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ABSTRACT

The collapse vulnerability of reinforced concrete building frames constructed before the introduc-

tion of modern seismic codes has been well documented by earthquake reconnaissance, but the

mechanisms that lead to collapse are not yet well understood. The collapse of a structure can occur

only if the structure loses its ability to support gravity loads.  Among other causes, the loss of grav-

ity load capacity can result from column buckling, unseating of the supported beam, P-δ instability,

or degradation of axial capacity due to column shear failure. This last cause and the effect of the

axial load failure on the rest of the building frame are the focus of the study presented in this report. 

An empirical model, based on the evaluation of results from an experimental database, is

developed to estimate the drift at shear failure of existing reinforced concrete building columns. A

shear-friction model is also developed to represent the general observation from experimental tests

that the drift at axial failure of a shear-damaged column is directly proportional to the amount of

transverse reinforcement and is inversely proportional to the magnitude of the axial load. The two

drift capacity models are incorporated in a nonlinear uniaxial constitutive model implemented in a

structural analysis platform to allow for the evaluation of the influence of shear and axial load

column failures on the response of a building. 

Shake table tests were designed to observe the process of dynamic shear and axial load fail-

ures in reinforced concrete columns when an alternative load path is provided for load redistribu-

tion. The results from these tests provide data on the dynamic shear strength and the hysteretic

behavior of columns failing in shear, the loss of axial load capacity after shear failure, the redistri-

bution of loads in a frame after shear and axial failures of a single column, and the influence of

axial load on each of the above-mentioned variables. An analytical model of the shake table spec-

imens, incorporating the proposed drift capacity models to capture the observed shear and axial

load failures, provides a good estimate of the measured response of the specimens.
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1 Introduction

1.1 BACKGROUND

Experimental research and post-earthquake reconnaissance have demonstrated that reinforced con-

crete columns with light or widely spaced transverse reinforcement are vulnerable to shear failure

during earthquakes. Such damage can also lead to a reduction in axial load capacity, although this

process is not well understood. As the axial capacity diminishes, the gravity loads carried by the

column must be transferred to neighboring elements, possibly leading to a progression of damage,

and in turn, collapse of the building.

Current methodologies for the evaluation of existing structures (ASCE, 2000) only con-

sider the damage to individual components when evaluating a building for the collapse limit state.

Reconnaissance of recent earthquakes (Sezen et al., 2000) provides evidence that components can

experience significant damage, including column shear failures and loss of axial load capacity,

without collapse of the building system, indicating that the entire system should be considered

when evaluating the collapse limit state. To implement a system-based capacity assessment

method, analytical models incorporating the shear and axial load failure of reinforced concrete col-

umns are required.

Engineers involved in the seismic retrofit of buildings in California have found that, given

the current state of knowledge, it is frequently not economically feasible to protect all columns in

an existing reinforced concrete building from shear failure during strong ground motion.  Given

the lack of understanding of how the axial loads will be supported after shear failure, some engi-

neers have resorted to installing secondary gravity load support systems to ensure that shear failure

of individual columns does not lead to collapse of the building (Holmes, 2000). Hence, a better
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understanding of column axial load capacity after shear failure may lead to a significant reduction

in seismic retrofit costs.

The gravity load collapse of structures during earthquakes involves a complicated interac-

tion between the lateral demands imposed by the ground motion, the vertical demands imposed by

the weight of the structure and by overturning, the lateral capacity of the structural system, and the

vertical capacity of the structure to support the gravity loads. Collapse of the structural system can

result if the lateral demands cause a degradation in the lateral capacity that in turn leads to the ver-

tical capacity degrading below the level of the vertical demands. The lack of adequate models cap-

turing the interaction between the lateral and vertical capacity of building frames has been

identified as a critical deficiency of current methods used to assess the collapse potential of rein-

forced concrete buildings (Comartin, 2001).

Research is required to develop practical shear and axial-load-capacity models for existing

reinforced concrete columns that can be implemented in an analytical model. Furthermore, exper-

imental research is required to validate the ability of analytical models to capture the critical

response characteristics of existing reinforced concrete building frames. After a review of pertinent

existing research, the scope and objectives of the current study will be defined in an effort to

address the issues discussed above.

1.2 PREVIOUS RESEARCH

1.2.1 Shear Response of Existing Reinforced Concrete Columns

A vast amount of research, both experimental and analytical, has been conducted to investigate the

shear behavior of reinforced concrete elements. Only a small subset of this research, however, is

applicable to existing reinforced concrete columns with wide spacing of the transverse reinforce-

ment. Sezen (2002) provides a thorough review of experimental research on existing reinforced

concrete columns experiencing flexural yielding before shear failure. Most of these studies are

included in the database described in Section 2.2.

Several models have been developed to estimate the degradation of column shear strength

with increasing inelastic deformations (Watanabe and Ichinose, 1992; Aschheim and Moehle,

1992; Priestley et al. 1994; Sezen, 2002). These models are useful for estimating the maximum

shear demand a column can withstand, however, they do not provide a reliable estimate of the drift
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capacity at shear failure. Only a limited number of drift capacity models have been developed for

columns experiencing flexural yielding before shear failure (Pujol et al., 1999; Pujol et al., 2000;

Pujol, 2002; and Kato and Ohnishi, 2002). Each of these models are described in detail in

Section 2.3.

1.2.2 Axial Load Failure of Existing Reinforced Concrete Columns

A major obstacle to studying the response of building frames at the point of incipient collapse is

the lack of experimental data at this extreme performance level.  Most structural testing for earth-

quake engineering to date has concentrated on the lateral resistance of the structural elements. With

the recent effort to develop performance-based seismic design methodologies, researchers have

begun to recognize the need to understand not just the shear capacity of older reinforced concrete

columns but also the capacity to sustain axial loads after shear failure. Full-scale shear-critical rein-

forced concrete building columns were tested at UC Berkeley under cyclic lateral loads until the

column could no longer sustain the applied axial load. These tests have demonstrated that the loss

of axial load capacity does not necessarily follow immediately after a loss of lateral load capacity

(Lynn, 2001; Sezen, 2002). The results suggest that the drift at which axial failure occurs is depen-

dent on the axial stress on the column and the amount of transverse reinforcement (refer to

Section 3.2 for more details on these tests). 

Several pseudo-static tests have been performed in Japan to investigate the axial capacity

of shear-damaged columns (Yoshimura and Yamanaka, 2000; Nakamura and Yoshimura, 2002;

Tasai, 1999; Tasai, 2000; Kato and Ohnishi, 2002; Kabeyasawa et al., 2002). Based on the results

from six columns (three experiencing shear failure before flexural yielding and three failing after

flexural yielding) subjected to a variety of lateral loading routines while under constant axial stress,

Yoshimura and Yamanaka (2000) found that the deformation increment ratio (defined as the ratio

of the vertical deformation increment to the lateral deformation increment) was approximately con-

stant at axial failure for all six columns, regardless of the loading routine. This conclusion was also

supported by four column tests performed by Nakamura and Yoshimura (2002) where the principle

variables were the applied axial stress and type of unidirectional loading (i.e., cyclic or monotonic).

These tests also suggested that axial failure occurred when the shear capacity was reduced to

approximately zero, and that the drift at axial failure decreased with increasing axial stress. 
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Tasai (2000) reported results from five pseudo-static tests on columns designed with

approximately equal shear and flexural strengths. Each column, subjected to a constant axial stress,

was tested under unidirectional cyclic lateral loads to different levels of damage beyond the peak

shear strength. To determine the residual axial strength, the columns were returned to plumb ver-

tical, and then subjected to increasing axial compression until failure. Sliding along the diagonal

shear cracks was observed before axial failure. The results indicated that the residual axial capacity

decreased proportionally with the an increase in the maximum lateral drift and the amount of shear-

strength degradation. Tasai (2000) proposed that the residual axial strength could be estimated by

summing the axial load carried by a truss mechanism, an arch mechanism, and the longitudinal

reinforcement:

(1.1)

where cσt is the concrete compressive stress in a strut of a truss mechanism selected based on the

AIJ Guidelines (1999), beλje is the effective area of the strut according to the AIJ Guidelines, cσa

is the concrete compressive stress determined based on an arch mechanism, bD is the gross cross-

sectional area of the column, and σy and As are the yield stress and area of the longitudinal rein-

forcement, respectively. By summing the three components together, as shown in Equation 1.1,

any differences in the orientation of the three forces has been ignored. Tasai concluded that the

deterioration of the residual axial capacity with increasing drift demand was related to the deterio-

ration of cσt.

Based on the results from 32 column specimens tested in Japan, Kato and Ohnishi (2002)

calibrated a drift capacity model to estimate both the drift at shear failure and at axial failure.

Details of the model are presented in Section 2.3.4. 

1.2.3 Shake Table Tests

Only limited dynamic tests have been conducted to investigate the shear and axial load failure of

existing reinforced concrete columns during earthquakes.  Minowa, et al. (1995) performed shake

table tests to investigate the loss of axial load capacity after shear failure of reinforced concrete col-

umns with different hoop spacing.  The test specimens were composed of four similar columns

connected by a rigid mass and, hence, did not incorporate redundancy expected in ordinary build-

ing frames. The results showed that columns with smaller hoop spacing can maintain the gravity

Pres σc tbeλje σc abD σyAs+ +=
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loads at larger drifts than columns with larger hoop spacing. The shake table test results were com-

pared with the results from pseudo-static tests on the same type of specimen, finding that the

strength and deformation capacities of the two types of tests were very close, even though the

damage patterns were different.

Inoue, et al. (2000) compared the results of shake table and pseudo-static tests on shear-

critical columns. The displacement routine for the pseudo-static tests was selected based on the

recorded displacements from the shake table tests. The results suggested that the columns tested

under pseudo-static conditions may experience shear failures at lower drifts than those tested on a

shake table. No results beyond shear failure were presented.

1.2.4 Analytical Models for Shear-Critical Columns

The majority of analytical models for the response prediction of reinforced concrete members have

been developed to capture the flexural response of the component when subjected to seismic

demands (Otani and Sozen, 1972; Chen and Powell, 1982; Zeris and Mahin, 1991; Spacone et al.,

1996). Such models have been used to estimate the point of shear failure through a post-processing

comparison of the calculated flexural response with a shear-strength model, such as those

described in Section 1.2.1 (An and Maekawa, 1998; Browning et al., 2000; Tsuchiya et al., 2001;

Yoshikawa and Miyagi, 2001). To determine the response of a structure with sufficient accuracy

as it approaches the collapse limit state it is necessary to not only detect the occurrence of shear

failures, but also the influence of shear failure, and subsequent degradation of shear strength, on

the response of the structure. 

Several detailed models involving the discretization of a single column into many finite ele-

ments, capable of capturing the degrading behavior after shear failure, have been developed

(Kaneko et al., 2001; Ozbolt et al., 2001; Shing and Spencer, 2001). Although such models provide

insight into the complex stress and strain distributions during shear failure, the computational effort

required makes these models impractical for the analysis of larger structural systems such as build-

ing frames. 

Analytical models for shear-critical columns have also been developed using multiple

uniaxial elements in a lattice or truss system (Kim and Mander, 1999; Niwa et al., 2001). The

models capture interaction between flexure and shear, while explicitly modeling the critical force-
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resisting components (i.e., the longitudinal and transverse reinforcement, diagonal compression

struts, and compression struts due to arch action). Similar to the finite-element mesh models, how-

ever, the large number of elements and nodes required to model a single column does not facilitate

the use of lattice or truss models for the analysis of large structural systems. Macro-elements,

incorporating all of the column response into one or two elements, are preferred for frame analysis. 

Several macro-elements incorporating the effects of shear failure have been developed

based on a frame element with lumped-plasticity at the element ends and an elastic interior

(Figure 1-1). Pincheira and Jirsa (1992) accounted for shear failure by eliminating the lateral

strength of the column element after the shear demand exceeded a specified shear strength. A

column element developed by Li and Jirsa (1998) allows for a residual shear capacity after failure

by incorporating two subelements in parallel. Once a specified shear strength is exceeded, one of

the parallel subelements is converted to a truss element, while the other continues to deform later-

ally, and resist load, through yielding of its plastic hinges.

Pincheira et al. (1999) developed a column element incorporating nonlinear shear and rota-

tional springs in series as shown in Figure 1-1. The backbone of the nonlinear shear spring allowed

for strength degradation and was selected based on the Modified Compression Field Theory (Vec-

chio and Collins, 1986). The solution strategy, however, required the use of a small fictitious pos-

itive slope when on the descending branch of the backbone curve, resulting in a force unbalance

which was applied to the model in the next time step. The procedure can be very computationally

intensive and may not capture the dynamic characteristics of a softening structure. 

Figure 1-1.  Illustration of macro-element model based on a frame element with lumped
plasticity flexural springs (Pincheira et al., 1999)
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Each of the macro-element column models discussed above determine the point of shear-

strength degradation based on the column shear force exceeding a specified shear strength or the

peak in the shear spring backbone. These models do not account for the degradation of shear

strength with inelastic flexural deformations and, hence, may not accurately predict the point of

shear failure for columns experiencing flexural yielding before shear failure. Ricles et al. (1998)

used the shear-strength model by Priestley et al. (1994) to initiate the shear-strength degradation

of a macro-element column model. The Priestley model accounts for degradation of the shear

strength with increasing displacement ductility demand and, hence, its incorporation into the

macro-element model allows for flexural yielding before shear failure. Several deficiencies of

using a shear-strength model to detect the point of shear failure will be discussed in Section 2.3.1.

Macro-element models based on a fiber element, and incorporating shear deformations,

have also been developed to capture the influence of the axial-flexural coupling response of rein-

forced concrete elements (Ranzo and Petrangeli, 1998; Petrangeli, 1999; and Shirai et al., 2001).

For the elements by Ranzo and Petrangeli, and Shirai et al., a shear model acts in series with the

fiber section, but no explicit coupling exists between the response of the shear model and the flex-

ural or axial deformations. The model proposed by Petrangeli (1999) allows for coupling between

the shear response and the flexural and axial behavior. The shear deformations are determined by

requiring equilibrium between the concrete and transverse reinforcement. The load-displacement

behavior for each of the models based on a fiber element is dependent on the concrete and steel

models employed for the fibers.

None of the column models discussed above are capable of representing the axial failure of

shear-critical columns. Little or no attention has been given to incorporating the influence of axial

failures in analytical models. Casciati and Faravelli (1984) considered column axial failures in a

building frame analysis by removing a column element entirely if failure was detected. (Failure of

a component was defined by damage indices, determined based on the flexural response, exceeding

specified values.) Casciati and Faravelli found that, in general, axial failure of a single column led

to global failure of the system. 

For the investigation of intermediate-story collapses of existing reinforced concrete build-

ings, Yoshimura and Nakamura (2002) concluded that a frame analysis was impractical, since “it

is impossible at present to represent the column axial behavior at and after the collapse realisti-

cally.” Instead, an equivalent shear building model was used with the story-drift at collapse (i.e.,
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when the story-shear capacity has degraded to zero) defined by an estimate of the story-drift at

axial failure based on experimental data (Nakamura and Yoshimura, 2002).

1.3 OBJECTIVES AND SCOPE

The overall objective of this research is to quantify the ability of a structural system to resist col-

lapse. (Note that for the current study, collapse of a building frame is defined as the loss of the

capacity to sustain the gravity loads from the floors above.) Such a broad objective requires some

definition of scope.  The project described herein is limited to the study of two-dimensional frames.

Obviously, out-of-plane frames and slab systems will contribute to the capacity of a building to

resist collapse; however, the response of two-dimensional building frames must be well understood

before the whole building system can be realistically considered. 

This study is further limited to reinforced concrete frames with columns that can be char-

acterized by a low ductility capacity and a shear-failure mode.  The shear failure is accompanied

by significant lateral strength degradation, and may be followed by a loss of axial load capacity.

“Short” columns or piers, characterized by a shear failure before yielding of the longitudinal rein-

forcement, are not directly considered in this study, although, some of the general theory regarding

loss of axial load capacity after shear failure (Chapter 3) may be extended to this class of elements.

The behavior of the component (column) must be well defined before useful results can be

obtained for the system (building frame). Hence, a primary objective of this study is the develop-

ment and validation of an analytical model for shear-critical columns. In contrast to existing

models described in Section 1.2.4, the model presented here incorporates both shear and axial load

failures in a general purpose macro-element model for building frame analysis. Given such a

model, engineers will be better equipped to not only evaluate the capacity of vulnerable columns,

but also determine the influence of shear and axial load failures on the rest of the structural system.

As discussed in Section 1.2.3, very few dynamic tests have been conducted to investigate

the gravity load collapse of reinforced concrete frames. In an attempt to fill this gap and provide

benchmark data for analytical modeling, shake table tests of a reinforced concrete frame incorpo-

rating a shear-critical column have been conducted as part of this study. The objectives of the shake

table tests were as follows:
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1. to obtain data on the dynamic shear strength and the hysteretic behavior of columns failing 
in shear,

2. to observe the process by which the axial load may be lost in a shear-damaged column,

3. to observe the redistribution of loads due to the shear and axial load failure of a single col-
umn in a simplified reinforced concrete frame, and

4. to observe the influence of axial load on each of the above mentioned variables.

1.4 ORGANIZATION

This report has been organized in the following manner: the development of the capacity and ana-

lytical models for shear-critical columns; a presentation of the response of the shake table test spec-

imens; and a validation of the analytical model through a comparison with the shake table test

results.

Chapter 2, “Drift at Shear Failure,” evaluates several existing models for the drift at shear

failure based on a database of 49 pseudo-static column tests. In an effort to reduce the wide disper-

sion of predicted drift capacities based on the existing models, two empirical drift capacity models

are proposed based on an evaluation of the critical parameters influencing the database results.

Chapter 3, “Axial Capacity Model,” describes a model to estimate the drift at axial failure

for a shear-damaged column. The model evaluates the capacity to resist sliding along the shear-

failure plane based on shear-friction concepts. The accuracy of the model is evaluated based on the

observed drift capacity at axial failure for twelve pseudo-static column tests.

Chapter 4, “Limit State Failure Model,” describes the implementation of the capacity

models from Chapters 2 and 3 in a uniaxial material model for the OpenSees analytical platform

(OpenSees, 2002). The material model can be used in series with a beam-column element to model

the shear and axial load failure of shear-critical columns in a building frame analysis. The object-

oriented code written to implement the Limit State Failure model is described in Appendix D. 

Chapter 5, “Design of Shake Table Tests,” describes the design, construction, instrumenta-

tion, and shake table testing of two one-half scale reinforced concrete frame specimens, differing

only by the axial load applied to the shear-critical center column. The test specimens were com-

posed of three columns fixed at their base and interconnected by a beam at the upper level. The

center column had wide transverse reinforcement spacing making it vulnerable to shear failure and

subsequent axial failure during testing. A scaled ground motion record from the 1985 Chile earth-
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quake was used as the input table motion. More details on the design, construction, and experimen-

tal setup are provided in Appendices A and B. 

Chapter 6, “Shake Table Test Results,” presents and discusses the results from the shake

table tests. The results from the two specimens are compared to evaluate the influence of the axial

load on the center column. The focus of the discussion is on the response of the shear-critical center

column and the redistribution of loads during shear and axial failure. Videos of the tests, synchro-

nized with data plots, are included on a compact disk as part of Appendix E.

Chapter 7, “Comparison of Test Data with Predictive Models,” evaluates the accuracy of

models commonly used in practice to predict the yield displacement, elastic stiffness, and flexural

strength of the center and outside columns of the test specimens. The test results are also compared

with the drift capacity models for shear and axial load failure from Chapters 2 and 3, and a simple

model is used to represent the response of the beam during axial load redistribution.

Chapter 8, “Analysis of Shake Table Test Specimens,” compares the response of the shake

table specimens with the results from an analytical model incorporating the capacity models from

Chapters 2 and 3 using the uniaxial material model developed in Chapter 4. The comparison allows

for an evaluation of the ability of the macro-element column model to represent the response of

shear-critical columns during shear and axial load failure. The influence of several model param-

eters on the accuracy of the predicted response is also investigated.

Finally, Chapter 9, “Conclusions and Future Work,” will summarize the critical results

from the report and recommend topics in need of further investigation to achieve the overall objec-

tive of this research: to quantify the ability of a structural system to resist collapse.



2 Drift at Shear Failure

2.1 INTRODUCTION

It has been well established by experimental evidence that many existing reinforced concrete col-

umns are vulnerable to shear failure after flexural yielding (Kokusho, 1964; Ikeda, 1968; Ume-

muro and Endo, 1970; Wight and Sozen, 1973; Ohue et al., 1985; among others). Several models

have been developed to represent the degradation of shear strength with increasing inelastic defor-

mations (Watanabe and Ichinose, 1992; Aschheim and Moehle, 1992; Priestley et al. 1994; Sezen,

2002). Although these shear-strength models are useful for estimating the column capacity for con-

ventional strength-based design and assessment, the recent move toward displacement-based

design and assessment methods (ATC, 1996; ASCE, 2000) requires a model for the drift beyond

which shear failure is expected. Furthermore, after flexural yielding the force demand on a column

will be approximately constant, while the displacement demand will increase substantially, sug-

gesting that a drift capacity model is more useful for columns experiencing flexural-shear failures

such as those considered in this study. Although the shear-strength models relate the degradation

of shear strength to displacement ductility, these models may not be appropriate for assessing the

drift at shear failure. 

Three drift capacity models have been proposed by Pujol et al. (1999), Pujol et al. (2000),

and Pujol (2002). The first is based only on statistical evaluation of experimental test results. The

second model is based on the Coulomb failure criterion and uses experimental test data to relate

the degradation of the cohesion coefficient to the drift at shear failure. The final model endeavors

to incorporate the effect of displacement history on the drift capacity. Considering the additional

complexities of implementing the final model in a general-purpose analytical code, this model has

not been evaluated in this study. 
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This chapter will use a database of 50 shear-critical reinforced concrete columns to evaluate

the drift capacity at shear failure calculated by the following models:

• The shear-strength model by Sezen (2002)

• The statistical drift capacity model by Pujol et al. (1999)

• A model based on Coulomb’s criterion by Pujol et al. (2000)

• A plastic drift capacity model by Kato and Ohnishi (2002)

• Two empirical models based on observations from the shear-critical column database

2.2 EXPERIMENTAL DATABASE

With the goal of selecting a capacity model to be used in the analysis of shear-critical columns (see

Chapter 4), the applicability of the models described above to existing reinforced concrete building

columns will be evaluated using a database of 50 experimental tests. The database, compiled by

Sezen (2002), consists of column specimens with observed shear distress at failure and tested under

unidirectional lateral load in single or double curvature with the following range of properties:

• shear span to depth ratio: 

• concrete compressive strength:  psi

• longitudinal reinforcement nominal yield stress:  ksi

• longitudinal reinforcement ratio: 

• transverse reinforcement ratio: 

• maximum shear stress:  (psi units)

The specimen properties and selected response quantities are presented in Tables 2-1 and

2-2. Note that all displacements are given for an equivalent column in double curvature (i.e., for

those specimens tested in single curvature the displacements in Tables 2-1 and 2-2 are twice those

recorded during the experiment). The yield displacement and the displacement at shear failure were

determined based on the backbone curve from the test data as shown in Figure 2-1. For this pur-
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Table 2-1.  Database of shear-critical column tests1(double-curvature specimens)
Specimen b h d a s ρlong ρ� fyl fyt f'c P ∆y ∆s Vtest

in. in. in. in. in. ksi ksi ksi kips in. in. kips

Sezen (2002)

2CLD12 18 18 15.5 58 12 0.025 0.0017 64 68 3.06 150 1.04 2.97 70.8

2CHD12 18 18 15.5 58 12 0.025 0.0017 64 68 3.06 600 0.57 1.02 80.7

2CVD122 18 18 15.5 58 12 0.025 0.0017 64 68 3.03 500 0.76 2.23 67.6

2CLD12M 18 18 15.5 58 12 0.025 0.0017 64 68 3.16 150 1.11 3.33 66.2

Lynn (2001)

3CLH18 18 18 15 58 18 0.03 0.001 48 58 3.71 113 0.78 1.2 61.0

3SLH18 18 18 15 58 18 0.03 0.001 48 58 3.71 113 0.61 1.15 60.0

2CLH18 18 18 15 58 18 0.02 0.001 48 58 4.8 113 0.72 3 54.0

2SLH18 18 18 15 58 18 0.02 0.001 48 58 4.8 113 0.63 2.4 52.0

2CMH18 18 18 15 58 18 0.02 0.001 48 58 3.73 340 0.61 1.2 71.0

3CMH18 18 18 15 58 18 0.03 0.001 48 58 4.01 340 0.61 1.2 76.0

3CMD12 18 18 15 58 12 0.03 0.0017 48 58 4.01 340 0.74 1.8 80.0

3SMD12 18 18 15 58 12 0.03 0.0017 48 58 3.73 340 0.86 1.8 85.0

Ohue Morimoto, Fujii, and Morita (1985)

2D16RS 7.87 7.87 6.89 15.7 1.97 0.02 0.0057 54 46 4.65 41.1 0.3 1.08 22.9

4D13RS 7.87 7.87 6.89 15.7 1.97 0.027 0.0057 54 46 4.34 41.1 0.26 0.58 24.9

Esaki (1996)

H-2-1/5 7.87 7.87 6.89 15.7 1.97 0.025 0.0052 52 53 3.34 36.2 0.16 0.79 23.2

HT-2-1/5 7.87 7.87 6.89 15.7 2.95 0.025 0.0052 52 53 2.93 31.8 0.19 0.82 22.9

H-2-1/3 7.87 7.87 6.89 15.7 1.57 0.025 0.0065 52 53 3.34 60.4 0.14 0.63 27.1

HT-2-1/3 7.87 7.87 6.89 15.7 2.36 0.025 0.0065 52 53 2.93 53 0.19 0.79 25.1

1. Notation: b = column section width; h = column section height; d = depth to centerline of tension 
reinforcement; a = shear span; s = tie spacing; ρlong = longitudinal reinforcement ratio (Asl/bh); ρ� = 
transverse reinforcement ratio (Ast/bs); fyl = longitudinal steel yield strength; fyt = transverse steel 
yield strength; f�c = concrete strength; P = axial load (at time of shear failure for variable axial load 
test); ∆y = yield displacement; ∆s = displacement at shear failure (at 20% loss in peak shear); Vtest = 
peak shear recorded (see Figure 2-1 for definition of ∆y, ∆s, and Vtest).

2. Variable axial load test. All data given for compression cycles (i.e., direction in which shear failure 
was initiated.

Table 2-2.  Database of shear-critical column tests (single-curvature specimens)
Specimen b h d a s ρlong ρ� fyl fyt f'c P ∆y ∆s Vtest

in. in. in. in. in. ksi ksi ksi kips in. in. kips

Li, Park, and Tanaka (1995)

U-7 15.8 15.8 14.8 39.4 4.7 0.024 0.0047 64.7 55.4 4.21 104 0.7 2.8 73.7

U-8 15.8 15.8 14.8 39.4 4.7 0.024 0.0052 64.7 55.4 4.86 241 0.66 1.66 88.3

U-9 15.8 15.8 14.8 39.4 4.7 0.024 0.0057 64.7 55.4 4.95 368 0.6 2.4 96.6
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Saatcioglu and Ozebe (1989)

U1 13.8 13.8 12 39.4 5.9 0.033 0.003 62.4 68.2 6.32 0 1.34 4.18 61.8

U2 13.8 13.8 12 39.4 5.9 0.033 0.003 65.7 68.2 4.38 135 1.18 3.38 60.7

U3 13.8 13.8 12 39.4 3 0.033 0.006 62.4 68.2 5.05 135 1.26 3.54 60.3

Yalcin (1997)

BR-S1 21.7 21.7 19 58.5 11.8 0.02 0.001 64.5 61.6 6.5 469 0.64 1.82 130.0

Ikeda (1968)

43 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 63 81 2.84 18 0.26 1.04 16.6

44 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 63 81 2.84 18 0.26 0.64 17.2

45 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 63 81 2.84 35 0.38 0.64 18.5

46 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 63 81 2.84 35 0.38 0.48 18.1

62 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 50 69 2.84 18 0.24 1.46 13.0

63 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 50 69 2.84 35 0.24 1.1 15.4

64 7.87 7.87 6.81 19.7 3.9 0.02 0.0028 50 69 2.84 35 0.28 1.32 15.4

Umemura and Endo (1970)

205 7.87 7.87 7.09 23.6 3.9 0.02 0.0028 67 47 2.55 35 0.38 0.98 16.0

207 7.87 7.87 7.09 15.8 3.9 0.02 0.0028 67 47 2.55 35 0.32 0.5 23.8

214 7.87 7.87 7.09 23.6 7.9 0.02 0.0014 67 47 2.55 88 0.48 0.82 18.6

220 7.87 7.87 7.09 15.8 4.7 0.01 0.0011 55 94 4.77 35 0.12 0.94 17.6

231 7.87 7.87 7.09 15.8 3.9 0.01 0.0013 47 76 2.14 35 0.08 0.64 11.4

232 7.87 7.87 7.09 15.8 3.9 0.01 0.0013 47 76 1.9 35 0.1 0.64 13.1

233 7.87 7.87 7.09 15.8 3.9 0.01 0.0013 54 76 2.02 35 0.12 0.54 15.5

234 7.87 7.87 7.09 15.8 3.9 0.01 0.0013 54 76 1.9 35 0.12 0.64 15.1

Kokusho (1964)

372 7.87 7.87 6.69 19.7 3.9 0.01 0.0031 76 51 2.88 35 0.2 0.84 16.7

373 7.87 7.87 6.69 19.7 3.9 0.02 0.0031 76 51 2.96 35 0.28 0.78 19.8

Kokusho and Fukuhara (1965)

452 7.87 7.87 6.69 19.7 3.9 0.03 0.0031 52 88 3.18 88 0.24 0.6 24.8

454 7.87 7.87 6.69 19.7 3.9 0.04 0.0031 52 88 3.18 88 0.18 0.4 24.8

Wight and Sozen (1973)

40.033a 6 12 10.5 34.5 5 0.024 0.0033 72 50 5.03 42.5 0.6 2.5 22.3

40.033 6 12 10.5 34.5 5 0.024 0.0033 72 50 4.87 40 0.96 3.46 22.8

25.033 6 12 10.5 34.5 5 0.024 0.0033 72 50 4.88 25 0.94 2.48 23.5

0.033 6 12 10.5 34.5 5 0.024 0.0033 72 50 4.64 0 0.6 2.2 22.1

40.048 6 12 10.5 34.5 3.5 0.024 0.0048 72 50 3.78 40 1.14 3.82 21.2

0.048 6 12 10.5 34.5 3.5 0.024 0.0048 72 50 3.75 0 1.06 2.6 23.6

Table 2-2. (Continued) Database of shear-critical column tests (single-curvature specimens)
Specimen b h d a s ρlong ρ� fyl fyt f'c P ∆y ∆s Vtest

in. in. in. in. in. ksi ksi ksi kips in. in. kips
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pose, the backbone curve was defined as the force-deformation response which enveloped the

entire cyclic response. For approximately 20% of the specimens the shear strength did not drop

below 80% of the maximum shear strength recorded. In such cases, ∆s was taken as the maximum

displacement reported, and as such, represents a lower bound to the true displacement at shear fail-

ure. Response histories and specimen details are provided in Sezen (2002).

Figure 2-2 compares the drift ratio at shear failure (i.e., the displacement at shear failure

divided by the height of the column) with several key parameters. It is apparent from the plots that

there is considerable variability in the results and no clear relationship with any one parameter. The

data in Figure 2-2 suggest that the maximum nominal shear stress (in psi) recorded during the tests

( ), expressed as a fraction of  (psi), is not strongly correlated with the drift at

shear failure. However, the plots do suggest that for columns with high axial loads, the maximum

drift ratio at shear failure tends to be less than the median for columns with low axial loads. Fur-

thermore, columns with higher transverse reinforcement ratios, , tended to achieve larger drifts

at shear failure compared with columns with lower transverse reinforcement ratios. In contrast,

there is no discernible relationship between  and the drift ratio at shear failure, suggesting that

for the specimens included in the database, the drift ratio may be better related to the amount of

Figure 2-1. Definition of displacements reported in database and calculated by the 
shear-capacity model (Section 2.3.1)
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Figure 2-2. Effect of key parameters on drift ratio at shear failure
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transverse reinforcement, rather than to the strength. This conclusion is also supported by the

apparent inverse relationship between the spacing of the hoops (s/d) and the drift at shear failure.

Based on the data, the aspect ratio, a/d, has no clear relationship with the drift ratio at shear failure.

When the maximum shear stress is normalized by  (in psi units), as shown in

Figure 2-3, a slight degradation of the shear strength with increasing drift can be observed. This

general observation has led to the degrading shear-strength models proposed in the literature (Wan-

tanabe and Ichinose, 1992; Aschheim and Moehle, 1992; Priestley et al. 1994; Sezen, 2002). The

nearly horizontal slope of the apparent relationship between the normalized shear stress and the

drift ratio at shear failure suggests that any small change in the shear strength would result in a large

change in the drift ratio at failure. Given the uncertainty in determining the shear strength, this may

not be an appropriate relationship to be used for estimating the drift ratio at shear failure. The dif-

ficulties of using shear-strength models to predict the drift at shear failure will be discussed further

in the next section. 

2.3 MODELS FOR DRIFT RATIO AT SHEAR FAILURE

Most models for estimating the drift capacity of reinforced concrete columns are based on the per-

formance of columns with good seismic detailing. Such models assume that the response is domi-

Figure 2-3. Variation of normalized shear stress with drift ratio at shear failure

(Normalized shear stress =  in psi units)
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nated by flexural deformations, and use estimates of the ultimate concrete and steel strains to

determine the ultimate curvatures the section can withstand. These models are not applicable to

older reinforced concrete columns with limited transverse reinforcement, since the degradation of

the shear strength begins before the flexural deformation capacity can be achieved. Furthermore,

the calculation of ultimate strains assumes good crack control, provided by reasonably distributed

reinforcement, such that deformations can be averaged over finite distances. Experimental studies

and earthquake reconnaissance have shown, however, that the shear failure of older reinforced con-

crete columns often is associated with deformations concentrated along a limited number of pri-

mary cracks (Pantazopoulou, 2003). Hence, such models based on flexural mechanics will not be

considered in this chapter.

2.3.1 Shear-Strength Model (Sezen, 2002)

Similar to other shear-strength models by Aschheim and Moehle (1992) and Priestley (1994), the

model proposed by Sezen (2002) relates the column shear strength to the displacement ductility

demand. The model divides the shear strength into two terms: the shear carried by the concrete, Vc;

and the shear carried by the reinforcement through a 45  truss model, Vs. 

(2.1)

The coefficient k defines the degradation of shear strength with increasing displacement

ductility, as shown in Figure 2-4. The degradation coefficient is applied to both Vc and Vs under

the assumption that the concrete component will diminish due to increased cracking and degrada-

Figure 2-4. Variation of degradation coefficient k with displacement ductility

k

1.0

0.7

2.0 6.0 µδ

°

Vn k Vc Vs+( ) k
6 fc′
a d⁄

------------- 1
P

6 fc′Ag

-------------------+ 0.8Ag k
Astfytd

s
----------------+= =



19

tion of the aggregate interlock mechanism, while the steel component is assumed to drop due to a

reduction in the bond stress capacity required for an effective truss mechanism. Derivation of the

Vc term in Equation 2.1 and further details of the shear-strength model can be found in Sezen

(2002). 

For a given column with a known yield displacement, the shear-strength model ideally can

be used to estimate the drift at shear failure. As shown in Figure 2-1, the displacement at shear fail-

ure based on the shear-strength model, ∆shearStr, is the displacement at which the idealized back-

bone curve intercepts the shear-failure surface given by Equation 2.1 and Figure 2-4. Based on this

method, the drift ratio at shear failure can be calculated for each of the columns in the experimental

database. A comparison of the results with the measured drift ratios (Figure 2-5) indicates that the

shear-strength model does not adequately predict the drift ratio at shear failure for the selected

database. (The mean of the measured drift ratio at shear failure divided by the calculated drift ratio

is 1.78; the coefficient of variation is 0.63.)

Sezen (2002) recommends against using the shear-strength model to estimate the drift ratio

at shear failure, since a small variation in the shear strength (or flexural strength) corresponds to a

large change in the estimated drift ratio at shear failure. If the variability in the shear strength is

Figure 2-5. Comparison of calculated1 and measured drifts for Sezen (2002) 
shear-strength model

1. The idealized backbone for two of the columns passed below the shear-failure surface, indicating 
that the shear-strength model would not predict shear failure for these specimens. These columns are 
not included in Figure 2-5.
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assumed to be adequately represented by a normal distribution with a mean, µ, given by

Equation 2.1 and a standard deviation, σ, and the response of the column is assumed to be elastic-

perfectly-plastic before shear failure, then for the case illustrated in Figure 2-6, the variation in the

displacement ductility demand required to cause shear failure for columns within  of the mean

shear strength is (80/3)σ. For example, if σ = 0.16 (determined by Sezen (2002) using the same

experimental database discussed above), the variation in the ductility demand, ∆µδ, in Figure 2-6,

is 4.3.

Furthermore, the shear-strength model of Sezen (2002) could be interpreted to suggest that

the column drift ratio at shear failure should increase for an increase in the axial load (Figure 2-7).

In contrast, the experimental database (Figure 2-2) suggests that an increase in the axial load may,

in some cases, reduce the drift ratio at shear failure.

Considering the deficiencies outlined above, the shear-strength model will not be used to

estimate the drift ratio at shear failure.

Figure 2-6.  Variation in displacement ductility for columns within one standard 
deviation, σ, of the mean shear strength, µ, defined by Equation 2.1
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2.3.2 Pujol et al. (1999)

Pujol et al. (1999) used a database of 92 columns to establish a conservative estimate of the max-

imum drift ratio1. The database included both circular and rectangular cross-section columns with

the following ranges of experimental parameters:

• shear span to depth ratio: 

• concrete compressive strength:  psi

• longitudinal reinforcement ratio: 

• transverse reinforcement ratio: 

• maximum shear stress:  (psi units)

• axial load ratio: 

The most significant differences with the database introduced in Section 2.2 include the

consideration of columns with transverse reinforcement ratios greater than 1%, the relatively low

limit placed on the axial load ratio, and the inclusion of circular cross-section columns representa-

tive of bridge columns.

Figure 2-7.  Change in drift ratio at shear failure due to change in axial load
according to the shear-strength model

1.  The maximum drift ratio was defined the same as was the drift ratio at shear failure for the database presented in 
Section 2.2 (drift ratio at a 20% loss in the maximum column shear strength), although the failure mode for some of 
the columns was described as flexural.
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Pujol et al. (1999) observed that the ratio of the maximum drift ratio to the column aspect

ratio, a/d, tended to increase with an increase in the reinforcement index . Based only on sta-

tistical evaluation of the database results, and in an effort to establish a conservative estimate of the

maximum drift ratio, Pujol et al. recommended the following relationship:

(2.2)

As shown in Figures 2-8 and 2-9, the maximum drift-ratio model (Equation 2.2) is not con-

servative for six of the columns in the database from Section 2.2. Three of those columns were sub-

jected to axial loads in excess of the axial loads considered in the development of the model. 

The mean of the measured drift ratio at shear failure divided by the drift ratio calculated

according to Equation 2.2 is 1.71; the coefficient of variation is 0.42. Since a drift capacity model

providing an estimate of the mean response is preferred for use in a performance-based design

methodology, the model by Pujol et al. (1999) will not be used in this study. Similar empirical

models providing better estimates of the mean drift ratio at shear failure are developed in

Section 2.3.5.

Figure 2-8. Pujol et al. (1999) model compared with database from Section 2.2
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2.3.3 Pujol et al. (2000)

In an effort to determine the amount of transverse reinforcement required for columns subjected to

seismic loads, Pujol et al. (2000) developed a model based on Coulomb’s criterion and calibrated

to a database of 29 columns. The model can also be used to estimate the maximum drift capacity

of a reinforced concrete column (where the maximum drift capacity is defined the same as that used

by Pujol et al. (1999), see Section 2.3.2). 

Pujol et al. (2000) used the following expression, attributed to Richart et al. (1929), that

expresses the cohesion term in Coulomb’s criterion in terms of the concrete strength:

(2.3)

where vu is the average ultimate shear stress capacity and σn is the average stress normal to the

potential failure plane. Richart et al. (1929) estimated the coefficients k1 and k2 to be  and

, respectively. Pujol et al. (2000) hypothesized that only the cohesion coefficient, k1, varied

depending on the seismic demands, and selected k2=3/4. 

The coefficient k1 was related to the maximum drift capacity using a database of columns

with the following ranges for the experimental parameters:

Figure 2-9. Comparison of calculated and measured drifts for Pujol et al. 
(1999) model
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• shear span to depth ratio: 

• concrete compressive strength:  psi

• longitudinal reinforcement ratio: 

• transverse reinforcement ratio:  psi

• maximum shear stress:  (psi units)

• axial load ratio: 

The most significant differences with the database introduced in Section 2.2 include the consider-

ation of columns with higher transverse reinforcement ratios and relatively higher shear stresses.

Pujol et al. (2000) determined the cohesion coefficient k1 for each of the columns in their

database using Equation 2.3 to define Coulomb’s criterion and the average axial, confining, and

shear stresses based on the column core dimension. Pujol et al. (2000) found that k1 tended to

decrease with increasing drift ratio, and proposed the following expression as an approximate

lower bound to their database results:

(2.4)

Figure 2-10 compares the cohesion coefficients determined for each of the columns in the

database from Section 2.2 with Equation 2.4. (The average stresses on the column core were deter-

mined by assuming Ag/Acore = 1.6 for each of the columns in the database.) The results from the

database from Section 2.2 also suggest that k1 tends to decrease with increasing drift ratio.

Although Equation 2.4 was selected as a lower bound to the database used by Pujol et al. (2000),

the model appears close to the mean for the database from Section 2.2.  

Given the k1 coefficient calculated for each of the columns in the database from Section 2.2

(Figure 2-10), the maximum drift ratio can be estimated using Equation 2.4. For any of the col-

umns where k1 > 0.14, Equation 2.4 will give a meaningless negative maximum drift ratio. How-

ever, observing that the drift ratio for the columns included in the database appears to be limited to

greater than 1% (see Figure 2-2), it is proposed that the maximum drift ratio calculated using

Equation 2.4 should also be limited to greater than 1%. Hence the maximum drift ratio can be cal-

culated as follows:
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(2.5)

Figure 2-11 compares the calculated and measured drift ratios for the columns in the data-

base from Section 2.2. The mean of the measured drift ratio divided by the calculated drift ratio is

1.12; the coefficient of variation is 0.55. Although the mechanics of this model are transparent to

Figure 2-10. Comparison of cohesion coefficient from Pujol et al. (2000) with database 
from Section 2.2

Figure 2-11. Comparison of calculated and measured drifts for Pujol et al. 
(2000) model
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the user, the relatively large coefficient of variation suggests that parameters not considered in the

model may influence the maximum drift ratio for shear-critical columns.

2.3.4 Kato and Ohnishi (2002)

Kato and Ohnishi proposed that the plastic drift capacity can be estimated based on the maximum

edge strain in the core concrete, the axial load ratio, and the cross-section dimensions. The total

drift ratio is given by the sum of the drift ratio at yielding of the longitudinal reinforcement and the

calculated plastic drift ratio:

(2.6)

where (2.7)

where D is the full depth of the gross cross section, je is the depth of the core, εcp is the strain at

maximum stress for the core concrete, m is the ratio of the concrete strain at the edge of the core

concrete to εcp, and eη is an equivalent axial load ratio accounting for the effect of variable axial

loads (Figure 2-12). The coefficient m was selected to achieve a good agreement between

Figure 2-12. Equivalent axial load ratio (from Kato and Ohnishi, 2002)
(γ = minimum axial load / maximum axial load > 0)
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Equation 2.6 and measured drifts ratios from 36 pseudo-static column tests. For the drift at shear

failure (also defined as the drift at 20% loss in shear capacity), Kato and Ohnishi (2002) recom-

mend m = 2.3. For the drift at axial failure, Kato and Ohnishi (2002) recommend m = 3.6 (this

model will be evaluated in Chapter 3). 

Figure 2-13 compares the calculated drift ratios at shear failure based on Equation 2.6 with

the measured drift ratios for the columns in the database from Section 2.2. To avoid introducing

additional errors into the model, the drift ratio at yielding of the longitudinal reinforcement, used

in Equation 2.6, was determined based on the experimental data (Table 2-1). The core concrete was

assumed to be unconfined for each of the column specimens, hence, εcp was set equal to 0.002. Col-

umns with zero axial load could not be evaluated using the model, and do not appear in Figure 2-

13. The mean of the measured drift ratio divided by the calculated drift ratio is 0.84; the coefficient

of variation is 0.44. Although the model provides a better estimate of the measured drift at shear

failure compared with the models by Pujol and Sezen, Equation 2.6 relies on an accurate estimate

of the drift at yielding of the longitudinal reinforcement and significantly overestimates the drift at

shear failure for many of the columns with low axial loads. 

Figure 2-13.  Comparison of calculated and measured drifts for Kato and Ohnishi
(2002) model
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2.3.5 Proposed Empirical Drift Capacity Models

The models for the drift ratio at shear failure presented in the previous sections do not adequately

capture the behavior of the shear-critical columns included in the experimental database from

Section 2.2. This section will introduce an empirical model based on observations from the exper-

imental database. As such, the model may not be applicable to columns with parameters outside

the ranges included in the database. The goal of developing a new model is to reduce the coefficient

of variation and provide a simple relationship that identifies the critical parameters influencing the

drift at shear failure for shear-critical building columns.

If the data shown in the upper left plot of Figure 2-2 are sorted by transverse reinforcement

ratio (Figure 2-14), then, for a given transverse reinforcement ratio, the maximum shear stress can

be seen to degrade with increasing drift at shear failure. The “bins” used in Figure 2-14 to sort the

data by transverse reinforcement ratio were chosen to group the data points close to  =

Figure 2-14.  Comparison of calculated drift ratio at shear failure using Equation  2.8
with database from Section 2.2. (Dashed lines in right plot are +/� one 
standard deviation from the mean.)
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0.001, 0.0015, 0.003, 0.005, and 0.006. Based on this observation, the following empirical expres-

sion is proposed to estimate the drift ratio at shear failure:

 (psi units) (2.8)

The coefficients in Equation 2.8 were chosen based on a least-squares fit to the data. The

mean of the measured drift ratio divided by the calculated drift ratio is 0.96; the coefficient of vari-

ation is 0.35. Refinement of the coefficients using more significant figures could reduce the coef-

ficient of variation and improve the mean; however, such refinements would imply a higher degree

of accuracy than the model should be expected to produce. The relatively large scatter suggests that

other parameters not included in Equation 2.8, such as axial load ratio, likely influence the drift

ratio at shear failure. 

The influence of axial load on the drift ratio at shear failure was incorporated into the

empirical model by including the variable  in the least-squares fit to the data, resulting

in the following expression for the drift ratio at shear failure:

 (psi units) (2.9)

Figure 2-15 compares Equation 2.9 with the results from the database. The mean of the

measured drift ratio divided by the calculated drift ratio is 0.97, the coefficient of variation is 0.34;

indicating that the incorporation of the axial load ratio results in only a slight improvement over

Equation 2.8. 

The left-hand plot of Figure 2-15 compares Equation 2.9, using the mean value of 

from the database, with the axial load and transverse-reinforcement ratios for each of the column

tests. The results from the database suggest that for columns with low levels of transverse rein-

forcement, say <0.004, an increase in the axial load ratio tends to result in a decrease in the drift

ratio at shear failure. For columns with >0.004, a relationship between the axial load ratio and

drift ratio at shear failure is not as clear, suggesting that Equation 2.8, which ignores the influence

of axial load, may be more appropriate for such columns.

Note that the empirical drift capacity models are less sensitive to variability in the shear

strength or flexural strength compared with the Sezen (2002) shear-strength model due to the rel-
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atively steep slope of the relationship between shear stress and drift ratio at shear failure resulting

from Equations 2.8 and 2.9 (e.g., see left-hand plot of Figure 2-14). The steeper lines result from

grouping the data by transverse reinforcement ratio.

The application of the proposed empirical drift capacity models should be limited to col-

umns representative of those included in the database from Section 2.2. In particular, Equations

2.8 and 2.9 should be used only if the shear capacity defined by an appropriate shear-strength

model (e.g., Equation 2.1 (Sezen, 2002)) is exceeded by the shear demand calculated according to

accepted analytical procedures. Further study is required to account for variability in both the

demand and capacity, and the influence of the variability on the selection of an appropriate drift

capacity model.

Equations 2.8 and 2.9 can be considered limit state surfaces defining the point of shear fail-

ure for a column representative of those included in the database. For Equation 2.8, each of the

lines shown in the left-hand plot of Figure 2-14 define the shear-failure surface for a column with

a given transverse reinforcement ratio. As shown in Figure 2-16, the predicted flexural response of

Figure 2-15. Comparison of calculated drift ratio at shear failure using Equation 2.9 with
database from Section 2.2. (Dashed lines in right plot are +/� one standard 
deviation from the mean.)
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a column can be plotted along with the line defined by either Equation 2.8 or 2.9, and the intercept

provides an estimate of the state of the column at the point of shear failure.

Earthquake reconnaissance has shown that columns in reinforced concrete buildings con-

structed before the introduction of details for seismic resistance (e.g., closely spaced ties and 135

hooks) in the early 1970s in the western United States are particularly vulnerable to shear failure.

Such columns typically experience maximum shear stresses greater than  (psi units) and have

transverse reinforcement ratios less than 0.002. Equations 2.8 and 2.9 suggest that the drift ratio at

shear failure for such columns could range from 0.01 to 0.035. 

Figure 2-17 compares the accuracy of the shear-strength and drift-ratio capacity models for

the database from Section 2.2. The plots clearly illustrate that the shear strength can be estimated

more accurately than the  at shear failure. For both Equations 2.8 and 2.9, approximately 60% of

the data points fall within the lower-left and upper-right quadrants, indicating that if the shear-

strength model underestimates (or overestimates) the shear strength of the column, then the drift

capacity model will not necessarily underestimate (or overestimate) the drift capacity as well. 

Figure 2-16.  Evaluation of drift at shear failure
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Figure 2-17. Comparison of Sezen (2002) shear-strength capacity model (Equation 2.1)
and drift-ratio capacity models (Equations 2.8 and 2.9)
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3 Axial Capacity Model

3.1 INTRODUCTION

A method to calculate the axial capacity of a column that has previously failed in shear will be

introduced in this chapter.  Given such a method, engineers involved in seismic retrofits will be

better equipped to evaluate whether shear-critical elements, unable to withstand the expected lat-

eral deformations without shear failure, will be able to maintain their axial loads.  The method will

also help to determine how much axial load must be transferred to neighboring elements after a

column shear failure and to aid in quantifying the ability of a structural system to resist collapse.

3.2 EXPERIMENTAL EVIDENCE

Most tests of reinforced concrete columns under seismic load conditions have been terminated

shortly after the loss of lateral load capacity.  The resulting data are useful for columns considered

as part of the lateral-force-resisting system. Considering traditional notions of safety (i.e., once

shear failure begins, axial load collapse cannot be far behind), the data also probably define a prac-

tical upper-bound displacement capacity even for columns not considered part of the lateral-force-

resisting system in new building designs.  For existing buildings, whether being evaluated for seis-

mic resistance or for seismic retrofit, a less conservative approach may be required by economic

and functionality considerations.  If a column can reliably carry gravity load after its lateral

strength degradation begins, it may be possible to achieve considerable savings by considering the

column as a secondary component. 

For this reason pseudo-static tests on full-scale shear-critical reinforced concrete columns

were conducted by Lynn (2001) and Sezen (2002) up to the point of axial failure. These tests were
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also included in the larger database used to develop a model for the drift at shear failure (see

Section 2.2). Figure 3-1 illustrates a typical test column configuration. Table 3-1 summarizes the

specific column characteristics, material properties, and measured responses. The loading routine

subjected a column to nominally constant axial compression and maintained nominally zero rota-

tion between column ends while the column was subjected to a series of lateral displacements at

increasing amplitude, with three cycles at each amplitude.  The two exceptions were Column

2CVD12, which had variable axial load ranging from 56 kips tension to 600 kips compression

(with an axial load of 331 kips just before axial failure), and Column 2CLD12M, which, after

cycles below the yield displacement, was subjected to monotonic lateral loading until axial failure.

Since the test setup did not allow for any redistribution of the applied axial load, once axial failure

was initiated the tests were terminated. 

Owing to the limited size of the database of tests providing axial failure data, it is difficult

to draw conclusions; however, some trends can be observed. Figure 3-2 plots drift ratios corre-

sponding to significant events for the 12 columns reported by Lynn and Sezen.  For columns

having lower axial loads, the tendency is for axial load failure to occur at relatively large drifts,

Figure 3-1. Typical column test specimen (Lynn, 2001; Sezen, 2002)
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regardless of whether shear failure had just occurred or whether shear failure had occurred at much

smaller drift ratios.  For columns with larger axial loads, axial load failure tended to occur at

smaller drift ratios, and might occur almost immediately after loss of lateral load capacity. Note

also that the drift ratios at axial load failure tend to be lower for columns with larger spacing of the

transverse reinforcement (dashed lines). The next section presents a shear-friction model that can

be used to represent the general observation from Figure 3-2 that the drift at axial load failure is

inversely related to the magnitude of axial load, and directly related to the amount of the transverse

reinforcement.

3.3 A SHEAR-FRICTION MODEL

3.3.1 Equilibrium Equations

The column shown in Figure 3-3 was damaged during the 1999 Kocaeli, Turkey, earthquake.  Any

axial load supported by the damaged column must be transferred across the obvious shear failure

plane.  Such transfer of load can be modeled by a mechanism known as shear friction.  Shear-fric-

Figure 3-2.  Column drift ratios as a function of axial load for columns tested by
Lynn (2001) and Sezen (2002). (Dashed and solid lines indicate columns
with transverse reinforcement spacing of 18� and 12�, respectively.)
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tion models evaluate the shear stress that can be transferred across a crack as a function of the

normal stress on the crack surface.  The normal stress results from the elongation of reinforcement

crossing the crack and/or applied forces normal to the crack surface.  For the column shown in

Figure 3-3, the transverse reinforcement crossing the shear failure plane and the axial load carried

by the column combine to provide a normal force and, hence, a shear transfer across the shear fail-

ure plane. 

Figure 3-4 shows the free-body diagram for the upper portion of the column from Figure 3-

3. The external moment vector at the top of the column is not shown and will not enter the equilib-

rium equations written here. The inclined free surface at the bottom of the free-body diagram is

assumed to follow a critical inclined crack associated with shear damage.  In this presentation, the

“critical” crack is one that, according to the idealized model, results in axial load failure as the

shear-friction demand exceeds the shear-friction resistance along the crack. The dowel forces from

the transverse reinforcement crossing the inclined crack are not shown; instead, the dowel forces

are assumed to be included implicitly in the shear-friction force, Vsf, along the inclined plane. Equi-

librium of the forces shown in the free-body diagram results in the following equations: 

(3.1)

(3.2)

Figure 3-3. Damaged column from 1999 Kocaeli, Turkey, earthquake

ΣFx N θsin V+→ Vsf θcos
Astfytdc

s
------------------ θtan nbarsVd+ +=

ΣFy P→ N θcos Vsf θsin nbarsPs+ +=
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where nbars is the number of longitudinal bars crossing the shear failure plane, dc is the depth of

the column core from center line to center line of the ties, s is the spacing between the transverse

reinforcement, Ast and fyt are the area and yield strength, respectively, of the transverse reinforce-

ment, and the forces P, V, N, Vsf, Ps, and Vd are shown in Figure 3-4.

The shear resistance due to the dowel action of the longitudinal bars, Vd, is dependent on

the spacing of the transverse reinforcement.  As shown in Figure 3-5, the upper concrete block will

bear against the longitudinal bar on one side of the crack and the transverse steel will restrain the

Figure 3-4. Free-body diagram of column after shear failure

Figure 3-5. Dowel action in longitudinal bars
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bar on the other side.  As the distance between these forces increases, the effectiveness of the dowel

action will diminish. Owing to the large spacing of transverse reinforcement in many shear-critical

columns of interest in this study, the distance between the forces will most likely be too large to

develop any significant dowel action. Note that the dowel action may be more effective for longi-

tudinal reinforcement along the side face of the column (i.e., parallel to the direction of applied

shear), since these bars will be restrained by concrete above and below the failure plane. However,

any limited resistance to sliding from the dowel action can be considered as incorporated in the

shear due to shear-friction, Vsf, acting on the shear failure plane. Hence, the forces due to the dowel

action will be ignored in the derivation of the axial capacity model. In addition, when considering

the stage of axial load failure, the external shear force V can be set equal to zero, under the assump-

tion that the column has lost most of its lateral load resistance due to shear failure.

In light of the above discussion, Equation 3.1 can be rewritten as follows:

(3.3)

Further development of an axial capacity model using Equations 3.2 and 3.3 requires

models for the critical crack angle, θ, the axial capacity of the longitudinal reinforcement, Ps, and

the relationship between N and Vsf. Each of these models will be discussed in turn in the following

sections.

3.3.2 Critical Crack Angle

Few reliable models exist for estimating the inclination θ of the shear failure plane. A basic prin-

ciples approach is to define θ as the angle of the nominal principal tension stress at the instant when

it reaches the tensile capacity of concrete under combined shear and axial load, using a Mohr’s

circle representation of the state of stress.  This approach, however, invariably results in an angle

steeper than that observed in tests. 

A model proposed by Kim and Mander (1999) estimates the crack angle based on minimiz-

ing the external work due to a unit shear force. For the columns tested by Lynn and Sezen, the crit-

ical crack angle estimated by the model ranges from 65� to 71�, with an average of 68�.

N θsin Vsf θcos
Astfytdc

s
------------------ θtan+=
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Figure 3-6 plots the observed average angle of critical shear cracks from the tests. (The

angles were subjectively estimated from photographs.)  The angle could be approximated as 65�

relative to horizontal (the dashed line in the figure), or could have the linear variation suggested by

the solid line in the figure, that is: 

θ = 55 + 35P/Po (3.4)

Po is the axial capacity of the undamaged column given by  where

f�c is the concrete compressive strength, Ag is the gross concrete area, Asl is the area of longitudinal

steel, and fyl is the yield strength of the longitudinal reinforcement. (The outlying datum in

Figure 3-6 at P/Po ≈ 0.21 was for Column 3CMH18.  That column had a critical crack that was

somewhat less steep over most of its length, with a vertical segment near column mid-depth, result-

ing in the relatively large reported critical crack angle.) Considering the difficulties of accurately

determining the critical crack angle given the state of many of the columns at the end of the tests,

and the lack of improvement observed in the prediction of the drift at axial failure when

Equation 3.4 is used in place of a constant crack angle of 65�, only the constant crack angle model

will be used in the development of the axial failure model presented here. 

All of the columns tested by Lynn and Sezen had a height to width ratio greater than 6.0.

For columns with low height to width ratio, it is expected that the maximum crack angle will be

limited by the aspect ratio of the column (i.e., θmax = tan-1(height/width)). This may be consider-

ably less than 65�.

Figure 3-6. Relation between observed angles of critical cracks and axial load
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3.3.3 Longitudinal Reinforcement Axial Capacity

Based on observations of the final state of the column longitudinal reinforcement from the static

tests by Lynn (2001) and Sezen (2002), it is assumed that the longitudinal reinforcement will sup-

port a portion of the axial load, nbarsPs, up to a maximum load defined by either the buckling or

the plastic capacity of the reinforcing bars. Columns with an axial load greater than the pure axial

plastic capacity of the longitudinal reinforcement (Aslfyl) experienced a deformed shape of the lon-

gitudinal reinforcement after axial failure indicative of a buckling failure (e.g., Figure 3-7a). In

contrast, most of the columns with an axial load less than Aslfyl experienced a deformed shape of

the longitudinal reinforcement after axial failure that did not suggest a buckling failure of the lon-

gitudinal reinforcement (Figure 3-7b). Note that the elastic buckling capacity of the longitudinal

reinforcement, calculated using a buckling length equal to the spacing of the ties and assuming full

rotational fixity at the bar ends, is greater than Aslfyl, suggesting that the lightly loaded columns in

the test series will not experience buckling of the longitudinal reinforcement upon axial failure.

(a) (b)

Figure 3-7.  Deformed shape for longitudinal bars at loss of axial load capacity for 
column with (a) high axial load and (b) low axial load (Sezen, 2002)
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Based on these observations the longitudinal reinforcement axial capacity was evaluated as fol-

lows:

• for columns where , Ps is based on the plastic axial load strength of the longitudi-
nal reinforcement in the deformed configuration.

• for columns where , Ps is based on the plastic strength in the deformed configura-
tion, but limited by the plastic buckling capacity.

The following paragraphs discuss each of these cases in turn.

The plastic strength of the longitudinal reinforcement in the deformed configuration is

illustrated in Figure 3-8. Assuming there is no dowel force, the plastic moment capacity of the rein-

forcing bar and the axial capacity are related by:

(3.5)

By using the decomposition of the stresses in the fully plastic section of a reinforcing bar

shown in Figure 3-8, the plastic moment can be determined as follows:

(3.6)

where Atens is the area of the reinforcing bar in tension, and ztens is the distance from the centroid

of Atens to the centroid of the bar section. Given an axial load in the reinforcing bar, Atens can be

determined as follows:

Figure 3-8. Plastic strength of longitudinal reinforcement in deformed configuration
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(3.7)

where Abar is the cross-sectional area of one longitudinal reinforcing bar. Equations 3.5 through

3.7 can be used to determine a theoretical relation between the axial load, Ps, and the lateral dis-

placement at which the plastic capacity of a reinforcing bar is fully developed. The results for the

three bars used as longitudinal reinforcement in the tests by Sezen (2002) and Lynn (2001) are

shown in Figure 3-9.

The curves shown in Figure 3-9 must be determined by iteration due to the nonlinear

moment-axial load interaction diagram that results from solving Equations 3.6 and 3.7. If the linear

conservative approximation to the interaction diagram shown in Figure 3-10 is used with

Equation 3.5, the axial plastic capacity of the longitudinal reinforcement can be related directly to

the story drift, without iteration, as follows:

(3.8)

where L is the clear height of the column, and db is the diameter of the longitudinal reinforcing bars.

Equation 3.8, shown in Figure 3-11, provides a conservative approximation of the axial plastic

capacity of the longitudinal reinforcement without iteration and will be used in the further devel-

opment of the axial capacity model.

For heavily loaded columns ( ), the axial capacity of the longitudinal reinforce-

ment given by Equation 3.8 will be limited by the plastic buckling capacity. Evaluation of the plas-

tic buckling capacity requires estimation of the tangent modulus of the reinforcement and the

effective buckling length. Based on tensile coupon tests of typical reinforcing bars, the tangent

modulus is estimated as 0.07Es, where Es is the elastic modulus of the reinforcement. (Alterna-

tively, an equivalent modulus model could be used to estimate the material stiffness (Pantazopou-

lou, 1998); however, such a model predicts that the plastic buckling load does not control the axial

capacity of the longitudinal reinforcement for any of the columns in the database. Considering the

observed buckled deformed shape of the longitudinal reinforcement for two of the tests (Figure 3-

7a), the equivalent modulus model was not adopted for this study.) Based on the observed

deformed shape of the longitudinal reinforcement shown in Figure 3-7a, the effective buckling

Atens
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Figure 3-9. Longitudinal reinforcing bar axial plastic capacity using Equations 3.5
through 3.7

Figure 3-10. Axial load-moment interaction diagram for reinforcing bar
(L/db = 100)
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length should be 1.0s < Leff < 0.7s (i.e., shorter than a pinned-pinned condition at the ties and longer

than a fixed-fixed condition at the ties). An effective buckling length of 0.8s is selected for this

investigation. Based on these assumptions, the axial capacity of the longitudinal reinforcement is

given by:

if (3.9)

 if 

Table 3-2 gives the axial capacity of the longitudinal reinforcement at axial failure of the

column, estimated based on Equation 3.9, for the columns tested by Lynn and Sezen. The values

in Table 3-2 were calculated based on the total measured column drift ratio at axial failure. Note

that only 2CMH18 is controlled by the plastic buckling load. For most of the columns the above

formulation results in approximately 25% of the axial load being carried by the longitudinal rein-

forcement at the point of axial failure. For two of the columns with a  low axial load (P=0.09Agf�c)

and a relatively high longitudinal reinforcement ratio of 3%, Equation 3.9 estimates that the longi-

tudinal bars are supporting over 50% of the axial load.  Owing to the relatively low axial stiffness

Figure 3-11. Longitudinal reinforcing bar axial plastic capacity. Comparison of iterative
method and approximation of Equation 3.8. (L/db = 100)
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of the longitudinal bars, this seems unreasonably high and suggests that a limit on the fraction of

axial load supported by the longitudinal bars may be appropriate. As shown in Figure 3-4, the axial

load supported by shear friction and the axial load supported by the longitudinal reinforcement act

in parallel. By using the ultimate axial capacity of the longitudinal reinforcing bars in the equilib-

rium equation (Equation 3.1), it is assumed that the ultimate shear-friction capacity and the ulti-

mate capacity of the longitudinal reinforcement are reached at the same time. The ultimate shear-

friction capacity may be exceeded before full development of the longitudinal reinforcement axial

capacity, thereby transferring axial load to the longitudinal reinforcement as sliding occurs on the

shear failure plane. This may lead to development of the ultimate axial capacity of the reinforce-

ment and, subsequently, to axial failure of the column. In this case, axial failure should be defined

by exceeding the shear-friction capacity, and the load carried by the longitudinal reinforcement

should be limited to some fraction of the total axial load. A limit of Psnbars/P < 50% was selected,

since this improved the correlation of the model with test data. Considering this limit, the axial load

supported by the longitudinal reinforcement for specimens 3CLH18 and 3SLH18 is reduced to

0.12Aslfyl. (These latter reduced values are shown in parentheses in Table 3-2.)

Table 3-2. Calculated longitudinal reinforcement axial capacity 
for columns in database from Section 3.2

Specimen Ps/(Abarfyl) Psnbars/P 

3CLH18 0.18 (0.12) 0.76 (0.50)

2CLH18 0.11 0.29

3SLH18 0.13 (0.12) 0.54 (0.50)

2SLH18 0.09 0.25

2CMH18 0.11a 0.10

3CMH18 0.18 0.25

3CMD12 0.18 0.25

3SMD12 0.18 0.25

2CLD12 0.08 0.27

2CHD12 0.18 0.16

2CVD12 0.12 0.19

2CLD12M 0.08 0.26

a. Controlled by plastic buckling capacity 
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3.3.4 Maximum and Total Capacity Models

Considering the expected transfer of the axial load from the shear failure plane to the longitudinal

reinforcement after the shear-friction capacity is exceeded, it may be appropriate to consider the

axial load support from the longitudinal reinforcement independently of that for shear friction. In

such a model, the load carried by the longitudinal bars is removed from the equilibrium equation

(Equation 3.2) and the capacity curves for the longitudinal reinforcement (Figure 3-11) are super-

imposed on the capacity curves to be developed in the next section for the shear-friction capacity.

The axial capacity of the column is taken as the maximum of the capacity from the longitudinal

reinforcement and the capacity from the shear-friction model. This model, referred to as the max-

imum capacity model, will be developed further in the following sections. The model based on

summing the ultimate capacity from the longitudinal reinforcement and the ultimate capacity from

shear-friction, in accordance with the equilibrium equations, will be referred to as the total capacity

model.

3.3.5 Shear-Friction Models

The literature documents several shear-friction models which relate Vsf and N (Mattock and Hawk-

ins, 1972; Mattock, 1988; Mau and Hsu, 1988). Two of the models will be used, in conjunction

with Equations 3.2 and 3.3, to develop an expression for the axial capacity of a column after shear

failure.

3.3.5.1 Classical Shear-Friction Model

The classical shear-friction model, included in ACI 318 since 1977, idealizes the crack across

which shear must be transferred as a flat plane with an effective coefficient of friction, µ. The shear

capacity is defined as:

(3.10)

where N is the compression force acting normal to the crack, as shown in Figure 3-4. Since the

shear transfer mechanism includes aggregate interlock and dowel action in addition to pure fric-

Vsf Nµ=
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tion, values for µ must be higher than that for pure friction across a concrete interface in order to

match Equation 3.10 with test data.

Substitution of Equation 3.10 into Equations 3.2 and 3.3, and eliminating the case where

µ = tanθ, gives the following expression for the axial capacity of the column illustrated in Figure 3-

4:

(3.11)

The first term in Equation 3.11 is the axial load carried through shear friction, while the

second term is the axial load carried by the longitudinal reinforcement (given by Equation 3.9).

Note that values of µ greater than tan(θ=65 ) will result in a meaningless negative shear-friction

capacity. For µ equal to zero, the shear-friction term in Equation 3.11 reduces to the same form as

the 45� truss model.

Recall that for the total capacity model, the shear-friction and longitudinal reinforcement

terms are summed, as shown in Equation 3.11, while for the maximum capacity model only the

maximum of the two terms is considered. Equation 3.11 can be rearranged to give the following

expression for the effective coefficient of friction for the total capacity model:

(3.12)

where the subscript t refers to the total capacity model. By using a constant crack angle of 65  and

the longitudinal reinforcement axial capacity given in Table 3-2 (but limited to less than 50% of

the axial load on the column, as discussed previously), the effective coefficient of friction for each

of the test columns can be calculated using Equation 3.12. Figure 3-13 plots the calculated values

for each column as a function of the lateral drift ratio at which the column could no longer sustain

the applied axial load.  The data apparently follow a  trend that can be approximated by:

(3.13)
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In selecting Equation 3.13, the effective coefficient of friction was set equal to tan(65 ) at

zero drift to ensure that the shear-friction capacity remained positive for all valid drifts.

A plot similar to that shown in Figure 3-13 can be developed for the maximum capacity

model by omitting the nbarsPs term from Equation 3.12 and recalculating the effective coefficient

of friction (Figure 3-12). The data appear to have less scatter when the capacity of the longitudinal

reinforcement is omitted. Based on Figure 3-12, the drift ratio at axial failure appears to follow a

straight-line trend that can be approximated by:

Figure 3-12. Relation between effective coefficient of friction and the drift ratio at axial 
failure for the total capacity model

Figure 3-13. Relation between effective coefficient of friction and the drift ratio at axial 
failure for the maximum capacity model
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(3.14)

The data of Figures 3-13 and 3-12 suggest that the effective shear-friction coefficient is a

function of the drift angle at axial failure.  This relation is plausible considering that increased

deformation (and increased sliding along the critical shear plane) degrades the roughness of the

shear plane and reduces the effective friction.  It is worth recalling that the increased deformation

capacities are associated with reduced axial loads and increased amount of transverse reinforce-

ment (Figure 3-2). 

It is expected that the shear-friction coefficient will also be inversely proportional to other

parameters related to the amount of sliding along the critical shear plane. Among others, such

parameters may include the displacement ductility, the number of cycles past the yield displace-

ment, and a drift ratio based on the height of the damaged region of the column. The interstory drift

ratio (IDR) (based on the clear height of the column) was selected for this investigation to be con-

sistent with research by other investigators into the use of the maximum IDR as an appropriate

engineering demand parameter in a performance-based design methodology (Krawinkler et al.,

2003). Axial failure may be more closely related to a drift ratio based on the height of the damaged

region, or the concentrated drift ratio (CDR), as defined in Figure 3-14 (dc is the depth of the

column core from center line to center line of the ties). After shear failure, most of the column

Figure 3-14. Concentrated versus interstory drift ratio
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deformations are concentrated in the shear-damaged region of height h. As suggested by Figure 3-

14, two columns of length LA and LB that experience the same displacement will have different

IDRs, but may have the same CDR. For columns shorter than dctan65 , the height of the damaged

region will be constrained by the height of the column and the IDR will be equal to the CDR. Since

all of the columns tested by Lynn and Sezen have the same height to width ratio and a critical crack

angle of approximately 65  is assumed for all specimens, the CDRs for this database will be

approximately equal to the IDRs times a constant factor. For a more extensive database the CDR

should be used to distinguish between columns such as those illustrated in Figure 3-14.

3.3.5.2 Modified Shear-Friction Model

The modified shear-friction model (Mattock and Hawkins, 1972; Mattock, 1988) separates the

shear transferred across a crack into two terms: one representing the friction on the crack surface;

and another representing the resistance of both shearing the local asperities along the crack surface

and the dowel action from reinforcement crossing the crack. Mattock (1988) proposed the follow-

ing form to the model based on static, monotonic, tests:

(3.15)

where vu is the ultimate shear stress that can be transferred across the crack through shear-friction,

and σn is the normal stress on the crack. 

A similar model was proposed by Richart et al. (1929) to define the strength of concrete:

(3.16)

where k1 and k2 were estimated to be 1/4 and 3/4, respectively, based on monotonic tests of con-

crete confined by hydraulic pressure. Pujol et al. (2000) used Equation 3.16 and k2 = 3/4 to deter-

mine the amount of transverse reinforcement required for columns subjected to seismic loads.

Using Coulomb’s criterion, Pujol et al. (2000) related the constant k1 to the drift at shear failure,

and determined that k1 tends to decrease with increasing drift ratio.

Equation 3.16, with k2 = 3/4, can be converted to forces and substituted into Equations 3.2

and 3.3, giving the following expression for the axial capacity of the column illustrated in Figure 3-

4:

°

°

vu 4.5fc'
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0.8σn+=
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(3.17)

where Acore is the area of the concrete core measured to the center line of the transverse reinforce-

ment. By using θ = 65�, Equation 3.17 simplifies to:

(3.18)

The terms of Equation 3.18 may be interpreted as follows: the first term gives the axial load

carried by the core concrete through direct bearing across the shear failure plane; the second term

gives the axial load carried through shear friction due to yielding of the transverse reinforcement;

and the last term is the axial load carried by the longitudinal reinforcement. Again, recall that for

the total capacity model, all the terms are summed, as shown in Equation 3.18, while for the max-

imum capacity model only the maximum of  and nbarsPs are considered. 

Similar to the classical shear-friction model, Equation 3.18 can be rearranged to solve for

the constant k1 for the total capacity model:

(3.19)

where the subscript t refers to the total capacity model upon which Equation 3.19 is based. As with

the effective coefficient of friction for the classical shear-friction model, k1t can be determined for

each specimen in Table 3-1 by using Equation 3.19, and related to the drift ratio at axial failure, as

shown in Figure 3-15. The data do not follow a clear linear trend, although k1t appears to decrease

with increasing drift ratio. The data points are clearly grouped by the axial stress on the column

core. The relatively large scatter in Figure 3-15 suggests that the model does not represent the test

data very well.

For the maximum capacity model, k1m is determined for each specimen by using Equation

3.19 with the term nbarsPs omitted. The data, plotted in Figure 3-16, show even more scatter than

shown in Figure 3-15 for the total capacity model, and are clearly divided into groupings based on

the axial stress. Owing to the poor correlation with the test data, the modified shear-friction method

will not be used in the development of the drift capacity models presented in the next section.
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3.3.6 Drift Capacities

The preceding sections presented the expressions that can be used to establish relationships for the

drift ratio at axial failure in terms of the axial load, the transverse reinforcement, and the longitu-

dinal reinforcement. Only the total and maximum capacity models based on classical shear friction

will be used to develop the drift capacity relationships.

Figure 3-15.  Relation between k1t and the drift ratio at axial failure for the total 
capacity model

Figure 3-16.  Relation between k1m and the drift ratio at axial failure for the maximum
capacity model
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For the total capacity model, Equations 3.9, 3.11 (with θ = 65 ), and 3.13 are combined to

give the drift capacity curves shown in Figure 3-17. For low axial loads the drift capacity curves

approach horizontal, suggesting that a lower-bound axial load exists below which axial failure is

not expected to occur. Based on this model, the lower-bound axial load capacity is the sum of the

axial load supported by the 45� truss model and the longitudinal bar capacity at large drifts. For

high axial loads, the buckling capacity of the longitudinal reinforcement is assumed to govern

according to Equation 3.9, resulting in the sudden reduction in drift capacity seen  in  Figure 3-17. 

Figure 3-18 shows the plastic capacity curve for the longitudinal reinforcement (from

Figure 3-11) plotted with the drift capacity curves based only on the shear-friction capacity (i.e.,

the first term of Equation 3.11, with θ = 65 , and Equation 3.14). The maximum capacity model,

shown in Figure 3-19, takes the maximum axial load from either the longitudinal bar capacity or

the shear-friction capacity. Note that longitudinal bar buckling does not influence this model, since

the buckling capacity of the longitudinal reinforcement will always be less than the shear-friction

capacity at low drifts. For the parameters shown, the longitudinal bar capacity governs only for

large column drifts and low amounts of transverse reinforcement. Given that the longitudinal bar

capacity has such little effect on the maximum capacity model, and that no data exist beyond a drift

ratio of 0.06 to support the claim that the longitudinal bars will govern the capacity, the additional

complexity of including the longitudinal bar capacity may not be warranted.

Figure 3-17.  Drift capacity curves based on the total capacity model and the classical
shear-friction model. (Reduced drift capacity for P > Aslfyl due to 
consideration of buckling of longitudinal reinforcement. Pcr = 0.1Aslfyl
shown here.)
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All of the plotted relations in Figures 3-17 through 3-19 suggest the intuitive result that drift

capacity increases with increasing transverse reinforcement and decreasing axial load. This is con-

sistent with the experimental observations discussed in Section 3.2.

Figure 3-20 compares the drift capacity curves based on the total and maximum capacity

models. The very close agreement between the two models is a result of selecting the relations

between the effective coefficient of friction and the drift ratio at axial failure based on the same

Figure 3-18. Drift capacity curves for shear friction and longitudinal reinforcement shown
separately. (Used to find curves for maximum capacity model shown in
Figure 3-19.)

Figure 3-19. Drift capacity curves based on the maximum capacity model and the classical
shear-friction model
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data (Figures 3-12 and 3-13). The variation between the two models at low and high drifts is due

to the changes in the longitudinal reinforcement capacity, which influences only the total capacity

model. 

To convey a sense of the accuracy implicit in the relations of Figures 3-17 and 3-19, those

relations were used to estimate the drift capacity of the columns tested by Lynn and Sezen. The

results are plotted in Figure 3-21 for the total capacity model, and Figure 3-22 for the maximum

capacity model.  The mean ratios of the measured to calculated drift at axial load failure based on

the total and maximum capacity models are 1.02 and 0.97, respectively; the coefficients of varia-

tion are 0.22 and 0.26, respectively. 

Given the close agreement between the models (Figure 3-20), the lack of influence from

the longitudinal reinforcement on the maximum capacity model (Figure 3-18), and the reasonable

accuracy of the two models (Figures 3-21 and 3-22), it is recommended that the maximum capacity

model based on the shear-friction capacity alone should be used to assess the drift ratio at which

axial failure is expected to occur. Based on the test data, the accuracy of such a model is equivalent

to that shown in Figure 3-22 for the maximum capacity model, since the longitudinal reinforce-

ment capacity did not control at the drift ratios recorded in the tests. Such a model requires infor-

mation only on the transverse reinforcement and the axial load, and can be expressed  as follows:

(3.20)

Figure 3-20. Comparison of total and maximum capacity models
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Figure 3-21. Comparison of measured to calculated drift ratios for tests by Lynn and
Sezen based on total capacity model. (Dashed lines are +/� one standard
deviation from the mean.)

Figure 3-22. Comparison of measured to calculated drift ratios for tests by Lynn and
Sezen based on maximum capacity model. (Dashed lines are +/� one 
standard deviation from the mean.)
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where θ was assumed to be 65  is the derivation of the model. The axial capacity model can be

plotted as a single curve, as shown in Figure 3-23, although the influence of the transverse rein-

forcement is not immediately obvious, as it is in Figure 3-24.

Note that the uppermost data points (2CMH18 and 3CMH18) in Figure 3-23 differ only by

the amount of longitudinal reinforcement. Based on the longitudinal reinforcement capacity model

presented in Section 3.3.3, the column with the lower drift ratio at axial failure and lower longitu-

dinal reinforcement ratio (2CMH18) is expected to experience buckling of the longitudinal rein-

Figure 3-23. Axial capacity model (Equation 3.20) plotted with test data from Lynn
(2001) and Sezen (2002)

Figure 3-24. Axial capacity model normalized to undamaged axial capacity, Po
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forcement. Therefore, the difference in measured drifts at axial failure for the two specimens may

be explained by the reduction in drift capacity for columns susceptible to longitudinal bar buckling

according to the total capacity model (Figure 3-17). 

Although useful as a design chart for determining drift capacities, Figure 3-23 should be

used only with full understanding that a significant number of columns are likely to fail at drifts

below the calculated quantities. The relatively large scatter may be a product of inherent random-

ness associated with the complicated failure mechanism.  Additional data and analyses may well

improve our ability to predict the onset of axial load failure of columns. 

3.4 KATO AND OHNISHI (2002) MODEL

The drift capacity model by Kato and Ohnishi (2002) presented in Section 2.3.4 (Equations 2.6 and

2.7) can be used to predict the drift ratio at axial failure. Based on a database of 36 columns sub-

jected to cyclic lateral loads, Kato and Ohnishi (2002) recommend using m = 3.6 to estimate the

drift at axial failure. Figure 3-25 clearly shows that the model does not adequately represent the

measured drifts at axial failure for the column tests by Lynn and Sezen. The mean ratio of the mea-

sured to calculated drift at axial failure is 0.81; the coefficient of variation is 0.84.

Figure 3-25. Comparison of measured to calculated drift ratios for tests by Lynn and
Sezen based on model by Kato and Ohnishi (2002). (Dashed lines are +/�
one standard deviation from the mean.)
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3.5 EXTENSION OF SHEAR-FRICTION MODEL

The degrading slope of the shear-drift backbone after shear failure is a key parameter influencing

the response of shear-critical columns before axial failure. The shear-friction model can be

extended to provide an estimate of the degrading slope. 

Considering the column illustrated in Figure 3-4 just before the total loss of shear capacity,

and ignoring the dowel action and axial capacity of the longitudinal reinforcement as done for the

drift capacity model above, the equilibrium equations can be written as follows:

(3.21)

(3.22)

By using the classical shear-friction model (Equation 3.10) and the relationship between

drift and the effective coefficient of friction for the maximum capacity model (Equation 3.14), the

equilibrium equations can be combined to give the following expression for the shear force:

(3.23)

To find the degrading slope of the shear-drift backbone, Equation 3.23 is differentiated

with respect to the drift ratio:

(3.24)

Finally, using Equation 3.20 to express the drift ratio as a function of the axial load and the

transverse reinforcement, the following expression provides an estimate of the degrading slope of

the shear-drift backbone:

 where θ = 65 (3.25)
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Unfortunately, Equation 3.25 does not agree well with the response for many of the col-

umns in the database. Figure 3-26(a) shows good agreement between the degrading slope model

(Equation 3.25) and the response of specimen 2CLD12; however, Figure 3-26(b) shows that the

model can significantly underestimate the degrading slope for columns with higher axial load (e.g.,

specimen 2CHD12). The degrading slope model shown in Figure 3-26 is assumed to intersect the

x-axis at the drift ratio at axial failure given by Equation 3.20.

Given the poor agreement with test data, Equation 3.25 requires further refinement before

it can be used with confidence to estimate the degrading slope of the shear-drift backbone. If the

model can be improved to provide a better estimate of the degrading slope, then it may be possible

to use the same model to predict the drift at shear failure by finding the intercept between the

degrading slope and the column plastic capacity.

3.6 MODEL DEFICIENCIES 

The shear-friction model described above significantly simplifies a very complex problem; hence,

several deficiencies in the model can be expected.  Some of the deficiencies include the reliance

on full anchorage of the transverse reinforcement, not accounting for direct bearing of concrete

Figure 3-26.  Comparison of degrading slope model (Equation 3.25) with hysteretic
response from specimens (a) 2CLD12 and (b) 2CHD12
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components, the dependence on a distinct shear failure plane, and the limited data set upon which

the model is based. 

The shear-friction model assumes that the full yield capacity of the transverse reinforce-

ment can be achieved and maintained after shear failure of the column.  This assumption is valid

only if the transverse reinforcement has sufficient anchorage.  Since 90� hooks are common for the

ties of older reinforced concrete columns, such anchorage cannot always be relied upon.  It is rec-

ommended that future modifications to the model include a coefficient that reduces the contribu-

tion of the transverse reinforcement.  Such a reduction factor has been proposed for the calculation

of the shear capacity of older reinforced concrete columns (Moehle et al., 2001).

Several shear failure modes, illustrated in Figure 3-27, result in axial support provided by

the bearing of concrete against concrete across a shear failure plane.  This mechanism of axial load

support is not considered in the shear-friction model.  However, there are currently no methods by

which the formation of a failure mode resulting in this additional axial support can be predicted.

Hence, it would be unconservative to rely upon the bearing of concrete against concrete to support

the axial loads after shear failure.

The shear-friction model assumes that the shear failure plane is continuous and distinct.

However, the complex behavior of a column during shear failure can result in a disjointed failure

plane where the principle sliding surface is intercepted by multiple cracks at various angles.  Owing

Figure 3-27. Shear failure modes with bearing support for axial loads
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to damage to the column core, the failure “surface” may in fact consist of several blocks of concrete

bearing against one another as shown in Figure 3-28. The shear-friction model would most likely

not provide a good estimate of the axial load capacity of such a column.

It must be recognized that the axial failure model derived in this chapter is based on data

from only 12 columns. All of the columns were constructed of normal strength concrete, had the

same height to width ratio, and were designed to yield the longitudinal reinforcement before shear

failure. Only limited variation in the spacing and type of transverse reinforcement was possible.

The axial failure model presented here may not be appropriate for columns for which the test spec-

imens are not representative. 

Furthermore, all of the columns in the database were tested under unidirectional lateral

loading parallel to the one face of the column. With the exception of two tests, the loading routine

was standardized, with each column subjected to nominally constant axial compression and a series

of lateral displacements at increasing amplitude (three cycles at each amplitude). During earth-

quake excitation columns can experience bidirectional loading and a wide variety of loading his-

tories, which may consist of a single large pulse or many smaller cycles before shear and axial load

failure. It has been demonstrated that an increase in the number of cycles past the yield displace-

ment can result in a decrease in the drift capacity at shear failure (Pujol, 2002). Although it is antic-

Figure 3-28.  Damaged column from 1971 San Fernando earthquake, Olive View Hospital
(Steinbrugge K. V., NISEE database)
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ipated that an increase in the number of cycles has a similar impact on the drift capacity at axial

failure, not enough test data are available to support or refute this hypothesis. Further testing of

existing reinforced concrete columns to the stage of axial failure is needed to supplement the cur-

rent database.



4 Limit State Failure Model

4.1 INTRODUCTION

Analytical models capable of representing the different failure modes of structural components are

required to evaluate the response of a structure as it approaches the collapse limit state. For the

evaluation of existing reinforced concrete buildings subjected to earthquake ground motion, there

exists a need for analytical models that incorporate the initiation of column shear and axial load

failures, in addition to the subsequent strength degradation. Given such a model, an engineer could

evaluate the influence of column shear and axial load failures on the response of the building frame

system. This chapter will describe how the drift capacity models for shear and axial load failures

presented in the previous chapters can be incorporated in an analytical model to detect and initiate

strength degradation of column elements. 

Section 2.3 evaluates several capacity models, or limit state surfaces, which can be used to

define the onset of shear failure. The proposed empirical models, introduced in Section 2.3.5, relate

the shear demand to the drift at shear failure based on the transverse reinforcement and axial load

ratios. As shown in Figure 4-1, the point of shear failure, according to the model, is determined by

the intersection of the load-deformation curve for the column and the limit surface defined by the

empirical drift capacity model. Although it is known that the shear strength will degrade after fail-

ure, the shape of the load-deformation curve after intersection with the limit surface is not well

understood. Analytical models allowing for a user-defined degrading slope after failure will enable

the investigation of the influence of the rate of shear strength degradation on the behavior of the

structural system. 

As described in Section 3.2, experimental research has shown that axial failure of a shear-

damaged column is related to several variables including the axial stress on the column, the amount
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of transverse reinforcement, and the drift demand. Based on these observations, the onset of axial

failure has been described using a shear-friction model (see Section 3.3). Similar to the shear-fail-

ure model described above, this capacity model defines a limit surface at which axial failure is

expected to occur, as shown in Figure 4-2. According to this model, columns with a low axial load

or drift demand would not be expected to experience axial failure. As with the shear-failure model,

column behavior after the onset of axial failure is not well understood; however, it is reasonable to

expect that the axial load-horizontal deflection relation for the damaged column will remain on or

below the limit surface after failure is detected. 

Although describing different phenomenon, the shear and axial models described above

both take on the same general form. Both models define a limit surface and trigger a change in the

hysteretic behavior once the appropriate load-deformation relation for the column intersects the

limit surface. This similarity allows both failure models to be implemented in one uniaxial material

Figure 4-1. Shear failure defined by proposed drift capacity model

Figure 4-2. Axial failure model
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model for structural analysis. The material model requires a user-defined ordinate, abscissa, and

limit surface function. 

This chapter will describe the implementation of the general material model in OpenSees,

a finite-element analysis platform designed for earthquake engineering simulation (OpenSees,

2002). First, the concept of material models, as they are applied in OpenSees, will be introduced.

Then, in an effort to improve on available shear-critical column models, the new material model,

described above, will be developed. Finally, three applications of the material model will be dis-

cussed. The performance of the new material model will be demonstrated in Chapter 8 for the anal-

ysis of the shake table tests performed as part of this study. The C++ implementation and the user

interface for the new material model are presented in Appendix D.

4.2 UNIAXIAL MATERIAL MODELS IN OpenSees

Uniaxial material models in OpenSees define a constitutive relationship. Depending on the appli-

cation, the material could define a relation between stress and strain, force and displacement,

moment and curvature, or moment and rotation.

Uniaxial materials are the lowest level of objects that compose elements in OpenSees. The

relationship between elements and materials is illustrated in Figure 4-3. One-dimensional ele-

ments, such as springs and trusses, have only one uniaxial material associated with them. For a

truss, the uniaxial material defines the stress-strain relationship and is converted to force-displace-

ment by the element kinematic and equilibrium relationships. For a zero-length spring, the uniaxial

material defines the force-displacement (or moment-rotation) relationship directly. Multi-dimen-

sional elements, such as beam-column elements, have multiple uniaxial materials associated with

them. For beam-column elements, the uniaxial materials are grouped together to form sections.

Sections can be located at integration points along the element length or at its ends, depending on

the element formulation. At the section level, uniaxial materials can be used to define the stress-

strain relationship for fibers, and a standard section analysis (assuming plane sections remain

plane) is performed to determine the force resultants on the section, as shown in Figure 4-3. Alter-

natively, uniaxial materials could be used to define the moment-curvature and axial load-axial

strain relationships directly, eliminating the need for a section analysis but omitting any coupling

between the force resultants. Note that a uniaxial material defining a  shear-shear strain relationship
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can be aggregated with any section, allowing uncoupled shear deformations to be included in the

element response.

The uniaxial material developed in this chapter is based on the Hysteretic uniaxial material

available in OpenSees. The Hysteretic material has a predefined trilinear backbone and five param-

eters to define the hysteretic behavior, including pinching and stiffness degradation. As shown in

Figure 4-3. Examples of relationship between a material and an element in OpenSees

Figure 4-4. Example of capabilities of Hysteretic uniaxial material
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Figure 4-4, the backbone can include strength degradation, a necessary feature for modeling the

behavior of shear-critical columns. A more detailed description of the Hysteretic material model is

provided in Section D.4.

4.3 A COLUMN MODEL

To motivate the development of a new uniaxial material model, the example of a shear spring in

series with a beam-column element, as shown in Figure 4-5, is considered for modeling the shear

strength degradation of shear-critical columns. The shear spring could be a separate zero-length

element, or could be aggregated into any of the sections of the beam-column element as discussed

above. The Hysteretic uniaxial material model, with strength degradation, can be used to define the

constitutive relationship for the shear spring. Any beam-column element capable of modeling the

flexural deformations can be used. For the following discussion it will be assumed that the flexural

deformations modeled by the beam-column element include both the deformations due to curva-

tures over the column height and those due to concentrated rotations at the column ends resulting

from anchorage bar slip. 

Similar models have been proposed previously for modeling the post-peak behavior of

existing reinforced concrete columns (Pincheira et al., 1999; Shirai et al., 2001). In such a model,

all of the flexural deformations are concentrated in the beam-column element and the shear defor-

mations are modeled by the shear spring. If the shear strength (i.e., the peak in the shear spring

Figure 4-5. Shear spring in series model using Hysteretic material
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response backbone) is less than the flexural yield strength of the column, then the model will be

able to capture the degrading shear behavior, as shown by the solid line for the total response of

the column in Figure 4-5(d). If, however, the shear strength is estimated to be higher than the flex-

ural yield strength of the column, then, given limited strain hardening in the flexural response, the

model will not capture any shear degradation, as shown by the dashed line for the total response of

the column in Figure 4-5(d). Several studies have shown, however, that the shear strength decays

with increased inelastic deformation (Watanabe and Ichinose, 1991; Aschheim and Moehle, 1992;

Priestley et al., 1994). Hence, the total response behavior depicted by the dashed curve in Figure 4-

5(d) is not realistic for columns that yield in flexure close to their estimated shear strength. The

point of shear failure (i.e., the start of the degrading behavior in the total response backbone) should

be determined by considering both force and deformation. The model in Figure 4-5(a) determines

the point of shear failure based only on the column shear. 

The behavior of the series model can be improved by using a uniaxial material for the shear

spring that will degrade only after shear failure has been detected. The detection of shear failure

should be based on the column shear and the total deformation of the column. Calculation of the

total deformation requires a coupling of the shear spring and beam-column element. This can be

achieved by a new uniaxial material that traces the behavior of the beam-column element and

changes its backbone to include strength degradation once the response of the beam-column ele-

ment exceeds a predefined limit state surface as described in the next section.

4.4 LIMIT STATE UNIAXIAL MATERIAL

The Limit State uniaxial material was developed based on the existing Hysteretic material in

OpenSees. The following inputs are required for Limit State material:

• all of the inputs required for Hysteretic material to define the response before failure (i.e., 
the corner points of the initial backbone, the pinching parameters (2), the stiffness and 
strength degradation parameters (2), and the unloading slope parameter)

• an identifying tag for the beam-column element that the uniaxial material will be monitor-
ing to detect the point of failure

• identifying tags for the two nodes whose displacements will be used to determine the inter-
story drift

• parameters used to determine the limit state surface that defines the point of failure
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• the degrading slope to be used for the backbone after failure is detected (or the unloading 
slope for the beam-column element as discussed in Section 4.5.1)

• the residual capacity of the uniaxial material

The limit state surface used by the uniaxial material is referred to as a “limit curve,” since

it is defined in only two dimensions. The choice of these two dimensions, or the ordinate and

abscissa on which the limit curve is defined, depends on the application. Three limit curves have

been implemented: one to define shear failure (Figure 4-1), another to define axial failure

(Figure 4-2), and a trilinear general purpose limit curve. As shown in Figures 4-1 and 4-2, the shear

force is used for the ordinate of the shear-failure limit curve and the axial force is used for the ordi-

nate of the axial failure limit curve. The abscissa is assumed to be a deformation measure, such as

maximum chord rotation or interstory drift.

In an analytical model of a frame structure, where the column ends are not fully restrained

against rotation, the computed interstory drift (i.e., the displacement of floor i+1 minus the dis-

placement of floor i, divided by the height of the story) will include a rigid body rotation compo-

nent not present in the experiments used to develop the shear and axial capacity models. To remove

the effect of rigid body rotations, deformation measures based on the local behavior of the beam-

column element, such as the maximum chord rotation, can be used. (For a fixed-fixed column, the

chord rotation is equal to the drift ratio, and for any column with equal end rotations, the chord

rotation will be equal to the drift ratio minus the rigid body rotation.) However, for most low- or

moderate-height building frames, the rigid body rotations do not contribute significantly to the

interstory drift. The interstory drift is calculated using node displacements, while the chord rota-

tions are determined based on the beam-column element response. If chord rotations are used to

define the abscissa of the limit curve, then all of the deformations expected before failure must be

included in the response of the beam-column element.

Before failure, Limit State material follows the same hysteretic rules as defined for Hyster-

etic material (Figure 4-4). The corner points for the pre-failure backbone can be defined such that

the response of the uniaxial material remains linear or is allowed to yield. After each converged

step the uniaxial material queries the beam-column element for its force and deformation and then

checks to see if the response has exceeded the selected limit curve. If the limit curve has not been

exceeded, then the analysis continues to the next step without any change to the backbone. If the

limit curve has been exceeded, then the backbone is redefined to include the degrading slope, Kdeg,
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and residual strength, Fres. Figure 4-6 illustrates how the backbone for the force-deformation rela-

tion of the Limit State material is redefined upon failure. Note that since the limit curve can be

defined using an ordinate and abscissa that are uncoupled from the force-deformation relation of

the uniaxial material, the point at which failure is detected (marked by a star in Figure 4-6) may

not necessarily occur at a peak in the deformation response of the uniaxial material. For such a case,

the point at which failure is detected will not lie on the pre-failure backbone, as shown in Figure 4-

6b. Exceedance of the limit curve is checked only after each converged load step to avoid “flip-

flopping” between the pre- and post-failure states within a single load step. Consequently, small

load steps (or time steps for dynamic analysis) are required to accurately determine when the limit

curve is exceeded. 

4.5 THREE APPLICATIONS OF LIMIT STATE MATERIAL

Three examples of how the Limit State material model can be used will be presented in the follow-

ing sections. The first two examples demonstrate how the uniaxial material can be used to model

column shear failures, while the third demonstrates its application to column axial failures. When

used to model axial failure, the Limit State material incorporates coupling between shear and axial

load after failure is detected. This coupling will be discussed in Section 4.5.3.

Figure 4-6. Redefinition of backbone after failure is detected
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4.5.1 Shear Spring in Series

The shear spring in series model was introduced in Section 4.3. Here the Limit State material

model is used to define the force-deformation relationship of the shear spring. The uniaxial mate-

rial monitors the response of the beam-column element which is connected in series with the shear

spring. As shown in Figure 4-7, the limit curve is defined based on the column shear, V, and the

total displacement, ∆ (or the interstory drift). 

If the column is vulnerable to shear failure after flexural yielding, then the empirical drift

capacity model from Section 2.3.5 can be used to define the limit curve. The pre-failure backbone

for the Limit State material is selected as linear with a steep slope equal to the shear stiffness of an

uncracked column. Note that by defining the limit curve based on the total displacement, the shear

deformations are included in the displacements monitored by the uniaxial material, and shear fail-

ure is based on the sum of the flexure and shear deformations.

When the beam-column response hits the limit curve for the first time, the backbone of the

shear spring is redefined, as shown in Figure 4-6, to include the degrading slope, Kdeg, and residual

strength, Fres. Since shear failure will influence the strength of the column in both directions, the

backbone is redefined for cycles in either direction, regardless of the direction of failure. Note that

for the current implementation of the Limit State material, the backbone after failure is assumed to

be symmetric about the origin. This assumption is valid for columns with approximately equal

flexural strengths in positive and negative bending (e.g., interior columns with symmetric longitu-

dinal reinforcement). For columns with different flexural strengths in positive and negative bend-

Figure 4-7. Shear spring in series model using Limit State uniaxial material
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ing (e.g., outside columns in a building frame), the backbone should be redefined such that the peak

shear in each direction does not exceed the flexural strength in the respective direction.

After failure is detected, the response follows the gray hysteretic curves shown in Figure 4-

7. Additional lateral demands will result in strength degradation of the shear spring and an increase

in the shear deformations, accompanied by unloading of the beam-column element, and therefore,

a slight reduction in the flexural deformations. (Experimental results suggest that the shear defor-

mations increase significantly after shear failure, but do not conclusively show whether the flexural

deformations increase or decrease (Sezen, 2002).) 

Experimental studies have shown that axial failure tends to occur when the shear strength

degrades to approximately zero (Nakamura and Yoshimura, 2002). Hence, Kdeg can be estimated

using the calculated drift at axial failure as illustrated in Figure 4-8.When shear failure is detected,

based on the intersection of the total response and the shear limit curve, the degrading slope for the

total response, Kt
deg, can be estimated as follows: 

(4.1)

where Vu is the ultimate shear capacity of the column, ∆s is the calculated displacement at shear

failure, and ∆a is the calculated displacement at axial failure for the axial load at the time of shear

failure, Ps. (Note that since the column axial load can change during the analysis, ∆a is not neces-

Figure 4-8. Determination of degrading slope, Kdeg
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sarily equal to the displacement at which axial failure is detected.) Since the shear spring and beam-

column element are in series, the total flexibility is equal to the sum of the flexibilities of the shear

spring and the beam-column element. Hence, Kdeg can be determined as follows:

(4.2)

Note that Kunload must be provided in the input parameters for the Limit State material. To

investigate the influence of different rates of shear-strength degradation on the behavior of the

structural system, the material model also allows the analyst the option of specifying Kdeg directly

before running the analysis. 

If the shear spring unloads and reloads before reaching Fres, as shown in Figure 4-7, then a

weakness of this model becomes apparent. When the shear strength begins degrading again after

reloading, the flexural displacements will be less than they were when unloading of the shear

spring began (as noted by displacement e in Figure 4-7). This discrepancy will result in the peak

of the total response hysteresis occurring at a displacement e from the point where unloading

began. Experimental results suggest that the peak should occur at a displacement close to where

the unloading began. This weakness can be overcome by concentrating both the shear and flexural

deformations in rotational springs as described in the next section.

The beam-column element response must have a positive slope when shear failure is

detected; without a positive slope there is not a unique solution for an increase in the total displace-

ment. Figure 4-9 illustrates the response of the column model for monotonically increasing total

displacements. In Case 1, the beam-column response has a positive slope at shear failure, while for

Case 2, a negative slope at shear failure is considered. The softening force-displacement relation

for the shear spring requires that an increase in the total displacement after shear failure be accom-

panied by a decrease in the applied shear. For Case 1, the beam column is forced to unload to

achieve the required reduction in shear. The reduction in ∆f requires an increase in ∆s to achieve

the desired increase in the total displacement; hence, only one solution is possible. In contrast, for

Case 2, the beam-column element can either unload or continue softening to achieve the required

reduction in shear. This leads to three possible solutions for an increase in the total displacements:

the shear spring can soften while the beam-column unloads (b+A), the shear spring can unload

while the beam-column softens (a+B), or both the shear spring and the beam-column can soften

(b+B). Although all three solutions satisfy equilibrium, only the (b+A) solution exhibits the
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expected localization of damage in the shear spring. Crisfield and Wills (1988) have shown that

the equilibrium state upon which the solution will converge depends on the step size and the

selected iterative technique. To avoid numerical convergence problems and ensure a localization

of damage in the shear spring, it is recommended that the beam-column response always maintain

a positive slope. (Note that a softening beam-column element will also cause numerical problems

for the model described in Section 4.3.)

A similar model for shear-critical bridge columns was developed by Ricles et al. (1998) by

incorporating the shear-strength model by Priestley et al. (1994) to initiate shear failure. However,

as discussed in Section 2.3.1, the use of a shear-strength model to predict the point at which shear

failure occurs can result in an unacceptably large variability in the predicted drift at shear failure

for shear-critical building columns.

4.5.2 Rotational Springs Including Flexural and Shear Deformations

An alternative model for representing shear failure is illustrated in Figure 4-10. The Limit State

material is used to describe the constitutive relationship for the rotational springs. Either a concen-

trated moment-rotation relationship or a moment-curvature relation integrated over a specified

plastic hinge length can be used. The following assumes that the uniaxial material describes a con-

Figure 4-9.  Comparison of response given positive and negative strain hardening slopes
at shear failure
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centrated moment-rotation relationship incorporating all of the nonlinear response of the column.

The internal portion of the column element between the rotational springs remains linear elastic.

The rotational springs are incorporated in the beam-column element such that the beam-column

displacement, ∆, is equal to the sum of the flexural and shear components.

The pre-failure backbone for the Limit State material allows flexural yielding before fail-

ure. The initial slope of the pre-failure backbone allows for concentrated rotation at the column

ends due to bar slip. If bar slip displacements were not significant, a rigid slope before yielding

would be required.

Although the Limit State material is used here to define the M-θ relation for a rotational

spring, as shown in Figure 4-10, the limit curve is defined based on the column shear and the total

beam-column displacement. Once the response of the beam-column element exceeds the limit

curve, the backbone of the rotational spring is redefined to include the degrading slope, Kdeg, and

residual strength, Mres. After failure, the response follows the gray lines in Figure 4-10. Since all

of the inelastic deformation is concentrated in the rotational springs, upon displacement reversals,

the total beam-column response does not exhibit the displacement offset e observed in the shear

spring in series model (see Figure 4-7). 

In addition to the improved hysteretic behavior, the rotational spring model has better

numerical stability compared with the shear spring in series model. Since all of the sources of non-

linearity are concentrated in the rotational springs, convergence is achieved with fewer iterations.

However, the series model is conceptually more appealing because the deformations  due to flexure

Figure 4-10. Rotational spring model
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and shear can be determined separately by the beam-column element and the shear spring, respec-

tively. 

Figure 4-10 assumes that both rotational springs use the same uniaxial material model, and

hence for a fixed-fixed column, the rotational springs will both detect failure at the same time and

degrade the moment capacity at the same time. This will result in a degradation of the shear capac-

ity to a residual level of 2Mres/L. If only one rotational spring was defined using the Limit State

material model, then the shear capacity of the beam-column element would not degrade below

(Mres+Mp)/L, where Mp is the plastic moment capacity of the column section.

4.5.3 Axial Spring in Series Model

The Limit State uniaxial material can also be used to model axial failure where the limit curve is

defined by the shear-friction model described in Chapter 3. Since the shear-friction model assumes

that shear failure has already occurred, the axial failure spring must be used in conjunction with

one of the shear-failure models described above. The model described here, and illustrated in

Figure 4-11, assumes that shear failure is modeled by a shear spring in series. The shear limit curve

should be defined using the interstory drift, or the column chord rotations (with the shear spring

Figure 4-11. Axial spring in series model
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aggregated into one of the column sections), to ensure that the displacements monitored by the

axial spring include both flexural and shear deformations. After any analysis, postprocessing

should be used to confirm that shear failure was detected before axial failure.

As shown in Figure 4-11, the axial failure limit curve is defined on a plot of axial load

versus total lateral drift, and requires only a term describing the strength of the transverse reinforce-

ment ( ) to define its shape. If the beam-column element includes the axial flexibility

of the column, the pre-failure backbone for the axial spring should be defined by a steep straight

line to ensure that the spring does not add any axial flexibility to the model. If, on the other hand,

the beam-column element is considered to be axially rigid, then the slope of the pre-failure back-

bone for the axial spring should be set equal to the initial axial stiffness of the column. After axial

failure, the backbone will be redefined to include the degrading slope, Kdeg, and the residual

strength, Pres. Since the shear-friction model describes only compression failure, the backbone is

only redefined for compressive axial loads (shown as positive in Figure 4-11). 

Shear-axial coupling should be included in any model in which the behavior after the onset

of axial failure is of interest. Although very little experimental data have been collected after the

onset of axial failure, shake table tests performed as part of this study (see Chapter 6), and large-

scale pseudo-static tests by Lynn (2001) and Sezen (2002), suggest that an increase in lateral shear

deformations may lead to an increase in axial deformations, and a loss of axial load. Based on this

general observation, the coupling model illustrated in Figure 4-12 has been developed to approxi-

mate the shear-axial coupling after axial failure. The response after axial failure is shown as a gray

line in Figure 4-12.  For any increase in lateral displacement after axial failure is detected, the P-

∆horz relationship is assumed to follow the axial limit curve defined by the shear-friction model.

As the earthquake imposes lateral deformations on the damaged column beyond the point of axial

failure, the P-∆horz relationship will result in a loss of axial load, which will in turn lead to an

increase in axial deformations due to the P-∆vert relationship defined by the post-failure backbone

of the axial spring. When the P-∆horz response is on the limit curve, the stiffness of the axial spring

is set to Kdeg to ensure that the spring does not unload elastically. When the earthquake reverses

the direction of motion of the structure, it is assumed that the critical shear failure crack will par-

tially close and that sliding along the crack will be arrested, resulting in temporary support of the

axial load. Since the column has sustained significant damage, the axial stiffness of the column can

be assumed to be less than the elastic axial stiffness. To account for this behavior when the P-∆horz

Ast fytdc( ) s⁄
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Figure 4-12.  Shear-axial coupling after axial failure of the model shown in 
Figure 4-11

Figure 4-13. Detail of axial load loss from Figure 4-12
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response leaves the axial limit curve, the backbone of the axial spring is redefined such that the

stiffness of the spring is equal to 1/100 times the elastic axial stiffness of the column, temporarily

stopping the decay along the P-∆vert backbone. Sliding along the critical shear-failure plane, and

hence, decay along the P-∆vert backbone will resume if the P-∆horz response hits the limit curve

again. 

The 1/100 factor applied to the axial spring stiffness was selected to approximately repre-

sent the damage to the column core. Furthermore, if the original elastic axial stiffness of the column

was used, numerical convergence was frequently not achieved when the P-∆horz response left the

axial limit curve due to the sudden change in stiffness.

Figure 4-13 provides a closer look at how the material response is forced to follow the axial

limit curve after failure. Recall that exceedance of the limit curve is only checked after each con-

verged load step to avoid “flip-flopping” between the pre- and post-failure states within a single

load step. For each converged step beyond the limit surface there exists an unbalance force, Ploss,

required to return the material to the limit curve at the same deformation. As shown in Figure 4-

13, the axial load lost after each converged step beyond the limit curve is the sum of Ploss and axial

load lost due to softening of the damaged column, Psoft. The total, Ploss+Psoft, is equal to the gravity

load which must be redistributed to neighboring elements within one time step.

The lengthening of columns due to flexural cracking will result in some coupling between

∆horz and ∆vert not shown in Figure 4-12. For clarity, the response illustrated here assumes there is

no coupling except on the axial limit curve, resulting in the horizontal and vertical lines seen on

the P-∆horz and the V-∆vert plots, respectively, and the stationary points marked by solid circles on

the P-∆vert plot. 

4.6 EFFECT OF VARIABILITY ON THE LIMIT STATE FAILURE MODEL

The accuracy of any analysis using the limit state failure model described in this chapter is limited

by the accuracy of the capacity models used to define the limit curves and the ability of the hyster-

etic rules to represent the behavior after failure. Although further study is required to improve esti-

mates of the limit curves and the degrading behavior after shear and axial failure, significant

variability in the estimates is expected to remain due to the extent of damage expected at the points

of shear and axial failure. Limited experimental studies on the response of reinforced concrete col-
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umns after shear failure, and particularly after axial failure, make reliable assessment of the vari-

ability difficult. 

Owing to the significant change in the response of the structure once a limit curve is

reached, the limit state failure model is particularly sensitive to any variability in the limit curves.

For example, if a conservative estimate of the axial capacity limit curve is used and failure is

detected in a column, then the additional gravity load redistributed to other columns may lead to

their failure and a progressive collapse of the structure. If, on the other hand, a limit curve repre-

senting the mean axial capacity is used, then failure of the first column may not be detected and no

collapse would ensue. The sensitivity of the system response to the variability of the limit curves

must be accounted for directly when evaluating the results from any analysis using the limit state

failure model. 

Research by other investigators may enable the use of the limit state failure model in a prob-

abilistic assessment of the structural response. Work by Gardoni (2002) can be used to construct

probabilistic capacity models based on the deterministic limit curves presented here. Work by Hau-

kaas (2003) will allow the probabilistic capacity models to be included in a finite element analysis

using the limit state failure model and OpenSees, resulting in the assessment of the probability of

collapse. 



5 Design of Shake Table Tests

5.1 INTRODUCTION

Shake table tests were designed to observe the process of dynamic shear and axial load failures in

reinforced concrete columns when an alternative load path is provided for load redistribution. This

chapter provides an overview of the design, construction, instrumentation, and testing of the rein-

forced concrete frame specimens. More details can be found in Appendices A and B.

5.2 SPECIMEN DESIGN AND CONSTRUCTION

The test specimens were composed of three columns fixed at their bases and interconnected by a

beam at the upper level (Figure 5-1).  The central column had wide spacing of transverse reinforce-

ment making it vulnerable to shear failure, and subsequent axial load failure, during testing.  As

the central column failed, shear and the axial load would be redistributed to the adjacent ductile

columns.

Two test specimens were constructed and tested.  The first specimen supported a mass of

67 kips (the maximum mass that the shake table could reliably control at a height of 7 to 8 feet off

the table surface), producing column axial load stresses roughly equivalent to those expected for a

seven-story building.  The second specimen also supported a mass of 67 kips, but pneumatic jacks

were added to increase the axial load carried by the central column from 28.7 kips (0.10 f'cAg) to

68.2 kips (0.24 f'cAg), thereby amplifying the demands for redistribution of the axial load when the

central column began to fail. 

The shear-critical center column was designed as a one-half scale reproduction of the 9'-8"

tall, 18"x18" square columns tested by Sezen (2002) (see Figure 3-1). From those previous tests, it

was expected that the center column would sustain flexural yielding before developing shear fail-
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ure.  Axial load failure was expected to be more gradual for the column with low axial load and

more sudden for the column with higher axial load.

The test specimens were constructed in an upright position in a casting site adjacent to the

earthquake simulator laboratory.  Reinforcement cages were assembled and instrumented with

strain gages.  Normal-weight aggregate concrete (nominal maximum aggregate size of 10 mm) was

cast in two lifts.  Specimens were wet-cured for 14 days and then stored in the laboratory until test-

ing (age at testing was 151 days for Specimen 1 and 184 days for Specimen 2).  Companion cylin-

ders were stored with the specimens and were tested near the day of the shaking table tests

according to ASTM procedures. Table 5-1 summarizes the critical properties of the frame speci-

mens illustrated in Figure 5-1. More material property and construction details are provided in

Appendix A. The following sections describe selected aspects of the final design.

Figure 5-1. Shake table test specimen (see Appendix A for as-built drawings)
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5.2.1 Design Approach

The specimen design began with the selection of the reinforcement for the half-scale center col-

umn. The center column details were scaled from the full-scale columns tested by Sezen (2002)

according to standard similitude rules (Krawinkler and Moncarz, 1982). Reinforcing wire with a

nominal cross-sectional area of 0.029 in.2 was used to model the #3 reinforcing bars used by Sezen

(2002) for transverse reinforcement. Although the yield stress of the reinforcing wire was signifi-

cantly higher than that of full-scale reinforcing bars, the wire was selected to achieve the appropri-

ate scaled elastic stiffness. One #5 and two #4 reinforcing bars were used as longitudinal

reinforcement on each face of the center column to achieve, as close as possible, the scaled area

for three #9 reinforcing bars used by Sezen (2002) on each face of the full-scale column. A concrete

design strength of 3000 psi was selected to maintain consistency with the full-scale tests.

After the design of the center column, the remaining frame elements (i.e., the beams, out-

side columns, and footings) were not scaled from prototype designs, but instead were designed to

achieve the desired response.  For example, the beams were designed to be much stronger than the

columns in bending (similar to spandrel beams found in 1960s buildings), and provide the bending

Table 5-1. Properties for the shake table test specimens

f’c (columns and beam, Specimen 1) 3.56 ksi

f’c (columns and beam, Specimen 2) 3.47 ksi

fy (center column longitudinal bars) 69.5 ksi

fy (outside column longitudinal bars) 61.5 ksi

fy (center column transverse bars) 100 ksi

Mass 67 kips

Center column axial load (Specimen 1) 28.7 kips

Center column axial load (Specimen 2) 67.2 kips

ρl (center column) 2.5%

ρl (outside column) 2.0%

ρh (center column) 0.18%
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stiffness of a beam spanning over a column which has lost its axial load capacity (see

Section 5.2.3). 

Once the strength and stiffness of the outside columns were chosen (see Section 5.2.2),

capacity design procedures were used to design the beams and footings.  Pushover analyses were

conducted up to displacements corresponding to three levels of damage to the center column (i.e.,

just before shear failure, just after shear failure, and after axial load failure) to determine the critical

demands for the beams.  Owing to the lack of analytical tools to accurately model the shear failure

of reinforced concrete components, the shear failure was crudely modeled by removing the lateral

stiffness of the center column once a specified shear demand (corresponding to shear failure) was

reached.  The demands after axial failure of the center column were roughly determined by “push-

ing” the frame, modeled without a center column, to a displacement ductility greater than 6 (equal

to the maximum displacement ductility observed to cause axial load failure in the columns tested

by Sezen (2002)).  To ensure that all of the damage was concentrated in the columns, the estimated

column strengths were multiplied by 1.5 for the pushover analyses (resulting in higher demands in

the beams), and a very conservative strength reduction factor of 0.5 was used in the design of the

beams and footings.

5.2.2 Outside Columns

For a building containing columns susceptible to combined flexure-shear-axial load failure, as con-

sidered in this study, it is reasonable to expect that some components would experience limited

yielding before the columns failed in shear. Hence, the outside columns of the frame were designed

to yield before shear failure of the center column.  Furthermore, preliminary analysis of the frame

showed that if the outside columns were allowed to remain elastic, or nearly elastic, then the lateral

response of the frame following shear failure of the center column would entail only elastic vibra-

tion of the remaining intact elements.  This response did not seem reasonable for such an extreme

loading condition and was not of interest to the current study. To achieve the desired response, the

outside columns were designed to have a yield displacement and yield moment equal to two thirds

of the center column.  

A circular section with closely spaced spiral reinforcement was chosen for the outside col-

umns in order to ensure that the columns were capable of resisting large ductility demands without
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any threat of axial failure.  This choice of section also provided a more gradually yielding load-

displacement relationship compared to a square section, a desirable characteristic, since the three-

column frame is intended to represent part of a larger building frame that would also be expected

to have a gradually yielding load-displacement relationship. 

5.2.3 Beam Stiffness and Strength

Since the bending stiffness of the beam will influence the shedding of the axial load after failure

of the center column, the beam stiffness must be appropriately chosen. For this purpose, a seven-

story building in Van Nuys, California (described in detail in Browning et al. (2000)) was used as

the prototype building.  After the axial failure of a first-story column, a longitudinal frame of the

building could be approximately modeled as shown in Figure 5-2.  If each of the floors is consid-

ered identical in stiffness and load, then the columns continuing above the failed column will carry

zero axial load and the deflection of the second story at point A can be approximated by consider-

ing only the beams, columns, and loads of the second story as shown in Figure 5-2. Using such a

model, the deflection at point A due to static gravity loads is approximately 0.18 inches.

Figure 5-2. Model for determining beam stiffness
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The stiffness of the beam in the three-column frame was selected to give a scaled deflection

of 0.09 inches (or 0.18 inches at full-scale) after axial failure of the center column for the first test

specimen.  The width of the beam was chosen as 5 feet to provide support for the 50 kips of lead

mass required to achieve the appropriate axial stress in the center column.  The beam reinforcement

was selected such that at the face of the transverse beam above the center column, the ratio of the

yield strength of the beam to the maximum moment demand from plastic analysis after axial failure

of the center column was 1.59 for Specimen 1 and 0.82 for Specimen 2.

5.2.4 Transverse Torsional Beams

Particular attention was paid to the connection between the five-foot wide beam and the columns.

The moment developed over the width of the wide beam must be transferred to the narrow columns

through torque of a beam running transverse to the three-column frame. Sufficiently large trans-

verse beams are required to preclude any reduction in stiffness due to torsional cracking. 

Figure 5-3 illustrates the demands on the transverse torsional beams. To avoid any interfer-

ence with the behavior of the columns, the transverse beams protrude from the top of the wide

beam, as shown in Figure 5-1. Since the torsional demands are applied along the side faces of the

transverse beams, the resistance to this demand must be calculated from the cracking capacity of

the rectangular transverse beam section. The cracking torque capacities were calculated using the

skew-bending and plastic theories (Hsu, 1984), and recommendations by Gentry and Wight

(1994). The cross-section dimensions of the transverse torsional beams were selected such that the

cracking torque exceeded the torsional demands from the pushover analyses discussed in

Figure 5-3. Demands on transverse torsional beams

At Center Column At Outside Column
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Section 5.2.1. For further details on the design of the transverse torsional beams, refer to

Section A.2.

5.3 EXPERIMENTAL SETUP

Each test specimen was moved to the earthquake simulator before testing. Specimens were aligned

with the intended shaking direction on top of six force transducers (two per column) and bolted in

place after placement of hydrostone to ensure a level surface.  Specimens were shored while lead

weights (total of 67 kips including the mass of the beam) were placed to simulate gravity loads and

inertial mass.  The lead weights were supported at one end on a steel shim to fix the position and

on the other end by a rubber shim to allow deformation of the concrete test specimen beneath the

lead weights.  The weights were then bolted in position so that they moved in unison with the test

specimen.

The two specimens were nominally identical except for the axial load on the columns.

Since the shake table could not reliably control a significantly larger mass, the additional axial load

for the second test was attained by prestressing using a pneumatic jack on either side of the center

column (Figure 5-4).  The air cylinder of the pneumatic jacks allows the center column to shorten

1 inch without loosing more than 15% of the prestress load.

Figure 5-4. Test specimen on the shake table and pneumatic jack for prestressing
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The planar frame specimens were subjected to unidirectional horizontal base motions.  An

out-of-plane bracing system, known as a “pantograph,” was designed to restrain the specimen and

ensure essentially unidirectional response. 

For more details on the experimental setup, including the performance of the out-of-plane

bracing mechanism, see Appendix B.

5.4 INSTRUMENTATION

Instrumentation consisted of force and displacement transducers, accelerometers, and strain gages.

This section summarizes the instrumentation setup. More details can be found in Appendix B.

Because it was important to track the redistribution of the horizontal and vertical loads from

the center column to the outside columns, the specimens were supported on force transducers that

monitored axial load, shear, and moment, as shown in Figure 5-1. The force transducers available

at the UC Berkeley Earthquake Simulation Lab had been designed previously for base-isolation

projects, and hence, do not have a large moment capacity.  This deficiency was overcome by using

two transducers per column connected by a stiff footing.  The force transducers are very sensitive

to the stiffness of the end conditions; the stiffer the connecting elements, the more accurate the

measurements.  To maximize the stiffness of the connection between the transducer and the shake

table, the transducers were located directly over the threadbars used to connect the supporting base

plate to the shake table. The threadbars are spaced at 3 feet on center, constraining the column spac-

ing to 6 feet, as shown in Figure 5-1.

Displacement transducers were used to measure the global vertical and horizontal displace-

ments of the mass and local deformations of the center column. The displacement transducers on

the center column enabled the observation of deformations along the height of the center column.

Owing to the severe damage to the center column during the test, the data from these instruments

are valid only before shear failure.

Accelerometers were used to measure vertical and horizontal accelerations of the mass. The

accelerometers were mounted on several stacks of lead mass to check that all of the mass was

moving in unison. The vertical acceleration of the mass was of particular interest after axial failure

of the center column. The horizontal accelerations provided a check on the base shear measured by

the force transducers.
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Strain gages were mounted on the longitudinal reinforcing bars in the columns and beams,

and on the transverse reinforcement in the center column. The strain gages were concentrated in

the center column where the local behavior was of particular interest.

5.5 TABLE MOTION

Both specimens were subjected to one horizontal component from a scaled ground motion

recorded during the 1985 Chile earthquake (Figure 5-5 and Tables 5-2 and 5-3).  Several factors

led to the selection of this ground motion record.  First, the record needed enough intensity to fail

the center column in shear.  Secondly, the maximum displacement ductility demand on the frame

needed to be limited to avoid failure of the outside columns.  Thirdly, a ground motion of long

duration was of interest to observe the mechanics of axial failure while the specimen was still sub-

jected to strong ground shaking.

Owing to the lack of accurate analytical models for shear and axial failure of reinforced

concrete columns, only approximate analyses, such as displacement ductility spectra, were used to

determine if the ground motion achieved the first two criteria listed above. The displacement duc-

tility spectra were developed using stiffness degrading oscillators obeying Clough-type hysteretic

Table 5-2. Filter frequencies and scale factors for input table acceleration record

Name fhcut fhcor flcor flcut

Acc.
Scale

Factor1

Time Scale 
Factor

Source

Chile (Viña del Mar) 0.16 0.2 12 15 0.75 SAC se32

1) Scale factor only refers to direct scaling of accelerations given in source ground motions.  
Source motions may have been scaled from original record.

fhcut: high pass cut-off frequency (hertz)               flcor:  low pass corner frequency (hertz)

fhcor: high pass corner frequency (hertz)              flcut:  low pass cut-off frequency (hertz)

Table 5-3. Peak values for table acceleration records

Record
PGA

g
PGV

in./sec
PGD

in.

Filtered Input (Figure 5-5a) 0.66 16.2 1.70

 Specimen 1 Recorded (Figure 5-5b) 0.79 15.5 1.61

 Specimen 2 Recorded (Figure 5-5c) 0.73 15.2 1.62

0.5
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laws (Clough, 1966). The goal was to find a ground motion with a displacement ductility demand

that would ensure the shear failure of the center column occurred but did not result in extreme

demands on the outside columns after failure of the center column.  To this end, ground motions

within the range of 3<µ∆<7 at the target elastic period (T=0.27 sec) were considered. The selected

Chile ground motion resulted in a displacement ductility of 4 at the target period, for a yield

strength of 40 kips and 2% damping.  

Further restrictions were placed on the choice of ground motions by the capacity of the

shake table.  The maximum displacement and velocity of the table are 5 inches and 30 in./sec,

respectively, as shown in Figure 5-6. Since the length scale factor for the model was 1:2, the

Figure 5-5. Input and recorded table acceleration records 
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ground motions were evaluated using a time scale factor of . Many ground motions used in

other shake table tests of smaller scale specimens could not be used in the current study without

significant filtering, since the scale reduced the displacements and velocities only by a factor of 0.5

and , respectively.

Filtering of the recorded ground motion was performed to remove the high and low fre-

quencies that were beyond the range of the shake table controller and to reduce the displacements

and velocities to within the capabilities described above. The ground motion was filtered by con-

verting the acceleration histories to the frequency domain using a fast Fourier transform, and

removing unwanted frequencies using the frequency filter illustrated in Figure 5-7. Then the

ground motion was converted back to the time domain by an inverse fast Fourier transform. The

filter frequencies used for the chosen ground motion are listed in Table 5-2.

The acceleration records in Figure 5-5 show some discrepancy between the input and

recorded table motions due to additional high frequency response of the table. The significance of

the differences in the records can be better evaluated by comparing the corresponding response

Figure 5-6. UC Berkeley shake table capacities

Figure 5-7. Filter used to process the ground motion
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spectra. The displacement and pseudo-acceleration response spectra for the filtered-input motion

used to control the shake table, and the recorded motions for the two specimens, are shown in

Figure 5-8. The pseudo-acceleration response spectra for the recorded and input motions are in

close agreement except around 0.12 seconds. Since the first mode (T ≅ 0.27 sec) dominates the

response of the specimens, this discrepancy did not significantly influence the shake table test

results. The displacement response spectra diverge slightly at periods above 1.5 seconds, but show

close agreement within the period range of interest (i.e., from T equal to 0.2 to 1.0 sec).

5.6 EXPERIMENTAL PROGRAM

Three types of tests were conducted on the test specimens: free vibration, low level, and shear fail-

ure. The chronology of the tests for each specimen is given in Tables 5-4 and 5-5. 

Figure 5-8. Pseudo-acceleration and displacement response spectra for input and recorded 
table motions (2% damping)
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The primary test for each specimen, selected to induce shear failure in the center column,

was the unidirectional earthquake simulation using the table motion described in Section 5.5. The

results from these tests, presented in Section 6.3, are the focus of this experimental study.

Before the shear-failure tests, low-level earthquake simulations were also performed using

the table motion from Section 5.5 scaled to a lower intensity such that the maximum relative dis-

placement of the center column remained below the anticipated yield displacement. Results from

these tests can be found in Appendix C. 

The free-vibration test setup is illustrated in Figure 5-9. The turnbuckle was used to tighten

the pull-back cables until the readings from the load cell indicated a tension force of 1100 lbs. (The

tension force was chosen to achieve a longitudinal force of 1000 lbs and ensure that the pull-back

did not crack the specimen columns.) After the appropriate tension force was achieved, the “dog-

bone” steel coupon was cut, resulting in the free-vibration response of the specimen. Free-vibration

tests were performed before and after each earthquake simulation test. Measurements from the

accelerometers and force transducers were used to determine the natural period and damping of the

test specimens. 

Table 5-4. Chronology of tests for Specimen 1
Date Test Name Table Motion Scalinga

2/16/01 Free-vibration 1 N/A

2/20/01 Low-level 0.13

2/20/01 Free-vibration 2 N/A

2/25/01 Shear-failure 1.0

2/25/01 Free-vibration 3 N/A

Table 5-5. Chronology of tests for Specimen 2
Date Test Name Table Motion Scalinga

a. Scaling factor applied to the acceleration history shown in Figure 5-5(a).

3/29/01 Free-vibration 1 N/A

3/29/01 Low-level 0.13

3/29/01 Free-vibration 2 N/A

3/30/01 Shear-failure 1.0

4/2/01 Free-vibration 3 N/A
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6 Shake Table Test Results

6.1 INTRODUCTION

This chapter will document and discuss the results from the free-vibration and shear-failure tests

described in Section 5.6. The results from the low-level tests appear in Appendix C. Comparison

of the results with predictive models can be found in Chapter 7, while an evaluation of the three-

column frame response using nonlinear static and dynamic analyses is presented in Chapter 8.

6.2 FUNDAMENTAL PERIOD AND DAMPING

The apparent fundamental periods and equivalent viscous damping coefficients for both specimens

were determined using free-vibration tests described in Section 5.6. The periods and damping coef-

ficients were determined before and after each earthquake simulation test, corresponding to differ-

ent states of damage. For the first free-vibration test for each specimen, all three columns appeared

uncracked. For the second free-vibration test, only a small hairline crack was detected at the base

of the center column for each specimen, while the outside columns showed fine cracks distributed

over the height of the columns. The Specimen 1 outside columns showed more cracks than

observed on the outside columns of Specimen 2. The third and final free-vibration tests were per-

formed after the shear-failure tests, and as such, both specimens had experienced significant dam-

age, including shear failure of the center column and spalling of the concrete cover at the top and

base of the outside columns.

For a structure in free-vibration, the equivalent viscous damping ratio can be calculated as

follows:
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(6.1)

where V1 is the first peak in the base shear response history, Vn+1 is the (n+1)th peak in the base

shear response history, and n is the number of peaks above a base shear of 0.2 kips. (The limiting

base shear of 0.2 kips was selected to avoid using base shear measurements below the sensitivity

of the force transducers.) The damping ratios calculated using Equation 6.1 and the fundamental

periods determined based on a Fourier transform of the base shear response histories are given in

Figures 6-1 and 6-2, respectively. The fundamental periods and damping coefficients clearly

increase with increasing damage. Although the initial periods of the two specimens are very close,

the periods measured after each of the earthquake simulation tests for Specimen 1 are larger than

Figure 6-1. Damping ratios and periods from free-vibration tests — Specimen 1

Figure 6-2. Damping ratios and periods from free-vibration tests — Specimen 2
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those for Specimen 2. The additional axial load applied by the prestressing equipment for Speci-

men 2 results in the closure of shear and flexural cracks, thereby increasing the lateral stiffness and

decreasing the measured period. The increase in the measured damping coefficients with damage

may be a result opening and closing of cracked sections and an increase in the nonlinear response,

even for the very low base shear applied in the free-vibration tests. 

6.3 SHEAR-FAILURE TESTS

This section presents the results of the shear-failure tests on Specimens 1 and 2. The table motion

selected for these tests was presented in Section 5.5. The results from both specimens will be dis-

cussed together to enable evaluation of the influence of the center column axial load on the

response of the specimens. When comparing the response of Specimens 1 and 2, it is worth recall-

ing that the only difference between the two tests was the axial stress on the columns (Specimen 1

center column: P = 0.10 f�cAg, Specimen 2 center column: P = 0.24 f�cAg). The results will be dis-

cussed in the following order: global response of the test specimens, response of the center col-

umns, response of the outside columns, and aspects of shear and axial load redistribution.

Videos of the shear-failure tests can be found on the attached compact disk (see

Appendix E). The videos include several of the plots discussed in this section. The plots evolve

with time and are synchronized with videos of the test specimens allowing for comparison of the

damage state of the specimens with measured response quantities. The damage state of the speci-

mens after the tests is shown in Figures 6-3 and 6-4.

To aid in understanding the relationships among the plots in this section, symbols have

been placed at significant times in each of the response histories (i.e., at 16.7 sec, 24.9 sec, and 29.8

sec).  These times correspond approximately to the following events: the first drop in the center

column shear for Specimen 2 relative to Specimen 1, the initiation of axial failure of the center

column of Specimen 2, and the end of the sudden drop in the center column axial load for Specimen

2. These events will be discussed in more detail in Section 6.3.2.

6.3.1 Global Response of the Test Specimens

The response histories in Figure 6-5 demonstrate similarities and differences in the global behavior

of Specimens 1 and 2.
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Early in the ground motion (from t = 10 sec to t = 12 sec), the longitudinal displacements

of Specimen 1 appear larger than those of Specimen 2, resulting in a higher base shear and over-

turning moment for Specimen 1. This difference may result from a slight deviation in the low

Figure 6-3. Damage state of Specimen 1 after shear-failure test

Figure 6-4. Damage state of Specimen 2 after shear-failure test
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Figure 6-5. Global response histories for Specimens 1 and 2
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amplitude control of the shake table for each test, but does not appear to have any influence on the

remainder of the test, since both specimens remain linear.

After t = 12 seconds, the longitudinal displacements of the two specimens remain close,

with a similar period of response, until the square marker at t = 24.9 seconds. At this point the lon-

gitudinal displacements for Specimen 2 increase relative to those of Specimen 1, and begin to oscil-

late about an offset from the origin of approximately 1.0 inch. Just before the diamond marker at t

= 29.8 seconds, the longitudinal displacements for both specimens are further offset from the ori-

gin, resulting in a permanent offset of approximately 1.15 inches for Specimen 1 and 1.85 inches

for Specimen 2 at the end of the test.

After the triangular marker (at 16.7 sec), the Specimen 2 base shear drops slightly relative

to that of Specimen 1. This drop coincides with the development of wide shear cracks in the center

column of Specimen 2 (Section 6.3.2).

Figures 6-6 and 6-7 show the base shear hysteretic response of the specimens. The earlier

drop in the shear capacity of the center column for Specimen 2 is clearly evident, but otherwise the

overall lateral behavior of the frame is not significantly altered by the increase in axial stress on the

center column.

Figure 6-6. Specimen 1 base shear hysteretic response
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Figure 6-7. Specimen 2 base shear hysteretic response

Figure 6-8. Specimen 1 overturning moment hysteretic response
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Figure 6-9. Specimen 2 overturning moment hysteretic response

Figure 6-10. Comparison of base shear and inertial force from t = 10 to 20 sec
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Figures 6-8 and 6-9 show the overturning moment hysteretic response for the specimens

resulting from the inertial forces acting at a height of 64.75 inches above the base of the columns.

The chaotic appearance of the overturning moment response can be attributed to imprecision of the

shake table controller. Slight pitching of the table at high frequencies (approximately 15 hz) caused

vertical acceleration couples, and hence, overturning moments in the specimens. Owing to the

high-frequency nature, this controller error did not appear to adversely affect the response the spec-

imens. Further discussion of the overturning moments and how they were derived can be found in

Section B.6.

The last response history shown in Figure 6-5 plots the sum of the base shear and the iner-

tial forces (note that the base shear and inertial forces are opposite in sign). From the classical equa-

tion of motion for a structure, this sum should give the equivalent viscous damping force. However,

in the classical equation of motion viscous damping is used as a mathematical tool to account for

various means by which energy is dissipated and the motion of a structure is reduced during

(assumed) linear response. With the exception of a limited viscous force due to air resistance, all

means of energy dissipation are accounted for in the true force-deformation relationship measured

directly by the force and displacement transducers. Figure 6-10 shows very close agreement

between the measured inertial force (based on results from accelerometers attached to mass) and

the measured base shear (based on the shear forces measured by the force transducers), suggesting

that little or no “damping force” exists during the tests. The minor differences can be attributed to

high-frequency oscillations of the mass blocks not captured by the force transducers.

6.3.2 Response of the Center Column

The observation of the shear and axial load response of the center column was one of the primary

objectives of this experimental study. This section presents response quantities for the center

column such as shear, moments, and axial load, in addition to the deformations measured by the

center column instrumentation.

The damage states for the top of the center column, for each of the times indicated by the

symbols on the plots, are shown in Figures 6-11a through 6-13b. The center column of Specimen

2 experiences more significant damage earlier in the history than the center column of Specimen

1. The videos on the attached compact disk (see Appendix E) provide an excellent visual compar-
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ison of the progression of damage during the tests. The following paragraphs discuss the behavior

of the center column with reference to the triangle, square, and diamond markers shown in Figures

6-14 through 6-16. Note that the longitudinal displacements for the center column are the same as

those shown in Figure 6-5.

The triangular marker indicates the approximate time (16.7 sec) at which the center column

shear for Specimen 2 begins to drop off relative to the center column shear for Specimen 1.  Also

at this time, the center column axial load for both specimens drops by approximately 10 kips.  This

drop in load coincides with the development of significant cracks in the outside and center columns

and, hence, is thought to be caused by redistribution of gravity loads as the lengths of the columns

change owing to flexural response. Figures 6-11a and 6-11b show the state of the top of the center

column for both specimens at the time indicated by the triangular marker. The diagonal shear

cracks appear wider and steeper for Specimen 2.

The square marker indicates the pulse (at 24.9 sec) that initiates the axial failure of the

Specimen 2 center column.  The continuation beyond this point for Specimen 2 is possible only

because an alternative load path was provided and the axial load in the center column could be

redistributed to the outside columns.  Figures 6-15 and 6-16 demonstrate that by the time indicated

by the square marker the center column shear capacity for Specimen 1 has only just begun to

degrade, while the center column shear capacity of Specimen 2 has degraded to less than one half

of the ultimate center column shear attained. Figures 6-12a and 6-12b show the state of the top of

the center columns for both specimens at the time indicated by the square marker.  A large shear

crack is apparent in the Specimen 1 center column, while the Specimen 2 center column has expe-

rienced severe local distortions.  

The diamond marker indicates the approximate time (29.8 sec) at which the minimum

center column axial load is reached for the first time.  By this point the center column shear capac-

ity has all but disappeared for both specimens. The center column axial load for both specimens

remains nearly constant after this time despite the continuation of strong ground shaking. Figures

6-13a and 6-13b show the state of the top of the center columns for both specimens at the time indi-

cated by the diamond marker. Cover and core concrete are spalling off the Specimen 1 center col-

umn, while the longitudinal reinforcement has clearly buckled in the Specimen 2 center column.

Figures 6-17 and 6-18 show the center column shear hysteresis and an idealized backbone

for Specimens 1 and 2, in addition to the point of first yield in the longitudinal reinforcement based
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Figure 6-11a. Top of center column
Specimen 1 at 16.7 sec

Figure 6-11b. Top of center column
Specimen 2 at 16.7 sec

Figure 6-12a. Top of center column
Specimen 1 at 24.9 sec

Figure 6-12b. Top of center column
Specimen 2 at 24.9 sec

Figure 6-13a. Top of center column
Specimen 1 at 29.8 sec

Figure 6-13b. Top of center column
Specimen 2 at 29.8 sec
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Figure 6-14. Center column response histories
(Specimen 1: P = 0.10 f�cAg, Specimen 2: P = 0.24 f�cAg)
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Figure 6-15. Specimen 1 center column shear hysteretic response

Figure 6-16. Specimen 2 center column shear hysteretic response
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on the strain gage data. The idealized backbone in each direction was defined by the following line

segments:

• A straight line from the origin through the point on the test data envelope corresponding to 
70% of the peak shear recorded in that direction and extended to the peak shear level.

• A flat line at the peak shear level from the end of the previous line to the displacement 
where there is a loss in the shear resistance of at least 20% of the peak shear recorded in that 
direction.

• A straight line connecting the end of the previous line with a point on the x-axis at the max-
imum displacement recorded during the test. This line appears only in the direction of shear 
failure.

For a backbone representing the full capacity of a column, the last line segment should ter-

minate at zero shear and the displacement at which axial failure occurs. Since axial failure was not

observed in Specimen 1, the final line segment is shown as a dashed line. The final line segment

in a backbone representing the full capacity of the Specimen 1 center column would be expected

to have a flatter slope than the dashed line shown in Figure 6-17.

Since an alternative load path for the gravity loads is provided in the test specimen, the axial

load in the failing center  column  for Specimen 2 is not lost all at once (Figure 6-19).  This makes

it difficult to establish a single point to be defined as “axial failure.” However, the displacement at

axial failure is less than the maximum displacement recorded for Specimen 2. Therefore, the final

line segment for a backbone representing the capacity of the Specimen 2 center column should be

slightly steeper than that shown in Figure 6-18.

The behavior of the center column during axial failure for Specimen 2 is characterized by

the region between the square and the diamond markers in Figure 6-19.  The figure suggests that

there are two mechanisms by which the vertical displacements increase: first, large pulses that

cause a sudden increase in vertical displacement after a critical drift is attained; and second, smaller

oscillations that appear to “grind down” the failure plane. It is interesting to note for the first mech-

anism discussed above that the axial load drops immediately before the sudden increase in vertical

displacements, and increases immediately after the increase in vertical displacements. This behav-

ior suggests that the support for gravity loads may be lost suddenly, leading to the sudden drop in

axial load, but the inertia of the mass may delay the increase in vertical displacement. After the

mass drops, the column suddenly picks up load again, possibly when the top portion of the failure

surface hits another support point on the bottom portion of the failure surface or as the horizontal
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Figure 6-17. Specimen 1 hysteresis with idealized backbone

Figure 6-18. Specimen 2 hysteresis with idealized backbone
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displacements are reversed by the table motion and the failure surface is partially closed. In

Section 7.6, the data from Figure 6-19 will be compared with the axial failure model presented in

Chapter 3.

Although the Specimen 1 center column does not experience axial failure, Figure 6-20 indi-

cates that it does exhibit some of the same characteristics as the Specimen 2 center column. The

axial load-horizontal displacement response for the Specimen 1 center column, shown in the upper

right plot of Figure 6-20, is very similar to that shown in Figure 6-19 for Specimen 2 before the

square marker (i.e., before axial failure). The convex shape of this plot for both specimens is con-

Figure 6-19. Relations between center column axial load, vertical displacement, and
horizontal displacement of top of center column for Specimen 2
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trolled by the transient redistribution of gravity load to the outside columns due to bending of the

beam (discussed in Section 6.3.4.2). Before the square marker (i.e., before shear failure for Speci-

men 1), the vertical-horizontal displacement plots for both specimens show a lengthening of the

center column with increasing horizontal displacements due to an increase in longitudinal strains

over the length of the column resulting from flexural cracking. During the pulse indicated by the

square marker, and the next large positive horizontal displacement pulse, a sudden drop in the ver-

tical displacement for the Specimen 1 center column can be observed. Although much smaller in

magnitude compared with the drops observed in the lower right plot of Figure 6-19 for Specimen

2, this sudden change in vertical displacements also appears to occur once a critical drift is attained.

Figure 6-20. Relations between center column axial load, vertical displacement, and
horizontal displacement of top of center column for Specimen 1
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Since these sudden changes in vertical displacement are not associated with a permanent loss of

axial load from the center column, the vertical displacement drops may be due to a shift in the

center column axial load support from the core concrete to the longitudinal steel. If the center

column axial load is transferred to the longitudinal bars, the vertical strains should increase, while

most of the axial load is maintained as long as the buckling capacity of the bars is not exceeded.

After the final free-vibration test for Specimen 1, the loose concrete core at the top of the

center column was removed and the longitudinal reinforcement was cut while the axial load in the

column was recorded. This procedure demonstrated that approximately 90% of the axial load sup-

ported by the center column of Specimen 1 at the end of the test was carried by the longitudinal

reinforcement.

Figures 6-21a and 6-21b show the state of the center columns for both specimens at the end

of the tests.  Note that the distorted shape of the center column of Specimen 2 shown in Figure 6-

21b resulted from the upper portion of the column above the shear-failure plane forcing the lower

three-quarters of the column to bend to the left as the beam deflected downward. This distorted

shape results in the permanent center column shears and base of column bending moments

observed at the end of the test (Figure 6-14). At the end of the test, the Specimen 1 center column

was supporting 84% of its initial axial load, or 24 kips, while the center column of Specimen 2 was

supporting only 18% of its initial axial load, or 12 kips (Figure 6-14). 

Figures 6-22 through 6-27 show the center column moment hysteretic response for Speci-

mens 1 and 2. The top and bottom column moments were calculated, accounting for second-order

effects, according to the procedures described in Section B.6. Note that according to the plots, the

yield strength at the top of the column appears to be approximately 50% higher than that at the

bottom of the column. Although some discrepancy in the top and bottom yield strength should be

expected due to slight variation in the reinforcement location and pockets of aggregates at the base

of the column, one would not expect this discrepancy to be more than approximately 10%. It was

concluded, therefore, that an error exists in the force transducer output used to calculate the

moments. Section B.6 discusses possible sources of the error; however, in the absence of conclu-

sive proof of the source of the error, the uncorrected data are presented here.

Figures 6-22 and 6-23 plot the moments versus the drift angle, defined as the longitudinal

displacement measured by global instruments divided by the height of the column. Figures 6-24

through 6-27 plot the moments versus rotations and curvatures calculated from the center column
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instruments. Since the spalling cover concrete interferes with instruments mounted on the columns,

these data are shown only before t = 27.65 seconds for Specimen 1 and t = 24.90 seconds for Spec-

imen 2. It should be noted that the curvatures and rotations include both slip and flexural deforma-

tions. Refer to Section B.6 for a detailed description of how these quantities were calculated from

the column instruments.  

Figure 6-22 shows the moment at the top of the center column dropping off just before the

square marker (at 24.9 sec), and before reduction in the moment at the bottom of the center column.

The same degradation at the top of the column before reduction in the moment at the base of the

column can seen in Figures 6-23, 6-25, and 6-27 for Specimen 2. The degradation at the top of the

column coincides with the opening of diagonal shear cracks at this location (Figure 6-12a). The

moment at the bottom of the center column does not appear to degrade significantly within any

single cycle; instead the bottom moment reduces upon repeated cycles as the shear resisted by the

column reduces. This localization of degrading behavior supports the use of an analytical model

that concentrates the degradation in a flexural spring at one end of a column.

Figure 6-21a. Specimen 1 center column
at end of test

Figure 6-21b. Specimen 2 center column
at end of test
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Figure 6-22. Specimen 1 center column moment hysteretic response

Figure 6-23. Specimen 2 center column moment hysteretic response
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Figure 6-24. Specimen 1 center column moment-rotation hysteretic response 

Figure 6-25. Specimen 2 center column moment-rotation hysteretic response
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Figure 6-26. Specimen 1 center column moment-curvature hysteretic response 

Figure 6-27. Specimen 2 center column moment-curvature hysteretic response
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The beam rotations at the center column relative to the footing, calculated from the column

instruments, are shown in Figure 6-28. Note that the sudden increase in rotations immediately

before the square marker for Specimen 1, and at the triangular marker for Specimen 2, coincide

with the initial drop in the center column lateral strength for both specimens and the opening of

shear cracks at the top of the center column. Since the rotation of the footing was not instrumented,

it is not known whether the rotations shown in Figure 6-28 are due to rotation of the footing or rota-

tion of the beam. However, data presented in Figures 6-29 and 6-30 can be used to assess the

assumptions of no rotation of the footing or no rotation of the beam.

Figures 6-29(a) and 6-30(a) compare the longitudinal displacements of the center column

based on the global instruments (same as that shown in Figure 6-5), with those based on the column

instruments assuming there is negligible footing rotation. Similarly, Figures 6-29(b) and 6-30(b)

compare the longitudinal displacements based on the global instruments, with those based on the

column instruments assuming there is negligible beam rotation. (Refer to Section B.6 for a descrip-

tion of how the data from the column instruments were used to calculate the longitudinal displace-

ments for the two assumptions.) Figures 6-29 and 6-30 show close agreement between the results

until t = 27.65 seconds for Specimen 1 and t = 24.90 seconds for Specimen 2, at which point the

data from the center column instruments are no longer usable due to severe damage to the column. 

The absolute value of errors between the global instrument readings and the column instru-

ment readings at the peaks in the response history are shown in Figures 6-29(c) and 6-30(c). Errors

Figure 6-28. Beam rotation relative to footing
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Figure 6-29.  Comparison of longitudinal displacements for Specimen 1 measured by
global instruments and those calculated from column instruments. In plot 
(c), points above the line are for positive displacement cycles and points be-
low the line are for negative displacement cycles.
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Figure 6-30. Comparison of longitudinal displacements for Specimen 2 measured by
global instruments and those calculated from column instruments. In plot
(c), points above the line are for positive displacement cycles and points
below the line are for negative displacement cycles.
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from the peaks in positive displacement cycles are shown above the center line, and errors from

peaks in negative displacement cycles are shown below the center line. Considering the extent of

cracking experienced by the center column, and vibration of the instrumentation due to the

dynamic nature of the test, the minor differences in the readings are likely due to instrumentation

error.

If, however, the column instrument readings are assumed to be correct, then Figures 6-29(c)

and 6-30(c) can be used to evaluate the influence of footing or beam rotations. If the assumption

that there is negligible footing rotation is valid, then the solid circles should plot along the center

line, and similarly, if the assumption that there is negligible beam rotation is valid, then the open

circles should plot along the center line. Both open and closed circles plotted along the center line

suggests that the center column acts as an ideal fixed-fixed column. Figure 6-29(c) suggests that

the Specimen 1 center column can be considered as fixed-fixed with negligible beam and footing

rotation until t = 24 seconds. After this point, the footing rotations appear to remain negligible for

the negative displacement cycles. The errors for all other cases grow after t = 24 seconds, suggest-

ing that the beam rotations may affect the column behavior during negative cycles, and both the

beam and footing rotations may influence the response during positive cycles. For the Specimen 2

center column, Figure 6-30(c) indicates that the errors begin to grow earlier in the response history

(at approximately t = 15 sec), apparently due to the earlier formation of shear cracks in the center

column. For negative displacement cycles after t = 15 seconds, both the beam and footing appear

to experience some rotation. For positive displacement cycles, the footing appears to experience

limited rotation, while the beam rotations may influence the behavior of the center column.

The center column longitudinal displacements can be separated into deformations that

occur within each of the three panels of the column instrumentation frame (i.e., within the bottom

8 in., the middle 42 in., and the top 8 in. of the center column). The longitudinal displacements

resulting from these panel deformations are plotted in Figure 6-31 for Specimen 1 and Figure 6-32

for Specimen 2. The panel drift ratios (defined as the longitudinal displacement in the panel divided

by the panel height) are shown for four selected times in Figures 6-31 and 6-32. A concentration

of deformations within the top panel is clearly seen for positive displacement cycles for both spec-

imens. For Specimen 2, the deformations in the top panel begin earlier in the response history com-

pared with Specimen 1 due to the earlier formation of significant shear cracks observed at the top

of the center column. Both specimens show larger middle panel drift ratios for negative displace-
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Figure 6-31.  Specimen 1 longitudinal displacements for each center column 
instrumentation panel and panel drift ratios at four selected times
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Figure 6-32. Specimen 2 longitudinal displacements for each center column 
instrumentation panel and panel drift ratios at four selected times
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ment cycles compared with positive displacement cycles. Also, the deformations in the top and

bottom panels appear to contribute less to the overall column displacement for negative displace-

ment cycles. This could be attributed to having to overcome permanent deformations due to

demands in the positive displacement cycles before contributing to negative displacements. 

Figures 6-31 and 6-32 show middle panel drift ratios on the order of 3% to 5%. A signifi-

cant portion of this drift results from a rigid body rotation of the middle panel due to the rotation

at the top of the bottom panel, as shown in Figure 6-33. As a result, the panel drift ratios are not a

good indication of the damage to the middle portion of the column, and hence, the distribution of

damage over the height of the column. The panel deformations without rigid body rotations are

shown in Figures 6-34 and 6-35. The values for the top and bottom panels are the same as those

shown in Figures 6-31 and 6-32, since the footing and beam are assumed not to rotate. The defor-

mations for the middle panel, δmid, are calculated as shown in Figure 6-33. The panel deformation

ratios shown in the lower plots of Figures 6-34 and 6-35 are calculated by dividing the deforma-

tions shown in the top plot by the panel height. Note that the middle panel deformations could have

been defined using the rotation of the top panel instead of the bottom panel, resulting in somewhat

different values. For an ideal fixed-fixed column with symmetric yielding at both ends, both defi-

nitions would give the same result. Figures 6-34 and 6-35 clearly show that the damage to the

middle panel is not as significant as suggested by Figures 6-31 and 6-32. The panel deformation

ratios indicate that, for the times shown, the damage to the Specimen 2 center column spreads fur-

Figure 6-33. Removal of rigid body rotations from middle panel displacements
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Figure 6-34. Specimen 1 center column deformations for each instrumentation panel and 
deformations as a fraction of panel height at four selected times
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Figure 6-35. Specimen 2 center column deformations for each instrumentation panel and
deformations as a fraction of panel height at four selected times
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ther into the middle panel than for the Specimen 1 center column. This result is consistent with the

extent of cracking observed in Figures 6-11a and 6-11b.

6.3.3 Response of Outside Columns

Figures 6-36 and 6-37 compare the response histories for the west and east columns from both

specimens. The column shears and moments begin with an initial offset due to the dead load of the

beam and lead weights. The initial shears and moments were determined by analysis as described

in Section B.6.

Specimens 1 and 2 exhibit very similar shear and moment response. The maximum positive

shear resisted by the west column is approximately 5 kips higher than the maximum positive shear

resisted by the east column. This difference can be attributed in part to the direction of the initial

shears on the outside columns, and in part to the higher yield moment expected in the west column

during cycles in the positive direction (i.e., toward the west) causing increased axial compression

due to overturning forces. The opposite is true for negative shear, or cycles in the negative direc-

tion.

During axial failure of the Specimen 2 center column (i.e., between the square and diamond

markers), the axial load in the Specimen 2 outside columns increases by approximately 25 kips per

column. Before the square marker (at 24.9 sec) the axial load response of the east and west columns

appears quite similar. After the square marker, the transient axial load variations in the east column

are dramatically reduced. This reduction can be observed in both Specimens 1 and 2 (although

occurring closer to the diamond marker for the Specimen 1 east column). Comparing the axial load

response in Figures 6-14 and 6-37, it can be observed that the transient axial load variations in the

center column increase at the same time the decrease is observed for the east column. The shift in

the transient axial load variations also coincides with a positive offset in the longitudinal displace-

ments (i.e., displacement to the west). The period of the axial load oscillations approximately

matches the period of the shear oscillations. Note that the axial couple resulting from the overturn-

ing effect appears to shift from the west and east columns to the west and center columns. Owing

to the reduction in moment arm, the magnitude of the axial oscillations must increase to maintain

the same overturning moment. The transient axial load redistribution from the center column to the

outside columns is believed to result from bending of the beam as the outside columns lengthen
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Figure 6-36. West column response histories
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Figure 6-37. East column response histories
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during horizontal displacement cycles and the center column shortens due to significant damage to

the core concrete (see Section 6.3.4.2 for further discussion). 

Both outside columns for Specimens 1 and 2 begin to lengthen at approximately 15 seconds

due to opening of flexural cracks upon yielding of the longitudinal reinforcement. This time coin-

cides with the initial redistribution of axial load from the center column (see Figure 6-14). The

Specimen 2 outside columns begin to shorten upon increase in the outside column axial load with

axial failure of the center column. The Specimen 2 east column returns to its original length, while

the west column appears to be 0.05 inches longer at the end of the ground motion. The Specimen

1 outside columns do not see any significant redistribution of gravity loads, and therefore do not

shorten upon further damage of the center column.

The shear hystereses of the outside columns for Specimens 1 and 2 are shown in Figures 6-

38 through 6-41. The horizontal displacement used in these plots is the same as that shown in

Figure 6-5 (i.e., the displacement at the top of the center column corrected for large displacements).

Comparison of these data with displacements measured at the end of the beam shows a maximum

difference of approximately 0.15 inches after the axial failure of the Specimen 2 center column and

yielding of the beam.

Figure 6-38. Specimen 1 west column shear hysteretic response
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Figure 6-39. Specimen 2 west column shear hysteretic response

Figure 6-40. Specimen 1 east column shear hysteretic response
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The outside column shear hystereses for Specimen 1 in Figures 6-38 and 6-40 show a bulge

in the shear capacity just before the square marker. Based on work by Malvar (1998), the high

strain rate (approximately 0.2 sec-1) at the time of the observed bulge could result in a 10% to 20%

increase in the yield strength of the reinforcement; and therefore a similar increase in the yield

strength of the column section. However, since the velocities of the two specimens are similar, this

explanation would suggest that a similar bulge should have been observed in Figures 6-39 and 6-

41 for Specimen 2. Although no conclusive explanation has been determined based on the avail-

able data, the bulge could result from slight rotations at the top of the outside columns due to higher

mode effects.

Idealized backbones to the shear hysteresis for each column are shown in Figures 6-42

through 6-45. The backbones are developed using a procedure similar to that described in

Section 6.3.2 for the center column, except that the first line segments begin at a shear equal to the

initial shear force found from analysis (Figures 6-36 and 6-37) instead of at the origin. The degrad-

ing strength line segment shown for the center column does not appear in Figures 6-42 through 6-

45, since no significant strength degradation was observed for the outside columns. The star mark-

Figure 6-41. Specimen 2 east column shear hysteretic response
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ers on Figures 6-42 through 6-45 indicate the shear and displacement at first yield of the outermost

longitudinal reinforcement based on the strain gage data. 

The slope of the first line segment of the idealized backbone provides an effective elastic

stiffness for the column. The outside columns exhibit roughly a 25% stiffer loading response

during quarter cycles in which the axial load increases due to overturning forces, compared with

quarter cycles in which the axial load decreases.

Figures 6-46 through 6-49 show the outside column moment hysteretic response for Spec-

imens 1 and 2. The top and bottom column moments were calculated, accounting for second-order

effects, according to the procedures described in Section B.6. Similar to the results for the center

column, for positive displacement cycles the yield strength at the top of the west column appears

to be 50% higher than the yield strength at the bottom of the column. In contrast, the yield strengths

at the tops and bottoms of the columns appear similar for the west columns in negative displace-

ment cycles, and for the east columns in either direction. The discrepancy in the yield strength is

believed to be due to errors in the force transducer output (see Section B.6).

6.3.4 Load Redistribution

Two forms of load redistribution observed during the shear-failure tests will be discussed in this

section: redistribution during shear failure of the center column, and redistribution during axial

failure of the center column (Specimen 2 only).   

6.3.4.1 Redistribution during Shear Failure

Shear failure reduces the capacity of a column to resist lateral loads. If the lateral load applied to a

building frame remains constant during shear failure of a single column, the lateral load initially

resisted by the failing column must be redistributed to neighboring elements. However, the equiv-

alent lateral loads resulting from ground motion are caused by the dynamic response of the struc-

ture, and hence are not constant. The magnitude and direction of the loads change with time due to

variations in the ground motion input and changes in the characteristics of the structure (e.g.,

lengthening of the fundamental period with increasing damage). Furthermore, formation of a plas-

tic mechanism due to ductile yielding of elements can limit the maximum lateral load resisted by

the structure and individual elements. For the three-column frames tested, shear failure of the
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Figure 6-42. Specimen 1 west column hysteresis with idealized backbone

Figure 6-43. Specimen 2 west column hysteresis with idealized backbone
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Figure 6-44. Specimen 1 east column hysteresis with idealized backbone

Figure 6-45. Specimen 2 east column hysteresis with idealized backbone
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Figure 6-46. Specimen 1 west column moment hysteretic response

Figure 6-47. Specimen 2 west column moment hysteretic response

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−60

−40

−20

0

20

40

60

S
pe

ci
m

en
 1

 W
es

t C
ol

um
n 

M
om

en
t (

ki
p*

ft)

Drift Angle (rad)

Top
Bottom

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−60

−40

−20

0

20

40

60

S
pe

ci
m

en
 2

 W
es

t C
ol

um
n 

M
om

en
t (

ki
p*

ft)

Drift Angle (rad)

Top
Bottom



138

Figure 6-48. Specimen 1 east column moment hysteretic response

Figure 6-49. Specimen 2 east column moment hysteretic response

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−60

−40

−20

0

20

40

60

S
pe

ci
m

en
 1

 E
as

t C
ol

um
n 

M
om

en
t (

ki
p*

ft)

Drift Angle (rad)

Top
Bottom

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−60

−40

−20

0

20

40

60

S
pe

ci
m

en
 2

 E
as

t C
ol

um
n 

M
om

en
t (

ki
p*

ft)

Drift Angle (rad)

Top
Bottom



139

center column increases the fundamental period, thereby changing the equivalent lateral load

demands. In addition, flexural yielding of the outside columns before shear failure of the center

column limits any increase in the lateral load resisted by the outside columns after shear failure of

the center column. For these reasons, lateral load redistribution during shear failure did not result

in a significant increase in lateral demands on the outside columns. Figures 6-50 through 6-52 illus-

trate how the lateral loads were distributed before, during, and after shear failure of the center col-

umn. 

Figure 6-50 shows the fraction of the total base shear resisted by the center column at peaks

in the base shear response history. The solid circles represent the fraction of base shear resisted by

the center column during positive displacement cycles (i.e., the direction of shear failure for both

specimens), and the hollow circles represent the fraction of base shear resisted by the center

column during negative displacement cycles. Consistent with the lower stiffness observed in the

response of the Specimen 1 center column, this column initially resists a smaller fraction of the

total base shear than the Specimen 2 center column. The fraction of the base shear resisted by the

center column for Specimen 1 remains nearly constant until the square marker at 24.9 seconds. In

contrast, for Specimen 2 redistribution of the base shear can be observed even before the start of

significant ground motion at 14 seconds. Immediately following the triangular marker at 16.7 sec-

onds, the fraction of the Specimen 2 base shear resisted by the center column drops by 38%. This

coincides with the formation of significant shear cracks in the center column (Figure 6-11b). For

positive displacement cycles immediately following the square marker, the fraction of the base

shear resisted by the center column drops off to negligible levels within 5.5 seconds for Specimen

1 and 0.5 seconds for Specimen 2. For negative displacement cycles, the fraction of base shear

resisted by the Specimen 1 center column drops at approximately the same rate as for positive dis-

placement cycles. The Specimen 2 center column continues to resist approximately 30% of the

total base shear for negative displacement cycles after the square and diamond markers. During

negative displacement cycles, the upper portion of the failed center column is forced to bear against

the lower portion which acts as a cantilever, thereby resisting a portion of the total base shear.

Figures 6-51 and 6-52 show the normalized shear hysteretic response for Specimens 1 and

2 for selected cycles. The hysteresis loops are shown for the center column shear and the sum of

the shear resisted by the outside columns. The shear response is normalized by the shear (in either

the center or outside columns, depending on the curve) at the star markers which are located just
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before the first degradation in the center column shear strength. For Specimen 1, Figure 6-51(a)

suggests that the shear in the outside columns degrades along with the center column shear imme-

diately after the star marker, but the center column shear drops relative to the outside column shear

upon repeated cycles. Figure 6-51(b) shows only a very slight drop in the outside column shear

during degradation of the center column shear capacity at the positive peak of the first cycle. In

subsequent cycles shown in Figure 6-51(b), the center column shear drops to negligible levels due

to degradation of the shear capacity and significantly pinched hysteretic loops. The outside col-

umns maintain stable and wide hysteretic loops during subsequent cycles.

For Specimen 2, Figure 6-52(a) shows no significant difference in the hysteretic response

of outside and center columns. With subsequent cycles, shown in Figure 6-52(b), it is clear that the

degradation of the center column shear strength has begun. Within two full cycles the normalized

Figure 6-50. Fraction of total base shear resisted by center column
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shear in the center column is approximately half of the normalized shear in the outside columns.

Figures 6-52(c) and 6-52(d) clearly show the shear-strength reduction in the center column relative

to the outside columns and the difference in the pinched nature of the hysteretic loops. Note that

Figures 6-52(c) and 6-52(d) show the same cycles as those shown for Specimen 1 in Figures 6-

51(a) and 6-51(b). 

Shear failures and the subsequent degradation in shear capacity are believed to lead to an

increase in lateral displacements. If the total shear capacity at a single story-level in a building

frame degrades, the inertial forces acting above the damaged story should also decrease. This phe-

nomenon can be observed in the hysteretic loops shown in Figures 6-53 and 6-54; as the base shear

capacity of the three-column frame decreases, the inertial force also decreases. The inertial forces

retard the motion of the mass, and therefore a decrease in the inertial force should result in an

increase in the lateral displacements. Although a control test (without base shear degradation) was

not conducted to demonstrate experimentally the influence of the shear failure on the peak dis-

placements, the impact will be demonstrated analytically in Section 8.4.3.

A pulse-type ground motion, resulting in the majority of shear degradation occurring within

a single cycle, will likely result in larger displacements than those observed in the shake table tests,

since the inertial forces will decrease over a more sustained period of time. Further shake table test-

Figure 6-51.  Specimen 1 — Shear hysteretic response normalized by shear at star 
marker. (a) t = 24.33 – 26.38 sec; (b) t = 27.45 – 29.80 sec
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ing is needed to investigate the influence of the type of ground motion on the response of structures

after shear failure.

6.3.4.2 Redistribution during Axial Failure

Unlike seismic loads, gravity loads can never be dissipated through yielding and damage to the

structure. In the event of the axial failure of a column, the gravity loads initially supported by the

Figure 6-52.  Specimen 2 — Shear hysteretic response normalized by shear at star marker. 
(a) t = 15.12 – 15.96 sec, (b) t = 16.38 – 17.63 sec, (c) t = 24.33 – 26.38 sec, 
(d) t = 27.45 – 29.80 sec
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Figure 6-53. Hysteretic response for Specimen 1 (only selected cycles shown)

Figure 6-54. Hysteretic response for Specimen 2 (only selected cycles shown)
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column must be redistributed to neighboring elements. Loss of axial load support will lead to ver-

tical inertial forces resulting from vertical acceleration of the mass above the damaged column.

Gravity loads are transferred to neighboring elements through a dynamic process as the vertical

inertial forces oscillate. Rapid loss of the axial load support may lead to a dynamic amplification

of the transferred axial loads. 

Figure 6-55. Redistribution of axial loads for Specimen 2 (Total “Gravity” Load
includes both dead-load and prestress force, ΣPcol+mavert = sum of 
column axial loads and vertical inertial forces.)
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Figure 6-55 shows the redistribution of gravity loads during axial failure of the Specimen

2 center column. Note that the Total “Gravity” Load decreases by 6 kips due to relaxation of the

prestress force (see Section B.3). The slight difference between the Total “Gravity” Load (calcu-

lated based on the measured mass and prestress force) and the sum of the column axial loads and

vertical inertial forces suggests that minor errors exist in the column axial load readings (see

Section B.6 for further discussion of force transducer errors). At the end of the test there was a dif-

ference of 2.5 kips between the Total “Gravity” Loads and the sum of the column axial loads.

Agreement between the axial load lost by the center column and the axial load gained by the out-

side columns during transient cycles suggests that the force transducers were able to capture the

variation of loads during axial failure with sufficient accuracy.

The near-total loss of the center column axial load capacity occurs over 5.5 seconds (from

24.5 sec to 30.0 sec), too slow to observe any significant dynamic amplification of the transferred

load. Transient cycles caused by the longitudinal movement of the frame during the loss of axial

load capacity result in sharp drops in the axial load supported by the center column. For example,

at 29 seconds the axial load drops by approximately 25 kips in 0.3 seconds. Figure 6-56(a) shows

a detailed view of the loss of center column axial load during the pulse at 29 seconds to illustrate

the dynamic process by which the vertical loads are redistributed. The drop in the center column

axial load at 28.84 seconds is initially balanced by an increase in the vertical inertial force. When

the vertical inertial force peaks at 28.88 seconds, the axial loads in outside columns increase rap-

idly to balance both the change in the inertial force and the continued loss of axial load from the

center column. The process repeats itself starting at the trough in the inertial force response at 28.96

seconds. Note that an increase in the inertial force corresponds to a drop in the center column axial

load, with little or no change in the outside column axial loads; while a decrease in the inertial force

corresponds to an increase in the outside column axial loads, and a decrease in the rate of axial load

loss in the center column. The dynamic process results in a temporary amplification of the axial

loads transferred to the outside columns. The dynamic amplification factor (DAF, defined as the

change in the outside column axial loads from the start of the pulse divided by the change in the

center column axial loads from the start of the pulse) for the pulse shown in Figure 6-56 peaks at

1.5 immediately after the initial transfer of axial load to the outside columns. After the initial trans-

fer of load, the DAF oscillates about 1.0 indicating that little or no dynamic amplification occurs

with any further transfer of axial load. (Note that the sum of the column axial loads and the vertical
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inertial forces, which should ideally plot along the x-axis, indicates that only slight instrumentation

errors exist in the results shown in Figure 6-56.)

Further understanding of the gravity load redistribution during axial failure of the center

column can be gained by replotting Figure 6-19 using the difference in the vertical displacement

at the center column and the average of the vertical displacements at the outside columns, ∆beam,

as shown in Figure 6-57. The beam displacement shows that, before axial failure of the center col-

umn, the lengthening of the outside columns due to flexural cracking is greater than the lengthening

of the center column (i.e., the beam deflection is negative). The beam deflections during horizontal

Figure 6-56. (a) Change in axial loads and vertical inertial force. (b) Dynamic amplifica-
tion of axial loads transferred to outside columns. (1Change in forces from 
those measured at 28.83 seconds) (DAF = quotient of outside and center 
column axial loads shown in (a))

28.80 28.85 28.90 28.95 29.00 29.05 29.10 29.15 29.20
−30

−20

−10

0

10

20

30

Time (sec)

C
ha

ng
e 

in
 V

er
tic

al
 F

or
ce

 (
ki

ps
)

Center Column
Outside Columns
Inertia
ΣP

col
+ma

vert

1

28.80 28.85 28.90 28.95 29.00 29.05 29.10 29.15 29.20
0.0

0.5

1.0

1.5

2.0

Time (sec)

D
yn

am
ic

 A
m

pl
ifi

ca
tio

n 
F

ac
to

r 
(D

A
F

)
(a)

(b)



147

displacement cycles causes bending of the beam, and hence, transient redistribution of the gravity

loads to the outside columns. Changes in the beam deflections with horizontal displacements con-

tinue after the onset of axial failure of the center column, resulting in the transient redistribution of

gravity loads to the outside columns during failure of the center column (i.e., between the square

and diamond markers). In Section 7.7, the stiffness of the beam will be used to predict the slope

observed in the upper right plot of Figure 6-57.

The data in the lower left plot of Figure 6-57 can be used to demonstrate the behavior of

the beam during axial load redistribution. As shown in Figure 6-58, the beam can be modeled as

simply supported between the outside columns with a point load support at the center column equal

to the initial axial load of 67 kips. The deflection of the beam at the center column, ∆beam (consid-

ering the change in length of both the center and outside columns as shown in Figure 6-57, but

defined here as positive for downward displacement at mid span) and the axial load loss in center

column, Ploss, can be used to define the force-displacement response of the beam during axial fail-

ure of the center column as shown in Figure 6-59. The star marker in Figure 6-59 indicates the

point of first yield of the beam longitudinal reinforcement based on the strain gage data. Based on

the shape of the test data curve, the star marker is likely somewhat past the point of first yield. This

inconsistency may be due to the sensitivity of the measured strains to the location of the cracks. If

the strain gage is not located at a flexural crack, then the measured steel strains will be less than

those at the crack and the displacement at first yield will be overestimated using the strain gage

data. The data plotted in Figure 6-59 will be compared with an elastic-perfectly-plastic model of

the beam  in Section 7.7.
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Figure 6-57. Figure 6-19 redrawn using the difference in the vertical displacement at the 
center column and the outside columns for Specimen 2

Figure 6-58. Beam modeled as simply supported with point load support from center column.
(Ploss and ∆beam positive as shown)
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Figure 6-59. Axial load loss in center column versus the beam deflection defined in
Figure 6-57.
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7 Comparison of Test Data with
Predictive Models

7.1 INTRODUCTION

This chapter will compare the test results presented in the previous chapter with results of models

to predict yield displacement, elastic stiffness, and flexural strength of the center and outside col-

umns. The predictive models are based on section analysis and are commonly used in practice. The

response of the center column is further compared with results of models described in Chapters 2

and 3 to predict the drift at shear and axial load failure. Finally, a simple model for the beam is used

to evaluate the observed axial load redistribution.

7.2 YIELD DISPLACEMENT AND STIFFNESS

7.2.1 Center Column

Calculation of the yield displacement and stiffness requires the moment-curvature relationship for

the section. The moment-curvature relationships shown in Figure 7-1 were determined using a

standard section analysis of the center column (assuming plane sections remain plane), with the

concrete and steel models shown in Figure 7-2 (UCFyber, 1999). Note that there was no attempt

to predict the ultimate curvature capacity, since shear failure of the column occurred before flex-

ural failure. The idealized bilinear moment-curvature relationships shown in Figure 7-1 were

selected to represent the behavior of the center columns before shear failure.

The displacement at first yield of the longitudinal reinforcement can be considered as the

sum of the displacements due to flexure, bar slip, and shear:

(7.1)∆y ∆flex ∆slip ∆shear+ +=
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Assuming the column is fixed against rotation at both ends and assuming a linear variation

in curvature over the height of the column, the displacement at yield due to flexure can be estimated

as follows:

(7.2)

where L is the length of the column and φy is the curvature at first yield of the longitudinal rein-

forcement. 

Figure 7-1. Center column moment-curvature relationships

Figure 7-2. Concrete and steel material models used in section analysis of center column
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As shown in Section B.7, the displacement due to bar slip at first yield can be estimated as

follows:

(7.3)

where db is the diameter of the longitudinal reinforcement, fy is the yield stress of the longitudinal

reinforcement, and u is the bond stress between the longitudinal reinforcement and the footing or

beam concrete. Since both #4 and #5 bars were used as longitudinal reinforcement for the center

column, it will be assumed that the smaller bars will limit the slip displacement. A bond stress of

 (psi units) will be assumed in the following calculations (Sozen et al., 1992).

Assuming the column is fixed against rotation at both ends, the displacement at first yield

due to shear deformations can be estimated by idealizing the column as consisting of a homoge-

neous material with a shear modulus G:

(7.4)

where My is the moment at first yield of the longitudinal reinforcement, and Av the shear area of

the column section which can be approximated by 5/6 of the gross area of the column section.

For the purpose of estimating the yield displacement, φy and My will be determined from

the moment-curvature relationships based on section analysis (Figure 7-1). Table 7-1 compares the

calculated yield displacement with the displacement at first yield of the longitudinal reinforcement

based on the strain gage data. Note that more than half of the calculated yield displacement is due

to bar slip.

For the purpose of building an analytical model to predict the ultimate behavior of the

frame, the response of the center column before yielding of the longitudinal reinforcement can be

approximated as linear-elastic. For flexural deformations, the effective elastic stiffness can be

expressed as a fraction of the gross moment of inertia of the column section, Ig. The calculated

Table 7-1. Calculated yield displacement for center column (in.)

Specimen

1 0.30 0.38 0.01 0.69 0.93

2 0.35 0.45 0.01 0.81 1.04

∆slip
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effective flexural stiffness of the center column, Ieff flex calc, based on the bilinear idealization of the

moment-curvature relationships shown in Figure 7-1, is given in Table 7-2. 

If the total displacement before yielding is assumed to be due only to flexure, as is conve-

nient for most analytical models used in practice, the effective stiffness, Ieff total, can be estimated

as follows:

(7.5)

where Ec is the approximate Young’s modulus of concrete (  in psi units) and it is

assumed that the column is fixed against rotation at both ends. Table 7-2 lists the effective stiff-

nesses determined based on the test results (Ieff total test) and based on the calculated moment-cur-

vature relationships and yield displacements for the center column (Ieff total calc). For Ieff total test,

the yield moment, , and the yield displacement, , are determined based on the idealized back-

bone relations shown in Figures 6-17 and 6-18. The stiffnesses from positive and negative dis-

placements are averaged to determine Ieff total test. For Ieff total calc, My is based on the bilinear

idealization of the moment-curvature relationships and  is calculated from Equations 7.2 and 7.3

using the yield curvature from the bilinear idealization of the moment-curvature relationships

shown in Figure 7-1. Note that the Ieff total values are approximately half of Ieff flex calc due to the

influence of slip deformations, and considerably less than values such as 0.5Ig or 0.7Ig commonly

used in practice (ASCE, 2000).  

7.2.2 Outside Columns  

The moment-curvature relationships shown in Figures 7-3 through 7-5 were determined using a

standard section analysis of the outside columns with the concrete and steel material models shown

in Figure 7-6. The confined concrete model by Mander et al. (1988) was used to determine the

stress-strain relationship for the concrete core. The moment-curvature relationships were com-

puted at three axial loads, selected based on the range of axial loads observed during the tests (see

Table 7-2. Effective center column stiffness as a fraction of Ig 

Specimen Ieff flex calc Ieff total calc Ieff total test

1 0.47Ig 0.22Ig 0.24Ig

2 0.53Ig 0.25Ig 0.28Ig

Ieff total

MyL
2

6∆yEc

---------------=

57 000 fc',

My ∆y

∆y
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Figures 6-36 and 6-37): the initial axial load of 20 kips, an upper-bound axial load of 55 kips, and

a lower-bound axial load of 8 kips. This range of axial loads was chosen to enable the calculation

of bounds on the yield displacement, stiffness, and flexural strength of the outside columns.

Similar to the center column, the yield displacement can be expressed as the sum of dis-

placements due to flexure, bar slip, and shear deformations. As shown for the center column, the

displacements due to elastic shear deformations are very small and will be ignored for the outside

Figure 7-3. Calculated moment-curvature relationship for outside columns with initial 
axial load (P=20 kips)

Figure 7-4. Calculated moment-curvature relationship for outside columns with upper-
bound axial load (P=55 kips)
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columns. Adopting similar assumptions as outlined for the center column in Section 7.2.1, the dis-

placements due to flexure and slip deformations can be approximated by Equations 7.2 and 7.3,

respectively. Table 7-3 compares the calculated yield displacement for the initial axial load of 20

kips, with the displacement at first yield of the longitudinal reinforcement based on the strain gage

data. Owing to the location of strain gages in the outside columns, the values in Table 7-3 are for

first yielding of the outermost reinforcing bars.

As noted in the previous chapter, the outside columns exhibit a stiffer response during

cycles in which the axial load increases due to overturning forces. Such cycles are referred to as

compression cycles. Likewise, the outside columns exhibit a softer response during cycles in which

Figure 7-5. Calculated moment-curvature relationship for outside columns with lower-
bound axial load (P=8 kips)

Figure 7-6. Material models used in section analysis of outside columns
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the axial load decreases (or tension cycles). Table 7-4 compares the stiffness observed during com-

pression cycles with the calculated stiffness using the upper-bound bilinear moment-curvature

relationship from Figure 7-4, and the stiffness observed during the tension cycles with the calcu-

lated stiffness using the lower-bound bilinear moment-curvature relationship from Figure 7-5.

Similar to the center column, the observed stiffnesses are determined based on the idealized back-

bones in Figures 6-42, 6-43, 6-44, and 6-45, and assuming that both ends of the columns are fixed

against rotation, a reasonable assumption before axial failure of the center column. Owing to the

similar axial loads experienced by the outside columns for both specimens during low-level cycles,

the observed stiffnesses, Ieff flex test and Ieff total test, are determined by averaging the stiffnesses for

all four outside columns (two columns per specimen). In Table 7-4 the effective stiffness is

expressed as a fraction of the gross moment of inertia of the column, Ig. The procedure for calcu-

lating each of the terms is given in Section 7.2.1. As with the results for the center column, the

influence of slip deformations reduces the total effective stiffness for the outside columns to values

that are considerably less than those typically used in practice. 

7.3 FLEXURAL STRENGTH

7.3.1 Center Column

Table 7-5 compares the calculated and measured yield moments and ultimate flexural strengths for

the center column. Owing to inaccuracies in the measured moments from the force transducer data

(see Section B.6), the measured values were determined using the measured shears and assuming

Table 7-3. Calculated displacement for outside columns at first yield 
of outermost reinforcement (in.)

Specimen

1 0.29 0.32 0.60 0.98

2 0.29 0.32 0.60 1.02

Table 7-4. Effective stiffness for outside columns as a fraction of Ig 

Cycle Type Ieff flex calc Ieff total calc Ieff total test

Compression 0.43Ig 0.21Ig 0.20Ig

Tension 0.36Ig 0.17Ig 0.16Ig

∆flex ∆slip ∆y calc

∆y calc

∆y test

---------------
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that the column was fixed against rotation at both ends ( ). The terms listed in

Table 7-5 are defined as follows:

• My test = measured moment at first yield of the longitudinal reinforcement.

• Mu test = maximum moment measured during the test.

• My calc = calculated yield moment based on section analysis.

• Mu calc = calculated ultimate moment based on section analysis.

• Mu ACI = calculated ultimate moment using a standard rectangular stress block with ultimate 
concrete strain of 0.004, concrete strength based on concrete cylinder tests 
(Appendix A), bilinear steel model from Figure 7-2, and a strength reduction factor of 
unity.

Table 7-5 shows a close agreement between the calculated and measured results. Note that

the ultimate moment achieved in the tests, particularly for the Specimen 2, may be governed by the

shear strength of the column. Shear strength is not considered in the calculated ultimate flexural

strengths.

7.3.2 Outside Columns

The flexural strengths for the outside columns are listed in Table 7-6. As for the measured effective

stiffnesses, the measured flexural strengths were determined by averaging the moments from the

four outside columns during the appropriate cycle. As for the center column, the measured

moments were determined based on the measured shears and assuming that the columns remain

fixed against rotation at both ends. This assumption is not valid for Specimen 2 after axial failure

of the center column and vertical deflection of the beam leads to rotations at the beam ends, and,

Table 7-5. Measured and calculated flexural strengths for center column (kip-ft)

Specimen My test Mu test My calc Mu calc Mu ACI

1 39.3 43.8 37.3 43.6 44.8

2 45.1 48.1 44.3 46.2 47.4

Table 7-6. Measured and calculated flexural capacities for outside column (kip-ft)

Cycle Type My test Mu test My calc Mu calc Mu ACI

Compression 33.8 39.9 31.2 34.6 34.8

Tension 18.1 26.8 21.9 27.3 27.5

M V L 2⁄( )=
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hence, rotation of the top of the outside columns. However, the maximum shear in the outside col-

umns of Specimen 2 is recorded before axial failure of the center column.

The calculated values overestimate the measured values during tension cycles, and under-

estimate the measured values during compression cycles. The discrepancies may be a result of the

assumption that the column ends remain fixed against rotation.

7.4 SHEAR STRENGTH 

The center column for both specimens appeared to fail in shear as suggested by the characteristic

diagonal failure plane observed during the test. As described in Chapter 2, several predictive

models exist for calculating the shear strength of reinforced concrete columns. Models proposed

by Sezen (2002) and Priestley et al. (1994), in addition to the equations from ACI318-02, are com-

pared with the test results in Table 7-7. The maximum center column shear measured during the

tests was 18.1 kips and 19.9 kips for Specimens 1 and 2, respectively.

The shear-strength models proposed by Sezen (2002) and Priestley et al. (1994) require the

displacement ductility demand on the column. To remove further uncertainty from the evaluation

of the shear-strength models, the displacement ductility, , was determined based on the test data

by using the following expression:

(7.6)

where ∆y is the displacement (in the positive direction) at first yield of the longitudinal reinforce-

ment based on the strain gage data, and ∆u is defined as the displacement (in the positive direction)

at which the backbone of the test data first drops below 80 percent of the maximum recorded center

column shear. (Priestley et al. (1994) determined the measured yield displacement by extrapolating

a line from the origin, through the displacement at first yield, to the theoretical flexural strength

based on measured material properties. Where available, Sezen (2002) used the reported yield dis-

placement based on strain gage data; otherwise, the yield displacement was determined by extrap-

olating a line from the origin, through the backbone of the test data at 70% of the maximum lateral

load, to the maximum measured lateral load.) Only the displacements in the positive direction are

considered, since the degradation in shear strength is initiated in this direction. Given this defini-

µδ

µδ
∆u

∆y

------=
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tion, the observed maximum displacement ductilities are 4.08 and 1.96 for Specimens 1 and 2,

respectively.

The results from this very limited data set suggest that the model proposed by Sezen (2002)

provides good accuracy for the columns tested in this study. A detailed comparison of the models

using a database of 51 columns can be found in Sezen (2002).

Figures 7-7 and 7-8 compare the shear-strength models by Sezen (2002) and Priestley et al.

(1994) (based on the calculated yield displacement from Table 7-1) with the center column shear

hysteresis for Specimens 1 and 2. Elastic-perfectly-plastic (EPP) backbone models, based on the

calculated yield displacements from Table 7-1 and the yield moment from the idealized moment

curvature relationships shown in Figure 7-1, are also included on the plots. The intercepts of the

EPP model and the shear-strength model indicate the displacements at which the model would pre-

dict shear failure (or shear-strength degradation of approximately 20%). The EPP model does not

intercept the Priestley shear-strength model for either specimen, indicating that this shear model

would not predict shear failure for such a column. As discussed in Section 2.3.1, the shear-strength

models do not provide a reliable estimate of the displacement at shear failure, and this assertion is

supported by the results shown in Figures 7-7 and 7-8. 

7.5 SHEAR-DRIFT BACKBONE

The backbone of the shear-drift hysteretic response for a column expected to experience flexural

yielding before shear failure can be approximated as shown in Figure 7-9. Each coordinate of the

backbone can be determined using models discussed previously. The flexural strength, Vu, can be

determined based on an idealization of the calculated moment-curvature response (Figure 7-1); the

drift ratio at flexural yielding, ∆y/L, can be calculated as discussed in Section 7.2; the drift ratio at

shear failure, ∆s/L, can be calculated using models discussed in Section 2.3; and the drift ratio at

axial failure, ∆a/L, can be calculated using the shear-friction model from Section 3.3.6. The calcu-

Table 7-7. Predicted shear strengths as a fraction of the maximum measured shear

Shear-Strength Model Specimen 1 Specimen 2

ACI318-02 22.5 kips / 18.1 kips = 1.24 24.5 kips / 19.9 kips = 1.23

Priestley et al. (1994) 26.2 kips / 18.1 kips = 1.45 38.2 kips / 19.9 kips = 1.92

Sezen (2002) 18.1 kips / 18.1 kips = 1.00 24.0 kips / 19.9 kips = 1.21
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Figure 7-7. Comparison of shear-failure surfaces with Specimen 1 test data

Figure 7-8. Comparison of shear-failure surfaces with Specimen 2 test data
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lated backbones for the center column response, using the six models for ∆s/L from Section 2.3,

are shown in Figures 7-10 through 7-15. (Equation 3.20 was used to calculate ∆a/L for all plots

except Figure 7-15, where the model by Kato and Ohnishi (2002) discussed in Section 3.4 was

used.) For all cases the axial load was taken as the initial axial load supported by the center column.

The empirical drift capacity models (Equations 2.8 and 2.9) and the model by Pujol et al.

(1999) provide very similar estimates of the shear-drift backbone for both specimens. The models

underestimate the drift at shear failure for Specimen 1, but provide a good estimate of the drift at

shear failure for Specimen 2. These results suggest that the drift capacity models may underesti-

mate the influence of the axial load on the drift ratio at shear failure. 

The model by Pujol et al. (2000) provides a good estimate of the shear-drift backbone for

Specimen 1, but significantly underestimates the drift at shear failure for Specimen 2. The calcu-

lated drift at shear failure for Specimen 2 was less than the calculated drift at flexural yielding,

resulting in the backbone shown in Figure 7-13. 

As noted previously, the shear strength model by Sezen (2002) does not provide a reliable

estimate of the drift at shear failure. For Specimen 2, the shear strength model predicts a drift at

shear failure which is larger than the calculated drift at axial failure, resulting in the erroneous pre-

dicted shear-drift backbone shown in Figure 7-14. Note that, contrary to all of the other models pre-

sented for the drift at shear failure, the shear strength model incorrectly predicts that the higher

axial load for Specimen 2 will result in an increase in the drift at shear failure compared with Spec-

imen 1.    

Figure 7-9. Idealized shear-drift backbone for shear-critical columns

V

Vu = Mu/(L/2)

∆/L∆y/L ∆s/L ∆a/L
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Figure 7-10. Calculated backbone using Equation 2.8

Figure 7-11. Calculated backbone using Equation 2.9

Figure 7-12. Calculated backbone using Pujol et al. (1999) (Equation 2.2)
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Figure 7-13. Calculated backbone using Pujol et al. (2000) (Equation 2.5)

Figure 7-14. Calculated backbone using Sezen (2002) (see Figures 7-7 and 7-8)

Figure 7-15. Calculated backbone using Kato and Ohnishi (2002) (Equation 2.6)
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The model for the drift at shear and axial load failure by Kato and Ohnishi (2002) shows

close agreement with the center column hysteretic response for both specimens. By using one

expression (Equation 2.6) with different coefficients for shear and axial failure, the model by Kato

and Ohnishi (2002) ensures that the calculated drift at axial failure will always exceed the calcu-

lated drift at shear failure.

As described in Section 3.5, the degrading slope after shear failure and the displacement at

which significant shear strength degradation first occurs can be estimated using a shear-friction

model (Equation 3.25). Figure 7-16 uses the degrading slope model to construct the shear-drift

backbone for the center column of each specimen. The intercept of the degrading slope model and

the V = 0 axis in Figure 7-16 are assumed to be given by the axial-failure model (Equation 3.20)

using the initial axial load on the center column. Although the model provides a good estimate of

the degrading slope and the displacement at which degradation begins for the columns tested in this

study, it must be noted that the degrading slope model does not agree well with the results from the

pseudo-static tests in the database from Section 3.2.

7.6 AXIAL RESPONSE

Figures 7-17 and 7-18 show the axial-load lateral-drift response of the center column for each spec-

imen compared with the axial failure surface based on Equation 3.20. The response of the center

column for Specimen 1 remains below the failure surface, indicating that the model predicts no

Figure 7-16. Calculated backbone using degrading slope model 
(slope m given by Equation 3.25)
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Figure 7-17. Comparison of center column response from Specimen 1 to shear-friction
axial-failure model (Equation 3.20)

Figure 7-18. Comparison of center column response from Specimen 2 to shear-friction 
axial-failure model (Equation 3.20)
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axial failure for the test with low axial load. The response of the center column for Specimen 2

touches the failure surface, indicating that the model predicts that axial failure can be expected for

the test with a moderate axial load. These results are consistent with the observed behavior during

the tests.

The intercept of the center column response from Specimen 2 and the failure surface occurs

at approximately 24.9 seconds, as indicated by the square marker (the same square marker appears

in the plots of Chapter 6). At 24.9 seconds significant distortion of the top of the center column,

possibly due to sliding along the diagonal shear-failure plane, could be observed visually, as shown

in Figure 6-12b.

7.7 BEAM RESPONSE AND LOAD REDISTRIBUTION

As discussed in Section 6.3.4, the beam stiffness influences the redistribution of gravity loads

observed during the tests. Estimates of the yield displacement and the flexural strength of the beam

can be used to model the beam stiffness and the transient redistribution of gravity loads.

Owing to the flexibility of the outside columns compared with that of the beam, the beam

can be approximately modeled as simply-supported between the outside columns with a point load

support at midspan equal to the initial axial load in the center column (as shown in Figure 6-58).

The yield deflection at midspan due to Ploss (the drop in the center column axial load capacity) can

be estimated by adding the deflection due to flexure and the deflection due to slip of the longitudi-

nal bars from the center transverse beam.

(7.7)

Note that all calculations are done for deflections at the face of the center transverse beam.

Owing to the increased stiffness from the center transverse beam, these deflections should provide

a good estimate of the midspan deflections. 

Considering half of the beam as a cantilever, the yield deflection due to flexural deforma-

tions resulting from Ploss can be estimated as follows:

(7.8)

∆beam y ∆beam flex ∆beam slip+=

∆beam flex
L2

3
----- φy φDL–( )=
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where φDL is the curvature at the face of the transverse beam based on the simply-supported model

subjected to dead loads (including prestress forces) and the initial axial load in the center column,

φy is the yield curvature of the beam, and L is the distance between the center line of the outside

columns and the face of the center-column transverse beam. The yield curvature was based on the

moment-curvature relationship calculated from a standard section analysis as shown in Figure 7-

19. The flexural displacement of the beam at yield, based on Equation 7.8, is 0.31 inches.

Since the center transverse beam acts as an anchorage block for the beam longitudinal rein-

forcement, the slip of the beam longitudinal bars within the center transverse beam must be con-

sidered when evaluating the yield deflection. As shown in Figure 7-20, the slip of the longitudinal

bars, δslip, can be estimated by integrating the strains in the reinforcing bars within half of the

center transverse beam. Given δslip, the deflection at midspan due to the reinforcement slip at yield

can be estimated as follows:

(7.9)

where c is the distance from the neutral axis to the reinforcement at yield based on section analysis,

and L is the length from the center line of the outside column to the face of the center transverse

beam. 

Based on Figure 7-20 and Equation 7.9, the beam deflection at yield due to slip of the rein-

forcing bars from the center transverse beam is approximately 0.11 inches. Therefore, based on

Figure 7-19. Moment-curvature relationship for beam section
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Equation 7.7, the total deflection of the beam at yield of the longitudinal reinforcing bars is approx-

imately 0.42 inches. Based on the simplified model shown in Figure 6-58, including the dead load

and applied prestress force, Ploss = 53 kips produces a moment at the face of the transverse beam

equal to the yield moment from section analysis. 

Figure 7-21 compares the measured response of the beam from Specimen 2 shown in

Figure 6-59 with an elastic-perfectly-plastic model based on the yield deflection and yield moment

discussed above. The calculated yield displacement and stiffness appear consistent with the

recorded results, although the test data suggest that the beam yields more gradually than the EPP

model would indicate.

Figure 7-22 shows relations between the center column axial load, horizontal displace-

ments, and beam displacements for Specimen 2. The slope of the bold line shown on the lower right

plot of Figure 7-22, and the stiffness of the beam, can be used to estimate the loss in the center

column axial load at the time of the square marker. (Note that the test data are used in place of a

Figure 7-20. Slip of beam longitudinal reinforcement from center transverse beam
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model for the horizontal versus beam displacement relationship, since a simplified model of the

axial shortening of a column after shear failure is not currently available.) The bold line, at a slope

of 0.08, is approximately tangent to the response of the column during the pulse initiating axial fail-

ure. By using this linear approximation to the axial response of the columns, the difference in the

vertical displacements at a horizontal displacement of 3.4 inches (at the square marker) can be cal-

culated as -0.08*3.4 = -0.27 inches. The elastic stiffness of the beam, based on the EPP model

shown in Figure 7-21, is such that lifting the outside columns by 0.27 inches relative to the center

column will result in relieving the center column axial load by 29 kips. Since the initial axial load

in the center column was 67 kips, a horizontal displacement of 3.4 inches should result in a center

column axial load of approximately 38 kips. This result is consistent with the location of the square

marker in the upper-right plot of Figure 7-22.

Figure 7-21. Measured and calculated response of the beam from Specimen 2
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Figure 7-22. Relations between the center column axial load, the horizontal 
displacement and the beam displacement for Specimen 2, with a linear 
approximation to the horizontal versus beam displacement relationship. 
(Same as data plotted in Figure 6-57)

−4 −2 0 2 4 6
0

10

20

30

40

50

60

70

80

A
xi

al
 L

oa
d 

(k
ip

s)
Horizontal Displacement (in.)

01020304050607080

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

 0.0

 0.2

Axial Load (kips)

−4 −2 0 2 4 6

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

 0.0

 0.2

B
ea

m
 D

ef
le

ct
io

n 
(in

.)

∆beam



8 Analysis of Shake Table Test Specimens

8.1 INTRODUCTION

This chapter will describe an analytical model for the shake table test specimens developed using

OpenSees, a finite-element analysis platform designed for earthquake engineering simulation

(OpenSees, 2002). The behavior of the model under both static and dynamic loading conditions

will be investigated. The goal of the static analyses is to evaluate the ability of the model to repro-

duce the observed hysteretic behavior of the specimen components if the lateral drifts are predicted

exactly. The goal of the dynamic analyses is to evaluate the ability of the model to reproduce the

observed response of the specimens as described in Chapter 6. The sensitivity of the results to

changes in several parameters will also be investigated. 

The analysis described herein will use the models presented in Chapters 2 through 4 in an

effort to reproduce the observed response of the shake table test specimens described in Chapter 6.

The proposed model for the drift capacity at shear failure (Equation 2.9) and the axial failure model

(Equation 3.20), both implemented in OpenSees using the limit state failure model introduced in

Chapter 4, will be used to identify the initiation of shear- and axial-strength degradation, respec-

tively, for the center columns. The sensitivity of the analytical results to the accuracy of the failure

models will be investigated.  

8.2 DESCRIPTION OF THE ANALYTICAL MODEL

The layout of the nodes and elements for the analytical model is shown in Figure 8-1. The follow-

ing sections describe the models used for the frame components and the loading for the dead-load

model.
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8.2.1 Beam and Footing Models

The calculated moment-curvature and slip response for the beam, presented in Section 7.7, was

used to determine the stiffness and flexural yield strength of the beam elements. Although the beam

was modeled as nonlinear (with moments and axial load uncoupled) for the dynamic analyses, it

was necessary to use a linear-elastic beam model for the static analyses to maintain static equilib-

rium. Figure 8-2 shows the loads acting on the beam node at the top of the center column. During

axial failure, the center column axial load, P, decreases with increasing lateral drift (as described

in Section 4.5.3). If the beam is yielding in positive bending due to axial shortening of the center

column, then the beam shear forces, V1 and V2, are approximately equal and constant. For static

analysis, nodal equilibrium cannot be achieved with a yielding beam, since W+V1+V2 remains con-

stant while P decreases. For dynamic analysis, however, the inertial force due to the downward

Figure 8-1. Model of shake table specimen

Figure 8-2. Nodal equilibrium at top of the center column
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acceleration of the beam mass, mav, will increase as P decreases, thereby maintaining nodal equi-

librium. Lengthening of the beam due to cracking was not considered.

The footings were modeled as linear-elastic with the flexural stiffness approximated by

80% of the gross moment of inertia. The force transducers were not included in the model, since

their shear stiffness (approximately 6000 kips/in.) was considered high enough to be considered a

fixed end condition.

8.2.2 Column Models

Zero-length sections located at the top and bottom of each of the columns attached the nonlinear

beam-column elements to the beam and footings. The zero-length sections were defined by three

uncoupled material models describing the moment-rotation relationship, the shear-longitudinal

displacement relationship, and the axial load-vertical displacement relationship between two coin-

cident nodes (one attached to the end of the nonlinear beam-column element, and one attached to

the rigid beam element). Each material model could be interpreted as a spring in series with the

nonlinear beam-column element.

As noted in Chapter 7, displacements due to slip of the longitudinal reinforcing bars from

the footing and beam accounted for approximately half of the yield displacement and significantly

influenced the observed stiffness of the columns. To account for this additional flexibility, elastic

slip springs, based on the calculated slip displacements from Section 7.2, were included in zero-

length sections at the ends of each of the column elements.

The zero-length section at the top of the center column element included material models

to represent the shear and axial-load failure of the center column. The limit state failure model

described in Section 4.5.1 was used to define the shear-longitudinal displacement relationship

(shear spring), while the limit state failure model described in Section 4.5.3 was used define the

axial load-vertical displacement relationship (axial spring) for the zero-length section. The limit

curve for the shear spring was defined using the empirical drift capacity model incorporating the

influence of axial load from Section 2.3.5 (Equation 2.9), while the limit curve for the axial spring

was defined by the axial failure model from Section 3.3.6 (Equation 3.20). The initial slope for the

shear spring (i.e., the slope of the pre-failure backbone from Figure 4-7) was chosen based on the

shear stiffness of the uncracked column (i.e., GAv/L = 1700 kips/in., where effective shear area, Av,
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is approximated by (6/5)Ag). As discussed in Section 4.5.1, the degrading slope for the shear spring

after shear failure is detected (Kdeg from Figure 4-8) was determined based on achieving the cal-

culated drift at axial failure (per Equation 3.20) once the shear strength has degraded to zero. The

initial slope for the axial spring (i.e., the slope of the pre-failure backbone from Figure 4-11) was

selected as 100 times stiffer than the axial stiffness of the column to ensure that no additional axial

flexibility was introduced into the model. The degrading slope of the axial spring (Kdeg from

Figure 4-11) was selected as -90 kips/in. based on a linear approximation to test data from Speci-

men 2.

Rigid shear and axial springs, with negligible deformations under the anticipated loads,

were included in the zero-length sections at the tops and bottoms of the outside columns and the

bottom of the center column.

All three columns were modeled using nonlinear fiber beam-column elements with five

sections defining the moment-axial load interaction. Based on the flexibility method, the beam-

column elements determine the section forces (moment and axial load) from interpolation of the

element end forces and integrate the resulting section deformations (curvatures and axial strains)

over the length of the element to determine the element end deformations (rotations and axial

lengthening). By capturing the moment-axial load interaction, the fiber elements are able to model

the axial lengthening of the columns resulting from lateral displacements. The influence of large

displacements on the column response is also incorporated in the element formulation. For a com-

plete description of the nonlinear fiber beam-column elements refer to Spacone et al. (1996a and

1996b). For the development of the specific nonlinear beam-column element available in

OpenSees, and used for the analyses described here, refer to Souza (2000). 

Each nonlinear fiber beam-column element was composed of five sections located at

Gauss-Lobatto integration points along the length of the element for optimum integration of the

section deformations, while still providing the critical section forces and deformations at the ends

of the element. The sections were subdivided into concrete and steel fibers. The cyclic response of

the concrete material models used to define the behavior of the concrete fibers for the outside and

center columns is shown in Figure 8-3. Two concrete models were used for the outside columns:

one, based on the confined concrete strength of 7900 psi calculated according to Mander et al.

(1988), was used to define the response of the confined core; while an unconfined concrete model,

with a compressive strength equal to the test day cylinder strength of 3520 psi, was used to define
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the response of the cover concrete. As shown in Figure 8-3, the tensile capacity of the concrete was

ignored.

As discussed in Section 4.5.1, for a column using the limit state failure model to define

shear failure, computational issues require that the flexural response always maintains a positive

slope prior to shear failure. Although the concrete for the center column could be considered

unconfined due to the wide spacing of the transverse reinforcement, to avoid a negative slope in

the flexural response, the selected concrete material model did not allow for strength degradation

after reaching the unconfined concrete compressive strength of 3520 psi. The reinforcing steel

material model for the center column used a strain-hardening modulus of 0.015Es (where Es =

29,000 ksi), approximately twice that observed in the coupon tests, to ensure that the P-delta effects

did not result in a negative slope in the flexural response. Since strength degradation due to shear

failure, modeled by the shear spring in the zero-length section, governed the strength degrading

behavior of the center column, the altered concrete and steel material model did not significantly

impact the calculated column response.

The steel material model has a significant impact on the calculated cyclic response of the

column element. Three steel models available in OpenSees, and the associated moment-curvature

response for the outside column section subjected to an axial load of 20 kips, are shown in Figure 8-

4. Since the bilinear model does not capture the stiffness degradation observed even in well-con-

fined reinforced concrete elements, this material model will not be used for the analyses presented

in this chapter. The base model presented in Sections 8.3 and 8.4 uses the Clough-type hysteretic

steel model for the outside and center columns. The influence of the choice of steel model on the

response of the shake table specimens is discussed in Section 8.3.2.2.

Figure 8-3. Concrete material models for fiber sections
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8.2.3 Dead-Load Model

All of the mass was modeled at the center of the mass of the beam and lead packets (i.e., 6.75 inches

above the beam soffit). The dead loads were distributed according to the measured weight of the

lead and the calculated weight of the beam, and applied to the beam elements at the location of the

shims supporting the lead packets (see Appendix B). For Specimen 2, both the horizontal and ver-

tical components of the prestress force applied to the specimen by the pneumatic cylinders were

applied to the beam node over the center column. The components of the prestress force were deter-

mined using the measured prestress load (see Figure B-9) and the measured displacement at the top

of the center column. The maximum horizontal component of the prestress force was 1.6 kips.

The initial distribution of the gravity loads to the three columns, as determined by the model

described above, resulted in a center column axial load that was higher than that recorded by the

force transducers. The discrepancy was likely a result of the method used to support the dead load

during casting of the hydrostone between the force transducers and the specimen. The specimen

Figure 8-4. Steel material models and moment-curvature response for outside 
column fiber sections
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was supported on screw-jacks under each of the footings and stabilized by straps attached to the

overhead crane, while the hydrostone was cast. Owing to the high stiffness of the beam, a slight

discrepancy in the height of the screw jacks, or in the level of the footings, would result in a differ-

ent dead-load distribution than determined by the analysis. To achieve agreement between the mea-

sured and calculated center column axial loads, the bottom nodes of the outside columns in the

analytical model were “lifted” by 0.09 inches for Specimen 1 and 0.11 inches for Specimen 2,

thereby shifting more gravity load to the outside columns. A more detailed description of the dead-

load analysis and the resulting initial loads on the outside columns can be found in Section B.6.

8.3 STATIC ANALYSIS

Static nonlinear analyses are used increasingly by practicing engineers to evaluate the capacity of

structures subjected to earthquakes; however, few analysis tools exist to include the influence of

column shear and axial load failures. Static monotonic and cyclic analyses of the shake table spec-

imens are presented in the following sections to demonstrate the capability of the center column

model described in Section 8.2 to model shear and axial load failures, and the influence of the fail-

ures on the response of the shake table specimens. 

8.3.1 Static Monotonic Analysis 

The monotonic analysis results illustrate the behavior of the column elements under a simplified

loading condition. The analyses were performed by linearly increasing a horizontal displacement

imposed on the beam node above the center column, up to a maximum displacement of 5 inches

(or a column drift of 8.6%). All other degrees of freedom (including the vertical and rotational

degrees of freedom where the horizontal displacements were imposed) were free to move accord-

ing to the response of the structure. A prestress force of 42 kips applied to the beam node above

the center column was maintained throughout the analysis. The column axial loads were the same

as those measured before the shake table test for Specimen 2. 

The shear response of the center column is shown in Figure 8-5. The column drift has been

decomposed into the flexural component, based on the horizontal displacements of the center

column nonlinear fiber element (including the slip springs attached to the top and bottom of the

element), and the shear component, based on the displacements of the shear spring in the zero-
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length section at the top of the center column element. As expected, before shear failure, the total

response of the center column is dominated by the flexural (including slip) displacements. After

the total response exceeds the calculated drift at shear failure, the capacity of the shear spring

degrades such that the total drift, after full degradation of the center column strength, will be equal

to the calculated drift at axial failure (Figure 8-5). The shear-strength degradation forces the fiber

element to unload, resulting in a decrease in the flexural displacements and an increase in the shear

displacements after shear failure. This response is consistent with the increase in the shear defor-

mation component after shear failure that is observed in large-scale pseudo-static tests (Sezen,

2002; Lynn, 2001).

The shear response of the entire frame and of the outside columns are shown in Figure 8-

6. The imposed displacements moved the beam toward the west, resulting in additional axial com-

pression in the west column due to overturning moments. The slightly higher axial loads resulted

in a higher yield strength for the west column as shown in Figure 8-6. The initial shear forces in

the outside columns from the dead-load model resulted in the west column yielding at a lower drift

compared with the east column.  

A column supporting an axial load and subjected to transverse deformations producing cur-

vatures along the length of the column, as shown in Figure 8-7, will experience axial lengthening

due to the increase in the axial strain at the centroid of the section, εa. The nonlinear fiber elements

are capable of capturing this axial lengthening experienced by reinforced concrete elements sub-

Figure 8-5. Shear response of center column during monotonic analysis
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jected to transverse deformations. Additional axial lengthening due to cyclic deformations will be

discussed in Section 8.3.2.  

The vertical deformations experienced by the outside and center columns during the mono-

tonic analysis are shown in Figure 8-8. Before shear failure of the center column at a drift ratio of

2.1%, all three columns experience axial lengthening. The higher transverse stiffness of the center

column results in a slower increase in vertical displacements compared with the response of the

outside columns. After shear failure, the center column flexural deformations (i.e., the curvatures)

decrease, resulting in a decrease in εa, and therefore a decrease in the axial lengthening of the center

column. At a drift of 5.2%, axial failure is detected by the axial spring attached in series with the

Figure 8-6. Shear response of outside columns and entire frame for monotonic analysis

Figure 8-7. Axial lengthening due to applied transverse displacements
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center column fiber element, resulting in a sudden increase in the vertical displacements in the

downward direction. 

The column axial load response during the monotonic analysis is shown in Figure 8-9. Ini-

tially, overturning moments cause a decrease in the east column and an increase in the west column

axial loads. As the west column yields before the east column, the shear in the west beam drops

relative to the shear in the east beam, resulting in a slight increase in the center column axial load

at a drift ratio of 1%. As noted in Figure 8-8, upon shear failure of the center column (∆/L = 2.1%),

the vertical displacements of the outside and center columns begin to diverge. The difference

between the vertical displacements results in bending of the beam, and in turn, transfer of gravity

load from the center column to the outside columns even before axial failure of the center column.

Hence, the decrease in the center column axial load from a drift ratio of 2.1% to 5.2% can be attrib-

uted to the stiffness of the beam in bending as the center column shortens and the outside columns

lengthen. As shown in Figure 8-9, at a drift ratio of 5.2% the center column response intersects the

axial limit curve defined by Equation 3.20 and axial failure of the center column is initiated.

According to the shear-axial coupling model described in Section 4.5.3, once axial failure is

detected, the axial load-lateral drift response remains on the limit curve, thereby forcing the redis-

tribution of the gravity loads to the outside columns with continued lateral drift.

Figure 8-8. Column vertical displacements during monotonic analysis
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8.3.2 Static Cyclic Analysis 

Static cyclic analyses were performed by applying the recorded longitudinal displacements for

both specimens (second plot in Figure 6-5) to the beam node at the top of the center column. Such

analyses are similar to those performed to validate analytical models using static test data (e.g.,

Pincheira et al., 1999). The results demonstrate the capability of the analytical model to reproduce

the hysteretic behavior observed during the test. As will be demonstrated in Section 8.4, close

agreement between the static analysis results and the recorded response may not necessarily result

in sufficiently accurate dynamic analysis results. 

8.3.2.1 Shear Response — Center Column

Figure 8-10 compares the results from the static cyclic analysis with the measured shear hysteretic

response for the center columns of both specimens. Recall that the empirical drift capacity model

at shear failure (Equation 2.9) was used to initiate the shear-strength degradation clearly seen in

the calculated center column response for both specimens, and that the degrading slope of the cal-

culated shear response was determined based on achieving the drift at axial failure (Equation 3.20)

after full degradation of the shear strength. 

The analytical model adequately represents the measured response in terms of the initial

and degraded column stiffness. Prior to shear failure, stiffness degradation results from the hyster-

Figure 8-9. Column axial load response during monotonic analysis

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

∆/L

A
xi

al
 L

oa
d 

(k
ip

s)

axial limit curve
east column
center column
west column



184

Figure 8-10. Center column shear hysteretic response using static cyclic analysis
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etic behavior of the concrete and steel models used to define the fiber element sections (Figures 8-

3 and 8-4) and the flexural response of the fiber element. After shear failure, the shear deformations

modeled by the shear spring dominate the response of the analytical model (Figure 8-11). The

pinched hysteretic response of the shear spring material model provides the additional stiffness

degradation observed after shear failure.

The fiber element, with the selected material properties, overestimates the flexural strength

for Specimen 1 (with ), but adequately reproduces that observed for Specimen 2

(with ). The apparent overestimation of the flexural strength for Specimen 1 is par-

tially a result of the high strain-hardening for the steel model and the lack of concrete strength deg-

radation used to avoid a strength-degrading flexural response before shear failure (see

Section 8.2.2).

For Specimen 1, the analytical model detects that shear strength degradation begins during

a negative displacement cycle at a drift ratio of -2.5%, while for Specimen 2, shear strength degra-

dation is first detected during a positive displacement cycle at a drift ratio of 2.1%. This response

is consistent with the observed behavior for both specimens. 

The bottom plots in Figure 8-10 indicate that the measured shear strength degradation did

not occur as rapidly as indicated by the analytical results. In particular, the measured shears for

both specimens beyond a drift ratio of 4% for the large positive displacement cycles at 25 seconds

are as much as twice those estimated by the analysis. Regardless of overestimating the rate of shear

strength degradation, the model adequately represents the near-complete loss of shear strength

after 28 seconds for Specimen 1 and 25 seconds for Specimen 2. 

As shown in the lower right plot of Figure 8-10, the negative shear forces measured during

the final cycles for Specimen 2 are not captured by the analytical model. These shear forces result

from the lateral deformation of the center column, as shown in Figure 6-21b, resulting from axial

failure. The analytical model does not attempt to represent such effects.

In Figure 8-11, the response of the analytical model from 15 to 17.5 seconds is decomposed

into the shear and flexural (including slip) deformation components. Although the flexural defor-

mations estimated by the model are similar for the two specimens, the estimated shear deforma-

tions for Specimen 2 are considerably greater than those for Specimen 1. The larger shear

deformations result in the greater loss of shear strength for Specimen 2 during the cycles shown in

P 0.10Agfc′=

P 0.24Agfc′=
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Figure 8-11. The earlier influence of shear deformations and loss of shear strength for Specimen 2

is one of the fundamental differences between the observed response of the two specimens. 

8.3.2.2 Shear Response — Outside Columns

The shear hysteretic response for the outside columns is shown in Figures 8-12 and 8-13. Since the

initial shear forces acting on the outside columns could not be measured before the tests, the reac-

tions from the dead-load model were used to determine the initial shear forces for the test data

shown in Figures 8-12 and 8-13 (see Section B.6 for more details). The model adequately repre-

sents the stiffness and flexural strength of the columns for cycles in which the overturning forces

reduce the axial compression acting on the column (i.e., positive displacement cycles for the east

column and negative displacement cycles for the west column). In contrast, the model underesti-

mates the stiffness and flexural strength for cycles in which the overturning forces increase the

axial compression acting on the outside columns (i.e., negative displacement cycles for the east

column and positive displacement cycles for the west column).  

The measured yield strength during compression cycles is approximately 35% higher than

the measured yield strength during tension cycles. Considering that the axial load on the outside

columns remains well below the balance point, an increase in strength and stiffness due to higher

compression is expected. This effect is accounted for by the fiber beam-column elements, and

results in approximately a 15% increase in the yield strength for the compression cycles compared

with the tension cycles as indicated by the static analysis results shown in Figures 8-12 and 8-13.

A high strain rate can also cause an increase in strength; however, the strain rate should influence

the strength for both tension and compression cycles, and therefore does not explain the observed

discrepancy. Notwithstanding any errors in the measured shears due to cross talk with the axial

load channels (not anticipated due to the close agreement between the base shear and inertial forces

shown in Figure 6-5), the considerably higher measured yield strength for the compression cycles

compared with the tension cycles shown in Figures 8-12 and 8-13 is likely a result of an inaccurate

estimate of the initial shear forces acting on the outside columns based on the dead-load model. 

The hysteresis loops from the static analysis shown in Figures 8-12 and 8-13 are more

pinched than the hysteresis loops from the test data. Most of the pinching captured by the fiber

beam-column elements can be attributed to the pinching characteristics of the steel material model
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Figure 8-12. Specimen 1 outside column shear hysteretic response from static cyclic analysis
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Figure 8-13. Specimen 2 outside column shear hysteretic response from static cyclic analysis
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Figure 8-14. Specimen 1 outside column shear hysteretic response from static cyclic
analysis using Giuffre-Menegotto-Pinto steel material model
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used for the reinforcing bars. As shown in Figure 8-4, the Giuffre-Menegotto-Pinto (GMP) steel

model results in less pinching than the Clough-type hysteretic steel model used for the analysis

shown in Figures 8-12 and 8-13. The response of the Specimen 1 outside columns using the GMP

steel model is shown in Figure 8-14. Although the envelope of response is better estimated by

using the GMP steel model, the Clough-type hysteretic steel model provides a better estimate of

the stiffness for the smaller cycles. Based on comparing the results using the two steel models for

the significant cycles from 15 to 17.5 seconds and 23 to 28 seconds, it was concluded that the hys-

teretic steel model provided a better estimate of the measured response.

8.3.2.3 Axial Response

The axial response of the shake table specimen was influenced by three primary factors: the axial

lengthening of the outside columns, the initial axial lengthening and subsequent axial shortening

of the center column, and the bending of the beam resulting from the change in the column lengths.

Although the nonlinear response of the beam cannot be included in the static analysis (see

Section 8.2.1), the analytical model does incorporate the mechanisms leading to column lengthen-

ing and shortening. The monotonic analysis, discussed in Section 8.3.1, demonstrated the length-

ening of the outside columns associated with increasing lateral displacement, and the shortening of

the center column relative to the outside columns beginning at the point of shear failure and

increasing rapidly at the point of axial failure (Figure 8-8). Since Specimen 1 did not experience

axial failure of the center column, only the vertical response of Specimen 2 will be considered here.

Figure 8-15 shows the vertical lengthening of the outside columns resulting from the lateral

displacements measured during the shake table test. Although the estimate of the vertical displace-

ments provided by the fiber beam-column elements is in better agreement with the test data for

compression cycles compared with tension cycles, both are sufficiently accurate given other uncer-

tainties in the model. The cyclic response results in additional axial lengthening of the columns not

seen in the monotonic analysis. After reaching a peak in lateral (and vertical) displacement result-

ing in yielding of the tension reinforcement, and upon unloading, the flexural demands on the

column sections will reduce and the reinforcing steel will unload with approximately its elastic

stiffness. The steep, nearly-elastic response during unloading will result in less shortening of the

reinforcement compared with the lengthening of the reinforcement experienced during yielding,
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which will in turn lead to limited axial shortening of the column during unloading until the rein-

forcement reloads in compression. This response results in the flatter slope observed at the peaks

in displacement for the calculated vertical versus lateral displacement plots shown in Figure 8-15.

The vertical displacements and axial load response for the center column is shown in Fig-

ures 8-16 through 8-18. Similar to the monotonic analysis, the center column lengthens with

increasing lateral displacement prior to shear failure. After shear failure but before axial failure,

the influence of the lateral displacements on the calculated vertical response diminishes as the

shear demand on the center column drops. The analytical model does not capture the 0.02 inches

of downward vertical displacement accompanying shear failure (at 17 sec) as seen in the test data

shown in the right-hand plot of Figure 8-16.

After axial failure is detected, the vertical displacements at the center column increase rap-

idly in the downward direction. As shown in Figure 8-17, the downward vertical displacements

given by the analytical model only increase, while the calculated response follows the axial limit

curve. Although the analytical model captures some of the general characteristics of the measured

axial load-vertical displacement response for the center column (left-hand plot of Figure 8-17) and

correctly determines the timing of the first increase in downward vertical displacements (bottom

plot of Figure 8-18), the model underestimates the increase in vertical displacements, in part due

Figure 8-15. Coupling of horizontal and vertical displacements at top of outside columns 
for Specimen 2
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to the position of the axial limit curve. The influence of the position of the axial limit curve will be

discussed in more detail below. 

Similar to the monotonic analysis, Figure 8-17 shows that the axial load in the center

column decreases with increasing lateral displacement due to the difference in the vertical dis-

placements at the center and outside columns and the accompanying bending of the beam. Since

the slight downward movement of the beam at shear failure of the center column (at 17 sec) is not

captured by the analytical model, the accompanying 7 kip drop in the center column axial load is

also not observed in the calculated results. Once the calculated results intersect the axial failure

limit curve, according to the shear-axial coupling model described in Section 4.5.3, the axial load

in the center column is forced to follow the limit curve until the direction of motion reverses and

the column begins to pick up load again as the outside columns shorten with decreasing lateral dis-

placement. The analytical results indicate a minimum axial load of 24 kips, compared with a mea-

sured minimum axial load of 10 kips. Although underestimating the total axial load lost, the

analytical model reproduces many of the critical characteristics of the center column axial load

response history, as shown in Figure 8-18.

As noted in Chapter 3, there is considerable uncertainty in the estimation of the axial limit

curve defining axial failure of the center column. Based on the database from Chapter 3, the stan-

dard deviation for the axial failure model, σa, is equivalent to a drift ratio of 0.5% (the subscript a

Figure 8-16. Coupling of horizontal and vertical displacements at the Specimen 2 center 
column 
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Figure 8-17. Variation of Specimen 2 center column axial load with vertical displacement 
and drift ratio

Figure 8-18. Axial load and vertical displacement response histories for Specimen 2 cen-
ter column

−1 −0.8 −0.6 −0.4 −0.2 0
0

10

20

30

40

50

60

70

80

A
xi

al
 L

oa
d 

(k
ip

s)

Vertical Displacement (in.)

test data
static analysis

axial limit curve 
(Equation 3.20)

−0.04 0 0.04 0.08
0

10

20

30

40

50

60

70

80

(
p

)

∆/L

0 5 10 15 20 25 30 35 40
0

20

40

60

80

A
xi

al
 L

oa
d 

(k
ip

s)

Time (sec)

test data
static analysis

0 5 10 15 20 25 30 35 40
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

.)

Time (sec)



195

denoting the standard deviation of the drift at axial failure). Figure 8-19 shows the calculated axial

load response for the center column using an axial limit curve based on Equation 3.20 plus σa, and

minus σa (referred to as the +σa model and −σa model, respectively). The +σa model estimates a

minimum axial load of 30 kips and a vertical displacement of 0.10 inches, while the −σa model

estimates a minimum axial load of 18 kips and a vertical displacement of 0.20 inches. The differ-

ence in the axial load results illustrates the importance of accounting for the uncertainty in the posi-

tion of the axial limit curve. The vertical displacements for the −σa model are still well below those

observed during the test (maximum of -1.0 inches). The difference between the calculated and

measured vertical displacements and axial loads suggests that the assumed coupling model

between axial load and lateral drift described in Section 4.5.3 may underestimate the rate at which

the axial load is lost with increasing lateral drift. The discrepancy is also likely a result of not

accounting for the axial load lost (and therefore the increasing vertical displacements) due to

repeated lateral cycles, after the initiation of axial failure, causing a “grinding down” of the shear

failure plane. Note that the calculated minimum center column axial load was not sufficient to

cause yielding of the beam; hence the linear beam model used for the static analyses did not impact

Figure 8-19. Calculated axial response for the center column for the +/- σa models
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the results shown in Figure 8-19. The significant increase in the vertical displacements after beam

yielding will be illustrated in Section 8.4.1. 

8.4 DYNAMIC ANALYSIS

Dynamic analyses of the shake table specimens were conducted using the same model used for the

static analyses described in the previous section. The analytical models for the two specimens

varied only by the applied prestress load on the center column and the slight increase in mass due

to the prestressing equipment for Specimen 2. Regardless of these differences, the calculated fun-

damental periods for both specimens were the same, 0.30 seconds. The calculated fundamental

period is the same as the period measured just prior to the shake table test for Specimen 1, but over-

estimates the measured period of 0.25 seconds for Specimen 2 (see Figures 6-1 and 6-2).

By using mass-proportional damping, the equivalent viscous damping was set at 2% of crit-

ical for the fundamental mode of the frame. Stiffness-proportional damping could not be used in

this model because the sudden change in response at shear and axial failure of the zero-length

springs resulted in a large increase in velocity and, hence, unrealistically large damping forces at

the node connecting the springs to the beam-column element. Since no mass was modeled at this

node, the increase in velocity did not influence the mass-proportional damping forces. 

The mass matrix included lumped masses for each of the horizontal and vertical degrees of

freedom at the beam nodes, mx and my, respectively. Rigidly connecting the my masses to the beam

nodes resulted in high-frequency (25 Hz) beam oscillations after the sudden shortening of the

center column due to shear failure. The beam oscillations led to vertical inertial forces and fluctu-

ations in the center column axial loads. Such high-frequency oscillations were not observed in the

test data shown in Figure 6-14. To avoid the spurious axial load oscillations the my masses were

isolated from the beam by soft vertical springs, as illustrated in Figure 8-20. For the recorded table

motion analyses, the stiffness of the spring, k, was selected as 1.5 kips/in. such that the minimum

period of the vertical mass-spring system at each beam node was longer than the period of the beam

vertical displacements resulting from the lengthening and shortening of the fiber column elements.

For the pulse motion analysis described in the next section, a higher spring stiffness of 10 kips/in.

could be used, since the beam does not oscillate during the short duration of the analysis. The stiffer

spring permitted the development of the vertical inertial forces necessary for nodal equilibrium in

the event of beam yielding (Figure 8-2).
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8.4.1 Pulse Input Motion

The analytical model for Specimen 2 was subjected to the horizontal ground acceleration shown in

Figure 8-21. The response to this pulse motion, shown in Figure 8-22, demonstrates the key stages

of behavior, including column yielding, shear failure, axial failure, and beam yielding. Although

the maximum drifts from the analysis are larger than those experienced by the shake table speci-

mens, the pulse motion illustrates the process by which the analytical model will shed nearly all

gravity load supported by the center column to the outside columns.

Similar to the monotonic analysis results from Section 8.3.1, the west column yields first,

leading to a slight increase in the center column axial load. Shear failure of the center column is

detected at a drift of 2.1% as defined by the empirical drift capacity model from Section 2.3.5.

After shear failure, the vertical displacements at the center column begin to drop off, while the out-

Figure 8-20. Isolation of vertical mass

Figure 8-21. Pulse input motion
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Figure 8-22. Response due to pulse input motion
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side columns continue to lengthen with increasing lateral drift. The difference in the vertical dis-

placements causes bending of the beam and a reduction of the axial load on the center column. 

The axial failure of the center column is detected at a drift of 5.2% as defined by the axial

failure model of Section 3.3.6. Axial failure has very little influence on the shear demand, since the

outside columns have yielded and the center column shear has been reduced to its residual capacity.

After axial failure is detected, the center column axial load response is forced to follow the axial

limit curve defined by the Equation 3.20. The sudden drop of the beam with the axial failure of the

center column results in an increase in vertical accelerations and vertical inertial forces distributed

along the beam. 

At a drift of 9.0% the beam yields in positive bending at the face of the transverse beam

above the center column. Yielding of the beam results in a sudden increase in vertical displace-

ments, and therefore a sudden drop in the axial load in the center column. The change in the axial

load causes the response of the center column to drop below the axial limit curve. As described in

Section 4.5.3, the stiffness of the axial spring is redefined after each converged step if the response

crosses the axial limit curve. This procedure results in the jagged appearance of the center column

axial load and vertical displacement response histories immediately following the yielding of the

beam. 

At a drift of 9.5% the center column reaches the preselected residual axial load capacity of

5 kips. Owing to yielding of the beam, the vertical displacements at the center and outside columns

diverge rapidly with little change in the column axial loads. At this stage the structure is unstable

without strain hardening in the beam response, or a change in the ground motion causing a reversal

in the horizontal displacements.

Note that the analytical model overestimates the drift required to cause yielding of the beam

by approximately 2%. The higher estimate is due to the assumption that the axial response of the

center column must follow the axial limit curve after axial failure is detected. In part owing to the

influence of repeated cycles, the measured center column axial load drops off more rapidly with

increasing drift than the axial limit curve would suggest (see Figure 8-17).



200

8.4.2 Recorded Table Input Motion — Specimen 1 

The analytical model for the shake table specimen was subjected to the unidirectional horizontal

table acceleration recorded during the shear failure test for Specimen 1 (Figure 6-5). Although

slight pitching of the table was recorded, analyses using the recorded table displacements and rota-

tions confirmed that this did not significantly influence the response of the specimens, and hence,

was not included in the analyses presented here. The test data and the response of the analytical

model are compared in Figures 8-23 through 8-26. For a closer look at the critical period of

response, the response histories shown in Figure 8-23 show only the data from 5 to 35

seconds.

There is poor agreement between the analytical model response and the test results before

approximately 13 seconds. The analysis is slightly out-of-phase with the test results, suggesting

that the analytical model does not capture the lengthening of the natural period of response of the

specimen due to cracking of the columns. The recorded shears and displacements are significantly

underestimated by the analysis between 10 and 13 seconds. (Recall that this same difference is

observed when comparing the response of Specimen 1 to that of Specimen 2.) This result might be

expected, since the period of the analytical model (0.30 sec) falls at a “valley” in the jagged

response spectrum, while the apparent period of the specimen based on the measured response

between 10 and 13 seconds (0.35 sec) falls close to a “peak” (see Figure 5-8). Note that the appar-

ent period of the specimen from the measured response is longer than the period based on the free-

vibration test.

Despite the lack of agreement early in the response histories, the analytical model provides

a reasonable estimate during the critical periods of response. As observed during the test, the ana-

lytical model detects shear failure of the center column, but not axial failure. Shear failure is first

detected, and shear strength degradation begins, during a negative displacement cycle at approxi-

mately 17 seconds. The initial shear strength degradation decreases the stiffness of the center

column in the analytical model, resulting in a close agreement between the predominant period of

response in the analytical model and that of the test data. The analytical model accurately identifies

that the positive displacement pulse at 25 seconds causes significant shear damage to the center

column, although the loss of shear strength during the pulse is overestimated. The analytical model,

however, does not capture the complete shear strength degradation observed during the test, result-
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Figure 8-23. Response histories for Specimen 1
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ing in an overestimation of the center column shear strength and stiffness late in the response his-

tory.

As noted for the static cyclic analysis, the hysteresis plots of Figures 8-24 through 8-26

indicate that the flexural strength of the outside columns during the compression cycles is under-

estimated, while the flexural strength of the center column is overestimated by the analytical

model. Coincidently, these off-setting errors result in a close agreement for the overall strength of

the specimen. The hysteresis plots in Figure 8-25 show that the stiffness of the analytical model

agrees well with the test data at the time when shear failure is first detected. The hysteresis plots in

Figure 8-26 illustrate the influence of the underestimation of the drift demand on the response of

the analytical model.

The center column axial loads and vertical displacements are shown in the bottom two plots

of Figure 8-23. The analytical model is unable to capture the 10-kip loss in the axial load observed

to coincide with the initial shear cracking of the center column and the permanent axial lengthening

of the outside columns at 17 seconds. This indicates that although the outside column models cap-

ture some permanent lengthening due to yielding of the longitudinal reinforcement, they do not

capture enough to relieve the axial load from the center column. Although lengthening of the center

column is underestimated by the analytical model, the dynamic analysis does capture the reduction

in the center column elongation after shear failure. The detection of shear failure of the center

column at 17 seconds, together with the subsequent decrease in the analytical estimate of the flex-

ural deformations, results in only limited elongations of the center column after shear failure. 

To investigate the influence of uncertainty in the drift at which shear failure is initiated, the

analysis of the base model described above was repeated using a shear limit curve shifted by +/-

one standard deviation, σs (the subscript s denoting the standard deviation of the drift at shear fail-

ure). Based on the database of Section 2.2, and the drift capacity model of Equation 2.9, σs is

equivalent to a drift ratio of 0.9%. The -σs model represents those columns that experience shear

strength degradation prior to the drift given by the drift capacity model, while the +σs model rep-

resents those columns capable of maintaining their shear strength until drift ratios past that given

by the drift capacity model. Although Specimen 1 belongs to the latter category, the -σs model pro-

vides a better estimate of the observed drifts, while the response of the +σs model is very similar

to that of the base model. The response of the +/-σs models are compared with the test data in Fig-

ures 8-27 through 8-30. As expected, the -σs model experiences shear strength degradation earlier
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Figure 8-27. Response histories for -σs model, Specimen 1

5 10 15 20 25 30 35
−0.08

−0.04

0

0.04

0.08

D
rif

t R
at

io
test data
dynamic analysis
(−σ

s
 model)

5 10 15 20 25 30 35
−50

−25

0

25

50

B
as

e 
S

he
ar

 (
ki

ps
)

5 10 15 20 25 30 35

−20

−10

0

10

20

C
en

te
r 

C
ol

um
n

S
he

ar
 (

ki
ps

)

5 10 15 20 25 30 35
−10

0

10

20

30

40

C
en

te
r 

C
ol

um
n

A
xi

al
 L

oa
d 

(k
ip

s)

5 10 15 20 25 30 35
−0.1

0

0.1

0.2

V
er

tic
al

 D
is

pl
. (

in
.)

Time (sec)

C
en

te
r



207

−
0.

08
−

0.
04

0
0.

04
0.

08

−
20

−
1001020

Center Column Shear (kips)

−
0.

08
−

0.
04

0
0.

04
0.

08
−

20

−
1001020

∆/
L

West Column Shear (kips)

−
0.

08
−

0.
04

0
0.

04
0.

08
−

50

−
2502550

Base Shear (kips)

te
st

 d
at

a
dy

na
m

ic
 a

na
ly

si
s

(−
σ s m

od
el

)

−
0.

08
−

0.
04

0
0.

04
0.

08
−

20

−
1001020

∆/
L

East Column Shear (kips)

F
ig

ur
e 

8-
28

. S
he

ar
 h

ys
te

re
ti

c 
re

sp
on

se
 f

or
 −

σ s
 m

od
el

, S
pe

ci
m

en
 1

 (
0 

– 
35

 s
ec

)



208

Figure 8-29. Response histories for +σs model, Specimen 1
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than the base model and earlier than observed during the test. The effect, however, is a better esti-

mate of the damaged column stiffness and a very good approximation of the drift response. Recall

that a good estimate of the interstory drifts is necessary for the prediction of axial failure and for

the evaluation of various damage states for performance-based seismic design.

Although the hysteretic response observed during the test does not indicate that the

response is dominated by a degrading shear strength behavior, the increase in the influence of shear

strength degradation behavior for the -σs model clearly results in an improved estimate of the drifts

compared with the base and +σs models. Although a conclusion cannot be drawn based on a single

analysis, the results suggest that the drift at which shear failure should be initiated to achieve the

best estimate of the drift response may not correspond to the “drift at shear failure” as defined in

Chapter 2 (i.e., the drift at which the observed shear strength first drops below 80% of the maxi-

mum shear recorded). Note that an increase in the contribution of the shear deformations to the total

lateral drift prior to the “drift at shear failure” has also been observed in pseudo-static column tests

(Sezen, 2002). Further study is required to improve the criteria for determining the drift at which

shear failure should be initiated.

8.4.3 Recorded Table Input Motion — Specimen 2 

As done for Specimen 1, the analytical model for Specimen 2 was subjected to the unidirectional

horizontal table acceleration recorded during the shear failure test. The test data and the response

of the analytical model are compared in Figures 8-31 through 8-34.

The analytical model adequately represents the measured response in terms of apparent

vibration period and force amplitude throughout the test. The model provides a very good estimate

of the drifts up to the point of axial failure (at approximately 25 sec), at which point the permanent

offset in the drifts observed in the test is not captured by the analysis. The lack of residual drifts in

the analytical results suggests that the fiber model does not capture the extent of the damage sus-

tained by the outside columns during the test. Poor agreement between measured and calculated

residual drifts has also been observed in shake table studies of reinforced concrete bridge columns

(Hachem, 2002).

The shear hysteretic response is well represented by the analytical model. Figure 8-33 indi-

cates that the analytical model adequately captures the column stiffnesses at yield and just after the
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Figure 8-31. Response histories for Specimen 2
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initiation of shear failure, and correctly detects the cycles in which the center column shear strength

degradation begins. Figure 8-34 clearly shows that the analytical model does not capture the full

extent of the significant pinching observed in the center column response prior to the large pulse

at 25 seconds. The resulting overestimation of the center column stiffness may contribute to the

underestimation of the drifts during and after the pulse.

Figure 8-35 shows that the axial load response of the center column based on the dynamic

analysis does not cross the axial limit curve defined by Equation 3.20. As a result the analytical

model failed to detect the axial failure of the center column. In this case, the lack of axial failure in

the analytical results is primarily a result of the underestimation of the lateral drifts, rather than an

error in the position of the axial limit curve.

The results from the analytical model discussed above are based on the shear and axial limit

curves determined from the measured properties of the center column. Considering the uncertainty

in the models used to define the limit curves, it is useful to evaluate the extent to which the analyt-

ical response changes with variation in the shear and axial limit curves. The following sections dis-

cuss the influence of the position of the shear and axial limit curves and the rate of shear strength

degradation (i.e., the post-failure slope of the shear spring) on the response of the shake table spec-

imen. In particular, the discussion concentrates on the drift response of the analytical models.

Figure 8-35. Axial response for Specimen 2
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Figure 8-36. Response histories for -σs model, Specimen 2
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8.4.3.1 Influence of Position of Shear Limit Curve

As done for Specimen 1, the shear limit curve was shifted +/- σs to investigate the influence of the

position of the shear limit curve on the response of the shake table specimen. (Recall that σs is

equivalent to a drift ratio of 0.9%.) As shown in Figures 8-36 through 8-40, and similar to the

results for Specimen 1, the -σs model provides a better estimate of the measured drift response

compared with either the base model or the +σs model. The drift during the critical pulse at 25 sec-

onds is well represented by the -σs model, although the model does not capture the permanent

offset in the drifts that appears to be initiated during this pulse, resulting in an underestimation of

the drifts during subsequent cycles. Axial failure of the center column is correctly detected during

the pulse at 25 seconds. However, as a result of the underestimation of the drifts during subsequent

cycles, the response of the center column does not remain on the axial limit curve, as shown in

Figure 8-38, and the amount of axial load lost is significantly underestimated.

By shifting the shear limit curve toward higher drifts, the +σs model does not correctly

detect the cycle in which shear strength degradation begins. For positive displacements, shear

strength degradation was first observed in the test data during a cycle at approximately 16 seconds,

while the +σs model indicated that shear degradation would not begin until 25 seconds. This delay

results in a slightly shorter period of response for the +σs model compared with the test data prior

to the detection of shear failure at 25 seconds.  The axial response of the center column for the +σs

Figure 8-38. Axial response for -σs model, Specimen 2
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Figure 8-39. Response histories for +σs model, Specimen 2
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model did not intersect the axial limit curve, and hence, the model failed to detect the axial failure

of the center column.

Figures 8-36 and 8-40 show that the peak drift response changes with the position of the

shear limit curve. The peak drift is an important demand parameter commonly used in perfor-

mance-based seismic design, and a good estimate is required for an accurate prediction of axial

failure. Figure 8-41 illustrates the influence of the position of the shear limit curve on the peak drift

determined from the analysis. The drift at which shear failure is detected, or the drift at which the

shear-drift response intersects the shear limit curve, is plotted on the x-axis. The measured peak

drift is underestimated by the analysis regardless of the position of the shear limit curve. The larg-

est calculated peak drifts result if shear failure is initiated in the analysis at drifts below that deter-

mined by the drift capacity model (Equation 2.9), but after flexural yielding. For all cases where

shear failure is detected in the analysis, the peak drift is approximately 1% larger than the calcu-

lated peak drift ratio when shear failure is not detected. 

The results shown in Figure 8-41 suggest that the peak drift ratio from the analytical model

results is not very sensitive to the position of the shear limit curve; however, this result may be

dependent on the assumptions used to select the degrading slope after shear failure. Recall that the

degrading slope after shear failure is determined based on the calculated displacement at axial fail-

ure, which remains approximately constant for each of the analyses shown in Figure 8-41. This

Figure 8-41. Influence of drift ratio at shear failure on the calculated peak drift ratio, 
Specimen 2
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results in a steeper shear strength degradation response as the drift ratio at shear failure increases,

and likely leads to the lack of decay in the peak response as the drift ratio at shear failure increases

above 2%.  

8.4.3.2 Influence of Degrading Slope after Shear Failure  

This section will consider the influence of the degrading slope on the drift response of the center

column. As noted above, and described in detail in Section 4.5.1, for the analyses presented thus

far the degrading slope of the shear spring, Kdeg, has been determined based on achieving the cal-

culated drift at axial failure after full degradation of the shear strength. (See Figure 4-8 for a defi-

nition of Kdeg.) Kdeg can also be specified directly by the analyst. Figure 8-42 shows the drift

response for five models with different Kdeg values specified for the center column. Only slight

variations in the drift response after shear failure are apparent from the results. Although a steeper

degrading slope generally results in a better estimate of the drifts during the large pulse at 25 sec-

onds, there is no improvement in the estimation of the permanent drift offset observed at the end

of the test. Figure 8-43 indicates that the calculated peak drift ratio is insensitive to the degrading

slope selected for the response of the center column after shear failure. It is likely that the lack of

sensitivity to the degrading slope is due to the ductile response of the outside columns. After shear

failure of the center column, the lateral response of the frame is dominated by the stable hysteretic

response of the outside columns.

Although further study is required to generalize the results shown here for building frame

structures, the lack of sensitivity of the peak response to the drift at shear failure (Figure 8-41) and

the degrading slope (Figure 8-43) suggest that for a structure similar to the shake table specimens

with both shear-critical and ductile components, and subjected to a long duration ground motion,

the peak response may not be particularly sensitive to the selection of the parameters for the shear-

critical components. This result is encouraging for designers considering the significant uncer-

tainty in determining the drift at shear failure and lack of data on the rate of shear strength degra-

dation. It is anticipated that the peak drift response will be more sensitive to the parameters for the

shear-critical components if the structure is subjected to a pulse-type ground motion where the
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Figure 8-42. Drift response histories for analytical model using different degrading
slopes, Specimen 2
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majority of damage occurs during one cycle, or if multiple columns sustain shear failures. The

latter case is considered in Section 8.4.4.

8.4.3.3 Influence of Position of Axial Limit Curve

To investigate the influence of the position of the axial limit curve on the calculated response of

Specimen 2, analyses were conducted with the limit curve shifted to lower drifts by one standard

deviation (-σa model) and two standard deviations (-2σa model). (Recall that σa is equivalent to a

drift ratio of 0.5%.) Since axial failure was not detected in the base model (Figure 8-35), shifting

the axial limit curve by +σa would result in the same response discussed above for the base model.

Apart from minor increases in the drifts after the shear strength of the center column has fully

degraded, the -σa and -2σa models have very little influence on the lateral response of the analytical

model. Figures 8-44 through 8-48 show the axial response of the center column for the -σa and 

-2σa models.   

The -σa model correctly determines the timing of the axial failure of the center column, but

does not remain on the limit curve long enough to result in any significant loss of axial load. The

-2σa model adequately represents the loss of axial load during the pulse at 25 seconds and experi-

ences gravity load redistribution of 15 kips. This underestimates the load redistribution observed

during the test and results in only 0.1 inches of downward vertical displacement at the center col-

Figure 8-43. Influence of degrading slope on the calculated peak drift ratio, 
Specimen 2
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Figure 8-44. Variation of Specimen 2 center column axial load with vertical 
displacement and drift ratio for the -σa model

Figure 8-45. Axial load and vertical displacement response histories for Specimen 2 
center column for the -σa model

−1 −0.8 −0.6 −0.4 −0.2 0
0

10

20

30

40

50

60

70

80
A

xi
al

 L
oa

d 
(k

ip
s)

Vertical Displacement (in.)

test data
dynamic analysis
(−σ

a
 model)

axial limit curve 
(Equation 3.20)

−0.04 0 0.04 0.08
0

10

20

30

40

50

60

70

80

(
p

)
∆/L

axial limit curve minus σa

0 5 10 15 20 25 30 35 40
0

20

40

60

80

A
xi

al
 L

oa
d 

(k
ip

s)

Time (sec)

test data
dynamic analysis
(−σ

a
 model)

0 5 10 15 20 25 30 35 40
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

.)

Time (sec)



226

Figure 8-46. Variation of Specimen 2 center column axial load with vertical displacement 
and drift ratio for the -2σa model

Figure 8-47. Axial load and vertical displacement response histories for Specimen 2 cen-
ter column for the -2σa model
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umn. Figure 8-48 shows that although the vertical displacements are underestimated, the model

does reasonably represent the sudden increase in vertical displacements that occur after achieving

a critical drift limit.

Better estimates of the axial load loss and vertical displacements would be achieved if the

axial curve were moved inward (i.e., to smaller drifts) or steepened with increasing damage. Such

a model would require the selection of rules to determine the movement or change in slope of the

axial limit curve, and perhaps the development of a damage index considering the axial capacity

of the column. The development of such rules and damage indices is not currently feasible given

the limited data available on the axial response of a column after shear failure.

It is worth repeating that the base model would have detected axial failure of the center

column if the model were able to capture the larger lateral drifts observed during the test. A proper

estimate of the drifts would have also resulted in a significantly higher loss of axial load for the -

σa and -2σa models. Hence, the effect of shifting the axial limit curve is highly dependent on the

ability of the analytical model to achieve a good estimate of the lateral drifts.

8.4.4 Three-Column Frame with All Shear-Critical Columns 

To illustrate the stabilizing influence of the outside columns on the response of the shake table

specimens, an analysis of the three-column frame model was conducted with the outside column

Figure 8-48. Coupling of vertical and horizontal displacements at Specimen 2 center
column for the -2σa model
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model replaced by the shear-critical center column model. The calculated response of the new

model when subjected to the table motion from Specimen 2 is shown in Figures 8-50 through 8-

52. All three columns experience shear failures, resulting in nearly full degradation of the base-

shear capacity as shown in Figure 8-49. Without the stable response of the well-confined outside

columns, the new model experiences permanent drifts of approximately 4.0%. 

Figure 8-50 shows the variation in the axial-load demand and capacity for each of the col-

umns during the analysis. The capacity shown is the lesser of the axial capacity of the undamaged

column according to ACI 318-02 (with a strength reduction factor of unity) and the axial capacity

according to Equation 3.20 using the column drifts from the analysis. For large drifts the axial

capacity based on Equation 3.20 will govern, resulting in a decrease in the axial capacity. At 32.5

and 33.0 seconds, the axial-load demand on the center column is limited by the axial-load capacity,

as response of the center column follows the axial limit curve (Figure 8-51). The drop in the center

column axial load results in sharp increases in the center column vertical displacements (Figure 8-

52) and the outside column axial loads (Figure 8-51). The large drifts which accompany axial fail-

ure of the center column also result in a decrease in the outside column axial-load capacities. The

increase in demand and drop in capacity very nearly result in axial failure of the west column at

Figure 8-49. Base shear hysteretic response for three-column frame with all 
shear-critical columns
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Figure 8-50. Drift and axial load response histories for three-column frame with all 
shear-critical columns
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33.0 and 35.5 seconds. At 39.0 seconds axial failure is detected in the west column. At the same

time, the sum of the column axial-load capacities approaches the total gravity load supported by

the frame, as shown in the bottom plot of Figure 8-50. As the total axial capacity drops below the

total gravity load, inertial forces due to vertical acceleration of the mass are needed to maintain

equilibrium. The analysis does not capture significant vertical inertial forces due to the soft springs

used to isolate the vertical mass to avoid spurious column axial loads (see Section 8.4). Hence,

gravity load collapse of the frame is detected when the analysis fails to converge as the total axial

capacity drops below the total gravity load supported by the frame. 

Figure 8-51. Axial load response for three-column frame with all shear-critical columns

Figure 8-52. Vertical displacement of beam above center column for three-column frame
with all shear-critical columns
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The near-failure of the frame at 33.0 seconds illustrates the need to account for the uncer-

tainty in the position of the axial limit curves. A slight shift toward smaller drifts for the west

column axial limit curve would have resulted in an earlier prediction of gravity load collapse. Cor-

respondingly, a shift of the axial limit curve toward higher drifts may have resulted in the total axial

capacity never dropping below the total gravity load, and, hence, no collapse of the three-column

frame.



9 Conclusions and Future Work

9.1 SUMMARY AND CONCLUSIONS

The analytical and experimental studies described in this report were undertaken to investigate the

shear and axial load failure of columns leading to the gravity load collapse of reinforced concrete

building frames during earthquakes. 

Given the lack of agreement between existing models for the drift at shear failure and

results from an experimental database of shear-critical building columns, two empirical models

were developed to provide a more reliable estimate of the drift at shear failure for existing rein-

forced concrete columns:

 (psi units) (9.1)

 (psi units) (9.2)

Based on the experimental database and Equation 9.1, the mean and coefficient of variation for the

measured drift at shear failure divided by the calculated drift are 0.96 and 0.35, respectively. For

Equation 9.2, the mean and the coefficient of variation are 0.97 and 0.34, respectively. The models

indicate that the drift at shear failure is proportional to the amount of transverse reinforcement, and

inversely proportional to the applied shear stress and axial load. The application of the proposed

empirical drift capacity models should be limited to columns representative of those included in

the database.

Based on shear-friction concepts and the results from 12 columns tested to axial failure, a

model was also developed to estimate the drift at axial failure for a shear-damaged column:
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 where (9.3)

The mean ratio of the measured to calculated drift at axial load failure based on Equation 9.3 is

0.97; the coefficient of variation is 0.26. The model is consistent with the general observation from

experimental tests that the drift at axial failure is directly proportional to the amount of transverse

reinforcement and inversely proportional to the magnitude of the axial load. 

The capacity models for the drift at shear and axial load failure were used to initiate the

strength degradation of a uniaxial material model implemented in the OpenSees analytical plat-

form (OpenSees, 2002). When attached in series with a beam-column element, the material model

can be used to model either shear or axial failure, or both if two materials are used in series. Based

on experimental evidence suggesting that an increase in lateral shear deformations may lead to an

increase in axial deformations and a loss of axial load, shear-axial coupling was incorporated in the

material model to approximate the response of a column after the onset of axial failure.

Shake table tests were designed to provide data on the degradation of axial load capacity

after shear failure of a reinforced concrete column, and the resulting redistribution of shear and

axial loads to the rest of the building system. The test specimens consisted of a three-column frame

with a shear-critical center column. Care was taken in selecting appropriate member sizes and

strengths to achieve the desired behavior (including shear and possibly axial failure of the center

column, yielding of the outside columns before failure of the center column,  appropriate beam

deflections after axial failure of the center column,  and controlled transfer of loads from the wide

beam to the columns).  Two specimens were tested, differing only by the axial stress on the center

column.  Both specimens were subjected to one horizontal component from a scaled ground motion

recorded during the 1985 Chile earthquake.

The results from the shake table tests have been presented.  A comparison of the results

from the two specimens indicates that the behavior of the frame is dependent on the initial axial

stress on the center column. The specimen with a lower axial load failed in shear, but maintained

most of its initial axial load. For the specimen with a higher axial load, shear failure of the center

column occurred at lower drifts and earlier in the ground motion record, and was followed by axial

failure of the center column. Displacement data from immediately after the onset of axial failure
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suggest that there are two mechanisms by which the center column shortens during axial failure:

First, by large pulses that cause a sudden increase in vertical displacement after a critical drift is

attained; and second, by smaller oscillations that appear to “grind down” the shear-failure plane.

Dynamic amplification of axial loads transferred from the center column to the outside columns

was observed during axial failure of the center column.

A comparison of the test data with predictive models indicated that the yield displacement,

stiffness, and flexural strength of the columns could be adequately estimated by models commonly

used in engineering practice. The comparison also indicated that slip of the longitudinal reinforce-

ment accounted for over half of the total displacement at first yield of the longitudinal reinforce-

ment. The shear strength model by Sezen (2002) provided a good estimate of the shear strength of

the center column for both specimens, but significantly overestimated the displacement at shear

failure for the second specimen. The proposed models for the drift at shear and axial load failure

(Equations 9.1, 9.2, and 9.3), along with the predicted yield displacement and flexural strength,

provided a reasonable backbone to the measured shear-drift response for the center column. A

comparison of the axial capacity model with the measured axial-load-drift response indicated that,

as observed during the tests, axial failure of the center column should occur only for the specimen

with higher axial load.

The measured response of the test specimens was also compared with results from an ana-

lytical model incorporating the proposed models for the drift at shear and axial load failure. Non-

linear static and dynamic analyses were performed. The static analyses accurately determined the

timing of the shear and axial load failures, and captured the variation in center column axial load

during axial failure. The total loss of axial load and the vertical shortening of the center column

was underestimated by the static analyses. The dynamic analyses adequately represented the mea-

sured response in terms of the apparent period of vibration and the lateral force amplitude through-

out the test. The analytical model provided a good estimate of the measured drifts through the point

of shear failure; however, large displacements after shear failure, resulting in a permanent offset at

the end of the tests, were not captured by the analysis. Axial failure of the center column for Spec-

imen 2 was not detected by the analysis due to the underestimation of the lateral drifts. The sensi-

tivity of the analytical results to the accuracy of the shear and axial failure models was also

investigated. The analytical results did not appear particularly sensitive to changes in the shear fail-

ure model; however, all analyses underestimated the measured peak drifts. Since the axial failure
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model is based on a relationship between the axial load and the lateral drift experienced by a col-

umn, the analytical estimate of the peak lateral drifts must be improved to achieve an accurate rep-

resentation of axial failure and the subsequent load redistribution. An analytical model of a frame

with three shear-critical columns demonstrated that the proposed column model can be used to

assess the gravity load collapse potential of a reinforced concrete frame.

9.2 FUTURE RESEARCH

Several topics requiring further study were identified during the course of this research.

1. More test data are required to refine the models for the drift at shear and axial load failure.

The axial failure model, in particular, is based on a small database of static column tests.

Additional data and analyses may well improve the capability to predict the onset of axial

load failure of columns.

2. A more refined definition of the drift at shear failure based on measured shear deforma-

tions may reduce the relatively large coefficient of variation associated with the model for

the drift at shear failure.

3. Further study is required to investigate the influence of the variability in the seismic

demand and column capacity on the selection of an appropriate drift capacity model.

4. The drift capacity models should be extended to account for the effects of bidirectional

bending, variable axial loads, and the lateral loading history. The latter has been investi-

gated by Pujol (2002).

5. Shake table studies using different ground motions, particularly near-fault motions incor-

porating fling and directivity effects, are required to investigate the influence of the type of

ground motion on the shear and axial load failure of columns, and the response of the

building frame before gravity load collapse. 

6. Shake table tests of specimens with multiple shear-critical columns are needed to provide

data on the influence of multiple-column failures on the drift response and gravity load

collapse of building frames. Furthermore, tests on multistory building frames are needed

to investigate the causes of story-wide column failures.
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7. Experimental and analytical studies are needed to investigate the contribution of floor sys-

tems and out-of-plane frames to the capacity of a building to resist gravity load collapse.

The redistribution of forces within a three-dimensional building frame system should also

be considered.

8. The current shear spring model assumes that the flexural capacity of the column is nearly

equal for deformations in both directions along the same axis, and may not be appropriate

for outside columns in a building frame where the flexural capacity can be significantly

different depending on the direction of motion. Furthermore, the limit state failure model

should be refined to account for the influence of shear failure in one direction on the shear

capacity in the opposite direction. In general, the robustness of the limit state failure model

implemented in OpenSees should be improved such that it can be used with confidence in

a building frame analysis.

9. Since the shear-axial interaction after axial failure is not well understood, the axial spring

model should be adapted to allow for the entire removal of the column element after axial

failure is detected. This would provide an upper bound on the redistribution of forces

within the building frame.

10. Improvements to nonlinear analytical models are necessary to achieve a better prediction

of the drift demands. Without an accurate prediction of the drift demands, the drift capac-

ity models will not be able to accurately predict the point of shear and axial load failure.

11. Refinements to fiber models are necessary to achieve better agreement between axial load

oscillations observed during dynamic analysis and measured axial loads from shake table

tests.

12. Rayleigh damping, based on linear theory, is commonly used for both linear and nonlinear

analysis. Damping models should be developed specifically for nonlinear dynamic analy-

sis.

13. Research is required to account for all significant sources of uncertainty affecting the out-

come of a gravity load collapse analysis. Uncertainty in the position and shape of the shear

and axial load failure surfaces is expected to have a significant impact on the probabilistic

assessment of structural response.
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Appendix A: Specimen Drawings, Materials, 
and Construction

A.1 AS-BUILT SPECIMEN DRAWINGS AND SPECIFICATIONS

Two nominally identical shake table test specimens conforming to the plans shown in Figures A-

1 through A-5(b) were constructed. The reinforcement met the following specifications:

• All reinforcement, with the exception of the center column ties and the outside column longitu-
dinal bars, complied with ASTM A706 for grade 60 reinforcement.

• Plain reinforcing wire conforming to ASTM A82 was used for the center column transverse 
reinforcement.

• Grade 40 bars conforming to ASTM A615 were used for the outside column longitudinal rein-
forcement.

• All stirrup hooks within the footings and beams were 135� bend plus 6 bar diameters (not less 
than 3”) extension. Consecutive cross ties, with a 90� bend plus 6 bar diameters extension on 
one end and 135� bend plus 6 bar diameters (not less than 3�) extension on the other, were alter-
nated end for end.

• The center column tie hooks were 90� bend plus 1-1/8 inch extension. The locations of the tie 
hooks were alternated.

• All bar anchorage hooks were 90� bend plus 12 bar diameters extension, except as noted in the 
plans.

• The concrete clear cover over the longitudinal reinforcement was 1 inch, except as noted in the 
plans.

Normal-weight aggregate concrete, conforming to the mix design specifications described

in Section A.3.1, was cast in two lifts, with the construction joint located at the base of the columns.

The specimens were inspected during construction to conform with the tolerances listed in

Table A-1.
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Figure A-3. Reinforcement details — center column
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Figure A-4. Reinforcement details — outside columns
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Figure A-5. Reinforcement details — beam

(a)
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A.2 DESIGN OF TRANSVERSE TORSIONAL BEAMS

Particular attention was paid to the design of the connection between the 5-foot-wide beam and the

columns.  The moment developed over the width of the wide beam must be transferred to the

narrow columns.  A similar condition arises in buildings with wide beams due to restricted story

heights or one-way joist systems.  Wide beam-column joints from such buildings have been inves-

tigated by several researchers (Gentry and Wight, 1994; Popov et al., 1992; Hatamoto et al., 1991).

The research indicates that if some of the beam longitudinal bars are anchored significantly outside

the joint core, then a transverse beam framing into the joint must be relied upon to carry some of

Figure A-5.  (Continued) Reinforcement details — beam 

Table A-1. Construction tolerances

Concrete cover +/- 1/8 in.

Stirrup and tie dimensions +/- 1/8 in.

Member dimensions +/- 1/8 in.

Bar cutoff and longitudinal bends +/- 1/4 in.

Steel placement +/- 1/8 in.

Conduit locations +/- 1/8 in.

(b)

spiral
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the beam moment into the column through torsion.  If the transverse beam does not have sufficient

torsional strength, then it will crack close to the column and any longitudinal bars from the wide

beam anchored outside the crack surface will effectively loose their anchorage (Figure A-6). Those

researchers have found that exterior wide beam-column joints are particularly vulnerable to this

mode of failure. 

Gentry and Wight (1994) provide recommendations for the design of wide beam-column

joints.  Since the stiffness of the transverse torsional beam will decrease significantly after crack-

ing, the recommendations are based on limiting the torque in the transverse beam to less than the

cracking torque.  Although more accurate expressions exist, the cracking torque can be estimated

as:

 (psi units) (A.1)

where x and y are the dimensions of the gross cross section (with x < y), and  is the concrete

compressive strength in psi.

For exterior wide beam-column joints, Gentry and Wight (1994) recommend that the por-

tion of the moment transferred from the wide beam to the column through beam longitudinal bars

Figure A-6. Failure plane for wide beam-column joints (from Gentry and Wight,
1994)

Tcr 2 fc′x2y=

fc′
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anchored outside the crack surface should be limited to less than  (psi units).  Estimates

for the location of the crack surface are provided.  Note that the coefficient 4 appears because the

resistance provided by the transverse torsional beams on both sides of the column is considered. 

Experiments have shown that the torsional strength of transverse beams of interior joints is

at least double that of exterior joints due to the confinement provided by the continuous slab.

Hence, for interior wide beam-column joints, Gentry and Wight (1994) recommend that the

applied torque on the transverse beams be limited to  (psi units).

The skew bending and plastic theories provide the following equations for the cracking

torque of a rectangular section (Hsu, 1984):

Skew Bending Theory:   where (A.2)

Plastic Theory:  (A.3)

Equations A.2 and A.3 give lower estimates of the cracking torque than the recommendations by

Gentry and Wight (1994).

Since the prototype building for the three-column frame does not include wide beams, suf-

ficiently large transverse beams are required in the three-column frame to preclude any reduction

in stiffness due to torsional cracking.  The above recommendations and estimates of the cracking

torque were used to design the transverse torsional beams for the three-column frame. Figure A-7

illustrates the demands on the transverse torsional beams.  (Note that to avoid any interference with

the behavior of the columns, the transverse beams protrude from the top of the wide beam.)  Since

the torsional demands are applied along the side faces of the transverse beams, the resistance to this

Figure A-7. Demands on torsional beams

At Center Column At Outside Column

4 fc′x2y

8 fc′x2y

Tcr
x2y
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demand must be calculated from the cracking capacity of the rectangular transverse beam section.

This also applies to the transverse beam over the center column, since under side sway of the frame,

the torsional demands on either side of the transverse beam act in the same direction (Figure A-7). 

For the conventional design of a wide beam-column joint, the demands on the transverse

beam are calculated as the ultimate beam moment multiplied by the fraction of longitudinal bars

anchored outside the expected torsional crack.  For the three-column frame, however, the ultimate

beam moment will never be achieved since the columns are designed to yield before the beams.

Considering this difference in behavior and the difference in the estimates of the cracking torque

discussed above, two demand-capacity ratios were considered in the selection of the appropriate

size for the transverse beams:

(A.4)

 (A.5)

where Tu beam is the ultimate beam moment multiplied by the fraction of longitudinal bars anchored

outside the expected torsional crack, Tcap GW is torsional capacity recommended by Gentry and

Wight (1994), Tu push is the torsional demand from the pushover analysis, and Tcap skew and Tcap

plastic are 2 times the cracking torques calculated according to the skew bending and plastic theo-

ries, respectively.  The torsional capacities were calculated using a strength reduction factor of 0.5.

Table A-2 summarizes the demand-capacity ratios for the selected torsional beam sizes.

A.3 MATERIAL PROPERTIES

A.3.1 Mix Design

The concrete for the shake table test specimens was delivered to the site. The mix specifications

and design are summarized in Tables A-3 and A-4.

Table A-2. Demand-capacity ratios for torsional beams

Location h (in) b (in) D/C1 D/C2

Center Column 26 17 0.55 1.02

Outside Column 24 20.5 0.65 0.84

D C⁄ 1 Tu beam Tcap GW⁄=

D C⁄ 2 max
Tu push

Tcap skew
----------------------

Tu push

Tcap plastic
--------------------------[ , ]=
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A.3.2 Concrete Properties

At the time of casting, 6-inch diameter by 12-inch-high standard cylinders were cast according to

ASTM C31 requirements. The cylinders were kept in the same environment as the test specimens,

and were stripped on the same day the forms were removed. The cylinders were capped with high-

strength sulfur mortar and then tested to determine the concrete compressive strength according to

ASTM C39. Three cylinders were tested on 7-day intervals until 28 days, and then shortly after the

day of the shake table tests. Table A-5 and Figure A-8 summarize the results from the cylinder

tests. For the last tests, the stress-strain relationship was determined for each cylinder (Figures A-

9 through A-12). Splitting tension tests were performed according to ASTM C496. The calculated

tensile stresses at failure are summarized in Table A-6.

Since the cylinder strengths for the footing concrete appeared very low at 14 and 21 days,

cores from the same concrete used in the footing were tested at 22 days according to ASTM C42.

Table A-3. Concrete mix specifications

Cement ASTM C-150 Type II

Water reducer Pozzolith 322N ASTM C-494 Type A

Minimum 28-day strength 3000 psi

Maximum 28-day strength 3500 psi

Cementitious material 4.52 sacks

Maximum aggregate size 3/8” (pea gravel allowed)

Slump 5” +/- 1”

Water/Cement ratio 0.718

Table A-4. Mix design

Material
Specific 
Gravity

Absolute 
Volume (ft3)

SSD Weights
(lbs)

Cement Type II 3.15 2.16 425 

Water 1.00 4.89 305 

Water Reducer - 0.41 21.3 fl. oz.

3/8” x #8 2.68 7.47 1250 

Regular top sand 2.67 8.75 1460 

SR blend sand 2.60 2.16 425 

Total 27.00 3980 
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The core strengths were higher than the cylinder strengths, as shown in Figure A-8. The cylinders

may have underestimated the true strength of the footing concrete due to exposure to direct sunlight

during curing. Cylinders for the beam and column concrete were kept in the shade next to the test

specimens during curing.

A.3.3 Reinforcing Steel Properties

For each size of reinforcement used in the test specimens, three steel coupons were machined with

a gage length of 2 inches and tested according to ASTM A370. The results are summarized in

Table A-7. For the #4 and #5 bars the yield stress, fy, was taken from the plateau just after first

yield, and the yield strain, εy, was taken as the strain at the peak at first yield. For the #3 bars the

yield stress and strain were defined by the intersection of two straight line approximations, one

from before yield and the other just after. The ultimate stress, fu, was taken as the maximum stress

Table A-5. Average concrete compressive strengths 
(each mean based on three cylinder tests)

Days 
after 

casting

Footing (psi) Beam/Column (psi)

mean standard deviation mean standard deviation

7 1240 97 1720 80

14 1500 50 2100 66

21 1790 57 2570 128

28 1920 72 2830 35

165 - - 3560 76

211 - - 3470 163

221 3240 112 - -

267 3150 41 - -

Table A-6. Splitting tension test results (each mean based on three cylinder tests)

Days after 
casting

Type
Mean
(psi)

Standard Deviation
(psi)

221 Footing 336 28

165 Beam/Column 360 52

267 Footing 317 28

211 Beam/Column 323 11
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Figure A-8. Concrete strength gain with age (mean of three tests each day)

Figure A-9. Concrete stress-strain plots for three cylinders from column and beam concrete 
(Specimen 1, Day 165)
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Figure A-10. Concrete stress-strain plots for three cylinders from footing concrete
(Specimen 1, Day 221)

Figure A-11. Concrete stress-strain plots for three cylinders from column and beam concrete 
(Specimen 2, Day 211)
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recorded during the coupon test; while the ultimate strain, εu, reported in Table A-7 was taken as

the maximum strain recorded during the coupon test (note that fu and εu do not occur at the same

time during coupon test results shown in Figures A-13 – A-17). The modulus of elasticity, Es, was

determined by calculating a linear least-squares fit to the data for strains below 0.002.

.

Figure A-12. Concrete stress-strain plots for three cylinders from footing concrete 
(Specimen 2, Day 267)

Table A-7. Averages from reinforcing steel coupon tests

Location and Size
No. of 
tests

fy
(ksi)

fu
(ksi)

εy εu

maximum 
elongationa 

(in.)

a. at 2 inch gage length

Es
(ksi)

Center column longitudinal
(#4 and #5 grade 60)

5b

b. results from one coupon were ignored (see Figures A-13 and A-14).

69.5 100 0.0027 0.202 0.51 28940

Outside column longitudinal 
(#4 grade 40)

2b 61.5 95.0 0.0024 0.204 0.48 28950

Beam and outside column 
transverse 
(#3 grade 60)

3 79.4 105 0.0028 0.138 0.37 29240

Center column transverse 
(W2.9 wire)

3 - 104 - 0.022
not
measured

29590
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Figure A-13. Reinforcing steel stress-strain plots for center column longitudinal steel
(dotted curve ignored)

Figure A-14. Reinforcing steel stress-strain plots for outside column longitudinal steel
(lower curve ignored, since fracture occurred outside gage length)
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Figure A-15. Reinforcing steel stress-strain plots for beam longitudinal steel

Figure A-16.  Reinforcing steel stress-strain plots for center column transverse steel 
(W2.9 wire)
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A.4 CONSTRUCTION PROCEDURES

The specimens were constructed in an upright position at a casting site adjacent to the earthquake

simulator laboratory at the Richmond Field Station of the University of California, Berkeley. A

local contractor constructed the specimens and supplied the reinforcing steel conforming to the

specifications listed in Section A.1. The reinforcement was bent and cut before delivery to the site.

The concrete formwork was constructed on-site. The footing cages were fabricated on-site and

placed in the forms. After being instrumented with strain gages (see Section B.4.4), the column

longitudinal steel was erected and secured (Figure A-17). Concrete was delivered to the site, where

a slump test was performed to ensure conformance with the specifications. The footings were cast

in one lift with concrete directly from the shoot of the concrete truck (Figure A-18). The column

longitudinal reinforcement was cleaned with a wire brush after the footing concrete had cured. The

footings were wet-cured for four weeks.

After being instrumented with strain gages, the center column ties were carefully secured

to the longitudinal reinforcement. The formwork for the columns and beams was constructed in

place (Figure A-19), and the beam steel was erected Figure A-20). Although the beam and column

reinforcement was completed within two weeks of the casting of the footings, the concrete pour

was delayed seven weeks due to concerns regarding the footing concrete quality (see

Section A.3.2). The concrete was again delivered to the site and a slump test was performed. A

pump was used to place the column and beam concrete. The column concrete was placed and

vibrated prior to the placement of the beam concrete (Figure A-21). The specimens were wet-cured

for 14 days and then stripped and transported to the laboratory (Figure A-22) where they were

stored until testing (age of the column and beam concrete at testing was 151 days for Specimen 1

and 184 days for Specimen 2).
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Figure A-17. Reinforcing cage for center column footing in formwork

Figure A-18. Casting footings



268

Figure A-19. Formwork and wet-curing of footing concrete

Figure A-20. Beam reinforcement
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Figure A-21. Column and beam casting

Figure A-22. Moving specimens to laboratory



Appendix B: Experimental Setup, Procedures, 
and Data Reduction

B.1 INTRODUCTION

The experimental setup, shown in Figure B-1, was designed to facilitate the observation of load

redistribution in the event of axial failure of the center column and to ensure that the out-of-plane

movement of the specimen mass was restricted during testing. The following paragraphs describe

the installation of the test specimens and the experimental setup.

A 2�-thick steel base plate was prestressed to the shake table using high-strength rods

threaded into tapped holes in the base plate. Hydrostone was placed between the base plate and the

shake table to ensure a level surface. Six triaxial force transducers (described in Section B.4.2)

were bolted to the base plate. The force transducers were located directly above the prestressing

rods attaching the base plate to the table in order to maximize the stiffness of the end condition.

Hydrostone was placed between the force transducers and the base plate to ensure that the trans-

ducers were level and to maximize the bearing surface. After the hydrostone cured, the bolts attach-

ing the force transducers to the base plate were torqued to achieve a frictional force of

approximately 25 kips between each transducer and the base plate. 

After installation of the force transducers, the test specimen was lifted into position on the

shake table and aligned with the intended shaking direction. The specimen was leveled and then

supported on screw jacks 1/4� above the force transducers, while hydrostone was placed between

the footings and the top plate of the transducers. After the hydrostone was cured, 3/4� high-strength

rods passing through 1� EMT pipe cast into the footings were used to firmly secure the specimen

to the force transducers and to achieve a frictional force of approximately 25 kips between the foot-

ings and each transducer. Four-by-four wood posts were shimmed under each corner of the beam
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to restrict the out-of plane movement of the specimen while the lead packets were loaded onto the

specimen. 

The lead packets, consisting of five 100 lb. lead ignots tied together by steel straps, were

weighed and loaded onto the beam of the test specimen carefully to avoid causing a load unbalance

that would crack the center column. The lead packets were supported at one end on a steel shim to

fix the position and at the other end on a rubber shim to allow deformation of the concrete test spec-

imen beneath the lead packets. The lead packets below the beam, shown in Figure B-2, were first

placed onto the support tubes resting on wood blocking between the columns of the test specimen.

The stacks of lead packets were then lifted by the support tubes and secured into position by stress-

ing 3/4� high-strength prestressing rods to achieve a frictional force of approximately 5 kips

between the stack of lead packets and the beam. Figure B-3 and Table B-1 give the distribution of

weight due to the lead packets secured to the specimen.

After the lead packets were mounted on the specimen, the out-of-plane bracing mecha-

nisms, described in Section B.2, were installed over each of the outside stacks of lead packets as

shown in Figure B-1. The steel frame designed to support the ends of each of the bracing mecha-

nisms was lifted over the test specimens and aligned with the intended direction of shaking, then

secured to the shake table. Figure B-4 shows the loaded specimen and support frame on the shake

table just before testing.  

Figure B-2. Lead packets secured to the underside of the beam

rubber
shim

steel
shim
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Table B-1. Weight of lead packet stacks (see Figure B-3 for location key)

Location Weight (lbs)

1 Top 3014

2 Top 3014

3 Top 3005

4 Top 3019

5 Top 3037

6 Top 3037

7 Top 3009

8 Top 3010

1 Bottom 3014

2 Bottom 3019

3 Bottom 3516

4 Bottom 3544

5 Bottom 3526

6 Bottom 3558

7 Bottom 2953

8 Bottom 2963

Total 50238

Figure B-3. Plan of lead weight layout on specimen
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B.2 OUT-OF-PLANE BRACING

The planar frame specimens were subjected to unidirectional horizontal ground motions. An out-

of-plane bracing mechanism (shown in Figure B-5), commonly known as a pantograph, was

designed to restrain the specimen mass in the out-of-plane direction while allowing unrestrained

movement in the direction of the table motion. The mechanism was connected to the specimen

through the 1-1/2� center pin. Four such mechanisms were attached to the specimen, one over each

of the exterior lead weight stacks using the diagonal bracing steel shown in the elevation view of

Figure B-5. The distance between the mechanisms enabled them to provide torsional restraint to

the specimen mass. As shown in Figure B-6, the ends of the 1� pipe arms were connected to a steel

support frame through a 1/2� clevis pin.

If the specimen mass tries to move in the out-of-plane direction, one of the 1� pipe arms

goes into compression while the other goes into tension. The pipe arms and the steel support frame

were designed to provide enough stiffness to all but eliminate the out-of-plane movement of the

specimen mass relative to the shake table. 

Figure B-4. Loaded specimen and support frame on shake table
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Figure B-5. Out-of-plane bracing mechanism
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As the specimen mass moves relative to the table in the direction of the table motion, the

1-1/2� center pin moves with the specimen. The steel support frame, which is well-braced in both

directions and secured to the shake table, experiences negligible movement relative to the shake

table. The 1� pipe arms will rotate about the 1/2� clevis pins attached to the steel support frame,

causing the center plate to rotate about the 1-1/2� center pin. For small relative displacements of

the specimen mass, the mechanism allows for unrestrained movement in the direction of the table

motion. For larger displacements, the arcs traced out by the rotation of the 1� pipe arms and the

center plate do not match perfectly. However, if the pins attached to the center plate are initially

aligned with the direction of the table motion (as shown in Figure B-5), then the misalignment of

the arcs for large displacements is minimized. Figure B-7 illustrates the difference in the perfor-

mance of the mechanism for the case of pins aligned with the direction of the table motion and the

case of the center plate aligned with the direction of the table motion (i.e., offset pins).

Figure B-6. Out-of-plane bracing mechanism installed on specimen

Figure B-7. Performance of bracing mechanism with aligned and offset pins
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B.3 PRESTRESSING APPARATUS

The two specimens were nominally identical except for the axial load on the columns.  Since the

shake table could not reliably control a significantly larger mass than that used for Specimen 1, the

additional axial load for Specimen 2 was attained by prestressing using a pneumatic jack on each

side of the center column, as shown in Figure B-8. A 10� x 10� x 5/8� tube was placed on a hydro-

stone pad on top of the center column transverse torsional beam. A clevis pin, aligned with the

intended direction of shaking, was installed on each end of the tube. A high-strength threaded rod

was used to attach the clevis pin to the pneumatic jack which was secured to the shake table with

another clevis pin, also aligned with the intended direction of ground shaking.

In the event of axial shortening of the center column, the prestress force applied by the

pneumatic jacks will decrease in proportion to the increase in volume of the pressurized chamber

in the pneumatic jacks. For Specimen 2, a 7�-long pressurized chamber resulted in a 14% loss of

prestress force when the center column shortened by 1� (i.e., 1�/7� = 14%). The prestress force from

the pneumatic cylinders before, during, and after testing is shown in Figure B-9. The prestress

force is distributed to the three column (based on the force transducers: 72% of the force to the

center column and 14% to each of the outside columns).

Figure B-8. Pneumatic cylinders for adding axial load to center column
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B.4 INSTRUMENTATION

The instrumentation can be grouped into the following categories:

• table instruments to measure the displacement and acceleration of the table,

• force transducers to measure the reactions at the base of the columns,

• strain gages to measure the strain in the reinforcement,

• accelerometers to measure the acceleration of the mass,

• displacement transducers to measure the deformations of the center column, and

• displacement transducers to measure the global displacements of the specimen.

Tables B-2 and B-3 list the instruments used for Specimens 1 and 2.

Figure B-9. Prestressing force from pneumatic cylinders

Table B-2. Instrumentation list for Specimen 1
Channel

#
Instrument

Type
Description Name

1 Table Displacements Table Stroke Horz 1 H1O STROKE 

2 Table Displacements Table Stroke Horz 2 H20 STROKE 

3 Table Displacements Table Stroke Horz 3 H3O STROKE 

4 Table Displacements Table Stroke Horz 4 H4O STROKE 

5 Table Displacements Table Stroke Vert 1 V1O STROKE 

6 Table Displacements Table Stroke Vert 2 V2O STROKE 

7 Table Displacements Table Stroke Vert 3 V3O STROKE 

8 Table Displacements Table Stroke Vert 4 V4O STROKE 

9 Table Accelerations Table Acceleration Horz 1 H1-2 ACC 
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10 Table Accelerations Table Acceleration Horz 2 H3-4 ACC 

11 Table Accelerations Table Acceleration Horz 3 H4-1 ACC 

12 Table Accelerations Table Acceleration Horz 4 H2-3 ACC 

13 Table Accelerations Table Acceleration Vert 1 1V ACC 

14 Table Accelerations Table Acceleration Vert 2 2V ACC 

15 Table Accelerations Table Acceleration Vert 3 3V ACC 

16 Table Accelerations Table Acceleration Vert 4 4V ACC 

17 Force Transducer Axial Column 1 West COL1WAXIAL 

18 Force Transducer In-plane Moment Column 1 West COL1WM1 

19 Force Transducer In-plane Shear Column 1 West COL1WS1 

20 Force Transducer Out-of-plane Moment Column 1 West COL1WM2 

21 Force Transducer Out-of-plane Shear Column 1 West COL1WS2 

22 Force Transducer Axial Column 1 East COL1EAXIAL 

23 Force Transducer In-plane Moment Column 1 East COL1EM1 

24 Force Transducer In-plane Shear Column 1 East COL1ES1 

25 Force Transducer Out-of-plane Moment Column 1 East COL1EM2 

26 Force Transducer Out-of-plane Shear Column 1 East COL1ES2 

27 Force Transducer Axial Column 2 West COL2WAXIAL 

28 Force Transducer In-plane Moment Column 2 West COL2WM1 

29 Force Transducer In-plane Shear Column 2 West COL2WS1 

30 Force Transducer Out-of-plane Moment Column 2 West COL2WM2 

31 Force Transducer Out-of-plane Shear Column 2 West COL2WS2 

32 Force Transducer Axial Column 2 East COL2EAXIAL 

33 Force Transducer In-plane Moment Column 2 East COL2EM1 

34 Force Transducer In-plane Shear Column 2 East COL2ES1 

35 Force Transducer Out-of-plane Moment Column 2 East COL2EM2 

36 Force Transducer Out-of-plane Shear Column 2 East COL2ES2 

37 Force Transducer Axial Column 3 West COL3WAXIAL 

38 Force Transducer In-plane Moment Column 3 West COL3WM1 

39 Force Transducer In-plane Shear Column 3 West COL3WS1 

40 Force Transducer Out-of-plane Moment Column 3 West COL3WM2 

41 Force Transducer Out-of-plane Shear Column 3 West COL3WS2 

42 Force Transducer Axial Column 3 East COL3EAXIAL 

Table B-2. (continued) Instrumentation list for Specimen 1
Channel

#
Instrument

Type
Description Name
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43 Force Transducer In-plane Moment Column 3 East COL3EM1 

44 Force Transducer In-plane Shear Column 3 East COL3ES1 

45 Force Transducer Out-of-plane Moment Column 3 East COL3EM2 

46 Force Transducer Out-of-plane Shear Column 3 East COL3ES2 

47 Strain Gage Column 1 Longitudinal Top West SG 1LTW 

48 Strain Gage Column 1 Longitudinal Top East SG 1LTE 

49 Strain Gage Column 1 Longitudinal Bottom West SG 1LBW 

50 Strain Gage Column 1 Longitudinal Bottom East SG 1LBE 

51 Strain Gage Column 2 Longitudinal Top West SG 2LTW 

52 Strain Gage Column 2 Longitudinal Top East SG 2LTE 

53 Strain Gage Column 2 Longitudinal Top Extra SG 2LT.2 

54 Strain Gage Column 2 Longitudinal Middle Top West SG 2LMTW 

55 Strain Gage Column 2 Longitudinal Middle Top East SG 2LMTE 

56 Strain Gage Column 2 Longitudinal Middle West SG 2LMW 

57 Strain Gage Column 2 Longitudinal Middle East SG 2LME 

58 Strain Gage Column 2 Longitudinal Middle Bottom West SG 2LMBW 

59 Strain Gage Column 2 Longitudinal Middle Bottom East SG 2LMBE 

60 Strain Gage Column 2 Longitudinal Bottom West SG 2LBW 

61 Strain Gage Column 2 Longitudinal Bottom East SG 2LBE 

62 Strain Gage Column 2 Longitudinal Bottom Extra SG 2LB.2 

63 Strain Gage Column 3 Longitudinal Top West SG 3LTW 

64 Strain Gage Column 3 Longitudinal Top East SG 3LTE 

65 Strain Gage Column 3 Longitudinal Bottom West SG 3LBW 

66 Strain Gage Column 3 Longitudinal Bottom East SG 3LBE 

67 Strain Gage Column 2 Hoop Top South SG 2STS 

68 Strain Gage Column 2 Hoop Top North SG 2STN 

69 Strain Gage Column 2 Hoop Middle Top South SG 2SMTS 

70 Strain Gage Column 2 Hoop Middle Top North SG 2SMTN 

71 Strain Gage Column 2 Hoop Middle South SG 2SMS 

72 Strain Gage Column 2 Hoop Middle North SG 2SMN 

73 Strain Gage Column 2 Hoop Middle Bottom South SG 2SMBS 

74 Strain Gage Column 2 Hoop Middle Bottom North SG 2SMBN 

75 Strain Gage Column 2 Hoop Bottom South SG 2SBS 

Table B-2. (continued) Instrumentation list for Specimen 1
Channel

#
Instrument

Type
Description Name
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76 Strain Gage Column 2 Hoop Bottom North SG 2SBN 

77 Strain Gage Beam Longitudinal Underside West Bay BF BLU1 

78 Strain Gage Beam Longitudinal Underside Column 2 West BF BLU2W 

79 Strain Gage Beam Longitudinal Underside Column 2 East BF BLU2E 

80 Strain Gage Beam Longitudinal Underside East Bay BF BLU3 

81 Accelerometer Longitudinal CG Mass over Column 1 South AL CGC1 

82 Accelerometer Longitudinal CG Mass over Column 2 South AL CGC2S 

83 Accelerometer Longitudinal CG Mass over Column 2 North AL CGC2N 

84 Accelerometer Longitudinal CG Mass over Column 3 South AL CGC3 

85 Accelerometer Longitudinal West Bay Mass Top AL B1MT 

86 Accelerometer Longitudinal West Bay Mass Bottom AL B1MB 

87 Accelerometer Longitudinal East Bay Mass Top AL B2MT 

88 Accelerometer Longitudinal East Bay Mass Bottom AL B2MB 

89 Accelerometer Longitudinal Base of Column 2 AL BC2 

90 Accelerometer Transverse CG Mass over Column 1 South AT CGC1 

91 Accelerometer Transverse CG Mass over Column 2 South AT CGC2 

92 Accelerometer Transverse CG Mass over Column 3 South AT CGC3 

93 Accelerometer Vertical West Bay Mass Top AV B1MT 

94 Accelerometer Vertical West Bay Mass Bottom AV B1MB 

95 Accelerometer Vertical CG Mass over Column 2 South AV CGC2S 

123 Accelerometer Vertical CG Mass over Column 2 North AV CGC2N 

97 Accelerometer Vertical East Bay Mass Top AV B2MT 

98 Accelerometer Vertical East Bay Mass Bottom AV B2MB 

99 Local Deformations Vertical North West Top LDV NWT 

100 Local Deformations Vertical North West Middle LDV NWM 

101 Local Deformations Vertical North West Bottom LDV NWB 

102 Local Deformations Vertical North East Top LDV NET 

103 Local Deformations Vertical North East Middle LDV NEM 

104 Local Deformations Vertical North East Bottom LDV NEB 

105 Local Deformations Horizontal North Top LDH NT 

106 Local Deformations Horizontal North Bottom LDH NB 

107 Local Deformations Diagonal North Top LDD NT 

108 Local Deformations Diagonal North Middle LDD NM 

Table B-2. (continued) Instrumentation list for Specimen 1
Channel

#
Instrument

Type
Description Name
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109 Local Deformations Diagonal North Bottom LDD NB 

110 Local Deformations Vertical South West Top LDV SWT 

111 Local Deformations Vertical South West Middle LDV SWM 

112 Local Deformations Vertical South West Bottom LDV SWB 

113 Local Deformations Vertical South East Top LDV SET 

124 Local Deformations Vertical South East Middle LDV SEM 

115 Local Deformations Vertical South East Bottom LDV SEB 

116 Local Deformations Horizontal South Top LDH ST 

117 Local Deformations Horizontal South Bottom LDH SB 

118 Local Deformations Diagonal South Top LDD ST 

119 Local Deformations Diagonal South Middle LDD SM 

120 Local Deformations Diagonal South Bottom LDD SB 

121 Global Displacements Longitudinal LVDT North GDL LVDTN

122 Global Displacements Longitudinal LVDT South GDL LVDTS

125 Global Displacements Longitudinal Redundant Table Displ Lower GDL RTDL 

126 Global Displacements Longitudinal Redundant Table Displ Upper GDL RTDU 

127 Global Displacements Longitudinal Top of Column 2 Side of Beam 
North

GDL TC2SBN 

128 Global Displacements Longitudinal Top of Column 2 Side of Beam 
South

GDL TC2SBS 

129 Global Displacements Longitudinal CG at End of Beam GDL CGEB 

130 Global Displacements Longitudinal West Mass Top GDL WMT 

131 Global Displacements Longitudinal West Mass Bottom GDL WMB 

144 Global Displacements Longitudinal Base of Column 2 North GDL BC2N 

145 Global Displacements Longitudinal Base of Column 2 South GDL BC2S 

146 Global Displacements Longitudinal CG at End of Beam (DCDT) GDLCGEBDCD 

132 Global Displacements Transverse CG of Mass over Column 1 GDT CGC1 

133 Global Displacements Transverse Top of Beam at Column 2 GDT TBC2 

134 Global Displacements Transverse CG of Mass over Column 1 GDT CGC3 

135 Global Displacements Transverse Top of Column 2 GDT TC2 

136 Global Displacements Vertical Beam Underside at Column 1 South GDV BUC1S 

137 Global Displacements Vertical Beam Underside at Column 3 South GDV BUC3S 

147 Global Displacements Vertical Mid span Bay 1 North GDVMSB1N 

139 Global Displacements Vertical Mid span Bay 1 South GDV MSB1S 

Table B-2. (continued) Instrumentation list for Specimen 1
Channel

#
Instrument

Type
Description Name
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140 Global Displacements Vertical Mid span Bay 2 North GDV MSB2N 

141 Global Displacements Vertical Mid span Bay 2 South GDV MSB2S 

142 Global Displacements Vertical Beam Underside at Column 2 North GDV BUC2N 

143 Global Displacements Vertical Beam Underside at Column 2 South GDV BUC2S 

Table B-3. Instrumentation list for Specimen 2
Channel

#
Category Description Name

1 Table Displacements Table Stroke Horz 1 H1O STROKE 

2 Table Displacements Table Stroke Horz 2 H20 STROKE 

3 Table Displacements Table Stroke Horz 3 H3O STROKE 

4 Table Displacements Table Stroke Horz 4 H4O STROKE 

5 Table Displacements Table Stroke Vert 1 V1O STROKE 

6 Table Displacements Table Stroke Vert 2 V2O STROKE 

7 Table Displacements Table Stroke Vert 3 V3O STROKE 

8 Table Displacements Table Stroke Vert 4 V4O STROKE 

9 Table Accelerations Table Acceleration Horz 1 H1-2 ACC 

10 Table Accelerations Table Acceleration Horz 2 H3-4 ACC 

11 Table Accelerations Table Acceleration Horz 3 H4-1 ACC 

12 Table Accelerations Table Acceleration Horz 4 H2-3 ACC 

13 Table Accelerations Table Acceleration Vert 1 1V ACC 

14 Table Accelerations Table Acceleration Vert 2 2V ACC 

15 Table Accelerations Table Acceleration Vert 3 3V ACC 

16 Table Accelerations Table Acceleration Vert 4 4V ACC 

17 Force Transducer Axial Column 1 West COL1WAXIAL 

18 Force Transducer In-plane Moment Column 1 West COL1WM1 

19 Force Transducer In-plane Shear Column 1 West COL1WS1 

20 Force Transducer Out-of-plane Moment Column 1 West COL1WM2 

21 Force Transducer Out-of-plane Shear Column 1 West COL1WS2 

22 Force Transducer Axial Column 1 East COL1EAXIAL 

23 Force Transducer In-plane Moment Column 1 East COL1EM1 

24 Force Transducer In-plane Shear Column 1 East COL1ES1 

25 Force Transducer Out-of-plane Moment Column 1 East COL1EM2 

26 Force Transducer Out-of-plane Shear Column 1 East COL1ES2 

Table B-2. (continued) Instrumentation list for Specimen 1
Channel

#
Instrument

Type
Description Name
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27 Force Transducer Axial Column 2 West COL2WAXIAL 

28 Force Transducer In-plane Moment Column 2 West COL2WM1 

29 Force Transducer In-plane Shear Column 2 West COL2WS1 

30 Force Transducer Out-of-plane Moment Column 2 West COL2WM2 

31 Force Transducer Out-of-plane Shear Column 2 West COL2WS2 

32 Force Transducer Axial Column 2 East COL2EAXIAL 

33 Force Transducer In-plane Moment Column 2 East COL2EM1 

34 Force Transducer In-plane Shear Column 2 East COL2ES1 

35 Force Transducer Out-of-plane Moment Column 2 East COL2EM2 

36 Force Transducer Out-of-plane Shear Column 2 East COL2ES2 

37 Force Transducer Axial Column 3 West COL3WAXIAL 

38 Force Transducer In-plane Moment Column 3 West COL3WM1 

39 Force Transducer In-plane Shear Column 3 West COL3WS1 

40 Force Transducer Out-of-plane Moment Column 3 West COL3WM2 

41 Force Transducer Out-of-plane Shear Column 3 West COL3WS2 

42 Force Transducer Axial Column 3 East COL3EAXIAL 

43 Force Transducer In-plane Moment Column 3 East COL3EM1 

44 Force Transducer In-plane Shear Column 3 East COL3ES1 

45 Force Transducer Out-of-plane Moment Column 3 East COL3EM2 

46 Force Transducer Out-of-plane Shear Column 3 East COL3ES2 

47 Strain Gage Column 1 Longitudinal Top West SG 1LTW 

48 Strain Gage Column 1 Longitudinal Top East SG 1LTE 

49 Strain Gage Column 1 Longitudinal Bottom West SG 1LBW 

50 Strain Gage Column 1 Longitudinal Bottom East SG 1LBE 

51 Strain Gage Column 2 Longitudinal Top West SG 2LTW 

52 Strain Gage Column 2 Longitudinal Top East SG 2LTE 

53 Strain Gage Column 2 Longitudinal Top Extra SG 2LT.2 

54 Strain Gage Column 2 Longitudinal Middle Top West SG 2LMTW 

55 Strain Gage Column 2 Longitudinal Middle Top East SG 2LMTE 

56 Strain Gage Column 2 Longitudinal Middle West SG 2LMW 

57 Strain Gage Column 2 Longitudinal Middle East SG 2LME 

58 Strain Gage Column 2 Longitudinal Middle Bottom West SG 2LMBW 

59 Strain Gage Column 2 Longitudinal Middle Bottom East SG 2LMBE 

Table B-3. (continued) Instrumentation list for Specimen 2
Channel

#
Category Description Name
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60 Strain Gage Column 2 Longitudinal Bottom West SG 2LBW 

61 Strain Gage Column 2 Longitudinal Bottom East SG 2LBE 

62 Strain Gage Column 2 Longitudinal Bottom Extra SG 2LB.2 

63 Strain Gage Column 3 Longitudinal Top West SG 3LTW 

64 Strain Gage Column 3 Longitudinal Top East SG 3LTE 

65 Strain Gage Column 3 Longitudinal Bottom West SG 3LBW 

66 Strain Gage Column 3 Longitudinal Bottom East SG 3LBE 

67 Strain Gage Column 2 Hoop Top South SG 2STS 

68 Strain Gage Column 2 Hoop Top North SG 2STN 

69 Strain Gage Column 2 Hoop Middle Top South SG 2SMTS 

70 Strain Gage Column 2 Hoop Middle Top North SG 2SMTN 

71 Strain Gage Column 2 Hoop Middle South SG 2SMS 

72 Strain Gage Column 2 Hoop Middle North SG 2SMN 

73 Strain Gage Column 2 Hoop Middle Bottom South SG 2SMBS 

74 Strain Gage Column 2 Hoop Middle Bottom North SG 2SMBN 

75 Strain Gage Column 2 Hoop Bottom South SG 2SBS 

76 Strain Gage Column 2 Hoop Bottom North SG 2SBN 

77 Strain Gage Beam Longitudinal Underside West Bay BF BLU1 

78 Strain Gage Beam Longitudinal Underside Column 2 West BF BLU2W 

79 Strain Gage Beam Longitudinal Underside Column 2 East BF BLU2E 

80 Strain Gage Beam Longitudinal Underside East Bay BF BLU3 

81 Accelerometer Longitudinal CG Mass over Column 1 South AL CGC1 

82 Accelerometer Longitudinal CG Mass over Column 2 South AL CGC2S 

83 Accelerometer Longitudinal CG Mass over Column 2 North AL CGC2N 

84 Accelerometer Longitudinal CG Mass over Column 3 South AL CGC3 

85 Accelerometer Longitudinal West Bay Mass Top AL B1MT 

86 Accelerometer Longitudinal West Bay Mass Bottom AL B1MB 

87 Accelerometer Longitudinal East Bay Mass Top AL B2MT 

88 Accelerometer Longitudinal East Bay Mass Bottom AL B2MB 

89 Accelerometer Longitudinal Base of Column 2 AL BC2 

90 Accelerometer Transverse CG Mass over Column 1 South AT CGC1 

91 Accelerometer Transverse CG Mass over Column 2 South AT CGC2 

92 Accelerometer Transverse CG Mass over Column 3 South AT CGC3 

Table B-3. (continued) Instrumentation list for Specimen 2
Channel

#
Category Description Name
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93 Accelerometer Vertical West Bay Mass Top AV B1MT 

94 Accelerometer Vertical West Bay Mass Bottom AV B1MB 

95 Accelerometer Vertical CG Mass over Column 2 South AV CGC2S 

123 Accelerometer Vertical CG Mass over Column 2 North AV CGC2N 

97 Accelerometer Vertical East Bay Mass Top AV B2MT 

98 Accelerometer Vertical East Bay Mass Bottom AV B2MB 

99 Local Deformations Vertical North West Top LDV NWT 

100 Local Deformations Vertical North West Middle LDV NWM 

101 Local Deformations Vertical North West Bottom LDV NWB 

102 Local Deformations Vertical North East Top LDV NET 

103 Local Deformations Vertical North East Middle LDV NEM 

104 Local Deformations Vertical North East Bottom LDV NEB 

105 Local Deformations Horizontal North Top LDH NT 

106 Local Deformations Horizontal North Bottom LDH NB 

107 Local Deformations Diagonal North Top LDD NT 

108 Local Deformations Diagonal North Middle LDD NM 

109 Local Deformations Diagonal North Bottom LDD NB 

110 Local Deformations Vertical South West Top LDV SWT 

111 Local Deformations Vertical South West Middle LDV SWM 

112 Local Deformations Vertical South West Bottom LDV SWB 

113 Local Deformations Vertical South East Top LDV SET 

124 Local Deformations Vertical South East Middle LDV SEM 

115 Local Deformations Vertical South East Bottom LDV SEB 

116 Local Deformations Horizontal South Top LDH ST 

117 Local Deformations Horizontal South Bottom LDH SB 

118 Local Deformations Diagonal South Top LDD ST 

119 Local Deformations Diagonal South Middle LDD SM 

120 Local Deformations Diagonal South Bottom LDD SB 

121 Global Displacements Longitudinal LVDT North GDL LVDTN

122 Global Displacements Longitudinal LVDT South GDL LVDTS

148 Global Displacements Longitudinal Redundant Table Displ Lower GDL RTDL 

149 Global Displacements Longitudinal Redundant Table Displ Upper GDL RTDU 

Table B-3. (continued) Instrumentation list for Specimen 2
Channel

#
Category Description Name
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B.4.1 SHAKE TABLE INSTRUMENTATION

As shown in Tables B-2 and B-3, the shake table was instrumented with 4 horizontal displacement

transducers, 4 vertical displacement transducers, 4 horizontal accelerometers, and 4 vertical accel-

erometers. The layout of the instruments was such that one could determine the three-dimensional

movement of the table. The unidirectional horizontal displacements in the intended direction of

shaking can be found by averaging channels 2 and 4. The unidirectional horizontal accelerations

in the direction of shaking can be found by averaging channels 11 and 12.

127 Global Displacements Longitudinal Top of Column 2 Side of Beam 
North

GDL TC2SBN 

128 Global Displacements Longitudinal Top of Column 2 Side of Beam 
South

GDL TC2SBS 

129 Global Displacements Longitudinal CG at End of Beam GDL CGEB 

130 Global Displacements Longitudinal West Mass Top GDL WMT 

131 Global Displacements Longitudinal West Mass Bottom GDL WMB 

144 Global Displacements Longitudinal Base of Column 2 North GDL BC2N 

145 Global Displacements Longitudinal Base of Column 2 South GDL BC2S 

146 Global Displacements Longitudinal CG at End of Beam (DCDT) GDLCGEBDCD 

132 Global Displacements Transverse CG of Mass over Column 1 GDT CGC1 

133 Global Displacements Transverse Top of Beam at Column 2 GDT TBC2 

134 Global Displacements Transverse CG of Mass over Column 1 GDT CGC3 

135 Global Displacements Transverse Top of Column 2 GDT TC2 

136 Global Displacements Vertical Beam Underside at Column 1 South GDV BUC1S 

137 Global Displacements Vertical Beam Underside at Column 3 South GDV BUC3S 

147 Global Displacements Vertical Mid span Bay 1 North GDVMSB1N 

139 Global Displacements Vertical Mid span Bay 1 South GDV MSB1S 

140 Global Displacements Vertical Mid span Bay 2 North GDV MSB2N 

141 Global Displacements Vertical Mid span Bay 2 South GDV MSB2S 

142 Global Displacements Vertical Beam Underside at Column 2 North GDV BUC2N 

143 Global Displacements Vertical Beam Underside at Column 2 South GDV BUC2S 

126 Global Displacements Vertical Under Column 2 Footing C2FOUNVRT

125 Axial Cylinders Prestress force from both cylinders AXIAL PNUE

Table B-3. (continued) Instrumentation list for Specimen 2
Channel

#
Category Description Name
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Although the table motion was intended to be unidirectional, some out-of-plane and verti-

cal displacements were detected, but all were within tolerable limits. The output from the table

instruments was checked by two displacement transducers measuring the total displacements of the

steel support frame. These instruments were also used to confirm that the pitch of the table during

testing was negligible.

B.4.2 FORCE TRANSDUCERS 

Force transducers were used in pairs under each of the columns to monitor the redistribution of

shear and axial load during testing. Each force transducer is capable of measuring orthogonal

shears and moments in the horizontal plane, in addition to axial load. Moments are measured about

midheight of the transducers. Tables B-2 and B-3 specify the channels measuring the in-plane and

out-of plane forces. 

The force transducers were made from 4140 steel. They were machined, welded, and then

heat treated to maximum hardness and a proportional limit of 130 ksi. Dimensions for the trans-

ducers are shown in Figure B-10. The strain gages measuring shears and moments are mounted on

the 0.14� reduced sections parallel to the sides of the end plates. The strain gages measuring axial

load are mounted on the 3/8�-thick rounded section at 45� to the sides of the end plates.

Figure B-10. Force transducers
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Some cross talk between the shear and axial load measurements has been identified during

calibration of the force transducers. However, no single correction factor could be determined to

correct the measurements. During loading of the pneumatic cylinders for Specimen 2 (Figure B-

11), it was noted that the sum of the axial loads from the force transducers was 92% of the prestress

force from the pneumatic cylinders.

B.4.3 ACCELEROMETERS

Accelerometers were mounted using high-strength epoxy in nine locations, as shown in Figure B-

12, to determine the acceleration of the specimen mass and base. When acceleration in more than

one direction was required at a single location, the accelerometers were mounted on 2� x 2� x 2�

aluminum blocks. The accelerometers mounted on the side of the beam were located at the center

of gravity for the beam and the lead weights (i.e., 6.75� above the beam soffit). 

The longitudinal accelerations from the base of the specimen matched the accelerations

from the table instruments. 

B.4.4 STRAIN GAGES

The strain gages were mounted on the reinforcement and distributed throughout the specimen, as

shown in Figure B-13. The strain gages mounted on the longitudinal reinforcement were located

on the inside face of the bars to protect the gages from being damaged during installation of the

Figure B-11. Error in force transducer measurements
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transverse reinforcement. The strain gages mounted on the transverse reinforcement were located

on the top or bottom face of the reinforcing wire. The strain gages require several protective coat-

ings to ensure that they are not damaged during the concrete pour. The following procedure was

followed for the installation of each strain gage:

• File down deformations without reducing minimum cross section. Clean surface with 
degreaser, conditioner, neutralizer, and isopropyl alcohol.

• Glue on strain gage and terminal using CN high-strength adhesive

• Apply M-coat B protective sealant to strain gage.

• Solder strain gage wires and instrumentation cables to terminals.

• Apply M-coat B protective sealant to strain gage, terminals and exposed wires.

Figure B-12. Location of accelerometers (south side of specimen shown)
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• Apply wax coating to area covered by M-coat B.

• Apply M-coat J3 to area covered by wax.

• Cover affected region with vinyl mylar tape.

The strain gage mounted to the south side of the center column top hoop of Specimen 2 was dam-

aged during construction and did not provide any output during the test. The gains for the strain

gage readings were inadvertently set too high for the shear failure test for Specimen 2, resulting in

readings that exceed the capacity of the data acquisition system shortly after yield of the reinforce-

ment.

B.4.5 CENTER COLUMN INSTRUMENTS

The local deformations of the center column were recorded by direct current displacement trans-

ducers (DCDTs) mounted to the center column as shown in Figures B-14 and B-15. The DCDTs

Figure B-13. Strain gage locations
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Figure B-14. Center column instrumentation (for dimensions see Table B-4)

Table B-4. Center column instrumentation dimensions

Dimension
(see Figure B-14)

Specimen 1
South

Specimen 1
North

Specimen 2
South

Specimen 2
North

d1 13 1/8� 13� 12 7/8� 12 7/8�

d2 13 1/8� 12 3/4� 12 7/8� 12 5/8�

d3 14 3/4� 14 1/4� 14 5/8� 14 1/4�

d4 1 1/2� 1 1/2� 1 1/2� 1 1/2�

h1 7� 7 1/4� 7� 7�

h2 8 3/8� 8 5/8� 8 1/2� 8 1/2�

h3 40 1/2� 40 1/2� 40 1/2� 40 1/2�

h4 9 1/8� 9 1/8� 8 7/8� 9�

h5 8 1/4� 8� 7 3/4� 8�
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were rigidly attached to 10� x 2� aluminum tubes that were secured to the column using spring ten-

sioned threaded rods. Each aluminum tube was offset from the column face by two 10� x 2� x 1.5�

wood blocks. The tip of a concrete screw protruded from one wood block per tube and was set into

a predrilled hole in the column face, thereby fixing the position of the instruments. The other wood

block was held in place by friction to allow for unrestrained dilation of the concrete column

between the blocks.

The truss configuration of the instruments allows for calculation of deformations based on

the principle of virtual forces. For more details see Section B.6. 

Owing to interference from spalling cover concrete and severe distortion of the center

column during the shear failure test, data from the center column instruments can be used only for

times before shear failure of the center column (see Sections 6.3.2 and B.6 for more details). 

B.4.6 GLOBAL DISPLACEMENT INSTRUMENTS

Displacement transducers were used to measure the global vertical, longitudinal, and transverse

displacements of the specimens, as shown in Figures B-16 through B-18. Transducers mounted to

Figure B-15. Center column instruments and close-up view of top and bottom of column
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the instrumentation frames off the shake table measured the total displacements (i.e., including the

displacement of the shake table). Transducers mounted to the shake table (including GDL LVDTN

and GDL LVDTS) measured the displacement of the specimens relative to the shake table.  

Transverse displacements were recorded to confirm that the out-of-plane bracing mecha-

nism was maintaining the unidirectional response of the specimens. All transverse displacements

were below tolerable limits.

To avoid conflict between the lead weight stacks and the vertical and longitudinal instru-

mentation wires, aluminum tubes with attachments for the instrumentation wires were cantilevered

from the sides of the specimen beam. The longitudinal displacements of the center column were

recorded by linear variable differential transformers (LVDTs) mounted flat on the shake table sur-

face (GDL LVDTN and GDL LVDTS). The instrumentation wires from the LVDTs passed

through a pulley mounted to the shake table and extended up at an angle to the cantilever tubes

attached to the specimen beam (Figure B-17). The vertical displacements of the center column

were recorded in a similar manner.

B.5 EXPERIMENTAL PROCEDURES

After the instrumentation was installed and calibrated for each specimen, a “channel check” was

performed, wherein the data acquisition system recorded the readings from each of the instruments

for several seconds without any induced movement of the specimen. This allowed for a check of

the electronic noise on each of the channels. Resistors were used to reduce electronic noise where

necessary.

As described in Section 5.6, the experimental program for each specimen consisted of free-

vibration tests, a low-level earthquake simulation test, and a “shear-failure” earthquake simulation

test. Four digital camcorders were used to film each of the earthquake simulation tests. One cam-

corder filmed the center column from a stand mounted on the shake table. The other three camcord-

ers, mounted on stands off the shake table, filmed the whole frame, and the top and bottom of the

center column, respectively. Filming was started immediately before each of the earthquake simu-

lation tests. An audio signal from the shake table operator was recorded by the camcorders when

the data acquisition system was activated. This allowed for the approximate synchronization of the

video and recorded data. After each of the earthquake simulation tests, the specimens were
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inspected for cracks. Videos from each of the tests document the progression of damage and the

distribution of cracks during the shear-failure tests (see Appendix E).

B.6 DATA REDUCTION

This section summarizes the procedures used to reduce the recorded data to the results presented

in Chapter 6. 

Table B-5. Dimensions for Figure B-17

Dimension
Specimen 1
North Side

Specimen 1
South Side

Specimen 2
North Side

Specimen 2
South Side

A 2� - 11 7/8� 2� - 11 5/8� 2� - 11 1/2� 2� - 11 1/8�

B 2� - 11 3/8� 2� - 11 1/4� 2� - 11 1/2�” 2� - 11 1/2�

C 4� - 4 1/4� 4� - 4 1/4� 4� - 3 1/2� 4� - 3 1/2�

D 8� - 2 3/16� 8�- 2 3/16� 8� - 4 1/4� 8� - 4 1/�

E 0 0 4 1/2� 4 1/2�

Figure B-18. End view of global displacement instruments 
(transverse and vertical instruments shown)
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Longitudinal and vertical displacements at center column: The longitudinal displace-

ments were recorded by several instruments including the diagonal LVDTs, GDL LVDTN and

GDL LVDTS. The results from the LVDTs were compared with the output from other instruments

to confirm that the pulley system (Figure B-17) produced accurate data. 

The triangularized setup of GDL LVDTN and GDV BUC2N on the north side and GDL

LVDTS and GDV BUC2S on the south side was used to correct for large displacements in the lon-

gitudinal and vertical recordings. With reference to Figure B-19, the following equations can be

written for the position of node O:

(B.1)

(B.2)

where ∆z and ∆y are the changes in the lengths of wires z and y (i.e., the recorded data from the

diagonal and vertical instruments, respectively). There are only two unknowns, the corrected lon-

gitudinal and vertical displacements (X and Y). The unknowns can be determined by iteration as

follows:

Figure B-19. Correction for large displacements
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1. Y is assumed equal to ∆y 

2. X is evaluated using Equation B.1

3. Y is evaluated using Equation B.2 and the current value for X

4. X is re-evaluated using Equation B.1 and the current value for Y

5. Steps 3 and 4 are repeated until the change from one iteration to the next is negligible

A converged solution is attained after only five iterations. The maximum difference between the

corrected and uncorrected results was 0.035�.

The corrected longitudinal and vertical displacements from the north and south sides of the

specimen are averaged to get the longitudinal displacements shown in Figure 6-5 and the vertical

displacements shown in Figure 6-14. These corrected longitudinal displacements are used for any

plots in Chapter 6 requiring the longitudinal displacements of the beam or the tops of the columns.

Base shear and inertial forces: The base shear plotted in Figures 6-5, 6-6, and 6-7 was

determined by summing the shears recorded by the force transducers. As discussed in

Section 6.3.1, the base shear should be approximately equal, and opposite in sign, to the longitudi-

nal inertial forces. The longitudinal inertial forces were calculated by two methods:

• Fi = (total beam and lead weight mass)*(average longitudinal acceleration recorded by 
ALCGC2S and ALCGC2N)

• Fi = Σ(mass of each lead weight stack)*(acceleration of the closest stack with accelerometer) + 
(concrete beam mass)*(average longitudinal acceleration recorded by ALCGC2S and 
ALCGC2N)

Both methods produced very similar results, although high-frequency oscillations of the accelera-

tions recorded on the lead weight stacks resulted in a maximum difference between the two meth-

ods of 4.77 kips. Inertial forces from method 2 were used in the fourth plot of Figure 6-5.

Overturning moments: The overturning moments were defined as the base moment

resulting from axial loads in the columns. The overturning moments plotted in Figures 6-5, 6-8,

and 6-9 were calculated by summing the moments caused by the column axial loads about the base

of the center column as follows:

(B.3)

As noted in Section 6.3.1, the noise in the overturning moment plots is caused by high-fre-

quency pitching of the shake table. If these frequencies are filtered out and the overturning

OTM PWcol6′ PEcol6′+=
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moments, summed with the column base moments, are divided by the recorded base shear, the

result is approximately 64.75�, or the height of the center of gravity above the base of the columns.

Center column shear: The center column shear plotted in Figures 6-14, 6-15, and 6-16,

was determined by summing the in-plane shear data from the two force transducers under the

center column.

Center column axial load: The change in the center column axial load during the tests was

determined by summing the axial load data from the two force transducers under the center col-

umn. The initial axial load in the center column was determined using two readings from the force

transducers: one just before the test, and another before the specimen was installed on the table in

the fully unloaded condition. Since the clamping force from the bolts and threadbars securing the

force transducers to the base plate and specimen appeared to affect the readings, the bolts and

threadbars were loosened before taking the reading before the test. The clamping force did not

influence the results during the test, since the clamping force remained constant during testing. 

Figure B-20. Free-body diagrams for calculating column moments
(Reactions recorded at midheight of the force transducers)
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Center column moments: The center column moments plotted in Figures 6-14, and 6-22,

through 6-27, were determined using the output from the force transducers and the free-body dia-

grams shown in Figure B-20. Based on the free-body diagrams, and ignoring the inertial force from

the column and footings, the top and bottom column moments were calculated as follows:

(B.4)

(B.5)

Note that Equation B.5 can be used to calculate the moment at any column section at a

height h above the bottom of the column given that the longitudinal displacements at a height h are

known.  

Figures 6-22 through 6-27 plot the center column moment hysteretic response. According

to the plots, the yield strength at the top of the column appears to be approximately 50% higher

than that at the bottom of the column. Although some discrepancy in the top and bottom yield

strength should be expected due to slight variation in the reinforcement location and pockets of

Figure B-21. Specimen 1 center column moment hysteretic response with
αV = 0.89 and αN = 1.0
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aggregates at the base of the column, one would not expect this discrepancy to be more than

approximately 10%. It was concluded, therefore, that an error exists in the force transducer output

used to calculate the moments. Since the moment readings from the force transducers were very

small, the discrepancy in the top and bottom moments could result from errors in the axial load

readings, the shear readings, or both. To investigate the magnitude of the possible errors, the shears

and axial loads from the force transducers in Equations B.4 and B.5 were factored as follows:

(B.6)

(B.7)

Figures B-21 and B-22 show close agreement between the top and bottom yield moments

for the Specimen 1 center column using (αV,αN) = (0.89,1.0) or (αV,αN) = (1.0,1.12). Since the

sum of all the shear readings is in close agreement with the inertial forces (see Figure 6-5), and the

axial load readings from the force transducers do not agree with the prestressing force from the

pneumatic cylinders (see Figure B-11), it is expected that the discrepancy in the unfactored yield

moments primarily results from errors in the axial load readings.

Figure B-22. Specimen 1 center column moment hysteretic response with 
αV = 1.0 and αN = 1.12
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Rotations and average curvatures: The rotations and average curvatures plotted in Fig-

ures 6-24 through 6-27 were calculated using the center column instruments described in

Section B.4.5. The rotations were calculated by taking the difference of the two vertical instru-

ments in a single panel of the instrumentation truss and dividing by the distance between the instru-

ments, as illustrated for the bottom panel in Figure B-23. The rotations calculated from the

instruments on the north and south faces of the column were averaged to arrive at the rotations

shown in Figures 6-24 and 6-25. The average curvature over the panel, φav, is defined as the rota-

tion divided by the height of the panel. The rotation of the beam relative to the footing, shown in

Figure 6-28, was determined by summing the rotations calculated for each panel of the instantia-

tion frame. Note that the rotation and average curvature include both flexural and slip deforma-

tions.

Displacements based on center column instruments: Longitudinal displacements for the

center column can be calculated from the center column instrument data by applying the Principle

of Complementary Virtual Work (also known as the Principle of Virtual Forces). Specifically for

a truss, the Principle can be stated in the following form:

(B.8)

where ∆ is the real displacement of the truss at the location and in the direction of interest, ∆i is the

real deformation in the ith truss member, δP is a virtual force applied to a compatible virtual truss

system at the location and in the direction of displacement ∆, and δfi is the virtual force in the ith

Figure B-23. Calculation of rotations and average curvatures

θ = (∆v1 - Dv2)/d

d

h ∆v1
∆v2 φav = θ / h

∆ Pδ ∆i fδ i∑=
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member of the compatible virtual truss system. Any virtual system can be chosen as long as all the

virtual forces within the system, δfi, including reactions, are multiplied by the associated real defor-

mations. By selecting a unit load for δP, the displacement at any node in the truss, and in any direc-

tion, can be determined by applying Equation B.8.

The center column instrumentation frame can be considered as a truss, and the readings

from the instruments provide the real deformations, ∆i. The longitudinal displacement of the

column can be determined by selecting a virtual truss system with members in place of the instru-

ments in the instrumentation frame and applying a horizontal virtual unit load at the top or bottom

of the virtual truss, as shown in Figure B-24. The rigid offsets between the center lines of the instru-

ments cause virtual moments at the joints of the virtual truss systems. These moments must be

accounted for in the internal virtual work by rewriting Equation B.8 as follows:

(B.9)

Figure B-24. Virtual truss systems used to calculate the longitudinal displacement of the
center column
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where θj is the real rotation of the column at the level of the jth joint, and δMj is the virtual moment

at the jth joint due to the rigid offsets. The virtual moments can be considered to be resisted at the

joints by virtual flexural springs. Since the virtual truss systems are statically determinate, the vir-

tual forces and moments resulting from the unit loads can be determined by basic statics. 

Equations B.8 and B.9 assume that the displacements at the locations of the boundary con-

ditions in the virtual truss systems are negligible. In other words, when applying Equation B.9 to

virtual system A shown in Figure B-24, the rotation of the footing is neglected. Similarly, when

using virtual system B the rotation of the beam is neglected. Virtual system A was used to calculate

the displacements shown in the upper plot of Figures 6-29 and 6-30, and virtual system B was used

to calculated the displacements shown in the middle plot of Figures 6-29 and 6-30.

The longitudinal displacements shown in Figures 6-31 and 6-32 were calculated using the

average of the results from virtual system A and B. The average produced better agreement with

Figure B-25. External virtual forces used to calculate the contribution of the 
deformations within each panel to the longitudinal displacements
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the longitudinal displacements measured by the global instruments. The contributions of the defor-

mations in each panel to the longitudinal displacement were determined using the external virtual

forces shown in Figure B-25. Although shown here applied to virtual system A, similar external

virtual forces were applied to both virtual systems and the results were averaged.

A description of the method used to calculate the panel deformations without rigid body

rotations can be found in Section 6.3.2.

Outside column initial forces: The force transducers were unable to monitor the column

reactions accurately over an extended period of time, such as the one week required to install the

specimen and mount the masses. Furthermore, unlike the center column, the dead-load shear

present in the outside columns required that the threadbars and bolts securing the force transducers

to the footings and the base plate remain tightened to ensure that no slip occurred between the spec-

imen and the base plate. In effect, the only dead-load reaction recorded from the force transducers

with reasonable accuracy was the initial axial load on the center column. The initial moments and

shears on the center column were assumed to be negligible. The remaining reactions (i.e., shear,

moment, and axial load on the outside columns) were determined from the dead-load model for the

loaded specimen described in Section 8.2.3. The initial loads on the outside columns, summarized

in Table B-6, are used in Figures 6-36 through 6-49.

Outside column moments: The outside column moments shown in Figures 6-36, 6-37,

and 6-46 through 6-49 were calculated according to the procedures described above for the center

column and using Equations B.4 and B.5. 

As noted in Section 6.3.3, for positive displacement cycles the yield strength at the top of

the west column appears to be approximately 50% higher than the yield strength at the bottom of

the column, while the top and bottom yield strengths for negative cycles for the west column and

both cycles for the east column appear to be within expected tolerances. It should be noted that

water damage to the solo-tube forms used for the outside columns resulted in a reduction of the

Table B-6. Initial loads on outside columns based on final dead-load model 

Load Type Specimen 1 Specimen 2

Axial load 19.4 kips 21.5 kips

Shear 1.15 kips 1.39 kips

Moment (Top of Column) 76.3 kip in 92.1 kip in

Moment (Bottom of Column) 9.2 kip in 11.1 kip in
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cover at the base of both Specimen 1 outside columns. Although this would result in a slightly

lower moment capacity for the base of the column relative to the top of the column, it is not

expected to account for the large discrepancy in yield strengths observed in the data. Furthermore,

the reduction in the cover concrete should influence the strength of both the east and west columns

of Specimen 1, not just the west column of both specimens as seen in the data. It is concluded,

therefore, that, as with the center column, the discrepancy in the yield strengths for the west column

is most likely due to errors in the axial load readings from the force transducers. 

Outside column shear and axial loads: The shear and axial loads in the outside columns

plotted in Figures 6-36 and 6-37 were determined by summing the shear and axial load data from

the two force transducers under each column. The initial shear and axial loads were determined as

described above.

Outside column vertical displacements: The outside column vertical displacements plot-

ted in Figures 6-36 and 6-37 were based directly on the data from instruments GDV BUC1S for

the west column and GDV BUC3S for the east column.

Total vertical load: Two methods were used to calculate the total vertical load acting on

the specimen: 

1. The total weight of the beam and lead packets (67.9 kips) was added to the recorded prestress 
force. The result of this method is denoted in Figure 6-55 as the “Total Gravity Load.”

2. The axial loads from each column (based on the force transducer data) were added to the verti-
cal inertial forces, calculated based on the vertical accelerations measured on the beam over the 
center column (average of data from instruments AVCGC2S and AVCGC2N) and the total 
mass of the beam and lead packets. (All frequencies above 25 hz were removed from the 
recorded accelerations.) The result of this method is denoted in Figure 6-55 as .

The results from the second method exhibit some high-frequency axial load oscillations,

which may be attributed to the broader range of frequency content recorded by the accelerometers

compared with the force transducers. At the end of the test there was a difference of 2.5 kips

between the “Total Gravity Loads” and the sum of the column axial loads.

B.7 DERIVATION OF BAR SLIP MODEL

When a reinforced concrete column is subjected to lateral forces, slip of the reinforcing bars within

the anchor blocks will result in lateral displacements in addition to those caused by flexural defor-

ΣPcol mavert+
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mation of the column. This section describes the derivation of Equation 7.3 used to estimate the

lateral displacement due to bar slip before yielding of the longitudinal reinforcement.

Moments at the anchored end of a reinforced concrete column may cause tension in the

anchored reinforcing bars as shown in Figure B-26. The tension force, Ts, must be resisted by the

bond stress, u, between the reinforcement and the anchorage block concrete. This results in the fol-

lowing equilibrium equation, if the bond stress is approximately constant:

(B.10)

where As is the area of one longitudinal reinforcing bar, fs is the stress in the reinforcing bar (less

than or equal to the yield stress), db is the nominal diameter of a reinforcing bar, and l is the length

over which the bond stress acts as shown in Figure B-26. The slip of the reinforcing bar, δslip, can

be found by integrating the strain diagram shown in Figure B-26:

(B.11)

where εs is the strain in the reinforcing bar corresponding to the stress fs. Using Equation B.10 to

find the length l, Equation B.11 can be rewritten as follows:

(B.12)

The rotation at the anchorage due to slip of the reinforcing bars, θslip, is given by the ratio

of δslip to the distance from the reinforcement to the neutral axis, c. Using Equation B.12, and rec-

Figure B-26. Slip of longitudinal reinforcement from anchorage block

Cs Cc

c

Ts=As fs

δslip

θslip

u
l

u=6 fc′ fs εsL

∆slip
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ognizing that (εs/c) is equal to the curvature at the section, φ, the rotation can be expressed as fol-

lows:

(B.13)

Finally, the lateral displacement of a column of length L due to slip of the reinforcement

from the anchorage block is given by:

(B.14)

For the slip displacement at yield, fs and φ in Equation B.14 are replaced by fy and φy,

respectively, as shown in Equation 7.3. The slip displacement beyond yield can be estimated using

a similar model presented by Sezen (2002).

θslip

dbfsφ
8u

------------=

∆slip

Ldbfsφ
8u

----------------=



Appendix C: Experimental Results from 
Low-level Tests

This appendix documents selected recorded results for the low-level shake table tests performed

before each of the shear-failure tests described in Chapter 6. The experimental setup for the low-

level tests is identical to that described in Chapter 5 and Appendices A and B for the shear-failure

tests. 

The results indicate that column longitudinal reinforcement did not yield during the low-

level tests. Only limited cracking of the outside columns was observed after the tests.
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Figure C-1. Global response histories for low-level test — Specimen 1
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Figure C-2. Global response histories for low-level test — Specimen 2
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Figure C-3. Center column response histories for low-level test — Specimen 1
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Figure C-4. Center column response histories for low-level test — Specimen 2
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Figure C-5. West column response histories for low-level test — Specimen 1
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Figure C-6. West column response histories for low-level test — Specimen 2
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Figure C-7. East column response histories for low-level test — Specimen 1
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Figure C-8. East column response histories for low-level test — Specimen 2
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Figure C-9. Specimen 1 base shear hysteretic response for low-level test

Figure C-10. Specimen 1 center column shear hysteretic response for
low-level test
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Figure C-11. Specimen 1 west column shear hysteretic response for low-level test

Figure C-12. Specimen 1 east column shear hysteretic response for low-level test
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Figure C-13. Specimen 2 base shear hysteretic response for low-level test

Figure C-14. Specimen 2 center column shear hysteretic response for low-level test
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Figure C-15. Specimen 2 west column shear hysteretic response for low-level test

Figure C-16. Specimen 2 east column shear hysteretic response for low-level test

−0.4 −0.2 0 0.2 0.4
−10

−8

−6

−4

−2

0

2

4

6

8

10

W
es

t C
ol

um
n 

S
he

ar
 (

ki
ps

)

Horizontal Displacement (in.)

−0.4 −0.2 0 0.2 0.4
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
as

t C
ol

um
n 

S
he

ar
 (

ki
ps

)

Horizontal Displacement (in.)



Appendix D: C++ Implementation of Limit State
Failure Model

D.1 CLASS STRUCTURE FOR LIMIT STATE FAILURE MODEL

This section will describe the classes required for the new uniaxial material model described in

Chapter 4, and their interaction with existing OpenSees classes.  The new material model will be

referred to as “LimitStateMaterial.” Further information on OpenSees and object-oriented finite-

element programing can be found in OpenSees (2002) and McKenna (1997).

The LimitStateMaterial class is a subclass of UniaxialMaterial, as shown in Figure D-1.  It

is based on the HystereticMaterial class and uses the same hysteretic rules (see Section D.4 for

more information on HystereticMaterial). As described in Chapter 4, the LimitStateMaterial

changes its backbone when the appropriate force-deformation response intersects the limit curve.

Since the shape of this curve is different for the shear and axial failure models (see Figures 4-1 and

4-2), new classes AxialCurve and ShearCurve (used for the axial and shear-failure models, respec-

tively) have been created to define the limit curve and determine when it is exceeded. A third sub-

class, ThreePointCurve, has also been created to define a general-purpose limit curve. These sub-

classes inherit from a new base class LimitCurve, which is aggregated with the LimitStateMaterial

class (Figure D-1). If a LimitCurve is not aggregated with LimitStateMaterial, then the behavior of

LimitStateMaterial is the same as HystereticMaterial.

Deformation measures such as chord rotations are known only by the Elements, and dis-

placements are known only by the Nodes, in the OpenSees framework. Hence, the LimitCurve

requires information from either the associated beam-column element or the associated nodes to

determine when the limit curve is reached. To achieve this, the beam-column element class (e.g.,

BeamWithHinges) and the Node class are made component classes of each of the LimitCurve sub-
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classes, as shown by the “has-a” relationship in Figure D-1. Since the materials are created by the

OpenSees ModelBuilder before the elements are created, it is necessary to form the aggregation

between the LimitCurve subclasses and the element after the material class has been constructed.

This is done by passing a pointer to the Domain into the LimitCurve subclass and then asking the

Domain to provide a copy of the appropriate element to the LimitCurve. The aggregation between

the nodes and the LimitCurve subclasses is done in a similar manner.

Figure D-1. Partial OpenSees Class Diagram including LimitStateMaterial and LimitCurve

Element

NLBeamColumn BeamWithHinges

Material

UniaxialMaterial

HystereticMaterialLimitStateMaterial

LimitCurve

ShearCurve AxialCurve

1

1,0

New classes in bold.
Abstract Classes in italics.

using a pointer
to the Domain

Aggregation done 

ThreePointCurve

Node

2

SectionForceDeformation
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D.2 TCL INTERFACE FOR LIMIT STATE FAILURE MODEL

The scripting language Tcl is used to enter commands in OpenSees. The following section, describ-

ing the syntax of the new Tcl commands, can be used as a “User’s Guide” for the limit state failure

model in OpenSees.

The input command for LimitStateMaterial is given in Table D-1. All of the input variables

except for the last two are the same as those for HystereticMaterial and are defined in Section D.4. 

The input command for AxialCurve is given in Table D-2. The limit curve is based on the axial

failure model from Chapter 3:

 (D.1)

where  and P is the axial load in the associated beam-column element. The drift ratio, ∆/

L, can be determined based on the displacements of nodes I and J or approximated by the maximum

beam-column chord rotation. The input variable $delta can be used to shift the limit curve, as

shown in Figure D-2, to evaluate the influence of variability in the position of the limit curve.

The input command for ShearCurve is given in Table D-3. Note that all input variables for

the OpenSees model are assumed to be in kips and inches, except for the concrete compressive

strength, fc’, which must be specified in psi. The limit curve is based on the empirical drift capacity

model from Chapter 2:

 (psi units) (D.2)

where P and V are the axial load and shear in the associated beam-column element, respectively.

Similar to the AxialCurve, the drift ratio, ∆/L, can be determined based on the displacements of

nodes I and J or approximated by the maximum beam-column chord rotation, and the input variable

$delta can be used, as shown in Figure D-2, to shift the limit curve to evaluate the influence of vari-

ability in the position of the limit curve.

The input command for ThreePointCurve is given in Table D-4. Any failure model that can

be reasonably approximated by the trilinear surface shown in Figure D-3, and does not depend on

∆
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Table D-1. OpenSees input command for LimitStateMaterial

Limit State Material
This command is used to construct a uniaxial hysteretic material object with
pinching of force and deformation, damage due to ductility and energy, and
degraded unloading stiffness based on ductility. Failure of the material is defined
by the associated limit curve.

uniaxialMaterial LimitState $matTag $s1p $e1p $s2p $e2p $s3p $e3p
$s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinchY
$damage1 $damage2 $beta $curveTag $curveType.

$matTag unique material object integer tag

$s1p $e1p stress and strain (or force & deformation) at first point of
the envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point
of the envelope in the positive direction

$s3p $e3p stress and strain (or force & deformation) at third point of
the envelope in the positive direction (optional)

$s1n $e1n stress and strain (or force & deformation) at first point of
the envelope in the negative direction*

$s2n $e2n stress and strain (or force & deformation) at second point
of the envelope in the negative direction*

$s3n $e3n stress and strain (or force & deformation) at third point of
the envelope in the negative direction (optional)*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchY pinching factor for stress (or force) during reloading

$damage1 damage due to ductility: D1(µ-1)

$damage2 damage due to energy: D2(Ei/Eult)

$beta power used to determine the degraded unloading stiffness
based on ductility, µ-β (optional, default=0.0)

$curveTag an integer tag for the LimitCurve defining the limit surface

$curveType an integer defining the type of LimitCurve (0 = no curve,
1 = axial curve, all other curves can be any other integer)

*NOTE: negative backbone points should be entered as negative numeric values
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Table D-2. OpenSees input command for AxialCurve

Limit State Material
This command is used to construct a uniaxial hysteretic material object with
pinching of force and deformation, damage due to ductility and energy, and
degraded unloading stiffness based on ductility. Failure of the material is defined
by the associated limit curve.

uniaxialMaterial LimitState $matTag $s1p $e1p $s2p $e2p $s3p $e3p
$s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinchY
$damage1 $damage2 $beta $curveTag $curveType.

$matTag unique material object integer tag

$s1p $e1p stress and strain (or force & deformation) at first point of
the envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point
of the envelope in the positive direction

$s3p $e3p stress and strain (or force & deformation) at third point of
the envelope in the positive direction (optional)

$s1n $e1n stress and strain (or force & deformation) at first point of
the envelope in the negative direction*

$s2n $e2n stress and strain (or force & deformation) at second point
of the envelope in the negative direction*

$s3n $e3n stress and strain (or force & deformation) at third point of
the envelope in the negative direction (optional)*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchY pinching factor for stress (or force) during reloading

$damage1 damage due to ductility: D1(µ-1)

$damage2 damage due to energy: D2(Ei/Eult)

$beta power used to determine the degraded unloading stiffness
based on ductility, µ-β (optional, default=0.0)

$curveTag an integer tag for the LimitCurve defining the limit surface

$curveType an integer defining the type of LimitCurve (0 = no curve,
1 = axial curve, all other curves can be any other integer)

*NOTE: negative backbone points should be entered as negative numeric values

Axial Limit Curve
This command is used to construct an axial limit curve object that is used to
define the point of axial failure for a LimitStateMaterial object. Point of axial
failure based on model from Chapter 3. After axial failure response of
LimitStateMaterial is forced to follow axial limit curve.

limitCurve Axial $curveTag $eleTag $Fsw $Kdeg $Fres $defType
$forType <$ndI $ndJ $dof $perpDirn $delta>.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$Fsw floating point value describing the amount of transverse
reinforcement (Fsw = Astfytdc/s)

$Kdeg floating point value for the slope of the third branch in the
post-failure backbone, assumed to be negative (see
Figure 4-6)

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve

1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndI and ndJ

$forType integer flag for type of force defining the ordinate of the
limit curve*

0 = force in associated limit state material
1 = shear in beam-column element
2 = axial load in beam-column element

$ndI integer node tag for the first associated node
(normally node I of $eleTag beam-column element)

$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)

$dof nodal degree of freedom to monitor for drift**

$perpDirn perpendicular global direction from which length is
determined to compute drift**

$delta drift (floating point value) used to shift axial limit curve

NOTE: * Options 1 and 2 assume no member loads.
** 1 = X, 2 = Y, 3 = Z
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quantities which may vary during the analysis (such as beam-column shear or axial load), can be

modeled using ThreePointCurve. 

D.3 C++ CODE FOR LIMIT STATE FAILURE MODEL

This section describes select portions of the C++ implementation for the limit state failure model.

The complete code can be found at http://opensees.berkeley.edu.

D.3.1 LimitStateMaterial

Upon convergence of each time step a material commits the current state of the history variables

within commitState. The following code was added to commitState to check if the limit curve,

defined by theCurve, had been exceeded in that time step.

// check element state if using limit curve option
// and not beyond residual capacity (CstateFlag == 4)
if (curveType != 0 && CstateFlag != 4)
{

// Check state of element relative to the limit state surface.
// Note that steps should be kept small to minimize error
// caused by committed state being far beyond limit state surface
int stateFlag = theCurve->checkElementState(Cstress);

// If beyond limit state surface for first time,
// get the new final slope and residual capacity 
// for this LimitState material
if (stateFlag == 1)
{

// get backbone in current direction
result += getNewBackbone(stateFlag); 

// if not an axial curve, cause failure in both directions 
if (curveType != 1) 

result += mirrorBackbone(); 
}

Figure D-2. Shifting of limit curve using $delta input variable
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Table D-3. OpenSees input command for ShearCurve

Shear Limit Curve
This command is used to construct a shear limit curve object that is used to
define the point of shear failure for a LimitStateMaterial object. Point of shear
failure based on empirical drift capacity model from Chapter 2.

limitCurve Shear $curveTag $eleTag $rho $fc $b $h $d $Fsw $Kdeg
$Fres $defType $forType <$ndI $ndJ $dof $perpDirn $delta>.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$rho transverse reinforcement ratio (Ast/bh)

$fc concrete compressive strength (psi)

$b column width (in.)

$h full column depth (in.)

$d effective column depth (in.)

$Fsw floating point value describing the amount of transverse
reinforcement (Fsw = Astfytdc/s)

$Kdeg If positive: unloading stiffness of beam-column element
(Kunload from Figure 4-8)
if negative: slope of third branch of post-failure backbone
(see Figure 4-6)

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve

1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndI and ndJ

$forType integer flag for type of force defining the ordinate of the
limit curve

0 = force in associated limit state material
1 = shear in beam-column element

$ndI integer node tag for the first associated node
(normally node I of $eleTag beam-column element)

$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)

$dof nodal degree of freedom to monitor for drift

$perpDirn perpendicular global direction from which length is
determined to compute drift

$delta drift (floating point value) used to shift shear limit curve
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Table D-4. OpenSees input command for ThreePointCurve

Three-Point Limit Curve
This command is used to construct a three-point limit curve object that is used to
define the point of failure for a LimitStateMaterial object.

limitCurve ThreePoint $curveTag $eleTag $x1 $y1 $x2 $y2 $x3 $y3
$Kdeg $Fres $defType $forType <$ndI $ndJ $dof
$perpDirn>.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$x1 $y1 coordinates for the first point on the limit curve
(see Figure D-3)

$x2 $y2 coordinates for the second point on the limit curve
(see Figure D-3)

$x3 $y3 coordinates for the third point on the limit curve
(see Figure D-3)

$Kdeg floating point value for the slope of the third branch in the
post-failure backbone, assumed to be negative
(see Figure 4-6)

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve

1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndI and ndJ

$forType integer flag for type of force defining the ordinate of the
limit curve*

0 = force in associated limit state material
1 = shear in beam-column element
2 = axial load in beam-column element

$ndI integer node tag for the first associated node
(normally node I of $eleTag beam-column element)

$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)

$dof nodal degree of freedom to monitor for drift**

$perpDirn perpendicular global direction from which length is
determined to compute drift**

NOTE: * Option 1 assumes no member loads.
** 1 = X, 2 = Y, 3 = Z
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First, the checkElementState function of the LimitCurve object, theCurve, is used to deter-

mine if the limit curve has been exceeded. This function returns an integer flag, stateFlag, indi-

cating the current state of the material (0 = initial state before hitting curve for first time, 1 = limit

curve reached for first time, 2 = on limit curve, 3 = off limit curve, 4 = at residual capacity). (Note

that stateFlag = 1, 2, 3, and 4 are used to define the behavior of the material after axial failure,

but are equivalent for the ShearCurve and ThreePointCurve). Then the post-failure backbone is

defined in the direction of motion by the getNewBackbone function. For the shear-failure limit curve,

the post-failure backbone is reflected in the opposite direction, since shear failure is assumed to

reduce the capacity in both directions.

To define the behavior after axial failure (as described in Section 4.5.3), the following code

is added to the commitState function:

// special functions for axial curve
if (curveType == 1) {

// If on surface, get axial load lost  
if (stateFlag == 1 || stateFlag == 2 || stateFlag == 4) {

Ploss += theCurve->getUnbalanceForce();
}
// if moving off surface, get new backbone with 1/100elastic 3rd slope
if (CstateFlag == 2 || CstateFlag == 1) {

if (stateFlag == 3) {
result += getNewBackbone(stateFlag);

}
}
// if moving onto surface then get new backbone with degrading slope
if (CstateFlag == 3) {

if (stateFlag == 2) {
result += getNewBackbone(stateFlag);

}
}
// if forceSurface governed by residual capacity set new flat backbone
// do not allow backbone to be changed again.

Figure D-3. Definition of limit curve for ThreePointCurve 
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if (stateFlag == 4) {
result += getNewBackbone(stateFlag);

}
}
// commit the current state if needed outside commitState 
CstateFlag = stateFlag;

}

The getUnbalanceForce function from AxialCurve provides the axial load required to

return the material to the limit curve at the same displacement. This force, Ploss, is used to deter-

mine the stress and strain in the material for the next time step. The getNewBackbone function is

used twice to redefine the post-failure backbone such that the material responds with a stiffness

equivalent to 1/100 times the elastic stiffness when it is off the limit curve and to restore the degrad-

ing slope when the response returns the material to the limit curve. Once the axial capacity has

degraded down to the residual capacity, the column is assumed to have lost a significant amount

of core concrete, and, hence can no longer sustain axial loads above the residual capacity. To

achieve this the backbone is redefined with a flat slope at the residual capacity, and the CstateFlag

variable is set to 4 to ensure that the backbone is not redefined in future load steps.

All uniaxial materials must provide the functions getStrain, getStress, and getTangent

in order for the elements to determine the current state of the materials. In LimitStateMaterial these

functions must be adapted as shown below to account for the behavior of the material after axial

failure. 

double
LimitStateMaterial::getStrain(void)
{

// Return trail strain plus strain due to loss of axial load.
// Ploss will be zero if no axial failure or not using AxialCurve.
// Ploss is always positive.
// E3 set to any number if not using limit curve, 
// otherwise should be negative for axial curve.
double strain;
double E3;

if (curveType != 0)
E3 = theCurve->getDegSlope();

else 
E3 = 1.0;

if (Tstrain < 0.0)
strain = Tstrain + Ploss/E3;

else
strain = Tstrain - Ploss/E3;

 return strain;
}

double
LimitStateMaterial::getStress(void)
{

// Return trail stress minus the loss of axial load.
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// Ploss will be zero if no axial failure or not using AxialCurve.
// Ploss is always positive.
// For axial failure Tstress is negative in compression
double stress;

stress = Tstress + Ploss;

return stress;
}

double
LimitStateMaterial::getTangent(void)
{

// If on the limit state surface use degrading slope, 
// but if beyond third corner point use approx zero slope (axial curve only)
if (curveType == 1) 
{

double E3 = theCurve->getDegSlope();

if (CstateFlag == 1 || CstateFlag == 2) {
if (Tstrain > 0.0) {

if (Tstrain > rot3p) {
Ttangent = E1p*1.0e-9;

} else {
Ttangent = E3p;

} 
} else {

if (Tstrain < rot3n) {
Ttangent = E1p*1.0e-9;

} else {
Ttangent = E3n;

} 
}

}
}
return Ttangent;

}

The trial strain, stress, and tangent variables (Tstrain, Tstress, and Ttangent) are deter-

mined by the hysteretic rules of HystereticMaterial. The trial strain and stress are modified using

Ploss to account for any unbalance forces needed to return the response of the material to the limit

curve. To ensure that a loss of axial load is accompanied by an increase in vertical displacements,

the trial tangent is set equal to the degrading slope (or zero slope if degraded to residual capacity)

if the response of the LimitStateMaterial is on the axial limit curve.

For an axial limit state material, Ploss is defined when a load step is committed. Hence,

when the getStress or getStrain functions are called by the recorder before the start of the next

step, the stress or strain provided by the LimitStateMaterial will include the effect of Ploss. Since

Ploss is not, in fact, applied to the material until the next load step, the stress and strain from the

recorder will be in error. This problem can be averted by recording the axial force in the beam-

column element and the node displacements.



336

D.3.2 ShearCurve

The checkElementState function is used by the LimitStateMaterial to determine if the beam-

column element response has exceeded the limit curve. The following section of code finds the

beam-column element that is associated with this instantiation of LimitCurve: 

// check if limit state surface has been reached
int
ShearCurve::checkElementState(double springForce)
{

// find associated beam-column element on first visit
if (theElement == 0)
{

theElement = theDomain->getElement(eleTag);

if (theElement == 0) 
g3ErrorHandler->fatal("WARNING ShearCurve - 

no element with tag %i exists in Domain",eleTag);
// find length between nodes if drift is desired

if (defType == 2)
{

Node *nodeI = theDomain->getNode(ndI);
Node *nodeJ = theDomain->getNode(ndJ);

const Vector &crdI = nodeI->getCrds();
const Vector &crdJ = nodeJ->getCrds();

oneOverL = 1.0/fabs(crdJ(perpDirn) - crdI(perpDirn));
}

}

If a copy of the beam-column element is not yet available (i.e., the first time checkEle-

mentState is called), the Domain is asked the make a copy of the element with the user-provided

element tag eleTag. A fatal error is displayed if a copy cannot be created. This procedure was done

outside the constructor because OpenSees creates the material objects before the element objects.

If the abscissa of the limit curve is defined by interstory drift (defType = 2), then the Domain is

also asked to make a copy of the nodes with the user-provided node tags ndI and ndJ. The height

of the beam-column element is determined by finding the coordinates of the nodes and finding the

projection of the element along the axis defined by perpDirn.

The checkElementState function continues to determine if the beam-column response

has exceeded the limit curve:

if (defType == 1) // maximum chord rotations for x-axis of limit curve
{

Response *theRotations =0; // integer element returns in setResponse
char *r[1] = {"basicDeformations"}; // must be implemented in element
Information*rotInfoObject =0;   
Vector *rotVec; //vector of chord rotations at beam-column ends

// set type of beam-column element response desired
theRotations = theElement->setResponse(r, 1, *rotInfoObject);
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// put element response in the vector of "myInfo"
result = theRotations->getResponse();

// access the myInfo vector containing the response (new for Version 1.2)
rotVec = (theRotations->myInfo.theVector);

//use larger of two end rotations
deform = (fabs((*rotVec)(1)) > fabs((*rotVec)(2))) ? 

fabs((*rotVec)(1)) : fabs((*rotVec)(2)); 
}
else if (defType == 2) // interstory drift for x-axis of limit curve
{

// find associated nodes 
Node *nodeI = theDomain->getNode(ndI);
Node *nodeJ = theDomain->getNode(ndJ);

// get displacements
const Vector &dispI = nodeI->getTrialDisp();
const Vector &dispJ = nodeJ->getTrialDisp();

// calc drift
double dx = fabs(dispJ(dof)-dispI(dof));
deform = dx*oneOverL;

}
else {

g3ErrorHandler->fatal("Deformation type flag %i not implemented",defType);
}
// get beam-column local forces
Response *theForces =0;
char *f[1] = {"localForce"}; // does not include influence of P-delta

     // for P-delta use forType = 0
Information*forInfoObject =0;
Vector *forceVec; //vector of basic forces from beam column

// set type of beam-column element response desired
theForces = theElement->setResponse(f, 1, *forInfoObject);

// put element response in the vector of "myInfo"
result += theForces->getResponse();

// access the myInfo vector containing the response (new for Version 1.2)
forceVec = (theForces->myInfo.theVector);

// Force for y-axis of limit curve
if (forType == 0)

force = fabs(springForce);    // force in associated LimitState material
else if (forType == 1) 

force = fabs((*forceVec)(1)); // shear
else if (forType == 2) 

force = fabs((*forceVec)(0)); // axial
else {

g3ErrorHandler->fatal("Force type flag %i not implemented",forType);
}
// axial load at shear failure
P = fabs((*forceVec)(0));

// Determine if (deform,force) is outside limit state surface.
// 
// Use absolute value of deform and force
double forceSurface = findLimit(deform); // force on surface at deform

if (stateFlag == 0) //prior to failure
{

if (force >= forceSurface) // on/outside failure surface
{
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stateFlag = 1;
//set degrading slope based on drift at axial failure
setDegSlope(force, deform); 

}
else // inside failure surface
{

stateFlag = 0;
}

}
else //after failure
{

if (force >= forceSurface) // on/outside failure surface
{

stateFlag = 2;
}
else // inside failure surface
{

stateFlag = 3;
}

}
return stateFlag;

}

The strings “basicDeformations” and “localForce” are passed to the setResponse function

for theElement to let the element know which response quantities are requested. The getRe-

sponse functions are used to place the response quantities selected by setResponse in a vector of

myInfo, a public object defined for each Response object. Finally, the vector of selected response

quantities are obtained from myInfo.theVector for each Response object. 

The defType and forType flags are used to determine which response quantities define the

limit surface space. Element chord rotations (defType = 1) or interstory drift (defType = 2) can be

selected as deformations. The force in the associated LimitStateMaterial (forType = 0), the

column shear (forType = 1), or column axial load (forType = 2) can be used as forces. For the

ShearCurve, it assumed that forType is equal to 0 or 1.

The findLimit function, shown below, is used to determine the force on the limit surface

at the deformation deform. The limit surface is defined by the empirical drift capacity model from

Chapter 2. The drift capacity model requires all input variables for the OpenSees model to be spec-

ified in kips and inches, with the exception of the concrete compressive strength which must be

given in psi.

double
ShearCurve::findLimit(double DR)
{

double V = 0.0; //Shear in kips!!

if (DR < 0.01)
V = 9.9e9; //no shear failure below drift ratio of 1%

else
V = 500*(0.03+delta+4*rho-DR-0.025*P/b/h/(fc/1000))*(b*d*sqrt(fc)/1000);
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if (V < 0.0)
V = 0.0;

return V;
}

Based on the force returned by findLimit to checkElementState, an if-statement is used

to set the stateFlag variable indicating whether or not the limit surface has been exceeded. For

ShearCurve, only the first change of state results in any change in behavior (i.e., when failure is

detected and stateFlag changes from 0 to 1 resulting in the redefinition of the backbone by Lim-

itStateMaterial). When failure is detected, the degrading slope of the new backbone is determined

by the setDegSlope function shown below.

void
ShearCurve::setDegSlope(double V, double Dshear)
{

if (Kdeg > 0.0)
{

// Calculate degrading slope based on point of shear failure and 
// calculated deformation at axial failure based on current axial 
// load and axial failure model by Elwood (2002).
// If positive, Kdeg is assumed equal to the flexural stiffness

double theta = 65.0*PI/180.0;
double Daxial;

Daxial = 0.04*(1+tan(theta)*tan(theta))/(tan(theta)+P/Fsw/tan(theta));

if (defType == 2)
{

double K = -V/(Daxial-Dshear)*oneOverL;
Kdeg = 1/(1/K - 1/Kdeg);

}
else

g3ErrorHandler->fatal("Must use defType = 2 for calculated Kdeg");
}

}

If the user-specified Kdeg is positive, the setDegSlope function is used to determine the

degrading slope of the new backbone based on the axial failure model from Chapter 3. The speci-

fied value for Kdeg is assumed to be equal to the unloading stiffness of the flexural component. If

the user-specified Kdeg is negative, the setDegSlope function does nothing and Kdeg is left

unchanged.

D.3.3 AxialCurve

The checkElementState function for AxialCurve is the same as that for ThreePointCurve except

that if the response of the material is beyond the limit curve, then the unbalance force to return the

response of the material to the limit curve is calculated as follows: 
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dP = force - forceSurface

Also note that the AxialCurve does not take the absolute value of the force variable, since failure

occurs only in compression. The checkElementState function assumes that the force variable

will be positive for compression (valid if using forType = 2 and a vertical column element).

The findLimit function shown below is based on the axial failure model developed in

Chapter 3. The function defining the limit curve requires only the constant Fsw, describing the

amount of transverse reinforcement. An optional variable, delta, may also be specified to shift

the limit curve to higher or lower drift values. 

double
AxialCurve::findLimit(double x)
{

double y = 0.0;

if (x < 0 || x > 0.08)
g3ErrorHandler->warning("Warning: Outside limits of AxialCurve");

double theta = 65.0*PI/180.0;
double d = x-delta;

if (d <= 0.0)
d = 1.0e-9;

// positive for compression
y = ((1+tan(theta)*tan(theta))/(25*d)-tan(theta))*Fsw*tan(theta);

//Do not allow axial load to be reduced below residual capacity (may be zero)
//Input as positive
if (y < Fres) {

y = Fres;
}
return y;

}

D.4 HYSTERETIC UNIAXIAL MATERIAL

This section describes the Hysteretic uniaxial material available in OpenSees to model a piece-wise

linear constitutive relationship including strength degradation, stiffness degradation, and pinching.

The LimitState uniaxial material described in this chapter, and used to define the response of the

shear and axial failure springs described in Chapters 4 and 8, was developed based on Hysteretic

material. The Hysteretic material model in OpenSees was developed based on a similar material

model implemented in the finite-element library FEDEAS (Filippou and Spacone, 1996).

The input command for Hysteretic material is given in Table D-5. The backbone parame-

ters are defined in Figure D-4. The pinching parameters are defined in Figure D-5. The unloading

stiffness parameter is defined in Figure D-6. The damage parameters are not used in the study
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described in this report. Given px = 1.0, py = 1.0, β = 0.0, D1 = 0.0, D2 = 0.0 (i.e., no effect from

damage parameters), Hysteretic material will obey Clough-type hysteretic laws (Clough, 1966).

Figure D-7 illustrates the response of Hysteretic material for the parameters used for the

center column shear spring model described in Chapter 8 (i.e., px = 0.5, py = 0.4, β = 0.4, D1 = 0.0,

D2 = 0.0).

Table D-5. OpenSees input command for Hysteretic uniaxial material 
(OpenSees, 2002)

Hysteretic Material
This command is used to construct a uniaxial hysteretic material object with
pinching of force and deformation, damage due to ductility and energy, and
degraded unloading stiffness based on ductility.

uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p
$e3p> $s1n $e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY
$damage1 $damage2 <$beta>.

$matTag unique material object integer tag

$s1p $e1p stress and strain (or force & deformation) at first point of
the envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point
of the envelope in the positive direction

$s3p $e3p stress and strain (or force & deformation) at third point of
the envelope in the positive direction (optional)

$s1n $e1n stress and strain (or force & deformation) at first point of
the envelope in the negative direction*

$s2n $e2n stress and strain (or force & deformation) at second point
of the envelope in the negative direction*

$s3n $e3n stress and strain (or force & deformation) at third point of
the envelope in the negative direction (optional)*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchY pinching factor for stress (or force) during reloading

$damage1 damage due to ductility: D1(µ-1)

$damage2 damage due to energy: D2(Ei/Eult)

$beta power used to determine the degraded unloading stiffness
based on ductility, µ-β (optional, default=0.0)

*NOTE: negative backbone points should be entered as negative numeric values
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Figure D-4. Definition of backbone parameters for Hysteretic material

Figure D-5. Definition of pinching parameters for Hysteretic material 
(adapted from Scott, 2003)
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Figure D-6. Definition of unloading parameter for Hysteretic material

Figure D-7. Example of Hysteretic material response with pinching and unloading stiff-
ness degradation parameters (px = 0.5, py = 0.4, β = 0.4, D1 = 0.0, D2 = 0.0)
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Appendix E: Videos from Shear-Failure Shake 
Table Tests

The attached compact disk contains processed videos from the shear-failure shake table tests

described in Chapter 6. The videos are approximately synchronized with data plots, allowing for

comparison of the damage states of the specimens with measured response quantities. The synchro-

nization was achieved by aligning an audio signal from the shake table operator with the start of

the recorded data. Synchronization was further improved by matching the observed peaks in dis-

placement with the significant peaks in the recorded data.

The videos are provided in two formats: AVI and MPEG. The AVI files provide higher

quality images but require significantly more disk space. The contents of each file is described in

Table E-1.
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Table E-1. Description of video files

Filename File Type Description

Spec1_25fps AVI, MPEG Shear hysteretic response using relative displacements for 
Specimen 1 (Figure 6-15) synchronized with:

Video of full frame (total displacements)
Video of center column (relative displacements)
Video of top of center column (total displacements) 

Spec2_25fps AVI, MPEG Shear hysteretic response using relative displacements for 
Specimen 2 (Figure 6-16) synchronized with:

Video of full frame (total displacements)
Video of center column (relative displacements)
Video of top of center column (total displacements) 

Spec2_axial AVI, MPEG Relations from Figure 6-19 using relative displacements for 
Specimen 2 synchronized with:

Video of top of center column (total displacements) 

axial_compare AVI, MPEG Center column axial load histories from Figure 6-14 synchro-
nized with:

Video of top of center column (Specimen 1)
Video of top of center column (Specimen 2)

fullcolumn_splitscreen AVI Videos of center column from both specimens synchronized.

dataPlots HTML Comparison of lateral drift response (Figure 6-5) with state of 
center columns at 0.0, 16.7, 24.9, 29.8, 70.0 seconds.
Roll mouse over symbols to see changes to center column.
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