the probability of the random variable taking on values less than x, or:

F(x)=P(X <x) (3.3)
is commonly referred to as the distribution function, and is denoted Fy(x). It is appropriate to in-
clude the descriptor cumulative to remind us that Fx(x) is the accumulated probability of all
numbers less than or equal to x. As x increases, the probability continues to correspondingly in-
crease. The CDF applies to both discrete and continuous random variables; Fx(x) is a non-

negative, monotonically increasing function such that 0< F,(x)<1, F,(—0)=0 and
F,(+0)=1. Forreala and b, witha < b, P(a< X <b)=F,(b)—Fy(a).

Many distributions can be systematically grouped into customary distributions. These

distributions are covered later in this chapter.

34 MATHEMATICAL EXPECTATION

The predicted value of random variables is generally described using mathematical expectation.
The expected value of a random variable, X, is a number computed from the pdf of x that repre-
sents the expected long-term average observed value of X. The expected value of a continuous

random variable is given by:

o0

E(X)= jx £.(x)dx . (3.4)

—0

The expected value is commonly referred to as the mean or average, and is given the symbol, 2.

3.5 VARIANCE AND MOMENTS

The “dispersion” of the random variable about the mean is described by the variance, which is

defined as:

V(X)= [ (=) f,(x)dx. (3.5)



The variance can also be described as the expected square, minus the squared expected

value (or as some remember it, mean square minus squared mean), i.e.,

V(X)=EX*)-[EX)]. (3.6)

It is more common to express dispersion using the standard deviation, o=V (X), so

that the units of the descriptor and the random variable are the same. Random variables are often
acted upon by functions, and it is useful to be able to relate the expectation of the function to that
of the random variable. For example, a linear function of the random variable X will describe a
transformed function. The mean and variance of the function exhibit the following important
properties:

E(aX +b)=aE(X)+b, and (3.7)
ViaX +b)=a’V(X). (3.8)

Many of the essential characteristics of a pdf can be described by a set of relatively sim-
ple scalar quantities. The expected value of the various powers of a random variable, X, E(X),
E(X?), E(X’), etc.) are called the moments of X. Moments are important in describing regional-
ized variables discussed later in this text. For any non-negative integer k, the X moment of X is

defined by:
u, =E(X"). (3.9)

The moments of the random variable X — E(X) are also important. They are called the
central moments of X, because E(X) is regarded as the “center” for the distribution X. The cen-
tral moments are also referred to as the moments of X about £(X), and are denoted by ¢y, ¢, c2,
and so forth, where:

cx = E(X — )", where 14 = E(X). (3.10)

Note that the zero-th and first central moments are 1 and 0, respectively. The second cen-
tral moment is the variance, the third central moment measures skewness, and the fourth central
moment measures the steepness of the peak of the pdf near its center (kurtosis). In terms of

moments, the mean and variance can be expressed as E(X) = g and V(X) = E(X - ,u;)z .



The coefficient of variation represents a relative (and dimensionless) measure of disper-

sion and is expressed as:
cov =X x100%. (3.11)
Hx

The COV has been commonly used to describe the variation of many geotechnical soil
properties and insitu test parameters. Note that the mean, standard deviation, and COV are inter-
dependent — knowing any two will give the third.

In practice, it becomes convenient to estimate moments of geotechnical soil parameters
where little data are available (sparse data) by assuming that the COV is similar to previously
measured values from other data sets of the same parameter. A summary of COV values re-
ported in the literature is presented in the next chapter.

The dispersion of sparse data can also be estimated by using other methods such as the
“three-sigma rule.” This method for approximating the variance recognizes that 99.73% of all
values of a normally distributed parameter are within three standard deviations of the average.
According to the three-sigma rule, the standard deviations can be approximated by dividing the
range (highest value minus the lowest value) by 6. Duncan (2000) points out that engineers have
a tendency to underestimate the range between the lowest and highest conceivable values, there-
fore, a conscious effort should be made to make the range between the two as high as seemingly
possible. Christian et al. (2001) also caution that engineers with less experience in statistics will
estimate the lowest and highest conceivable values with significant unconservative bias. The
field of order statistics offers an alternative to the three-sigma rule that accounts for the quantity
of available data. According to Burlington and May (1978), the standard deviation of a normally
distributed random variable can be estimated by dividing the range of measured values by the

value N shown in Table 3.1.
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Table 3.1 Number of standard deviations, /V, in expected sample range as function of
number of measurements, n (after Burlington and May, 1978)

n N

2 1.128
3 1.693
4 2.059
5 2.326
6 2.534
7 2.704
8 2.847
9 2.970
10 3.079
15 3472
20 3.735
30 4.090

In the above discussion, it is implicitly assumed that random variables are normally dis-
tributed as discussed in Section 3.6.2. If the variables are not normally distributed, Equation
3.11 cannot be used. To solve this problem, the technique of normal tail approximation can be
used to transform a non-normal distribution into an equivalent normal distribution. This results
in the concept of the equivalent COV. The reader is referred to Paleheimo and Hannus (1974)

for this procedure.

3.5.1 Moments of Two Random Variables

Joint moments can be used to describe the relationship between two random variables. The first
joint moment about the mean is a measure of the interdependence between two random vari-
ables, X and Y, and is called the covariance of X and Y. The covariance between two random

variables is defined as:

cov(X,Y) = E[(X = g, XY = 1y )| = EQXY) = gty (3.12)

If X and Y are independent, cov(X,Y) = 0; however, the converse is not true. A positive
covariance means that one random variable increases as the other increases. A negative covari-
ance means that one random variable increases when the other decreases. Therefore, the covari-
ance is said to be a relative measure of the degree of positive or negative correlation between X
and Y.

For n random variables, the set of covariances can be expressed in the form of a covari-
ance matrix:

11



Cii € Cis Cin
Cop €y Cnp Con
C=lcy ¢y oy (3.13)
_cnl cn2 O-nn a
. _ _ 2 _ 2 _ 2 : :
where: ¢; = cov(x,.,x ; ), and ¢,, =0,,cy =05,...,¢c,, =0, . To obtain a relative measure of

correlation between X and Y, the covariance is divided by the square root of the product of the
variances to yield the correlation coefficient:

P __cov(X,Y) (3.14)

X))

The correlation coefficient will take on values between —1 and 1. In general, the correlation co-
efficient expresses the relative strength of the association between two parameters. The distribu-
tion of one of a group of correlated parameters, given specific values of the other parameters,
will be influenced by the degree of correlation. For example, Lumb et al. (Lumb, 1970; Grivas,
1981 and Wolff, 1985) have shown that the shear strength parameters ¢ and ¢ are often nega-
tively correlated with correlation coefficient ranging from -0.72 to 0.35. The distribution of ¢ for
a particular ¢ value and will be different than the distribution of all ¢ values.

Consider a boring in which samples have been obtained at eight different depths within
the same soil unit (Harr, 1987). Water contents are measured for each of the samples, with the

results plotted as shown in tabular form in Figure 3.2.
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Fig. 3.2 Measured water content data

Water content, w (%) Depth, d (ft) wt w? &
30.0 5 150 900.00 25
28.9 10 289 835.21 100
29.0 15 435 841.00 225
26.0 20 520 676.00 400
25.4 25 635 645.16 625
25.0 30 750 625.00 900
24.8 35 868 615.04 1225
24.6 40 984 605.16 1600

Tw=213.7 2d =180 Iw' = 4631 Iw? =5742.57 d* =5100
cov(X,Y) NZWd—ZWZd ~

SNCEC TR 5 e 1 ) S 0 3

8(4631) — 213.7(180) 0037
JBG742.57) - 21372 351000 - (180))]

The correlation coefficient shows strong negative correlation: the water content decreases

as the depth increases.

13



3.5.2 Moment-Generating Functions

A moment-generating function (MGF) is used to find the moments of a particular distribution.
Although MGFs apply to both discrete and continuous probability spaces, this summary focuses
on continuous distributions because they are more applicable to geotechnical soil properties. The

MGEF is defined by:
m(s)=E(e™) (3.15)

for only those numbers s for which this expected value exists. Moments can be generated by us-

ing the n™ derivative to find the n” moment, or expected values to the power n. In general,

d'm =E(X"e™), and d'm =E(X") evaluated at s = 0. Therefore, d—m:E(X) and
ds" ds” ds

2
6; T = E(X?) evaluated at s = 0.

s

3.6 SPECIAL PROBABILITY DISTRIBUTIONS

Many special probability distributions exist, most notably the family of normal distributions.
Other important distributions include the uniform, exponential, and gamma distributions. Rather
than focus on the derivations, this section presents useful properties of these distributions. Be-
cause few, if any, geotechnical properties will behave as a discrete probability space, special dis-
crete distributions are not presented herein. The reader is referred to Ott (1984) and Kelly (1994)

for a discussion of discrete systems.

3.6.1 Uniform Distribution

Some random variables are equally likely to take on any value within an interval. The uniform
distribution models a number chosen at random from the interval (a,b) such that no part of the in-
terval is favored over any other part of the same size. Such a random variable, X, is said to be
uniformly distributed with parameters a and b, and is denoted X ~ U(a,b). The probability den-
sity function (pdf), cumulative distribution function (CDF), moment-generating function (MGF),
E(X), and V(X) are shown in Table 3.3. The pdf and CDF for a uniform distribution are illus-

trated in Figure 3.3.
14



Fx(x) Fx(x)
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(2) (b)

Fig. 3.3 Uniform distribution: (a) probability density function, (b) cumulative
distribution function

3.6.2 Normal Distribution

A family of random variables called “normal random variables” model randomly chosen mem-
bers of some large population as outlined in the Central Limit Theorem (refer to Kelly, 1984 or
Ott, 1984). The random variable X is said to be normally distributed with parameters p (mean)
and o” (variance), and is denoted X ~ N(u,0%). The pdf, CDF, MGF, E(X), and V(X) are shown
in Table 3.3. The pdf and CDF for a normal distribution are illustrated in Figure 3.4. Normally

distributed random variables vary from — o to + co.

fx(X FX()

1.07" " T e

(2) (b)

Fig. 3.4 Normal distribution: (a) probability density function, (b) cumulative distribution
function
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The moment-generating function can be used to find the mean and variance. For a nor-
mal distribution, the MGF is m(s) = e 12 To find E(X), the first derivative is evaluated at s
= 0. Therefore, m'(s) = (u+ 20'2s/2)e‘“+"zsz/zevaluated ats = 01s E(X)=pu. By using this
methodology, the variance, o”, can be obtained. The E(X°) is first obtained by taking the second
derivative of m(s) and evaluating at s = 0. This results in o> + #°. By definition, the variance is
E(X?*)—[E(X)*]; therefore the variance is o”.

Any normally distributed random variable, X, can be transformed to a standard normal
variable, Z, by Z = (X- 1)/ 6. The standard normal variable has the properties #= 0 and o = I;
its distribution is called the “standard normal distribution.” The CDF of the standard normal dis-

tribution is given in Table 3.2.
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Table 3.2 Values of the CDF of the standard normal distribution, Fz(Z) =1 - Fz(-Z)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0005 .0005 .0005 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
-2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
-2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
-2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
-2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
-2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
-2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
-2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
-1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
-1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0304 .0301 .0294
-1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
-1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
-1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
-1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0859 .0853 .0838 .0823
-1.2 1151 131 A112 .1093 1075 .1056 .1038 .1020 .1003 .0985
-1.1 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170
-1.0 1587 1562 15639 1515 1492 1469 1446 1423 1401 379
-0.9 1841 1814 1788 1762 1736 A711 .1685 .1660 .1635 1611
-0.8 2119 .2090 .2061 .2033 .2005 977 1949 1922 1894 1867
-0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 2177 .2148
-0.6 2743 .2709 .2676 .2643 .2611 .2578 .2546 2514 .2483 .2451
-0.5 .3085 .3050 .3015 .2981 .2946 2912 2877 .2843 .2810 2776
-0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 3121
-0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
-0.2 4207 4168 4129 4090 4052 4013 .3974 .3936 .3897 .3859
-0.1 4602 4562 4522 4483 4443 4404 4365 4325 4286 4247
-0.0 .5000 4960 4920 4880 4840 4801 4761 A721 4681 4641
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3.6.3 Lognormal Distribution

A parameter is said to be lognormally distributed if its logarithm is normally distributed. The log

normal distribution is shown in Figure 3.5. Therefore, if X is lognormally distributed, then Y =

InX is normally distributed. In this case, the statistical parameter Z, is:
InX -

z=l e (3.16)

O-ln X

Therefore, the lower bound of the lognormal distribution is zero and the upper bound is
infinite. The lognormal distribution provides a convenient model for random variables with rela-
tively large coefficients of variation (> 30%) for which an assumption of normality would imply
a significant probability of negative values (USACE, 1999). Random variables often assumed to
be lognormally distributed include the coefficient of permeability, the undrained shear strength

of clay, and factors of safety (USACE, 1999).

fx(x) fx(x

In(x) X

Fig. 3.5 Lognormal distribution: (a) probability density function of In X, (b) probability
density function of X showing no negative values and asymmetry

3.6.4 Exponential Distribution

The exponential distribution can be used to model a number of physical phenomena, such as the
time, ¢, for a component to fail, or the distance, d, that an object travels before a collision. Expo-
nential random variables are most commonly used to model a time-dependent process (e.g., Pois-
son process) with an arrival rate of A arrivals per unit time. The random variable X is said to be

exponentially distributed with parameter A, and is denoted X ~ exp(A). The pdf, CDF, MGF,
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E(X), and V(X) are shown in Table 3.3. The pdf and CDF for an exponential distribution are il-
lustrated in Figure 3.6.

fx(x Fx(x)

1.0 [T

(2) (b)

Fig. 3.6 Exponential distribution: (a) probability density function, (b) cumulative
distribution function

3.6.5 Gamma Distribution

The gamma distribution is the distribution of the sum of the squares of » independent, normally
distributed random variables. Gamma distributions with various combinations of parameters are
useful to model properties with positive values that tend to cluster near some value, but tend to
have some very large values that produce a long right tail. The random variable X is said to be
gamma distributed with parameters a and A, and is denoted X ~ gam(a, A). The pdf, CDF,
MGF, E(X), and V(X) are shown in Table 3.3. The pdf and CDF will vary for varying o and A
values as shown in Figure 3.7. Note that when o = 1, the gamma density becomes the exp(A)

density.

(a) (b)

Fig. 3.7 Gamma distribution: (a) probability density function, (b) cumulative distribution
function
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Table 3.3 Properties of special distribution functions

Distribu-

pdf, fx(x) CDF, Fx(x) MGF, m(s) E(X) V(X)
tion Name
Uniform 0 i x <0 bs _ o b+a —a)?
Jfa<x<b ’ if ufors;to (b-a)
- xX—a F0<x<l s(b—a) , 2 12
0, otherwise 0 o
1, if x>1 and m(0)=1
Normal 1 2 2 z . us s /2 o 02
“(x-p)? /20 m(s)=e” +e
e z)dz,
o227 '[fo( ) for all real s
for all real x where
1 —z2/2
p(z)=—=e€
27
Z=(X-pw/o
Exponential —Ax i x < 1 1
Ae ™ ,if x>0 0, ifx<0 for s <A L —
0, otherwise l1—e™,if x<0 -8 A A
Gamma 2% There is no conven- 1) o o
_xa—le—ﬂx’ if x,A, > 0| ient formula unless a ( j fors< A z ?
I'(«) is positive. A—s

0, otherwise

['e]

INea)= Ix“_le_xdx =
0
for any A > 0 and n=0,1,2,...

n!

/finJrl

3.6.6 Estimating Probability Distributions

It is sometimes adequate to know only estimates of the mean and standard deviation of the ran-

dom variable, and knowledge of the form of the probability density function may not be neces-

sary. However, in order to ensure that these estimates are reasonable and check assumptions re-

garding the shape of the distribution, it is recommended that the shape of the distribution be

plotted as a check. A suggested method to assign or check assumed moments of random vari-

ables (USACE, 1995) is to:

e Assume trial values for the expected value and standard deviation and take the

random variable to be normal or lognormal.

e Plot the resulting density function, and tabulate and plot the resulting CDF.
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e Assess the reasonableness of the shape of the pdf and the values of the CDF.

e Repeat the above steps with successively improved estimates of the expected
value and standard deviation until and appropriate pdf and CDF are obtained.

3.7 SUMMARY

A basic understanding of the theory of probability can be used to compute basic statistical pa-
rameters of a soil property. Probability distributions, expectation, and moments are the basic sta-
tistical descriptors of a random variable. These descriptors can be used to estimate the variability

of geotechnical soil properties.
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4 Uncertainty in Soil Properties

Most soils are naturally formed in many different depositional environments; therefore their
physical properties will vary from point to point. This variation can exist even in an apparently
homogeneous soil unit. Variability of soil properties is a major contributor to the uncertainty in
geotechnical engineering analyses. Laboratory test results on natural soils indicate that most soil
properties can be considered as random variables conforming to the normal distribution function
(Lumb, 1966; Tan et al., 1993). This section summarizes modeling of uncertainty in soil proper-
ties and presents values of COV from various sources for index properties, laboratory-measured

properties, and field-measured properties.

4.1 QUANTIFYING UNCERTAINTY IN SOIL PROPERTIES

Insitu soil properties may vary vertically and horizontally for a variety of reasons, including:

e Depositional environment — in general, fine-grained soils are deposited in low-
energy environments and are therefore more uniform than course-grained soils,
which are usually deposited in high-energy environments.

e Degree of weathering — soil properties can be influenced by weathering, a factor
that affects soil at the ground surface most strongly and that decreases with depth
below the ground surface. However, factors such as erosion and locally variable
rates of deposition can produce soil profiles with variable weathering effects.

e Physical environment — most soils exhibit properties, such as inherent and in-
duced anisotropy, that are influenced by their physical environment. Because
stress changes can occur locally during the lifetime of a soil deposit, their effects
can introduce uncertainty into measured soil properties.

The spatial variation of soil properties consists of several components and can be represented by

a simple model (Phoon and Kulhawy, 1999):
E(z2)=tz)+w(z)+e(z) 4.1)



where £ = insitu soil property, ¢ = deterministic trend component, w = random component, e =

measurement error, and z = depth. The trend and random components are illustrated graphically
in Figure 4.1.

Basic principles of soil mechanics indicate that many soil properties of interest are
strongly influenced by effective confining pressure. Because effective confining pressures gen-
erally increase with depth, these properties should be expected to exhibit some regular, predict-
able trend with depth. The trend can be determined by fitting (in a least squares sense) a smooth
deterministic function (e.g., a straight line, parabola, or exponential) to the data or by a moving
average procedure.

The random component of soil variability is also referred to as “inherent soil variability,”
which is expressed relative to the deterministic trend of the property as illustrated in Figure 4.1.
Measurement error, whether it be from laboratory or field measurements, can introduce addi-
tional variability into soil properties. Measurement error can arise from equipment, operator,
and random testing effects (Phoon and Kulhawy, 1999).

The scale of fluctuation is a term that describes the spatial fluctuation of the property of
interest about the trend (Fig. 4.1). A parameter with a short scale of fluctuation changes rapidly
with position, one with a long scale of fluctuation changes over greater distances. A procedure
for calculation of the scale of fluctuation is described in Chapter 5, and typical values of the scale

of fluctuation are presented in Chapter 6.

24



Ground surface

A
Layer 1
L
z
,JA\/
Layer i

Layer j
Deviation from trend, w(z)

f

Scale of Trend, #(z)

Fluctuation, J,

<€4—Soil Property, &(z)

Fig. 4.1 Inherent soil variability (after Phoon and Kulhawy, 1999)

The following sections present a summary of text and tables to assist PEER researchers in
estimating variability in geotechnical soil properties. Soil properties are summarized in three
main categories: laboratory-measured properties, field-measured properties, and properties ob-
tained from other types of testing. Each category presents various forms of variability consisting
of inherent variability, measurement variability, and an estimate of spatial correlation (as ex-
pressed in terms of scale of fluctuation). The primary purpose of these sections is to present
COV data; parameter values are presented to simply allow PEER researchers to judge the condi-
tions for which the COV values are applicable. Total variability can be computed using the fol-

lowing equation:

COV (total) = \/COV(measurement)2 + COV (random)* . (4.2)
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4.2 LABORATORY-MEASURED PROPERTIES

Laboratory measured soil properties are important for determining soil indices, strength parame-

ters, and consolidation characteristics.

4.2.1 Inherent Variability

This section presents tabulated COV values of inherent variability of various laboratory-

measured properties.

4.2.1.1 Moisture-Density Characteristics

The unit weight (or density) of a soil is important for determining states of stress beneath and ad-
jacent to structures. Unit weights are typically determined by measuring the weight and volume
of soil samples in the laboratory.

Lacasse and Nadim (1996) suggest the pdf for unit weight is normally distributed for all
soil types. Table 4.1 presents tabulated COV data for natural water content, wy, total unit weight,
v, dry unit weight, y4, buoyant (submerged) unit weight, v, relative density, D;, specific gravity,
G, and degree of saturation, S.
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Table 4.1 COV of inherent soil variability for moisture content, unit weight, and
relative density

Property Soil Type | No. of | No. of Tests Per | Property Value Property COV Note
(units) Data Group (%)
Group| Range | Mean | Range | Mean | Range | Mean
s
Wy (%) Fine-grained 40 17 —439 252 13 -105 29 7-46 18 1
Silty clay * * * * * 20 * 3
clay * * * * * 13
* 13 * * * * * 17.7 4
y (kN/m’) | Fine-grained | 6 |5-3200] 3564 14-20 | 175 3-20 9 1
y * * * * * * 3 * 3
v4(kN/m®) | Fine-grained | 8 | 4-315 122 | 13-18 | 157 2-13 7 1
¥, (KN/m’) All soils * * * 5-11 * 0-10 * 3
D (%) Sand 5 * * 30-70 50 11-36 19 1
D (%) Sand 5 * * 3070 50 49 - 74 61
Gs 3k * * * * k 2 * 3
*Not reported.

(a) Total variability for direct method of determination.

(b) Total variability for indirect determination using SPT values.

Notes:

(1) Phoon and Kulhawy (1999).

(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was included.
(3) Harr (1987). No comments made on whether measurement variability was included.

(4) Kulhawy (1992). No comments made on whether measurement variability was included.

4.2.1.2 Plasticity Characteristics

Plasticity characteristics are important for classification of soil types and for determining engi-
neering behavior. Plasticity indices are usually measured in terms of Atterberg limits in the labo-
ratory.

Lacasse and Nadim (1996) suggest that the plastic limit, PL, and the liquid limit, LL, are
normally distributed in clays. Table 4.2 presents tabulated COV data for liquid limit, plastic
limit, plasticity index, P/, and liquidity index, L.
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Table 4.2 COYV of inherent soil variability for plasticity indices

Property| Soil Type No. of | No. of Tests Per Property Value Property COV Note
(%) Data Group (%)
Groups | Range | Mean | Range | Mean | Range | Mean
LL Fine-grained 38 15-299 129 27 -89 51 7-39 18 1
Clay * * * 30-380 * 3-20 * 2
* 28 * * * * * 11.3 4
PL Fine-grained 23 32-299 201 1427 22 6-34 16 1
Clay * * * 13-23 * 3-20 * 2
* 27 * * * * * 11.3 4
PI Fine-grained 33 15-299 120 12 —44 25 9-57 29 1
Ll Clay, silt 2 32118 75 * 0.094 | 60-—288 74 1
* Not reported.
Notes:

(1) Phoon and Kulhawy (1999).

(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was included.
(3) Harr (1987). No comments made on whether measurement variability was included.

(4) Kulhawy (1992). No comments made on whether measurement variability was included.

4.2.1.3 Strength Characteristics

Strength parameters of soils are probably the most important parameters used in geotechnical
engineering. Most design methodologies rely on the strength of soils as input. Therefore, recog-
nition of uncertainty in soil strength properties is very important. Various laboratory methods
exist for measuring strength parameters, and the inherent variability in the strength parameters
they produce is summarized in this section.

Lacasse and Nadim (1996) and Wolff et al. (1996) suggest that the pdf for friction angle,
¢, is normally distributed in sands. They also suggest that a lognormal pdf be used for undrained
shear strength, s,, in clays, and that a normal pdf be used for s, in clayey silts. Lacasse and
Nadim (1996) suggest the pdf for undrained strength ratio, s,/G’yo, is either normally or lognor-
mally distributed for clay soils. Table 4.3 presents tabulated COV data for drained friction angle,

5 , tangent drained friction angle, tan¢7 , undrained shear strength, cohesion, ¢, and undrained

strength ratio.
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Table 4.3 COYV of inherent soil variability for strength parameters

Property| Soil Type No. of No. of Tests Property Value Property COV Note
(units) Data Per Group (%)
Groups | Range [Mean| Range Mean | Range | Mean
¢7 ©) Sand 7 29-136 | 62 35-41 37.6 5-11 9 1
Clay, silt 12 5-51 16 9-33 15.3 10 — 56 21
Clay, silt 9 * * 17 —41 33.3 4-12 9
* 20 * * * * * 12.6 4
tan ¢7 Clay, silt 4 * * 0.24 - 0.69 0.509 6—46 20 1
tang Clay, silt 3 * * * 0.615 | 6-46 23
ang Sand 13 6-111 | 45 ]0.65-092 | 0744 | 5-14 9 1
¢T ©) Sand * * * * 2-5 * 2
¢ () Gravel * * * * * 7 * 3
Sand * * % * % 12 k
s.¥ (kPa) | Fine-grained 38 2-538 | 101 6—412 100 6—56 33 1
s.” (kPa) | Clay, Silt 13 14-82 | 33 15363 276 1149 22
549 (kPa) Clay 10 12-86 | 47 | 130-713 405 18— 42 32
5.9 (kPa) Clay 42 24124 | 48 8 — 638 112 6 — 80 32
* 38 * * * * * 33.8 3
54 (kPa) Clay * * * * * 5-20 * 2
5.9 (kPa) Clay * * * * * 10— 35 *
s, (kPa)| Clayey silt * * * * * 10— 30 *
C(g) * * * * * * 40 * 3
54540 Clay * * * * * 5-15 * 2

INotes:

* Not reported.
(a) Unconfined compression test.
(b) Unconsolidated-undrained triaxial compression test.
(c) Consolidated isotropic undrained triaxial compression test.
(d) Laboratory test not reported.
(e) Triaxial test.
(f) Index s,.

(g) No specification on how the parameter was defined.

(1) Phoon and Kulhawy (1999).
(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was included.
(3) Harr (1987). No comments made on whether measurement variability was included.

(4) Kulhawy (1992). No comments made on whether measurement variability was included.

4.2.1.4 Consolidation and Permeability Characteristics

Consolidation and permeability characteristics are important to quantify stress/strain relations

and the time-dependent behavior of soils. This section presents typical uncertainties in the vari-

ous laboratory parameters that are used to characterize consolidation and permeability behavior.

Lacasse and Nadim (1996) suggest that the pdf for the overconsolidation ratio is either

normally or lognormally distributed for clay soils. They also suggest (1996) that the pdf for void
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ratio, porosity, and initial void ratio is normally distributed for all soil types. Table 4.4 presents
tabulated COV data for compression index, C., preconsolidation pressure, p.', overconsolidation
ratio, OCR, coefficient of permeability, k, coefficient of consolidation, ¢y, void ratio, e, and po-

rosity, n.

Table 4.4 COYV of inherent soil variability for consolidation and permeability parameters

Property| Soil Type No. of | No. of Tests Per Property Value Property COV Note
(units) Data Group (%)
Groups | Range Mean Range | Mean | Range | Mean
C. Sandy clay * * * * * 26 * 1
pc' * % * * * % 19 % 1
OCR * * * * * * 1035 * 3
k * * * * * * 240@ * 1
* * * * * * o0® *
cy * % * * * % 33 _ 68 % 4
e, n e, | Allsoil types * * * * * 7-30 * 5

* Not reported.

(a) 80% saturation.

(b) 100% saturation.

INotes:

(1) Harr (1987).

(2) Kulhawy (1992). No comments made on whether measurement variability was included.

(3) Lacasse and Nadim (1996). No comments made on whether measurement variability was included.
(4) Duncan (2000).

(5) Lacasse and Nadim (1996).

4.2. 1.5 Stiffness and Damping Characteristics

The seismic response of soil deposits is strongly influenced by the stiffness and damping charac-
teristics of the soil. These characteristics are typically described in an equivalent linear frame-
work, i.e., by maximum shear modulus, modulus reduction curves, and damping curves. While
data and procedures for deterministic prediction of these parameters have been reported, very lit-
tle explicit information on their uncertainty is available.

Seed and Idriss (1970) presented experimental data on the variation of shear modulus
and damping ratio with cyclic strain amplitude, and used the data to develop their widely used
modulus reduction and damping curves for sands and clays. The data for sands came from many
sources that used different types of testing equipment and different (and, in many cases, large)

ranges of effective confining pressure. For sands, shear modulus results were expressed in terms

30



of the parameter K, = G/ lOOO(cs’m)l/2 where G and 6’ are in psf. Shear moduli for clays were
normalized by undrained strength. Damping ratios for sands and clays were also presented
graphically. The plots of experimental modulus reduction and damping data in Seed and Idriss
(1970) suggest substantial uncertainty, but the ranges of effective confining pressures (for tests
on sands) and plasticity characteristics (for clay specimens) are now known to have a systematic
effect on modulus reduction and damping behavior. As a result, statistical parameters computed
directly from this data would likely overpredict the inherent variability of these properties.

About ten years ago, the Electric Power Research Institute (EPRI) undertook an inves-
tigation of appropriate methods for estimating earthquake ground motion in eastern North Amer-
ica. This work, which involved numerous investigators, included extensive, high-quality field
and laboratory testing of soils at more than 200 different sites. The measured shear wave veloci-
ties were shown to be lognormally distributed with o1,y = 0.39 (velocity measured in m/sec).
Laboratory modulus reduction and damping data were used to estimate and model variability in
modulus reduction and damping curves. The modulus reduction ratio, G/Gnax, at a cyclic shear
strain of 0.03% was determined to be lognormally distributed with 61, /Gmax = 0.35 (truncated at
2c). Monte Carlo analyses were performed with the median modulus reduction and damping
curves scaled by a constant value (thereby retaining the shapes of the median curves) that pro-
duced the target variability at y = 0.03%. It should be noted that the characterization of constant
standard deviation implies that the COV of G/Gyax increases relatively rapidly with increasing
shear strain amplitude.

Very high-quality testing (resonant column and torsional shear) has been performed un-
der the direction of Prof. Kenneth H. Stokoe at the University of Texas for many research pro-
jects including the previously described EPRI project, a Savannah River Site investigation, and
the ROSRINE program (http://rccg03.usc.edu/Rosrine/). Darendian (2001) used data from more
than 20 sites to develop a model for modulus reduction and damping behavior that included es-
timates of uncertainty in G/Gmax and damping ratio. The model, which expresses G/Gpax as a
function of shear strain, plasticity index, OCR, effective confining pressure, and soil type, was
calibrated using a first-order, second-moment Bayesian technique. The variance in G/Gpnax and
damping ratio was observed to vary with strain level and with soil type; examples are presented
in Figure 4.2. Details of the Darendian-Stokoe model will be presented in technical papers that

are nearing completion at the time of this report.
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Fig. 4.2 Variation with shear strain amplitude of mean and standard deviation of typical

modulus reduction and damping curves (Darendian, 2001)

4.2.2 Measurement Variability

The process of quantifying uncertainty includes a component due to measurement variability,
which can arise from errors in the laboratory equipment, errors by the person conducting the
laboratory test, and random testing effects that cannot be separately measured. Table 4.5 pre-

sents tabulated COV data for measurement error for some laboratory-measured properties.

Table 4.5 Summary of total measurement error for laboratory-measured properties
(after Phoon and Kulhawy (1999)

Property Soil Type | No. of |[No. of Tests Per| Property Value Property COV
(units) Data Group (%)
Groups | Range | Mean | Range Mean Range | Mean
5. (kPa) Clay, silt 11 * 13 7407 125 8 —38 19
5. (kPa) Clay, silt 2 13-17 15 108 — 130 119 19— 20 20
5.9 (kPa) Clay 15 * * 4-123 29 5-37 13
43 @ (0 Clay, silt 4 9-13 10 2-27 19.1 7-56 24
¢_ ® (o) Clay, silt 5 9-13 11 24— 40 333 3-29 13
¢_ ® (o) Sand 2 26 26 30-35 32.7 13-14 14
tan¢7 (a) (0) Clay, silt 6 * * * * 2-22 8
tan ¢T ® (©) Clay 2 * * * * 6-22 14
wy (%) Fine-grained 3 82 — 88 85 16 —21 18 612 8
LL, (%) Fine-grained 26 41-89 64 17113 36 3-11 7
PL, (%) Fine-grained 26 41-89 62 12-35 21 7-18 10
PL, (%) Fine-grained 10 41-89 61 4—44 23 5-51 24
y, (kN/m?) Fine-grained 3 82 -88 85 16 —17 17.0 1-2 1
* Not reported.
(a) Triaxial compression test.
(b) Direct shear test.
(c) Laboratory vane shear test.
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4.3 FIELD-MEASURED PROPERTIES

In many cases, soil properties are determined or inferred from the results of field tests. Insitu
field tests can be quite useful, particularly in soils that are difficult to sample without distur-
bance. This section presents a discussion of uncertainty for insitu testing and estimated values

for quantifying uncertainty in the form of summarized COV values for various properties.

4.3.1 Inherent Variability

This section presents tabulated COV values of inherent variability of various insitu measured

properties.

4.3.1.1 Standard Penetration Test (SPT) Resistance

SPT resistance is one of the most common forms of insitu testing conducted for geotechnical en-
gineering. Therefore, quantifying uncertainty for SPT resistance is particularly useful. SPT re-
sistance is typically collected using standardized sampling equipment consisting of a hammer,

rods and split-spoon sampler. Table 4.6 presents tabulated data for SPT measured resistance, N.

Table 4.6 COV of inherent soil variability for SPT resistance

Property| Soil Type No. of | No. of Tests Per | Property Value Property COV Note
Data Group (%)
Groups | Range | Mean Range | Mean | Range | Mean
N Clay & Sand * * * 10-70 * 25-50 * 1
N Sand 22 2-300 123 7-74 35 19 -62 54 2
N Clay Loam 2 2-61 32 7-63 32 37-57 44
INotes:

(1) Phoon and Kulhawy (1996).
(2) Phoon and Kulhawy (1999).
(3) Harr (1987). No comment made on whether measurement variability was included.

4.3.1.2 Cone Penetration Test (CPT) and Electric Cone Penetration Test (ECPT) Resistance

CPT resistance is probably the second most frequently used test for collecting insitu soil meas-

urements. CPT resistance is usually measured using mechanical means (MCPT) or electrically
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(ECPT). CPT testing is usually conducted by pushing a standardized cone into the soil subsur-

face to measure resistance of the tip and friction of the sleeve.

Lacasse and Nadim (1996) suggest that a lognormal pdf be used for MCPT testing in

sands and a normal or lognormal pdf be used for MCPT testing in clays. Table 4.7 presents tabu-

lated COV data for CPT-corrected tip resistance, g, and tip resistance, ¢..

Table 4.7 COV of inherent soil variability for CPT measurements

Property| Soil Type No. of | No. of Tests Per Property Value Property COV Note
(units) Data Group (%)
Groups | Range | Mean | Range | Mean | Range | Mean

gt (MPa) Clay * * * 05-25 * <20 * 1
Clay 9 * * 04-26 1.32 2-17 8 2
q. (MPa) Clay * * * 0.5-2.0 * 20 -40 * 1
Sand * * * 0.5-30.0 * 20-60 * 1
Sand 57 10 —2039 115 0.4-292| 4.10 10 - 81 38 2
Silty Clay 12 30-53 43 0.5-2.1 1.59 5-40 27 2

INotes:

* Not reported

(1) Phoon and Kulhawy (1996).
(2) Phoon and Kulhawy (1999).
(3) Harr (1987). No comment made on whether measurement variability was included.

4.3.1.3 Vane Shear Testing (VST) Undrained Shear Strength

Table 4.8 presented tabulated COV data of inherent soil variability for undrained shear strength

as measured by VST measurement.

Table 4.8 COYV of inherent soil variability of undrained shear strength using VST

measurement
Property| Soil Type No. of | No. of Tests Per | Property Value Property COV Note
(units) Data Group (%)
Groups | Range | Mean | Range | Mean | Range | Mean
s, (kPa) Clay * * * 5 —400 * 10 —40 * 1
s, (kPa) Clay 31 4-131 16 6-375 105 4-44 24 2

* Not reported

INotes:

(1) Phoon and Kulhawy (1996).
(2) Phoon and Kulhawy (1999).

4.3.1.4 Dilatometer Test (DMT) Parameter

Table 4.9 presents tabulated COV data for DMT measurement parameters, A and B, material in-

dex, Ip, horizontal stress index, Kp, and modulus, Ep.
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Table 4.9 COV of inherent soil variability of DMT measurement parameters

Property | Soil Type | No. of |No. of Tests Per| Property Value Property COV Note
(units) Data Group (%)
Groups | Range | Mean | Range Mean | Range | Mean
A Clay * * * 100 — 450 * 10 —35 * 1
(kPa) Sand * * * 60 — 1300 * 20-50 *
Sand to 15 12-25 17 64 — 1335 512 20-53 33 2
clayey sand
Clay 13 10—20 17 119 — 455 358 12-32 20
B Clay * * * 500 — 880 * 10 —35 * 1
(kPa) Sand * 350 — 2400 * 20-50
Sand to 15 12-25 17 346 — 2435 1337 13-59 37 2
clayey sand
Clay 13 10 —-20 17 502 — 876 690 12 —38 20
Ip Sand * * * 1-8 * 20 — 60 * 1
Sand to 15 10-25 15 0.8-8.4 2.85 16 —130 53 2
clayey sand
Sand, silt 16 21-54 3.89 8 —48 30
Kp Sand * 2-30 * 20 — 60 * 1
Sand to 15 10-25 15 1.9-283 15.1 20-99 44 2
clayey sand
Sand, silt 16 1.3-93 4.1 17 - 67 38
Ep Sand * 10-50 * 15-65 * 1
(MPa) Sand to 15 10-25 15 9.4 —46.1 254 9-92 50 2
clayey sand
Sand, silt 16 * * 104 -53.4 21.6 7-67 36
* Not reported
INotes:
(1) Phoon and Kulhawy (1996).
(2) Phoon and Kulhawy (1999).
4.3.1.5 Pressuremeter Test (PMT) Parameters
Table 4.10 presents tabulated COV data for PMT limit stress, p;, and modulus, Epyr.
Table 4.10 COV of inherent soil variability of PMT parameters
Property |Soil Type| No. of | No. of Tests Per | Property Value Property COV Note
(units) Data Group (%)
Groups| Range | Mean Range | Mean | Range | Mean
1 (kPa) Clay * * *  [400—2800] * 1035 * 1
Sand * * 1600 — * 20-50 *
3500
Sand 4 * * 1617 — 2284 23-50 40 2
3566
Cohesive 5 10 -25 428 —2779| 1084 10-32 15
Epyr (MPa) Sand * * 5-15 * 15-65 * 1
Sand 4 * 52-156| 897 28 — 68 42 2

* Not reported.

INotes:

(1) Phoon and Kulhawy (1996).
(2) Phoon and Kulhawy (1999).
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4.3.2 Measurement Variability

Measurement variability arises from errors in insitu testing equipment, by the person operating

the equipment, and by random testing effects that cannot be separately measured.

4.3.2.1 Standard Penetration Test (SPT) Resistance

A number of factors can influence the measurement variability of SPT results; the most impor-

tant of these are presented in Table 4.11. Uncertainty estimates of the COV (in percent) for the

various factors include the following (Kulhawy and Trautmann, 1996):

(D
2
3)
4

©)

Equipment: 5 — 75 (best to worst case);

Procedure: 5 — 75 (best to worst case);

Random: 12 — 15;

Total: 14 — 100, where the total 1s computed by

COV (total) = [COV(equipment)2 + COV (procedure)® + COV (random)* ]1/2 ; and

Range: 15 — 45 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV.

Table 4.11 Sources of variability in SPT test results (Kulhawy and Trautmann, 1996)

SPT Variable
Type Item Relative Effect on Test Results
Equipment Non-standard sampler Moderate
Deformed or damaged sampler Moderate
Rod diameter/weight Minor
Rod length Minor
Deformed drill rods Minor
Hammer type Moderate to significant
Hammer drop system Significant
Hammer weight Minor
Anvil size Moderate to significant
Drill rig type Minor
Procedural/ Borehole size Moderate
Operator Method of maintaining hole Minor to significant
Borehole cleaning Moderate to significant
Insufficient hydrostatic head Moderate to significant
Seating of sampler Moderate to significant
Hammer drop method Moderate to significant
Error in counting blows Minor

4.3.2.2 Cone Penetration Test (CPT) Resistance

The major factors influencing the variability of CPT results are presented in Table 4.12.
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Table 4.12 Sources of variability in CPT test results (Kulhawy and Trautmann, 1996)

CPT Variable
Type Item Relative Effect on Test Results
Equipment Cone type (MCPT or ECPT) Moderate to significant
Cone size Minor
Cone angle Moderate to significant
Rod compression (MCPT) Significant
Manufacturing defects Minor to moderate
Leaky seals (ECPT) Minor
Excessive cone wear Minor to moderate
Procedural/ Telescoping vs. continuous penetration Moderate to significant
Operator Calibration error Minor to moderate
Penetration rate Minor
Inclined penetration Moderate to significant

MCPT

Uncertainty estimates of the COV (in percent) for the various factors include the following (Kul-

hawy and Trautmann, 1996):

(1)
2)
)
(4)

)

ECPT

Equipment: 5;
Procedure: 10 — 15 (tip and side resistances, respectively);
Random: 10 — 15 (tip and side resistances, respectively);

Total: 15 — 22 (tip and side resistances, respectively), where the total is computed
1/2

by COV (total) = [COV(equipment)2 + COV (procedure)” + COV(mndom)z] ;
and

Range: 15 — 25 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV.

Uncertainty estimates of the COV (in percent) for the various factors include the following (Kul-

hawy and Trautmann, 1996):

(1)
2)
€)
(4)

©)

Equipment: 3;

Procedure: 5;

Random: 5 — 10 (tip and side resistances, respectively);

Total: 8 — 12 (tip and side resistances, respectively), where the total is computed by
COV (total) = [COV(equipmem‘)2 + COV (procedure)’ + COV (random)’ ]1/2 ; and

Range: 5 — 15 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV.
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4.3.2.3 Vane Shear Testing (VST) Undrained Shear Strength

The major factors influencing the variability of VST undrained shear strength are presented in
Table 4.13. Uncertainty estimates of the COV (in percent) for the various factors consist of the
following (Kulhawy and Trautmann, 1996):

(1) Equipment: 5;

(2) Procedure: 8;

(3) Random: 10;

(4) Total: 14, where the total is computed as above; and

(5) Range: 10 — 20 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV.

Table 4.13 Sources of variability in VST test results (Kulhawy and Trautmann, 1996)

VST Variable
Type Item Relative Effect on Test Results
Equipment Vane length Minor
Height/diameter ratio Moderate
Blade thickness Moderate
Torque measuring device Moderate to significant
Damaged vane Moderate to significant
Procedural/ Vane insertion method Moderate to significant
Operator Rod friction calibration Moderate to significant
Time delay between insertion and test- Minor to moderate, to significant in
ing soft clays
Vane rotation rate Moderate

4.3.2.4 Dilatometer Test (DMT) Parameter

The major factors influencing the variability of DMT results are presented in Table 4.14. Uncer-
tainty estimates of the COV (in percent) for the various factors consist of the following (Kul-
hawy and Trautmann, 1996):

(1) Equipment: 5;

(2) Procedure: 5;

(3) Random: 8§;

(4) Total: 11, where the total is computed as above; and

(5) Range: 5 — 15 where the range represents probable magnitudes of field test meas-
urement error considering limited data and judgment involved in estimating COV.
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Table 4.14 Sources of variability in DMT test results (Kulhawy and Trautmann, 1996)

DMT Variable
Type Item Relative Effect on Test Results
Equipment Leaking seals Minor
Deformed membrane Moderate
Bent or deformed push rods Minor to moderate
Damaged blade Minor
Procedural/ Push rod inclination Minor to moderate
Operator Testing rate Moderate to significant
Driving method Minor to moderate
Rod friction Minor
Calibration error Minor to moderate

4.3.2.5 Pressuremeter Test (