

# Structures and Data Collection

#### Andre R. Barbosa PEER and Oregon State University



### Nepal RAPID Reconnaissance Team

- Oregon State U.: Dr. Andre Barbosa, Dr. Michael Olsen, Dr. Dan Gillins, Rajendra Soti, Patrick Burns, Matt Gillins
- U. Buffalo: Dr. Andreas Stavridis, Supratik Bose
- **PEER:** Dr. Steve Mahin, Grace Kang, Dr. Matthew Schoettler
- **NSET:** Surya N Shrestha, Dr. Ramesh Guragain, Hima Shrestha, Dev K Maharjan
- U. Porto: Dr. Humberto Varum, Dr. Antonio Arede, Dr. Hugo Rodrigues, Dr. Nelson Vila Pouca, Andre Furtado, Joao Oliveira
- U. Chieti-Pescara: Dr. Enrico Spacone, Dr. Giuseppe Brando, Davide Rapone
- U. Roma-La Sapienza: Dr. Rosario Gigliotti, Dr. Marco Faggella
- U. Nebraska: Dr. Richard Wood
- Tufts U.: Dr. Babak Moaveni

# Unique Features of this Effort

#### NSF RAPID

- 1. Survey of RC buildings with masonry infill
- 2. Quantitative damage measurements obtained using 3D, groundbased lidar (GBL) scans, Structure from Motion (SfM), i.e. 3D reconstructions from 2D photographs, and 360° panoramic camera

#### Additional work

- A. Dynamic system identification of RC infilled buildings
  - a) Non-engineered buildings (with and without damage)
  - b) Well designed buildings (with and without damage)
  - c) Identification of frequency of infill walls (with and without damage)
- B. Damage assessment of urban/rural areas using visual damage assessments (rapid and detailed) unmanned aerial systems (UAS)
- C. Inform local agencies in Nepal on suggested rebuilding and recovery guidelines.

### **Geographical Extent**



## **Geographical Extent**



Towns and areas visited

# Team Effort

- RC structures with infills
  - Three (3) tall buildings
  - Six (6) school buildings
  - > Two (2) hospitals
  - > 25 residential buildings
- Two (2) Historic Centers
  - Bhaktapur and Bungmati
- Seven (7) Urban and Rural Areas
  - Kathmandu Gongabu, Sitapaila
  - Sindhupalchowk Chautara, Barabise, Charikot, Piskar
  - Ghorkha Manakamana
- Three (3) historical URM structures
- Landslides and liquefaction

#### Type of Assessment

- ATC-20 Rapid Evaluations
- ATC-20 Detailed Evaluations
- Non-destructive Testing
  - Schmidt Hammer Testing
  - Rebar Scanner
  - Ultrasonic testing
- LiDAR (laser scanning)
- Unmanned Aerial Vehicles

Full list available at: http://web.engr.oregonstate.edu/~barbosa/NEPAL/

## Laser Scanning Basics

- Lidar (light detection and ranging) is used to determine surface geometries of various structures
  - Traditionally a pulse of light is sent and "time of flight" calculated
  - Uses an exterior camera to capture RGB color indices
- Creates a point cloud
  - Vertices in 3D space
  - Measures distance, compute area and volume
  - Mesh or surface creation
- Advantages include:
  - Fast and easy to deploy
  - Limited to no contact
  - High quality data

#### Lidar Mechanism





http://en.wikipedia.org/wiki/File:LIDAR-scanned-SICK-LMSanimation.gif

### Ability to Construct CAD Drawings

- Convert point cloud or (x, y, z) vertices to detailed dimensioned drawings of the structural members
- Example illustrated for interior scan data from the first floor (top level) at Imperial Cabinets Building in El Centro, California (Dr. Wood, Dr. Stavridis)



**Quantify Damage** 



## **Unmanned Aerial Vehicles**

- Bird's eye view
- Low flying heights provide high-resolution data
- Cheap flights
- Repeat flights for time series analyses/change detection
- Inexpensive vehicles and cameras are available
- Requires training



# Team Effort

- RC structures with infills
  - Three (3) tall buildings
  - Six (6) school buildings
  - > Two (2) hospitals
  - > 25 residential buildings
- Two (2) Historic Centers
  - Bhaktapur and Bungmati
- Seven (7) Urban and Rural Areas
  - Kathmandu Gongabu, Sitapaila
  - Sindhupalchowk Chautara, Barabise, Charikot, Piskar
  - Ghorkha Manakamana
- Three (3) historical URM structures
- Landslides and liquefaction

#### Type of Assessment

- ATC-20 Rapid Evaluations
- ATC-20 Detailed Evaluations
- Non-destructive Testing
  - Schmidt Hammer Testing
  - Rebar Scanner
  - Ultrasonic testing
- LiDAR (laser scanning)
- Unmanned Aerial Vehicles

Full list available at: http://web.engr.oregonstate.edu/~barbosa/NEPAL/

### Performance of Tall Buildings



- Hatiban, Kathmandu
- 4 Towers (T1 T4) on the same site
- T1 and T4 are 18 story towers
- T2 and T3 are 12 story towers
- Slight non-structural damage on T2/T3.
- Extensive non-structural and moderate structural damage on T1/ T4





- Buildings were designed for shaking intensities larger than experienced
- In general, buildings performed "well" (life-safety)
- Buildings are repairable, but significant losses, mostly to be covered by insurance
- Misinformation by media



Vertical irregularity (stiffness)



#### Dynamic system identification – system 1







#### Dynamic system identification – system 2 (U. Porto)



#### Top story



other stories





#### Dynamic system identification – system 3 (U. Porto)



- Dynamic identification of infill walls
- Useful for identifying and calibrating model parameters for infills

### Site Characterization



 Micro-tremor equipment used to estimate shear wave velocities of near-surface soil at two tall building sites

 Courtesy: Dr. Ben Mason, Dr. Domniki Asimaki, and Dr. Deepak Rayamajhi, and faculty and students from Khowpa Engineering College

### **School Buildings**



Tarun ma vi (Balaju, Kathmandu)

W1 W2 W1 W1 W1 AB OF ADJACEN 6.4 m CLASSROOM CLASSROOM CLASSROOM CLASSROOM (~21ft) 5875 X 5250 5875 X 5250 6350 X 5250 5875 X 5250 W 27.1 m (~90 ft) Plan View (Level 2)

- Torsional irregularity (stair case)
- Vertical irregularity (infill walls and column size)



Level 3 – reduction of the number of infill walls and section of columns



Column and beam

column joint shear

Back

failure

## School Buildings (2)

Reinforced concrete (RC) frame plan irregular/asymetric building



• Damage in Story 1



### **Damage Assessment to Urban Centers**



UAV flight plan for damage assessment



Correlation of UAV based damage assessment with visual damage assessment



 1600 overlapping photos were taken with Sony A5000 and Go-Pro Hero cameras mounted on multi-rotor UAVs. The photos were processed in Structure-from-Motion software to output 3D models and orthorectified aerial imagery. These outputs were geo-referenced to realworld coordinates by establishing ground control points in the study area by a static differential GPS survey (Dan Gillins)







### Acknowledgements



- National Science Foundation Grant Number CMMI-1545632 "RAPID/ Collaborative Research: Post-Disaster, Reinforced Concrete Building Performance Data Collection following the April 25, 2015 Nepal Earthquake"
- Kearney Faculty Scholar Endowment
- Cascadia Lifelines Program
- Dr. Manjip Shakya, Dr. Ganesh Ram Nhamafuki, Dr. Hemchandra Chaulagain, Principal Chandra Kiran, Principal Sujan Maun, Sharoo Shrestha
- Several building owners in Nepal that prefer to remain anonymous.
- Leica Geosystems and David Evans and Associates provided the Oregon State University laser scanning equipment and software used for this project

#### **Thank You!**

Q&A: email questions to peer\_center@berkeley.edu



#### PEER

**GEER** 

Reconnaissance briefing will be posted at: http://peer.berkeley.edu/publications/earthquake\_recon\_reports.html



#### **EERI** Maintain M7.8 Nepal Earthquake Clearinghouse: http://www.eqclearinghouse.org/2015-04-25-nepal/



GEER Report: Gorkha (Nepal) Earthquake of April 25, 2015:

http://www.geerassociation.org/GEER\_Post%20EQ%20Reports/Nepal\_2015/index.html