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ABSTRACT

This report presents a case study on the seismic response of a newly constructed freeway over-
crossing that is equipped with elastomeric bearings and fluid dampers. The 91/5 overcrossing,
shown in Figure A, is located in Orange County, California, and is the first reinforced concrete

bridge in the United States equipped with fluid dampers.

Figure A. View of 91/5 overcrossing located in Orange County in southern Califor-

nia. The deck is supported at mid-span by an outrigger prestressed beam, while at
each abutment it rests on four elastomeric pads and is attached with four fluid

dampers.

First, the bridge is decomposed into its main substructural components such as approach
embankments, pile foundations, center bent, abutments, deck, and the seismic protection system
that consists of isolation bearings and fluid dampers. Subsequently, the mechanical behavior of
each substructural component is examined and expressed by macroscopic force-displacement
laws represented in the form of equations or graphics. The overcrossing is modeled with a simple
stick model that synthesizes the individual mechanical behavior of the various substructural
elements. The modal analysis of the overcrossing is conducted within the context of equivalent
linear analysis. Seismic response analysis is conducted in the time domain to capture the
nonlinear behavior of the protective system. Finally, an in-depth parametric study is presented of

the nonlinear seismic response of the isolated bridge accounting for the effects of soil-structure
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interaction. The various response quantities presented are compared with the corresponding
response quantities of a hypothetical bridge with integral abutments. Advantages and challenges
in the two design configurations are identified and discussed.

The study concludes that the bridge with sitting abutments results in large displacements
and accelerations at the deck ends. Supplemental damping reduces both displacements and
accelerations, yet the response of the bridge with integral abutments appears to outperform the
response of the bridge with sitting abutments. Soil-structure interaction is responsible for

increasing substantially both displacements and forces at the end abutments.
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1 Introduction

Earthquake damage in most highway overcrossings is the result of excessive seismic
displacements and large force demands that have been substantially underestimated during
design. A direct consequence of the underestimated seismic displacements, which are the
combined result of poor representation of the kinematic characteristics of the ground, low inertial
forces, and overestimated stiffnesses, is that the sitting length at the deck supports is
unrealistically short, resulting in loss of support or pounding. In addition to failures that are the
result of geometric inconsistencies (limited sitting length, pounding-abutment slumping), bridges
also fail due to inadequate strength and ductility of columns, cap-beams, and foundations
(Priestley et al. 1996).

In view of the abundance of these failures during the 1971 San Fernando, California,
earthquake, many research programs were launched to study the seismic resistance of highway
bridges. With the help of strong-motion records, improvements have been achieved in both design
and analysis of bridge structures. Extensive retrofit programs have been implemented in
California, which include jacketing of columns and the use of composite materials (FHWA 1995).

An alternative strategy that the California Department of Transportation (Caltrans) is
currently investigating for the seismic protection of bridges is the implementation of devices such
as elastomeric bearings and supplemental dampers.

Traditionally, many conventionally designed bridges use elastomeric bearings (pads)
between the deck and its supports to accommodate thermal movements. The long experience with
this technology has had a positive role on the implementation of modern seismic protection
technologies in bridges. Several bridges worldwide are now equipped with seismic protective
bearings that involve some energy-dissipation mechanism (Skinner et al. 1993). The most
commonly used seismic isolation system consists of lead-rubber bearings that combine the

function of isolation and energy dissipation in a single compact unit, while also supporting the



weight of the superstructure and providing restoring force. Sliding bearings allow for appreciable
mobility and provide energy dissipation through friction. In this case an additional restoring
mechanism is often added to provide the structure with some recentering capacity. Spherical
sliding bearings provide a restoring mechanism because of their curvature while at the same time
dissipating energy.

The traditional non-seismic elastomeric pads used in bridges for thermal movements can
provide some limited seismic protection; however their integrity during large displacements
might be substantially deteriorated or even destroyed due to shearing of the elastomer or rolling of
the entire bearing. Accordingly, elastomeric pads with improved seismic performance have been
developed (ATC-17-1 1993, ATC-17-2 2002), while their displacement and stress demands have
been established in design specification documents (FHWA 1995, AASHTO 1999). The
increasing need for safer bridges in association with the rapid success of energy-dissipation
devices in buildings has accelerated the implementation of large-capacity damping devices in
bridges. The Vincent Thomas suspension bridge in southern California (Smyth et al. 2000), the
Rion-Antirion cable-stayed bridge in western Greece (Papanikolas 2002), the San Francisco-
Oakland Bay Bridge in the San Francisco Bay Area (Caltrans 2002), the Coronado Bridge near
San Diego, California, and the 91/5 highway overcrossing in southern California (Delis et al.
1996, Zhang and Makris 2000) are examples of bridges that have been or will be equipped with
fluid dampers.

The promise of modern seismic protection technologies to operate under strong shaking
has directed most of the attention to the performance of bearings and dampers under large
displacements and large velocities. The interaction of these devices with the remaining bridge
structure is an issue that has either been incorporated in the response analysis indirectly via global
finite element analysis of the entire bridge with large computer codes or has merely been
neglected, partly because the transmitting forces are assumed relatively small and the reactive
substructures are assumed relatively stiff.

In this report the efficiency of modern seismic protection technologies is examined by
analyzing the seismic response of a newly constructed highway overcrossing in southern
California. The 91/5 overcrossing of interest, shown in Figure 1.1, is supported at each end
abutment on four traditional (non-seismic) elastomeric pads, while it is attached by four fluid
dampers. The deck is supported near the center bent by a prestressed reinforced concrete

outrigger. The interesting characteristic of this structure is that its transverse and longitudinal
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modal periods lie in the range between 0.4 sec and 0.8 sec, a period range for which supplemental
damping in a single-degree-of-freedom structure has a beneficial effect. Furthermore, the
approach embankments on each side of the bridge have a tendency to amplify the free-field
motion and increase the role of soil-structure interaction. Accordingly, the assessment of the
efficiency of the seismic protection devices is conducted by accounting in our analysis for the
effects of soil-structure interaction at the end abutments/approach embankments and at the
foundations of the center columns. In principle, lengthening the period of a structure with
mechanical isolation reduces accelerations and increases displacements. Nevertheless, a more
flexible configuration offers to the deck additional mobility that may result in an undesirable
response. The investigation of these issues and the seismic response analysis of the bridge when

excited by various strong earthquakes is the subject of this study.



2 Location, Structural Configuration, and
Geotechnical Information

2.1 LOCATION

Figure 2.1 shows the location of the 91/5 overcrossing in the Greater Los Angeles area together
with the traces of nearby faults. The Whittier-Elsinore fault is 11.6 km (7.2 miles) to the northeast,

while the Newport-Inglewood fault zone is 20 km (12.5 miles) to the southwest.

2.2 STRUCTURAL CONFIGURATION AND DECOMPOSITION TO
SUBSTRUCTURE ELEMENTS

The newly constructed 91/5 overcrossing is a continuous two-span, cast-in-place prestressed
concrete box-girder bridge supported by an outrigger bent at the center and equipped with four
fluid dampers at each end abutment (eight dampers total). The bridge has two spans of 58.5 m
(192 ft) long spanning a four-lane highway and has two abutments skewed at 33°. The width of
the deck along the east span is about 12.95 m (42.5 ft), while along the west span about 15 m
(49.2 ft). The cross section of the deck consists of three cells. The deck is supported by a 31.4 m
(103 ft) long prestressed outrigger which rests on two pile groups, each consisting of 49 driven
concrete friction piles. The columns are approximately 6.9 m (22.5 ft) high.

At each abutment the deck rests on four non-seismic elastomeric pads. Figure 2.2 presents
the elevation and plan views of the bridge. The total weight of the deck (including outrigger
beam) is approximately 25 MN, whereas the weight of each abutment is approximately 5 MN.
The distribution of vertical reactions is also shown in Figure 2.2 below the elevation. Since each

abutment supports approximately 4 MN, each pad carries a vertical load of approximately
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4 MN/4 = 1 MN. The bridge is equipped with eight hydraulic dampers, four at each end,
connecting the deck with the abutments as shown in Figure 2.3. With this arrangement the
dampers engaged in both longitudinal and transverse motions of the deck. Figure 2.4 shows a
photograph of the four fluid dampers installed at the east abutment, while Figure 2.5 shows a
close-up view of the first fluid damper installed. The cross section of the bridge along the
outrigger and a plan view of the pile group are shown in Figure 2.6.

In the case that the bridge deck is isolated not only at the end-abutments but also at the
center bent, the inertia forces transferred at the center columns are relatively small and the
columns behave essentially elastic. The 91/5 overcrossing is supported on bearings at the end-
abutments but is rigidly connected to the center columns through the outrigger beam. In this case
the columns are expected to behave inelastically. Figure 2.7 (top) plots the nonlinear moment-
curvature behavior of each of the two center columns of the 91/5 overcrossing. The moment-
curvature curve was computed with the recently developed software OpenSees (McKenna 1997)
which is available on-line at http://opensees.berkeley.edu, after providing the dimensions of the
columns, the amount of reinforcement and the associated strength of the concrete and steel. The
validity of the OpenSees program in predicting the moment-curvature curve of reinforced
concrete columns is confirmed by comparing the numerical predictions of the code against the
experimental results from two reinforced concrete columns tested by Lehman (1998).

Figure 2.8 shows an idealization of the 91/5 overcrossing together with its approach
embankments and pile foundations. In this study we isolate the main substructure elements of the
bridge, such as the approach embankments, pile foundations, end abutments, center bent, and
protective devices, in order to characterize their behavior with macroscopic force-displacement
constitutive laws. The proposed constitutive laws are sophisticated enough to capture the leading
mechanical behavior of the substructure elements, yet simple enough to be incorporated in a stick
model that approximates the bridge structure. Table 2.1 shows the schematics of the substructure
elements of interest, together with the proposed force-displacement constitutive relations that
approximate their behavior. The parameters of the macroscopic constitutive models of these
substructure elements have been established in past studies (Zhang and Makris 2001, 2002a). This
study examines in depth the relative significance of these substructure elements in governing the

seismic response of the bridge.
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Figure 2.5 Close-up view of first fluid damper installed at east abutment of 91/5 overcrossing.
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(a) Real System

(b) Elevation View of Idealized Model
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Figure 2.8 Schematic of a highway overcrossing and its idealized model.
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Table 2.1 Summary of substructure elements and their constitutive laws

Substructure Elements

Constitutive Laws

Embankment

2D Decoupled
Equivalent Linear Viscoelastic

P(t) = Ku (t)+ Cu (1)

P(t) = Kyu, (1) + cyu'y(z)

K, C.K,C, arestrain dependent

Pile Foundation

2D Decoupled
Equivalent Linear Viscoelastic

P(1) = Ku (1) +Cu1)

P(1) = Kyu, (1) + Cu (1)

K.C.K,C, are strain dependent

Center Bent Nonlinear Moment-Curvature
P s = Curve of Single Column

| ] g M = ()
=r
(0]

W} E ]
§ 101 sz Py

[ ywe—_ [ ewwm——]

dﬁwa{ihre“a; (17;}1) C ;f ﬁ

i, U,

Elastomeric Bearing y

2-D Coupled Bilinear Plastic

- F-+-o

P = K,u+F {Px}
_ P P =
— P
%% e Kyu Fy = (K =Ky (u-wy) y = 7
— O0D(F ) Uy
Mp u u,, uy u, = v- P
6Fp
120, (F,)<0,7- ®(F,) = 0
yO(F,) = 0
Fluid Damper . 1-D Nonlinear Viscous
\ a=1,0350 PO = Cli(n*sgnlu(n)]

or
Equivalent Linear Viscous

an

e

=U P(t) = Ci(1)

o: frequency of oscillation u,: nominal displacement amplitude

2( o
v (e )
C =C2 a—lu(x—l
! “ q O T(a+2)
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Figure 2.9 summarizes the static pushover curves that result from the constitutive models
adopted in this study. Each pushover curve extends to the range of deformation that the
corresponding element experiences during strong and moderately strong earthquake loading. All
substructure elements except the elastomeric bearings exhibit a nearly elastic behavior. This
observation is in agreement with observations from the studies on highway overcrossings, such as
the Meloland Road and the Painter Street overcrossings that have been shaken by strong
earthquakes (Werner et al. 1987, McCallen and Romstad 1994, Goel and Chopra 1997). Even the
center bent, which shares a large fraction of the horizontal inertia loading, behaves nearly elastic.

This finding is in agreement with recent design practice adopted by Caltrans (Delis 2002).

2.3 GEOTECHNICAL DATA

Before construction, a geotechnical exploration at the location of the piers and near the end
abutments was conducted. By using standard penetration test (SPT) measurements from the
ground surface down to a depth about 35 m, moderately stiff soil was identified, which consisted
of silty and clayey sand, sandy silt to clayey silt and occasionally gravelly sand and gravel. SPT
blow counts varied from 8 to 70 blows/ft. The averaged soil density is about p = 1800 kg/ m.
Figure 2.10 summarizes the results of the geotechnical exploration along with the SPT blow
counts for each soil layer. Empirical formulas have been proposed in the literature in order to

correlate the SPT blow counts and the maximum shear modulus of sand, G, .. For example,

G, ~325Nes" (kips/fi’)  (Imai and Tonouchi 1982) @.1)

or

G, .. =35Ne ' @,)"" (kips/f’)  (Seed et al. 1986) 2.2)
where N, is the blow count number measured in an SPT test delivering 60% of the theoretical
free-fall energy to the drill rod, and G, is the effective vertical stress (lb/ftz). These two empirical
relationships are widely used within a number of publications that correlate results. The inherent
difficulty of correlating a small strain parameter G,,, . with a penetration test that relates to much
larger strains is evident from the scatter in the data on which they are based and from the
variability of the results obtained by different investigators (Kramer 1996). Therefore, equations

(2.1) and (2.2) are used only to give a preliminary estimate of G, , . The small strain shear
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Figure 2.9 Summary of force-displacement (pushover) curves of various substructure ele-
ments of interest in this study. Each curve extends to the range of deformation
that the corresponding element experiences. Case 1: strong earthquake shaking;
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modulus G, . varies from 64 MPa to 240 MPa. These values were derived from SPT blow
counts in the range of 8 to 30 according to equation (2.1), whereas equation (2.2) indicates the
shear modulus G, is an increasing function with depth. At a depth of 20 ft, an average blow
count of 30 results in G, , of 84 MPa. Given the variability of data, the value of
G,ux = 72 MPa is adopted in this study, which results in a shear wave velocity of 200 m/s. The

m

Poisson ratio of soil is assumed to be 0.4.
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3 Ground Motions

Because of the proximity of the bridge to active faults, the thrust of this analysis is on near-source
ground motions that exhibit distinguishable strong acceleration and velocity pulses. These
relatively long duration pulses assume various shapes; however they often result in a main
forward motion (type-A pulse), a forward-and-back motion (type-B pulse), a one main cycle in
the displacement history (type-C; pulse), or two main cycles in the displacement history (type-C,
pulse). The response of an isolated structure with various levels of damping when subjected to
near-source and pulse-type motions has been investigated analytically by Makris and Chang
(1998, 2000), whereas an experimental investigation with the emphasis on short bridges has been
presented by Chang et al. (2002). These studies that concentrated on the seismic response of a
rigid block supported on a variety of isolators concluded that for all ground motions examined, an
increase of the viscous damping ratio from 14% to 50% reduces base displacement by half or
even more without appreciably increasing base accelerations.

In this study the structural system of interest is more complicated than the model adopted
in the Makris and Chang studies, not only because of the flexibility of the deck, but also because
of the effects of soil-structure interaction between the bridge and the approach embankments,
which are dramatically altered when the deck is isolated at the abutments. In order to investigate
this problem we use 11 strong ground motions recorded in California relatively close to the faults
of major earthquakes. Table 3.1 lists in historic order the records of interest, together with the
magnitude of the earthquake and distance of the accelerographs from the causative fault.

Figures 3.1 to 3.11 plot the fault-normal and fault-parallel components of these motions,
together with selected trigonometric pulses proposed by Makris (1997) and subsequently used by
Makris and Chang (1998), Makris and Zhang (1999), and Makris and Roussos (2000). Figures

3.12 to 3.22 plot the acceleration, velocity, and displacement response spectra of these



earthquakes for three levels of damping: & = 10%, £ = 25% and & = 50% . These damping
levels are approximately the modal damping values of the first transverse and longitudinal modes
of the bridge. When the configuration with integral abutments is considered, the first translational
mode exhibits a damping ratio, &= 12% , whereas the longitudinal mode exhibits a damping
ratio, &~ 58% . When the configuration with sitting abutments is considered and the bridge is
equipped with fluid dampers, the first transverse and the longitudinal modes exhibit a damping
ratio of § = 24% and & =~ 29% , respectively. Therefore the spectra shown in Figures 3.12 to 3.22
are relevant for both configurations (integral and sitting abutments). The thin lines plot the
earthquake spectra, whereas the thick lines plot the pulse spectra. The vertical lines on the fault-

normal spectra indicate the transverse modal periods of the bridge when integral abutments are

27
Tin = Tso1 ~ 0405,

= 0.61s. The vertical lines on the fault-parallel spectra indicate the longitudinal

2n
331 0.37s, and

= 0.84s. The spectral values that correspond

and when abutments are considered,

considered, sitting
2z
sit10.38
modal periods of the bridge when integral abutments are considered, Tfnt =
2
15
to these periods will be used later in this study in an effort to reach response estimates using an

when sitting abutments are considered, T ?

approximate response spectrum analysis.

Table 3.1 Earthquake records selected for simulation

Record Station Earthquake Magnitude | Distance to Peak Peak
M W Fault (km) | Acceleration (g) | Velocity (m/s)

Pacoima Dam 1971 San Fernando 6.6 8.5 1.17 (1.08) 1.14(0.57)
El Centro Array #5 1979 Imperial Valley 6.4 30.4 0.38 (0.53) 0.99(0.52)
El Centro Array #6 | 1979 Imperial Valley 6.4 29.8 0.44 (0.34) 1.13(0.68)
El Centro Array #7 1979 Imperial Valley 6.4 29.4 0.46 (0.34) 1.13(0.55)
Parachute Test Site | 1987 Superstition Hills 6.6 7.2 0.45(0.38) 1.12(0.44)
Los Gatos 1989 Loma Prieta 7.0 6.1 0.56(0.61) 0.95(0.51)
Cape Mendocino 1992 Petrolia 7.0 3.8 1.50 (1.04) 1.25(0.41)
Lucerne Valley 1992 Landers 7.3 42.0 0.71 (0.80) 1.36(0.70)
Rinaldi 1994 Northridge 6.7 9.9 0.89 (0.39) 1.75(0.60)
Sylmar 1994 Northridge 6.7 12.3 0.73 (0.60) 1.22(0.54)
Newhall 1994 Northridge 6.7 20.2 0.59 (0.58) 0.96(0.75)

* Peak acceleration and velocity values are for the fault-normal component. The values of the fault-parallel compo-
nent are in parentheses.
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Figure 3.1 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Pacoima Dam station
during the 1971 San Fernando, California, earthquake. The heavy lines are

approximations with a type-C; trigonometric pulse.

23



El Centro #5 — Fault Normal El Centro #5 — Fault Parallel
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Figure 3.2 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the El Centro Array #5 sta-
tion during the 1979 Imperial Valley, California, earthquake. The heavy lines
are approximations with a type-B trigonometric pulse.
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El Centro #6 — Fault Normal El Centro #6 — Fault Parallel
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Figure 3.3 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the El Centro Array #6
station during the 1979 Imperial Valley, California, earthquake. The heavy lines
are approximations with a type-B trigonometric pulse.
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El Centro #7 — Fault Normal El Centro #7 — Fault Parallel
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Figure 3.4 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the El Centro Array #7
station during the 1979 Imperial Valley, California, earthquake. The heavy lines

are approximations with a type-C; trigonometric pulse.
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Parachute Test Site — Fault Normal Parachute Test Site — Fault Parallel
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Figure 3.5 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Parachute Test Site
during the 1987 Superstition Hills, California, earthquake. The heavy lines are
approximations with a type-B (left) and with a type-C, (right) pulse.
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Los Gatos — Fault Normal Los Gatos — Fault Parallel
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Figure 3.6 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Los Gatos station dur-
ing the 1989 Loma Prieta, California, earthquake. The heavy lines are approxi-

mations with a type-C; trigonometric pulse.
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Cape Mendocino — Fault Normal Cape Mendocino — Fault Parallel
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Figure 3.7 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Cape Mendocino sta-
tion during the 1992 Petrolia, California, earthquake. The heavy lines are
approximations with a type-A trigonometric pulse.
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Lucerne Valley — Fault Normal Lucerne Valley — Fault Parallel
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Figure 3.8 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Lucerne Valley station
during the 1992 Landers, California, earthquake. The heavy lines are the

approximations with a type-A trigonometric pulse.
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Rinaldi — Fault Normal Rinaldi — Fault Parallel

1

Acceleration (m/sz)
o
Acceleration (m/sz)
o

_5 L
-10 -5
0 5 10 0 5 10
Time (s) Time (s)
2 1 ‘
v, = 1.75 m/s v, = 0.45 m/s
T =08s T =25s
p | p
’(‘\D\ 1 i @\ 0.5
£ £
ey 2
£ £
g | I S
> Y \/V\J\[J\/v W v >
—1 ‘ —1 ‘
0 5 10 0 5 10
Time (s) Time (s)
0.5
E 05 E
5 5
5 5 0
< 0 <
[oR [oX
L2 @D
a a
-0.5 -0.5
5 10 0 5 10
Time (s) Time (s)

Figure 3.9 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Rinaldi station during
the 1994 Northridge, California, earthquake. The heavy lines are approxima-
tions with type-A (left) and type-C, (right) trigonometric pulses.
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Sylmar — Fault Normal Sylmar — Fault Parallel
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Figure 3.10 Fault-normal (left) and fault-parallel (right) components of the acceleration,
velocity, and displacement time histories recorded at the Sylmar station during
the 1994 Northridge, California, earthquake. The heavy lines are approxima-
tions with a type-C, trigonometric pulse.
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Figure 3.11 Fault-normal (left) and fault-parallel (right) components of the acceleration,

velocity, and displacement time histories recorded at the Newhall station dur-
ing the 1994 Northridge, California, earthquake. The heavy lines are approxi-
mations with a type-C; trigonometric pulse.
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4 Kinematic Response Functions and
Dynamic Stiffnesses of Embankments and
Pile Foundations

4.1 KINEMATIC RESPONSE FUNCTIONS AND DYNAMIC STIFFNESSES
OF EMBANKMENTS

Approach embankments are massive, long deformable bodies that amplify considerably the free-
field earthquake motions and interact strongly with the bridge structure. During the last two
decades a considerable amount of published research has focused on refining, expanding, and
verifying the basic dynamic models developed in the 1960s for predicting the seismic response of
approach embankments. A comprehensive critical review of past studies together with an in-depth
investigation on the ability of the shear beam to capture the recorded response on bridge
embankments has been presented by Zhang and Makris (2001, 2002a). In this study the validity of
the approximate procedure proposed by Zhang and Makris (2001, 2002a) to estimate the
kinematic response functions and the dynamic stiffnesses of approach embankments is examined
for the case of the 91/5 overcrossing. First the values of the shear modulus, G , and damping ratio
n , are estimated with the shear wedge model. Since this involves a one-dimensional (1-D)
analysis, each component of the ground motions shown in Figures 3.1 to 3.11 was induced
separately. The converged values for the shear modulus, G, the damping coefficient, 1 , and the
average shear strain, y, that result from the shear wedge analysis are shown in Table 4.1.

The finite element analysis is conducted with the computer software ABAQUS (1997).
The seismic response of the approach embankment is computed in the time domain where

damping is represented with the Rayleigh approximation. The damping matrix, [C], of the soil



Table 4.1 Converged values of the shear modulus, G, and the damping coefficient, 1,
under selected strong motion records

G (MPa)
Earthquakes SB | FEM | SB | FEM SB FEM
Pacoima Dam (FN), 1971 San Fernando 9.4 88 | 0.50 | 0.51 | 4.6x 10°| 5.2x10°°
Pacoima Dam (FP), 1971 San Fernando 7.1 0.53 6.8x10°
El Centro #5 (FN), 1979 Imperial Valley 14.1 | 17.8 | 045 | 0.42 | 2.6x 10°| 1.8x10°
El Centro #5 (FP), 1979 Imperial Valley 18.5 0.41 1.7x10°°
El Centro #6 (FN), 1979 Imperial Valley 241 | 236 | 036 | 0.36 | 1.1x 107 1.1x10°°
El Centro #6 (FP), 1979 Imperial Valley 22.6 0.37 12x10°
El Centro #7 (FN), 1979 Imperial Valley 151 | 23.1 | 044 | 0.36 | 2.3% 10°| 1.2x10°
El Centro #7 (FP), 1979 Imperial Valley 23.8 0.36 1.1x10°
Parachute Test Site (FN), 1987 Superstition Hills | 18.0 | 19.9 | 0.41 | 0.39 | 1.8x 10°| 1.5x10°
Parachute Test Site (FP), 1987 Superstition Hills | 22.3 0.37 1.5%10°
Los Gatos (FN), 1989 Loma Prieta 89 | 157 | 0.51 | 044 | 4.9x 10°| 2.2x10°°
Los Gatos (FP), 1989 Loma Pricta 17.6 0.42 1.8x107°
Cape Mendocino (FN), 1992 Petrolia 6.9 87 1 0.53 | 0.51 | 7.0x 107 5.1x10°
Cape Mendocino (FP), 1992 Petrolia 17.0 0.42 1.9x10°°
Lucerne Valley (FN), 1992 Landers 222 | 193 | 037 | 0.40 | 1.2x 10°| 1.6x10°
Lucerne Valley (FP), 1992 Landers 19.6 0.40 1.5x10°°
Rinaldi (FN), 1994 Northridge 42 95 | 059 | 050 | 1.7 x107%| 4.5%10°
Rinaldi (FP), 1994 Northridge 18.8 0.41 1.7x10°
Sylmar (FN), 1994 Northridge 9.7 9.5 | 050 | 0.50 4.4x10°| 4.5x10°
Sylmar (FP), 1994 Northridge 7.6 0.52 6.1x10°
Newhall (N-S), 1994 Northridge 5.6 82 1 0.56 | 0.52 | 9.8x 107 5.6x10°
Newhall (E-W), 1994 Northridge 11.3 0.48 3.7x107
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structure is assumed to be a linecar combination of the mass matrix, [M], and the stiffness matrix,
[K]:

[C] = a[M]+B[K] (4.1)
where parameters o and 3 are determined by £, = &, = n/2.

Figure 4.1 plots the computed time histories of the converged strains at the base, mid-
height, and crest of the east embankment of the 91/5 overcrossing subjected simultaneously to the
fault-normal and fault-parallel components of the motion recorded at the Pacoima Dam station
during the 1971 San Fernando earthquake. The left column plots the time history of the strains
due to transverse shearing (7,.), the center column plots the time history of strains due to
longitudinal shearing (sz ), whereas the right column plots the amplitude of the maximum shear

strains as a function of time. Following a suggestion by Seed and Idriss (1969), Figure

Ymax
4.1 indicates that an approximate value for the converged strain is 5.2x 10~ . This corresponds to

G =88 MPa (G/G,,, = 0.12) and n = 0.51. These values are indeed very close to the
values computed with the shear-wedge approximation.

Figure 4.2 plots the computed time histories of the converged strains at the base, mid-
height, and crest of the east embankment of the 91/5 overcrossing subjected simultaneously to the
fault-normal and fault-parallel components of the motion recorded at Array #5 during the 1979
Imperial Valley earthquake. Figure 4.2 indicates that an approximate value for the converged
strain is 1.8x10 . This corresponds to G = 17.8 MPa (G/G,,,, = 0.25)and n = 0.42. These
values are also very close to the values computed with the shear-wedge approximation. Figure 4.3
plots the computed time histories of the converged strains at the base, mid-height, and crest of the
east embankment of the 91/5 overcrossing subjected simultaneously to the fault-normal and fault-
parallel components of the motion recorded at the Array #6 during the 1979 Imperial Valley
earthquake. Figure 4.3 indicates a converged strain that is close to the values computed with the
shear-wedge approximation when the fault-parallel component is used. Figures 4.4 to 4.11 plot
the computed time histories of the converged strains of the east embankment subjected
simultaneously to the fault-normal and fault-parallel components of the remaining motions listed
in Table 4.1. The associated values of the converged strains, shear moduli, and damping
coefficients under the three-dimensional (3-D) finite element are also shown in Table 4.1, and it is
concluded that the 3-D finite element analysis yields converged strain values close to the values

predicted by the shear-wedge approximation. Figure 4.12 plots the variation of soil shear modulus
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Figure 4.12 Normalized soil shear modulus, G, and damping coefficient, 1 = 2&, as a func-
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and damping coefficient with shear strain and the range of maximum shear strains of the
embankments that have been computed with the 3-D finite element analysis. Because of the
appreciable variability in the converged values of the soil characteristics shown in Table 4.1, two
sets of shear modulus and damping coefficient values are identified for the forthcoming
parametric analysis: G = 10 MPa, n = 0.50 and G = 20 MPa, n = 0.40, corresponding to
strong, and moderately strong earthquakes, respectively.

Figure 4.13 plots the kinematic response functions along the transverse direction (top) and
longitudinal direction (bottom) of the east embankment of the 91/5 overcrossing computed with
values of G = 10 MPa and n = 0.50 (left column) and G = 20 MPa and n = 0.4 (right
column). The results are obtained with the shear-beam approximation and a 3D finite element
analysis. Even though the east embankment of the 91/5 overcrossing has asymmetrical geometry,
a hypothetical case where the embankment is symmetric is also presented for comparison. The
asymmetric and symmetric geometries yield very close results. The results shown on Figure 4.13
indicate the same trends observed from the analysis of the Meloland Road overcrossing and the
Painter Street bridge embankments presented in earlier studies by Zhang and Makris (2001,
2002a).

Figure 4.14 plots the real and imaginary parts of the dynamic stiffnesses of a unit-width
wedge that has the same cross section as the 91/5 overcrossing soil embankment. The continuous
lines are obtained with the shear-wedge model, whereas the interrupted lines are the results from
the finite element analysis. The dashed lines are the results from a 2-D finite element analysis
whereas the chain lines are the finite element solution that are obtained by restraining the vertical
degree of freedom. The real part of the solutions given by the shear-wedge model at the static
limit agrees with the solution of Wilson and Tan (1990). A practical spring and dashpot value can
be obtained by passing a line through the real and imaginary parts as indicated by the darker lines
in Figure 4.14. To translate the spring and dashpot values resulting from the unit-width wedge to
the spring and dashpot values representing the dynamic stiffness of the entire embankment,
multiply the unit-width wedge values with a critical length, L. The critical length, L , is
approximated by 0.7 m for the case of a symmetric embankment, and L, = 0.7,/z,H for

the case of an asymmetric embankment that has one slope perpendicular to ground, as is the case

of the east embankment of the 91/5 overcrossing (Zhang and Makris 2001, 2002a).
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Figure 4.15 plots the computed real and imaginary part of the distributed transverse and
longitudinal dynamic stiffnesses of the east embankment of the 91/5 overcrossing by using the 3-
D finite element analysis. The values of shear modulus, G, and damping coefficient, n , are the
two sets of values determined in the previous section, namely G = 10 MPa and n = 0.50 (left),
and G = 20 MPa and n = 0.40 (right), respectively. The darker lines in these figures are the
spring and dashpot values of the practical spring or dashpot value identified in Figure 4.14
multiplied by critical length, L, , and divided by the embankment width, B_.. The spring and
dashpot value can be extracted by multiplying the values shown in Figure 4.15 with the
embankment width, B_. For the case of G = 10 MPa and n = 0.50, the representative
distributed stiffness along both transverse and longitudinal directions is approximately
ky =k, =92 MN/ m”. This value is approximately one third of the value used by Caltrans
along the longitudinal direction. As frequency increases, the real part of the dynamic stiffness
fluctuates around the practical value and subsequently decreases monotonically due to the inertia
effects of the soil mass. In view of the variability in soil strains and frequency content during
ground shaking, the macroscopic value of the horizontal and transverse spring that approximates
the presence of the embankment is assumed to be K = K, = kB, = 119 MN/m. The loss
stiffness also fluctuates with frequency; however its upward trend can be approximated with a
slope ¢, = ¢, = 085 MN-s/ m” . The damping constant of the embankment along the transverse

and longitudinal directions is C, = C,, = ¢B,~ 11 MN-s/m.

4.2 INPUT MOTION AT PILE CAPS AND DYNAMIC STIFFNESSES OF
PILE FOUNDATIONS

The difference between the free-field motion and the motion at the cap of a pile foundation is due
to the scattered wave field generated from the difference between the pile and soil rigidities.
Nevertheless, for motions that are not rich in high frequencies, the scattered field is weak, and the
support motion can be considered to be approximately equal to that of the free field (Fan et al.
1991; Gazetas 1984; Kaynia and Novak 1992; Makris and Gazetas 1992; Mamoon and Banerjee
1990; Tajimi 1977). For instance, for the Painter Street bridge the soil deposit has an average
shear velocity, V', of about 200 m/s (Heuze and Swift 1991); the pile diameter, d , is 0.36 m.
Accordingly, even for the high-frequency content of the input motion (f=10 Hz), the

63



*7g ‘yuaun{uBqUId JO YIPIM YJIM dA0qQR

umoys sanfea sulAidpnu £q pajdea3xd aae sanfea jodysep pue suradS *( 0’0 = W “pg0z = O S 5o = U

‘DINOT = D :3J3]) SUISSOIIIIA0 /] 6 JO yudunyuequid yoeoidde Jo sassaujjns JIWvUAP [RUIPN)ISUO] PUE ISIIASURL]L, ST NS

(zH) Aouanbaig
Oc Sl ol

S

o

[feuipniBbuon]

©SJoANSsUeld |

2

- mm x (dnyea jodysep [eondead

T

(@) (@) (@)
QA -

o
(4]
) Ued Aeuibew

g ¢
(W/NI) (©)

(zH) Aouanbaig
oc Sl ol

S

o
©

o

o

o
M Med [eey

b

o
QA

s
Lun) ()

ov'0=l ‘ediN02=D

o
#

(zH) Aouanbau4

Oc Sl Ol g OO
leuipnubuo] - w
| 1S
asJansuel | - m.
I / {01=<
>
um m
| =— x (onfeA jodysep _3_325\ 191 Wm
\N —/W}
| » {02 &
e 4 g =
I - 162 €
== w_d
— oe N
(zH) Aouanba.qy
: , : G—
)
i lo &
—
QO
| A
=
b /oy \m)
P / [ E
mm x (onyea Surads reonderd). _ - < // Ol =
7
e, 2
| ~SL 3
(7U
0c

0S'0=lU "edINO =D



dimensionless frequency, a, = 2nfd/V, is of the order of only 0.1. From studies on vertically
propagating shear waves in homogeneous soil deposits (Fan et al. 1991), the kinematic-seismic
response factors (head-group displacement over free-field displacement) are very close to unity,
even at values of the dimensionless frequency, a,>0.1.

Waves other than vertical S-waves also participate in ground shaking. The seismic-
kinematic response factors for SV waves, P waves, and Rayleigh surface waves are given by
Mamoon and Banerjee (1990), Kaynia and Novak (1992), Makris (1994), and Makris and Badoni
(1995). For all these types of waves that produce a vertical component of the seismic input
motion, the kinematic response factors are also close to unity. Only in some cases do SV waves
with a high angle of incidence result in kinematic response factors of the order of 0.90. Based on
such supporting analytical evidence, in most cases the excitation input motion at the level of the
pile foundation can be assumed to be equal to that of the free-field motion. Only at very high
frequencies or for very soft soils will a reduction be needed. Moreover, in the case of Rayleigh
waves and SV waves, a pile group produces an effective rocking input motion, whereas for
oblique incidence SH waves the foundation experiences torsional excitation. These motions are
the result of phase differences that the seismic input has at the locations of different piles in the
group (wave passage effect); their intensity depends on the frequency content of the seismic input
and the geometry of the pile group.

The dynamic stiffnesses of pile groups along the various vibration mode are computed by
the method outlined by Makris et al. (1994), which has also been presented in a report by Zhang
and Makris (2001). Figure 4.16 shows the pile group configuration at the east and west end
abutments. Both pile groups consist of vertical and battered piles. While a limited number of
studies are available to analyze the dynamic response of battered piles (Guin and Banerjee 1998),
in this study the effect of battered pile is neglected in order to take advantage of the simple
superposition procedure that has been verified only for vertical piles.

Figure 4.17 plots the normalized group dynamic stiffnesses as a function of the
dimensionless frequency, a, = wd/V; of the 49-pile group at the center bent of the 91/5
overcrossing. The soil properties used are G = 28 MPa and 1 = 0.35. The static group stiffness
is only a fraction of the sum of the individual pile static stiffnesses as a result of interaction

between piles. Figures 4.18 and 4.19 plot the normalized dynamic stiffnesses of the pile group at

65



p

4

@ Vertical Pile
¢ Battered Pile

1.07m 1.07m

1.07m1.07m

<

oo o0 of E]0 ¢
Ened
— Ja— [ |4 O_. R—
M AN | S A
£
vV Y Vlote o
(e
0.91m
1.55m}1.55m[1.55m) { | 1.75m] 1.75n] | |1.1m|1.1m1.52
T T T T T TTT T

East Abutment

® ©®© o @
@ @

¢ ¢ 9
v 9999

0.46m|0. 4
.38m+1.38m+1.40m+1 4Om+m0 9%2 4@sp. 1.18m 0407

" 091, @sp. 0.95m
6.55m

5.94m >

g
West Abutment
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the east and west abutments, respectively, where G = 10MPa and n = 0.50 for the soil are
used.

Table 4.2 summarizes the spring and dashpot values that approximate the stiffnesses and
damping at the overcrossing center bent and at each end of the superstructure. Two sets of soil
properties (namely shear modulus, G , and damping coefficient, 1 ), that correspond to strong and
moderatley strong earthquakes, respectively, are used to obtain the combined spring and dashpot
values at end abutments. Similarly, the soil properties for the pile group at the center bent are also
chosen to correspond to the severity of the earthquake. They are G = 28 MPa and n = 0.35,
and G = 56 MPa and n = 0.12 for strong and moderately strong earthquakes, respectively. The
spring and dashpot values of the east and west abutments differ only slightly from each other due
to the different pile group configurations. For simplicity, it is assumed that both abutments adopt

the spring and dashpot values of the east abutment.

Table 4.2 Spring and dashpot values that approximate the presence of the approach
embankments and pile foundation of the 91/5 overcrossing

Parameters Case 1 Case 2
K. (MN/m) 119+292 (119+271) 238+488 (238+453)
= _5 Ky (MN/m) 119+293 (119+272) 238+490 (238+456)
5y -
E '§ K_(MN/m) 451+1135 (451+1058) 892+1586(892+1478)
o=
§ o C, (MN -s/m) 11+28 (11+24) 13432 (13+28)
Q
L% = Cy (MN -s/m) 11422 (11+17) 13+26 (13+19)
* C. (MN-s/m) 14+128 (14+101) 27+124 (27+98)
K., Ky (MN/m) 492 821
g g| K, (MN-m/rad) 31739 44187
s m
g 5 er,Kyr (MN/rad) -811 -1138
o5 K. (MN/m) 1452 2020
Q
= % |Cy. C, (MN-s/m) 14.5 16.2
C. (MN-s/m) 54.3 50.2
Case 1: G = 10MPa, n = 0.5 atabutment; G = 28MPa, n = 0.35 at
center bent.
Note |Case 2: G = 20MPa, n = 0.4 atabutment; G = 56 MPa,n = 0.12 at
center bent
Numbers in parenthesis are the values for west abutment
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5 Mechanical Modeling of Seismic
Protective Devices

At each end abutment the deck rests on four elastomeric pads and is attached to the abutments
with four fluid dampers. The mechanical behavior of these protective devices is nonlinear, since
the elastomeric pads allow for sliding beyond a threshold elastic deformation, while the dampers
deliver forces that depend on a fractional power of the piston velocity. In this chapter the
macroscopic constitutive laws of the elastomeric pads and hydraulic dampers are presented at the

force-displacement level.

5.1 ELASTOMERIC PADS

The elastomeric pads consist of neoprene, have a square plan view (24" x 24") and are 3" tall
without any steel reinforcement. Their effective shear modulus, G, ;= 150 psi(1 MN/ mz) , and

the resulting elastic stiffness of each pad is approximately

G
K= _e;fﬁzs MN/m (5.1)

where 4 = 24" x 24" = 576 in2(0.37 mz) is the plan area and ¢ is the height of the elastomers.
Under shear deformation the elastomeric pads deform nearly elastically until they develop a
threshold force F' = uN, where p~0.3 is the friction coefficient of the pad-deck interface and
N is the normal force on the pad. Figure 5.1 (top) illustrates schematically the force-deformation
loop of the elastomeric pad in one direction. Static analysis yields that the vertical reaction at each
abutment is 4.0MN, so the normal force at each elastomeric pad is approximately 1.0MN.
Accordingly, the force when sliding initiates is F '~ 03x1.0 = 0.30MN , and the yield

displacement is u' = F'/K ¢fr™ 0.06m . The mechanical behavior of the elastomeric bearings can
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be best approximated with a bilinear plasticity model (Simo and Hughes 1998) or a 2-D Bouc-
Wen model (Nagarajaiah et al. 1990 and references reported therein).

5.1.1 Bilinear Plasticity Model

This model is based on classical rate-independent plasticity assuming isotropic behavior. Figure
5.1 (bottom) presents a schematic sketch of the idealized uniaxial force-displacement relation of
the bilinear plasticity model. The restoring force, P= [px py}T consists of an elastic-hardening
component and a hysteretic component, given by
P =K,utF, (5.2)
where K, is the post-yield hardening stiffness, F, is the hysteretic force and u= [”x u}] ! is the
translational deformation. In our specific application, K, = 0; however, the general formulation
is presented here for K, # 0. The yielding surface, ®(F p) is assumed to be a circular interaction
surface, i.e.,
O(F,) = |F,| -0, (5:3)
where O, is the zero-displacement force intercept and K, is the pre-yield elastic stiffness, as
shown in Figure 5.1. Variable O, represents one half the size of the hysteresis loops. The plastic

displacement, u_, is governed by the associative plastic flow rule:

u, = OOF) _ F, (5.4)
A T2
IR L
where y > 0 is the plasticity multiplier. The Kuhn-Tucker loading/unloading condition (Simo and
Hughes 1998) is
720, O(F,)<0, y-O(F,)=0 (5.5)

and the consistency condition is
v-®(F,) =0 (5.6)
The hysteretic force F, is computed by
The return-mapping algorithm for plasticity proposed by Simo and Hughes (1998) is used

to compute the restoring force P for a given displacement history u. Figure 5.2 illustrates the

return mapping algorithm of a uniaxial bilinear plasticity model. Given the solution (P", F.., u’, ,
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. . o 1 .
and u") at time increment n and displacement at time increment n + 1 (u”+ ), a trial state

corresponding to a purely elastic step can be obtained as

n+1,trial ntl n
F, = (K;-Ky)-(u"" )
n+1,trial _ " 58
! ! (5.8)
n+1,trial _ | on+1,trial
D = |F, -0,

The trial state is determined solely in terms of the solution at time increment n» and given
. 1 . : :

displacement u" "', This state may not, and in general will not, correspond to any actual,

physically admissible state unless the incremental process is elastic, i.e., "l <

Otherwise, we need to find the real solutions at increment #n + 1 which satisty the condition

O(F, ") =0 and Ay>0 (5.9)
According to the flow rule
+1
un+1:un+Ay,——lni—— (5 10)
P p n+1” .
Thus
! n+1 n+1 et F”+1
= (K -Ky)-(w - )= (K;—-K,)-|u" —u —Ay ”*1” (5.11)
F
p
Equation (5.11) can be written in terms of F, n+l,trial
n+1,trial n+l
n+1 e+ 1, trial] Fp ’ Fp
|| ‘——MH ‘ p EE— —Av‘(Kl—Kz)H;;;l—H (5.12)
P
Moving the second term in the right-hand side to the left-hand side results in
n+1,trial
n+1“+Ay (K _K,))- _ ‘FnJrl,trial Fp— (5.13)
2 ‘FVHIH p ‘FnJrl,trial :
p r
Therefore
+1,trial +1
L B L EONVRCE & (5.14)
and
n+1 n+1,trial
L (5.15)
‘Flﬁ‘lw ‘Fn-i-l,trial
p 4

Substituting Eq. (5.14) into the first equation of (5.9) obtains
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n+1 n+1,trial

P

n+l”

o(F," ") = 0)= Ay (K, ~K3)~0p =0 (5.16)

The incremental plasticity multiplier Ay is then obtained as

n+1,trial +1,trial
Ay = 2 O @ " (5.17)
(K -K5) (K1 —K3)
The solution at increment 7 + 1 can be easily calculated as
n+1,trial
n+1 _ p
uP up+Ay Fn+1,trial
P (5.18)
n+1,trial
n+l  n+1,trial
F, =F, —Ay- (K -K)- n+ 1, trial
p

In order to incorporate the bilinear plasticity model into the earthquake analysis, the
tangent stiffness matrix needs to be obtained. During an elastic regime, the tangent stiffness is

merely
K=k |11 (5.19)
=
where I is a two by two identity matrix. As for a plastic regime, the rate of plastic force is (from

equation (5.7)):

F,=(K,-K,)-(u—up,) = (K,-K,)- (u y” ”) (5.20)

where v is obtained from (i)(Fp) =0,1i.e.,
F,-u
Y= " u (5.21)

Substituting (5.21) into (5.20), one obtains

F,= (KI—K2>-in—[(K -K,)- EP—F% (5.22)

¥’

The rate of the restoring force is then

(_I_(l:ﬁ____)FPFlf]ﬁ (5.23)

2
I

Therefore, the tangent stiffness matrix during a plastic step is

F=Ku+F,= {KII—

76



T
L N P A
- IF,| ¥, (524)
T
_(Kll_(Kl_Kz)FpFéj Kll—(Kl_Kz)Fng
[Fl %[ |

5.1.2 Bidirectional Bouc-Wen Model

The uniaxial Bouc-Wen model, originally proposed by Bouc (1971) and subsequently extended
by Wen (1975, 1976), is used extensively in random vibration studies of inelastic systems.
Casciati (1989) considered the Bouc-Wen model as a smoothed form of the rate independent
plasticity model and generalized it to a bidirectional case. Equation (5.22) can be written as
Flu
F,=(K,-K,)- u—[(Kl -K,)- —LZJFP -H(D)- H(D) (5.25)
F
p

where H(®) is the Heaviside function. H(®) can be approximated with a smoothed function

H(®)=H(|F, |- ~M 5.26

(®) = H(|F,|-0p)~ 2! (5.26)
D

where n>0. H(®) is defined as

1+ sgn(FTﬁ)
H(®) = H(F,F,) = —= (5.27)
Therefore, the rate of plastic force is approximated with
1+sgn(F
sen(F,u)

, (5.28)

n-2
o - _IF T
p
Defining a dimensionless plastic variable Z such that F,=0pZ and uniaxial “yield”:

displacement, u' = 0Op/ (K, -K,), equation (5.28) becomes
Zu' =u—|z|" (2" G + %Sgn(ZT ﬁ))z (5.29)
Equation (5.29) can be written in a more general form

Zu' = Aqu—|Z]"* - (z"v) [y+Bsen(Z w)]Z (5.30)
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where v, B, and n are dimensionless quantities that control the shape of the hysteretic loop. In
this study, 4 = 1 and y = B = 0.5. This results in the bound of variable Z as |Z| < 1. By using

equation (5.28) and O,/ Uy, = K, —K,, the rate of restoring force can be written as

P=K,u+F, = {K,+A(K,—K,)— (K, ~K)Z|" [y +Bsgn(Z'w)](ZzZ")}u (5.31)
1e.,
P Ky A(K K~ (K K2 [+ psgn(2 ) 22) (5.32)

Therefore, the tangent stiffness matrix is

op P

K,=|0u Ou (5.33)
0P oP
ou du

The Bouc-Wen model is very versatile for modeling various seismic protection devices, such as

sliding, elastomeric, or lead-rubber bearings.

5.2 FLUID DAMPERS

Fluid dampers have been accepted as a promising alternative to dissipate the energy that
earthquakes and wind induce in structures. Several major retrofitting projects of buildings, such
as San Bernardino County Hospital, Los Angeles City Hall, Hayward City Hall, and the Rockwell
building in Newport Beach, California, among others, have adopted fluid dampers to suppress
seismic-induced shaking. Theoretical and experimental studies on the implementability of
hydraulic fluid dampers in bridges have also been conducted (Tsopelas 1994; Delis et al. 1996;
Aiken and Kelly 1995). Examples of actual implementation of fluid dampers as protection
devices are the Vincent Thomas suspension bridge in southern California (Symth et al. 2000), the
Rion-Antirion cable-stayed bridge in Greece (Papanikolas 2002), and the 91/5 highway
overcrossing in Orange County, California, the bridge of interest in this study. The
implementation of dampers for the seismic upgrade of the Coronado and the Oakland-San
Francisco Bay bridges in California are also under way.

Hydraulic dampers designed for seismic protection applications have specially shaped

orifices that yield a nonlinear force-velocity relationship of the form

P(8) = C Ju(0)“sgn[i(?)] (5.34)
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where P(¢) is piston force, u(t) is piston velocity, o is fractional exponent,and 0<a <1, C, is

; o
the damping constant with units of (force) - (lnmfh) and sgn( ) is the signum function.
eng
When a = 1, equation (5.34) reduces to the linear viscous case
P(t) = Cu(t) (5.35)

When o <1 damper forces are less dependent on velocity compared to the viscous case, and at
the limit where a = 0, equation (5.34) represents a hysteretic law of dissipation (rigid-plastic

behavior) where the resulting force is velocity independent

P(t) = Cysgn[i(1)] = P sgn[i(1)] (5.36)
where P = C, = yield force.

Each fluid damper installed in the 91/5 overcrossing was designed to produce 250 kips at a
piston velocity of 42 in/sec. The fractional exponent in equation (5.34) was estimated
0.3 <a < 0.4, and all the analysis during the design of the bridge and in this study was conducted
with o = 0.35. The stroke capacity of the dampers is £8.0 in.

Upon the installation of the dampers and the completion of this study, the California
Department of Transportation (Caltrans) funded the construction of a large damper testing
machine under the supervision of the senior author. Figure 5.3 shows the view of the large damper
testing machine at the University of California, Berkeley, with one of the dampers installed from
the 91/5 overcrossing. The machine shown in Figure 5.3 has £12.0 in stroke capacities and is
powered by a 115 in® bore dynamic (double-ended) actuator. It is capable of achieving
20 in/sec under 200 kips load. Figures 5.4 and 5.5 show recorded force-displacement loops
from one of the dampers of the 91/5 overcrossing.

The theoretical loops are produced by assuming that the exponent o = 0.35 and by back-
figuring the value of C, = 67.6 kips(s/ in)" from equation (5.34) given that the maximum load
P, .. = 250 kips occurs at v, . = 42 in/sec. With the value of C, = 67.6 kips(s/in)"
established, Figures 5.4 and 5.5 plot the prediction of equation (5.34) for the velocity histories for
which that the damper was tested. The good agreement between the theoretical prediction and
experimental results demonstrates that the dampers are indeed characterized with fidelity by
equation (5.34), where o = 0.35 and C, = 67.6 kips(s/in)". In Figure 5.4 the peak piston
velocity is v, . = 3.77 in/sec and the resulting force history is nearly sinusoidal. In Figure 5.5
the peak piston velocity is v, . = 18.85 in/sec and the nonlinear behavior is apparent in the

force history.
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Figure 5.3 Top view of the UC Berkeley damper testing machine.
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Figure 5.4 Imposed displacement history (top), recorded force history (center), and
recorded force-displacement loop (bottom), from one of the dampers installed
at the 91/5 overcrossing under testing frequency / = 0.1 Hz. The nonlinear

behavior is captured satisfactorily with C, = 67.6kip(s/ in)" and o = 0.35.
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When a nonlinear time domain analysis is conducted, equation (5.34) can be used directly
in conjunction with the nonlinear force that originates from the bearings (eq. (5.31)). Despite the
nonlinear nature of fluid dampers (a < 1), modal analysis is possible with the introduction of
equivalent linear quantities. The equivalent linear damping coefficient, C,, for each nonlinear
damper with damping constant, C,,, is calculated by equating the energy dissipated during one
cycle by the two dampers. This idea was apparently first introduced by Jacobsen (1930) and
subsequently used in several other studies (Fabunmi 1985, Symans and Constantinou 1998,
Pekcan et al. 1999, among others).

The energy dissipated by any device during one cycle of motion u(#) = u,sin(w?) is

21
E,= {)P(t)du = jow P(t)u(t)dt (5.37)
where P(t) is the force at the attachment of the damper that is given by (5.34) in the case of the
nonlinear damper (o< 1) or by (5.35) in the case of a linear damper (o = 1). When a <1

equation (5.37) becomes

2n
atl o

Ep= J.OE C,o uo+1|cos(0)t)|°‘sgn[cos(mt)]cos(cot)dt. (5.38)

Now since the function |cos(o?)|*sgn[cos(w?)] has the same sign as cos(o?) , equation (5.38)
is integrated only over one quadrant:

T

o atlpe

E% =4C, 0% ﬁ cos™ (of)d(of) (5.39)
The integral appearing in (5.39) is known to be (Abramowitz and Stegun 1970)

o o
=+ =+
> ar(z 1)1‘(2 1)

o) a+1
dn =2 5.40
Jocos™ T(@+2) (5.40)

and equation (5.39) gives

rig)
E(x _ 22+(x a atl 41
On the other hand when o = 1 equation (5.37) gives

E} = Cynouj, (5.42)
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which is the result of (5.41) when a = 1 (F(% + 1) —“é—;c, I'(3) = 2). Equating the results
from (5.41) and (5.42) yields

2( O
e ()
2 a-1 a-1 2

Equation (5.43) indicates that the equivalent damping constant C; of a linear damper that

(5.43)

dissipates the same amount of energy per cycles as the nonlinear damper is a function of the
amplitude of the motion u,. This amplitude dependence requires iteration in the equivalent linear
analysis. A recent study that followed this approach has been presented by Lin and Chopra
(2001).

Figure 5.6 plots the force-displacement loops of one of the dampers installed at the 91/5
overcrossing when cycled at frequencies /' = 0.5 Hz and 1.0 Hz. The dashed lines plot the loops
of an equivalent linear viscous dashpot with C, given by equation (5.43) when evaluated at
uy = 0.075 m =3 in. Although the corresponding loops from the nonlinear and linear dampers

dissipate the same energy per cycle, the linear (viscous) damper results in a higher force.
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Figure 5.6 Force-displacement relation of the nonlinear fluid damper (o = 0.35, solid

lines) and its equivalent linear damper (o = 1.0, dashed lines) evaluated at
frequencies /' = 0.5Hz and f = 1.0Hz, respectively.
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6 Seismic Response Analysis

6.1 EIGENVALUE ANALYSIS

With the validity of the stick model being established in past studies (McCallen and Romstad
1994, Zhang and Makris 2001, 2002b), the eigensolutions of the 91/5 overcrossing are computed
for the stick model, shown in Figure 6.1, by using the commercially available software ABAQUS.
The bridge superstructure consists of beam elements with massless links at each end that preserve
the skewed geometry and serve as the connecting elements between the bridge deck and the end
abutments. The elastomeric bearings are modeled with the 2-D plasticity model presented in
Chapter 5; however, in the eigenvalue analysis it is assumed that the amplitude is small enough
(Ugper < uy) to keep the deformation of the bearing elastic. The nonlinear fluid dampers are
replaced with linear dashpots that dissipate the same amount of energy at some nominal
amplitude, u,, that is discussed later. Each abutment is connected with the “springs” and
“dashpots” that were established earlier to represent the stiffness and damping of the approach
embankments along the longitudinal and transverse directions. The pile foundations at the center
bent and end abutments are represented with equivalent flexural beams with the appropriate
length and cross section that yield the correct static translational and rotational stiffnesses.
Dashpots have been also appended at the location of the pile caps to represent the energy
dissipated by the pile groups. The cross-section properties of the bridge superstructure are
obtained from geometric data without considering any cracked section reduction. The damping of
the bridge superstructure is approximated with the Rayleigh damping approximation, where the
parameters o and 3 are computed by assuming a 5% modal damping ratio in the first and second

modes. The Young’s modulus of the concrete is assumed to be 22 MPa. This value is



Embankment, Bearings
and Fluid Dampers

Embankment, Bearings
and Fluid Dampers

Pile Foundation
k ¥ (Equivalent Beam and Dashpot)
X Stick Model

Rigid Abutment

Massless Rigid
N Link &

Nonlinear Dashpot
(Fluid Damper)

\ Spring and Dashpot (Embankment)

Bilinear Element (Bearing)

Modeling of Embankment and Protective System

Figure 6.1 Top: structural idealization of the 91/5 overcrossing with beam elements and
frequency-independent springs and dashpots; bottom: detail of the mechanical

model that transfers forces from the deck to the surrounding soil.
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approximately 80% of the value obtained from empirical expressions to account for the cracking
that is expected during a strong earthquake. The density of concrete is 2400 kg/ m .

Eigensolutions are performed for the bridge with integral abutments and the bridge with
protective devices (elastomeric pads and fluid dampers) by using the commercially available
software ABAQUS. Since the fluid dampers do not provide any stiffness, the bridge with pads
essentially yields only the same modes and modal frequencies as those of the bridge equipped
with both pads and fluid dampers. Figure 6.2 depicts the first six mode shapes as well as the
natural frequencies of the bridge equipped with integral abutments (left) and those of the bridge
with pads and fluid dampers (right), where the soil properties are taken as G = 20MPa and
n = 0.40 at the abutments and G = 56 MPa and n = 0.12 at the center bent.

For the bridge with integral abutments, the first modeshape is antisymmetric vertical,
while the second modeshape is symmetric vertical. The third is the first transverse mode that
indicates lateral flexure of the deck. When the bridge is sitting on elastomeric pads at each end,
the structural configuration is more flexible. Accordingly, the modal frequencies of the bridge
sitting on elastomeric pads at each end are smaller than the modal frequencies of the bridge with
integral abutments. As a result, the first mode is longitudinal, the second mode is torsional about
the vertical axis while the third mode is antisymmetric vertical. The first transverse mode of the
sitting abutment configuration is the fourth mode that indicates more of a rigid body translation of
the deck rather than flexure which is observed in the third mode of the bridge with integral
abutment. Table 6.1 compares the first six natural frequencies of the bridge with integral abutment
and the bridge with protective devices when soil properties are taken as: G = 10MPa, n = 0.50
at abutment and G = 28 MPa, n = 0.35 at center bent (Case 1); and G = 20MPa, n = 0.40 at
abutment and G = 56 MPa, n = 0.12 at center bent (Case 2). These two sets of soil properties
correspond to the foundation response under different levels of earthquake.

Modal damping ratios are estimated with the complex eigenvalue procedure presented by
Zhang and Makris (2001). A reduced-order stick model was developed with fewer degrees of
freedom in order to bypass the problem of computing and interpreting the large number of
complex eigenvalues resulting from the original stick model. For simplicity, the reduced-order
stick model lumped the four fluid dampers into two orthogonal nonlinear dashpots rather than

preserving the exact layout as shown in Figure 6.1. Similarly, the presence of the embankment
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Bridge with Integral Abutments Bridge with Sitting Abutments

Case2: fi=144 Hz &, =53% Case2: f1 =121 Hz &, =28.9% (5.6%)

Case2: f,=179 Hz &,=5.8% Case2: f, =127 Hz &, =84.4% (5.7%)

(&g

Case2: f3=293 Hz & =123% Case2: f3=152Hz &;=9.8%(5.7%)

Figure 6.2 First six modal frequencies, damping ratios, and modeshapes computed with
stick model of 91/5 overcrossing (left: bridge with integral abutments; right:
bridge with sitting abutments). The damping ratios in parentheses are for the

bridge with pads only (continued).
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Bridge with Integral Abutments Bridge with Sitting Abutments

Case2: fs=3.72 Hz & =11.9% Case2: fs=1.75Hz &5=5.7% (5.8%)

3

=

Case2: f,=3.82 Hz §;=10.5% Case2: fo=3.10 Hz &, =78.2% (12.7%)

Figure 6.2 First six modal frequencies, damping ratios, and modeshapes computed with
stick model of 91/5 overcrossing (left: bridge with integral abutments; right:
bridge with sitting abutments). The damping ratios in parentheses are for the

bridge with pads only.
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and elastomeric pads are represented by two orthogonal springs and dashpots respectively, as
shown in Figure 6.1.

To the same extent that the modal characteristics of the bridge depend on the level of
shaking because of the strain-dependent behavior of the soil, they also depend on the level of
shaking because of the amplitude-dependent behavior of fluid dampers with exponent o < 1. The
nominal amplitudes for the two levels of excitation considered are uy~2in and u,~4.5in ,
respectively, and the damping constant of the equivalent linear dashpot is given by (Jacobsen
1930).

N2 a_lfz(%+ l)
C,=C, - o u m (6.1)

The frequency ® appearing in equation (6.1) is taken to be equal to the first modal frequency

(o= o))

Table 6.1 compares the first six modal frequencies and modal damping ratios of the bridge
with integral abutment, the bridge with pads, and the bridge with pads and nonlinear fluid
dampers under different levels of earthquake. It worth mentioning that the natural modes of the
bridge with integral abutments are different from that of the bridge with elastomeric pads and/or
nonlinear fluid dampers. Therefore, a one-to-one comparison of modal damping ratios between
these two cases is not meaningful. A more meaningful comparison is the case with pads only and

the case with pads and nonlinear dampers. Several key observations from Table 6.1 are

* The behavior of the bridge with integral abutments is essentially very close to that of the
Meloland Road overcrossing and the Painter Street bridge (Zhang and Makris 2001 and
2002b), where high modal damping ratios are associated with the longitudinal and transverse

modes that mobilize a large volume of soil with high damping.

» The first transverse mode of the deck with integral abutment is a flexural mode whereas the

first transverse mode of the deck with pads is essentially a translational mode.

* Because of the flexibility introduced by elastomeric pads at the deck ends, the modal damping
ratios associated with the longitudinal or transverse modes of the bridge with sitting abutments

are appreciably smaller than the modal damping ratios of the bridge with integral abutments,
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since the bridge superstructure can move substantially without mobilizing large volumes of
soil. At the same time, the modal frequencies of the bridge with pads are lower than that of the

bridge with integral abutments.

* When integral abutments are considered the modal damping along the longitudinal direction is
58% and along the transverse direction is 18%. When pads and dampers are added the situation
reverses. Because of the flexibility of the pads the bridge moves appreciably both in the longi-
tudinal and transverse directions. Along the longitudinal direction the modal damping of the
bridge with pads and dampers is approximately 18%, whereas along the transverse direction

the modal damping is 50%.

*  When nonlinear fluid dampers are added, the modal damping ratios of modes that involve large
movement of the fluid dampers increase substantially (longitudinal, torsional, and transversal

modes).

6.2 TIME HISTORY RESPONSE ANALYSIS

The bridge response is computed by inducing as support motions along the transverse and
longitudinal directions the recorded acceleration time histories at the free field and the amplified
acceleration time histories at the crest of the embankment to the idealized model shown on Figure
6.1. The fault-normal component is applied to the transverse direction, while the fault-parallel
component is applied simultaneously to the longitudinal direction. The time history response
analysis is conducted on the bridge with integral abutment, the bridge with elastomeric pads, and
the bridge with elastomeric pads and nonlinear fluid dampers, subjected to the ground motions
listed in Table 3.1. The macroscopic force-displacement laws of the various substructure elements
of the bridge appearing in Table 2.1 have been presented and discussed in the previous chapters.
The Appendix offers computed time histories of response quantities at various points, as
well as displacement and force signatures and force-displacement loops at various locations. The
results of our investigations are presented in summary plots where peak response values are
presented for all 11 earthquake motions used in this study. Figure 6.3 shows the peak total
accelerations and relative displacements along the transverse and longitudinal directions near the
east end of the deck (point A). The same quantities normalized to the response of the

configuration with integral abutments are shown in Figure 6.4. The longitudinal response of the
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bridge is in accordance with what one expects intuitively. The bridge with sitting abutment is
more flexible than that with integral abutments, so accelerations are smaller and displacements
are larger. Damping reduces both displacements and accelerations of the flexible configuration.
Figures 6.3 and 6.4 (left) show that the transverse response of the bridge with integral abutments
yields not only smaller relative displacements but also smaller accelerations. This can be
explained by concentrating on the transverse modes of the two configurations that is the third
mode (3rd) when integral abutments are considered and the fourth mode (4th) when sitting
abutments are considered. In the case of integral abutments the transverse mode is primarily a
flexural mode, whereas in the case of sitting abutment the transverse mode is primarily a
translational mode where the entire deck translates sideways without flexing appreciably. This
causes larger displacements at the deck ends but also larger accelerations. Supplemental damping
reduces both displacements and accelerations but the response of the bridge with sitting
abutments appears to underperform compared to the response of the bridge with integral
abutments. Figure 6.5 plots the normalized response of the bridge computed without soil-structure
interaction to the response of the bridge computed with soil-structure interaction. For the
configuration with pads and dampers this ratio is below unity, indicating that soil-structure
interaction increases both accelerations and displacements.

Figures 6.6 to 6.8 plot total accelerations and relative-to-the-ground displacements at the
mid-span (point B). The trend of accelerations and displacements along the longitudinal
directions resemble the trend at point A (east of the deck near the abutment). Along the transverse
direction the results for accelerations and displacements of the two configurations are mixed. This
is because the mid-span moves sideways approximately the same amount regardless of whether
the transverse movement is the result of a primarily flexural mode or of a primarily translational
mode. Figure 6.8 indicates that an analysis of the bridge response that neglects the effect of soil-
structure interaction underestimates considerably the transverse and longitudinal displacements at
mid-span.

The results of Figures 6.3 to 6.8 indicate that lengthening of the period of an overcrossing
by introducing sitting abutments reduces the longitudinal accelerations of the deck but increases
the translational accelerations. Introduction of damping is beneficial; but the configuration with
integral abutment is shown to yield the most favorable response. Soil-structure interaction is

responsible for increasing displacements, while having mixed effect on accelerations.
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Peak Ground Acceleration (FN)

Peak Ground Acceleration (FN)

Figure 6.4 Normalized bridge response quantities near east end of deck (point A) to the corresponding response quantities of

bridge with integral abutments due to various earthquake motions ordered with increasing peak ground

acceleration of the fault-normal component.
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the corresponding response quantities computed with soil-structure interaction due to various earthquake motions

Figure 6.5 Normalized bridge response quantities near east end of deck (point A) computed without soil-structure interaction to
ordered with increasing peak ground acceleration of the fault-normal component.
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Figure 6.6 Peak total accelerations (top) and peak relative displacements (bottom) at mid-span (point B) due to various

earthquake motions ordered with increasing peak ground acceleration of the fault-normal component.
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Figure 6.7 Normalized bridge response quantities at mid-span (point B) to the corresponding response quantities of bridge with

integral abutments due to various earthquake motions ordered with increasing peak ground acceleration of the

fault-normal component.
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Figure 6.8 Normalized bridge response quantities at mid-span (point B) computed without soil-structure interaction to the

corresponding response quantities computed with soil-structure interaction due to various earthquake motions

ordered with increasing peak ground acceleration of the fault-normal component.



Figure 6.9 plots peak forces that develop at the deck ends due to various earthquake
motions. Clearly the configuration with integral abutments results in higher forces that, in some
cases, are as high as half (1/2) the deck weight. The configuration with pads alone results in the
smaller forces that are approximately 5% of the deck weight. This result is expected, since the
4MN of the vertical reaction at each deck-end is approximately 0.16 7 and with a coefficient of
friction, p = 0.3, the maximum horizontal force is 0.3 x 0.16 W = 0.05 W . The forces normalized
to the forces of the configuration with integral abutments are shown in Figure 6.10.

Figure 6.11 plots the transverse and longitudinal forces behind the end abutments for the
three configurations of interest and the two cases with and without soil-structure interaction. The
forces normalized to the forces of the bridge with integral abutments when soil-structure
interaction is considered are shown in Figure 6.12. Clearly the configuration of the bridge with
sitting abutments reduces the longitudinal forces but not the transverse forces. The presence of
fluid dampers yield transverse forces that are higher than the forces when the bridge has integral
abutments.

Figure 6.13 shows the normalized forces behind the abutments computed without soil-
structure interaction compared to the corresponding forces computed with soil-structure
interaction. For all but the Cape Mendocino record, the forces without soil-structure interaction
are smaller than the forces with soil-structure interaction. In some cases, such as the El Centro
Array #5 record or the Newhall and Sylmar records, the force ratio is as low as 0.5. This
observation indicates that soil-structure interaction has an important effect and should be included
in the dynamic analysis.

Figure 6.14 plots the transverse and longitudinal shear forces at the bases of columns of
the center bent for the three configurations of interest and the two cases with and without soil-
structure interaction. The forces normalized to the corresponding forces of the bridge with
integral abutments when soil-structure interaction is considered are shown in Figure 6.15. Along
the transverse direction the bridge with sitting abutments transmits approximately the same forces
to the column bases as the bridge with integral abutment transmits. Along the longitudinal
direction the differences are dramatic, since in some earthquakes the column forces of the bridge
with sitting abutments are more than two times the column forces of the bridge with integral
abutments. Nevertheless, our analysis indicated that even when the bridge is isolated, the center

columns remain practically elastic. Figure 6.16 shows the normalized column forces computed
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Figure 6.9 Peak forces at deck ends due to various earthquake motions ordered with increasing peak ground acceleration of the

fault-normal component.



Longitudinal

Transverse

East End

—6— Integral Abutment
-o- w. Pads

% - w. Pads & Dampers

iR
\

\
¥
R
X
N
'~

f
’
¥

/

F

\

O

. /
dom
\

{ ~|(309'[) OII[:)OpIIIQI/\[ adep
:Il (8L1°1) we( ewtooeg
'I:' (368°0) 1preury -
o (8¢L0) Tewjhg

U; (8¢L°0) LafeA QuIOONT
|

f’“ (365°0) ITeYMaN

B (395°0) soren so]

(89t°0) L# omua) 19

¥ 0 Bgy0) oug 1831 amyoeseq

\

K
b

(8¥°0) 9# onua) 14

(88¢°0) s# omua) 14

1.5

-

0
o

oljey 82104

®

West End

(0]

e —
,g(\‘*_/fr— 75;

%

\,
8-g- 8

*

E-——E/E\

—

~—g-8-g5-¥%

o 0

~—

East End

® 0
‘ I
¥

AN

o
\
b

/
q,
o
»I
o)
,. /
o
by
AR

/

-

0
o

oljey 82104

(B(I)g'[) ouyoopus]/\l[ ade) -g
(BL1°1) we( ewiooeq - E
(]
(368°0) 1preury =
(8¢L0) rewlhg
(8¢L°0) KoyreA ouroonT
(865°0) TreyMmON
(89¢°0) soren so]
(B9°0) Ly onud) 9
(851°0) au1§ 1591, AnyorIRd
(Byt0) o onud) 19

(88¢°0) s onua) g -
| L

1.5

0.5}

oney 82104

®

o 0

~—

104

0.5}

oney 82104

0

Peak Ground Acceleration (FN)

Peak Ground Acceleration (FN)

Figure 6.10 Normalized forces at deck ends and the corresponding forces of bridge with integral abutments due to various

earthquake motions ordered with increasing peak ground acceleration of the fault-normal component.
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Figure 6.11 Peak forces behind end abutments due to various earthquake motions ordered with increasing peak ground

acceleration of the fault-normal component.
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Figure 6.12 Normalized forces behind end abutments and the corresponding forces of bridge with integral abutments due to

various earthquake motions ordered with increasing peak ground acceleration of the fault-normal component.
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Figure 6.14 Peak forces at bases of center columns due to various earthquake motions ordered with increasing peak ground

acceleration of the fault-normal component.
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Figure 6.15 Normalized forces at bases of center columns and the corresponding forces of bridge with integral abutments due to

various earthquake motions ordered with increasing peak ground acceleration of the fault-normal component.
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without soil-structure interaction to the corresponding forces computed with soil-structure
interaction. Other than the Lucerne Valley and Cape Mendocino records the base shears of the
center columns of the bridge with integral abutments are significantly underestimated when soil-
structure interaction is neglected. When the bridge is sitting on elastomeric pads at the deck ends
the value of the base shears of the columns is relatively insensitive to the effect of soil-structure

interaction.

6.3 APPROXIMATE RESPONSE SPECTRUM ANALYSIS

The eigenvalue analysis of this chapter indicates that the transverse and longitudinal modes of the
bridge are well separated while the coupling of the vibrational modes of interest is not strong.
Given that in the analysis presented herein the fault-normal excitation is induced along the
transverse direction of the bridge while the fault-parallel excitation is induced along the
longitudinal direction it is worth examining the results that one obtains for the bridge response
using the response spectra offered in Chapter 3 and assuming that along each direction the bridge
behaves as a decoupled single-degree-of-freedom (SDOF) oscillator.

Figure 6.17 compares peak total accelerations (top) and peak relative displacements
(bottom) at mid-span (point B) of the bridge with sitting abutments computed with the exact time
history analysis and the response spectrum analysis using the response spectra shown in Figures
3.12 to 3.22. Along each direction (transverse and longitudinal) the bridge is assumed to be a
single-degree-of-freedom (SDOF) oscillator with frequency and damping equal to the modal
quantities that were computed for the corresponding mode with the “rigorous” eigenvalue
analysis presented in Section 6.1 (T;it = 0.61 sec, &ijt = 20% and T;it = 0.84 sec,
g = 46%).

Along the transverse (x ) direction the decoupled SDOF idealization yields good estimates
for the peak accelerations while the displacements are overpredicted in some cases by a factor of
two. Along the longitudinal (y) direction the decoupled SDOF idealization underpredicts the
peak acceleration but yields good estimates of the peak relative displacements. Figure 6.17
indicates that given the “rigorous” modal values of the bridge for the transverse and longitudinal
modes of vibration the decoupled SDOF idealization in association with the response spectrum

method gives reasonable estimates of the peak accelerations and peak relative displacements.

111



Longitudinal

Transverse

(805°1) ouroopuay ade) Lk =

)

(8L1°1) weq ewioded ] 2

> £

(368°0) tpreury £ g

c N’

(8¢L0) TeulAs 16 §

g £

(8¢L°0) A9[TBA duroonT ~x {0 &

S E

(365°0) TeymoN 18 =

.c -~

(396°0) soren so i % g

o £

(89t°0) L# onud) 14 X 16 é

| X o

(8sy°0) M 1591, AInyoereq X | 8 %

| o E

(Byp°0) 9# 0nud) 19 X S

/ [

(88¢°0) s# omua) 14 * )

‘ : ‘ , . ‘ ‘ E

- S S 8 o

6) uoneis|ed0y Yeoe =

(0) uoneiaieaoy eod (w) Juawaor|dsiq aATe|eY Yead =

P

=

]

=%}

(=7

=

1 f §

(805’ 1) ouropusy ade) =

[=]

(8L1°1) weq ewrrooeq | %

i (368°0) 1PIEUTY & 2

| c ©
(8¢L0) TewnjAg 18 2

© <

(8¢L°0) Ka[TeA SusvonT s &

— o E
e 8 3
oL (365°0) 11EYMON 18 2
w <z
) ]

5 2 (895°0) soren sog 128
T Q 9 &
i <% (89%°0) L# onud) 14 16 :
I % (7:) (</() (8sp°0) oS 18] dImydeIRg 15 2
FOo $ %
| * + X (Syy'0) 9# onua) 19 2
=]

I | (88€°0) s# onua) 9 E
‘ . . ‘ ‘ z

N 0 o - 0 >
™ ) &

o

=

2P

o

(6) uone.ajea0y Yead

(@)
(w) Juswaoe|dsiq aAle[eY Yead

112

bridge with sitting abutments computed with the exact time history analysis and with a SDOF response spectrum

10% and 50% are shown in Figures 3.12 to 3.22.

analysis. The response spectra for damping ratios, ¢



Nevertheless, the “rigorous” modal values result from the eigenvalue analysis of the 2-D model
shown in Figure 6.1 — which is the same model used in the time history analysis.

The relatively good agreement between the 2-D time history analysis and the 1-D
response spectrum analysis motivated the investigation of an elementary analysis prediction that
assumes that the bridge behaves along the transverse and longitudinal direction as a SDOF
oscillator with stiffness equal to the sum of the stiffnesses of the center columns and the
stiffnesses of the bearings at the end abutments. This approach ignores the effects of soil-structure
interaction. Therefore, the stiffnesses are

K= K = 2k 8K = 440 MN/m (6.2)

X X
The mass of the SDOF oscillator is taken to be equal to the mass of the deck (MD K <2500 Mg)
and two times the mass of the  abutments (MA BT <250 Mg), e,
MR = MPE 2B = 3000 Mg . With these values the natural periods along each direction

arc

TAPR _ APR _ o MR
x y KAPR

The damping constants of the SDOF oscillator are
= ) =8P +8C™ 0 = 9.6 MN-s/m (6.4)

By using that &APR - 'R, (2MA PR(DAPR), the damping ratio along each direction is

=0.52 sec (6.3)

g =g = 132% (6.5)
The dashed line in Figure 6.17 plots the results of the approximate response spectrum analysis
using the period value TfPR = T;PR = 0.52 sec and the damping value éfPR = E_,;‘PR =13.2%.
The results from the elementary model capture the general trend of the response maxima, but in
several occasions are more than 100% off the results from the “rigorous” time history analysis.
This comparison illustrates the combined effects of soil-structure interaction and 2-D response.
Figure 6.18 compares peak total accelerations (top) and peak relative displacements
(bottom) at mid-span (point B) of the bridge with integral abutments computed with the exact

time history analysis and the response spectrum analysis using the response spectra shown in

Figures 3.12 to 3.22. Along the transverse direction, the response spectrum analysis yields
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accurate estimates of the bridge response. However, along the longitudinal direction, the response

spectrum analysis yields significantly lower estimates of the bridge response.
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Figure 6.18 Comparison of peak total accelerations (top) and peak relative displacements (bottom) at mid-span (point B) of the

bridge with integral abutments computed with the exact time history analysis and with a SDOF response spectrum

10% and 50% , are shown in Figures 3.12 to 3.22.

analysis. The response spectra for damping ratios, &



7 Conclusions

This report presented a case study on the seismic response of a recently constructed highway
overcrossing equipped with elastomeric bearings and fluid dampers. The role of this study was to
develop a dependable methodology to compute the seismic response of seismically protected
bridges accounting for soil-structure interaction and to assess the efficiency of modern
technologies in enhancing the response of short bridges. The conclusions of this study are relevant
to bridges which are rigidly connected at mid-span to their center bent and supported on
elastomeric bearings at the end abutments.

The report first decomposed the bridge into its main substructure elements in an effort to
reach a more balanced perspective on the significance of soil-structure interaction together with
practical formulas that can be used with a simple stick model to estimate its seismic response. The
macroscopic constitutive laws used to describe the behavior of approach embankments, pile
foundations, abutments, center columns, elastomeric bearings, and fluid dampers capture
satisfactorily the restoring and energy dissipation mechanisms of these substructure elements.

The study presented herein suggests that an equivalent linear viscoelastic analysis can
provide valuable estimates on the response of conventional highway overcrossings provided that
the significant effects of soil-structure interaction are accounted for (Zhang and Makris 2001,
2002a,b). The nonlinear behavior of protective devices is distinguishable and should be captured
with nonlinear time-domain analysis, in particular when the deck experiences large displacements
and large velocities.

The seismic response analysis of the bridge is conducted using the substructure method
and a reduced-order stick model that have been established elsewhere. Our 2-D nonlinear

dynamic analysis revealed distinguishable trends that lead to the following conclusions:



* The first transverse mode of a bridge with integral abutments is a flexural mode, whereas the
first transverse mode of a bridge that is supported at the end abutments on bearings is

essentially a translational mode.

* The increased mobility of the deck ends due to the seismic protection system results in high
accelerations which can be suppressed with supplemental damping. The response at the end
abutments of a bridge with sitting abutments appears to underperform the response of the same

bridge with integral abutments.

* When soil-structure interaction is neglected, the displacements of the bridge with sitting

abutments are underestimated, in some cases by a factor of two.

* The longitudinal forces at the backwall are reduced by half when the bridge is on sitting
abutments. The presence of elastomeric bearings does not appear to have an effect in reducing
backwall forces along the transverse direction. In contrast, the addition of fluid dampers in the
bridge with sitting abutments yields transverse forces that exceed the forces transmitted when

the bridge has integral abutments.

* When soil-structure interaction is neglected both transverse and longitudinal forces at the
backwall are underestimated. In some cases the forces at the backwall when calculated by

including the effects of soil-structure interaction can be more than two times larger.

* When the bridge is on sitting abutments, the base shears at the center columns are larger than
the corresponding forces of the bridge with integral abutment. This two to three times increase
occurs primarily along the longitudinal direction. Despite this considerable increase the center
columns of the 91/5 overcrossing remained nearly elastic even under the strongest shaking

studied herein.

* When soil-structure interaction is neglected, the base shears of the center columns are in
generally significantly underestimated.

In summary the reduced-order stick model in association with concentrated springs and

dashpots that represent realistically the behavior of the main substructure elements can generate

valuable results on the response of short bridges.
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Appendix

The maximum values presented in Figures 6.3 to 6.16 were obtained from a nonlinear time
history analysis. Figures A.1 to A.9 present the corresponding time histories and bidirectional
signatures of the response computed for the Pacoima Dam ground motions recorded during the
1971 San Fernando earthquake when soil-structure interaction is included. Figures A.10 to A.18
present the corresponding time histories and bidirectional signatures of the response computed for
the Pacoima Dam records of the 1971 San Fernando earthquake when soil-structure interaction is
neglected. Similarly, Figures A.19 to A.36 present the corresponding time histories and
bidirectional signatures of the response computed for the Newhall records of the 1994 Northridge
earthquake.

The overall bridge response was discussed in Chapter 6. The focus of interest in this
appendix is the behavior of the seismic protection elements. As an example Figure A.8 shows the
computed displacement and force signatures of the elastomeric bearings when the bridge is
subjected to the Pacoima Dam records. When the bearings reach their yield force, F Y, the
plasticity model reaches the yield surface. The second row of plots in Figure A.8 indicates that
when the bridge rests on pads only (no dampers), the yield surface is reached very often and most
of the yield locus is generated. The last row of plots in Figure A.8 indicates that when in addition
to pads, dampers are also added, the displacements are substantially suppressed in all directions
and the yield surface is reached only occasionally. The same trend is observed in Figures A.17,
A.26, and A.35.

Figures A.9, A.18, A.27, and A.36 plot the force-displacement loops of the nonlinear fluid
dampers as they engage under seismic excitation. The maximum computed displacement, u

max?

approaches 0.15 m (6.0 in). It is worth mentioning that the stroke capacity of the dampers

installed at the 91/5 overcrossing is u,,, . = £8.0 in, which offers a safety factor SF = % = g



under the strongest earthquake motions considered in this study. This finding is credited to

Caltrans engineers.
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Displacement and Force Signature of Bearings (With Pads Only)
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Figure A.8 Displacement and force signatures of elastomeric bearings of 91/5 bridge sub-
jected to Pacoima Dam records from 1971 San Fernando, California, earth-
quake. Soil-structure interaction is included. Top: with pads only; bottom: with

pads and dampers.
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Figure A.10 Transverse acceleration time histories at various locations along bridge sub-
jected to Pacoima Dam records from 1971 San Fernando, California, earth-

quake. Soil-structure interaction is neglected.

136



Longitudinal

10

TS Point A

-10f : -

-15 : :

Time (s)

15

Point B

5 10 15
Time (s)

—_
(6]
I

|

Point C

— Integral Abutment
W Pads N
— - W Pads & Damper

_20 | |
0 5 10 15

Time (s)
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Figure A.15 Displacement and force signatures of north column of 91/5 bridge subjected to the Pacoima Dam records from 1971

San Fernando, California, earthquake. Soil-structure interaction is neglected.
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Displacement and Force Signature of Bearings (With Pads Only)
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Figure A.17 Displacement and force signatures of elastomeric bearings of 91/5 bridge sub-

jected to Pacoima Dam records from 1971 San Fernando, California, earth-

quake. Soil-structure interaction is neglected. Top: with pads only; bottom:

with pads and dampers.
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Figure A.18 Force-displacement loops of nonlinear fluid dampers subjected to Pacoima

Dam records from 1971 San Fernando, California, earthquake. Soil-structure

interaction is neglected.
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Figure A.20 Longitudinal acceleration time histories at various locations along bridge sub-
jected to Newhall records from 1994 Northridge, California, earthquake. Soil-
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Figure A.21 Drift time histories of south column of 91/5 bridge subjected to Newhall records
from 1994 Northridge, California, earthquake. Soil-structure interaction is

included.
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Displacement and Force Signature of Bearings (With Pads Only)
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Figure A.26 Displacement and force signatures of elastomeric bearings of 91/5 bridge sub-

jected to Newhall records from 1994 Northridge, California, earthquake. Soil-

structure interaction is included. Top: with pads only; bottom: with pads and

dampers.
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Figure A.27 Force-displacement loops of nonlinear fluid dampers subjected to Newhall

records from 1994 Northridge, California, earthquake. Soil-structure interac-

tion is included.

153



Transverse

20

15 g Point A

Time (s)

Point B

re
o
T
|

_15 | |
0 5 10 15
Time (s)
15
— Integral Abutment
10k W Pads i
— - W Pads & Damper

_15 | |
0 5 10 15
Time (s)

Figure A.28 Transverse acceleration time histories at various locations along bridge sub-
jected to Newhall records from 1994 Northridge, California, earthquake. Soil-

structure interaction is neglected.
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Figure A.29 Longitudinal acceleration time histories at various locations along bridge sub-

jected to Newhall records from the 1994 Northridge, California, earthquake.
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Figure A.30 Drift time histories of south column of 91/5 bridge subjected to Newhall records
from 1994 Northridge, California, earthquake. Soil-structure interaction is

neglected.
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Figure A.31 Drift time histories of north column of 91/5 bridge subjected to Newhall records
from 1994 Northridge, California, earthquake. Soil-structure interaction is

neglected.
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Displacement and Force Signature of Bearings (With Pads Only)
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Figure A.35 Displacement and force signatures of elastomeric bearings of 91/5 bridge sub-
jected to Newhall records from 1994 Northridge, California, earthquake. Soil-
structure interaction is neglected. Top: with pads only; bottom: with pads and

dampers.
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A.36 Force-displacement loops of nonlinear fluid dampers subjected to Newhall

records from 1994 Northridge, California, earthquake. Soil-structure interac-

tion is neglected.
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