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ABSTRACT

The collapse vulnerability of reinforced concrete building frames constructed before the introduc-
tion of modern seismic codes has been well documented by earthquake reconnaissance, but the
mechanisms that lead to collapse are not yet well understood. The collapse of a structure can occur
only if the structure loses its ability to support gravity loads. Among other causes, the loss of grav-
ity load capacity can result from column buckling, unseating of the supported beam, P-d instability,
or degradation of axial capacity due to column shear failure. Thislast cause and the effect of the
axial load failure on therest of the building frame are the focus of the study presented in thisreport.

An empirical model, based on the evaluation of results from an experimental database, is
developed to estimate the drift at shear failure of existing reinforced concrete building columns. A
shear-friction model is also devel oped to represent the general observation from experimental tests
that the drift at axial failure of a shear-damaged column is directly proportional to the amount of
transverse reinforcement and is inversely proportional to the magnitude of the axial load. The two
drift capacity models are incorporated in anonlinear uniaxial constitutive model implementedin a
structural analysis platform to alow for the evaluation of the influence of shear and axial load
column failures on the response of a building.

Shaketable tests were designed to observe the process of dynamic shear and axial load fail-
uresin reinforced concrete columns when an alternative load path is provided for load redistribu-
tion. The results from these tests provide data on the dynamic shear strength and the hysteretic
behavior of columnsfailing in shear, the loss of axial |oad capacity after shear failure, the redistri-
bution of loads in a frame after shear and axia failures of a single column, and the influence of
axial load on each of the above-mentioned variables. An analytical model of the shake table spec-
imens, incorporating the proposed drift capacity models to capture the observed shear and axial

load failures, provides a good estimate of the measured response of the specimens.
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1 Introduction

1.1 BACKGROUND

Experimental research and post-earthquake reconnai ssance have demonstrated that reinforced con-
crete columns with light or widely spaced transverse reinforcement are vulnerable to shear failure
during earthquakes. Such damage can aso lead to areduction in axial load capacity, although this
process is not well understood. As the axial capacity diminishes, the gravity loads carried by the
column must be transferred to neighboring elements, possibly leading to a progression of damage,
and in turn, collapse of the building.

Current methodologies for the evaluation of existing structures (ASCE, 2000) only con-
sider the damage to individual components when evaluating a building for the collapse limit state.
Reconnaissance of recent earthquakes (Sezen et al., 2000) provides evidence that components can
experience significant damage, including column shear failures and loss of axial load capacity,
without collapse of the building system, indicating that the entire system should be considered
when evaluating the collapse limit state. To implement a system-based capacity assessment
method, analytical modelsincorporating the shear and axial load failure of reinforced concrete col-
umns are required.

Engineersinvolved in the seismic retrofit of buildingsin California have found that, given
the current state of knowledge, it is frequently not economically feasible to protect all columnsin
an existing reinforced concrete building from shear failure during strong ground motion. Given
the lack of understanding of how the axial loads will be supported after shear failure, some engi-
neers haveresorted to installing secondary gravity load support systemsto ensure that shear failure

of individual columns does not lead to collapse of the building (Holmes, 2000). Hence, a better



understanding of column axial load capacity after shear failure may lead to a significant reduction
in seismic retrofit costs.

The gravity load collapse of structures during earthquakes involves a complicated interac-
tion between the lateral demands imposed by the ground motion, the vertical demands imposed by
the weight of the structure and by overturning, the lateral capacity of the structural system, and the
vertical capacity of the structure to support the gravity loads. Collapse of the structural system can
result if the lateral demands cause a degradation in the lateral capacity that in turn leadsto the ver-
tical capacity degrading below the level of the vertical demands. The lack of adequate models cap-
turing the interaction between the lateral and vertical capacity of building frames has been
identified as a critical deficiency of current methods used to assess the collapse potential of rein-
forced concrete buildings (Comartin, 2001).

Research isrequired to develop practical shear and axial-load-capacity models for existing
reinforced concrete columns that can be implemented in an analytical model. Furthermore, exper-
imental research is required to validate the ability of analytical models to capture the critical
response characteristics of existing reinforced concrete building frames. After areview of pertinent
existing research, the scope and objectives of the current study will be defined in an effort to

address the issues discussed above.

1.2 PREVIOUS RESEARCH

1.2.1 Shear Response of Existing Reinforced Concrete Columns

A vast amount of research, both experimental and analytical, has been conducted to investigate the
shear behavior of reinforced concrete elements. Only a small subset of this research, however, is
applicable to existing reinforced concrete columns with wide spacing of the transverse reinforce-
ment. Sezen (2002) provides a thorough review of experimental research on existing reinforced
concrete columns experiencing flexura yielding before shear failure. Most of these studies are
included in the database described in Section 2.2.

Several models have been developed to estimate the degradation of column shear strength
with increasing inelastic deformations (Watanabe and Ichinose, 1992; Aschheim and Moehle,
1992; Priestley et al. 1994; Sezen, 2002). These models are useful for estimating the maximum

shear demand a column can withstand, however, they do not provide areliable estimate of the drift



capacity at shear failure. Only alimited number of drift capacity models have been developed for
columns experiencing flexural yielding before shear failure (Pujol et al., 1999; Pujol et al., 2000;
Pujol, 2002; and Kato and Ohnishi, 2002). Each of these models are described in detail in
Section 2.3.

1.2.2 Axial Load Failure of Existing Reinforced Concrete Columns

A major obstacle to studying the response of building frames at the point of incipient collapse is
the lack of experimental data at this extreme performance level. Most structural testing for earth-
guake engineering to date has concentrated on the lateral resistance of the structural elements. With
the recent effort to develop performance-based seismic design methodologies, researchers have
begun to recognize the need to understand not just the shear capacity of older reinforced concrete
columnsbut al so the capacity to sustain axial |oads after shear failure. Full-scale shear-critical rein-
forced concrete building columns were tested at UC Berkeley under cyclic lateral loads until the
column could no longer sustain the applied axial load. These tests have demonstrated that the loss
of axial load capacity does not necessarily follow immediately after aloss of lateral load capacity
(Lynn, 2001; Sezen, 2002). The results suggest that the drift at which axial failure occurs is depen-
dent on the axial stress on the column and the amount of transverse reinforcement (refer to
Section 3.2 for more details on these tests).

Several pseudo-static tests have been performed in Japan to investigate the axial capacity
of shear-damaged columns (Y oshimura and Y amanaka, 2000; Nakamura and Y oshimura, 2002;
Tasai, 1999; Tasai, 2000; Kato and Ohnishi, 2002; Kabeyasawa et al., 2002). Based on the results
from six columns (three experiencing shear failure before flexural yielding and three failing after
flexura yielding) subjected to avariety of lateral loading routineswhile under constant axial stress,
Y oshimuraand Y amanaka (2000) found that the deformation increment ratio (defined as the ratio
of thevertical deformation increment to the lateral deformation increment) was approximately con-
stant at axial failurefor all six columns, regardless of the loading routine. This conclusion was also
supported by four column tests performed by Nakamuraand Y oshimura (2002) where the principle
variableswerethe applied axial stressand type of unidirectional loading (i.e., cyclic or monotonic).
These tests also suggested that axial failure occurred when the shear capacity was reduced to
approximately zero, and that the drift at axial failure decreased with increasing axial stress.



Tasai (2000) reported results from five pseudo-static tests on columns designed with
approximately equal shear and flexural strengths. Each column, subjected to aconstant axial stress,
was tested under unidirectional cyclic lateral loads to different levels of damage beyond the peak
shear strength. To determine the residual axial strength, the columns were returned to plumb ver-
tical, and then subjected to increasing axial compression until failure. Sliding along the diagonal
shear crackswas observed before axial failure. Theresultsindicated that the residual axial capacity
decreased proportionally with the anincrease in the maximum lateral drift and the amount of shear-
strength degradation. Tasai (2000) proposed that the residual axial strength could be estimated by
summing the axial load carried by a truss mechanism, an arch mechanism, and the longitudinal

reinforcement:

P, = ObM\,+ 0,bD+0 A (1.2)

res

where .o, is the concrete compressive stress in a strut of a truss mechanism selected based on the
AlJ Guidelines (1999), b,Aj, is the effective area of the strut according to the AlJ Guidelines, .6,
isthe concrete compressive stress determined based on an arch mechanism, bD is the gross cross-
sectional area of the column, and 6, and A; are the yield stress and area of the longitudinal rein-
forcement, respectively. By summing the three components together, as shown in Equation 1.1,
any differences in the orientation of the three forces has been ignored. Tasal concluded that the
deterioration of the residual axial capacity with increasing drift demand was related to the deterio-
ration of .o,

Based on the results from 32 column specimens tested in Japan, Kato and Ohnishi (2002)
calibrated a drift capacity model to estimate both the drift at shear failure and at axial failure.
Details of the model are presented in Section 2.3.4.

1.2.3 Shake Table Tests

Only limited dynamic tests have been conducted to investigate the shear and axial load failure of
existing reinforced concrete columns during earthquakes. Minowa, et al. (1995) performed shake
tableteststo investigate the loss of axial |oad capacity after shear failure of reinforced concrete col-
umns with different hoop spacing. The test specimens were composed of four similar columns
connected by a rigid mass and, hence, did not incorporate redundancy expected in ordinary build-

ing frames. The results showed that columns with smaller hoop spacing can maintain the gravity



loads at larger driftsthan columnswith larger hoop spacing. The shake table test results were com-
pared with the results from pseudo-static tests on the same type of specimen, finding that the
strength and deformation capacities of the two types of tests were very close, even though the
damage patterns were different.

Inoue, et al. (2000) compared the results of shake table and pseudo-static tests on shear-
critical columns. The displacement routine for the pseudo-static tests was selected based on the
recorded displacements from the shake table tests. The results suggested that the columns tested
under pseudo-static conditions may experience shear failures at lower drifts than those tested on a

shake table. No results beyond shear failure were presented.

1.2.4 Analytical Models for Shear-Critical Columns

The majority of analytical modelsfor the response prediction of reinforced concrete members have
been developed to capture the flexural response of the component when subjected to seismic
demands (Otani and Sozen, 1972; Chen and Powell, 1982; Zeris and Mahin, 1991; Spaconeet al.,
1996). Such models have been used to estimate the point of shear failure through a post-processing
comparison of the calculated flexural response with a shear-strength model, such as those
described in Section 1.2.1 (An and Maekawa, 1998; Browning et al., 2000; Tsuchiyaet al., 2001;
Y oshikawa and Miyagi, 2001). To determine the response of a structure with sufficient accuracy
as it approaches the collapse limit state it is necessary to not only detect the occurrence of shear
failures, but also the influence of shear failure, and subsequent degradation of shear strength, on
the response of the structure.

Several detailed modelsinvolving the discretization of asingle columninto many finite ele-
ments, capable of capturing the degrading behavior after shear failure, have been developed
(Kaneko et a., 2001; Ozbolt et al., 2001; Shing and Spencer, 2001). Although such models provide
insight into the compl ex stress and strain distributions during shear failure, the computational effort
required makes these modelsimpractical for the analysis of larger structural systemssuch asbuild-
ing frames.

Analytical models for shear-critica columns have also been developed using multiple
uniaxial elements in a lattice or truss system (Kim and Mander, 1999; Niwa et al., 2001). The

model s capture interaction between flexure and shear, while explicitly modeling the critical force-
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Figure 1-1. Illustration of macro-element model based on a frame element with lumped
plasticity flexural springs (Pincheira et al., 1999)

resisting components (i.e., the longitudinal and transverse reinforcement, diagonal compression

struts, and compression struts due to arch action). Similar to the finite-element mesh models, how-

ever, the large number of elements and nodes required to model a single column does not facilitate

the use of lattice or truss models for the analysis of large structural systems. Macro-elements,

incorporating al of the column response into one or two elements, are preferred for frame analysis.

Several macro-elements incorporating the effects of shear failure have been developed
based on a frame element with lumped-plasticity at the element ends and an elastic interior
(Figure 1-1). Pincheira and Jirsa (1992) accounted for shear failure by eliminating the latera
strength of the column element after the shear demand exceeded a specified shear strength. A
column element developed by Li and Jirsa (1998) allowsfor aresidual shear capacity after failure
by incorporating two subelements in parallel. Once a specified shear strength is exceeded, one of
the parallel subelementsis converted to atruss e ement, while the other continues to deform later-
ally, and resist load, through yielding of its plastic hinges.

Pincheiraet a. (1999) devel oped a column element incorporating nonlinear shear and rota-
tional springsin seriesas shown in Figure 1-1. The backbone of the nonlinear shear spring allowed
for strength degradation and was selected based on the Modified Compression Field Theory (Vec-
chio and Callins, 1986). The solution strategy, however, required the use of a small fictitious pos-
itive slope when on the descending branch of the backbone curve, resulting in a force unbalance
which was applied to the model in the next time step. The procedure can be very computationally

intensive and may not capture the dynamic characteristics of a softening structure.



Each of the macro-element column models discussed above determine the point of shear-
strength degradation based on the column shear force exceeding a specified shear strength or the
peak in the shear spring backbone. These models do not account for the degradation of shear
strength with inelastic flexural deformations and, hence, may not accurately predict the point of
shear failure for columns experiencing flexural yielding before shear failure. Ricles et al. (1998)
used the shear-strength model by Priestley et al. (1994) to initiate the shear-strength degradation
of a macro-element column model. The Priestley model accounts for degradation of the shear
strength with increasing displacement ductility demand and, hence, its incorporation into the
macro-element model allows for flexural yielding before shear failure. Several deficiencies of
using a shear-strength model to detect the point of shear failure will be discussed in Section 2.3.1.

Macro-element models based on a fiber element, and incorporating shear deformations,
have also been developed to capture the influence of the axial-flexural coupling response of rein-
forced concrete elements (Ranzo and Petrangeli, 1998; Petrangeli, 1999; and Shirai et a., 2001).
For the elements by Ranzo and Petrangeli, and Shiral et al., a shear model acts in series with the
fiber section, but no explicit coupling exists between the response of the shear model and the flex-
ural or axial deformations. The model proposed by Petrangeli (1999) allows for coupling between
the shear response and the flexural and axial behavior. The shear deformations are determined by
requiring equilibrium between the concrete and transverse reinforcement. The |oad-displacement
behavior for each of the models based on a fiber element is dependent on the concrete and steel
models employed for the fibers.

None of the column models discussed above are capabl e of representing the axial failure of
shear-critical columns. Little or no attention has been given to incorporating the influence of axial
failures in analytical models. Casciati and Faravelli (1984) considered column axial failuresin a
building frame analysis by removing a column element entirely if failure was detected. (Failure of
acomponent was defined by damage indices, determined based on theflexural response, exceeding
specified values.) Casciati and Faravelli found that, in general, axial failure of asingle column led
to global failure of the system.

For the investigation of intermediate-story collapses of existing reinforced concrete build-
ings, Y oshimura and Nakamura (2002) concluded that a frame analysis was impractical, since “it
isimpossible at present to represent the column axial behavior at and after the collapse realisti-
caly.” Instead, an equivalent shear building model was used with the story-drift at collapse (i.e.,



when the story-shear capacity has degraded to zero) defined by an estimate of the story-drift at
axial failure based on experimental data (Nakamura and Y oshimura, 2002).

1.3 OBJECTIVES AND SCOPE

The overall objective of this research is to quantify the ability of a structural system to resist col-
lapse. (Note that for the current study, collapse of a building frame is defined as the loss of the
capacity to sustain the gravity loads from the floors above.) Such a broad objective requires some
definition of scope. The project described hereinislimited to the study of two-dimensional frames.
Obvioudy, out-of-plane frames and slab systems will contribute to the capacity of a building to
resist collapse; however, the response of two-dimensional building frames must bewell understood
before the whole building system can be realistically considered.

This study is further limited to reinforced concrete frames with columns that can be char-
acterized by alow ductility capacity and a shear-failure mode. The shear failure is accompanied
by significant lateral strength degradation, and may be followed by aloss of axial load capacity.
“Short” columns or piers, characterized by a shear failure before yielding of the longitudinal rein-
forcement, are not directly considered in this study, although, some of the general theory regarding
loss of axial load capacity after shear failure (Chapter 3) may be extended to this class of elements.

The behavior of the component (column) must be well defined before useful results can be
obtained for the system (building frame). Hence, a primary objective of this study is the develop-
ment and validation of an analytical model for shear-critical columns. In contrast to existing
models described in Section 1.2.4, the model presented here incorporates both shear and axial |oad
faillures in a general purpose macro-element model for building frame analysis. Given such a
model, engineers will be better equipped to not only evaluate the capacity of vulnerable columns,
but also determine the influence of shear and axial |oad failures on therest of the structural system.

Asdiscussed in Section 1.2.3, very few dynamic tests have been conducted to investigate
the gravity load collapse of reinforced concrete frames. In an attempt to fill this gap and provide
benchmark data for analytical modeling, shake table tests of areinforced concrete frame incorpo-
rating a shear-critical column have been conducted as part of this study. The objectives of the shake

table tests were as follows:



1. toobtain dataonthe dynamic shear strength and the hysteretic behavior of columnsfailing
in shear,

to observe the process by which the axial load may be lost in a shear-damaged column,

to observe the redistribution of loads due to the shear and axial load failure of asingle col-
umn in asimplified reinforced concrete frame, and

4. toobserve the influence of axial load on each of the above mentioned variables.

14  ORGANIZATION

This report has been organized in the following manner: the development of the capacity and ana-
lytical models for shear-critical columns; apresentation of the response of the shake table test spec-
imens; and a validation of the analytica model through a comparison with the shake table test
results.

Chapter 2, “Drift at Shear Failure,” evaluates several existing modelsfor the drift at shear
failure based on a database of 49 pseudo-static column tests. In an effort to reduce the wide disper-
sion of predicted drift capacities based on the existing models, two empirical drift capacity models
are proposed based on an evaluation of the critical parameters influencing the database results.

Chapter 3, “Axia Capacity Model,” describes amodel to estimate the drift at axial failure
for a shear-damaged column. The model evaluates the capacity to resist diding aong the shear-
failure plane based on shear-friction concepts. The accuracy of the model is evaluated based on the
observed drift capacity at axial failure for twelve pseudo-static column tests.

Chapter 4, “Limit State Failure Model,” describes the implementation of the capacity
models from Chapters 2 and 3 in a uniaxial material model for the OpenSees analytical platform
(OpenSees, 2002). The material model can be used in series with abeam-column element to model
the shear and axial load failure of shear-critical columnsin a building frame analysis. The object-
oriented code written to implement the Limit State Failure model is described in Appendix D.

Chapter 5, “Design of Shake Table Tests,” describes the design, construction, instrumenta-
tion, and shake table testing of two one-half scale reinforced concrete frame specimens, differing
only by the axial load applied to the shear-critical center column. The test specimens were com-
posed of three columns fixed at their base and interconnected by a beam at the upper level. The
center column had wide transverse reinforcement spacing making it vulnerable to shear failure and

subsequent axial failure during testing. A scaled ground motion record from the 1985 Chile earth-



guake was used as theinput table motion. More details on the design, construction, and experimen-
tal setup are provided in Appendices A and B.

Chapter 6, “Shake Table Test Results,” presents and discusses the results from the shake
table tests. The results from the two specimens are compared to eval uate the influence of the axial
load on the center column. The focus of the discussionison the response of the shear-critical center
column and the redistribution of loads during shear and axial failure. Videos of the tests, synchro-
nized with data plots, are included on a compact disk as part of Appendix E.

Chapter 7, “ Comparison of Test Data with Predictive Models,” evaluates the accuracy of
models commonly used in practice to predict the yield displacement, elastic stiffness, and flexural
strength of the center and outside columns of the test specimens. The test results are a'so compared
with the drift capacity models for shear and axial l1oad failure from Chapters 2 and 3, and asimple
model is used to represent the response of the beam during axial load redistribution.

Chapter 8, “ Anaysis of Shake Table Test Specimens,” compares the response of the shake
table specimens with the results from an analytical model incorporating the capacity models from
Chapters 2 and 3 using the uniaxial material model developed in Chapter 4. The comparison allows
for an evaluation of the ability of the macro-element column model to represent the response of
shear-critical columns during shear and axial load failure. The influence of several model param-
eters on the accuracy of the predicted response is also investigated.

Finally, Chapter 9, “Conclusions and Future Work,” will summarize the critical results
from the report and recommend topicsin need of further investigation to achieve the overall objec-

tive of this research: to quantify the ability of a structural system to resist collapse.
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2 Drift at Shear Failure

2.1 INTRODUCTION

It has been well established by experimental evidence that many existing reinforced concrete col-
umns are vulnerable to shear failure after flexural yielding (Kokusho, 1964; Ikeda, 1968; Ume-
muro and Endo, 1970; Wight and Sozen, 1973; Ohue et a., 1985; among others). Several models
have been devel oped to represent the degradation of shear strength with increasing inelastic defor-
mations (Watanabe and Ichinose, 1992; Aschheim and Moehle, 1992; Priestley et a. 1994; Sezen,
2002). Although these shear-strength models are useful for estimating the column capacity for con-
ventional strength-based design and assessment, the recent move toward displacement-based
design and assessment methods (ATC, 1996; ASCE, 2000) requires a model for the drift beyond
which shear failureis expected. Furthermore, after flexural yielding the force demand on a column
will be approximately constant, while the displacement demand will increase substantially, sug-
gesting that adrift capacity model is more useful for columns experiencing flexural-shear failures
such as those considered in this study. Although the shear-strength models relate the degradation
of shear strength to displacement ductility, these models may not be appropriate for assessing the
drift at shear failure.

Three drift capacity models have been proposed by Pujol et al. (1999), Pujol et al. (2000),
and Pujol (2002). The first is based only on statistical evaluation of experimental test results. The
second model is based on the Coulomb failure criterion and uses experimental test data to relate
the degradation of the cohesion coefficient to the drift at shear failure. The final model endeavors
to incorporate the effect of displacement history on the drift capacity. Considering the additional
complexities of implementing the final model in ageneral-purpose analytical code, this model has
not been evaluated in this study.



This chapter will use adatabase of 50 shear-critical reinforced concrete columnsto evaluate

the drift capacity at shear failure calculated by the following models:

» The shear-strength model by Sezen (2002)

The statistical drift capacity model by Pujol et al. (1999)

A model based on Coulomb’s criterion by Pujol et a. (2000)

A plastic drift capacity model by Kato and Ohnishi (2002)

Two empirical models based on observations from the shear-critical column database

2.2 EXPERIMENTAL DATABASE

With the goal of selecting acapacity model to be used in the analysis of shear-critical columns (see
Chapter 4), the applicability of the models described above to existing reinforced concrete building
columns will be evaluated using a database of 50 experimental tests. The database, compiled by
Sezen (2002), consists of column specimenswith observed shear distressat failure and tested under

unidirectional lateral load in single or double curvature with the following range of properties:

 shear spanto depth ratio: 2.0 < i—‘ls 4.0

concrete compressive strength: 2500 < f.” < 6500 ps
 longitudinal reinforcement nominal yield stress: 40 < [, <80 ks

+ longitudinal reinforcement ratio: 0.01<p,<0.08

 transverse reinforcement ratio: 0.01 < p—fﬂ <0.12

* maximum shear stress. 2.0 < L < 9.0 (ps units)
The specimen properties and selected response quantities are presented in Tables 2-1 and
2-2. Note that all displacements are given for an equivalent column in double curvature (i.e., for
those specimens tested in single curvature the displacementsin Tables 2-1 and 2-2 are twice those
recorded during the experiment). Theyield displacement and the displacement at shear failure were

determined based on the backbone curve from the test data as shown in Figure 2-1. For this pur-
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Table 2-1. Database of shear-critical column testsl(double-curvature specimens)

Specimen b h d a s Plong p’ fy| fyt fo P Ay Ag | Viest
in. in. in. in. in. ksi | ksi | ksi | kips | in. in. kips
Sezen (2002)
2CLD12 18 18 155 |58 12 0.025 |0.0017 |64 |68 |3.06 |150 |1.04 |2.97 |70.8
2CHD12 18 18 15.5 | 58 12 0.025 | 0.0017 |64 |68 |3.06 |600 |0.57 |1.02 |80.7
2CVD122 18 18 15.5 | 58 12 0.025 | 0.0017 |64 |68 |3.03 |500 |0.76 |2.23 |67.6
2CLD12M | 18 18 155 |58 12 0.025 |0.0017 |64 |68 |3.16 [150 |1.11 |3.33 |66.2
Lynn (2001)
3CLH18 18 18 15 58 18 0.03 0.001 48 (58 |3.71 |113 |0.78 |1.2 61.0
3SLH18 18 18 15 58 18 0.03 0.001 48 (58 |3.71 |113 | 0.61 1.15 | 60.0
2CLH18 18 18 15 58 18 0.02 |0.001 |48 (58 |48 [113 |0.72 |3 54.0
2SLH18 18 18 15 58 18 0.02 |0.001 |48 (58 |48 |[113 |0.63 |24 |[52.0
2CMH18 18 18 15 58 18 0.02 |0.001 |48 (58 |3.73 [340 |0.61 |12 [71.0
3CMH18 18 18 15 58 18 0.03 0.001 48 |58 |4.01 |340 |0.61 1.2 76.0
3CMD12 18 18 15 58 12 0.03 0.0017 |48 |58 |4.01 |340 |0.74 |1.8 80.0
3SMD12 18 18 15 58 12 0.03 0.0017 |48 |58 |3.73 |340 |0.86 |1.8 85.0
Ohue Morimoto, Fuijii, and Morita (1985)
2D16RS 7.87 |7.87 |6.89 | 157 [1.97 |0.02 |0.0057 |54 |46 |4.65 |41.1 |0.3 1.08 |22.9
4D13RS 7.87 | 7.87 |6.89 |15.7 |1.97 |0.027 | 0.0057 |54 |46 |4.34 |411 |0.26 |0.58 |24.9
Esaki (1996)
H-2-1/5 7.87 | 7.87 |6.89 | 157 |1.97 |0.025 | 0.0052 |52 |53 |3.34 |36.2 |0.16 |0.79 |23.2
HT-2-1/5 7.87 | 7.87 |6.89 | 157 | 295 |0.025 | 0.0052 |52 |53 |2.93 |31.8 |0.19 |0.82 |22.9
H-2-1/3 7.87 |7.87 |6.89 | 157 |1.57 |0.025 | 0.0065 |52 |53 |3.34 |60.4 |0.14 |0.63 |27.1
HT-2-1/3 7.87 | 7.87 |6.89 | 157 |2.36 |0.025 | 0.0065 |52 |53 |2.93 |53 0.19 [0.79 | 25.1

1. Notation: b = column section width; h = column section height; d = depth to centerline of tension

reinforcement; a = shear span; s = tie spacing; pjong = longitudinal reinforcement ratio (Ag/bh); p
transverse reinforcement ratio (Ag/bs); fy; = longitudinal steel yield strength; f,; = transverse steel

" —

yield strength; f’ . = concrete strength; P = axial load (at time of shear failure for variable axial load
test); Ay = yield displacement; As = displacement at shear failure (at 20% lossin peak shear); Vieg =

peak shear recorded (see Figure 2-1 for definition of Ay, Ag, and Vyeq).

2. Variable axial load test. All datagiven for compression cycles (i.e., direction in which shear failure
was initiated.

Table 2-2. Database of shear-critical column tests (single-curvature specimens)

Specimen b h d a s Plong p” fy| fyt f's P Ay Ag | Viest
in. in. in. in. in. ksi | ksi | ksi | kips | in. in. kips

Li, Park, and Tanaka (1995)

u-7 15.8 | 15.8 [ 14.8 [ 39.4 | 4.7 |0.024 | 0.0047 [64.7 |55.4 |4.21 | 104 |0.7 2.8 73.7

u-8 15.8 | 15.8 | 14.8 | 39.4 | 4.7 | 0.024 | 0.0052 | 64.7 | 554 | 4.86 | 241 | 0.66 | 1.66 | 88.3

u-9 15.8 | 158 | 14.8 | 39.4 | 4.7 | 0.024 | 0.0057 | 64.7 |55.4 | 495 | 368 | 0.6 2.4 96.6
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Table 2-2. (Continued) Database of shear-critical column tests (single-curvature specimens)

Specimen b h d a s Plong p" fy| fyt f's P Ay A | Viest
in. in. in. in. in. ksi | ksi | ksi | kips | in. in. kips
Saatcioglu and Ozebe (1989)
U1 13.8 | 13.8 |12 39.4 |59 |0.033 | 0.003 624 (68.2 [6.32 |0 1.34 | 4.18 | 61.8
u2 13.8 | 13.8 |12 39.4 |59 |0.033 | 0.003 65.7 | 68.2 |4.38 | 135 | 1.18 | 3.38 | 60.7
us 13.8 | 13.8 |12 394 |3 0.033 | 0.006 62.4 | 68.2 | 5.05 | 135 | 1.26 | 3.54 | 60.3
Yalcin (1997)
BR-S1 ‘21.7 ‘21.7 ‘19 ‘58.5 ‘11.8 ‘0.02 ‘0.001 ‘64.5 ‘61.6 ‘6.5 ‘469 ‘0.64 ‘1.82 ‘130.0
Ikeda (1968)
43 7.87 | 7.87 |6.81 |19.7 |39 |0.02 |0.0028 |63 |81 284 |18 |0.26 | 1.04 | 16.6
44 7.87 | 7.87 |6.81 |19.7 |39 |0.02 |0.0028 |63 |81 284 |18 |0.26 | 0.64 [17.2
45 787 | 787 |6.81 |19.7 | 3.9 |0.02 0.0028 | 63 81 2.84 | 35 0.38 | 0.64 | 18.5
46 787 | 787 |6.81 |19.7 | 3.9 |0.02 0.0028 | 63 81 2.84 | 35 0.38 [ 0.48 | 18.1
62 7.87 | 7.87 |6.81 |19.7 [3.9 |0.02 |0.0028 |50 |69 |2.84 |18 |[0.24 |1.46 |13.0
63 7.87 | 7.87 |6.81 |19.7 [3.9 |0.02 |0.0028 |50 |69 |[2.84 |35 |[024 |11 |[15.4
64 7.87 | 7.87 |6.81 |19.7 [3.9 |0.02 |0.0028 |50 |69 |2.84 |35 |[0.28 |1.32 |15.4
Umemura and Endo (1970)
205 787 |7.87 |7.09 |23.6 |39 |0.02 0.0028 | 67 47 2.55 | 35 0.38 [ 0.98 | 16.0
207 7.87 | 7.87 |7.09 |158 [3.9 |0.02 |0.0028 |67 |47 |255 |35 |[0.32 |05 |[23.8
214 7.87 | 7.87 |7.09 |236 (79 |002 |0.0014 |67 |47 |255 |88 |0.48 |0.82 |18.6
220 7.87 | 7.87 |7.09 |158 [4.7 |0.01 |0.0011 |55 |94 |477 |35 |[0.12 |0.94 [17.6
231 7.87 |7.87 |7.09 |158 [3.9 |0.01 |0.0013 (47 |76 |[214 |35 |0.08 |0.64 |11.4
232 7.87 | 7.87 |7.09 |158 [3.9 |0.01 |0.0013 |47 |76 19 (38 |01 |064 |131
233 7.87 | 7.87 |7.09 |158 [3.9 |0.01 |0.0013 |54 |76 |[2.02 |35 |[0.12 |0.54 |[15.5
234 7.87 | 7.87 |7.09 |158 [3.9 |0.01 |0.0013 |54 |76 19 (385 |0.12 | 064 | 151
Kokusho (1964)
372 7.87 | 7.87 |6.69 |19.7 [3.9 |0.01 |0.0031 |76 |51 288 |35 |02 |0.84 167
373 787 | 787 |6.69 |19.7 | 3.9 |0.02 0.0031 | 76 51 2.96 |35 0.28 [ 0.78 | 19.8
Kokusho and Fukuhara (1965)
452 787 | 787 |6.69 |19.7 |3.9 |0.03 0.0031 | 52 88 3.18 | 88 0.24 | 0.6 24.8
454 7.87 | 7.87 |6.69 |19.7 [3.9 |0.04 |0.0031 |52 |88 |[3.18 |88 |[0.18 |04 |[24.8
Wight and Sozen (1973)
40.033a 6 12 10.5 | 345 |5 0.024 | 0.0033 | 72 50 5.03 [ 425 | 0.6 25 22.3
40.033 6 12 10.5 | 345 |5 0.024 | 0.0033 | 72 50 4.87 | 40 0.96 |3.46 |22.8
25.033 6 12 10.5 | 345 |5 0.024 | 0.0033 | 72 50 488 | 25 0.94 (248 |23.5
0.033 6 12 [105 |345 |5 0.024 | 0.0033 |72 |50 |4.64 |0 06 |22 |221
40.048 6 12 |[10.5 | 345 [3.5 |0.024 |0.0048 |72 |50 |3.78 |40 114 [3.82 |21.2
0.048 6 12 10.5 | 345 |35 |0.024 | 0.0048 |72 50 375 |0 1.06 | 2.6 23.6
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Shear-strength model
(Sezen, 2002)

A

idealized

K—backbone
Viest _|_ _ _

O'8Vtest -/ - — — — — — — — — ﬁ

0.7v,

test —-| —

test backbone curve
(envelope of cyclic response)

Figure 2-1. Definition of displacements reported in database and calculated by the
shear-capacity model (Section 2.3.1)
pose, the backbone curve was defined as the force-deformation response which enveloped the
entire cyclic response. For approximately 20% of the specimens the shear strength did not drop
below 80% of the maximum shear strength recorded. In such cases, Agwas taken as the maximum
displacement reported, and as such, represents alower bound to the true displacement at shear fail-
ure. Response histories and specimen details are provided in Sezen (2002).

Figure 2-2 compares the drift ratio at shear failure (i.e., the displacement at shear failure
divided by the height of the column) with several key parameters. It is apparent from the plots that
thereisconsiderable variability in the resultsand no clear relationship with any one parameter. The
datain Figure 2-2 suggest that the maximum nominal shear stress (in psi) recorded during the tests
(v =V, /(bd)), expressed as afraction of JE (psi), is not strongly correlated with the drift at
shear failure. However, the plots do suggest that for columns with high axial loads, the maximum
drift ratio at shear failure tends to be less than the median for columns with low axia loads. Fur-
thermore, columns with higher transverse reinforcement ratios, p” , tended to achieve larger drifts
at shear failure compared with columns witD lower transverse reinforcement ratios. In contrast,
thereis no discernible relationship between pf—fﬂ and the drift ratio at shear failure, suggesting that
for the specimens included in the database, the drift ratio may be better related to the amount of
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Figure 2-2. Effect of key parameters on drift ratio at shear failure
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Figure 2-3. Variation of normalized shear stress with drift ratio at shear failure

(Normalized shear st —Vf—e”/2['+ ”f ) in psi units)
ormalized shear stress = d (2,)f. pfyt) in psi units

transverse reinforcement, rather than to the strength. This conclusion is also supported by the
apparent inverse relationship between the spacing of the hoops (s/d) and the drift at shear failure.
Based on the data, the aspect ratio, a/d, has no clear relationship with the drift ratio at shear failure.

When the maximum shear stressis normalized by 2 JE + p”fyt (in psi units), as shownin
Figure 2-3, a slight degradation of the shear strength with increasing drift can be observed. This
general observation hasled to the degrading shear-strength model s proposed in theliterature (Wan-
tanabe and Ichinose, 1992; Aschheim and Moehle, 1992; Priestley et al. 1994; Sezen, 2002). The
nearly horizontal slope of the apparent relationship between the normalized shear stress and the
drift ratio at shear failure suggeststhat any small changein the shear strength would resultinalarge
changeinthedrift ratio at failure. Given the uncertainty in determining the shear strength, thismay
not be an appropriate relationship to be used for estimating the drift ratio at shear failure. The dif-
ficulties of using shear-strength modelsto predict the drift at shear failure will be discussed further

in the next section.

2.3 MODELS FOR DRIFT RATIO AT SHEAR FAILURE

Most models for estimating the drift capacity of reinforced concrete columns are based on the per-

formance of columns with good seismic detailing. Such models assume that the response is domi-
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Figure 2-4. Variation of degradation coefficient & with displacement ductility

nated by flexural deformations, and use estimates of the ultimate concrete and steel strains to
determine the ultimate curvatures the section can withstand. These models are not applicable to
older reinforced concrete columns with limited transverse reinforcement, since the degradation of
the shear strength begins before the flexural deformation capacity can be achieved. Furthermore,
the calculation of ultimate strains assumes good crack control, provided by reasonably distributed
reinforcement, such that deformations can be averaged over finite distances. Experimental studies
and earthquake reconnai ssance have shown, however, that the shear failure of older reinforced con-
crete columns often is associated with deformations concentrated along a limited number of pri-
mary cracks (Pantazopoulou, 2003). Hence, such models based on flexural mechanics will not be

considered in this chapter.

2.3.1 Shear-Strength Model (Sezen, 2002)

Similar to other shear-strength models by Aschheim and Moehle (1992) and Priestley (1994), the
model proposed by Sezen (2002) relates the column shear strength to the displacement ductility
demand. The mode! divides the shear strength into two terms: the shear carried by the concrete, V,.;

and the shear carried by the reinforcement through a 45° truss model, V..

6_“/]‘7 1+
a/d

V, = k(V.+V) =k 0.84, +kiL (2.1

6ng

The coefficient k defines the degradation of shear strength with increasing displacement
ductility, as shown in Figure 2-4. The degradation coefficient is applied to both V. and V, under

the assumption that the concrete component will diminish due to increased cracking and degrada-
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Figure 2-5. Comparison of calculated! and measured drifts for Sezen (2002)
shear-strength model

1. The idealized backbone for two of the columns passed below the shear-failure surface, indicating
that the shear-strength model would not predict shear failure for these specimens. These columns are
not included in Figure 2-5.

tion of the aggregate interlock mechanism, while the steel component is assumed to drop due to a
reduction in the bond stress capacity required for an effective truss mechanism. Derivation of the
V.. term in Equation 2.1 and further details of the shear-strength model can be found in Sezen
(2002).

For agiven column with aknown yield displacement, the shear-strength model ideally can
be used to estimate the drift at shear failure. As shown in Figure 2-1, the displacement at shear fail-
ure based on the shear-strength model, Ageqrsirs 1S the displacement at which the idealized back-
bone curve intercepts the shear-failure surface given by Equation 2.1 and Figure 2-4. Based on this
method, the drift ratio at shear failure can be calculated for each of the columnsin the experimental
database. A comparison of the results with the measured drift ratios (Figure 2-5) indicates that the
shear-strength model does not adequately predict the drift ratio at shear failure for the selected
database. (The mean of the measured drift ratio at shear failure divided by the calculated drift ratio
is 1.78; the coefficient of variation is 0.63.)

Sezen (2002) recommends against using the shear-strength model to estimate the drift ratio
at shear failure, since asmall variation in the shear strength (or flexural strength) corresponds to a

large change in the estimated drift ratio at shear failure. If the variability in the shear strength is
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Figure 2-6. Variation in displacement ductility for columns within one standard
deviation, ¢, of the mean shear strength, ., defined by Equation 2.1
assumed to be adequately represented by a normal distribution with a mean, u, given by
Equation 2.1 and a standard deviation, ¢, and the response of the column is assumed to be elastic-
perfectly-plastic before shear failure, then for the caseillustrated in Figure 2-6, the variation in the
displacement ductility demand required to cause shear failure for columnswithin £ of the mean
shear strength is (80/3)c. For example, if ¢ = 0.16 (determined by Sezen (2002) using the same
experimental database discussed above), the variation in the ductility demand, Aug, in Figure 2-6,
is4.3.
Furthermore, the shear-strength model of Sezen (2002) could be interpreted to suggest that
the column drift ratio at shear failure should increase for an increase in the axial load (Figure 2-7).
In contrast, the experimental database (Figure 2-2) suggests that an increase in the axial load may,
in some cases, reduce the drift ratio at shear failure.
Considering the deficiencies outlined above, the shear-strength model will not be used to
estimate the drift ratio at shear failure.
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Figure 2-7. Change in drift ratio at shear failure due to change in axial load
according to the shear-strength model

2.3.2 Pujol et al. (1999)

Pujol et al. (1999) used a database of 92 columns to establish a conservative estimate of the max-

imum drift ratio’. The database included both circular and rectangular cross-section columns with

the following ranges of experimental parameters:

shear span to depth ratio: 1.3 < Z—ll <5.0

concrete compressive strength: 3000 <f.” < 12500 ps
longitudinal reinforcement ratio: 0.005 < p, < 0.051
transverse reinforcement ratio: 0.0 < p” < 0.0164

maximum shear stress. 2.0 < L (ps units)

L

WK <0.2

The most significant differences with the database introduced in Section 2.2 include the

axial load ratio; 0.0<

consideration of columns with transverse reinforcement ratios greater than 1%, the relatively low

limit placed on the axial load ratio, and the inclusion of circular cross-section columns representa-

tive of bridge columns.,

1. The maximum drift ratio was defined the same as was the drift ratio at shear failure for the database presented in
Section 2.2 (drift ratio at a 20% loss in the maximum column shear strength), although the failure mode for some of
the columns was described as flexural.
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Figure 2-8. Pujol et al. (1999) model compared with database from Section 2.2

Pujol et al. (1999) observed that the ratio of the maximum drift ratli/o to the column aspect
ratio, a/d, tended to increase with an increase in the reinforcement index p—vﬂ . Based only on sta-
tistical evaluation of the database results, and in an effort to establish aconservative estimate of the

maximum drift ratio, Pujol et a. recommended the following relationship:

A P fra a
1 —_max _ F_Jyt¢ < 292
00—7 _ j (22)

Asshown in Figures 2-8 and 2-9, the maximum drift-ratio model (Equation 2.2) isnot con-
servativefor six of the columnsin the database from Section 2.2. Three of those columns were sub-
jected to axial loads in excess of the axial |oads considered in the devel opment of the model.

The mean of the measured drift ratio at shear failure divided by the drift ratio calculated
according to Equation 2.2 is 1.71; the coefficient of variation is 0.42. Since a drift capacity model
providing an estimate of the mean response is preferred for use in a performance-based design
methodology, the model by Pujol et al. (1999) will not be used in this study. Similar empirical
models providing better estimates of the mean drift ratio at shear failure are developed in
Section 2.3.5.
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Figure 2-9. Comparison of calculated and measured drifts for Pujol et al.
(1999) model

2.3.3 Pujol et al. (2000)

In an effort to determine the amount of transverse reinforcement required for columns subjected to
seismic loads, Pujol et al. (2000) devel oped a model based on Coulomb’ s criterion and calibrated
to a database of 29 columns. The model can also be used to estimate the maximum drift capacity
of areinforced concrete column (where the maximum drift capacity is defined the same asthat used
by Pujol et a. (1999), see Section 2.3.2).

Pujol et al. (2000) used the following expression, attributed to Richart et al. (1929), that

expresses the cohesion term in Coulomb’ s criterion in terms of the concrete strength:

v, = kyf.) +kyo, (2.3)

where v, is the average ultimate shear stress capacity and o, is the average stress normal to the
potential failure plane. Richart et a. (1929) estimated the coefficients k; and k, to be 1/4 and
374, respectively. Pujol et a. (2000) hypothesized that only the cohesion coefficient, k4, varied
depending on the seismic demands, and selected k,=3/4.

The coefficient k; was related to the maximum drift capacity using a database of columns

with the following ranges for the experimental parameters:
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» shear spanto depthratio: 1.9<=<35

a
d
* concrete compressive strength: 3700 < f,” < 14000 ps
+ longitudinal reinforcement ratio: 0.02 < p, < 0.036

* transversereinforcement ratio: 240 < p”f, < 1400 psi

* maximum shear stress; 6.0 < L < 13.0 (ps units)

P_ o035

Agfc’_

The most significant differences with the database introduced in Section 2.2 include the consider-

e axid load ratio: 0.07 <

ation of columns with higher transverse reinforcement ratios and relatively higher shear stresses.

Pujol et al. (2000) determined the cohesion coefficient k, for each of the columns in their
database using Equation 2.3 to define Coulomb’s criterion and the average axial, confining, and
shear stresses based on the column core dimension. Pujol et al. (2000) found that k; tended to
decrease with increasing drift ratio, and proposed the following expression as an approximate
lower bound to their database results:

A /L
by = Y1 100G/

7 3 (a/d) (24)

Figure 2-10 compares the cohesion coefficients determined for each of the columnsin the
database from Section 2.2 with Equation 2.4. (The average stresses on the column core were deter-
mined by assuming A,/A,.,,, = 1.6 for each of the columns in the database.) The results from the
database from Section 2.2 also suggest that k4 tends to decrease with increasing drift ratio.
Although Equation 2.4 was selected as alower bound to the database used by Pujol et al. (2000),
the model appears close to the mean for the database from Section 2.2,

Given the k4 coefficient calcul ated for each of the columnsin the database from Section 2.2
(Figure 2-10), the maximum drift ratio can be estimated using Equation 2.4. For any of the col-
umns where k1 > 0.14, Equation 2.4 will give a meaningless negative maximum drift ratio. How-
ever, observing that the drift ratio for the columnsincluded in the database appears to be limited to
greater than 1% (see Figure 2-2), it is proposed that the maximum drift ratio calculated using
Equation 2.4 should a'so be limited to greater than 1%. Hence the maximum drift ratio can be cal-

culated as follows:
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Figure 2-11. Comparison of calculated and measured drifts for Pujol et al.
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Figure 2-11 compares the calculated and measured drift ratios for the columns in the data-
base from Section 2.2. The mean of the measured drift ratio divided by the calculated drift ratio is

1.12; the coefficient of variation is 0.55. Although the mechanics of this model are transparent to
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the user, therelatively large coefficient of variation suggests that parameters not considered in the

model may influence the maximum drift ratio for shear-critical columns.

2.3.4 Kato and Ohnishi (2002)

Kato and Ohnishi proposed that the plastic drift capacity can be estimated based on the maximum
edge strain in the core concrete, the axia load ratio, and the cross-section dimensions. The total
drift ratio isgiven by the sum of the drift ratio at yielding of the longitudinal reinforcement and the
calculated plastic drift ratio:

A, A
i
7 + 7 (2.6)

D(HZ—SE) (%/en) (0<ey< ;)
oZE54-8) (32

where D is the full depth of the gross cross section, j, is the depth of the core, €, isthe strain at

2.7)

maximum stress for the core concrete, m is the ratio of the concrete strain at the edge of the core

concreteto €., and e;, is an equivalent axial load ratio accounting for the effect of variable axial

cp!
loads (Figure 2-12). The coefficient m was selected to achieve a good agreement between

26



0.08

0.07 go B©
0.06
8 g
©
ao.osf 0 o o
R m ]
(&)
_9004 i 2% @
9003 D'El,:, o
= g g
5 g
0.02 - O g
0.01r o'l

0008 —
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
drift ratio measured
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(2002) model
Equation 2.6 and measured drifts ratios from 36 pseudo-static column tests. For the drift at shear
failure (also defined as the drift at 20% loss in shear capacity), Kato and Ohnishi (2002) recom-
mend m = 2.3. For the drift at axial failure, Kato and Ohnishi (2002) recommend m = 3.6 (this
model will be evaluated in Chapter 3).

Figure 2-13 compares the cal culated drift ratios at shear failure based on Equation 2.6 with
the measured drift ratios for the columns in the database from Section 2.2. To avoid introducing
additional errors into the model, the drift ratio at yielding of the longitudinal reinforcement, used
in Equation 2.6, was determined based on the experimental data (Table 2-1). The core concretewas

assumed to be unconfined for each of the column specimens, hence, €., was set equal to 0.002. Col-

cp
umns with zero axial load could not be evaluated using the model, and do not appear in Figure 2-
13. The mean of the measured drift ratio divided by the calculated drift ratio is 0.84; the coefficient
of variation is 0.44. Although the model provides a better estimate of the measured drift at shear
failure compared with the models by Pujol and Sezen, Equation 2.6 relies on an accurate estimate
of the drift at yielding of the longitudinal reinforcement and significantly overestimatesthe drift at

shear failure for many of the columnswith low axial loads.
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Figure 2-14. Comparison of calculated drift ratio at shear failure using Equation 2.8
with database from Section 2.2. (Dashed lines in right plot are +/— one
standard deviation from the mean.)

2.3.5 Proposed Empirical Drift Capacity Models

The models for the drift ratio at shear failure presented in the previous sections do not adequately
capture the behavior of the shear-critical columns included in the experimental database from
Section 2.2. This section will introduce an empirical model based on observations from the exper-
imental database. As such, the model may not be applicable to columns with parameters outside
therangesincluded in the database. The goal of developing anew model isto reduce the coefficient
of variation and provide asimple relationship that identifiesthe critical parameters influencing the
drift at shear failure for shear-critical building columns.

If the data shown in the upper left plot of Figure 2-2 are sorted by transverse reinforcement
ratio (Figure 2-14), then, for agiven transverse reinforcement ratio, the maximum shear stress can
be seen to degrade with increasing drift at shear failure. The “bins” used in Figure 2-14 to sort the

data by transverse reinforcement ratio were chosen to group the data points close to p” =
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0.001, 0.0015, 0.003, 0.005, and 0.006. Based on this observation, the following empirical expres-
sion is proposed to estimate the drift ratio at shear failure:

AS — 1 ” 4
—_ = = 4+ 5p _—
L 30 1000 f 100

(psi units) (2.8)

The coefficients in Equation 2.8 were chosen based on aleast-squares fit to the data. The
mean of the measured drift ratio divided by the calculated drift ratio is 0.96; the coefficient of vari-
ation is 0.35. Refinement of the coefficients using more significant figures could reduce the coef-
ficient of variation and improve the mean; however, such refinements would imply a higher degree
of accuracy thanthe model should be expected to produce. Therelatively large scatter suggeststhat
other parameters not included in Equation 2.8, such as axial load ratio, likely influence the drift
ratio at shear failure.

The influence of axial load on the drift ratio at shear failure was incorporated into the
empirical model by including the variable P/ (A gfc’) in the least-squares fit to the data, resulting

in the following expression for the drift ratio at shear failure:

g:i+4 ” iv 1 P
L 100 P 500 7 40Agf’_100

(psi units) (2.9

Figure 2-15 compares Equation 2.9 with the results from the database. The mean of the
measured drift ratio divided by the calculated drift ratio is 0.97, the coefficient of variation is0.34;
indicating that the incorporation of the axial load ratio results in only a slight improvement over
Equation 2.8.

The left-hand plot of Figure 2-15 compares Equation 2.9, using the mean value of v/ JE
from the database, with the axial load and transverse-reinforcement ratios for each of the column
tests. The results from the database suggest that for columns with low levels of transverse rein-
forcement, say p” <0.004, an increasein the axial load ratio tendsto result in adecrease in the drift
ratio at shear failure. For columns with p”>0.004, arelationship between the axial load ratio and
drift ratio at shear failure isnot as clear, suggesting that Equation 2.8, which ignores the influence
of axial load, may be more appropriate for such columns.

Note that the empirical drift capacity models are less sensitive to variability in the shear
strength or flexural strength compared with the Sezen (2002) shear-strength model due to the rel-
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Figure 2-15. Comparison of calculated drift ratio at shear failure using Equation 2.9 with
database from Section 2.2. (Dashed lines in right plot are +/— one standard
deviation from the mean.)

atively steep slope of the relationship between shear stress and drift ratio at shear failure resulting
from Equations 2.8 and 2.9 (e.g., see left-hand plot of Figure 2-14). The steeper lines result from
grouping the data by transverse reinforcement ratio.

The application of the proposed empirical drift capacity models should be limited to col-
umns representative of those included in the database from Section 2.2. In particular, Equations
2.8 and 2.9 should be used only if the shear capacity defined by an appropriate shear-strength
model (e.g., Equation 2.1 (Sezen, 2002)) is exceeded by the shear demand cal cul ated according to
accepted analytical procedures. Further study is required to account for variability in both the
demand and capacity, and the influence of the variability on the selection of an appropriate drift
capacity model.

Equations 2.8 and 2.9 can be considered limit state surfaces defining the point of shear fail-
ure for a column representative of those included in the database. For Equation 2.8, each of the
lines shown in the left-hand plot of Figure 2-14 define the shear-failure surface for a column with

agiven transverse reinforcement ratio. As shown in Figure 2-16, the predicted flexural response of
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Figure 2-16. Evaluation of drift at shear failure

acolumn can be plotted along with the line defined by either Equation 2.8 or 2.9, and the intercept
provides an estimate of the state of the column at the point of shear failure.

Earthquake reconnaissance has shown that columns in reinforced concrete buildings con-
structed before the introduction of detailsfor seismic resistance (e.g., closely spaced tiesand 135°
hooks) in the early 1970s in the western United States are particularly vulnerable to shear failure.
Such columnstypically experience maximum shear stresses greater than 2 JE (psi units) and have
transverse reinforcement ratios less than 0.002. Equations 2.8 and 2.9 suggest that the drift ratio at
shear failure for such columns could range from 0.01 to 0.035.

Figure 2-17 compares the accuracy of the shear-strength and drift-ratio capacity modelsfor
the database from Section 2.2. The plots clearly illustrate that the shear strength can be estimated
more accurately than the at shear failure. For both Equations 2.8 and 2.9, approximately 60% of
the data points fall within the lower-left and upper-right quadrants, indicating that if the shear-
strength model underestimates (or overestimates) the shear strength of the column, then the drift

capacity model will not necessarily underestimate (or overestimate) the drift capacity as well.
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3 Axial Capacity Model

3.1 INTRODUCTION

A method to calculate the axial capacity of a column that has previoudly failed in shear will be
introduced in this chapter. Given such a method, engineers involved in seismic retrofits will be
better equipped to evaluate whether shear-critical elements, unable to withstand the expected | at-
eral deformationswithout shear failure, will be able to maintain their axial loads. The method will
also help to determine how much axial load must be transferred to neighboring elements after a

column shear failure and to aid in quantifying the ability of a structural system to resist collapse.

3.2 EXPERIMENTAL EVIDENCE

Most tests of reinforced concrete columns under seismic load conditions have been terminated
shortly after theloss of lateral load capacity. The resulting data are useful for columns considered
as part of the lateral-force-resisting system. Considering traditional notions of safety (i.e., once
shear failure begins, axial load collapse cannot befar behind), the data also probably define a prac-
tical upper-bound displacement capacity even for columns not considered part of the lateral-force-
resisting systemin new building designs. For existing buildings, whether being evaluated for seis-
mic resistance or for seismic retrofit, a less conservative approach may be required by economic
and functionality considerations. If a column can reliably carry gravity load after its latera
strength degradation begins, it may be possible to achieve considerable savings by considering the
column as a secondary component.

For this reason pseudo-static tests on full-scale shear-critical reinforced concrete columns
were conducted by Lynn (2001) and Sezen (2002) up to the point of axial failure. These testswere
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Figure 3-1. Typical column test specimen (Lynn, 2001; Sezen, 2002)

also included in the larger database used to develop a model for the drift at shear failure (see
Section 2.2). Figure 3-1 illustrates a typical test column configuration. Table 3-1 summarizes the
specific column characteristics, material properties, and measured responses. The loading routine
subjected a column to nominally constant axial compression and maintained nominally zero rota-
tion between column ends while the column was subjected to a series of lateral displacements at
increasing amplitude, with three cycles at each amplitude. The two exceptions were Column
2CV D12, which had variable axial load ranging from 56 kips tension to 600 kips compression
(with an axial load of 331 kips just before axial failure), and Column 2CLD12M, which, after
cyclesbelow the yield displacement, was subjected to monotonic lateral loading until axial failure.
Sincethe test setup did not alow for any redistribution of the applied axial load, once axial failure
was initiated the tests were terminated.

Owing to the limited size of the database of tests providing axial failure data, it is difficult
to draw conclusions; however, some trends can be observed. Figure 3-2 plots drift ratios corre-
sponding to significant events for the 12 columns reported by Lynn and Sezen. For columns

having lower axial loads, the tendency is for axial load failure to occur at relatively large drifts,
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Figure 3-2. Column drift ratios as a function of axial load for columns tested by
Lynn (2001) and Sezen (2002). (Dashed and solid lines indicate columns
with transverse reinforcement spacing of 18" and 12", respectively.)
regardless of whether shear failure had just occurred or whether shear failure had occurred at much
smaller drift ratios. For columns with larger axial loads, axial load failure tended to occur at
smaller drift ratios, and might occur almost immediately after loss of lateral load capacity. Note
also that the drift ratios at axial load failure tend to be lower for columnswith larger spacing of the
transverse reinforcement (dashed lines). The next section presents a shear-friction model that can
be used to represent the general observation from Figure 3-2 that the drift at axial load failure is
inversely related to the magnitude of axial load, and directly related to the amount of the transverse

reinforcement.

3.3 A SHEAR-FRICTION MODEL

3.3.1 Equilibrium Equations

The column shown in Figure 3-3 was damaged during the 1999 Kocaeli, Turkey, earthquake. Any
axial load supported by the damaged column must be transferred across the obvious shear failure

plane. Such transfer of load can be modeled by a mechanism known as shear friction. Shear-fric-
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Figure 3-3. Damaged column from 1999 Kocaeli, Turkey, earthquake

tion models evaluate the shear stress that can be transferred across a crack as a function of the
normal stresson the crack surface. The normal stress results from the elongation of reinforcement
crossing the crack and/or applied forces normal to the crack surface. For the column shown in
Figure 3-3, the transverse reinforcement crossing the shear failure plane and the axial load carried
by the column combine to provide anormal force and, hence, a shear transfer across the shear fail-
ure plane.

Figure 3-4 shows the free-body diagram for the upper portion of the column from Figure 3-
3. The external moment vector at the top of the column is not shown and will not enter the equilib-
rium equations written here. The inclined free surface at the bottom of the free-body diagram is
assumed to follow acritical inclined crack associated with shear damage. In this presentation, the
“critical” crack is one that, according to the idealized model, results in axial load failure as the
shear-friction demand exceeds the shear-friction resistance along the crack. The dowel forcesfrom
the transverse reinforcement crossing the inclined crack are not shown; instead, the dowel forces
areassumed to beincluded implicitly inthe shear-friction force, V, along theinclined plane. Equi-

librium of the forces shown in the free-body diagram results in the following equations:

A f.d
XF,— NsSn@+V = V _cosé + L‘fsfutane +n,,.V, (31)
LF,— P = Ncos® +Vsin® +n,,, P (3.2
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Figure 3-5. Dowel action in longitudinal bars

where n;,,,, is the number of longitudinal bars crossing the shear failure plane, d.. is the depth of
the column core from center line to center line of theties, s is the spacing between the transverse

reinforcement, Ay, and f,, are the area.and yield strength, respectively, of the transverse reinforce-

ment, and the forces P, V, N, V,, P,, and V, are shown in Figure 3-4.

The shear resistance due to the dowel action of the longitudinal bars, V,, is dependent on
the spacing of thetransverse reinforcement. Asshown in Figure 3-5, the upper concrete block will

bear against the longitudinal bar on one side of the crack and the transverse steel will restrain the
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bar onthe other side. Asthe distance between these forcesincreases, the effectiveness of the dowel
action will diminish. Owing to the large spacing of transverse reinforcement in many shear-critical
columns of interest in this study, the distance between the forces will most likely be too large to
develop any significant dowel action. Note that the dowel action may be more effective for longi-
tudinal reinforcement along the side face of the column (i.e., parallel to the direction of applied
shear), since these bars will be restrained by concrete above and below the failure plane. However,
any limited resistance to diding from the dowel action can be considered as incorporated in the
shear due to shear-friction, V., acting on the shear failure plane. Hence, the forces dueto the dowel
action will be ignored in the derivation of the axial capacity model. In addition, when considering
the stage of axial load failure, the external shear force V can be set equal to zero, under the assump-
tion that the column has lost most of its lateral |oad resistance due to shear failure.

In light of the above discussion, Equation 3.1 can be rewritten as follows:

A _f .d
Nsin® =V, cosf + L‘fstutane (3.3)

Further development of an axial capacity model using Equations 3.2 and 3.3 requires
models for the critical crack angle, 0, the axial capacity of the longitudinal reinforcement, P, and
the rel ationship between N and V. Each of these modelswill be discussed in turnin the following

sections.

3.3.2 Critical Crack Angle

Few reliable models exist for estimating the inclination 6 of the shear failure plane. A basic prin-
ciplesapproach isto define 6 asthe angle of the nominal principal tension stress at the instant when
it reaches the tensile capacity of concrete under combined shear and axial load, using a Mohr’s
circle representation of the state of stress. This approach, however, invariably resultsin an angle
steeper than that observed in tests.

A model proposed by Kim and Mander (1999) estimates the crack angle based on minimiz-
ing the external work due to aunit shear force. For the columnstested by Lynn and Sezen, the crit-
ical crack angle estimated by the model ranges from 65° to 71°, with an average of 68°.
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Figure 3-6. Relation between observed angles of critical cracks and axial load

Figure 3-6 plots the observed average angle of critical shear cracks from the tests. (The
angles were subjectively estimated from photographs.) The angle could be approximated as 65°
relative to horizontal (the dashed linein thefigure), or could have the linear variation suggested by
the solid linein thefigure, that is:

6 =55+ 35P/P, (3.4)

P, istheaxial capacity of the undamaged column givenby P, = 0.85f.(A,—A ) +f,,A;, where
/- isthe concrete compressive strength, A, isthe gross concrete area, A; isthe area of longitudinal
steel, and £, is the yield strength of the longitudinal reinforcement. (The outlying datum in
Figure 3-6 at P/P, = 0.21 was for Column 3CMH18. That column had a critical crack that was
somewhat |ess steep over most of itslength, with avertical segment near column mid-depth, result-
ing in the relatively large reported critical crack angle.) Considering the difficulties of accurately
determining the critical crack angle given the state of many of the columns at the end of the tests,
and the lack of improvement observed in the prediction of the drift a axial failure when
Equation 3.4 isused in place of aconstant crack angle of 65°, only the constant crack angle model
will be used in the development of the axial failure model presented here.

All of the columns tested by Lynn and Sezen had a height to width ratio greater than 6.0.
For columns with low height to width ratio, it is expected that the maximum crack angle will be
limited by the aspect ratio of the column (i.e., 0, .. = tan"(height/width)). This may be consider-
ably less than 65°.

max
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(@ (b)
Figure 3-7. Deformed shape for longitudinal bars at loss of axial load capacity for
column with (a) high axial load and (b) low axial load (Sezen, 2002)

3.3.3 Longitudinal Reinforcement Axial Capacity

Based on observations of the final state of the column longitudinal reinforcement from the static
tests by Lynn (2001) and Sezen (2002), it is assumed that the longitudinal reinforcement will sup-
port a portion of the axial load, n,,,,P,, up to a maximum load defined by either the buckling or
the plastic capacity of the reinforcing bars. Columns with an axial load greater than the pure axia
plastic capacity of thelongitudinal reinforcement (A f,;) experienced adeformed shape of thelon-
gitudinal reinforcement after axial failure indicative of a buckling failure (e.g., Figure 3-7a). In
contrast, most of the columns with an axial load less than A f,,; experienced a deformed shape of
the longitudinal reinforcement after axial failure that did not suggest a buckling failure of the lon-
gitudinal reinforcement (Figure 3-7b). Note that the elastic buckling capacity of the longitudinal
reinforcement, cal culated using abuckling length equal to the spacing of the ties and assuming full
rotational fixity at the bar ends, is greater than A f|;, suggesting that the lightly loaded columnsin

the test series will not experience buckling of the longitudinal reinforcement upon axial failure.
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Figure 3-8. Plastic strength of longitudinal reinforcement in deformed configuration

Based on these observations the longitudinal reinforcement axial capacity was evaluated as fol-

lows:

« for columnswhere P <A ,f,, P, isbased onthe plastic axial load strength of the longitudi-
nal reinforcement in the deformed configuration.

« for columnswhere P> A /f, P isbased onthe plastic strength in the deformed configura-
tion, but limited by the plastic buckling capacity.
The following paragraphs discuss each of these casesin turn.

The plastic strength of the longitudinal reinforcement in the deformed configuration is
illustrated in Figure 3-8. Assuming thereisno dowel force, the plastic moment capacity of therein-
forcing bar and the axial capacity arerelated by:

PA = 2M, (3.5)

By using the decomposition of the stresses in the fully plastic section of areinforcing bar

shown in Figure 3-8, the plastic moment can be determined as follows:

Mp = 2Atenyfylztens (36)
where A, is the area of the reinforcing bar in tension, and z,,,,, is the distance from the centroid
of A,,.,,, to the centroid of the bar section. Given an axial load in the reinforcing bar, A,,,,; can be

determined as follows;
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1 P
Atens = E(Abar _f_) (37)
y

where A,,,, is the cross-sectional area of one longitudinal reinforcing bar. Equations 3.5 through
3.7 can be used to determine a theoretical relation between the axia load, P,, and the lateral dis-
placement at which the plastic capacity of areinforcing bar is fully developed. The results for the
three bars used as longitudinal reinforcement in the tests by Sezen (2002) and Lynn (2001) are
shown in Figure 3-9.

The curves shown in Figure 3-9 must be determined by iteration due to the nonlinear
moment-axial |oad interaction diagram that results from solving Equations 3.6 and 3.7. If thelinear
conservative gpproximation to the interaction diagram shown in Figure 3-10 is used with
Equation 3.5, the axial plastic capacity of the longitudinal reinforcement can be related directly to

the story drift, without iteration, as follows:

P, d/L
- (3.9)
Apardyi 3 A
A" 7L

where L isthe clear height of the column, and d;, isthe diameter of the longitudinal reinforcing bars.
Equation 3.8, shown in Figure 3-11, provides a conservative approximation of the axial plastic
capacity of the longitudinal reinforcement without iteration and will be used in the further devel-
opment of the axial capacity model.

For heavily loaded columns (P > Aslfyl)’ the axial capacity of the longitudinal reinforce-
ment given by Equation 3.8 will belimited by the plastic buckling capacity. Evaluation of the plas-
tic buckling capacity requires estimation of the tangent modulus of the reinforcement and the
effective buckling length. Based on tensile coupon tests of typical reinforcing bars, the tangent
modulus is estimated as 0.07E, where E; is the elastic modulus of the reinforcement. (Alterna-
tively, an equivalent modulus model could be used to estimate the material stiffness (Pantazopou-
lou, 1998); however, such amodel predictsthat the plastic buckling load does not control the axial
capacity of the longitudinal reinforcement for any of the columnsin the database. Considering the
observed buckled deformed shape of the longitudinal reinforcement for two of the tests (Figure 3-
7a), the equivalent modulus model was not adopted for this study.) Based on the observed
deformed shape of the longitudinal reinforcement shown in Figure 3-7a, the effective buckling
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Figure 3-11. Longitudinal reinforcing bar axial plastic capacity. Comparison of iterative
method and approximation of Equation 3.8. (L/d}, = 100)

length should be 1.0s < L,< 0.7 (i €., shorter than apinned-pinned condition at theties and longer
than a fixed-fixed condition at the ties). An effective buckling length of 0.8s is selected for this
investigation. Based on these assumptions, the axial capacity of the longitudinal reinforcement is
given by:

P, d/L

s
Apadyi 3 A
4L L
2
— db/L T Eslbarnbars
= — 01—2—
3 A Cﬁa S Aslfyl

Sp= o+
A" L

if P<Af, (39)

if P2Af,,

Table 3-2 gives the axial capacity of the longitudinal reinforcement at axial failure of the
column, estimated based on Equation 3.9, for the columns tested by Lynn and Sezen. The values
in Table 3-2 were calculated based on the total measured column drift ratio at axial failure. Note
that only 2CMH18 is controlled by the plastic buckling load. For most of the columns the above
formulation results in approximately 25% of the axial load being carried by the longitudinal rein-
forcement at the point of axial failure. For two of the columnswith a low axial |oad (P=0.09A ")
and arelatively high longitudinal reinforcement ratio of 3%, Equation 3.9 estimates that the longi-
tudinal bars are supporting over 50% of the axial load. Owing to therelatively low axial stiffness
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Table 3-2. Calculated longitudinal reinforcement axial capacity

for columns in database from Section 3.2

Specimen PAApadyi) Py, /P
3CLH18 0.18 (0.12) 0.76 (0.50)
2CLH18 0.11 0.29
3SLH18 0.13(0.12) 0.54 (0.50)
2SLH18 0.09 0.25
2CMH18 0.112 0.10
3CMH18 0.18 0.25
3CMD12 0.18 0.25
3SMD12 0.18 0.25
2CLD12 0.08 0.27
2CHD12 0.18 0.16
2CVD12 0.12 0.19
2CLD12M 0.08 0.26

a. Controlled by plastic buckling capacity

of the longitudinal bars, this seems unreasonably high and suggests that a limit on the fraction of
axial load supported by the longitudinal bars may be appropriate. As shown in Figure 3-4, the axia
load supported by shear friction and the axial load supported by the longitudinal reinforcement act
in parallel. By using the ultimate axial capacity of the longitudinal reinforcing barsin the equilib-
rium equation (Equation 3.1), it is assumed that the ultimate shear-friction capacity and the ulti-
mate capacity of the longitudinal reinforcement are reached at the same time. The ultimate shear-
friction capacity may be exceeded before full development of the longitudinal reinforcement axial
capacity, thereby transferring axial load to the longitudinal reinforcement as sliding occurs on the
shear failure plane. This may lead to development of the ultimate axial capacity of the reinforce-
ment and, subsequently, to axial failure of the column. In this case, axial failure should be defined
by exceeding the shear-friction capacity, and the load carried by the longitudinal reinforcement
should be limited to some fraction of the total axial load. A limit of Pn,,,./P < 50% was selected,
sincethisimproved the correlation of the model with test data. Considering thislimit, the axial load
supported by the longitudinal reinforcement for specimens 3CLH18 and 3SLH18 is reduced to
0.124 4f;. (These latter reduced values are shown in parentheses in Table 3-2.)
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3.3.4 Maximum and Total Capacity Models

Considering the expected transfer of the axial load from the shear failure plane to the longitudinal
reinforcement after the shear-friction capacity is exceeded, it may be appropriate to consider the
axial load support from the longitudinal reinforcement independently of that for shear friction. In
such amodel, the load carried by the longitudinal bars is removed from the equilibrium equation
(Equation 3.2) and the capacity curves for the longitudinal reinforcement (Figure 3-11) are super-
imposed on the capacity curves to be developed in the next section for the shear-friction capacity.
The axial capacity of the column is taken as the maximum of the capacity from the longitudinal
reinforcement and the capacity from the shear-friction model. This model, referred to as the max-
imum capacity model, will be developed further in the following sections. The model based on
summing the ultimate capacity from the longitudinal reinforcement and the ultimate capacity from
shear-friction, in accordance with the equilibrium equations, will be referred to asthe rotal capacity
model.

3.3.5 Shear-Friction Models

The literature documents several shear-friction modelswhich relate Vcand N (Mattock and Hawk-
ins, 1972; Mattock, 1988; Mau and Hsu, 1988). Two of the models will be used, in conjunction
with Equations 3.2 and 3.3, to develop an expression for the axial capacity of a column after shear

failure.

3.3.5.1 Classical Shear-Friction Model

The classical shear-friction model, included in ACI 318 since 1977, idealizes the crack across
which shear must betransferred as aflat plane with an effective coefficient of friction, u. The shear
capacity is defined as:

Vi = Nu (3.10)

where N is the compression force acting normal to the crack, as shown in Figure 3-4. Since the

shear transfer mechanism includes aggregate interlock and dowel action in addition to pure fric-
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tion, values for u must be higher than that for pure friction across a concrete interface in order to
match Equation 3.10 with test data

Substitution of Equation 3.10 into Equations 3.2 and 3.3, and eliminating the case where
u = tano, givesthefollowing expression for the axial capacity of the columnillustrated in Figure 3-
4:

P =

A“';yfdc tan 1t;’n%tfnue +n,,, P, (3.11)

The first term in Equation 3.11 is the axial load carried through shear friction, while the
second term is the axial load carried by the longitudinal reinforcement (given by Equation 3.9).
Note that values of u greater than tan(6=65°) will result in a meaningless negative shear-friction
capacity. For u equal to zero, the shear-friction term in Equation 3.11 reduces to the same form as
the 45° truss model.

Recall that for the total capacity model, the shear-friction and longitudinal reinforcement
terms are summed, as shown in Equation 3.11, while for the maximum capacity model only the
maximum of the two terms is considered. Equation 3.11 can be rearranged to give the following

expression for the effective coefficient of friction for the total capacity model:

fyid
P Nparsts — S; ‘ (3 2)
n = A
! (P_nbarsPs) +Astfytdctane
tano s

where the subscript ¢ refersto the total capacity model. By using a constant crack angle of 65° and
the longitudinal reinforcement axial capacity given in Table 3-2 (but limited to less than 50% of
the axia load on the column, as discussed previously), the effective coefficient of friction for each
of the test columns can be calculated using Equation 3.12. Figure 3-13 plots the calculated values
for each column as afunction of the lateral drift ratio at which the column could no longer sustain

the applied axial load. The data apparently follow a trend that can be approximated by:

= -1 o 619
axial
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Figure 3-12. Relation between effective coefficient of friction and the drift ratio at axial
failure for the total capacity model
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Figure 3-13. Relation between effective coefficient of friction and the drift ratio at axial
failure for the maximum capacity model

In selecting Equation 3.13, the effective coefficient of friction was set equal to tan(65°) at

zero drift to ensure that the shear-friction capacity remained positive for al valid drifts.

A plot similar to that shown in Figure 3-13 can be developed for the maximum capacity

model by omitting the n,,,,..P, term from Equation 3.12 and recal culating the effective coefficient

of friction (Figure 3-12). The data appear to have less scatter when the capacity of the longitudinal

reinforcement is omitted. Based on Figure 3-12, the drift ratio at axial failure appears to follow a

straight-line trend that can be approximated by:
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Figure 3-14. Concentrated versus interstory drift ratio

, = tan6 -0 =20 (3.14)

The data of Figures 3-13 and 3-12 suggest that the effective shear-friction coefficient is a
function of the drift angle at axial failure. This relation is plausible considering that increased
deformation (and increased sliding along the critical shear plane) degrades the roughness of the
shear plane and reduces the effective friction. It isworth recalling that the increased deformation
capacities are associated with reduced axial loads and increased amount of transverse reinforce-
ment (Figure 3-2).

It is expected that the shear-friction coefficient will also be inversely proportional to other
parameters related to the amount of sliding along the critical shear plane. Among others, such
parameters may include the displacement ductility, the number of cycles past the yield displace-
ment, and adrift ratio based on the height of the damaged region of the column. Theinterstory drift
ratio (IDR) (based on the clear height of the column) was selected for this investigation to be con-
sistent with research by other investigators into the use of the maximum IDR as an appropriate
engineering demand parameter in a performance-based design methodology (Krawinkler et al.,
2003). Axial failure may be more closely related to adrift ratio based on the height of the damaged
region, or the concentrated drift ratio (CDR), as defined in Figure 3-14 (d.. is the depth of the

column core from center line to center line of the ties). After shear failure, most of the column
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deformations are concentrated in the shear-damaged region of height 4. As suggested by Figure 3-
14, two columns of length L, and Lg that experience the same displacement will have different
IDRs, but may have the same CDR. For columns shorter than d tan65°, the height of the damaged
region will be constrained by the height of the column and the IDR will be equal to the CDR. Since
all of the columnstested by L ynn and Sezen have the same height to width ratio and a critical crack
angle of approximately 65° is assumed for all specimens, the CDRs for this database will be
approximately equal to the IDRs times a constant factor. For a more extensive database the CDR

should be used to distinguish between columns such as those illustrated in Figure 3-14.

3.3.5.2 Modified Shear-Friction Model

The modified shear-friction model (Mattock and Hawkins, 1972; Mattock, 1988) separates the
shear transferred across a crack into two terms: one representing the friction on the crack surface;
and another representing the resistance of both shearing the local asperities along the crack surface
and the dowel action from reinforcement crossing the crack. Mattock (1988) proposed the follow-
ing form to the model based on static, monotonic, tests:

,0.545

v, = 457"+ 080, (3.15)

where v, isthe ultimate shear stress that can be transferred across the crack through shear-friction,
and o, isthe normal stress on the crack.
A similar model was proposed by Richart et al. (1929) to define the strength of concrete:

v, = kif. + koo, (3.16)

where k4 and k, were estimated to be 1/4 and 3/4, respectively, based on monotonic tests of con-
crete confined by hydraulic pressure. Pujol et a. (2000) used Equation 3.16 and &, = 3/4 to deter-
mine the amount of transverse reinforcement required for columns subjected to seismic loads.
Using Coulomb’s criterion, Pujol et al. (2000) related the constant k4 to the drift at shear failure,
and determined that k4 tends to decrease with increasing drift ratio.

Equation 3.16, with k, = 3/4, can be converted to forces and substituted into Equations 3.2
and 3.3, giving thefollowing expression for the axial capacity of the columniillustrated in Figure 3-
4:
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_ 1+ (tan0)° 1+o.75tane(As;fytd

= 'A + C) + P
tane—o.75k1fc core * tan® —0.75 s tand + g

(3.17)

N

where A isthe area of the concrete core measured to the center line of the transverse reinforce-

core

ment. By using 6 = 65°, Equation 3.17 simplifies to:

+ 4Astfytdc
S

P = 4k, f A + 1y, P (3.19)

core N

The terms of Equation 3.18 may beinterpreted asfollows: thefirst term givesthe axial load
carried by the core concrete through direct bearing across the shear failure plane; the second term
givesthe axial load carried through shear friction due to yielding of the transverse reinforcement;
and the last term is the axia load carried by the longitudinal reinforcement. Again, recall that for
the total capacity model, all the terms are summed, as shown in Equation 3.18, while for the max-

A f. d
imum capacity model only the maximum of 4(k1fc'Acore + ——S-—‘]-;y—f——c) and ny,,,,,P, are considered.
Similar to the classical shear-friction model, Equation 3.18 can be rearranged to solve for

the constant k, for the total capacity model:

Af,d
p _(4——{_% + nbarsPs)

klt = 4f 'A (319)

core

where the subscript ¢ refersto the total capacity model upon which Equation 3.19is based. Aswith
the effective coefficient of friction for the classical shear-friction model, k4, can be determined for
each specimen in Table 3-1 by using Equation 3.19, and related to the drift ratio at axial failure, as
shown in Figure 3-15. The data do not follow aclear linear trend, although k4, appears to decrease
with increasing drift ratio. The data points are clearly grouped by the axial stress on the column
core. Therelatively large scatter in Figure 3-15 suggests that the model does not represent the test
datavery well.

For the maximum capacity model, k4, is determined for each specimen by using Equation
3.19 with the term n,,,. P, omitted. The data, plotted in Figure 3-16, show even more scatter than
shown in Figure 3-15 for the total capacity model, and are clearly divided into groupings based on
the axial stress. Owing to the poor correlation with the test data, the modified shear-friction method
will not be used in the devel opment of the drift capacity models presented in the next section.
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Figure 3-15. Relation between &, and the drift ratio at axial failure for the total
capacity model
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Figure 3-16. Relation between ky,, and the drift ratio at axial failure for the maximum
capacity model

3.3.6 Drift Capacities

The preceding sections presented the expressions that can be used to establish relationshipsfor the

drift ratio at axial failurein terms of the axia load, the transverse reinforcement, and the longitu-

dinal reinforcement. Only thetotal and maximum capacity models based on classical shear friction

will be used to develop the drift capacity relationships.
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Figure 3-17. Drift capacity curves based on the total capacity model and the classical
shear-friction model. (Reduced drift capacity for P > Ayf,, due to

consideration of buckling of longitudinal reinforcement. P = 0.1Ayfy,
shown here.)

For the total capacity model, Equations 3.9, 3.11 (with 6 = 65°), and 3.13 are combined to
give the drift capacity curves shown in Figure 3-17. For low axial loads the drift capacity curves
approach horizontal, suggesting that a lower-bound axial load exists below which axial failure is
not expected to occur. Based on this model, the lower-bound axial oad capacity is the sum of the
axial load supported by the 45° truss model and the longitudinal bar capacity at large drifts. For
high axial loads, the buckling capacity of the longitudinal reinforcement is assumed to govern
according to Equation 3.9, resulting in the sudden reduction in drift capacity seen in Figure 3-17.

Figure 3-18 shows the plastic capacity curve for the longitudinal reinforcement (from
Figure 3-11) plotted with the drift capacity curves based only on the shear-friction capacity (i.e.,
the first term of Equation 3.11, with 6 = 65°, and Equation 3.14). The maximum capacity model,
shown in Figure 3-19, takes the maximum axial load from either the longitudinal bar capacity or
the shear-friction capacity. Note that longitudinal bar buckling does not influence thismodel, since
the buckling capacity of the longitudinal reinforcement will always be less than the shear-friction
capacity at low drifts. For the parameters shown, the longitudinal bar capacity governs only for
large column drifts and low amounts of transverse reinforcement. Given that the longitudinal bar
capacity has such little effect on the maximum capacity model, and that no data exist beyond a drift
ratio of 0.06 to support the claim that the longitudinal bars will govern the capacity, the additional

complexity of including the longitudinal bar capacity may not be warranted.
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Figure 3-18. Drift capacity curves for shear friction and longitudinal reinforcement shown
separately. (Used to find curves for maximum capacity model shown in
Figure 3-19.)
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Figure 3-19. Drift capacity curves based on the maximum capacity model and the classical
shear-friction model

All of theplotted relationsin Figures 3-17 through 3-19 suggest the intuitive result that drift
capacity increases with increasing transverse reinforcement and decreasing axial load. Thisis con-
sistent with the experimental observations discussed in Section 3.2.

Figure 3-20 compares the drift capacity curves based on the total and maximum capacity
models. The very close agreement between the two models is a result of selecting the relations

between the effective coefficient of friction and the drift ratio at axia failure based on the same
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Figure 3-20. Comparison of total and maximum capacity models

data (Figures 3-12 and 3-13). The variation between the two models at low and high driftsis due
to the changes in the longitudinal reinforcement capacity, which influences only the total capacity
model.

To convey a sense of the accuracy implicit in the relations of Figures 3-17 and 3-19, those
relations were used to estimate the drift capacity of the columns tested by Lynn and Sezen. The
results are plotted in Figure 3-21 for the total capacity model, and Figure 3-22 for the maximum
capacity model. The mean ratios of the measured to calculated drift at axial load failure based on
the total and maximum capacity models are 1.02 and 0.97, respectively; the coefficients of varia-
tion are 0.22 and 0.26, respectively.

Given the close agreement between the models (Figure 3-20), the lack of influence from
the longitudinal reinforcement on the maximum capacity model (Figure 3-18), and the reasonable
accuracy of thetwo models (Figures 3-21 and 3-22), it isrecommended that the maximum capacity
model based on the shear-friction capacity alone should be used to assess the drift ratio at which
axial failureisexpected to occur. Based on the test data, the accuracy of such amodel isequivalent
to that shown in Figure 3-22 for the maximum capacity model, since the longitudina reinforce-
ment capacity did not control at the drift ratios recorded in the tests. Such a model requiresinfor-

mation only on the transverse reinforcement and the axial load, and can be expressed as follows:

2
A -4 1+ (tanB)
@ - 100tan9+ P( s ) (3.20)
A_f..d tan®

s¥yt“c

axial
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Figure 3-21. Comparison of measured to calculated drift ratios for tests by Lynn and
Sezen based on total capacity model. (Dashed lines are +/— one standard
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Figure 3-22. Comparison of measured to calculated drift ratios for tests by Lynn and
Sezen based on maximum capacity model. (Dashed lines are +/— one
standard deviation from the mean.)
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Figure 3-24. Axial capacity model normalized to undamaged axial capacity, P,

where 6 was assumed to be 65° is the derivation of the model. The axial capacity model can be

plotted as a single curve, as shown in Figure 3-23, although the influence of the transverse rein-

forcement is not immediately obvious, asit isin Figure 3-24.
Note that the uppermost data points (2CMH18 and 3CMH18) in Figure 3-23 differ only by

the amount of longitudinal reinforcement. Based on the longitudinal reinforcement capacity model
presented in Section 3.3.3, the column with the lower drift ratio at axial failure and lower longitu-

dinal reinforcement ratio (2CMH18) is expected to experience buckling of the longitudinal rein-
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Figure 3-25. Comparison of measured to calculated drift ratios for tests by Lynn and
Sezen based on model by Kato and Ohnishi (2002). (Dashed lines are +/—
one standard deviation from the mean.)

forcement. Therefore, the difference in measured drifts at axial failure for the two specimens may
be explained by the reduction in drift capacity for columns susceptible to longitudinal bar buckling
according to the total capacity model (Figure 3-17).

Although useful as a design chart for determining drift capacities, Figure 3-23 should be
used only with full understanding that a significant number of columns are likely to fail at drifts
below the calculated quantities. The relatively large scatter may be a product of inherent random-
ness associated with the complicated failure mechanism. Additional data and analyses may well

improve our ability to predict the onset of axial |oad failure of columns.

34 KATO AND OHNISHI (2002) MODEL

Thedrift capacity model by Kato and Ohnishi (2002) presented in Section 2.3.4 (Equations 2.6 and
2.7) can be used to predict the drift ratio at axial failure. Based on a database of 36 columns sub-
jected to cyclic lateral loads, Kato and Ohnishi (2002) recommend using m = 3.6 to estimate the
drift at axia failure. Figure 3-25 clearly shows that the model does not adequately represent the
measured driftsat axial failure for the column tests by Lynn and Sezen. The mean ratio of the mea-
sured to calculated drift at axial failureis0.81; the coefficient of variation is 0.84.
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3.5 EXTENSION OF SHEAR-FRICTION MODEL

The degrading slope of the shear-drift backbone after shear failure is akey parameter influencing
the response of shear-critical columns before axial failure. The shear-friction model can be
extended to provide an estimate of the degrading slope.

Considering the column illustrated in Figure 3-4 just before the total 10ss of shear capacity,
and ignoring the dowel action and axial capacity of the longitudinal reinforcement as done for the

drift capacity model above, the equilibrium equations can be written as follows:

A f..d
TF,— NsSn@+V = V cosf + L‘fstutane (3.21)
LF,— P = Ncosf + stsine (3.22)

By using the classical shear-friction model (Equation 3.10) and the relationship between
drift and the effective coefficient of friction for the maximum capacity model (Equation 3.14), the

equilibrium equations can be combined to give the following expression for the shear force:

A (3.23)
257

A fd
V= L‘futane—P

s A

1+ tan’0 - 25tan67
To find the degrading slope of the shear-drift backbone, Equation 3.23 is differentiated

with respect to the drift ratio:
dv__ _-25P 1

d(@ 1+tan29(1_—25tan9 A2
2
1+tan®

(3.24)

Finally, using Equation 3.20 to express the drift ratio as a function of the axial load and the
transverse reinforcement, the following expression provides an estimate of the degrading slope of
the shear-drift backbone:

dV _  -25P (Asgfytdc

2
= : tan’0 + 1] where 0 = 65° (3.25)
d(@ 1+tan™0 Ps
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Figure 3-26. Comparison of degrading slope model (Equation 3.25) with hysteretic
response from specimens (a) 2CLD12 and (b) 2CHD12

Unfortunately, Equation 3.25 does not agree well with the response for many of the col-
umns in the database. Figure 3-26(a) shows good agreement between the degrading slope model
(Equation 3.25) and the response of specimen 2CLD12; however, Figure 3-26(b) shows that the
model can significantly underestimate the degrading slope for columns with higher axial load (e.g.,
specimen 2CHD12). The degrading slope model shown in Figure 3-26 is assumed to intersect the
x-axis at the drift ratio at axial failure given by Equation 3.20.

Given the poor agreement with test data, Equation 3.25 requires further refinement before
it can be used with confidence to estimate the degrading sope of the shear-drift backbone. If the
model can be improved to provide abetter estimate of the degrading slope, then it may be possible
to use the same model to predict the drift at shear failure by finding the intercept between the
degrading slope and the column plastic capacity.

3.6 MODEL DEFICIENCIES

The shear-friction model described above significantly simplifies avery complex problem; hence,
several deficiencies in the model can be expected. Some of the deficiencies include the reliance

on full anchorage of the transverse reinforcement, not accounting for direct bearing of concrete
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components, the dependence on a distinct shear failure plane, and the limited data set upon which
the model is based.

The shear-friction model assumes that the full yield capacity of the transverse reinforce-
ment can be achieved and maintained after shear failure of the column. This assumption isvalid
only if the transverse reinforcement has sufficient anchorage. Since 90° hooks are common for the
ties of older reinforced concrete columns, such anchorage cannot always be relied upon. It isrec-
ommended that future modifications to the model include a coefficient that reduces the contribu-
tion of the transverse reinforcement. Such areduction factor has been proposed for the calculation
of the shear capacity of older reinforced concrete columns (Moehle et al., 2001).

Several shear failure modes, illustrated in Figure 3-27, result in axial support provided by
the bearing of concrete against concrete across a shear failure plane. This mechanism of axial load
support is not considered in the shear-friction model. However, there are currently no methods by
which the formation of a failure mode resulting in this additional axial support can be predicted.
Hence, it would be unconservative to rely upon the bearing of concrete against concrete to support
the axial loads after shear failure.

The shear-friction model assumes that the shear failure plane is continuous and distinct.
However, the complex behavior of a column during shear failure can result in a digointed failure

planewherethe principle diding surface isintercepted by multiple cracks at various angles. Owing
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Figure 3-28. Damaged column from 1971 San Fernando earthquake, Olive View Hospital
(Steinbrugge K. V., NISEE database)

to damageto the column core, thefailure“surface” may in fact consist of several blocks of concrete
bearing against one another as shown in Figure 3-28. The shear-friction model would most likely
not provide a good estimate of the axia load capacity of such acolumn.

It must be recognized that the axial failure model derived in this chapter is based on data
from only 12 columns. All of the columns were constructed of normal strength concrete, had the
same height to width ratio, and were designed to yield the longitudinal reinforcement before shear
failure. Only limited variation in the spacing and type of transverse reinforcement was possible.
The axial failure model presented here may not be appropriate for columnsfor which the test spec-
imens are not representative.

Furthermore, all of the columns in the database were tested under unidirectional lateral
loading parallel to the one face of the column. With the exception of two tests, the |oading routine
was standardized, with each column subjected to nominally constant axial compression and aseries
of lateral displacements at increasing amplitude (three cycles at each amplitude). During earth-
guake excitation columns can experience bidirectional loading and awide variety of loading his-
tories, which may consist of asingle large pulse or many smaller cycles before shear and axial load
failure. It has been demonstrated that an increase in the number of cycles past the yield displace-
ment can result in adecrease in the drift capacity at shear failure (Pujol, 2002). Althoughitisantic-
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ipated that an increase in the number of cycles has a similar impact on the drift capacity at axial
failure, not enough test data are available to support or refute this hypothesis. Further testing of
existing reinforced concrete columns to the stage of axial failure is needed to supplement the cur-
rent database.



4 Limit State Failure Model

41 INTRODUCTION

Analytical models capable of representing the different failure modes of structural componentsare
required to evaluate the response of a structure as it approaches the collapse limit state. For the
evaluation of existing reinforced concrete buildings subjected to earthquake ground motion, there
exists a need for analytical models that incorporate the initiation of column shear and axia load
failures, in addition to the subsequent strength degradation. Given such amodel, an engineer could
evaluate the influence of column shear and axial load failures on the response of the building frame
system. This chapter will describe how the drift capacity models for shear and axial load failures
presented in the previous chapters can be incorporated in an analytical model to detect and initiate
strength degradation of column elements.

Section 2.3 evaluates several capacity models, or limit state surfaces, which can be used to
definethe onset of shear failure. The proposed empirical models, introduced in Section 2.3.5, relate
the shear demand to the drift at shear failure based on the transverse reinforcement and axial load
ratios. As shown in Figure 4-1, the point of shear failure, according to the model, is determined by
the intersection of the load-deformation curve for the column and the limit surface defined by the
empirical drift capacity model. Although it is known that the shear strength will degrade after fail-
ure, the shape of the load-deformation curve after intersection with the limit surface is not well
understood. Analytical modelsallowing for a user-defined degrading slope after failure will enable
the investigation of the influence of the rate of shear strength degradation on the behavior of the
structural system.

As described in Section 3.2, experimental research has shown that axial failure of a shear-

damaged columnisrelated to several variablesincluding the axial stress on the column, the amount
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of transverse reinforcement, and the drift demand. Based on these observations, the onset of axial
failure has been described using a shear-friction model (see Section 3.3). Similar to the shear-fail-
ure model described above, this capacity model defines a limit surface at which axial failure is
expected to occur, as shown in Figure 4-2. According to this model, columns with alow axial load
or drift demand would not be expected to experience axial failure. Aswith the shear-failure model,
column behavior after the onset of axial failureis not well understood; however, it is reasonable to
expect that the axial load-horizontal deflection relation for the damaged column will remain on or
below the limit surface after failure is detected.

Although describing different phenomenon, the shear and axial models described above
both take on the same general form. Both models define alimit surface and trigger achangein the
hysteretic behavior once the appropriate load-deformation relation for the column intersects the

limit surface. Thissimilarity allows both failure model sto be implemented in one uniaxial materia

66



model for structural analysis. The material model requires a user-defined ordinate, abscissa, and
limit surface function.

This chapter will describe the implementation of the general material model in OpenSees
a finite-element analysis platform designed for earthquake engineering simulation (OpenSees,
2002). First, the concept of material models, as they are applied in OpenSees, will be introduced.
Then, in an effort to improve on available shear-critical column models, the new material model,
described above, will be developed. Finally, three applications of the material model will be dis-
cussed. The performance of the new material model will be demonstrated in Chapter 8 for the anal-
ysis of the shake table tests performed as part of this study. The C++ implementation and the user

interface for the new material model are presented in Appendix D.

4.2  UNIAXIAL MATERIAL MODELS IN OpenSees

Uniaxia material models in OpenSees define a constitutive relationship. Depending on the appli-
cation, the material could define a relation between stress and strain, force and displacement,
moment and curvature, or moment and rotation.

Uniaxial materials are the lowest level of objects that compose elementsin OpenSees. The
relationship between elements and materials is illustrated in Figure 4-3. One-dimensiona ele-
ments, such as springs and trusses, have only one uniaxial material associated with them. For a
truss, the uniaxial material defines the stress-strain relationship and is converted to force-displace-
ment by the element kinematic and equilibrium relationships. For azero-length spring, the uniaxial
material defines the force-displacement (or moment-rotation) relationship directly. Multi-dimen-
sional elements, such as beam-column elements, have multiple uniaxial materials associated with
them. For beam-column elements, the uniaxial materials are grouped together to form sections.
Sections can be located at integration points along the element length or at its ends, depending on
the element formulation. At the section level, uniaxial materials can be used to define the stress-
strain relationship for fibers, and a standard section analysis (assuming plane sections remain
plane) is performed to determine the force resultants on the section, as shown in Figure 4-3. Alter-
natively, uniaxial materials could be used to define the moment-curvature and axia |oad-axial
strain relationships directly, eliminating the need for a section analysis but omitting any coupling

between theforce resultants. Note that auniaxial material defining a shear-shear strain relationship
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element response.
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The uniaxial material developed in this chapter is based on the Hysteretic uniaxial material
availablein OpenSees. The Hysteretic material has a predefined trilinear backbone and five param-
eters to define the hysteretic behavior, including pinching and stiffness degradation. As shown in
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Figure 4-5. Shear spring in series model using Hysteretic material

Figure 4-4, the backbone can include strength degradation, a necessary feature for modeling the
behavior of shear-critical columns. A more detailed description of the Hysteretic material model is
provided in Section D.4.

43 A COLUMN MODEL

To motivate the development of a new uniaxial material model, the example of a shear spring in
series with a beam-column element, as shown in Figure 4-5, is considered for modeling the shear
strength degradation of shear-critical columns. The shear spring could be a separate zero-length
element, or could be aggregated into any of the sections of the beam-column element as discussed
above. The Hysteretic uniaxial material model, with strength degradation, can be used to define the
constitutive relationship for the shear spring. Any beam-column element capable of modeling the
flexural deformations can be used. For the following discussion it will be assumed that the flexural
deformations modeled by the beam-column element include both the deformations due to curva-
tures over the column height and those due to concentrated rotations at the column ends resulting
from anchorage bar dip.

Similar models have been proposed previousy for modeling the post-peak behavior of
existing reinforced concrete columns (Pincheiraet al., 1999; Shira et al., 2001). In such amodel,
all of the flexural deformations are concentrated in the beam-column element and the shear defor-

mations are modeled by the shear spring. If the shear strength (i.e., the peak in the shear spring
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response backbone) is less than the flexural yield strength of the column, then the model will be
able to capture the degrading shear behavior, as shown by the solid line for the total response of
the column in Figure 4-5(d). If, however, the shear strength is estimated to be higher than the flex-
ural yield strength of the column, then, given limited strain hardening in the flexural response, the
model will not capture any shear degradation, as shown by the dashed line for the total response of
the column in Figure 4-5(d). Several studies have shown, however, that the shear strength decays
with increased inelastic deformation (Watanabe and Ichinose, 1991; Aschheim and Moehle, 1992;
Priestley et al., 1994). Hence, the total response behavior depicted by the dashed curvein Figure 4-
5(d) is not redlistic for columns that yield in flexure close to their estimated shear strength. The
point of shear failure (i.e., the start of the degrading behavior in thetotal response backbone) should
be determined by considering both force and deformation. The model in Figure 4-5(a) determines
the point of shear failure based only on the column shear.

The behavior of the seriesmodel can beimproved by using auniaxial material for the shear
spring that will degrade only after shear failure has been detected. The detection of shear failure
should be based on the column shear and the total deformation of the column. Calculation of the
total deformation requires a coupling of the shear spring and beam-column element. This can be
achieved by a new uniaxial materia that traces the behavior of the beam-column element and
changes its backbone to include strength degradation once the response of the beam-column ele-

ment exceeds a predefined limit state surface as described in the next section.

44  LIMIT STATE UNIAXIAL MATERIAL

The Limit State uniaxial material was developed based on the existing Hysteretic materia in
OpenSees. The following inputs are required for Limit State material:
« all of the inputs required for Hysteretic material to define the response before failure (i.e.,

the corner points of the initial backbone, the pinching parameters (2), the stiffness and
strength degradation parameters (2), and the unloading slope parameter)

» anidentifying tag for the beam-column element that the uniaxial materia will be monitor-
ing to detect the point of failure

* identifying tags for the two nodes whose displacements will be used to determine the inter-
story drift

» parameters used to determine the limit state surface that defines the point of failure
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* the degrading slope to be used for the backbone after failure is detected (or the unloading
slope for the beam-column element as discussed in Section 4.5.1)

 theresidual capacity of the uniaxial material

The limit state surface used by the uniaxial material isreferred to asa“limit curve,” since
it is defined in only two dimensions. The choice of these two dimensions, or the ordinate and
abscissa on which the limit curve is defined, depends on the application. Three limit curves have
been implemented: one to define shear falure (Figure4-1), another to define axial failure
(Figure 4-2), and atrilinear general purposelimit curve. Asshown in Figures 4-1 and 4-2, the shear
forceisused for the ordinate of the shear-failure limit curve and the axial forceisused for the ordi-
nate of the axial failure limit curve. The abscissais assumed to be a deformation measure, such as
maximum chord rotation or interstory drift.

In an analytical model of aframe structure, where the column ends are not fully restrained
againgt rotation, the computed interstory drift (i.e., the displacement of floor i+/ minus the dis-
placement of floor i, divided by the height of the story) will include a rigid body rotation compo-
nent not present in the experiments used to devel op the shear and axial capacity models. To remove
the effect of rigid body rotations, deformation measures based on the local behavior of the beam-
column element, such as the maximum chord rotation, can be used. (For afixed-fixed column, the
chord rotation is equal to the drift ratio, and for any column with equal end rotations, the chord
rotation will be equal to the drift ratio minus the rigid body rotation.) However, for most low- or
moderate-height building frames, the rigid body rotations do not contribute significantly to the
interstory drift. The interstory drift is calculated using node displacements, while the chord rota-
tions are determined based on the beam-column element response. If chord rotations are used to
define the abscissa of the limit curve, then al of the deformations expected before failure must be
included in the response of the beam-column element.

Beforefailure, Limit State material follows the same hysteretic rules as defined for Hyster-
etic material (Figure 4-4). The corner points for the pre-failure backbone can be defined such that
the response of the uniaxial material remains linear or is allowed to yield. After each converged
step the uniaxial material queries the beam-column element for its force and deformation and then
checksto seeif the response has exceeded the selected limit curve. If the limit curve has not been
exceeded, then the analysis continues to the next step without any change to the backbone. If the

limit curve has been exceeded, then the backbone is redefined to include the degrading slope, K .,

71



If failure detected prior to first corner If failure detected after first corner point

point on pre-failure backbone: on pre-failure backbone:
F pre-failure F pre-failure
backbone backbone
failure _
detected “h : Kieg  post-failure
K, post-failure failure | backbone
eg backbone detected
Fou Fres
A A
€Y (b)

Figure 4-6. Redefinition of backbone after failure is detected

and residua strength, F,,,. Figure 4-6 illustrates how the backbone for the force-deformation rela-
tion of the Limit State material is redefined upon failure. Note that since the limit curve can be
defined using an ordinate and abscissa that are uncoupled from the force-deformation relation of
the uniaxial material, the point at which failure is detected (marked by a star in Figure 4-6) may
not necessarily occur at a peak inthe deformation response of the uniaxial material. For such acase,
the point at which failure is detected will not lie on the pre-failure backbone, as shownin Figure 4-
6b. Exceedance of the limit curve is checked only after each converged load step to avoid “flip-
flopping” between the pre- and post-failure states within a single load step. Consequently, small
load steps (or time steps for dynamic analysis) are required to accurately determine when the limit

curveisexceeded.

4.5 THREE APPLICATIONS OF LIMIT STATE MATERIAL

Three examples of how the Limit State material model can be used will be presented in the follow-
ing sections. The first two examples demonstrate how the uniaxial material can be used to model
column shear failures, while the third demonstrates its application to column axial failures. When
used to model axial failure, the Limit State material incorporates coupling between shear and axial
load after failureis detected. This coupling will be discussed in Section 4.5.3.
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Figure 4-7. Shear spring in series model using Limit State uniaxial material
4.5.1 Shear Spring in Series

The shear spring in series model was introduced in Section 4.3. Here the Limit State material
model is used to define the force-deformation relationship of the shear spring. The uniaxial mate-
rial monitors the response of the beam-column element which is connected in series with the shear
spring. As shown in Figure 4-7, the limit curve is defined based on the column shear, V, and the
total displacement, A (or the interstory drift).

If the column is vulnerable to shear failure after flexural yielding, then the empirical drift
capacity model from Section 2.3.5 can be used to define the limit curve. The pre-failure backbone
for the Limit State material is selected as linear with a steep dope equal to the shear stiffness of an
uncracked column. Note that by defining the limit curve based on the total displacement, the shear
deformations are included in the displacements monitored by the uniaxial material, and shear fail-
ure is based on the sum of the flexure and shear deformations.

When the beam-column response hits the limit curve for thefirst time, the backbone of the
shear spring is redefined, asshown in Figure 4-6, to include the degrading slope, K., and residual
strength, F,,,. Since shear failure will influence the strength of the column in both directions, the
backbone isredefined for cyclesin either direction, regardless of the direction of failure. Note that
for the current implementation of the Limit State material, the backbone after failure is assumed to
be symmetric about the origin. This assumption is valid for columns with approximately equal
flexura strengthsin positive and negative bending (e.g., interior columns with symmetric longitu-

dinal reinforcement). For columns with different flexural strengths in positive and negative bend-
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ing (e.g., outside columnsin abuilding frame), the backbone should be redefined such that the peak
shear in each direction does not exceed the flexura strength in the respective direction.

After failureis detected, the response followsthe gray hysteretic curves shown in Figure 4-
7. Additional lateral demandswill result in strength degradation of the shear spring and an increase
in the shear deformations, accompanied by unloading of the beam-column element, and therefore,
adight reduction in the flexural deformations. (Experimental results suggest that the shear defor-
mationsincrease significantly after shear failure, but do not conclusively show whether theflexural
deformations increase or decrease (Sezen, 2002).)

Experimental studies have shown that axial failure tends to occur when the shear strength
degrades to approximately zero (Nakamuraand Y oshimura, 2002). Hence, Ky, can be estimated
using the calculated drift at axial failure asillustrated in Figure 4-8.When shear failureis detected,
based on the intersection of the total response and the shear limit curve, the degrading slope for the

total response, K, can be estimated as follows:

deg

K., = —t (4.)
deg (Aa - As) .

where V, is the ultimate shear capacity of the column, Aqis the calculated displacement at shear
failure, and A, is the calculated displacement at axial failure for the axial load at the time of shear

failure, P,. (Note that since the column axial load can change during the analysis, A, is not neces-
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sarily equal to the displacement at which axia failureisdetected.) Sincethe shear spring and beam-
column element arein series, the total flexibility is equal to the sum of the flexibilities of the shear
spring and the beam-column element. Hence, K, can be determined as follows:

1
Kdeg = ( ;L - ! j (42)

Kdeg Kunload

Note that K,,,;,,; Must be provided in the input parameters for the Limit State material. To
investigate the influence of different rates of shear-strength degradation on the behavior of the
structural system, the material model also allowsthe analyst the option of specifying K,,,,, directly
before running the analysis.

If the shear spring unloads and rel oads before reaching F

res’

asshownin Figure 4-7, then a
weakness of this model becomes apparent. When the shear strength begins degrading again after
reloading, the flexural displacements will be less than they were when unloading of the shear
spring began (as noted by displacement e in Figure 4-7). This discrepancy will result in the peak
of the total response hysteresis occurring at a displacement ¢ from the point where unloading
began. Experimental results suggest that the peak should occur at a displacement close to where
the unloading began. This weakness can be overcome by concentrating both the shear and flexural
deformations in rotational springs as described in the next section.

The beam-column element response must have a positive slope when shear failure is
detected; without a positive slope thereis not aunique solution for an increase in thetotal displace-
ment. Figure 4-9 illustrates the response of the column model for monotonically increasing total
displacements. In Case 1, the beam-column response has apositive slope at shear failure, while for
Case 2, anegative dope at shear failure is considered. The softening force-displacement relation
for the shear spring requiresthat an increase in the total displacement after shear failure be accom-
panied by a decrease in the applied shear. For Case 1, the beam column is forced to unload to
achieve the required reduction in shear. The reduction in A¢ requires an increase in Aq to achieve
the desired increase in the total displacement; hence, only one solution is possible. In contrast, for
Case 2, the beam-column element can either unload or continue softening to achieve the required
reduction in shear. Thisleadsto three possible solutionsfor an increase in the total displacements:
the shear spring can soften while the beam-column unloads (b+A), the shear spring can unload
while the beam-column softens (a+B), or both the shear spring and the beam-column can soften

(b+B). Although al three solutions satisfy equilibrium, only the (b+A) solution exhibits the
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Figure 4-9. Comparison of response given positive and negative strain hardening slopes
at shear failure

expected localization of damage in the shear spring. Crisfield and Wills (1988) have shown that
the equilibrium state upon which the solution will converge depends on the step size and the
selected iterative technique. To avoid numerical convergence problems and ensure a localization
of damage in the shear spring, it isrecommended that the beam-column response always maintain
apositive slope. (Note that a softening beam-column element will also cause numerical problems
for the model described in Section 4.3.)

A similar model for shear-critical bridge columns was developed by Ricles et al. (1998) by
incorporating the shear-strength model by Priestley et al. (1994) to initiate shear failure. However,
as discussed in Section 2.3.1, the use of a shear-strength model to predict the point at which shear
failure occurs can result in an unacceptably large variability in the predicted drift at shear failure

for shear-critical building columns.

4.5.2 Rotational Springs Including Flexural and Shear Deformations

An alternative model for representing shear failure isillustrated in Figure 4-10. The Limit State
material isused to describe the congtitutive relationship for the rotational springs. Either a concen-
trated moment-rotation relationship or a moment-curvature relation integrated over a specified

plastic hinge length can be used. The following assumes that the uniaxial material describes acon-
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Figure 4-10. Rotational spring model

centrated moment-rotation relationship incorporating all of the nonlinear response of the column.
The internal portion of the column element between the rotational springs remains linear elastic.
The rotational springs are incorporated in the beam-column element such that the beam-column
displacement, A, isequal to the sum of the flexural and shear components.

The pre-failure backbone for the Limit State material allows flexural yielding before fail-
ure. The initial dope of the pre-failure backbone alows for concentrated rotation at the column
ends due to bar dlip. If bar dlip displacements were not significant, a rigid slope before yielding
would be required.

Although the Limit State material is used here to define the M-6 relation for a rotational
spring, as shown in Figure 4-10, the limit curveis defined based on the column skear and the total
beam-column displacement. Once the response of the beam-column element exceeds the limit
curve, the backbone of the rotational spring is redefined to include the degrading slope, K ., and
resdual strength, M,,,. After failure, the response follows the gray linesin Figure 4-10. Since
of the inelastic deformation is concentrated in the rotational springs, upon displacement reversals,
the total beam-column response does not exhibit the displacement offset e observed in the shear
spring in series model (see Figure 4-7).

In addition to the improved hysteretic behavior, the rotational spring model has better
numerical stability compared with the shear spring in seriesmodel. Since all of the sources of non-
linearity are concentrated in the rotational springs, convergence is achieved with fewer iterations.

However, the seriesmodel is conceptually more appealing because the deformations dueto flexure
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Figure 4-11. Axial spring in series model

and shear can be determined separately by the beam-column element and the shear spring, respec-
tively.

Figure 4-10 assumes that both rotational springs use the same uniaxial material model, and
hence for afixed-fixed column, the rotational springswill both detect failure at the same time and
degrade the moment capacity at the sametime. Thiswill result in a degradation of the shear capac-
ity to aresidual level of 2M,,,/L. If only one rotational spring was defined using the Limit State
material model, then the shear capacity of the beam-column element would not degrade below

(M,s*+Mp)/L, where M, is the plastic moment capacity of the column section.

4.5.3 Axial Spring in Series Model

The Limit State uniaxial material can also be used to model axial failure where the limit curve is
defined by the shear-friction model described in Chapter 3. Since the shear-friction model assumes
that shear failure has already occurred, the axia failure spring must be used in conjunction with
one of the shear-failure models described above. The model described here, and illustrated in
Figure 4-11, assumes that shear failureis modeled by a shear spring in series. The shear limit curve
should be defined using the interstory drift, or the column chord rotations (with the shear spring
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aggregated into one of the column sections), to ensure that the displacements monitored by the
axial spring include both flexural and shear deformations. After any analysis, postprocessing
should be used to confirm that shear failure was detected before axial failure.

As shown in Figure 4-11, the axia failure limit curve is defined on a plot of axial load
versustotal lateral drift, and requiresonly aterm describing the strength of the transversereinforce-
ment ((A,,f,

y
of the column, the pre-failure backbone for the axial spring should be defined by a steep straight

,d.)/ s) to defineits shape. If the beam-column element includes the axial flexibility

line to ensure that the spring does not add any axial flexibility to the model. If, on the other hand,
the beam-column element is considered to be axially rigid, then the slope of the pre-failure back-
bone for the axial spring should be set equal to theinitial axial stiffness of the column. After axial
failure, the backbone will be redefined to include the degrading slope, K,,,, and the residual

strength, P,,,. Since the shear-friction model describes only compression failure, the backbone is

res*
only redefined for compressive axial loads (shown as positive in Figure 4-11).

Shear-axia coupling should be included in any model in which the behavior after the onset
of axial failureis of interest. Although very little experimental data have been collected after the
onset of axial failure, shake table tests performed as part of this study (see Chapter 6), and large-
scale pseudo-static tests by Lynn (2001) and Sezen (2002), suggest that an increase in lateral shear
deformations may lead to an increase in axial deformations, and aloss of axial load. Based on this
genera observation, the coupling model illustrated in Figure 4-12 has been devel oped to approxi-
mate the shear-axial coupling after axial failure. The response after axial failureisshown asagray
linein Figure 4-12. For any increase in lateral displacement after axial failure is detected, the P-
Anhorz relationship is assumed to follow the axial limit curve defined by the shear-friction model.
Asthe earthquake imposes lateral deformations on the damaged column beyond the point of axial
failure, the P-Apy, relationship will result in aloss of axial load, which will in turn lead to an
increase in axial deformations due to the P-A, ¢ relationship defined by the post-failure backbone
of the axial spring. When the P-Ay,,, responseison the limit curve, the stiffness of the axial spring
is set to K., to ensure that the spring does not unload elastically. When the earthquake reverses
the direction of motion of the structure, it is assumed that the critical shear failure crack will par-
tially close and that diding along the crack will be arrested, resulting in temporary support of the
axial load. Sincethe column has sustained significant damage, the axia stiffness of the column can

be assumed to be lessthan the elastic axial stiffness. To account for this behavior when the P-Ay,,
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response leaves the axial limit curve, the backbone of the axial spring is redefined such that the
stiffness of the spring is equal to 1/100 times the elastic axial stiffness of the column, temporarily
stopping the decay along the P-A, ¢ backbone. Sliding along the critical shear-failure plane, and
hence, decay along the P-A, ¢ backbone will resume if the P-Ay,, response hits the limit curve
again.

The 1/100 factor applied to the axial spring stiffness was selected to approximately repre-
sent the damage to the column core. Furthermore, if the original elastic axial stiffness of the column
was used, numerical convergence was frequently not achieved when the P-Ay,,, response |eft the
axial limit curve due to the sudden change in stiffness.

Figure 4-13 provides acloser look at how the material responseisforced to follow the axial
limit curve after failure. Recall that exceedance of the limit curve is only checked after each con-
verged load step to avoid “flip-flopping” between the pre- and post-failure states within a single
load step. For each converged step beyond the limit surface there exists an unbalance force, P,
required to return the material to the limit curve at the same deformation. As shown in Figure 4-
13, the axial load |ost after each converged step beyond the limit curve isthe sum of P, and axial
|oad lost due to softening of the damaged column, Py,4. Thetotal, P, +P;,p, isequal to the gravity
load which must be redistributed to neighboring elements within one time step.

The lengthening of columns due to flexural cracking will result in some coupling between
Anorz @nd A, NOt shown in Figure 4-12. For clarity, the responseillustrated here assumesthereis
no coupling except on the axial limit curve, resulting in the horizontal and vertical lines seen on
the P-Ayqr, and the V-A, o plots, respectively, and the stationary points marked by solid circles on
the P-A\ ¢ plot.

4.6 EFFECT OF VARIABILITY ON THE LIMIT STATE FAILURE MODEL

The accuracy of any analysis using the limit state failure model described in this chapter islimited
by the accuracy of the capacity models used to define the limit curves and the ability of the hyster-
etic rulesto represent the behavior after failure. Although further study isrequired to improve esti-
mates of the limit curves and the degrading behavior after shear and axial failure, significant
variability inthe estimatesis expected to remain due to the extent of damage expected at the points

of shear and axial failure. Limited experimental studies on the response of reinforced concrete col-
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umns after shear failure, and particularly after axial failure, make reliable assessment of the vari-
ability difficult.

Owing to the significant change in the response of the structure once a limit curve is
reached, the limit state failure model is particularly sensitive to any variability in the limit curves.
For example, if a conservative estimate of the axial capacity limit curve is used and failure is
detected in a column, then the additional gravity load redistributed to other columns may lead to
their failure and a progressive collapse of the structure. If, on the other hand, a limit curve repre-
senting the mean axial capacity is used, then failure of the first column may not be detected and no
collapse would ensue. The sensitivity of the system response to the variability of the limit curves
must be accounted for directly when evaluating the results from any analysis using the limit state
failure model.

Research by other investigators may enablethe use of thelimit statefailuremodel in aprob-
abilistic assessment of the structural response. Work by Gardoni (2002) can be used to construct
probabilistic capacity models based on the deterministic limit curves presented here. Work by Hau-
kaas (2003) will allow the probabilistic capacity modelsto be included in afinite element analysis
using the limit state failure model and OpenSees resulting in the assessment of the probability of

collapse.
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5 Design of Shake Table Tests

5.1 INTRODUCTION

Shake table tests were designed to observe the process of dynamic shear and axial load failuresin
reinforced concrete columnswhen an alternative load path is provided for load redistribution. This
chapter provides an overview of the design, construction, instrumentation, and testing of the rein-

forced concrete frame specimens. More details can be found in Appendices A and B.

5.2 SPECIMEN DESIGN AND CONSTRUCTION

The test specimens were composed of three columns fixed at their bases and interconnected by a
beam at the upper level (Figure 5-1). The central column had wide spacing of transversereinforce-
ment making it vulnerable to shear failure, and subsequent axia load failure, during testing. As
the central column failed, shear and the axial load would be redistributed to the adjacent ductile
columns,

Two test specimens were constructed and tested. The first specimen supported a mass of
67 kips (the maximum mass that the shake table could reliably control at aheight of 7 to 8 feet off
the table surface), producing column axial load stresses roughly equivalent to those expected for a
seven-story building. The second specimen also supported amass of 67 kips, but pneumatic jacks
were added to increase the axial load carried by the central column from 28.7 kips (0.10 ' A,) to
68.2kips (0.24 1 A,), thereby amplifying the demands for redistribution of the axial load when the
central column began to fail.

The shear-critical center column was designed as a one-half scale reproduction of the 9'-8"
tall, 18"x18" square columns tested by Sezen (2002) (see Figure 3-1). From those previous tests, it

was expected that the center column would sustain flexural yielding before developing shear fail-
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Figure 5-1. Shake table test specimen (see Appendix A for as-built drawings)

ure. Axial load failure was expected to be more gradua for the column with low axial load and
more sudden for the column with higher axial load.

The test specimens were constructed in an upright position in a casting site adjacent to the
earthquake simulator laboratory. Reinforcement cages were assembled and instrumented with
strain gages. Normal-weight aggregate concrete (nominal maximum aggregate size of 10 mm) was
cast intwo lifts. Specimenswere wet-cured for 14 days and then stored in thelaboratory until test-
ing (age at testing was 151 days for Specimen 1 and 184 days for Specimen 2). Companion cylin-
ders were stored with the specimens and were tested near the day of the shaking table tests
according to ASTM procedures. Table 5-1 summarizes the critical properties of the frame speci-
mens illustrated in Figure 5-1. More material property and construction details are provided in

Appendix A. The following sections describe selected aspects of the final design.



Table 5-1. Properties for the shake table test specimens

f’ ¢ (columns and beam, Specimen 1) 3.56 ks

f’ . (columns and beam, Specimen 2) 3.47ks

fy (center column longitudinal bars) 69.5 ks

fy (outside column longitudinal bars) | 61.5ks

fy (center column transverse bars) 100 ksi
Mass 67 Kips
Center column axial load (Specimen 1) | 28.7 kips

Center column axial load (Specimen 2) | 67.2 kips

p| (center column) 2.5%
p| (outside column) 2.0%
P (center column) 0.18%

5.2.1 Design Approach

The specimen design began with the selection of the reinforcement for the half-scale center col-

umn. The center column details were scaled from the full-scale columns tested by Sezen (2002)
according to standard similitude rules (Krawinkler and Moncarz, 1982). Reinforcing wire with a
nominal cross-sectional areaof 0.029 in.? was used to model the #3 reinforci ng bars used by Sezen
(2002) for transverse reinforcement. Although the yield stress of the reinforcing wire was signifi-
cantly higher than that of full-scale reinforcing bars, the wire was selected to achieve the appropri-
ate scaled elastic stiffness. One #5 and two #4 reinforcing bars were used as longitudinal

reinforcement on each face of the center column to achieve, as close as possible, the scaled area
for three#9 reinforcing bars used by Sezen (2002) on each face of the full-scale column. A concrete
design strength of 3000 psi was selected to maintain consistency with the full-scale tests.

After the design of the center column, the remaining frame elements (i.e., the beams, out-

side columns, and footings) were not scaled from prototype designs, but instead were designed to
achieve the desired response. For example, the beams were designed to be much stronger than the

columnsin bending (similar to spandrel beams found in 1960s buildings), and provide the bending

85



stiffness of a beam spanning over a column which has lost its axial load capacity (see
Section 5.2.3).

Once the strength and stiffness of the outside columns were chosen (see Section 5.2.2),
capacity design procedures were used to design the beams and footings. Pushover analyses were
conducted up to displacements corresponding to three levels of damage to the center column (i.e.,
just before shear failure, just after shear failure, and after axial load failure) to determinethe critical
demands for the beams. Owing to the lack of analytical toolsto accurately model the shear failure
of reinforced concrete components, the shear failure was crudely modeled by removing the lateral
stiffness of the center column once a specified shear demand (corresponding to shear failure) was
reached. The demands after axial failure of the center column were roughly determined by “push-
ing” the frame, modeled without a center column, to a displacement ductility greater than 6 (equal
to the maximum displacement ductility observed to cause axial load failure in the columns tested
by Sezen (2002)). To ensurethat all of the damage was concentrated in the columns, the estimated
column strengths were multiplied by 1.5 for the pushover analyses (resulting in higher demandsin
the beams), and a very conservative strength reduction factor of 0.5 was used in the design of the

beams and footings.

5.2.2 Outside Columns

For abuilding containing columns susceptible to combined flexure-shear-axial |oad failure, as con-
sidered in this study, it is reasonable to expect that some components would experience limited
yielding before the columnsfailed in shear. Hence, the outside columns of the frame were designed
to yield before shear failure of the center column. Furthermore, preliminary analysis of the frame
showed that if the outside columns were allowed to remain elastic, or nearly elastic, then the lateral
response of the frame following shear failure of the center column would entail only elastic vibra-
tion of the remaining intact elements. This response did not seem reasonable for such an extreme
loading condition and was not of interest to the current study. To achieve the desired response, the
outside columns were designed to have ayield displacement and yield moment equal to two thirds
of the center column.

A circular section with closely spaced spiral reinforcement was chosen for the outside col-

umnsin order to ensure that the columns were capable of resisting large ductility demands without
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any threat of axial failure. This choice of section also provided a more gradually yielding load-
displacement relationship compared to a square section, a desirable characteristic, since the three-
column frame is intended to represent part of alarger building frame that would also be expected

to have a gradually yielding load-displacement relationship.

5.2.3 Beam Stiffness and Strength

Since the bending stiffness of the beam will influence the shedding of the axial load after failure
of the center column, the beam stiffness must be appropriately chosen. For this purpose, a seven-
story building in Van Nuys, California (described in detail in Browning et al. (2000)) was used as
the prototype building. After the axial failure of afirst-story column, alongitudinal frame of the
building could be approximately modeled as shown in Figure 5-2. If each of the floorsis consid-
ered identical in stiffness and |oad, then the columns continuing above the failed column will carry
zero axial load and the deflection of the second story at point A can be approximated by consider-
ing only the beams, columns, and loads of the second story as shown in Figure 5-2. Using such a

model, the deflection at point A due to static gravity loads is approximately 0.18 inches.
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The stiffness of the beam in the three-column frame was sel ected to give ascaled deflection
of 0.09 inches (or 0.18 inches at full-scale) after axial failure of the center column for the first test
specimen. The width of the beam was chosen as 5 feet to provide support for the 50 kips of lead
mass required to achieve the appropriate axia stressin the center column. The beam reinforcement
was selected such that at the face of the transverse beam above the center column, the ratio of the
yield strength of the beam to the maximum moment demand from plastic analysis after axial failure

of the center column was 1.59 for Specimen 1 and 0.82 for Specimen 2.

QAR <

| 3% |

At Center Column At Outside Column

Figure 5-3. Demands on transverse torsional beams

5.2.4 Transverse Torsional Beams

Particular attention was paid to the connection between the five-foot wide beam and the columns.
The moment developed over the width of the wide beam must be transferred to the narrow columns
through torque of a beam running transverse to the three-column frame. Sufficiently large trans-
verse beams are required to preclude any reduction in stiffness due to torsional cracking.

Figure 5-3illustrates the demands on the transverse torsional beams. To avoid any interfer-
ence with the behavior of the columns, the transverse beams protrude from the top of the wide
beam, as shown in Figure 5-1. Since the torsional demands are applied along the side faces of the
transverse beams, the resistance to this demand must be calculated from the cracking capacity of
the rectangular transverse beam section. The cracking torque capacities were calculated using the
skew-bending and plastic theories (Hsu, 1984), and recommendations by Gentry and Wight
(1994). The cross-section dimensions of the transverse torsional beams were selected such that the

cracking torque exceeded the torsional demands from the pushover analyses discussed in
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Section 5.2.1. For further details on the design of the transverse torsional beams, refer to
Section A.2.

5.3 EXPERIMENTAL SETUP

Each test specimen was moved to the earthquake simulator before testing. Specimenswere aligned
with the intended shaking direction on top of six force transducers (two per column) and bolted in

place after placement of hydrostone to ensure alevel surface. Specimens were shored while lead

Figure 5-4. Test specimen on the shake table and pneumatic jack for prestressing

weights (total of 67 kipsincluding the mass of the beam) were placed to simulate gravity loads and
inertial mass. The lead weights were supported at one end on a steel shim to fix the position and
on the other end by a rubber shim to allow deformation of the concrete test specimen beneath the
lead weights. The weights were then bolted in position so that they moved in unison with the test
specimen.

The two specimens were nominally identical except for the axial load on the columns.
Sincethe shake table could not reliably control asignificantly larger mass, the additional axial load
for the second test was attained by prestressing using a pneumatic jack on either side of the center
column (Figure 5-4). The air cylinder of the pneumatic jacks allows the center column to shorten
1 inch without loosing more than 15% of the prestress load.
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The planar frame specimens were subjected to unidirectional horizontal base motions. An
out-of-plane bracing system, known as a* pantograph,” was designed to restrain the specimen and
ensure essentially unidirectional response.

For more details on the experimental setup, including the performance of the out-of-plane
bracing mechanism, see Appendix B.

54  INSTRUMENTATION

Instrumentation consisted of force and displacement transducers, accel erometers, and strain gages.
This section summarizes the instrumentation setup. More details can be found in Appendix B.

Because it wasimportant to track the redistribution of the horizontal and vertical loadsfrom
the center column to the outside columns, the specimens were supported on force transducers that
monitored axial load, shear, and moment, as shown in Figure 5-1. The force transducers available
at the UC Berkeley Earthquake Simulation Lab had been designed previously for base-isolation
projects, and hence, do not have alarge moment capacity. Thisdeficiency was overcome by using
two transducers per column connected by a stiff footing. The force transducers are very sensitive
to the stiffness of the end conditions; the stiffer the connecting elements, the more accurate the
measurements. To maximize the stiffness of the connection between the transducer and the shake
table, the transducers were located directly over the threadbars used to connect the supporting base
plateto the shaketable. Thethreadbars are spaced at 3 feet on center, constrai ning the column spac-
ing to 6 feet, as shown in Figure 5-1.

Displacement transducers were used to measure the global vertical and horizontal displace-
ments of the mass and local deformations of the center column. The displacement transducers on
the center column enabled the observation of deformations along the height of the center column.
Owing to the severe damage to the center column during the test, the data from these instruments
arevalid only before shear failure.

Accelerometerswere used to measure vertical and horizontal accel erationsof themass. The
accelerometers were mounted on severa stacks of lead mass to check that all of the mass was
moving in unison. The vertical accel eration of the masswas of particular interest after axial failure
of the center column. The horizontal accelerations provided a check on the base shear measured by

the force transducers.
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Strain gages were mounted on the longitudinal reinforcing bars in the columns and beams,
and on the transverse reinforcement in the center column. The strain gages were concentrated in

the center column where the local behavior was of particular interest.

Table 5-2. Filter frequencies and scale factors for input table acceleration record

Acc. Time Scale
Name fhcut fhcor flcor flcut Scale F Source
Ji actor
Factor
Chile (Vifiadel Mar) 0.16 0.2 12 15 0.75 /0.5 SAC se32

1) Scale factor only refersto direct scaling of accelerations given in source ground motions.
Source motions may have been scaled from original record.

Sheus- Nigh pass cut-off frequency (hertz) ficor- 10W pass corner frequency (hertz)
Jneor- Nigh pass corner frequency (hertz) Sieur- 10w pass cut-off frequency (hertz)

Table 5-3. Peak values for table acceleration records

PGA PGV PGD
Record . .
g in./sec in.
Filtered Input (Figure 5-5a) 0.66 16.2 1.70
Specimen 1 Recorded (Figure 5-5b) 0.79 155 161
Specimen 2 Recorded (Figure 5-5c) 0.73 15.2 1.62

5.5 TABLE MOTION

Both specimens were subjected to one horizontal component from a scaled ground motion
recorded during the 1985 Chile earthquake (Figure 5-5 and Tables 5-2 and 5-3). Several factors
led to the selection of this ground motion record. First, the record needed enough intensity to fail
the center column in shear. Secondly, the maximum displacement ductility demand on the frame
needed to be limited to avoid failure of the outside columns. Thirdly, a ground motion of long
duration was of interest to observe the mechanics of axial failure while the specimen was still sub-
jected to strong ground shaking.

Owing to the lack of accurate analytical models for shear and axial failure of reinforced
concrete columns, only approximate analyses, such as displacement ductility spectra, were used to
determine if the ground motion achieved the first two criterialisted above. The displacement duc-

tility spectra were developed using stiffness degrading oscillators obeying Clough-type hysteretic
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Figure 5-5. Input and recorded table acceleration records

laws (Clough, 1966). The goal was to find a ground motion with a displacement ductility demand
that would ensure the shear failure of the center column occurred but did not result in extreme
demands on the outside columns after failure of the center column. To this end, ground motions
within the range of 3<u,<7 at the target elastic period (7=0.27 sec) were considered. The selected
Chile ground motion resulted in a displacement ductility of 4 at the target period, for a yield

Further restrictions were placed on the choice of ground motions by the capacity of the
shake table. The maximum displacement and velocity of the table are 5 inches and 30 in./sec,
respectively, as shown in Figure 5-6. Since the length scale factor for the model was 1:2, the
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Figure 5-7. Filter used to process the ground motion

ground motions were evaluated using a time scale factor of ./0.5. Many ground motions used in
other shake table tests of smaller scale specimens could not be used in the current study without
significant filtering, since the scal e reduced the displacements and vel ocities only by afactor of 0.5
and /0.5, respectively.

Filtering of the recorded ground motion was performed to remove the high and low fre-
guencies that were beyond the range of the shake table controller and to reduce the displacements
and velocities to within the capabilities described above. The ground motion was filtered by con-
verting the acceleration histories to the frequency domain using a fast Fourier transform, and
removing unwanted frequencies using the frequency filter illustrated in Figure 5-7. Then the
ground motion was converted back to the time domain by an inverse fast Fourier transform. The
filter frequencies used for the chosen ground motion are listed in Table 5-2.

The acceleration records in Figure 5-5 show some discrepancy between the input and
recorded table motions due to additional high frequency response of the table. The significance of

the differences in the records can be better evaluated by comparing the corresponding response
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Figure 5-8. Pseudo-acceleration and displacement response spectra for input and recorded

table motions (2% damping)
spectra. The displacement and pseudo-accel eration response spectra for the filtered-input motion
used to control the shake table, and the recorded motions for the two specimens, are shown in
Figure 5-8. The pseudo-acceleration response spectra for the recorded and input motions are in
close agreement except around 0.12 seconds. Since the first mode (7 = 0.27 sec) dominates the
response of the specimens, this discrepancy did not significantly influence the shake table test

results. The displacement response spectradiverge dightly at periods above 1.5 seconds, but show
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close agreement within the period range of interest (i.e., from 7 equal to 0.2 to 1.0 sec).

5.6 EXPERIMENTAL PROGRAM

Three types of tests were conducted on the test specimens: free vibration, low level, and shear fail-

ure. The chronology of the tests for each specimenis given in Tables 5-4 and 5-5.
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The primary test for each specimen, selected to induce shear failure in the center column,
was the unidirectional earthquake simulation using the table motion described in Section 5.5. The
results from these tests, presented in Section 6.3, are the focus of this experimental study.

Before the shear-failure tests, low-level earthquake simulations were also performed using
the table motion from Section 5.5 scaled to a lower intensity such that the maximum relative dis-
placement of the center column remained below the anticipated yield displacement. Results from
these tests can be found in Appendix C.

Thefree-vibration test setup isillustrated in Figure 5-9. The turnbuckle was used to tighten
the pull-back cables until the readings from the load cell indicated atension force of 1100 |bs. (The
tension force was chosen to achieve alongitudinal force of 1000 Ibs and ensure that the pull-back
did not crack the specimen columns.) After the appropriate tension force was achieved, the “ dog-
bone” steel coupon was cut, resulting in the free-vibration response of the specimen. Free-vibration
tests were performed before and after each earthquake smulation test. Measurements from the
accelerometers and force transducers were used to determine the natural period and damping of the

test specimens.

Table 5-4. Chronology of tests for Specimen 1

Date Test Name Table Motion Scaling®
2/16/01 Free-vibration 1 N/A

2/20/01 Low-level 0.13

2/20/01 Free-vibration 2 N/A

2/25/01 Shear-failure 1.0

2/25/01 Free-vibration 3 N/A

Table 5-5. Chronology of tests for Specimen 2

Date Test Name Table Motion Scaling®
3/29/01 Free-vibration 1 N/A

3/29/01 Low-level 0.13

3/29/01 Free-vibration 2 N/A

3/30/01 Shear-failure 1.0

4/2/01 Free-vibration 3 N/A

a. Scaling factor applied to the acceleration history shown in Figure 5-5(a).
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6 Shake Table Test Results

6.1 INTRODUCTION

This chapter will document and discuss the results from the free-vibration and shear-failure tests
described in Section 5.6. The results from the low-level tests appear in Appendix C. Comparison
of the results with predictive models can be found in Chapter 7, while an evaluation of the three-

column frame response using nonlinear static and dynamic analysesis presented in Chapter 8.

6.2 FUNDAMENTAL PERIOD AND DAMPING

The apparent fundamental periods and equivalent viscous damping coefficients for both specimens
were determined using free-vibration tests described in Section 5.6. The periods and damping coef-
ficients were determined before and after each earthquake simulation test, corresponding to differ-
ent states of damage. For the first free-vibration test for each specimen, all three columns appeared
uncracked. For the second free-vibration test, only a small hairline crack was detected at the base
of the center column for each specimen, while the outside columns showed fine cracks distributed
over the height of the columns. The Specimen 1 outside columns showed more cracks than
observed on the outside columns of Specimen 2. The third and final free-vibration tests were per-
formed after the shear-failure tests, and as such, both specimens had experienced significant dam-
age, including shear failure of the center column and spalling of the concrete cover at the top and
base of the outside columns.

For astructure in free-vibration, the equivalent viscous damping ratio can be calculated as

follows:
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where V; is the first peak in the base shear response history, V,,;1 isthe (n+1)th peak in the base
shear response history, and n is the number of peaks above a base shear of 0.2 kips. (The limiting
base shear of 0.2 kips was selected to avoid using base shear measurements below the sensitivity
of the force transducers.) The damping ratios calculated using Equation 6.1 and the fundamental
periods determined based on a Fourier transform of the base shear response histories are given in
Figures 6-1 and 6-2, respectively. The fundamental periods and damping coefficients clearly
increase with increasing damage. Although the initial periods of the two specimens are very close,
the periods measured after each of the earthquake simulation tests for Specimen 1 are larger than
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those for Specimen 2. The additional axial load applied by the prestressing equipment for Speci-
men 2 resultsin the closure of shear and flexural cracks, thereby increasing the lateral stiffness and
decreasing the measured period. The increase in the measured damping coefficients with damage
may be aresult opening and closing of cracked sections and an increase in the nonlinear response,

even for the very low base shear applied in the free-vibration tests.

6.3 SHEAR-FAILURE TESTS

This section presents the results of the shear-failure tests on Specimens 1 and 2. The table motion
selected for these tests was presented in Section 5.5. The results from both specimens will be dis-
cussed together to enable evaluation of the influence of the center column axia load on the
response of the specimens. When comparing the response of Specimens 1 and 2, it isworth recall-
ing that the only difference between the two tests was the axial stress on the columns (Specimen 1
center column: P = 0.10f7A,, Specimen 2 center column: P = 0.24 /" A,). The results will be dis-
cussed in the following order: global response of the test specimens, response of the center col-
umns, response of the outside columns, and aspects of shear and axial load redistribution.

Videos of the shear-failure tests can be found on the attached compact disk (see
Appendix E). The videos include several of the plots discussed in this section. The plots evolve
with time and are synchronized with videos of the test specimens allowing for comparison of the
damage state of the specimens with measured response quantities. The damage state of the speci-
mens after the testsis shown in Figures 6-3 and 6-4.

To aid in understanding the relationships among the plots in this section, symbols have
been placed at significant timesin each of the response histories (i.e., at 16.7 sec, 24.9 sec, and 29.8
sec). These times correspond approximately to the following events: the first drop in the center
column shear for Specimen 2 relative to Specimen 1, the initiation of axia failure of the center
column of Specimen 2, and the end of the sudden drop in the center column axial load for Specimen

2. These events will be discussed in more detail in Section 6.3.2.

6.3.1 Global Response of the Test Specimens

Theresponse historiesin Figure 6-5 demonstrate similarities and differencesin the global behavior

of Specimens 1 and 2.
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Figure 6-4. Damage state of Specimen 2 after shear-failure test

Early in the ground motion (fromt = 10 sec to t = 12 sec), the longitudinal displacements
of Specimen 1 appear larger than those of Specimen 2, resulting in a higher base shear and over-

turning moment for Specimen 1. This difference may result from a dight deviation in the low
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Figure 6-5. Global response histories for Specimens 1 and 2
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amplitude control of the shake table for each test, but does not appear to have any influence on the
remainder of the test, since both specimens remain linear.

After t = 12 seconds, the longitudinal displacements of the two specimens remain close,
with asimilar period of response, until the square marker at t = 24.9 seconds. At this point the lon-
gitudinal displacementsfor Specimen 2 increaserelative to those of Specimen 1, and begin to oscil-
late about an offset from the origin of approximately 1.0 inch. Just before the diamond marker at t
= 29.8 seconds, the longitudinal displacements for both specimens are further offset from the ori-
gin, resulting in a permanent offset of approximately 1.15 inches for Specimen 1 and 1.85 inches
for Specimen 2 at the end of the test.

After the triangular marker (at 16.7 sec), the Specimen 2 base shear drops slightly relative
to that of Specimen 1. Thisdrop coincides with the development of wide shear cracksin the center
column of Specimen 2 (Section 6.3.2).

Figures 6-6 and 6-7 show the base shear hysteretic response of the specimens. The earlier
drop in the shear capacity of the center column for Specimen 2 isclearly evident, but otherwise the
overall lateral behavior of the frameisnot significantly atered by theincreasein axia stresson the

center column.
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Figure 6-6. Specimen 1 base shear hysteretic response
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Figure 6-7. Specimen 2 base shear hysteretic response
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Figures 6-8 and 6-9 show the overturning moment hysteretic response for the specimens
resulting from the inertial forces acting at a height of 64.75 inches above the base of the columns.
The chaotic appearance of the overturning moment response can be attributed to imprecision of the
shaketable controller. Slight pitching of the table at high frequencies (approximately 15 hz) caused
vertical acceleration couples, and hence, overturning moments in the specimens. Owing to the
high-frequency nature, thiscontroller error did not appear to adversely affect the response the spec-
imens. Further discussion of the overturning moments and how they were derived can be found in
Section B.6.

The last response history shown in Figure 6-5 plots the sum of the base shear and the iner-
tial forces (notethat the base shear and inertial forces are oppositein sign). From the classical equa-
tion of motionfor astructure, this sum should give the equivalent viscous damping force. However,
in the classical equation of motion viscous damping is used as a mathematical tool to account for
various means by which energy is dissipated and the motion of a structure is reduced during
(assumed) linear response. With the exception of a limited viscous force due to air resistance, all
means of energy dissipation are accounted for in the true force-deformation rel ationship measured
directly by the force and displacement transducers. Figure 6-10 shows very close agreement
between the measured inertial force (based on results from accelerometers attached to mass) and
the measured base shear (based on the shear forces measured by the force transducers), suggesting
that little or no “damping force” exists during the tests. The minor differences can be attributed to

high-frequency oscillations of the mass blocks not captured by the force transducers.

6.3.2 Response of the Center Column

The observation of the shear and axial load response of the center column was one of the primary
objectives of this experimental study. This section presents response quantities for the center
column such as shear, moments, and axial load, in addition to the deformations measured by the
center column instrumentation.

The damage states for the top of the center column, for each of the times indicated by the
symbols on the plots, are shown in Figures 6-11a through 6-13b. The center column of Specimen
2 experiences more significant damage earlier in the history than the center column of Specimen

1. The videos on the attached compact disk (see Appendix E) provide an excellent visual compar-
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ison of the progression of damage during the tests. The following paragraphs discuss the behavior
of the center column with reference to the triangle, square, and diamond markers shown in Figures
6-14 through 6-16. Note that the longitudinal displacements for the center column are the same as
those shown in Figure 6-5.

The triangular marker indicates the approximate time (16.7 sec) at which the center column
shear for Specimen 2 begins to drop off relative to the center column shear for Specimen 1. Also
at thistime, the center column axial load for both specimens drops by approximately 10 kips. This
drop in load coincides with the development of significant cracksin the outside and center columns
and, hence, isthought to be caused by redistribution of gravity loads as the lengths of the columns
change owing to flexural response. Figures 6-11a and 6-11b show the state of the top of the center
column for both specimens at the time indicated by the triangular marker. The diagonal shear
cracks appear wider and steeper for Specimen 2.

The sguare marker indicates the pulse (at 24.9 sec) that initiates the axial failure of the
Specimen 2 center column. The continuation beyond this point for Specimen 2 is possible only
because an alternative load path was provided and the axial load in the center column could be
redistributed to the outside columns. Figures 6-15 and 6-16 demonstrate that by the time indicated
by the square marker the center column shear capacity for Specimen 1 has only just begun to
degrade, while the center column shear capacity of Specimen 2 has degraded to less than one half
of the ultimate center column shear attained. Figures 6-12a and 6-12b show the state of the top of
the center columns for both specimens at the time indicated by the square marker. A large shear
crack is apparent in the Specimen 1 center column, while the Specimen 2 center column has expe-
rienced severelocal distortions.

The diamond marker indicates the approximate time (29.8 sec) at which the minimum
center column axial load is reached for thefirst time. By this point the center column shear capac-
ity has all but disappeared for both specimens. The center column axia load for both specimens
remains nearly constant after this time despite the continuation of strong ground shaking. Figures
6-13aand 6-13b show the state of the top of the center columnsfor both specimens at thetimeindi-
cated by the diamond marker. Cover and core concrete are spalling off the Specimen 1 center col-
umn, while the longitudinal reinforcement has clearly buckled in the Specimen 2 center column.

Figures 6-17 and 6-18 show the center column shear hysteresis and an idealized backbone
for Specimens 1 and 2, in addition to the point of first yield in thelongitudinal reinforcement based
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Figure 6-11a. Top of center column Figure 6-11b. Top of center column
Specimen 1 at 16.7 sec Specimen 2 at 16.7 sec

Figure 6-12a. Top of center column Figure 6-12b. Top of center column
Specimen 1 at 24.9 sec Specimen 2 at 24.9 sec

Figure 6-13a. Top of center column Figure 6-13b. Top of center column
Specimen 1 at 29.8 sec Specimen 2 at 29.8 sec
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Figure 6-15. Specimen 1 center column shear hysteretic response
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Figure 6-16. Specimen 2 center column shear hysteretic response
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on the strain gage data. The idealized backbone in each direction was defined by the following line
segments:
* A dtraight line from the origin through the point on the test data envelope corresponding to
70% of the peak shear recorded in that direction and extended to the peak shear level.

» A flat line at the peak shear level from the end of the previous line to the displacement
wherethereisalossin the shear resistance of at |east 20% of the peak shear recorded in that
direction.

» A gtraight line connecting the end of the previous line with a point on the x-axis at the max-
imum displacement recorded during the test. Thisline appears only in the direction of shear
failure.

For abackbone representing the full capacity of a column, the last line segment should ter-
minate at zero shear and the displacement at which axial failure occurs. Since axial failure was not
observed in Specimen 1, the final line segment is shown as a dashed line. The final line segment
in a backbone representing the full capacity of the Specimen 1 center column would be expected
to have aflatter slope than the dashed line shown in Figure 6-17.

Sincean dternative load path for the gravity loadsis provided in thetest specimen, the axial
load in the failing center column for Specimen 2 isnot lost al at once (Figure 6-19). This makes
it difficult to establish asingle point to be defined as “axial failure.” However, the displacement at
axial failure isless than the maximum displacement recorded for Specimen 2. Therefore, the final
line segment for a backbone representing the capacity of the Specimen 2 center column should be
dightly steeper than that shown in Figure 6-18.

The behavior of the center column during axial failure for Specimen 2 is characterized by
the region between the square and the diamond markers in Figure 6-19. The figure suggests that
there are two mechanisms by which the vertical displacements increase: first, large pulses that
causeasuddenincreasein vertical displacement after acritical driftisattained; and second, smaller
oscillations that appear to “ grind down” the failure plane. It isinteresting to note for the first mech-
anism discussed above that the axial load drops immediately before the sudden increase in vertical
displacements, and increasesimmediately after the increase in vertical displacements. This behav-
ior suggests that the support for gravity loads may be lost suddenly, leading to the sudden drop in
axial load, but the inertia of the mass may delay the increase in vertical displacement. After the
mass drops, the column suddenly picks up load again, possibly when the top portion of the failure

surface hits another support point on the bottom portion of the failure surface or as the horizontal
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Figure 6-18. Specimen 2 hysteresis with idealized backbone

111



a
o

Axial Load (kips)
N
o

307
20
10}
04 2 0 2 4 6
Axial Load (kips) Horizontal Displacement (in.)
80 70 60 50 40 30 20 10 © =4 -2 0 2 4 6
———————————— 02 02— ——————————————————
0.0 ~ 0.0
£
-o.2§-o.2
IS
(O]
3
1-043-04¢
L
(]
7—0.6_8—0.6
g
1-0.8" -0.8¢
-1.0 -1.0

Figure 6-19. Relations between center column axial load, vertical displacement, and
horizontal displacement of top of center column for Specimen 2

displacements are reversed by the table motion and the failure surface is partialy closed. In
Section 7.6, the data from Figure 6-19 will be compared with the axial failure model presented in
Chapter 3.

Although the Specimen 1 center column does not experience axial failure, Figure 6-20indi-
cates that it does exhibit some of the same characteristics as the Specimen 2 center column. The
axial load-horizontal displacement response for the Specimen 1 center column, shown in the upper
right plot of Figure 6-20, is very similar to that shown in Figure 6-19 for Specimen 2 before the

sguare marker (i.e., before axial failure). The convex shape of this plot for both specimensis con-
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Figure 6-20. Relations between center column axial load, vertical displacement, and
horizontal displacement of top of center column for Specimen 1
trolled by the transient redistribution of gravity load to the outside columns due to bending of the
beam (discussed in Section 6.3.4.2). Before the square marker (i.e., before shear failure for Speci-
men 1), the vertical-horizontal displacement plots for both specimens show a lengthening of the
center column with increasing horizontal displacements due to an increase in longitudinal strains
over the length of the column resulting from flexural cracking. During the pulse indicated by the
sguare marker, and the next large positive horizontal displacement pulse, a sudden drop in the ver-
tical displacement for the Specimen 1 center column can be observed. Although much smaller in
magnitude compared with the drops observed in the lower right plot of Figure 6-19 for Specimen

2, thissudden changein vertical displacements also appearsto occur once acritical drift isattained.
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Since these sudden changes in vertical displacement are not associated with a permanent loss of
axial load from the center column, the vertical displacement drops may be due to a shift in the
center column axia load support from the core concrete to the longitudinal steel. If the center
column axial load istransferred to the longitudinal bars, the vertical strains should increase, while
most of the axial load is maintained as long as the buckling capacity of the barsis not exceeded.

After the final free-vibration test for Specimen 1, the loose concrete core at the top of the
center column was removed and the longitudinal reinforcement was cut while the axial load in the
column was recorded. This procedure demonstrated that approximately 90% of the axial load sup-
ported by the center column of Specimen 1 at the end of the test was carried by the longitudinal
reinforcement.

Figures 6-21aand 6-21b show the state of the center columnsfor both specimens at the end
of the tests. Note that the distorted shape of the center column of Specimen 2 shown in Figure 6-
21b resulted from the upper portion of the column above the shear-failure plane forcing the lower
three-quarters of the column to bend to the left as the beam deflected downward. This distorted
shape results in the permanent center column shears and base of column bending moments
observed at the end of the test (Figure 6-14). At the end of the test, the Specimen 1 center column
was supporting 84% of itsinitial axial load, or 24 kips, while the center column of Specimen 2 was
supporting only 18% of itsinitial axial load, or 12 kips (Figure 6-14).

Figures 6-22 through 6-27 show the center column moment hysteretic response for Speci-
mens 1 and 2. The top and bottom column moments were cal culated, accounting for second-order
effects, according to the procedures described in Section B.6. Note that according to the plots, the
yield strength at the top of the column appears to be approximately 50% higher than that at the
bottom of the column. Although some discrepancy in the top and bottom yield strength should be
expected due to slight variation in the reinforcement location and pockets of aggregates at the base
of the column, one would not expect this discrepancy to be more than approximately 10%. It was
concluded, therefore, that an error exists in the force transducer output used to calculate the
moments. Section B.6 discusses possible sources of the error; however, in the absence of conclu-
sive proof of the source of the error, the uncorrected data are presented here.

Figures 6-22 and 6-23 plot the moments versus the drift angle, defined as the longitudinal
displacement measured by global instruments divided by the height of the column. Figures 6-24

through 6-27 plot the moments versus rotations and curvatures calculated from the center column
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Figure 6-21a. Specimen 1 center column Figure 6-21b. Specimen 2 center column
at end of test at end of test

instruments. Since the spalling cover concreteinterfereswith instruments mounted on the columns,
these data are shown only beforet = 27.65 seconds for Specimen 1 and t = 24.90 seconds for Spec-
imen 2. It should be noted that the curvatures and rotations include both dlip and flexural deforma-
tions. Refer to Section B.6 for a detailed description of how these quantities were calculated from
the column instruments.

Figure 6-22 shows the moment at the top of the center column dropping off just before the
square marker (at 24.9 sec), and before reduction in the moment at the bottom of the center column.
The same degradation at the top of the column before reduction in the moment at the base of the
column can seen in Figures 6-23, 6-25, and 6-27 for Specimen 2. The degradation at the top of the
column coincides with the opening of diagonal shear cracks at this location (Figure 6-12a). The
moment at the bottom of the center column does not appear to degrade significantly within any
single cycle; instead the bottom moment reduces upon repeated cycles as the shear resisted by the
column reduces. This localization of degrading behavior supports the use of an analytical model

that concentrates the degradation in a flexural spring at one end of a column.
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Figure 6-22. Specimen 1 center column moment hysteretic response

60 [ Top
—— Bottom

Specimen 2 Center Column Moment (kip*ft)
o

-60

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Drift Angle (rad)
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Figure 6-24. Specimen 1 center column moment-rotation hysteretic response
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Figure 6-26. Specimen 1 center column moment-curvature hysteretic response
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Figure 6-28. Beam rotation relative to footing

The beam rotations at the center column relative to the footing, cal culated from the column
instruments, are shown in Figure 6-28. Note that the sudden increase in rotations immediately
before the square marker for Specimen 1, and at the triangular marker for Specimen 2, coincide
with the initial drop in the center column lateral strength for both specimens and the opening of
shear cracks at the top of the center column. Since the rotation of the footing was not instrumented,
itisnot known whether the rotations shown in Figure 6-28 are due to rotation of the footing or rota-
tion of the beam. However, data presented in Figures 6-29 and 6-30 can be used to assess the
assumptions of no rotation of the footing or no rotation of the beam.

Figures 6-29(a) and 6-30(a) compare the longitudinal displacements of the center column
based on the global instruments (same asthat shown in Figure 6-5), with those based on the column
instruments assuming there is negligible footing rotation. Similarly, Figures 6-29(b) and 6-30(b)
compare the longitudinal displacements based on the global instruments, with those based on the
column instruments assuming thereis negligible beam rotation. (Refer to Section B.6 for adescrip-
tion of how the datafrom the column instruments were used to cal culate the longitudinal displace-
ments for the two assumptions.) Figures 6-29 and 6-30 show close agreement between the results
until t = 27.65 seconds for Specimen 1 and t = 24.90 seconds for Specimen 2, at which point the
data from the center column instruments are no longer usable due to severe damage to the column.

The absolute value of errors between the global instrument readings and the column instru-

ment readings at the peaksin the response history are shown in Figures 6-29(c) and 6-30(c). Errors
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from the peaks in positive displacement cycles are shown above the center line, and errors from
peaks in negative displacement cycles are shown below the center line. Considering the extent of
cracking experienced by the center column, and vibration of the instrumentation due to the
dynamic nature of the test, the minor differences in the readings are likely due to instrumentation
error.

If, however, the column instrument readings are assumed to be correct, then Figures 6-29(c)
and 6-30(c) can be used to evaluate the influence of footing or beam rotations. If the assumption
that there is negligible footing rotation is valid, then the solid circles should plot along the center
line, and similarly, if the assumption that there is negligible beam rotation is valid, then the open
circles should plot along the center line. Both open and closed circles plotted along the center line
suggests that the center column acts as an ideal fixed-fixed column. Figure 6-29(c) suggests that
the Specimen 1 center column can be considered as fixed-fixed with negligible beam and footing
rotation until t = 24 seconds. After this point, the footing rotations appear to remain negligible for
the negative displacement cycles. The errorsfor all other cases grow after t = 24 seconds, suggest-
ing that the beam rotations may affect the column behavior during negative cycles, and both the
beam and footing rotations may influence the response during positive cycles. For the Specimen 2
center column, Figure 6-30(c) indicatesthat the errors begin to grow earlier in the response history
(at approximately t = 15 sec), apparently due to the earlier formation of shear cracksin the center
column. For negative displacement cycles after t = 15 seconds, both the beam and footing appear
to experience some rotation. For positive displacement cycles, the footing appears to experience
limited rotation, while the beam rotations may influence the behavior of the center column.

The center column longitudinal displacements can be separated into deformations that
occur within each of the three panels of the column instrumentation frame (i.e., within the bottom
8 in., the middle 42 in., and the top 8 in. of the center column). The longitudinal displacements
resulting from these panel deformations are plotted in Figure 6-31 for Specimen 1 and Figure 6-32
for Specimen 2. The panel drift ratios (defined asthe longitudinal displacement in the panel divided
by the panel height) are shown for four selected times in Figures 6-31 and 6-32. A concentration
of deformations within the top panel is clearly seen for positive displacement cycles for both spec-
imens. For Specimen 2, the deformationsin the top panel begin earlier in the response history com-
pared with Specimen 1 due to the earlier formation of significant shear cracks observed at the top

of the center column. Both specimens show larger middle panel drift ratios for negative displace-

122



T
Il top panel

3 H [ middle panel
[ bottom panel

2,

e A

1

Longitudinal Displacement (in.)

B LR R L L LA

2k i
_ | | | | | | | | |
10 12 14 16 18 20 22 24 26 28 30
Time (sec)
t=16.76 sec t=17.01 sec
—~ 58 58
< J J
o 50 50
£
°
o
L
©
o
o
|_
(0]
>
o
QO
<C
5 8 8
£ w
T o ‘ ‘ 0 ‘ ‘
-0.06 -0.03 0 0.03 0.06 -0.06 -0.03 0 0.03 0.06
t=24.60 sec t=24.80 sec
—~ 58 58
£
o 50 50
£
°©
(@]
L
©
o
o
|_
(0]
>
o
QO
<C
S 8f 8
N ]
T o ‘ ‘ 0 ‘ ‘
-0.06 -0.03 0 0.03 0.06 -0.06 -0.03 0 0.03 0.06

Panel Drift Ratio

Panel Drift Ratio
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ment cycles compared with positive displacement cycles. Also, the deformations in the top and
bottom panels appear to contribute less to the overall column displacement for negative displace-
ment cycles. This could be attributed to having to overcome permanent deformations due to
demands in the positive displacement cycles before contributing to negative displacements.
Figures 6-31 and 6-32 show middle panel drift ratios on the order of 3% to 5%. A signifi-
cant portion of this drift results from arigid body rotation of the middle panel due to the rotation
at the top of the bottom panel, as shown in Figure 6-33. As aresult, the panel drift ratios are not a
good indication of the damage to the middle portion of the column, and hence, the distribution of
damage over the height of the column. The panel deformations without rigid body rotations are
shown in Figures 6-34 and 6-35. The values for the top and bottom panels are the same as those
shown in Figures 6-31 and 6-32, since the footing and beam are assumed not to rotate. The defor-
mations for the middle pandl, §,,;,, are calculated as shown in Figure 6-33. The panel deformation
ratios shown in the lower plots of Figures 6-34 and 6-35 are calculated by dividing the deforma-
tions shown in the top plot by the panel height. Note that the middle panel deformations could have
been defined using the rotation of the top panel instead of the bottom panel, resulting in somewhat
different values. For an ideal fixed-fixed column with symmetric yielding at both ends, both defi-
nitions would give the same result. Figures 6-34 and 6-35 clearly show that the damage to the
middle panel is not as significant as suggested by Figures 6-31 and 6-32. The panel deformation

ratios indicate that, for the times shown, the damage to the Specimen 2 center column spreads fur-
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Figure 6-34. Specimen 1 center column deformations for each instrumentation panel and
deformations as a fraction of panel height at four selected times
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ther into the middle panel than for the Specimen 1 center column. Thisresult is cons stent with the

extent of cracking observed in Figures 6-11a and 6-11b.

6.3.3 Response of Outside Columns

Figures 6-36 and 6-37 compare the response histories for the west and east columns from both
specimens. The column shears and moments begin with aninitial offset due to the dead load of the
beam and lead weights. Theinitial shears and moments were determined by analysis as described
in Section B.6.

Specimens 1 and 2 exhibit very similar shear and moment response. The maximum positive
shear resisted by the west column is approximately 5 kips higher than the maximum positive shear
resisted by the east column. This difference can be attributed in part to the direction of the initia
shears on the outside columns, and in part to the higher yield moment expected in the west column
during cycles in the positive direction (i.e., toward the west) causing increased axial compression
due to overturning forces. The opposite is true for negative shear, or cycles in the negative direc-
tion.

During axial failure of the Specimen 2 center column (i.e., between the square and diamond
markers), the axial 1oad in the Specimen 2 outside columns increases by approximately 25 kips per
column. Before the square marker (at 24.9 sec) the axial |oad response of the east and west columns
appears quite similar. After the square marker, the transient axial load variationsin the east column
are dramatically reduced. This reduction can be observed in both Specimens 1 and 2 (although
occurring closer to the diamond marker for the Specimen 1 east column). Comparing the axial |oad
response in Figures 6-14 and 6-37, it can be observed that the transient axial load variations in the
center column increase at the same time the decrease is observed for the east column. The shift in
the transient axial load variations also coincides with a positive offset in the longitudinal displace-
ments (i.e., displacement to the west). The period of the axial load oscillations approximately
matches the period of the shear oscillations. Note that the axial couple resulting from the overturn-
ing effect appears to shift from the west and east columns to the west and center columns. Owing
to the reduction in moment arm, the magnitude of the axial oscillations must increase to maintain
the same overturning moment. Thetransient axial |oad redistribution from the center column to the

outside columns is believed to result from bending of the beam as the outside columns lengthen
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Figure 6-36. West column response histories
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Figure 6-37. East column response histories
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during horizontal displacement cycles and the center column shortens due to significant damage to
the core concrete (see Section 6.3.4.2 for further discussion).

Both outside columnsfor Specimens 1 and 2 begin to lengthen at approximately 15 seconds
due to opening of flexural cracks upon yielding of the longitudinal reinforcement. Thistime coin-
cides with the initia redistribution of axial load from the center column (see Figure 6-14). The
Specimen 2 outside columns begin to shorten upon increase in the outside column axial load with
axial failure of the center column. The Specimen 2 east column returnsto its original length, while
the west column appears to be 0.05 inches longer at the end of the ground motion. The Specimen
1 outside columns do not see any significant redistribution of gravity loads, and therefore do not
shorten upon further damage of the center column.

The shear hystereses of the outside columns for Specimens 1 and 2 are shown in Figures 6-
38 through 6-41. The horizontal displacement used in these plots is the same as that shown in
Figure 6-5 (i.e., the displacement at the top of the center column corrected for large displacements).
Comparison of these data with displacements measured at the end of the beam shows a maximum
difference of approximately 0.15 inches after the axial failure of the Specimen 2 center column and

yielding of the beam.
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Figure 6-38. Specimen 1 west column shear hysteretic response
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Figure 6-39. Specimen 2 west column shear hysteretic response
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Figure 6-40. Specimen 1 east column shear hysteretic response
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Figure 6-41. Specimen 2 east column shear hysteretic response

The outside column shear hysteresesfor Specimen 1 in Figures 6-38 and 6-40 show abulge
in the shear capacity just before the square marker. Based on work by Malvar (1998), the high
strain rate (approximately 0.2 sec’™!) at the time of the observed bulge could result in a 10% to 20%
increase in the yield strength of the reinforcement; and therefore a similar increase in the yield
strength of the column section. However, since the velocities of the two specimensare similar, this
explanation would suggest that a similar bulge should have been observed in Figures 6-39 and 6-
41 for Specimen 2. Although no conclusive explanation has been determined based on the avail-
able data, the bulge could result from slight rotations at the top of the outside columnsdueto higher
mode effects.

Idealized backbones to the shear hysteresis for each column are shown in Figures 6-42
through 6-45. The backbones are developed using a procedure smilar to that described in
Section 6.3.2 for the center column, except that the first line segments begin at ashear equal to the
initial shear force found from analysis (Figures 6-36 and 6-37) instead of at the origin. The degrad-
ing strength line segment shown for the center column does not appear in Figures 6-42 through 6-

45, since no significant strength degradation was observed for the outside columns. The star mark-
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erson Figures 6-42 through 6-45 indicate the shear and displacement at first yield of the outermost
longitudinal reinforcement based on the strain gage data.

The slope of the first line segment of the idealized backbone provides an effective elastic
stiffness for the column. The outside columns exhibit roughly a 25% stiffer loading response
during quarter cycles in which the axial load increases due to overturning forces, compared with
quarter cyclesin which the axial load decreases.

Figures 6-46 through 6-49 show the outside column moment hysteretic response for Spec-
imens 1 and 2. The top and bottom column moments were cal culated, accounting for second-order
effects, according to the procedures described in Section B.6. Similar to the results for the center
column, for positive displacement cycles the yield strength at the top of the west column appears
to be 50% higher than the yield strength at the bottom of the column. In contrast, theyield strengths
at the tops and bottoms of the columns appear similar for the west columns in negative displace-
ment cycles, and for the east columns in either direction. The discrepancy in the yield strength is

believed to be due to errorsin the force transducer output (see Section B.6).

6.3.4 Load Redistribution

Two forms of load redistribution observed during the shear-failure tests will be discussed in this
section: redistribution during shear failure of the center column, and redistribution during axial

failure of the center column (Specimen 2 only).

6.3.4.1 Redistribution during Shear Failure

Shear failure reduces the capacity of acolumn to resist lateral loads. If the lateral load applied to a
building frame remains constant during shear failure of a single column, the lateral load initially
resisted by the failing column must be redistributed to neighboring elements. However, the equiv-
alent lateral loads resulting from ground motion are caused by the dynamic response of the struc-
ture, and hence are not constant. The magnitude and direction of the |loads change with time due to
variations in the ground motion input and changes in the characteristics of the structure (e.g.,
lengthening of the fundamental period with increasing damage). Furthermore, formation of a plas-
tic mechanism due to ductile yielding of elements can limit the maximum lateral load resisted by

the structure and individual elements. For the three-column frames tested, shear failure of the
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Figure 6-42. Specimen 1 west column hysteresis with idealized backbone
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Figure 6-43. Specimen 2 west column hysteresis with idealized backbone
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Figure 6-44. Specimen 1 east column hysteresis with idealized backbone
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Figure 6-45. Specimen 2 east column hysteresis with idealized backbone
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Figure 6-46. Specimen 1 west column moment hysteretic response
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Figure 6-47. Specimen 2 west column moment hysteretic response
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Figure 6-48. Specimen 1 east column moment hysteretic response
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Figure 6-49. Specimen 2 east column moment hysteretic response
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center column increases the fundamental period, thereby changing the equivalent lateral load
demands. In addition, flexural yielding of the outside columns before shear failure of the center
column limits any increase in the lateral load resisted by the outside columns after shear failure of
the center column. For these reasons, lateral |oad redistribution during shear failure did not result
inasignificant increasein lateral demands on the outside columns. Figures 6-50 through 6-52 illus-
trate how the lateral loads were distributed before, during, and after shear failure of the center col-
umn.

Figure 6-50 showsthe fraction of the total base shear resisted by the center column at peaks
in the base shear response history. The solid circles represent the fraction of base shear resisted by
the center column during positive displacement cycles (i.e., the direction of shear failure for both
specimens), and the hollow circles represent the fraction of base shear resisted by the center
column during negative displacement cycles. Consistent with the lower stiffness observed in the
response of the Specimen 1 center column, this column initially resists a smaller fraction of the
total base shear than the Specimen 2 center column. The fraction of the base shear resisted by the
center column for Specimen 1 remains nearly constant until the square marker at 24.9 seconds. In
contrast, for Specimen 2 redistribution of the base shear can be observed even before the start of
significant ground motion at 14 seconds. Immediately following the triangular marker at 16.7 sec-
onds, the fraction of the Specimen 2 base shear resisted by the center column drops by 38%. This
coincides with the formation of significant shear cracks in the center column (Figure 6-11b). For
positive displacement cycles immediately following the square marker, the fraction of the base
shear resisted by the center column drops off to negligible levels within 5.5 seconds for Specimen
1 and 0.5 seconds for Specimen 2. For negative displacement cycles, the fraction of base shear
resisted by the Specimen 1 center column drops at approximately the same rate asfor positive dis-
placement cycles. The Specimen 2 center column continues to resist approximately 30% of the
total base shear for negative displacement cycles after the square and diamond markers. During
negative displacement cycles, the upper portion of thefailed center columnisforced to bear against
the lower portion which acts as a cantilever, thereby resisting a portion of the total base shear.

Figures 6-51 and 6-52 show the normalized shear hysteretic response for Specimens 1 and
2 for selected cycles. The hysteresis |oops are shown for the center column shear and the sum of
the shear resisted by the outside columns. The shear response is normalized by the shear (in either

the center or outside columns, depending on the curve) at the star markers which are located just
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Figure 6-50. Fraction of total base shear resisted by center column

before the first degradation in the center column shear strength. For Specimen 1, Figure 6-51(a)
suggests that the shear in the outside columns degrades along with the center column shear imme-
diately after the star marker, but the center column shear drops relative to the outside column shear
upon repeated cycles. Figure 6-51(b) shows only a very dight drop in the outside column shear
during degradation of the center column shear capacity at the positive peak of the first cycle. In
subsequent cycles shown in Figure 6-51(b), the center column shear dropsto negligible levels due
to degradation of the shear capacity and significantly pinched hysteretic loops. The outside col-
umns maintain stable and wide hysteretic loops during subsequent cycles.

For Specimen 2, Figure 6-52(a) shows no significant difference in the hysteretic response
of outside and center columns. With subsequent cycles, shown in Figure 6-52(b), it isclear that the

degradation of the center column shear strength has begun. Within two full cycles the normalized
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Figure 6-51. Specimen 1 — Shear hysteretic response normalized by shear at star
marker. (a) t = 24.33 — 26.38 sec; (b) t = 27.45 — 29.80 sec
shear in the center column is approximately half of the normalized shear in the outside columns.
Figures 6-52(c) and 6-52(d) clearly show the shear-strength reduction in the center column relative
to the outside columns and the difference in the pinched nature of the hysteretic loops. Note that
Figures 6-52(c) and 6-52(d) show the same cycles as those shown for Specimen 1 in Figures 6-
51(a) and 6-51(b).

Shear failures and the subsequent degradation in shear capacity are believed to lead to an
increase in lateral displacements. If the total shear capacity at a single story-level in a building
frame degrades, the inertial forces acting above the damaged story should also decrease. This phe-
nomenon can be observed in the hysteretic loops shown in Figures 6-53 and 6-54; as the base shear
capacity of the three-column frame decreases, the inertial force also decreases. The inertial forces
retard the motion of the mass, and therefore a decrease in the inertial force should result in an
increase in the lateral displacements. Although a control test (without base shear degradation) was
not conducted to demonstrate experimentally the influence of the shear failure on the peak dis-
placements, the impact will be demonstrated analytically in Section 8.4.3.

A pulse-type ground motion, resulting inthe majority of shear degradation occurring within
asinglecycle, will likely result in larger displacementsthan those observed in the shaketabletests,

sincetheinertial forces will decrease over amore sustained period of time. Further shake tabletest-
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Figure 6-52. Specimen 2 — Shear hysteretic response normalized by shear at star marker.
(a) t=15.12 - 15.96 sec, (b) t = 16.38 — 17.63 sec, (c) t = 24.33 — 26.38 sec,
(d) t =27.45 - 29.80 sec

ing isneeded to investigate the influence of the type of ground motion on the response of structures

after shear failure.

6.3.4.2 Redistribution during Axial Failure

Unlike seismic loads, gravity loads can never be dissipated through yielding and damage to the

structure. In the event of the axial failure of a column, the gravity loads initially supported by the
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Figure 6-53. Hysteretic response for Specimen 1 (only selected cycles shown)
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Figure 6-55. Redistribution of axial loads for Specimen 2 (Total “Gravity” Load
includes both dead-load and prestress force, XPcol+mavert = sum of
column axial loads and vertical inertial forces.)

column must be redistributed to neighboring elements. Loss of axial |oad support will lead to ver-
tical inertial forces resulting from vertical acceleration of the mass above the damaged column.
Gravity loads are transferred to neighboring elements through a dynamic process as the vertical
inertial forces oscillate. Rapid loss of the axial load support may lead to a dynamic amplification
of the transferred axial loads.
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Figure 6-55 shows the redistribution of gravity loads during axial failure of the Specimen
2 center column. Note that the Total “Gravity” Load decreases by 6 kips due to relaxation of the
prestress force (see Section B.3). The slight difference between the Total “Gravity” Load (calcu-
lated based on the measured mass and prestress force) and the sum of the column axial loads and
vertical inertial forces suggests that minor errors exist in the column axial load readings (see
Section B.6 for further discussion of force transducer errors). At the end of the test there wasa dif-
ference of 2.5 kips between the Total “Gravity” Loads and the sum of the column axial loads.
Agreement between the axial load lost by the center column and the axial load gained by the out-
side columns during transient cycles suggests that the force transducers were able to capture the
variation of loads during axial failure with sufficient accuracy.

The near-total loss of the center column axial load capacity occurs over 5.5 seconds (from
24.5 sec to 30.0 sec), too dow to observe any significant dynamic amplification of the transferred
load. Transient cycles caused by the longitudinal movement of the frame during the loss of axial
load capacity result in sharp dropsin the axial load supported by the center column. For example,
at 29 seconds the axial load drops by approximately 25 kipsin 0.3 seconds. Figure 6-56(a) shows
adetailed view of the loss of center column axial load during the pulse at 29 seconds to illustrate
the dynamic process by which the vertical loads are redistributed. The drop in the center column
axial load at 28.84 secondsisinitially balanced by an increase in the vertical inertial force. When
the vertical inertial force peaks at 28.88 seconds, the axial loads in outside columns increase rap-
idly to balance both the change in the inertial force and the continued loss of axial load from the
center column. The processrepeatsitself starting at the trough in theinertial force response at 28.96
seconds. Note that an increase in theinertial force correspondsto adrop in the center column axial
load, with little or no changein the outside column axial loads; while adecreasein theinertial force
correspondsto an increase in the outside column axial loads, and adecrease in the rate of axial load
loss in the center column. The dynamic process results in a temporary amplification of the axial
loads transferred to the outside columns. The dynamic amplification factor (DAF, defined as the
change in the outside column axial loads from the start of the pulse divided by the change in the
center column axia loads from the start of the pulse) for the pulse shown in Figure 6-56 peaks at
1.5 immediately after theinitial transfer of axial |oad to the outside columns. After theinitial trans-
fer of load, the DAF oscillates about 1.0 indicating that little or no dynamic amplification occurs

with any further transfer of axial load. (Note that the sum of the column axial |oads and the vertical
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Figure 6-56. (a) Change in axial loads and vertical inertial force. (b) Dynamic amplifica-
tion of axial loads transferred to outside columns. (IChange in forces from

those measured at 28.83 seconds) (DAF = quotient of outside and center
column axial loads shown in (a))
inertial forces, which should ideally plot along the x-axis, indicates that only dight instrumentation
errors exist in the results shown in Figure 6-56.)

Further understanding of the gravity load redistribution during axial failure of the center
column can be gained by replotting Figure 6-19 using the difference in the vertical displacement
at the center column and the average of the vertical displacements at the outside columns, A,
as shown in Figure 6-57. The beam displacement shows that, before axial failure of the center col-
umn, the lengthening of the outside columnsdueto flexural cracking isgreater than the lengthening
of the center column (i.e., the beam deflection is negative). The beam deflections during horizontal
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displacement cycles causes bending of the beam, and hence, transient redistribution of the gravity
loads to the outside columns. Changes in the beam deflections with horizontal displacements con-
tinue after the onset of axial failure of the center column, resulting in the transient redistribution of
gravity loads to the outside columns during failure of the center column (i.e., between the square
and diamond markers). In Section 7.7, the stiffness of the beam will be used to predict the slope
observed in the upper right plot of Figure 6-57.

The data in the lower left plot of Figure 6-57 can be used to demonstrate the behavior of
the beam during axial load redistribution. As shown in Figure 6-58, the beam can be modeled as
smply supported between the outside columns with apoint |oad support at the center column equal
totheinitial axial load of 67 kips. The deflection of the beam at the center column, A,,,,,, (consid-
ering the change in length of both the center and outside columns as shown in Figure 6-57, but
defined here as positive for downward displacement at mid span) and the axial load loss in center
column, P,,,.,, can be used to define the force-displacement response of the beam during axial fail-
ure of the center column as shown in Figure 6-59. The star marker in Figure 6-59 indicates the
point of first yield of the beam longitudinal reinforcement based on the strain gage data. Based on
the shape of the test data curve, the star marker islikely somewhat past the point of first yield. This
inconsistency may be due to the sensitivity of the measured strainsto the location of the cracks. If
the strain gage is not located at a flexural crack, then the measured steel strains will be less than
those at the crack and the displacement at first yield will be overestimated using the strain gage
data. The data plotted in Figure 6-59 will be compared with an elastic-perfectly-plastic model of
the beam in Section 7.7.

147



a
o

Axial Load (kips)
w P
o o

N
o

10}

Axial Load (kips)

Horizontal Displacement (in.)
80 70 60 50 40 30 20 10 ©

4 2 0 2 4 6

1-02¢-0.2}
&
1-042-04}

eflec

1-0.60-0.6

£

4 8 O 8 L
-0.82-0.

1-1.0 1.0

-12 1.2

Figure 6-57. Figure 6-19 redrawn using the difference in the vertical displacement at the
center column and the outside columns for Specimen 2

P loss

L =635
’4

Aveam | p. = 67 kips
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7 Comparison of Test Data with
Predictive Models

7.1 INTRODUCTION

This chapter will compare the test results presented in the previous chapter with results of models
to predict yield displacement, elastic stiffness, and flexural strength of the center and outside col-
umns. The predictive models are based on section analysis and are commonly used in practice. The
response of the center column is further compared with results of models described in Chapters 2
and 3 to predict thedrift at shear and axial load failure. Finally, asimple model for the beam isused
to evaluate the observed axial |oad redistribution.

7.2 YIELD DISPLACEMENT AND STIFFNESS
7.2.1 Center Column

Calculation of the yield displacement and stiffness requires the moment-curvature relationship for
the section. The moment-curvature relationships shown in Figure 7-1 were determined using a
standard section analysis of the center column (assuming plane sections remain plane), with the
concrete and steel models shown in Figure 7-2 (UCFyber, 1999). Note that there was no attempt
to predict the ultimate curvature capacity, since shear failure of the column occurred before flex-
ural failure. The idealized bilinear moment-curvature relationships shown in Figure 7-1 were
selected to represent the behavior of the center columns before shear failure.

The displacement at first yield of the longitudinal reinforcement can be considered as the
sum of the displacements due to flexure, bar dip, and shear:
+A

A, = Ap A (7.2)

slip shear
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Figure 7-2. Concrete and steel material models used in section analysis of center column

Assuming the column is fixed against rotation at both ends and assuming alinear variation
in curvature over the height of the column, the displacement at yield dueto flexure can be estimated

asfollows:

LZ
AL

Aflex - (72)

where L is the length of the column and ¢, is the curvature at first yield of the longitudinal rein-

forcement.
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Asshown in Section B.7, the displacement due to bar dip at first yield can be estimated as
follows:

Agip = —g;& (7.3)
where dj, isthe diameter of the longitudinal reinforcement, £, isthe yield stress of the longitudinal
reinforcement, and « is the bond stress between the longitudinal reinforcement and the footing or
beam concrete. Since both #4 and #5 bars were used as longitudinal reinforcement for the center
column, it will be assumed that the smaller bars will limit the slip displacement. A bond stress of
u = 6,/f," (ps units) will be assumed in the following calculations (Sozen et al., 1992).

Assuming the column is fixed against rotation at both ends, the displacement at first yield
due to shear deformations can be estimated by idealizing the column as consisting of a homoge-
neous material with a shear modulus G:

=

shear

(7.4)

Q

A

v

where M, is the moment at first yield of the longitudinal reinforcement, and A, the shear area of
the column section which can be approximated by 5/6 of the gross area of the column section.

For the purpose of estimating the yield displacement, ¢, and M, will be determined from
the moment-curvature relationships based on section analysis (Figure 7-1). Table 7-1 comparesthe
calculated yield displacement with the displacement at first yield of the longitudinal reinforcement
based on the strain gage data. Note that more than half of the calculated yield displacement is due
to bar dlip.

Table 7-1. Calculated yield displacement for center column (in.)

A
. y calc
Specimen Aﬂex Aslip Ashear Ay calc A
y test
1 0.30 0.38 0.01 0.69 0.93
2 0.35 0.45 0.01 0.81 1.04

For the purpose of building an analytical model to predict the ultimate behavior of the
frame, the response of the center column before yielding of the longitudinal reinforcement can be
approximated as linear-elastic. For flexural deformations, the effective elastic stiffness can be

expressed as a fraction of the gross moment of inertia of the column section, 7,. The calculated
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effectiveflexural stiffness of the center column, 7,4, ., based on the bilinear idealization of the
moment-curvature relationships shown in Figure 7-1, isgiven in Table 7-2.

If the total displacement before yielding is assumed to be due only to flexure, asis conve-
nient for most analytical models used in practice, the effective stiffness, 7, can be estimated
asfollows:

2
M L
I = X (7.5)
l
eff tota GAyEc

Cc

assumed that the column is fixed against rotation at both ends. Table 7-2 lists the effective stiff-

where E, is the approximate Young's modulus of concrete (57, 000, /f.' in psi units) and it is

nesses determined based on the test results (1, ;o1 re5,) @d based on the cal culated moment-cur-
vature relationships and yield displacements for the center column (Zog o147 caic)- FOT Logt totat tests
theyield moment, M,, and theyield displacement, A, are determined based on the idealized back-
bone relations shown in Figures 6-17 and 6-18. The stiffnesses from positive and negative dis-
placements are averaged to determine Iy 1osa1 rest- FOU Leff total caier My 1S based on the bilinear
idealization of the moment-curvaturerelationshipsand A, iscalculated from Equations7.2and 7.3
using the yield curvature from the bilinear idealization of the moment-curvature relationships
shown in Figure 7-1. Note that the I, values are approximately half of 7, g, 4. dueto the
influence of slip deformations, and considerably less than values such as 0.57, or 0.7/, commonly
used in practice (ASCE, 2000).

Table 7-2. Effective center column stiffness as a fraction of Ig

Specimen I eff flex calc 1 eff total calc I eff total test
1 0.47Ig 0.221g 0.24Ig
2 0.531g 0.251g 0.281g

7.2.2 Outside Columns

The moment-curvature relationships shown in Figures 7-3 through 7-5 were determined using a
standard section analysis of the outside columnswith the concrete and steel material models shown
in Figure 7-6. The confined concrete model by Mander et al. (1988) was used to determine the
stress-strain relationship for the concrete core. The moment-curvature relationships were com-
puted at three axial loads, selected based on the range of axial oads observed during the tests (see
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Figure 7-4. Calculated moment-curvature relationship for outside columns with upper-
bound axial load (P=55 Kips)
Figures 6-36 and 6-37): the initial axial load of 20 kips, an upper-bound axial load of 55 kips, and
alower-bound axial load of 8 kips. Thisrange of axial loads was chosen to enable the calculation
of bounds on the yield displacement, stiffness, and flexural strength of the outside columns.
Similar to the center column, the yield displacement can be expressed as the sum of dis-
placements due to flexure, bar slip, and shear deformations. As shown for the center column, the

displacements due to elastic shear deformations are very small and will be ignored for the outside
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Figure 7-6. Material models used in section analysis of outside columns

columns. Adopting similar assumptions as outlined for the center columnin Section 7.2.1, the dis-
placements due to flexure and dlip deformations can be approximated by Equations 7.2 and 7.3,
respectively. Table 7-3 compares the calculated yield displacement for the initial axial load of 20
kips, with the displacement at first yield of the longitudinal reinforcement based on the strain gage
data. Owing to the location of strain gages in the outside columns, the valuesin Table 7-3 are for
first yielding of the outermost reinforcing bars.

As noted in the previous chapter, the outside columns exhibit a stiffer response during
cycles in which the axia load increases due to overturning forces. Such cycles are referred to as

compression cycles. Likewise, the outside columns exhibit a softer response during cyclesin which

156



Table 7-3. Calculated displacement for outside columns at first yield
of outermost reinforcement (in.)

A
. y calc
Specimen Aﬂex Aslip Ay cale A
y test
1 0.29 0.32 0.60 0.98
2 0.29 0.32 0.60 1.02

the axial load decreases (or tension cycles). Table 7-4 compares the stiffness observed during com-
pression cycles with the calculated stiffness using the upper-bound bilinear moment-curvature
relationship from Figure 7-4, and the stiffness observed during the tension cycles with the calcu-
lated stiffness using the lower-bound bilinear moment-curvature relationship from Figure 7-5.
Similar to the center column, the observed stiffnesses are determined based on the idealized back-
bonesin Figures 6-42, 6-43, 6-44, and 6-45, and assuming that both ends of the columns are fixed
againgt rotation, a reasonable assumption before axial failure of the center column. Owing to the
similar axial loads experienced by the outside columnsfor both specimens during low-level cycles,
the observed stiffnesses, I, 10y ro5r N Lo 10101 1e5» @€ determined by averaging the stiffnesses for
al four outside columns (two columns per specimen). In Table 7-4 the effective stiffness is
expressed as a fraction of the gross moment of inertia of the column, 7,,. The procedure for calcu-
lating each of the terms is given in Section 7.2.1. As with the results for the center column, the
influence of dip deformations reduces thetota effective stiffnessfor the outside columnsto values

that are considerably less than those typically used in practice.

Table 7-4. Effective stiffness for outside columns as a fraction of 1 g

Cycle Type 1 eff flex calc 1 eff total calc 1 eff total test
Compression 0.431, 0.217, 0.201,
Tension 0.361, 0.171, 0.161,

7.3 FLEXURAL STRENGTH
7.3.1 Center Column

Table 7-5 compares the cal culated and measured yield moments and ultimate flexural strengthsfor
the center column. Owing to inaccuracies in the measured moments from the force transducer data

(see Section B.6), the measured values were determined using the measured shears and assuming
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that the column was fixed against rotation at both ends (M = V(L/2)). The terms listed in
Table 7-5 are defined as follows:

* M, ., = measured moment at first yield of the longitudinal reinforcement.

* M, ;o = Maximum moment measured during the test.
* M, . = calculated yield moment based on section analysis.
- M = calculated ultimate moment based on section analysis.

u calc

* M, sc; = calculated ultimate moment using a standard rectangular stress block with ultimate
concrete strain of 0.004, concrete strength based on concrete cylinder tests
(Appendix A), bilinear steel model from Figure 7-2, and a strength reduction factor of
unity.

Table 7-5 shows a close agreement between the cal culated and measured results. Note that
the ultimate moment achieved in the tests, particularly for the Specimen 2, may be governed by the
shear strength of the column. Shear strength is not considered in the calculated ultimate flexural

strengths.

Table 7-5. Measured and calculated flexural strengths for center column (Kip-ft)

Specimen My test My, 15t My calc My cale My acr
1 39.3 43.8 37.3 43.6 44.8
2 45.1 48.1 44.3 46.2 47.4

Table 7-6. Measured and calculated flexural capacities for outside column (Kkip-ft)

Cycle Type My test My, 15t My calc My cale My acy
Compression 33.8 39.9 31.2 34.6 34.8
Tension 18.1 26.8 219 27.3 275

7.3.2 Outside Columns

Theflexural strengthsfor the outside columnsarelisted in Table 7-6. Asfor the measured effective
stiffnesses, the measured flexural strengths were determined by averaging the moments from the
four outside columns during the appropriate cycle. As for the center column, the measured
moments were determined based on the measured shears and assuming that the columns remain
fixed against rotation at both ends. This assumption is not valid for Specimen 2 after axial failure

of the center column and vertical deflection of the beam leads to rotations at the beam ends, and,
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hence, rotation of the top of the outside columns. However, the maximum shear in the outside col -
umns of Specimen 2 isrecorded before axia failure of the center column.

The calculated values overestimate the measured values during tension cycles, and under-
estimate the measured values during compression cycles. The discrepancies may be aresult of the

assumption that the column ends remain fixed against rotation.

74  SHEAR STRENGTH

The center column for both specimens appeared to fail in shear as suggested by the characteristic
diagonal failure plane observed during the test. As described in Chapter 2, severa predictive
models exist for calculating the shear strength of reinforced concrete columns. Models proposed
by Sezen (2002) and Priestley et al. (1994), in addition to the equations from ACI318-02, are com-
pared with the test results in Table 7-7. The maximum center column shear measured during the
testswas 18.1 kips and 19.9 kipsfor Specimens 1 and 2, respectively.

The shear-strength model s proposed by Sezen (2002) and Priestley et al. (1994) require the
displacement ductility demand on the column. To remove further uncertainty from the evaluation
of the shear-strength models, the displacement ductility, u5, was determined based on the test data
by using the following expression:

A
ug = = (7.6)

Ay

where A, is the displacement (in the positive direction) at first yield of the longitudinal reinforce-
ment based on the strain gage data, and A, is defined as the displacement (in the positive direction)
at which the backbone of the test data first dropsbel ow 80 percent of the maximum recorded center
column shear. (Priestley et al. (1994) determined the measured yield displacement by extrapolating
aline from the origin, through the displacement at first yield, to the theoretical flexural strength
based on measured material properties. Where available, Sezen (2002) used the reported yield dis-
placement based on strain gage data; otherwise, the yield displacement was determined by extrap-
olating aline from the origin, through the backbone of the test data at 70% of the maximum lateral
load, to the maximum measured lateral load.) Only the displacements in the positive direction are

considered, since the degradation in shear strength is initiated in this direction. Given this defini-
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tion, the observed maximum displacement ductilities are 4.08 and 1.96 for Specimens 1 and 2,

respectively.

Table 7-7. Predicted shear strengths as a fraction of the maximum measured shear

Shear-Strength Model

Specimen 1

Specimen 2

ACI318-02

22.5kips/ 18.1 kips = 1.24

24.5kips/ 19.9 kips =1.23

Priestley et al. (1994)

26.2 kips/ 18.1 kips = 1.45

38.2 kips/ 19.9 kips = 1.92

Sezen (2002)

18.1 kips/ 18.1 kips = 1.00

24.0kips/ 19.9 kips =1.21

The resultsfrom this very limited data set suggest that the model proposed by Sezen (2002)
provides good accuracy for the columns tested in this study. A detailed comparison of the models
using adatabase of 51 columns can be found in Sezen (2002).

Figures 7-7 and 7-8 compare the shear-strength model s by Sezen (2002) and Priestley et al.
(1994) (based on the calculated yield displacement from Table 7-1) with the center column shear
hysteresis for Specimens 1 and 2. Elastic-perfectly-plastic (EPP) backbone models, based on the
calculated yield displacements from Table 7-1 and the yield moment from the idealized moment
curvature relationships shown in Figure 7-1, are also included on the plots. The intercepts of the
EPP model and the shear-strength model indicate the displacements at which the model would pre-
dict shear failure (or shear-strength degradation of approximately 20%). The EPP model does not
intercept the Priestley shear-strength model for either specimen, indicating that this shear model
would not predict shear failure for such acolumn. Asdiscussed in Section 2.3.1, the shear-strength
models do not provide areliable estimate of the displacement at shear failure, and this assertion is

supported by the results shown in Figures 7-7 and 7-8.

7.5 SHEAR-DRIFT BACKBONE

The backbone of the shear-drift hysteretic response for a column expected to experience flexural
yielding before shear failure can be approximated as shown in Figure 7-9. Each coordinate of the
backbone can be determined using models discussed previoudy. The flexural strength, V,,, can be
determined based on an idealization of the cal culated moment-curvature response (Figure 7-1); the
drift ratio at flexural yielding, A,/L, can be calculated as discussed in Section 7.2; the drift ratio at
shear failure, AyL, can be calculated using models discussed in Section 2.3; and the drift ratio at
axial failure, A /L, can be calculated using the shear-friction model from Section 3.3.6. The calcu-
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Figure 7-7. Comparison of shear-failure surfaces with Specimen 1 test data
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Figure 7-9. Idealized shear-drift backbone for shear-critical columns

lated backbones for the center column response, using the six models for A/L from Section 2.3,
are shown in Figures 7-10 through 7-15. (Equation 3.20 was used to calculate A /L for al plots
except Figure 7-15, where the model by Kato and Ohnishi (2002) discussed in Section 3.4 was
used.) For al casesthe axia load wastaken astheinitial axial load supported by the center column.

The empirical drift capacity models (Equations 2.8 and 2.9) and the model by Pujol et al.
(1999) provide very similar estimates of the shear-drift backbone for both specimens. The models
underestimate the drift at shear failure for Specimen 1, but provide a good estimate of the drift at
shear failure for Specimen 2. These results suggest that the drift capacity models may underesti-
mate the influence of the axial load on the drift ratio at shear failure.

The model by Pujol et al. (2000) provides a good estimate of the shear-drift backbone for
Specimen 1, but significantly underestimates the drift at shear failure for Specimen 2. The calcu-
lated drift at shear failure for Specimen 2 was less than the calculated drift at flexural yielding,
resulting in the backbone shown in Figure 7-13.

As noted previoudly, the shear strength model by Sezen (2002) does not provide areliable
estimate of the drift at shear failure. For Specimen 2, the shear strength model predicts a drift at
shear failurewhich islarger than the calculated drift at axial failure, resulting in the erroneous pre-
dicted shear-drift backbone shown in Figure 7-14. Notethat, contrary to all of the other models pre-
sented for the drift at shear failure, the shear strength model incorrectly predicts that the higher
axial load for Specimen 2 will result in anincrease in the drift at shear failure compared with Spec-

imen 1.
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Figure 7-10. Calculated backbone using Equation 2.8
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Figure 7-11. Calculated backbone using Equation 2.9
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Figure 7-12. Calculated backbone using Pujol et al. (1999) (Equation 2.2)
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Figure 7-13. Calculated backbone using Pujol et al. (2000) (Equation 2.5)
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Figure 7-14. Calculated backbone using Sezen (2002) (see Figures 7-7 and 7-8)
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Figure 7-15. Calculated backbone using Kato and Ohnishi (2002) (Equation 2.6)
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Figure 7-16. Calculated backbone using degrading slope model
(slope m given by Equation 3.25)

The model for the drift at shear and axial load failure by Kato and Ohnishi (2002) shows
close agreement with the center column hysteretic response for both specimens. By using one
expression (Equation 2.6) with different coefficients for shear and axial failure, the model by Kato
and Ohnishi (2002) ensures that the calculated drift at axial failure will always exceed the calcu-
lated drift at shear failure.

As described in Section 3.5, the degrading slope after shear failure and the displacement at
which significant shear strength degradation first occurs can be estimated using a shear-friction
model (Equation 3.25). Figure 7-16 uses the degrading slope model to construct the shear-drift
backbone for the center column of each specimen. The intercept of the degrading slope model and
the V = 0 axisin Figure 7-16 are assumed to be given by the axial-failure model (Equation 3.20)
using theinitia axial load on the center column. Although the model provides a good estimate of
the degrading slope and the displacement at which degradation beginsfor the columnstested in this
study, it must be noted that the degrading slope model does not agree well with the resultsfrom the
pseudo-static tests in the database from Section 3.2.

7.6  AXIAL RESPONSE

Figures 7-17 and 7-18 show the axial-load lateral-drift response of the center column for each spec-
imen compared with the axial failure surface based on Equation 3.20. The response of the center

column for Specimen 1 remains below the failure surface, indicating that the model predicts no
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Figure 7-17. Comparison of center column response from Specimen 1 to shear-friction
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Figure 7-18. Comparison of center column response from Specimen 2 to shear-friction
axial-failure model (Equation 3.20)
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axial failure for the test with low axia load. The response of the center column for Specimen 2
touches the failure surface, indicating that the model predictsthat axial failure can be expected for
the test with a moderate axial load. These results are consistent with the observed behavior during
the tests.

Theintercept of the center column response from Specimen 2 and the failure surface occurs
at approximately 24.9 seconds, asindicated by the square marker (the same square marker appears
in the plots of Chapter 6). At 24.9 seconds significant distortion of the top of the center column,
possibly dueto diding along the diagonal shear-failure plane, could be observed visually, as shown
in Figure 6-12b.

7.7 BEAM RESPONSE AND LOAD REDISTRIBUTION

As discussed in Section 6.3.4, the beam stiffness influences the redistribution of gravity loads
observed during the tests. Estimates of the yield displacement and the flexural strength of the beam
can be used to model the beam stiffness and the transient redistribution of gravity loads.

Owing to the flexibility of the outside columns compared with that of the beam, the beam
can be approximately modeled as simply-supported between the outside columns with a point load
support at midspan equal to the initial axial load in the center column (as shown in Figure 6-58).
Theyield deflection at midspan dueto P, (the drop in the center column axial load capacity) can
be estimated by adding the deflection due to flexure and the deflection due to slip of the longitudi-

nal bars from the center transverse beam.

A = A (7.7)

beam y beam flex + Abeam slip

Note that all calculations are done for deflections at the face of the center transverse beam.
Owing to the increased stiffness from the center transverse beam, these deflections should provide
agood estimate of the midspan deflections.

Considering half of the beam as a cantilever, the yield deflection due to flexural deforma-

tions resulting from P, can be estimated as follows:

2
Abeamﬂex = %(q)y_q)DL) (78)
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Figure 7-19. Moment-curvature relationship for beam section

where ¢, isthe curvature at the face of the transverse beam based on the simply-supported model
subjected to dead loads (including prestress forces) and the initial axial load in the center column,
o, isthe yield curvature of the beam, and L is the distance between the center line of the outside
columns and the face of the center-column transverse beam. The yield curvature was based on the
moment-curvature relationship calculated from a standard section analysis as shown in Figure 7-
19. The flexural displacement of the beam at yield, based on Equation 7.8, is 0.31 inches.

Sincethe center transverse beam acts as an anchorage block for the beam longitudinal rein-
forcement, the dlip of the beam longitudinal bars within the center transverse beam must be con-
sidered when evaluating the yield deflection. As shown in Figure 7-20, the dip of the longitudinal
bars, 8, can be estimated by integrating the strains in the reinforcing bars within half of the
center transverse beam. Given d;;,,, the deflection at midspan due to the reinforcement slip at yield
can be estimated asfollows:

A =

lpy (7.9)

beam slip c

where ¢ isthe distance from the neutral axisto the reinforcement at yield based on section analysis,
and L is the length from the center line of the outside column to the face of the center transverse
beam.

Based on Figure 7-20 and Equation 7.9, the beam deflection at yield dueto dip of therein-

forcing bars from the center transverse beam is approximately 0.11 inches. Therefore, based on
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Figure 7-20. Slip of beam longitudinal reinforcement from center transverse beam

Equation 7.7, the total deflection of the beam at yield of thelongitudinal reinforcing barsis approx-
imately 0.42 inches. Based on the simplified model shown in Figure 6-58, including the dead |oad
and applied prestress force, P, , = 53 kips produces a moment at the face of the transverse beam
equal to theyield moment from section analysis.

Figure 7-21 compares the measured response of the beam from Specimen 2 shown in
Figure 6-59 with an el astic-perfectly-plastic model based on theyield deflection and yield moment
discussed above. The calculated yield displacement and stiffness appear consistent with the
recorded results, although the test data suggest that the beam yields more gradually than the EPP
model would indicate.

Figure 7-22 shows relations between the center column axial load, horizontal displace-
ments, and beam displacementsfor Specimen 2. The slope of the bold line shown on the lower right
plot of Figure 7-22, and the stiffness of the beam, can be used to estimate the loss in the center

column axial load at the time of the square marker. (Note that the test data are used in place of a
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Figure 7-21. Measured and calculated response of the beam from Specimen 2

model for the horizontal versus beam displacement relationship, since a simplified model of the
axial shortening of a column after shear failureisnot currently available.) The bold line, at aslope
of 0.08, is approximately tangent to the response of the column during the pulseinitiating axial fail-
ure. By using this linear approximation to the axial response of the columns, the difference in the
vertical displacements at a horizontal displacement of 3.4 inches (at the square marker) can be cal-
culated as -0.08*3.4 = -0.27 inches. The élastic stiffness of the beam, based on the EPP model
shown in Figure 7-21, is such that lifting the outside columns by 0.27 inches relative to the center
column will result in relieving the center column axial load by 29 kips. Since theinitial axial load
in the center column was 67 kips, a horizontal displacement of 3.4 inches should result in a center
column axial load of approximately 38 kips. Thisresult is cons stent with the location of the square
marker in the upper-right plot of Figure 7-22.
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8 Analysis of Shake Table Test Specimens

8.1 INTRODUCTION

This chapter will describe an analytical model for the shake table test specimens developed using
OpenSees, a finite-element analysis platform designed for earthquake engineering ssmulation
(OpenSees, 2002). The behavior of the model under both static and dynamic loading conditions
will beinvestigated. The goal of the static analysesisto evaluate the ability of the model to repro-
duce the observed hysteretic behavior of the specimen componentsif the lateral drifts are predicted
exactly. The goal of the dynamic analysesis to evaluate the ability of the model to reproduce the
observed response of the specimens as described in Chapter 6. The sensitivity of the results to
changesin several parameters will also be investigated.

The analysis described herein will use the models presented in Chapters 2 through 4 in an
effort to reproduce the observed response of the shake table test specimens described in Chapter 6.
The proposed model for the drift capacity at shear failure (Equation 2.9) and the axial failure model
(Equation 3.20), both implemented in OpenSees using the limit state failure model introduced in
Chapter 4, will be used to identify the initiation of shear- and axial-strength degradation, respec-
tively, for the center columns. The sensitivity of the analytical resultsto the accuracy of thefailure
models will be investigated.

8.2  DESCRIPTION OF THE ANALYTICAL MODEL

The layout of the nodes and elements for the analytical model is shown in Figure 8-1. The follow-
ing sections describe the models used for the frame components and the loading for the dead-load
model.
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Figure 8-1. Model of shake table specimen

8.2.1 Beam and Footing Models

The calculated moment-curvature and dip response for the beam, presented in Section 7.7, was
used to determine the stiffness and flexural yield strength of the beam elements. Although the beam
was modeled as nonlinear (with moments and axial load uncoupled) for the dynamic analyses, it
was necessary to use a linear-elastic beam model for the static analyses to maintain static equilib-
rium. Figure 8-2 shows the loads acting on the beam node at the top of the center column. During
axial failure, the center column axial load, P, decreases with increasing lateral drift (as described
in Section 4.5.3). If the beam isyielding in positive bending due to axial shortening of the center
column, then the beam shear forces, V; and V5, are approximately equal and constant. For static
analysis, nodal equilibrium cannot be achieved with ayielding beam, since W+V; +V,remains con-

stant while P decreases. For dynamic analysis, however, the inertial force due to the downward

1 1

Static Analysis Dynamic Analysis

Figure 8-2. Nodal equilibrium at top of the center column
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acceleration of the beam mass, ma,,, will increase as P decreases, thereby maintaining nodal equi-
librium. Lengthening of the beam due to cracking was not considered.

The footings were modeled as linear-elastic with the flexural stiffness approximated by
80% of the gross moment of inertia. The force transducers were not included in the model, since
their shear stiffness (approximately 6000 kips/in.) was considered high enough to be considered a
fixed end condition.

8.2.2 Column Models

Zero-length sections located at the top and bottom of each of the columns attached the nonlinear
beam-column elements to the beam and footings. The zero-length sections were defined by three
uncoupled material models describing the moment-rotation relationship, the shear-longitudinal
displacement relationship, and the axial load-vertical displacement relationship between two coin-
cident nodes (one attached to the end of the nonlinear beam-column element, and one attached to
the rigid beam element). Each material model could be interpreted as a spring in series with the
nonlinear beam-column element.

As noted in Chapter 7, displacements due to dip of the longitudinal reinforcing bars from
the footing and beam accounted for approximately half of the yield displacement and significantly
influenced the observed stiffness of the columns. To account for this additional flexibility, elastic
dlip springs, based on the calculated slip displacements from Section 7.2, were included in zero-
length sections at the ends of each of the column elements.

The zero-length section at the top of the center column element included material models
to represent the shear and axial-load failure of the center column. The limit state failure model
described in Section 4.5.1 was used to define the shear-longitudinal displacement relationship
(shear spring), while the limit state failure model described in Section 4.5.3 was used define the
axial load-vertical displacement relationship (axial spring) for the zero-length section. The limit
curve for the shear spring was defined using the empirical drift capacity model incorporating the
influence of axial load from Section 2.3.5 (Equation 2.9), while the limit curvefor the axial spring
was defined by the axial failure model from Section 3.3.6 (Equation 3.20). Theinitial dopefor the
shear spring (i.e., the dope of the pre-failure backbone from Figure 4-7) was chosen based on the
shear stiffness of the uncracked column (i.e., GA,/L = 1700 kips/in., where effective shear areg, A,
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isapproximated by (6/5)A,). Asdiscussed in Section 4.5.1, the degrading slope for the shear spring
after shear failure is detected (K., from Figure 4-8) was determined based on achieving the cal-
culated drift at axial failure (per Equation 3.20) once the shear strength has degraded to zero. The
initial slope for the axia spring (i.e., the ope of the pre-failure backbone from Figure 4-11) was
selected as 100 times stiffer than the axial stiffness of the column to ensure that no additional axial
flexibility was introduced into the model. The degrading slope of the axial spring (K, from
Figure 4-11) was selected as -90 kips/in. based on a linear approximation to test data from Speci-
men 2.

Rigid shear and axia springs, with negligible deformations under the anticipated |oads,
were included in the zero-length sections at the tops and bottoms of the outside columns and the
bottom of the center column.

All three columns were modeled using nonlinear fiber beam-column elements with five
sections defining the moment-axial load interaction. Based on the flexibility method, the beam-
column elements determine the section forces (moment and axial load) from interpolation of the
element end forces and integrate the resulting section deformations (curvatures and axial strains)
over the length of the element to determine the element end deformations (rotations and axial
lengthening). By capturing the moment-axial load interaction, the fiber elements are able to model
the axial lengthening of the columns resulting from lateral displacements. The influence of large
displacements on the column response is also incorporated in the element formulation. For a com-
plete description of the nonlinear fiber beam-column elements refer to Spacone et al. (1996a and
1996b). For the development of the specific nonlinear beam-column element available in
OpenSees, and used for the analyses described here, refer to Souza (2000).

Each nonlinear fiber beam-column element was composed of five sections located at
Gauss-Lobatto integration points along the length of the element for optimum integration of the
section deformations, while still providing the critical section forces and deformations at the ends
of the element. The sections were subdivided into concrete and steel fibers. The cyclic response of
the concrete material models used to define the behavior of the concrete fibers for the outside and
center columns is shown in Figure 8-3. Two concrete models were used for the outside columns:
one, based on the confined concrete strength of 7900 psi calculated according to Mander et al.
(1988), was used to define the response of the confined core; while an unconfined concrete model,

with acompressive strength equal to the test day cylinder strength of 3520 psi, was used to define
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Figure 8-3. Concrete material models for fiber sections

the response of the cover concrete. Asshown in Figure 8-3, the tensile capacity of the concrete was
ignored.

As discussed in Section 4.5.1, for a column using the limit state failure model to define
shear failure, computational issues require that the flexural response always maintains a positive
dope prior to shear failure. Although the concrete for the center column could be considered
unconfined due to the wide spacing of the transverse reinforcement, to avoid a negative slope in
the flexural response, the selected concrete material model did not allow for strength degradation
after reaching the unconfined concrete compressive strength of 3520 psi. The reinforcing steel
material model for the center column used a strain-hardening modulus of 0.015E; (where Eg =
29,000 ksi), approximately twice that observed in the coupon tests, to ensure that the P-delta effects
did not result in a negative slope in the flexural response. Since strength degradation due to shear
failure, modeled by the shear spring in the zero-length section, governed the strength degrading
behavior of the center column, the altered concrete and steel material model did not significantly
impact the calculated column response.

The steel material model has a significant impact on the calculated cyclic response of the
column element. Three steel models available in OpenSees, and the associated moment-curvature
response for the outsi de column section subjected to an axial load of 20 kips, are shownin Figure 8-
4. Since the bilinear model does not capture the stiffness degradation observed even in well-con-
fined reinforced concrete elements, this material model will not be used for the analyses presented
in this chapter. The base model presented in Sections 8.3 and 8.4 uses the Clough-type hysteretic
steel model for the outside and center columns. The influence of the choice of steel model on the
response of the shake table specimensis discussed in Section 8.3.2.2.
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Figure 8-4. Steel material models and moment-curvature response for outside
column fiber sections

8.2.3 Dead-Load Model

All of the masswas modeled at the center of the mass of the beam and lead packets(i.e., 6.75inches
above the beam soffit). The dead loads were distributed according to the measured weight of the
lead and the calculated weight of the beam, and applied to the beam elements at the location of the
shims supporting the lead packets (see Appendix B). For Specimen 2, both the horizontal and ver-
tical components of the prestress force applied to the specimen by the pneumatic cylinders were
applied to the beam node over the center column. The components of the prestressforce were deter-
mined using the measured prestress |oad (see Figure B-9) and the measured displacement at the top
of the center column. The maximum horizontal component of the prestress force was 1.6 kips.
Theinitial distribution of the gravity loadsto the three columns, as determined by the model
described above, resulted in a center column axia load that was higher than that recorded by the
force transducers. The discrepancy was likely aresult of the method used to support the dead |oad

during casting of the hydrostone between the force transducers and the specimen. The specimen
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was supported on screw-jacks under each of the footings and stabilized by straps attached to the
overhead crane, while the hydrostone was cast. Owing to the high stiffness of the beam, a dight
discrepancy in the height of the screw jacks, or in the level of the footings, would result in adiffer-
ent dead-load distribution than determined by the analysis. To achieve agreement between the mea-
sured and calculated center column axial loads, the bottom nodes of the outside columns in the
analytical model were “lifted” by 0.09 inches for Specimen 1 and 0.11 inches for Specimen 2,
thereby shifting more gravity load to the outside columns. A more detailed description of the dead-

load analysis and the resulting initial loads on the outside columns can be found in Section B.6.

8.3  STATIC ANALYSIS

Static nonlinear analyses are used increasingly by practicing engineers to evaluate the capacity of
structures subjected to earthquakes; however, few analysis tools exist to include the influence of
column shear and axial load failures. Static monotonic and cyclic analyses of the shake table spec-
imens are presented in the following sections to demonstrate the capability of the center column
model described in Section 8.2 to model shear and axial load failures, and the influence of the fail-

ures on the response of the shake table specimens.

8.3.1 Static Monotonic Analysis

The monotonic analysis results illustrate the behavior of the column elements under a simplified
loading condition. The analyses were performed by linearly increasing a horizontal displacement
imposed on the beam node above the center column, up to a maximum displacement of 5 inches
(or a column drift of 8.6%). All other degrees of freedom (including the vertical and rotational
degrees of freedom where the horizontal displacements were imposed) were free to move accord-
ing to the response of the structure. A prestress force of 42 kips applied to the beam node above
the center column was maintained throughout the analysis. The column axial loads were the same
as those measured before the shake table test for Specimen 2.

The shear response of the center column isshown in Figure 8-5. The column drift has been
decomposed into the flexural component, based on the horizontal displacements of the center
column nonlinear fiber element (including the slip springs attached to the top and bottom of the

element), and the shear component, based on the displacements of the shear spring in the zero-
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Figure 8-5. Shear response of center column during monotonic analysis

length section at the top of the center column element. As expected, before shear failure, the total
response of the center column is dominated by the flexural (including dip) displacements. After
the total response exceeds the calculated drift at shear failure, the capacity of the shear spring
degrades such that the total drift, after full degradation of the center column strength, will be equal
to the calculated drift at axial failure (Figure 8-5). The shear-strength degradation forces the fiber
element to unload, resulting in adecreasein the flexural displacements and an increase in the shear
displacements after shear failure. This response is consistent with the increase in the shear defor-
mation component after shear failure that is observed in large-scale pseudo-static tests (Sezen,
2002; Lynn, 2001).

The shear response of the entire frame and of the outside columns are shown in Figure 8-
6. The imposed displacements moved the beam toward the west, resulting in additional axial com-
pression in the west column due to overturning moments. The slightly higher axial loads resulted
in a higher yield strength for the west column as shown in Figure 8-6. The initial shear forcesin
the outside columns from the dead-load model resulted in the west column yielding at alower drift
compared with the east column.

A column supporting an axial load and subjected to transverse def ormations producing cur-
vatures along the length of the column, as shown in Figure 8-7, will experience axia lengthening
dueto theincreasein the axial strain at the centroid of the section, €,,. The nonlinear fiber elements

are capable of capturing this axial lengthening experienced by reinforced concrete elements sub-
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Figure 8-7. Axial lengthening due to applied transverse displacements
jected to transverse deformations. Additional axial lengthening due to cyclic deformations will be
discussed in Section 8.3.2.

The vertical deformations experienced by the outside and center columns during the mono-
tonic analysis are shown in Figure 8-8. Before shear failure of the center column at a drift ratio of
2.1%, all three columns experience axia lengthening. The higher transverse stiffness of the center
column results in a ower increase in vertical displacements compared with the response of the
outside columns. After shear failure, the center column flexural deformations (i.e., the curvatures)
decrease, resulting in adecreasein €, and therefore adecrease inthe axial lengthening of the center
column. At a drift of 5.2%, axial failure is detected by the axial spring attached in series with the
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center column fiber element, resulting in a sudden increase in the vertical displacements in the
downward direction.

The column axial load response during the monotonic analysisis shown in Figure 8-9. Ini-
tially, overturning moments cause a decrease in the east column and an increase in the west column
axial loads. As the west column yields before the east column, the shear in the west beam drops
relative to the shear in the east beam, resulting in a slight increase in the center column axial load
at adrift ratio of 1%. Asnoted in Figure 8-8, upon shear failure of the center column (A/L = 2.1%),
the vertical displacements of the outside and center columns begin to diverge. The difference
between the vertical displacements results in bending of the beam, and in turn, transfer of gravity
load from the center column to the outside columns even before axia failure of the center column.
Hence, the decrease in the center column axial load from adrift ratio of 2.1% to 5.2% can be attrib-
uted to the stiffness of the beam in bending as the center column shortens and the outside columns
lengthen. Asshown in Figure 8-9, at adrift ratio of 5.2% the center column response intersects the
axial limit curve defined by Equation 3.20 and axial failure of the center column is initiated.
According to the shear-axial coupling model described in Section 4.5.3, once axial failure is
detected, the axial 1oad-lateral drift response remains on the limit curve, thereby forcing the redis-

tribution of the gravity loads to the outside columns with continued lateral drift.
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Figure 8-9. Column axial load response during monotonic analysis

8.3.2 Static Cyclic Analysis

Static cyclic analyses were performed by applying the recorded longitudinal displacements for
both specimens (second plot in Figure 6-5) to the beam node at the top of the center column. Such
analyses are similar to those performed to validate analytical models using static test data (e.g.,
Pincheiraet al., 1999). The results demonstrate the capability of the analytical model to reproduce
the hysteretic behavior observed during the test. As will be demonstrated in Section 8.4, close
agreement between the static analysis results and the recorded response may not necessarily result

in sufficiently accurate dynamic analysis results.

8.3.2.1 Shear Response — Center Column

Figure 8-10 compares the results from the static cyclic analysis with the measured shear hysteretic
response for the center columns of both specimens. Recall that the empirical drift capacity model
at shear failure (Equation 2.9) was used to initiate the shear-strength degradation clearly seen in
the calculated center column response for both specimens, and that the degrading slope of the cal-
culated shear response was determined based on achieving the drift at axial failure (Equation 3.20)
after full degradation of the shear strength.

The analytical model adequately represents the measured response in terms of the initial
and degraded column stiffness. Prior to shear failure, stiffness degradation results from the hyster-
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Figure 8-10. Center column shear hysteretic response using static cyclic analysis
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etic behavior of the concrete and steel models used to define the fiber element sections (Figures 8-
3 and 8-4) and the flexural response of the fiber element. After shear failure, the shear deformations
modeled by the shear spring dominate the response of the analytical model (Figure 8-11). The
pinched hysteretic response of the shear spring material model provides the additional stiffness
degradation observed after shear failure.

Thefiber element, with the sel ected material properties, overestimates the flexural strength
for Specimen 1 (with P = 0.10A gfc’), but adequately reproduces that observed for Specimen 2
(with P = 0.24A f,”). The apparent overestimation of the flexural strength for Specimen 1 is par-
tially aresult of the high strain-hardening for the steel model and the lack of concrete strength deg-
radation used to avoid a strength-degrading flexural response before shear failure (see
Section 8.2.2).

For Specimen 1, the analytical model detects that shear strength degradation begins during
anegative displacement cycle at adrift ratio of -2.5%, whilefor Specimen 2, shear strength degra-
dation isfirst detected during a positive displacement cycle at a drift ratio of 2.1%. This response
is consistent with the observed behavior for both specimens.

The bottom plots in Figure 8-10 indicate that the measured shear strength degradation did
not occur as rapidly as indicated by the analytical results. In particular, the measured shears for
both specimens beyond a drift ratio of 4% for the large positive displacement cycles at 25 seconds
are as much as twice those estimated by the analysis. Regardless of overestimating the rate of shear
strength degradation, the model adequately represents the near-complete loss of shear strength
after 28 seconds for Specimen 1 and 25 seconds for Specimen 2.

Asshown in the lower right plot of Figure 8-10, the negative shear forces measured during
thefinal cycles for Specimen 2 are not captured by the analytical model. These shear forces result
from the lateral deformation of the center column, as shown in Figure 6-21b, resulting from axial
failure. The analytical model does not attempt to represent such effects.

In Figure 8-11, the response of the analytical model from 15 to 17.5 seconds is decomposed
into the shear and flexural (including slip) deformation components. Although the flexural defor-
mations estimated by the model are similar for the two specimens, the estimated shear deforma-
tions for Specimen 2 are considerably greater than those for Specimen 1. The larger shear

deformations result in the greater loss of shear strength for Specimen 2 during the cycles shown in
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Figure 8-11. The earlier influence of shear deformations and loss of shear strength for Specimen 2

isone of the fundamental differences between the observed response of the two specimens.

8.3.2.2 Shear Response — Qutside Columns

The shear hysteretic response for the outside columnsis shown in Figures 8-12 and 8-13. Since the
initial shear forces acting on the outside columns could not be measured before the tests, the reac-
tions from the dead-load model were used to determine the initial shear forces for the test data
shown in Figures 8-12 and 8-13 (see Section B.6 for more details). The model adequately repre-
sents the stiffness and flexural strength of the columns for cycles in which the overturning forces
reduce the axial compression acting on the column (i.e., positive displacement cycles for the east
column and negative displacement cycles for the west column). In contrast, the model underesti-
mates the stiffness and flexural strength for cycles in which the overturning forces increase the
axial compression acting on the outside columns (i.e., negative displacement cycles for the east
column and positive displacement cycles for the west column).

The measured yield strength during compression cyclesis approximately 35% higher than
the measured yield strength during tension cycles. Considering that the axial load on the outside
columns remains well below the balance point, an increase in strength and stiffness due to higher
compression is expected. This effect is accounted for by the fiber beam-column elements, and
resultsin approximately a 15% increase in the yield strength for the compression cycles compared
with the tension cycles as indicated by the static analysis results shown in Figures 8-12 and 8-13.
A high strain rate can also cause an increase in strength; however, the strain rate should influence
the strength for both tension and compression cycles, and therefore does not explain the observed
discrepancy. Notwithstanding any errors in the measured shears due to cross talk with the axial
load channel s (not anticipated due to the close agreement between the base shear and inertial forces
shown in Figure 6-5), the considerably higher measured yield strength for the compression cycles
compared with the tension cycles shown in Figures 8-12 and 8-13 islikely aresult of aninaccurate
estimate of the initial shear forces acting on the outside columns based on the dead-load model.

The hysteresis loops from the static analysis shown in Figures 8-12 and 8-13 are more
pinched than the hysteresis loops from the test data. Most of the pinching captured by the fiber

beam-column elements can be attributed to the pinching characteristics of the steel material model
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Figure 8-13. Specimen 2 outside column shear hysteretic response from static cyclic analysis
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Figure 8-14. Specimen 1 outside column shear hysteretic response from static cyclic
analysis using Giuffre-Menegotto-Pinto steel material model
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used for the reinforcing bars. As shown in Figure 8-4, the Giuffre-Menegotto-Pinto (GMP) steel
model results in less pinching than the Clough-type hysteretic steel model used for the analysis
shown in Figures 8-12 and 8-13. The response of the Specimen 1 outside columns using the GMP
steel model is shown in Figure 8-14. Although the envelope of response is better estimated by
using the GMP steel model, the Clough-type hysteretic steel model provides a better estimate of
the stiffness for the smaller cycles. Based on comparing the results using the two steel models for
the significant cyclesfrom 15 to 17.5 seconds and 23 to 28 seconds, it was concluded that the hys-

teretic steel model provided a better estimate of the measured response.

8.3.2.3 Axial Response

The axial response of the shake table specimen was influenced by three primary factors: the axia
lengthening of the outside columns, the initial axial lengthening and subsequent axial shortening
of the center column, and the bending of the beam resulting from the change in the column lengths.
Although the nonlinear response of the beam cannot be included in the static analysis (see
Section 8.2.1), the analytical model does incorporate the mechanisms leading to column lengthen-
ing and shortening. The monotonic analysis, discussed in Section 8.3.1, demonstrated the length-
ening of the outside columns associated with increasing lateral displacement, and the shortening of
the center column relative to the outside columns beginning at the point of shear failure and
increasing rapidly at the point of axial failure (Figure 8-8). Since Specimen 1 did not experience
axial failure of the center column, only the vertical response of Specimen 2 will be considered here.

Figure 8-15 showsthe vertical lengthening of the outside columnsresulting from the lateral
displacements measured during the shake table test. Although the estimate of the vertical displace-
ments provided by the fiber beam-column elements is in better agreement with the test data for
compression cycles compared with tension cycles, both are sufficiently accurate given other uncer-
taintiesin the model. The cyclic response resultsin additional axial lengthening of the columns not
seen in the monotonic analysis. After reaching apeak in lateral (and vertical) displacement result-
ing in yielding of the tension reinforcement, and upon unloading, the flexural demands on the
column sections will reduce and the reinforcing steel will unload with approximately its elastic
stiffness. The steep, nearly-elastic response during unloading will result in less shortening of the

reinforcement compared with the lengthening of the reinforcement experienced during yielding,
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Figure 8-15. Coupling of horizontal and vertical displacements at top of outside columns
for Specimen 2

which will in turn lead to limited axia shortening of the column during unloading until the rein-
forcement reloads in compression. This response results in the flatter slope observed at the peaks
in displacement for the calculated vertical versus lateral displacement plots shown in Figure 8-15.

The vertical displacements and axial load response for the center column is shown in Fig-
ures 8-16 through 8-18. Similar to the monotonic analysis, the center column Iengthens with
increasing lateral displacement prior to shear failure. After shear failure but before axial failure,
the influence of the lateral displacements on the calculated vertical response diminishes as the
shear demand on the center column drops. The analytical model does not capture the 0.02 inches
of downward vertical displacement accompanying shear failure (at 17 sec) as seen in the test data
shown in the right-hand plot of Figure 8-16.

After axia failureisdetected, the vertical displacements at the center column increase rap-
idly in the downward direction. As shown in Figure 8-17, the downward vertical displacements
given by the analytical model only increase, while the calculated response follows the axial limit
curve. Although the analytical model captures some of the general characteristics of the measured
axial load-vertical displacement response for the center column (left-hand plot of Figure 8-17) and
correctly determines the timing of the first increase in downward vertical displacements (bottom

plot of Figure 8-18), the model underestimates the increase in vertical displacements, in part due
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Figure 8-16. Coupling of horizontal and vertical displacements at the Specimen 2 center
column

to the position of the axial limit curve. Theinfluence of the position of the axial limit curve will be
discussed in more detail below.

Similar to the monotonic analysis, Figure 8-17 shows that the axial load in the center
column decreases with increasing lateral displacement due to the difference in the vertical dis-
placements at the center and outside columns and the accompanying bending of the beam. Since
the dight downward movement of the beam at shear failure of the center column (at 17 sec) is not
captured by the analytical model, the accompanying 7 kip drop in the center column axial load is
also not observed in the calculated results. Once the calculated results intersect the axial failure
limit curve, according to the shear-axial coupling model described in Section 4.5.3, the axial load
in the center column is forced to follow the limit curve until the direction of motion reverses and
the column beginsto pick up load again as the outside columns shorten with decreasing lateral dis-
placement. The analytical resultsindicate aminimum axial load of 24 kips, compared with a mea-
sured minimum axial load of 10 kips. Although underestimating the total axial load lost, the
analytical model reproduces many of the critical characteristics of the center column axial load
response history, as shown in Figure 8-18.

As noted in Chapter 3, there is considerable uncertainty in the estimation of the axial limit
curve defining axial failure of the center column. Based on the database from Chapter 3, the stan-

dard deviation for the axial failure model, ¢, isequivalent to a drift ratio of 0.5% (the subscript a
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Figure 8-19. Calculated axial response for the center column for the +/- 6, models

denoting the standard deviation of the drift at axial failure). Figure 8-19 showsthe calculated axial
load response for the center column using an axial limit curve based on Equation 3.20 plus 6, and
minus o, (referred to as the +6, model and —6, model, respectively). The +6, model estimates a
minimum axial load of 30 kips and a vertical displacement of 0.10 inches, while the -5, model
estimates a minimum axial load of 18 kips and a vertical displacement of 0.20 inches. The differ-
enceintheaxial load resultsillustrates the importance of accounting for the uncertainty in the posi-
tion of the axial limit curve. The vertical displacementsfor the—c, model are still well below those
observed during the test (maximum of -1.0 inches). The difference between the calculated and
measured vertical displacements and axial loads suggests that the assumed coupling model
between axial load and lateral drift described in Section 4.5.3 may underestimate the rate at which
the axial load is lost with increasing lateral drift. The discrepancy is also likely a result of not
accounting for the axial load lost (and therefore the increasing vertical displacements) due to
repeated lateral cycles, after the initiation of axial failure, causing a*“grinding down” of the shear
failure plane. Note that the calculated minimum center column axial load was not sufficient to

causeyielding of the beam; hencethe linear beam model used for the static analysesdid not impact
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the results shown in Figure 8-19. The significant increase in the vertical displacements after beam
yielding will be illustrated in Section 8.4.1.

84 DYNAMIC ANALYSIS

Dynamic analyses of the shake table specimens were conducted using the same model used for the
static analyses described in the previous section. The analytical models for the two specimens
varied only by the applied prestress |oad on the center column and the slight increase in mass due
to the prestressing equipment for Specimen 2. Regardless of these differences, the calculated fun-
damental periods for both specimens were the same, 0.30 seconds. The calculated fundamental
period isthe same as the period measured just prior to the shake table test for Specimen 1, but over-
estimates the measured period of 0.25 seconds for Specimen 2 (see Figures 6-1 and 6-2).

By using mass-proportional damping, the equivalent viscous damping was set at 2% of crit-
ical for the fundamental mode of the frame. Stiffness-proportional damping could not be used in
this model because the sudden change in response at shear and axial failure of the zero-length
springs resulted in alarge increase in velocity and, hence, unrealistically large damping forces at
the node connecting the springs to the beam-column element. Since no mass was modeled at this
node, the increase in velocity did not influence the mass-proportional damping forces.

The mass matrix included lumped masses for each of the horizontal and vertical degrees of
freedom at the beam nodes, m, and m,, respectively. Rigidly connecting the m, massesto the beam
nodes resulted in high-frequency (25 Hz) beam oscillations after the sudden shortening of the
center column due to shear failure. The beam oscillations led to vertical inertial forces and fluctu-
ationsin the center column axial loads. Such high-frequency oscillations were not observed in the
test data shown in Figure 6-14. To avoid the spurious axial load oscillations the m, masses were
isolated from the beam by soft vertical springs, asillustrated in Figure 8-20. For the recorded table
motion analyses, the stiffness of the spring, &, was selected as 1.5 kips/in. such that the minimum
period of the vertical mass-spring system at each beam node was longer than the period of the beam
vertical displacements resulting from the lengthening and shortening of the fiber column elements.
For the pulse motion analysis described in the next section, a higher spring stiffness of 10 kips/in.
could be used, since the beam does not oscillate during the short duration of the analysis. The stiffer
spring permitted the development of the vertical inertial forces necessary for nodal equilibriumin

the event of beam yielding (Figure 8-2).
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Figure 8-20. Isolation of vertical mass

8.4.1 Pulse Input Motion

The analytical model for Specimen 2 was subjected to the horizontal ground acceleration shown in
Figure 8-21. The response to this pulse motion, shown in Figure 8-22, demonstrates the key stages
of behavior, including column yielding, shear failure, axial failure, and beam yielding. Although
the maximum drifts from the analysis are larger than those experienced by the shake table speci-
mens, the pulse motion illustrates the process by which the analytical model will shed nearly all
gravity load supported by the center column to the outside columns.

Similar to the monotonic analysis results from Section 8.3.1, the west column yields first,
leading to a dight increase in the center column axial load. Shear failure of the center column is
detected at a drift of 2.1% as defined by the empirical drift capacity model from Section 2.3.5.

After shear failure, the vertical displacements at the center column begin to drop off, while the out-

15

—
o
\

!

Acceleration (g)
o
()]
T
1

00 | | | | | | |
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Time (sec)

Figure 8-21. Pulse input motion
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side columns continue to lengthen with increasing lateral drift. The difference in the vertical dis-
placements causes bending of the beam and areduction of the axial load on the center column.

The axial failure of the center column is detected at a drift of 5.2% as defined by the axial
failuremodel of Section 3.3.6. Axial failure has very little influence on the shear demand, sincethe
outside columnshaveyielded and the center column shear has been reduced to itsresidual capacity.
After axial failure is detected, the center column axial load response is forced to follow the axial
[imit curve defined by the Equation 3.20. The sudden drop of the beam with the axial failure of the
center column resultsin an increasein vertical accelerations and vertical inertial forces distributed
along the beam.

At adrift of 9.0% the beam yields in positive bending at the face of the transverse beam
above the center column. Yielding of the beam results in a sudden increase in vertical displace-
ments, and therefore a sudden drop in the axial load in the center column. The change in the axial
load causes the response of the center column to drop below the axial limit curve. Asdescribed in
Section 4.5.3, the stiffness of the axial spring isredefined after each converged step if the response
crosses the axial limit curve. This procedure resultsin the jagged appearance of the center column
axial load and vertical displacement response histories immediately following the yielding of the
beam.

At adrift of 9.5% the center column reaches the presel ected residual axia load capacity of
5kips. Owing to yielding of the beam, the vertical displacements at the center and outside columns
diverge rapidly with little change in the column axia loads. At this stage the structure is unstable
without strain hardening in the beam response, or a change in the ground motion causing areversal
in the horizontal displacements.

Note that the analytical model overestimatesthe drift required to cause yielding of the beam
by approximately 2%. The higher estimate is due to the assumption that the axia response of the
center column must follow the axial limit curve after axial failure is detected. In part owing to the
influence of repeated cycles, the measured center column axial load drops off more rapidly with

increasing drift than the axial limit curve would suggest (see Figure 8-17).
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8.4.2 Recorded Table Input Motion — Specimen 1

The analytical model for the shake table specimen was subjected to the unidirectional horizontal
table acceleration recorded during the shear failure test for Specimen 1 (Figure 6-5). Although
dight pitching of the table was recorded, analyses using the recorded table displacements and rota-
tions confirmed that this did not significantly influence the response of the specimens, and hence,
was not included in the analyses presented here. The test data and the response of the analytical
model are compared in Figures 8-23 through 8-26. For a closer look at the critical period of
response, the response histories shown in Figure 8-23 show only the data from 5 to 35
seconds.

There is poor agreement between the analytical model response and the test results before
approximately 13 seconds. The analysis is slightly out-of-phase with the test results, suggesting
that the analytical model does not capture the lengthening of the natural period of response of the
specimen due to cracking of the columns. The recorded shears and displacements are significantly
underestimated by the analysis between 10 and 13 seconds. (Recall that this same difference is
observed when comparing the response of Specimen 1 to that of Specimen 2.) This result might be
expected, since the period of the analytical model (0.30 sec) falls at a “valley” in the jagged
response spectrum, while the apparent period of the specimen based on the measured response
between 10 and 13 seconds (0.35 sec) fallscloseto a“ peak” (see Figure 5-8). Note that the appar-
ent period of the specimen from the measured response is longer than the period based on the free-
vibration test.

Despite the lack of agreement early in the response histories, the analytical model provides
areasonabl e estimate during the critical periods of response. As observed during the test, the ana-
lytical model detects shear failure of the center column, but not axial failure. Shear failure isfirst
detected, and shear strength degradation begins, during a negative displacement cycle at approxi-
mately 17 seconds. The initial shear strength degradation decreases the stiffness of the center
column in the analytical model, resulting in a close agreement between the predominant period of
responsein the analytical model and that of the test data. The analytical model accurately identifies
that the positive displacement pulse at 25 seconds causes significant shear damage to the center
column, although theloss of shear strength during the pulseisoverestimated. The analytical model,
however, does not capture the complete shear strength degradation observed during the test, result-
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ing in an overestimation of the center column shear strength and stiffness late in the response his-
tory.

As noted for the static cyclic analysis, the hysteresis plots of Figures 8-24 through 8-26
indicate that the flexural strength of the outside columns during the compression cycles is under-
estimated, while the flexura strength of the center column is overestimated by the analytical
model. Coincidently, these off-setting errors result in a close agreement for the overall strength of
the specimen. The hysteresis plots in Figure 8-25 show that the stiffness of the analytical model
agrees well with the test data at the time when shear failureisfirst detected. The hysteresis plotsin
Figure 8-26 illustrate the influence of the underestimation of the drift demand on the response of
the analytical model.

The center column axial loads and vertical displacements are shown in the bottom two plots
of Figure 8-23. The analytical model is unable to capture the 10-kip loss in the axial |0ad observed
to coincide with theinitial shear cracking of the center column and the permanent axial lengthening
of the outside columns at 17 seconds. Thisindicates that although the outside column models cap-
ture some permanent lengthening due to yielding of the longitudinal reinforcement, they do not
captureenough to relievethe axial load from the center column. Although lengthening of the center
column isunderestimated by the analytical model, the dynamic analysis does capture the reduction
in the center column elongation after shear failure. The detection of shear failure of the center
column at 17 seconds, together with the subsequent decrease in the analytical estimate of the flex-
ural deformations, resultsin only limited elongations of the center column after shear failure.

To investigate the influence of uncertainty in the drift at which shear failureisinitiated, the
analysis of the base model described above was repeated using a shear limit curve shifted by +/-
one standard deviation, o5 (the subscript s denoting the standard deviation of the drift at shear fail-
ure). Based on the database of Section 2.2, and the drift capacity model of Equation 2.9, oy is
equivalent to a drift ratio of 0.9%. The -6 model represents those columns that experience shear
strength degradation prior to the drift given by the drift capacity model, while the +65 model rep-
resents those columns capable of maintaining their shear strength until drift ratios past that given
by the drift capacity model. Although Specimen 1 belongsto the | atter category, the -6 model pro-
vides a better estimate of the observed drifts, while the response of the +65 mode! is very similar
to that of the base model. The response of the +/-65 models are compared with the test datain Fig-
ures 8-27 through 8-30. As expected, the -6 mode! experiences shear strength degradation earlier
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than the base model and earlier than observed during the test. The effect, however, is a better esti-
mate of the damaged column stiffness and a very good approximation of the drift response. Recall
that a good estimate of the interstory drifts is necessary for the prediction of axial failure and for
the evaluation of various damage states for performance-based seismic design.

Although the hysteretic response observed during the test does not indicate that the
response is dominated by a degrading shear strength behavior, theincrease in the influence of shear
strength degradation behavior for the -cgmodel clearly resultsin animproved estimate of the drifts
compared with the base and +65 models. Although a conclusion cannot be drawn based on asingle
analysis, the results suggest that the drift at which shear failure should be initiated to achieve the
best estimate of the drift response may not correspond to the “drift at shear failure” as defined in
Chapter 2 (i.e., the drift at which the observed shear strength first drops below 80% of the maxi-
mum shear recorded). Note that an increase in the contribution of the shear deformationsto the total
lateral drift prior to the “drift at shear failure” has also been observed in pseudo-static column tests
(Sezen, 2002). Further study is required to improve the criteria for determining the drift at which
shear failure should be initiated.

8.4.3 Recorded Table Input Motion — Specimen 2

As done for Specimen 1, the analytical model for Specimen 2 was subjected to the unidirectional
horizontal table acceleration recorded during the shear failure test. The test data and the response
of the analytical model are compared in Figures 8-31 through 8-34.

The analytical model adequately represents the measured response in terms of apparent
vibration period and force amplitude throughout the test. The model provides avery good estimate
of the drifts up to the point of axial failure (at approximately 25 sec), at which point the permanent
offset in the drifts observed in the test is not captured by the analysis. The lack of residual driftsin
the analytical results suggests that the fiber model does not capture the extent of the damage sus-
tained by the outside columns during the test. Poor agreement between measured and cal culated
residual drifts has also been observed in shake table studies of reinforced concrete bridge columns
(Hachem, 2002).

The shear hysteretic response iswell represented by the analytical model. Figure 8-33indi-
cates that the analytical model adequately captures the column stiffnesses at yield and just after the
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Figure 8-31. Response histories for Specimen 2
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initiation of shear failure, and correctly detectsthe cyclesinwhich the center column shear strength
degradation begins. Figure 8-34 clearly shows that the analytical model does not capture the full
extent of the significant pinching observed in the center column response prior to the large pulse
at 25 seconds. The resulting overestimation of the center column stiffness may contribute to the
underestimation of the drifts during and after the pulse.

Figure 8-35 shows that the axial load response of the center column based on the dynamic
analysis does not cross the axial limit curve defined by Equation 3.20. As a result the analytical
model failed to detect the axial failure of the center column. In this case, the lack of axial failurein
the analytical resultsis primarily aresult of the underestimation of the lateral drifts, rather than an
error in the position of the axial limit curve.

Theresults from the analytical model discussed above are based on the shear and axial limit
curves determined from the measured properties of the center column. Considering the uncertainty
in the models used to define the limit curves, it is useful to evaluate the extent to which the analyt-
ical response changeswith variation in the shear and axial limit curves. The following sectionsdis-
cuss the influence of the position of the shear and axial limit curves and the rate of shear strength
degradation (i.e., the post-failure slope of the shear spring) on the response of the shake table spec-

imen. In particular, the discussion concentrates on the drift response of the analytical models.
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Figure 8-36. Response histories for -6 model, Specimen 2
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Figure 8-38. Axial response for -6 model, Specimen 2

8.4.3.1 Influence of Position of Shear Limit Curve

Asdone for Specimen 1, the shear limit curve was shifted +/- ogto investigate the influence of the
position of the shear limit curve on the response of the shake table specimen. (Recall that oy is
equivalent to a drift ratio of 0.9%.) As shown in Figures 8-36 through 8-40, and similar to the
results for Specimen 1, the -o5 model provides a better estimate of the measured drift response
compared with either the base model or the + o4 model. The drift during the critical pulse at 25 sec-
onds is well represented by the -o4 model, although the model does not capture the permanent
offset in the drifts that appears to be initiated during this pulse, resulting in an underestimation of
the drifts during subsequent cycles. Axial failure of the center column is correctly detected during
the pulse at 25 seconds. However, asaresult of the underestimation of the drifts during subsequent
cycles, the response of the center column does not remain on the axia limit curve, as shown in
Figure 8-38, and the amount of axial load lost is significantly underestimated.

By shifting the shear limit curve toward higher drifts, the +c5 model does not correctly
detect the cycle in which shear strength degradation begins. For positive displacements, shear
strength degradation wasfirst observed in the test data during a cycle at approximately 16 seconds,
while the +65 model indicated that shear degradation would not begin until 25 seconds. This delay
results in aslightly shorter period of response for the +c5 model compared with the test data prior

to the detection of shear failure at 25 seconds. The axial response of the center column for the +c6
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Figure 8-39. Response histories for +6; model, Specimen 2
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Figure 8-41. Influence of drift ratio at shear failure on the calculated peak drift ratio,
Specimen 2
model did not intersect the axial limit curve, and hence, the model failed to detect the axial failure
of the center column.

Figures 8-36 and 8-40 show that the peak drift response changes with the position of the
shear limit curve. The peak drift is an important demand parameter commonly used in perfor-
mance-based seismic design, and a good estimate is required for an accurate prediction of axial
failure. Figure 8-41 illustrates the influence of the position of the shear limit curve on the peak drift
determined from the analysis. The drift at which shear failure is detected, or the drift at which the
shear-drift response intersects the shear limit curve, is plotted on the x-axis. The measured peak
drift is underestimated by the analysis regardless of the position of the shear limit curve. Thelarg-
est calculated peak driftsresult if shear failureisinitiated in the analysis at drifts below that deter-
mined by the drift capacity model (Equation 2.9), but after flexural yielding. For all cases where
shear failure is detected in the analysis, the peak drift is approximately 1% larger than the calcu-
lated peak drift ratio when shear failure is not detected.

Theresults shown in Figure 8-41 suggest that the peak drift ratio from the analytical model
results is not very sensitive to the position of the shear limit curve; however, this result may be
dependent on the assumptions used to select the degrading slope after shear failure. Recall that the
degrading slope after shear failure is determined based on the cal cul ated displacement at axial fail-

ure, which remains approximately constant for each of the analyses shown in Figure 8-41. This
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results in a steeper shear strength degradation response as the drift ratio at shear failure increases,
and likely leadsto the lack of decay in the peak response as the drift ratio at shear failure increases
above 2%.

8.4.3.2 Influence of Degrading Slope after Shear Failure

This section will consider the influence of the degrading slope on the drift response of the center
column. As noted above, and described in detail in Section 4.5.1, for the analyses presented thus
far the degrading slope of the shear spring, K., has been determined based on achieving the cal-
culated drift at axial failure after full degradation of the shear strength. (See Figure 4-8 for a defi-
nition of K,,.) K4, Can aso be specified directly by the analyst. Figure8-42 shows the drift
response for five models with different K., values specified for the center column. Only slight
variations in the drift response after shear failure are apparent from the results. Although a steeper
degrading slope generally resultsin a better estimate of the drifts during the large pulse at 25 sec-
onds, there is no improvement in the estimation of the permanent drift offset observed at the end
of the test. Figure 8-43 indicates that the calculated peak drift ratio isinsensitive to the degrading
dlope selected for the response of the center column after shear failure. It is likely that the lack of
sensitivity to the degrading slope is due to the ductile response of the outside columns. After shear
failure of the center column, the lateral response of the frameis dominated by the stable hysteretic
response of the outside columns.

Although further study is required to generalize the results shown here for building frame
structures, the lack of sensitivity of the peak response to the drift at shear failure (Figure 8-41) and
the degrading slope (Figure 8-43) suggest that for a structure similar to the shake table specimens
with both shear-critical and ductile components, and subjected to along duration ground motion,
the peak response may not be particularly sensitive to the selection of the parametersfor the shear-
critical components. This result is encouraging for designers considering the significant uncer-
tainty in determining the drift at shear failure and lack of data on the rate of shear strength degra-
dation. It isanticipated that the peak drift response will be more sensitive to the parametersfor the

shear-critical components if the structure is subjected to a pulse-type ground motion where the
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Specimen 2
majority of damage occurs during one cycle, or if multiple columns sustain shear failures. The

|atter caseis considered in Section 8.4.4.

8.4.3.3 Influence of Position of Axial Limit Curve

To investigate the influence of the position of the axial limit curve on the calculated response of
Specimen 2, analyses were conducted with the limit curve shifted to lower drifts by one standard
deviation (-0, model) and two standard deviations (-2, model). (Recall that o, is equivalent to a
drift ratio of 0.5%.) Since axial failure was not detected in the base model (Figure 8-35), shifting
the axial limit curve by +c, would result in the same response discussed above for the base model.
Apart from minor increases in the drifts after the shear strength of the center column has fully
degraded, the -6, and -26, models have very littleinfluence on thelateral response of the analytical
model. Figures 8-44 through 8-48 show the axial response of the center column for the -6, and
-26, models.

The-o, model correctly determinesthe timing of the axial failure of the center column, but
does not remain on the limit curve long enough to result in any significant loss of axial load. The
-26, model adequately represents the loss of axial load during the pulse at 25 seconds and experi-
ences gravity load redistribution of 15 kips. This underestimates the load redistribution observed

during the test and results in only 0.1 inches of downward vertical displacement at the center col-
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umn. Figure 8-48 shows that although the vertical displacements are underestimated, the model
does reasonably represent the sudden increase in vertical displacements that occur after achieving
acritica drift limit.

Better estimates of the axial load loss and vertical displacements would be achieved if the
axial curve were moved inward (i.e., to smaller drifts) or steepened with increasing damage. Such
amodel would require the selection of rules to determine the movement or change in slope of the
axial limit curve, and perhaps the development of a damage index considering the axial capacity
of the column. The development of such rules and damage indices is not currently feasible given
the limited data available on the axial response of a column after shear failure.

It is worth repeating that the base model would have detected axial failure of the center
column if the model were ableto capture the larger lateral drifts observed during thetest. A proper
estimate of the drifts would have also resulted in a significantly higher loss of axial load for the -
o, and -26, models. Hence, the effect of shifting the axial limit curve is highly dependent on the

ability of the analytical model to achieve a good estimate of the lateral drifts.

8.4.4 Three-Column Frame with All Shear-Critical Columns

To illustrate the stabilizing influence of the outside columns on the response of the shake table

specimens, an analysis of the three-column frame model was conducted with the outside column
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model replaced by the shear-critical center column model. The calculated response of the new
model when subjected to the table motion from Specimen 2 is shown in Figures 8-50 through 8-
52. All three columns experience shear failures, resulting in nearly full degradation of the base-
shear capacity as shown in Figure 8-49. Without the stable response of the well-confined outside
columns, the new model experiences permanent drifts of approximately 4.0%.

Figure 8-50 shows the variation in the axial-load demand and capacity for each of the col-
umns during the analysis. The capacity shown isthe lesser of the axial capacity of the undamaged
column according to ACI 318-02 (with a strength reduction factor of unity) and the axial capacity
according to Equation 3.20 using the column drifts from the analysis. For large drifts the axial
capacity based on Equation 3.20 will govern, resulting in a decreasein the axial capacity. At 32.5
and 33.0 seconds, the axial-load demand on the center column islimited by the axial-load capacity,
asresponse of the center column followsthe axial limit curve (Figure 8-51). The drop in the center
column axial load results in sharp increasesin the center column vertical displacements (Figure 8-
52) and the outside column axial loads (Figure 8-51). Thelarge drifts which accompany axial fail-
ure of the center column also result in a decrease in the outside column axial-load capacities. The

increase in demand and drop in capacity very nearly result in axial failure of the west column at
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33.0 and 35.5 seconds. At 39.0 seconds axial failure is detected in the west column. At the same
time, the sum of the column axial-load capacities approaches the total gravity load supported by
the frame, as shown in the bottom plot of Figure 8-50. As the total axial capacity drops below the
total gravity load, inertial forces due to vertical acceleration of the mass are needed to maintain
equilibrium. The analysis does not capture significant vertical inertial forces due to the soft springs
used to isolate the vertical mass to avoid spurious column axial loads (see Section 8.4). Hence,
gravity load collapse of the frame is detected when the analysis fails to converge as the total axial

capacity drops below the total gravity load supported by the frame.
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The near-failure of the frame at 33.0 seconds illustrates the need to account for the uncer-
tainty in the position of the axia limit curves. A slight shift toward smaller drifts for the west
column axial limit curve would have resulted in an earlier prediction of gravity load collapse. Cor-
respondingly, ashift of theaxial limit curve toward higher driftsmay have resulted in the total axial
capacity never dropping below the total gravity load, and, hence, no collapse of the three-column
frame.
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9 Conclusions and Future Work

9.1 SUMMARY AND CONCLUSIONS

The analytical and experimental studies described in this report were undertaken to investigate the
shear and axia load failure of columns leading to the gravity load collapse of reinforced concrete
building frames during earthquakes.

Given the lack of agreement between existing models for the drift at shear failure and
results from an experimental database of shear-critical building columns, two empirical models
were developed to provide a more reliable estimate of the drift at shear failure for existing rein-

forced concrete columns;

L 30 P 1000f 100

A
s = L5y 4 (psi units) (9.1)

3+,,1v 1l P

7 " 100" ~500 N 40Agf’_ 100 (psi units) (©2)

Based on the experimental database and Equation 9.1, the mean and coefficient of variation for the
measured drift at shear failure divided by the calculated drift are 0.96 and 0.35, respectively. For
Equation 9.2, the mean and the coefficient of variation are 0.97 and 0.34, respectively. The models
indicate that the drift at shear failureis proportional to the amount of transverse reinforcement, and
inversely proportional to the applied shear stress and axial load. The application of the proposed
empirical drift capacity models should be limited to columns representative of those included in
the database.

Based on shear-friction concepts and the results from 12 columns tested to axia failure, a

model was also developed to estimate the drift at axial failure for a shear-damaged column:



A 2
a o 4 1+(tand) where 6 = 65° 9.3)

100 (=)
+p —2 —
0+ P Fd tant

The mean ratio of the measured to calculated drift at axia load failure based on Equation 9.3 is
0.97; the coefficient of variation is 0.26. The model is consistent with the general observation from
experimental tests that the drift at axial failureisdirectly proportional to the amount of transverse
reinforcement and inversely proportional to the magnitude of the axial load.

The capacity models for the drift at shear and axial load failure were used to initiate the
strength degradation of a uniaxial material model implemented in the OpenSees analytical plat-
form (OpenSees, 2002). When attached in series with a beam-column element, the material model
can be used to model either shear or axial failure, or both if two materials are used in series. Based
on experimental evidence suggesting that an increase in lateral shear deformations may lead to an
increasein axial deformations and aloss of axial |oad, shear-axial coupling wasincorporated in the
material model to approximate the response of a column after the onset of axial failure.

Shake table tests were designed to provide data on the degradation of axial load capacity
after shear failure of a reinforced concrete column, and the resulting redistribution of shear and
axial loadsto the rest of the building system. The test specimens consisted of athree-column frame
with a shear-critical center column. Care was taken in selecting appropriate member sizes and
strengths to achieve the desired behavior (including shear and possibly axial failure of the center
column, yielding of the outside columns before failure of the center column, appropriate beam
deflections after axial failure of the center column, and controlled transfer of loads from the wide
beam to the columns). Two specimens were tested, differing only by the axial stress on the center
column. Both specimenswere subjected to one horizontal component from a scaled ground motion
recorded during the 1985 Chile earthquake.

The results from the shake table tests have been presented. A comparison of the results
from the two specimens indicates that the behavior of the frame is dependent on the initial axial
stress on the center column. The specimen with alower axial load failed in shear, but maintained
most of itsinitial axial load. For the specimen with a higher axial load, shear failure of the center
column occurred at lower drifts and earlier in the ground motion record, and was followed by axial

failure of the center column. Displacement data from immediately after the onset of axial failure
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suggest that there are two mechanisms by which the center column shortens during axial failure:
First, by large pulses that cause a sudden increase in vertical displacement after a critical drift is
attained; and second, by smaller oscillations that appear to “grind down” the shear-failure plane.
Dynamic amplification of axial loads transferred from the center column to the outside columns
was observed during axial failure of the center column.

A comparison of the test datawith predictive modelsindicated that the yield displacement,
stiffness, and flexural strength of the columns could be adequately estimated by models commonly
used in engineering practice. The comparison also indicated that slip of the longitudinal reinforce-
ment accounted for over half of the total displacement at first yield of the longitudinal reinforce-
ment. The shear strength model by Sezen (2002) provided a good estimate of the shear strength of
the center column for both specimens, but significantly overestimated the displacement at shear
failure for the second specimen. The proposed models for the drift at shear and axial load failure
(Equations 9.1, 9.2, and 9.3), along with the predicted yield displacement and flexural strength,
provided a reasonable backbone to the measured shear-drift response for the center column. A
comparison of the axial capacity model with the measured axial-load-drift response indicated that,
as observed during the tests, axial failure of the center column should occur only for the specimen
with higher axial |oad.

The measured response of the test specimens was also compared with results from an ana-
lytical model incorporating the proposed models for the drift at shear and axial load failure. Non-
linear static and dynamic analyses were performed. The static analyses accurately determined the
timing of the shear and axial load failures, and captured the variation in center column axial load
during axial failure. The total loss of axial load and the vertical shortening of the center column
was underestimated by the static analyses. The dynamic analyses adequately represented the mea-
sured response in terms of the apparent period of vibration and the lateral force amplitude through-
out thetest. The analytical model provided agood estimate of the measured driftsthrough the point
of shear failure; however, large displacements after shear failure, resulting in a permanent offset at
the end of the tests, were not captured by the analysis. Axial failure of the center column for Spec-
imen 2 was not detected by the analysis due to the underestimation of the lateral drifts. The sensi-
tivity of the analytical results to the accuracy of the shear and axial failure models was also
investigated. The analytical resultsdid not appear particularly sensitiveto changesin the shear fail-

ure model; however, all analyses underestimated the measured peak drifts. Since the axial failure
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model is based on a relationship between the axial load and the lateral drift experienced by a col-

umn, the analytical estimate of the peak lateral drifts must be improved to achieve an accurate rep-

resentation of axial failure and the subsequent load redistribution. An analytical model of aframe

with three shear-critical columns demonstrated that the proposed column model can be used to

assess the gravity load collapse potential of areinforced concrete frame.

9.2

FUTURE RESEARCH

Several topics requiring further study were identified during the course of this research.

1.

Moretest data are required to refine the models for the drift at shear and axial load failure.
The axial failure model, in particular, is based on a small database of static column tests.
Additional data and analyses may well improve the capability to predict the onset of axial
load failure of columns.

A more refined definition of the drift at shear failure based on measured shear deforma-
tions may reduce the relatively large coefficient of variation associated with the model for
the drift at shear failure.

Further study is required to investigate the influence of the variability in the seismic
demand and column capacity on the selection of an appropriate drift capacity model.

The drift capacity models should be extended to account for the effects of bidirectional
bending, variable axial loads, and the lateral loading history. The latter has been investi-
gated by Pujol (2002).

Shake table studies using different ground motions, particularly near-fault motions incor-
porating fling and directivity effects, are required to investigate the influence of the type of
ground motion on the shear and axial load failure of columns, and the response of the
building frame before gravity load collapse.

Shake table tests of specimens with multiple shear-critical columns are needed to provide
data on the influence of multiple-column failures on the drift response and gravity load
collapse of building frames. Furthermore, tests on multistory building frames are needed

to investigate the causes of story-wide column failures.
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7.

10.

11.

12.

13.

Experimental and analytical studies are needed to investigate the contribution of floor sys-
tems and out-of-plane frames to the capacity of a building to resist gravity load collapse.
The redistribution of forces within a three-dimensional building frame system should also

be considered.

The current shear spring model assumes that the flexural capacity of the column is nearly
equal for deformations in both directions along the same axis, and may not be appropriate
for outside columns in a building frame where the flexural capacity can be significantly
different depending on the direction of motion. Furthermore, the limit state failure model
should be refined to account for the influence of shear failure in one direction on the shear
capacity in the opposite direction. In general, the robustness of the limit state failure model
implemented in OpenSees should be improved such that it can be used with confidence in

abuilding frame analysis.

Since the shear-axial interaction after axial failure is not well understood, the axial spring
model should be adapted to allow for the entire removal of the column element after axial
failure is detected. This would provide an upper bound on the redistribution of forces

within the building frame.

Improvements to nonlinear analytical models are necessary to achieve a better prediction
of the drift demands. Without an accurate prediction of the drift demands, the drift capac-

ity models will not be able to accurately predict the point of shear and axial load failure.

Refinements to fiber models are necessary to achieve better agreement between axial |oad
oscillations observed during dynamic analysis and measured axial loads from shake table
tests.

Rayleigh damping, based on linear theory, is commonly used for both linear and nonlinear
analysis. Damping models should be developed specifically for nonlinear dynamic analy-
Ss.

Research is required to account for all significant sources of uncertainty affecting the out-
come of agravity load collapse analysis. Uncertainty in the position and shape of the shear
and axia load failure surfacesis expected to have a significant impact on the probabilistic

assessment of structural response.
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Appendix A: Specimen Drawings, Materials,

and Construction

A.1  AS-BUILT SPECIMEN DRAWINGS AND SPECIFICATIONS

Two nominally identical shake table test specimens conforming to the plans shown in Figures A-

1 through A-5(b) were constructed. The reinforcement met the following specifications:

All reinforcement, with the exception of the center column ties and the outside column longitu-
dinal bars, complied with ASTM A706 for grade 60 reinforcement.

Plain reinforcing wire conforming to ASTM A82 was used for the center column transverse
reinforcement.

Grade 40 bars conforming to ASTM A615 were used for the outside column longitudinal rein-
forcement.

All stirrup hooks within the footings and beams were 135° bend plus 6 bar diameters (not less
than 3") extension. Consecutive cross ties, with a 90° bend plus 6 bar diameters extension on
one end and 135° bend plus 6 bar diameters (not lessthan 3") extension on the other, were alter-
nated end for end.

The center column tie hooks were 90° bend plus 1-1/8 inch extension. The locations of the tie
hooks were aternated.

All bar anchorage hooks were 90° bend plus 12 bar diameters extension, except as noted in the
plans.

The concrete clear cover over the longitudinal reinforcement was 1 inch, except as noted in the
plans.

Normal-weight aggregate concrete, conforming to the mix design specifications described

in Section A.3.1, wascast in two lifts, with the construction joint located at the base of the columns.

The specimens were inspected during construction to conform with the tolerances listed in
Table A-1.
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Figure A-3. Reinforcement details — center column
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Figure A-4. Reinforcement details — outside columns
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Figure A-5. (Continued) Reinforcement details — beam

Table A-1. Construction tolerances

Concrete cover +/-1/8in.
Stirrup and tie dimensions +/- 1/8in.
Member dimensions +/- 1/8in.
Bar cutoff and longitudinal bends +/- 1/4in.
Steel placement +/- 18 in.
Conduit locations +/- 1/8in.

A.2  DESIGN OF TRANSVERSE TORSIONAL BEAMS

Particular attention was paid to the design of the connection between the 5-foot-wide beam and the
columns. The moment developed over the width of the wide beam must be transferred to the
narrow columns. A similar condition arises in buildings with wide beams due to restricted story
heights or one-way joist systems. Wide beam-column joints from such buildings have been inves-
tigated by several researchers (Gentry and Wight, 1994; Popov et al., 1992; Hatamoto et al., 1991).
Theresearch indicatesthat if some of the beam longitudinal bars are anchored significantly outside

the joint core, then a transverse beam framing into the joint must be relied upon to carry some of

255



Bar anchored outside
of crack surface —\ l_l

loses its anchorage. "
T

ber ., \

7T ‘
e ¢ \‘

=7 L ~—
- vl " e ~.
- ~
~ e - )

Failure surface

Bar anchored within the
crack surface retains its
anchorage.

f -~
~

Figure A-6. Failure plane for wide beam-column joints (from Gentry and Wight,
1994)

the beam moment into the column through torsion. If the transverse beam does not have sufficient
torsional strength, then it will crack close to the column and any longitudinal bars from the wide
beam anchored outside the crack surface will effectively loose their anchorage (Figure A-6). Those
researchers have found that exterior wide beam-column joints are particularly vulnerable to this
mode of failure.

Gentry and Wight (1994) provide recommendations for the design of wide beam-column
joints. Since the stiffness of the transverse torsional beam will decrease significantly after crack-
ing, the recommendations are based on limiting the torque in the transverse beam to less than the
cracking torque. Although more accurate expressions exist, the cracking torque can be estimated
as.

T,, = 2,/f./x?y (ps units) (A1)
where x and y are the dimensions of the gross cross section (with x < y), and f,” is the concrete
compressive strength in psi.

For exterior wide beam-column joints, Gentry and Wight (1994) recommend that the por-

tion of the moment transferred from the wide beam to the column through beam longitudinal bars
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Figure A-7. Demands on torsional beams

anchored outside the crack surface should be limited to less than 4 Jﬁ’xzy (psi units). Estimates
for the location of the crack surface are provided. Note that the coefficient 4 appears because the
resistance provided by the transverse torsional beams on both sides of the column is considered.

Experiments have shown that the torsional strength of transverse beams of interior jointsis
at least double that of exterior joints due to the confinement provided by the continuous dab.
Hence, for interior wide beam-column joints, Gentry and Wight (1994) recommend that the
applied torque on the transverse beams be limited to 8 JE x2y (ps units).

The skew bending and plastic theories provide the following equations for the cracking

torque of arectangular section (Hsu, 1984):

- : _ X% _ 10\,
Skew Bending Theory: T, = ?(0.85fr) where f, = 21(1+ ;)wfc (A.2)
H . — 1 X 2 ’
Plastic Theory: T,, = (é—a)x ¥t (A.3)

Equations A.2 and A.3 give lower estimates of the cracking torque than the recommendations by
Gentry and Wight (1994).

Since the prototype building for the three-column frame does not include wide beams, suf-
ficiently large transverse beams are required in the three-column frame to preclude any reduction
in stiffness due to torsional cracking. The above recommendations and estimates of the cracking
torque were used to design the transverse torsional beams for the three-column frame. Figure A-7
illustrates the demands on the transversetorsional beams. (Notethat to avoid any interference with
the behavior of the columns, the transverse beams protrude from the top of the wide beam.) Since

thetorsional demands are applied along the side faces of the transverse beams, the resistanceto this
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demand must be calculated from the cracking capacity of the rectangular transverse beam section.
Thisalso appliesto thetransverse beam over the center column, since under side sway of theframe,
the torsional demands on either side of the transverse beam act in the same direction (Figure A-7).
For the conventional design of a wide beam-column joint, the demands on the transverse
beam are calculated as the ultimate beam moment multiplied by the fraction of longitudinal bars
anchored outside the expected torsional crack. For the three-column frame, however, the ultimate
beam moment will never be achieved since the columns are designed to yield before the beams.
Considering this difference in behavior and the difference in the estimates of the cracking torque

discussed above, two demand-capacity ratios were considered in the selection of the appropriate

size for the transverse beams:
D/Cl = Tu beam/Tcap GW (A4)
T T
D/C, = max[-—Lush __upush ) (A.5)
Tcap skew Tcap plastic

where T}, ;.. 1Sthe ultimate beam moment multiplied by thefraction of longitudinal bars anchored
outside the expected torsional crack, T, gw is torsional capacity recommended by Gentry and
Wight (1994), T,, .., is the torsional demand from the pushover analysis, and 7., ske, and T¢g)
plastic @€ 2 times the cracking torques calculated according to the skew bending and plastic theo-

ries, respectively. Thetorsional capacitieswere cal culated using astrength reduction factor of 0.5.

Table A-2 summarizes the demand-capacity ratios for the selected torsional beam sizes.

Table A-2. Demand-capacity ratios for torsional beams

Location h(in) b (in) D/C; D/C,
Center Column 26 17 0.55 1.02
Outside Column 24 20.5 0.65 0.84

A.3 MATERIAL PROPERTIES
A.3.1 Mix Design

The concrete for the shake table test specimens was delivered to the site. The mix specifications

and design are summarized in Tables A-3 and A-4.
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Table A-3. Concrete mix specifications

Cement ASTM C-150 Type |
Water reducer Pozzolith 322N ASTM C-494 Type A
Minimum 28-day strength | 3000 psi

Maximum 28-day strength | 3500 psi

Cementitious material 4.52 sacks

Maximum aggregate size 3/8" (peagravel allowed)
Slump 5" +/- 1"
Water/Cement ratio 0.718

Table A-4. Mix design

aeria | el | e 550 B

Cement Typelll 3.15 2.16 425

Water 1.00 4.89 305

Water Reducer - 0.41 21.31l. oz.
3/8” x #8 2.68 7.47 1250
Regular top sand 2.67 8.75 1460

SR blend sand 2.60 2.16 425

Total 27.00 3980

A.3.2 Concrete Properties

At the time of casting, 6-inch diameter by 12-inch-high standard cylinders were cast according to
ASTM C31 requirements. The cylinders were kept in the same environment as the test specimens,
and were stripped on the same day the forms were removed. The cylinders were capped with high-
strength sulfur mortar and then tested to determine the concrete compressive strength according to
ASTM C39. Three cylinderswere tested on 7-day intervalsuntil 28 days, and then shortly after the
day of the shake table tests. Table A-5 and Figure A-8 summarize the results from the cylinder
tests. For the last tests, the stress-strain relationship was determined for each cylinder (Figures A-
9 through A-12). Splitting tension tests were performed according to ASTM C496. The calcul ated
tensile stresses at failure are summarized in Table A-6.

Since the cylinder strengths for the footing concrete appeared very low at 14 and 21 days,
cores from the same concrete used in the footing were tested at 22 days according to ASTM C42.
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Table A-5. Average concrete compressive strengths
(each mean based on three cylinder tests)

Days Footing (psi) Beam/Column (psi)
after
casting mean standard deviation mean standard deviation

7 1240 97 1720 80

14 1500 50 2100 66

21 1790 57 2570 128

28 1920 72 2830 35

165 - - 3560 76

211 - - 3470 163

221 3240 112

267 3150 41

Table A-6. Splitting tension test results (each mean based on three cylinder tests)

Days after Mean | Standard Deviation
. Type . .
casting (psi) (psi)
221 Footing 336 28
165 Beam/Column | 360 52
267 Footing 317 28
211 Beam/Column | 323 11

The core strengths were higher than the cylinder strengths, as shown in Figure A-8. The cylinders
may have underestimated the true strength of the footing concrete due to exposure to direct sunlight
during curing. Cylinders for the beam and column concrete were kept in the shade next to the test

specimens during curing.

A.3.3 Reinforcing Steel Properties

For each size of reinforcement used in the test specimens, three steel coupons were machined with
a gage length of 2 inches and tested according to ASTM A370. The results are summarized in
Table A-7. For the #4 and #5 bars the yield stress, f;, was taken from the plateau just after first
yield, and the yield strain, €,, was taken as the strain at the peak at first yield. For the #3 bars the
yield stress and strain were defined by the intersection of two straight line approximations, one

from before yield and the other just after. The ultimate stress, £,,, was taken as the maximum stress
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Figure A-8. Concrete strength gain with age (mean of three tests each day)
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Figure A-9. Concrete stress-strain plots for three cylinders from column and beam concrete
(Specimen 1, Day 165)
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Figure A-10. Concrete stress-strain plots for three cylinders from footing concrete
(Specimen 1, Day 221)
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Figure A-11. Concrete stress-strain plots for three cylinders from column and beam concrete
(Specimen 2, Day 211)
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Figure A-12. Concrete stress-strain plots for three cylinders from footing concrete
(Specimen 2, Day 267)
recorded during the coupon test; while the ultimate strain, €, reported in Table A-7 was taken as
the maximum strain recorded during the coupon test (note that f,, and €, do not occur at the same
time during coupon test results shown in Figures A-13 — A-17). The modulus of elasticity, E,, was
determined by calculating a linear |east-squares fit to the data for strains below 0.002.

Table A-7. Averages from reinforcing steel coupon tests

maximum
. . No. Of fy fu ] Es

Location and Size tests (ki) (ksi) gy €, elon(ifllt)zon (ksi)
Center column longitudinal | _p
(#4 and #5 grade 60) 5 69.5 100 0.0027 | 0.202 0.51 28940
Outsidecolumnlongitudinal | .
(#4 grade 40) 2 61.5 95.0 0.0024 | 0.204 0.48 28950
Beam and outside column
transverse 3 79.4 105 0.0028 |0.138 0.37 29240
(#3 grade 60)
Center column transverse not
(W2.9 wire) 3 i 104 i 0.022 measured 29590

a at 2 inch gage length
b. results from one coupon were ignored (see Figures A-13 and A-14).
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Figure A-13. Reinforcing steel stress-strain plots for center column longitudinal steel
(dotted curve ignored)
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Figure A-14. Reinforcing steel stress-strain plots for outside column longitudinal steel
(lower curve ignored, since fracture occurred outside gage length)
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Figure A-15. Reinforcing steel stress-strain plots for beam longitudinal steel
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Figure A-16. Reinforcing steel stress-strain plots for center column transverse steel
(W2.9 wire)
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A4 CONSTRUCTION PROCEDURES

The specimens were constructed in an upright position at a casting site adjacent to the earthquake
smulator laboratory at the Richmond Field Station of the University of California, Berkeley. A
local contractor constructed the specimens and supplied the reinforcing steel conforming to the
specificationslisted in Section A.1. The reinforcement was bent and cut before delivery to the site.
The concrete formwork was constructed on-site. The footing cages were fabricated on-site and
placed in the forms. After being instrumented with strain gages (see Section B.4.4), the column
longitudinal steel was erected and secured (Figure A-17). Concrete was delivered to the site, where
a slump test was performed to ensure conformance with the specifications. The footings were cast
in one lift with concrete directly from the shoot of the concrete truck (Figure A-18). The column
longitudinal reinforcement was cleaned with awire brush after the footing concrete had cured. The
footings were wet-cured for four weeks.

After being instrumented with strain gages, the center column ties were carefully secured
to the longitudinal reinforcement. The formwork for the columns and beams was constructed in
place (Figure A-19), and the beam steel was erected Figure A-20). Although the beam and column
reinforcement was completed within two weeks of the casting of the footings, the concrete pour
was delayed seven weeks due to concerns regarding the footing concrete quality (see
Section A.3.2). The concrete was again delivered to the site and a slump test was performed. A
pump was used to place the column and beam concrete. The column concrete was placed and
vibrated prior to the placement of the beam concrete (Figure A-21). The specimens were wet-cured
for 14 days and then stripped and transported to the laboratory (Figure A-22) where they were
stored until testing (age of the column and beam concrete at testing was 151 days for Specimen 1
and 184 days for Specimen 2).

266



Figure A-18. Casting footings
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Figure A-20. Beam reinforcement
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Figure A-22. Moving specimens to laboratory
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Appendix B: Experimental Setup, Procedures,
and Data Reduction

B.1 INTRODUCTION

The experimental setup, shown in Figure B-1, was designed to facilitate the observation of load
redistribution in the event of axial failure of the center column and to ensure that the out-of-plane
movement of the specimen mass was restricted during testing. The following paragraphs describe
the installation of the test specimens and the experimental setup.

A 2'-thick steel base plate was prestressed to the shake table using high-strength rods
threaded into tapped holes in the base plate. Hydrostone was placed between the base plate and the
shake table to ensure a level surface. Six triaxial force transducers (described in Section B.4.2)
were bolted to the base plate. The force transducers were located directly above the prestressing
rods attaching the base plate to the table in order to maximize the stiffness of the end condition.
Hydrostone was placed between the force transducers and the base plate to ensure that the trans-
ducerswerelevel and to maximize the bearing surface. After the hydrostone cured, the bolts attach-
ing the force transducers to the base plate were torqued to achieve a frictional force of
approximately 25 kips between each transducer and the base plate.

After installation of the force transducers, the test specimen was lifted into position on the
shake table and aligned with the intended shaking direction. The specimen was leveled and then
supported on screw jacks 1/4” above the force transducers, while hydrostone was placed between
the footings and the top plate of the transducers. After the hydrostone was cured, 3/4” high-strength
rods passing through 1" EMT pipe cast into the footings were used to firmly secure the specimen
to the force transducers and to achieve africtional force of approximately 25 kips between the foot-

ings and each transducer. Four-by-four wood posts were shimmed under each corner of the beam
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to restrict the out-of plane movement of the specimen while the |lead packets were loaded onto the
specimen.

The lead packets, consisting of five 100 Ib. lead ignots tied together by steel straps, were
weighed and |oaded onto the beam of the test specimen carefully to avoid causing aload unbalance
that would crack the center column. The lead packets were supported at one end on asteel shim to
fix the position and at the other end on arubber shim to allow deformation of the concrete test spec-
imen beneath the lead packets. The lead packets below the beam, shown in Figure B-2, were first
placed onto the support tubes resting on wood blocking between the columns of the test specimen.
The stacks of |ead packets were then lifted by the support tubes and secured into position by stress-
ing 3/4" high-strength prestressing rods to achieve a frictional force of approximately 5 kips
between the stack of |ead packets and the beam. Figure B-3 and Table B-1 give the distribution of
weight due to the lead packets secured to the specimen.

After the lead packets were mounted on the specimen, the out-of-plane bracing mecha-
nisms, described in Section B.2, were installed over each of the outside stacks of lead packets as
shown in Figure B-1. The steel frame designed to support the ends of each of the bracing mecha-
nisms was lifted over the test specimens and aligned with the intended direction of shaking, then
secured to the shake table. Figure B-4 shows the |loaded specimen and support frame on the shake
tablejust before testing.

Figure B-2. Lead packets secured to the underside of the beam
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Table B-1. Weight of lead packet stacks (see Figure B-3 for location key)

Location Weight (Ibs)
1Top 3014
2Top 3014
3 Top 3005
4 Top 3019
5 Top 3037
6 Top 3037
7 Top 3009
8 Top 3010

1 Bottom 3014

2 Bottom 3019

3 Bottom 3516

4 Bottom 3544

5 Bottom 3526

6 Bottom 3558

7 Bottom 2953

8 Bottom 2963
Total 50238

Z

Figure B-3. Plan of lead weight layout on specimen
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Figure B-4. Loaded specimen and support frame on shake table

B.2 OUT-OF-PLANE BRACING

The planar frame specimens were subjected to unidirectional horizontal ground motions. An out-
of-plane bracing mechanism (shown in Figure B-5), commonly known as a pantograph, was
designed to restrain the specimen mass in the out-of-plane direction while allowing unrestrained
movement in the direction of the table motion. The mechanism was connected to the specimen
through the 1-1/2" center pin. Four such mechanisms were attached to the specimen, one over each
of the exterior lead weight stacks using the diagonal bracing steel shown in the elevation view of
Figure B-5. The distance between the mechanisms enabled them to provide torsional restraint to
the specimen mass. As shown in Figure B-6, the ends of the 1" pipe arms were connected to a steel
support frame through a 1/2” clevis pin.

If the specimen mass tries to move in the out-of-plane direction, one of the 1” pipe arms
goesinto compression while the other goesinto tension. The pipe arms and the steel support frame
were designed to provide enough stiffness to all but eliminate the out-of-plane movement of the
specimen mass relative to the shake table.
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Figure B-5. Out-of-plane bracing mechanism
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Figure B-6. Out-of-plane bracing mechanism installed on specimen
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Figure B-7. Performance of bracing mechanism with aligned and offset pins

As the specimen mass moves relative to the table in the direction of the table motion, the
1-1/2" center pin moves with the specimen. The steel support frame, which iswell-braced in both
directions and secured to the shake table, experiences negligible movement relative to the shake
table. The 1” pipe arms will rotate about the 1/2” clevis pins attached to the steel support frame,
causing the center plate to rotate about the 1-1/2" center pin. For small relative displacements of
the specimen mass, the mechanism allows for unrestrained movement in the direction of the table
motion. For larger displacements, the arcs traced out by the rotation of the 1" pipe arms and the
center plate do not match perfectly. However, if the pins attached to the center plate are initially
aligned with the direction of the table motion (as shown in Figure B-5), then the misalignment of
the arcs for large displacements is minimized. Figure B-7 illustrates the difference in the perfor-
mance of the mechanism for the case of pins aligned with the direction of the table motion and the

case of the center plate aligned with the direction of the table motion (i.e., offset pins).
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B.3 PRESTRESSING APPARATUS

The two specimens were nominally identical except for the axial load on the columns. Since the
shake table could not reliably control asignificantly larger mass than that used for Specimen 1, the
additional axial load for Specimen 2 was attained by prestressing using a pneumatic jack on each
side of the center column, as shown in Figure B-8. A 10" x 10" x 5/8" tube was placed on a hydro-
stone pad on top of the center column transverse torsional beam. A clevis pin, aligned with the
intended direction of shaking, was installed on each end of the tube. A high-strength threaded rod
was used to attach the clevis pin to the pneumatic jack which was secured to the shake table with
another clevis pin, also aligned with the intended direction of ground shaking.

In the event of axial shortening of the center column, the prestress force applied by the
pneumatic jacks will decrease in proportion to the increase in volume of the pressurized chamber
in the pneumatic jacks. For Specimen 2, a 7’-long pressurized chamber resulted in a 14% loss of
prestressforce when the center column shortened by 17 (i.e., 1"/7" = 14%). The prestressforce from
the pneumatic cylinders before, during, and after testing is shown in Figure B-9. The prestress
force is distributed to the three column (based on the force transducers. 72% of the force to the

center column and 14% to each of the outside columns).

Figure B-8. Pneumatic cylinders for adding axial load to center column
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Figure B-9. Prestressing force from pneumatic cylinders

INSTRUMENTATION

* tableinstruments to measure the displacement and acceleration of the table,

» force transducers to measure the reactions at the base of the columns,

* strain gages to measure the strain in the reinforcement,

* accelerometers to measure the acceleration of the mass,

* displacement transducers to measure the deformations of the center column, and

« displacement transducers to measure the global displacements of the specimen.

Tables B-2 and B-3 list the instruments used for Specimens 1 and 2.

Table B-2. Instrumentation list for Specimen 1

Channel Instrument Description Name

# Type

1 Table Displacements | Table Stroke Horz 1 H10 STROKE
2 Table Displacements | Table Stroke Horz 2 H20 STROKE
3 Table Displacements | Table Stroke Horz 3 H30 STROKE
4 Table Displacements | Table Stroke Horz 4 H40 STROKE
5 Table Displacements | Table Stroke Vert 1 V10 STROKE
6 Table Displacements | Table Stroke Vert 2 V20 STROKE
7 Table Displacements | Table Stroke Vert 3 V30 STROKE
8 Table Displacements | Table Stroke Vert 4 V40 STROKE
9 Table Accelerations | Table Acceleration Horz 1 H1-2 ACC

279




Table B-2. (continued) Instrumentation list for Specimen 1

Channel Instrument Description Name
# Type
10 Table Accelerations | Table Acceleration Horz 2 H3-4 ACC
11 Table Accelerations | Table Acceleration Horz 3 H4-1 ACC
12 Table Accelerations | Table Acceleration Horz 4 H2-3ACC
13 Table Accelerations | Table Acceleration Vert 1 1V ACC
14 Table Accelerations | Table Acceleration Vert 2 2V ACC
15 Table Accelerations | Table Acceleration Vert 3 3V ACC
16 Table Accelerations | Table Acceleration Vert 4 4v ACC
17 Force Transducer Axial Column 1 West COLIWAXIAL
18 Force Transducer In-plane Moment Column 1 West COL1IWM1
19 Force Transducer In-plane Shear Column 1 West CcoL1wsl
20 Force Transducer Out-of-plane Moment Column 1 West COLIWM?2
21 Force Transducer Out-of-plane Shear Column 1 West COL1IWS2
22 Force Transducer Axial Column 1 East COL1EAXIAL
23 Force Transducer In-plane Moment Column 1 East COL1EM1
24 Force Transducer In-plane Shear Column 1 East COL1ES1
25 Force Transducer Ouit-of-plane Moment Column 1 East COL1EM2
26 Force Transducer Ouit-of-plane Shear Column 1 East COL1ES2
27 Force Transducer Axial Column 2 West COL2WAXIAL
28 Force Transducer In-plane Moment Column 2 West COoL2wWM1
29 Force Transducer In-plane Shear Column 2 West coL2wsl
30 Force Transducer Out-of-plane Moment Column 2 West COL2WM?2
31 Force Transducer Out-of-plane Shear Column 2 West COL2WS2
32 Force Transducer Axial Column 2 East COL2EAXIAL
33 Force Transducer In-plane Moment Column 2 East COL2EM1
34 Force Transducer In-plane Shear Column 2 East COL2ES1L
35 Force Transducer Out-of-plane Moment Column 2 East COL2EM2
36 Force Transducer Ouit-of-plane Shear Column 2 East COL2ES2
37 Force Transducer Axial Column 3 West COL3WAXIAL
38 Force Transducer In-plane Moment Column 3 West COL3WM1
39 Force Transducer In-plane Shear Column 3 West COL3wsS1
40 Force Transducer Out-of-plane Moment Column 3 West COL3WM2
41 Force Transducer Out-of-plane Shear Column 3 West COL3WS2
42 Force Transducer Axial Column 3 East COL3EAXIAL
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Table B-2. (continued) Instrumentation list for Specimen 1

Channel Instrument Description Name
# Type
43 Force Transducer In-plane Moment Column 3 East COL3EM1
44 Force Transducer In-plane Shear Column 3 East COL3ESL
45 Force Transducer Out-of-plane Moment Column 3 East COL3EM2
46 Force Transducer Ouit-of-plane Shear Column 3 East COL3ES2
47 Strain Gage Column 1 Longitudina Top West SG 1ILTW
48 Strain Gage Column 1 Longitudina Top East SG 1LTE
49 Strain Gage Column 1 Longitudinal Bottom West SG 1LBW
50 Strain Gage Column 1 Longitudinal Bottom East SG 1LBE
51 Strain Gage Column 2 Longitudinal Top West SG 2LTW
52 Strain Gage Column 2 Longitudinal Top East SG 2LTE
53 Strain Gage Column 2 Longitudina Top Extra SG2LT.2
54 Strain Gage Column 2 Longitudinal Middle Top West SG 2LMTW
55 Strain Gage Column 2 Longitudinal Middle Top East SG 2LMTE
56 Strain Gage Column 2 Longitudinal Middle West SG 2LMW
57 Strain Gage Column 2 Longitudinal Middle East SG 2LME
58 Strain Gage Column 2 Longitudina Middle Bottom West | SG 2LMBW
59 Strain Gage Column 2 Longitudinal Middle Bottom East SG 2LMBE
60 Strain Gage Column 2 Longitudinal Bottom West SG 2LBW
61 Strain Gage Column 2 Longitudinal Bottom East SG 2LBE
62 Strain Gage Column 2 Longitudinal Bottom Extra SG2LB.2
63 Strain Gage Column 3 Longitudina Top West SG 3LTW
64 Strain Gage Column 3 Longitudina Top East SG 3LTE
65 Strain Gage Column 3 Longitudinal Bottom West SG 3LBW
66 Strain Gage Column 3 Longitudinal Bottom East SG 3LBE
67 Strain Gage Column 2 Hoop Top South SG 2STS
68 Strain Gage Column 2 Hoop Top North SG 2STN
69 Strain Gage Column 2 Hoop Middle Top South SG 2SMTS
70 Strain Gage Column 2 Hoop Middle Top North SG 2SMTN
71 Strain Gage Column 2 Hoop Middle South SG 2SMS
72 Strain Gage Column 2 Hoop Middle North SG 2SMN
73 Strain Gage Column 2 Hoop Middle Bottom South SG 2SMBS
74 Strain Gage Column 2 Hoop Middle Bottom North SG 2SMBN
75 Strain Gage Column 2 Hoop Bottom South SG 2SBS
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Table B-2. (continued) Instrumentation list for Specimen 1

Channel Instrument Description Name
# Type
76 Strain Gage Column 2 Hoop Bottom North SG 2SBN
77 Strain Gage Beam Longitudinal Underside West Bay BF BLU1
78 Strain Gage Beam Longitudinal Underside Column 2 West | BF BLU2W
79 Strain Gage Beam Longitudinal Underside Column 2 East | BF BLU2E
80 Strain Gage Beam Longitudinal Underside East Bay BF BLUS3
81 Accelerometer Longitudina CG Mass over Column 1 South | AL CGC1
82 Accelerometer Longitudina CG Mass over Column 2 South | AL CGC2S
83 Accelerometer Longitudina CG Mass over Column 2 North | AL CGC2N
84 Accelerometer Longitudina CG Mass over Column 3 South | AL CGC3
85 Accelerometer Longitudinal West Bay Mass Top AL BIMT
86 Accelerometer Longitudina West Bay Mass Bottom AL BIMB
87 Accelerometer Longitudina East Bay Mass Top AL B2MT
88 Accelerometer Longitudina East Bay Mass Bottom AL B2MB
89 Accelerometer Longitudinal Base of Column 2 AL BC2
90 Accelerometer Transverse CG Mass over Column 1 South AT CGC1
91 Accelerometer Transverse CG Mass over Column 2 South AT CGC2
92 Accelerometer Transverse CG Mass over Column 3 South AT CGC3
93 Accelerometer Vertical West Bay Mass Top AV BIMT
94 Accelerometer Vertical West Bay Mass Bottom AV B1IMB
95 Accelerometer Vertical CG Mass over Column 2 South AV CGC2S
123 Accelerometer Vertical CG Mass over Column 2 North AV CGC2N
97 Accelerometer Vertical East Bay Mass Top AV B2MT
98 Accelerometer Vertical East Bay Mass Bottom AV B2MB
99 Loca Deformations | Vertical North West Top LDV NWT
100 Local Deformations | Vertical North West Middle LDV NWM
101 Loca Deformations | Vertical North West Bottom LDV NWB
102 Local Deformations | Vertical North East Top LDV NET
103 Local Deformations | Vertical North East Middle LDV NEM
104 Local Deformations | Vertical North East Bottom LDV NEB
105 Local Deformations | Horizontal North Top LDHNT
106 Loca Deformations | Horizontal North Bottom LDH NB
107 Local Deformations | Diagonal North Top LDD NT
108 Loca Deformations | Diagonal North Middle LDD NM
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Table B-2. (continued) Instrumentation list for Specimen 1

Channel Instrument Description Name
# Type
109 Loca Deformations | Diagonal North Bottom LDD NB
110 Local Deformations | Vertical South West Top LDV SWT
111 Local Deformations | Vertical South West Middle LDV SWM
112 Local Deformations | Vertical South West Bottom LDV SwB
113 Local Deformations | Vertical South East Top LDV SET
124 Local Deformations | Vertical South East Middle LDV SEM
115 Local Deformations | Vertical South East Bottom LDV SEB
116 Local Deformations | Horizontal South Top LDH ST
117 Loca Deformations | Horizontal South Bottom LDH SB
118 Local Deformations | Diagonal South Top LDD ST
119 Loca Deformations | Diagonal South Middle LDD SM
120 Loca Deformations | Diagonal South Bottom LDD SB
121 Global Displacements | Longitudinal LVDT North GDL LVDTN
122 Global Displacements | Longitudinal LVDT South GDL LVDTS
125 Global Displacements | Longitudina Redundant Table Displ Lower GDL RTDL
126 Global Displacements | Longitudinal Redundant Table Displ Upper GDL RTDU
127 Global Displacements | Longitudinal Top of Column 2 Side of Beam | GDL TC2SBN
North
128 Global Displacements | Longitudinal Top of Column 2 Side of Beam | GDL TC2SBS
South

129 Global Displacements | Longitudina CG at End of Beam GDL CGEB
130 Global Displacements | Longitudina West Mass Top GDL WMT
131 Global Displacements | Longitudinal West Mass Bottom GDL WMB
144 Global Displacements | Longitudina Base of Column 2 North GDL BC2N
145 Global Displacements | Longitudina Base of Column 2 South GDL BC2S
146 Global Displacements | Longitudinal CG at End of Beam (DCDT) GDLCGEBDCD
132 Global Displacements | Transverse CG of Mass over Column 1 GDT CGC1
133 Global Displacements | Transverse Top of Beam at Column 2 GDT TBC2
134 Global Displacements | Transverse CG of Mass over Column 1 GDT CGC3
135 Global Displacements | Transverse Top of Column 2 GDT TC2
136 Global Displacements | Vertical Beam Underside at Column 1 South | GDV BUC1S
137 Global Displacements | Vertical Beam Underside at Column 3 South | GDV BUC3S
147 Global Displacements | Vertical Mid span Bay 1 North GDVMSBIN
139 Global Displacements | Vertical Mid span Bay 1 South GDV MSB1S
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Table B-2. (continued) Instrumentation list for Specimen 1

Channel Instrument Description Name
# Type
140 Global Displacements | Vertical Mid span Bay 2 North GDV MSB2N
141 Global Displacements | Vertical Mid span Bay 2 South GDV MSB2S
142 Global Displacements | Vertical Beam Underside at Column 2 North | GDV BUC2N
143 Global Displacements | Vertical Beam Underside at Column 2 South | GDV BUC2S
Table B-3. Instrumentation list for Specimen 2
Channel Category Description Name

#

1 Table Displacements | Table Stroke Horz 1 H10 STROKE

2 Table Displacements | Table Stroke Horz 2 H20 STROKE

3 Table Displacements | Table Stroke Horz 3 H30 STROKE

4 Table Displacements | Table Stroke Horz 4 H40 STROKE

5 Table Displacements | Table Stroke Vert 1 V10 STROKE

6 Table Displacements | Table Stroke Vert 2 V20 STROKE

7 Table Displacements | Table Stroke Vert 3 V30 STROKE

8 Table Displacements | Table Stroke Vert 4 V40 STROKE

9 Table Accelerations | Table Acceleration Horz 1 H1-2 ACC

10 Table Accelerations | Table Acceleration Horz 2 H3-4 ACC

11 Table Accelerations | Table Acceleration Horz 3 H4-1 ACC

12 Table Accelerations | Table Acceleration Horz 4 H2-3ACC

13 Table Accelerations | Table Acceleration Vert 1 1V ACC

14 Table Accelerations | Table Acceleration Vert 2 2V ACC

15 Table Accelerations | Table Acceleration Vert 3 3V ACC

16 Table Accelerations | Table Acceleration Vert 4 4v ACC

17 Force Transducer Axial Column 1 West COLIWAXIAL
18 Force Transducer In-plane Moment Column 1 West COL1IWM1

19 Force Transducer In-plane Shear Column 1 West CcoL1wsl

20 Force Transducer Out-of-plane Moment Column 1 West COLIWM?2

21 Force Transducer Out-of-plane Shear Column 1 West COL1WS2

22 Force Transducer Axial Column 1 East COL1EAXIAL
23 Force Transducer In-plane Moment Column 1 East COL1EM1

24 Force Transducer In-plane Shear Column 1 East COL1ES1

25 Force Transducer Out-of-plane Moment Column 1 East COL1EM2

26 Force Transducer Ouit-of-plane Shear Column 1 East COL1ES2
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Table B-3. (continued) Instrumentation list for Specimen 2

Channel Category Description Name
#
27 Force Transducer Axial Column 2 West COL2WAXIAL
28 Force Transducer In-plane Moment Column 2 West COoL2wWM1
29 Force Transducer In-plane Shear Column 2 West CcoL2ws1
30 Force Transducer Ouit-of-plane Moment Column 2 West COL2WM?2
31 Force Transducer Out-of-plane Shear Column 2 West COL2WS2
32 Force Transducer Axial Column 2 East COL2EAXIAL
33 Force Transducer In-plane Moment Column 2 East COL2EM1
34 Force Transducer In-plane Shear Column 2 East COL2ES1
35 Force Transducer Ouit-of-plane Moment Column 2 East COL2EM2
36 Force Transducer Ouit-of-plane Shear Column 2 East COL2ES2
37 Force Transducer Axial Column 3 West COL3WAXIAL
38 Force Transducer In-plane Moment Column 3 West COL3WM1
39 Force Transducer In-plane Shear Column 3 West COL3wsSl1
40 Force Transducer Ouit-of-plane Moment Column 3 West COL3WM2
41 Force Transducer Out-of-plane Shear Column 3 West COL3WS2
42 Force Transducer Axial Column 3 East COL3EAXIAL
43 Force Transducer In-plane Moment Column 3 East COL3EM1
44 Force Transducer In-plane Shear Column 3 East COL3ESL
45 Force Transducer Out-of-plane Moment Column 3 East COL3EM2
46 Force Transducer Ouit-of-plane Shear Column 3 East COL3ES2
47 Strain Gage Column 1 Longitudinal Top West SG 1ILTW
48 Strain Gage Column 1 Longitudina Top East SG 1LTE
49 Strain Gage Column 1 Longitudinal Bottom West SG 1LBW
50 Strain Gage Column 1 Longitudinal Bottom East SG 1LBE
51 Strain Gage Column 2 Longitudinal Top West SG 2LTW
52 Strain Gage Column 2 Longitudinal Top East SG 2LTE
53 Strain Gage Column 2 Longitudinal Top Extra SG 2LT.2
54 Strain Gage Column 2 Longitudinal Middle Top West SG 2LMTW
55 Strain Gage Column 2 Longitudinal Middle Top East SG 2LMTE
56 Strain Gage Column 2 Longitudinal Middle West SG 2LMW
57 Strain Gage Column 2 Longitudinal Middle East SG 2LME
58 Strain Gage Column 2 Longitudinal Middle Bottom West | SG 2LMBW
59 Strain Gage Column 2 Longitudinal Middle Bottom East SG 2LMBE
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Table B-3. (continued) Instrumentation list for Specimen 2

Channel Category Description Name
#
60 Strain Gage Column 2 Longitudinal Bottom West SG 2LBW
61 Strain Gage Column 2 Longitudinal Bottom East SG 2LBE
62 Strain Gage Column 2 Longitudinal Bottom Extra SG2LB.2
63 Strain Gage Column 3 Longitudina Top West SG 3LTW
64 Strain Gage Column 3 Longitudina Top East SG 3LTE
65 Strain Gage Column 3 Longitudinal Bottom West SG 3LBW
66 Strain Gage Column 3 Longitudinal Bottom East SG 3LBE
67 Strain Gage Column 2 Hoop Top South SG 2STS
68 Strain Gage Column 2 Hoop Top North SG 2STN
69 Strain Gage Column 2 Hoop Middle Top South SG 2SMTS
70 Strain Gage Column 2 Hoop Middle Top North SG 2SMTN
71 Strain Gage Column 2 Hoop Middle South SG 2SMS
72 Strain Gage Column 2 Hoop Middle North SG 2SMN
73 Strain Gage Column 2 Hoop Middle Bottom South SG 2SMBS
74 Strain Gage Column 2 Hoop Middle Bottom North SG 2SMBN
75 Strain Gage Column 2 Hoop Bottom South SG 2SBS
76 Strain Gage Column 2 Hoop Bottom North SG 2SBN
77 Strain Gage Beam Longitudinal Underside West Bay BF BLU1
78 Strain Gage Beam Longitudinal Underside Column 2 West | BF BLU2W
79 Strain Gage Beam Longitudinal Underside Column 2 East | BF BLU2E
80 Strain Gage Beam Longitudinal Underside East Bay BF BLUS3
81 Accelerometer Longitudina CG Mass over Column 1 South | AL CGC1
82 Accelerometer Longitudina CG Mass over Column 2 South | AL CGC2S
83 Accelerometer Longitudina CG Mass over Column 2 North | AL CGC2N
84 Accelerometer Longitudina CG Mass over Column 3 South | AL CGC3
85 Accelerometer Longitudinal West Bay Mass Top AL BIMT
86 Accelerometer Longitudinal West Bay Mass Bottom AL BIMB
87 Accelerometer Longitudina East Bay Mass Top AL B2MT
88 Accelerometer Longitudina East Bay Mass Bottom AL B2MB
89 Accelerometer Longitudinal Base of Column 2 AL BC2
90 Accelerometer Transverse CG Mass over Column 1 South AT CGC1
91 Accelerometer Transverse CG Mass over Column 2 South AT CGC2
92 Accelerometer Transverse CG Mass over Column 3 South AT CGC3
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Table B-3. (continued) Instrumentation list for Specimen 2

Channel Category Description Name
#
93 Accelerometer Vertical West Bay Mass Top AV BIMT
94 Accelerometer Vertical West Bay Mass Bottom AV B1IMB
95 Accelerometer Vertical CG Mass over Column 2 South AV CGC2S
123 Accelerometer Vertical CG Mass over Column 2 North AV CGC2N
97 Accelerometer Vertical East Bay Mass Top AV B2MT
98 Accelerometer Vertical East Bay Mass Bottom AV B2MB
99 Loca Deformations | Vertical North West Top LDV NWT
100 Loca Deformations | Vertical North West Middle LDV NWM
101 Local Deformations | Vertical North West Bottom LDV NWB
102 Local Deformations | Vertical North East Top LDV NET
103 Local Deformations | Vertical North East Middle LDV NEM
104 Local Deformations | Vertical North East Bottom LDV NEB
105 Local Deformations | Horizontal North Top LDHNT
106 Local Deformations | Horizontal North Bottom LDH NB
107 Local Deformations | Diagonal North Top LDD NT
108 Loca Deformations | Diagonal North Middle LDD NM
109 Loca Deformations | Diagonal North Bottom LDD NB
110 Loca Deformations | Vertical South West Top LDV SWT
111 Loca Deformations | Vertical South West Middle LDV SWM
112 Loca Deformations | Vertical South West Bottom LDV SwB
113 Local Deformations | Vertical South East Top LDV SET
124 Local Deformations | Vertical South East Middle LDV SEM
115 Local Deformations | Vertical South East Bottom LDV SEB
116 Local Deformations | Horizontal South Top LDH ST
117 Loca Deformations Horizontal South Bottom LDH SB
118 Loca Deformations | Diagonal South Top LDD ST
119 Loca Deformations | Diagonal South Middle LDD SM
120 Loca Deformations | Diagonal South Bottom LDD SB
121 Global Displacements | Longitudinal LVDT North GDL LVDTN
122 Global Displacements | Longitudinal LVDT South GDL LVDTS
148 Global Displacements | Longitudinal Redundant Table Displ Lower GDL RTDL
149 Global Displacements | Longitudinal Redundant Table Displ Upper GDL RTDU
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Table B-3. (continued) Instrumentation list for Specimen 2

Channel Category Description Name
#
127 Global Displacements | Longitudinal Top of Column 2 Side of Beam | GDL TC2SBN
North
128 Global Displacements | Longitudinal Top of Column 2 Side of Beam | GDL TC2SBS
South

129 Global Displacements | Longitudina CG at End of Beam GDL CGEB
130 Global Displacements | Longitudina West Mass Top GDL WMT
131 Global Displacements | Longitudinal West Mass Bottom GDL WMB
144 Global Displacements | Longitudina Base of Column 2 North GDL BC2N
145 Global Displacements | Longitudina Base of Column 2 South GDL BC2S
146 Global Displacements | Longitudinal CG at End of Beam (DCDT) GDLCGEBDCD
132 Global Displacements | Transverse CG of Mass over Column 1 GDT CGC1
133 Global Displacements | Transverse Top of Beam at Column 2 GDT TBC2
134 Global Displacements | Transverse CG of Mass over Column 1 GDT CGC3
135 Global Displacements | Transverse Top of Column 2 GDT TC2
136 Global Displacements | Vertical Beam Underside at Column 1 South | GDV BUC1S
137 Global Displacements | Vertical Beam Underside at Column 3 South | GDV BUC3S
147 Global Displacements | Vertical Mid span Bay 1 North GDVMSBIN
139 Global Displacements | Vertical Mid span Bay 1 South GDV MSB1S
140 Global Displacements | Vertical Mid span Bay 2 North GDV MSB2N
141 Global Displacements | Vertical Mid span Bay 2 South GDV MSB2S
142 Global Displacements | Vertical Beam Underside at Column 2 North | GDV BUC2N
143 Global Displacements | Vertical Beam Underside at Column 2 South | GDV BUC2S
126 Global Displacements | Vertical Under Column 2 Footing C2FOUNVRT
125 Axial Cylinders Prestress force from both cylinders AXIAL PNUE

B.4.1 SHAKE TABLE INSTRUMENTATION

Asshown in Tables B-2 and B-3, the shake table wasinstrumented with 4 horizontal displacement
transducers, 4 vertical displacement transducers, 4 horizontal accelerometers, and 4 vertical accel-
erometers. The layout of the instruments was such that one could determine the three-dimensional
movement of the table. The unidirectional horizontal displacements in the intended direction of

shaking can be found by averaging channels 2 and 4. The unidirectional horizontal accelerations

in the direction of shaking can be found by averaging channels 11 and 12.
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Although the table motion was intended to be unidirectional, some out-of-plane and verti-
cal displacements were detected, but al were within tolerable limits. The output from the table
instruments was checked by two displacement transducers measuring thetotal displacements of the
steel support frame. These instruments were also used to confirm that the pitch of the table during

testing was negligible.
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Figure B-10. Force transducers

B.4.2 FORCE TRANSDUCERS

Force transducers were used in pairs under each of the columns to monitor the redistribution of
shear and axial load during testing. Each force transducer is capable of measuring orthogonal
shears and momentsin the horizontal plane, in addition to axial load. Moments are measured about
midheight of the transducers. Tables B-2 and B-3 specify the channels measuring the in-plane and
out-of plane forces.

The force transducers were made from 4140 steel. They were machined, welded, and then
heat treated to maximum hardness and a proportional limit of 130 ksi. Dimensions for the trans-
ducersare shown in Figure B-10. The strain gages measuring shears and moments are mounted on
the 0.14" reduced sections paralléel to the sides of the end plates. The strain gages measuring axial
load are mounted on the 3/8"-thick rounded section at 45° to the sides of the end plates.
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Figure B-11. Error in force transducer measurements

Some cross talk between the shear and axial 10ad measurements has been identified during
calibration of the force transducers. However, no single correction factor could be determined to
correct the measurements. During loading of the pneumatic cylinders for Specimen 2 (Figure B-
11), it was noted that the sum of the axial loads from the force transducers was 92% of the prestress

force from the pneumatic cylinders.

B.4.3 ACCELEROMETERS

Accelerometers were mounted using high-strength epoxy in nine locations, as shown in Figure B-
12, to determine the acceleration of the specimen mass and base. When acceleration in more than
one direction was required at a single location, the accelerometers were mounted on 2" x 2" x 2"
aluminum blocks. The accelerometers mounted on the side of the beam were located at the center
of gravity for the beam and the lead weights (i.e., 6.75" above the beam soffit).

The longitudinal accelerations from the base of the specimen matched the accelerations

from the table instruments.

B.4.4 STRAIN GAGES

The strain gages were mounted on the reinforcement and distributed throughout the specimen, as
shown in Figure B-13. The strain gages mounted on the longitudinal reinforcement were located

on the inside face of the bars to protect the gages from being damaged during installation of the
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Figure B-12. Location of accelerometers (south side of specimen shown)

transverse reinforcement. The strain gages mounted on the transverse reinforcement were located

on the top or bottom face of the reinforcing wire. The strain gages require several protective coat-

ings to ensure that they are not damaged during the concrete pour. The following procedure was

followed for the installation of each strain gage:

File down deformations without reducing minimum cross section. Clean surface with
degreaser, conditioner, neutralizer, and isopropyl acohol.

Glue on strain gage and terminal using CN high-strength adhesive

Apply M-coat B protective sedlant to strain gage.

Solder strain gage wires and instrumentation cables to terminals.

Apply M-coat B protective sealant to strain gage, terminals and exposed wires.
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Figure B-13. Strain gage locations

» Apply wax coating to area covered by M-coat B.
* Apply M-coat J3 to area covered by wax.
» Cover affected region with vinyl mylar tape.

The strain gage mounted to the south side of the center column top hoop of Specimen 2 was dam-
aged during construction and did not provide any output during the test. The gains for the strain
gage readings were inadvertently set too high for the shear failure test for Specimen 2, resulting in
readings that exceed the capacity of the data acquisition system shortly after yield of the reinforce-

ment.

B.4.5 CENTER COLUMN INSTRUMENTS

The loca deformations of the center column were recorded by direct current displacement trans-
ducers (DCDTs) mounted to the center column as shown in Figures B-14 and B-15. The DCDTs
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Figure B-14. Center column instrumentation (for dimensions see Table B-4)

Table B-4. Center column instrumentation dimensions

Dimension Specimen 1 | Specimen 1 | Specimen 2 | Specimen 2

(see Figure B-14) South North South North
di 13 18" 13" 12 7/8" 12 7/8"
d2 13 18" 12 3/4 127/8" 12 5/8"
d3 14 3/4" 14 14" 14 5/8" 14 1/4"
a4 112" 112" 112 112"
hl 7" 714" 7" 7"
h2 8 3/8" 8 5/8” 812 812"
h3 40 1/2" 40 1/2" 40 1/2" 40 1/2"
h4 91/8" 9 1/8" 8 7/8 9’
h5 8 14" 8" 734 8"
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Figure B-15. Center column instruments and close-up view of top and bottom of column

wererigidly attached to 10” x 2" aluminum tubes that were secured to the column using spring ten-
sioned threaded rods. Each aluminum tube was offset from the column face by two 10" x 2" x 1.5"
wood blocks. Thetip of aconcrete screw protruded from one wood block per tube and was set into
apredrilled hole in the column face, thereby fixing the position of the instruments. The other wood
block was held in place by friction to alow for unrestrained dilation of the concrete column
between the blocks.

The truss configuration of the instruments allows for calculation of deformations based on
the principle of virtual forces. For more details see Section B.6.

Owing to interference from spalling cover concrete and severe distortion of the center
column during the shear failure test, data from the center column instruments can be used only for

times before shear failure of the center column (see Sections 6.3.2 and B.6 for more details).

B.4.6 GLOBAL DISPLACEMENT INSTRUMENTS

Displacement transducers were used to measure the global vertical, longitudinal, and transverse

displacements of the specimens, as shown in Figures B-16 through B-18. Transducers mounted to
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the instrumentation frames off the shake table measured the total displacements (i.e., including the
displacement of the shake table). Transducers mounted to the shake table (including GDL LVDTN
and GDL LVDTS) measured the displacement of the specimens relative to the shake table.

Transverse displacements were recorded to confirm that the out-of-plane bracing mecha-
nism was maintaining the unidirectional response of the specimens. All transverse displacements
were below tolerable limits.

To avoid conflict between the lead weight stacks and the vertical and longitudinal instru-
mentation wires, aluminum tubes with attachments for the instrumentation wireswere cantilevered
from the sides of the specimen beam. The longitudinal displacements of the center column were
recorded by linear variable differential transformers (LVDTs) mounted flat on the shake table sur-
face (GDL LVDTN and GDL LVDTS). The instrumentation wires from the LVDTs passed
through a pulley mounted to the shake table and extended up at an angle to the cantilever tubes
attached to the specimen beam (Figure B-17). The vertical displacements of the center column

were recorded in a similar manner.

B.5 EXPERIMENTAL PROCEDURES

After the instrumentation was installed and calibrated for each specimen, a“channel check” was
performed, wherein the data acquisition system recorded the readings from each of the instruments
for several seconds without any induced movement of the specimen. This allowed for a check of
the electronic noise on each of the channels. Resistors were used to reduce electronic noise where
necessary.

Asdescribed in Section 5.6, the experimental program for each specimen consisted of free-
vibration tests, alow-level earthquake simulation test, and a*“ shear-failure’ earthquake simulation
test. Four digital camcorders were used to film each of the earthquake simulation tests. One cam-
corder filmed the center column from astand mounted on the shake table. The other three camcord-
ers, mounted on stands off the shake table, filmed the whole frame, and the top and bottom of the
center column, respectively. Filming was started immediately before each of the earthquake ssimu-
lation tests. An audio signal from the shake table operator was recorded by the camcorders when
the dataacquisition system was activated. This allowed for the approximate synchronization of the

video and recorded data. After each of the earthquake simulation tests, the specimens were
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Table B-5. Dimensions for Figure B-17

Dimension Specimen 1 Specimen 1 Specimen 2 Specimen 2
North Side South Side North Side South Side
A 2'-117/8" 2'-115/8" 2'-1112" 2'-111/8"
B 2'-113/8" 2'-1114 2'-11y2” 2'-111/2"
C 4' -4 14" 4' - 414" 4'-312" 4'-31/2"
D 8’ -23/16" 8'-23/16" 8 -414" 8 -41
E 0 0 41/2" 41/2"
GDTTBC2
GDTCGC1/ 16"
GDTCGC3
GDTTC2

iu
67

X  wire linear potentiometer
— LVDT

Z % z E R fz n @ A mm DCDT or stick linear potentiometer
Mo SRS O nl|ma
787 I = g 8 S S3llza
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Figure B-18. End view of global displacement instruments
(transverse and vertical instruments shown)

inspected for cracks. Videos from each of the tests document the progression of damage and the

distribution of cracks during the shear-failure tests (see Appendix E).

B.6 DATA REDUCTION

This section summarizes the procedures used to reduce the recorded data to the results presented

in Chapter 6.
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Figure B-19. Correction for large displacements

Longitudinal and vertical displacements at center column: The longitudinal displace-
ments were recorded by several instruments including the diagonal LVDTs, GDL LVDTN and
GDL LVDTS. Theresultsfrom the LVDTswere compared with the output from other instruments
to confirm that the pulley system (Figure B-17) produced accurate data.

The triangularized setup of GDL LVDTN and GDV BUC2N on the north side and GDL
LVDTSand GDV BUC2S on the south side was used to correct for large displacementsin the lon-
gitudinal and vertical recordings. With reference to Figure B-19, the following equations can be

written for the position of node O:
(z,*A2)2 = (x,+X)2+ (y,+Y)? (B.1)
(Vo +Ay)? = X2+ (y, +1)? (B.2)

where Az and Ay are the changes in the lengths of wiresz and y (i.e., the recorded data from the
diagonal and vertical instruments, respectively). There are only two unknowns, the corrected lon-
gitudinal and vertical displacements (X and Y). The unknowns can be determined by iteration as

follows:
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1. Yisassumed equal to Ay

2. X isevaluated using Equation B.1

3. Yisevaluated using Equation B.2 and the current value for X

4. X isre-evaluated using Equation B.1 and the current valuefor Y

5. Steps 3 and 4 are repeated until the change from one iteration to the next is negligible

A converged solution is attained after only five iterations. The maximum difference between the
corrected and uncorrected results was 0.035".

The corrected longitudinal and vertical displacements from the north and south sides of the
specimen are averaged to get the longitudinal displacements shown in Figure 6-5 and the vertical
displacements shown in Figure 6-14. These corrected longitudinal displacements are used for any
plotsin Chapter 6 requiring the longitudinal displacements of the beam or the tops of the columns.

Base shear and inertial forces: The base shear plotted in Figures 6-5, 6-6, and 6-7 was
determined by summing the shears recorded by the force transducers. As discussed in
Section 6.3.1, the base shear should be approximately equal, and opposite in sign, to the longitudi-
nal inertial forces. The longitudinal inertial forces were calculated by two methods:

* F; = (total beam and lead weight mass)* (average longitudinal acceleration recorded by
ALCGC2S and ALCGC2N)

» F; = X(mass of each |ead weight stack)* (acceleration of the closest stack with accelerometer) +
(concrete beam mass)* (average longitudinal acceleration recorded by ALCGC2S and
ALCGC2N)

Both methods produced very similar results, although high-frequency oscillations of the accelera-
tions recorded on the lead weight stacks resulted in a maximum difference between the two meth-
ods of 4.77 kips. Inertial forces from method 2 were used in the fourth plot of Figure 6-5.
Overturning moments: The overturning moments were defined as the base moment
resulting from axial loads in the columns. The overturning moments plotted in Figures 6-5, 6-8,
and 6-9 were calculated by summing the moments caused by the column axial |oads about the base

of the center column as follows;

OTM = Py, 6 + Py, 6 (B.3)

Asnoted in Section 6.3.1, the noise in the overturning moment plotsis caused by high-fre-

guency pitching of the shake table. If these frequencies are filtered out and the overturning
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moments, summed with the column base moments, are divided by the recorded base shear, the
result is approximately 64.75", or the height of the center of gravity above the base of the columns.

Center column shear: The center column shear plotted in Figures 6-14, 6-15, and 6-16,
was determined by summing the in-plane shear data from the two force transducers under the
center column.

Center column axial load: The changein the center column axial load during the testswas
determined by summing the axial load data from the two force transducers under the center col-
umn. Theinitial axial load in the center column was determined using two readings from the force
transducers. one just before the test, and another before the specimen was installed on the table in
the fully unloaded condition. Since the clamping force from the bolts and threadbars securing the
force transducers to the base plate and specimen appeared to affect the readings, the bolts and
threadbars were loosened before taking the reading before the test. The clamping force did not
influence the results during the test, since the clamping force remained constant during testing.

v, v, v,

M] M $ M] M

Ny 2 N 2
‘i) >‘< >{ 2 ” >'< >|

Figure B-20. Free-body diagrams for calculating column moments
(Reactions recorded at midheight of the force transducers)
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Center column moments: The center column moments plotted in Figures 6-14, and 6-22,
through 6-27, were determined using the output from the force transducers and the free-body dia-
grams shown in Figure B-20. Based on the free-body diagrams, and ignoring theinertial force from

the column and footings, the top and bottom column moments were calculated as follows:

M, = M;+M,—18N, + 18N, —h,(V, +V,) (B.4)
M, = h(V,+V,)—M,+A(N;+N,) (B.5)

Note that Equation B.5 can be used to calculate the moment at any column section at a

height / above the bottom of the column given that the longitudinal displacementsat aheight z are
known.

Specimen 1 Center Column Moment (kip*ft)

—60

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Drift Angle (rad)

Figure B-21. Specimen 1 center column moment hysteretic response with
oy = 0.89 and o = 1.0

Figures 6-22 through 6-27 plot the center column moment hysteretic response. According
to the plots, the yield strength at the top of the column appears to be approximately 50% higher
than that at the bottom of the column. Although some discrepancy in the top and bottom yield

strength should be expected due to dight variation in the reinforcement location and pockets of
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Figure B-22. Specimen 1 center column moment hysteretic response with
oy = 1.0 and o = 1.12

aggregates at the base of the column, one would not expect this discrepancy to be more than
approximately 10%. It was concluded, therefore, that an error exists in the force transducer output
used to calculate the moments. Since the moment readings from the force transducers were very
small, the discrepancy in the top and bottom moments could result from errors in the axial load
readings, the shear readings, or both. To investigate the magnitude of the possible errors, the shears

and axial loads from the force transducersin Equations B.4 and B.5 were factored asfollows:

M, = My + M, +180,(Ny—Nqp) — o, (V, + V) (B.6)
M, = hou(Vy + Vy) — M, + Aoty (N + N.,) (B.7)

Figures B-21 and B-22 show close agreement between the top and bottom yield moments
for the Specimen 1 center column using (ow/,0y) = (0.89,1.0) or (ow,,0ty) = (1.0,1.12). Since the
sum of all the shear readings isin close agreement with the inertial forces (see Figure 6-5), and the
axial load readings from the force transducers do not agree with the prestressing force from the
pneumatic cylinders (see Figure B-11), it is expected that the discrepancy in the unfactored yield
moments primarily results from errorsin the axial load readings.
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Figure B-23. Calculation of rotations and average curvatures

Rotations and average curvatures: The rotations and average curvatures plotted in Fig-
ures 6-24 through 6-27 were calculated using the center column instruments described in
Section B.4.5. The rotations were calculated by taking the difference of the two vertical instru-
mentsin asingle panel of theinstrumentation trussand dividing by the distance between theinstru-
ments, as illustrated for the bottom panel in Figure B-23. The rotations calculated from the
instruments on the north and south faces of the column were averaged to arrive at the rotations
shown in Figures 6-24 and 6-25. The average curvature over the panel, ¢, is defined as the rota-
tion divided by the height of the panel. The rotation of the beam relative to the footing, shown in
Figure 6-28, was determined by summing the rotations calculated for each panel of the instantia-
tion frame. Note that the rotation and average curvature include both flexural and dip deforma-
tions.

Displacements based on center column instruments: Longitudinal displacementsfor the
center column can be calculated from the center column instrument data by applying the Principle
of Complementary Virtual Work (also known as the Principle of Virtual Forces). Specifically for

atruss, the Principle can be stated in the following form:

ASP = AR, (B.8)

where A isthereal displacement of the truss at the location and in the direction of interest, A; isthe
real deformation in the it truss member, 8P is avirtual force applied to acompatible virtual truss

system at the location and in the direction of displacement A, and df; is the virtual forcein the ith
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member of the compatible virtual truss system. Any virtual system can be chosen aslong asal the
virtual forceswithin the system, df;, including reactions, are multiplied by the associated real defor-
mations. By selecting aunit load for &P, the displacement at any node in the truss, and in any direc-

tion, can be determined by applying Equation B.8.

< 0P=10 ©
1 5 3 . ; 3

4 4

> 6 7 5 6 7
8 8

9 5 11 9 . 1

o 5P=10 "%
Virtual System A Virtual System B

Figure B-24. Virtual truss systems used to calculate the longitudinal displacement of the
center column

The center column instrumentation frame can be considered as a truss, and the readings
from the instruments provide the real deformations, A;. The longitudinal displacement of the
column can be determined by selecting a virtual truss system with membersin place of the instru-
ments in the instrumentation frame and applying a horizontal virtual unit load at the top or bottom
of thevirtua truss, asshown in Figure B-24. Therigid offsets between the center lines of theinstru-
ments cause virtual moments at the joints of the virtual truss systems. These moments must be

accounted for in the internal virtual work by rewriting Equation B.8 asfollows:

A= ALY+ 0,8M, (B.9)
i j

305



1.0

-
1.0
1.0> -

1.0

L0 L0
o JaN PaN

Top Panel Middle Panel Bottom Panel

Displacements Displacements Displacements

Figure B-25. External virtual forces used to calculate the contribution of the
deformations within each panel to the longitudinal displacements

where 6; isthereal rotation of the column at the level of thejth joint, and 8M; isthe virtual moment
at the j™Mjoint due to the rigid offsets. The virtual moments can be considered to be resisted at the
joints by virtual flexural springs. Since the virtual truss systems are statically determinate, the vir-
tual forces and moments resulting from the unit loads can be determined by basic statics.

Equations B.8 and B.9 assume that the displacements at the locations of the boundary con-
ditions in the virtual truss systems are negligible. In other words, when applying Equation B.9 to
virtual system A shown in Figure B-24, the rotation of the footing is neglected. Similarly, when
using virtual system B therotation of the beam is neglected. Virtual system A was used to calculate
the displacements shown in the upper plot of Figures6-29 and 6-30, and virtual system B was used
to calculated the displacements shown in the middle plot of Figures 6-29 and 6-30.

The longitudinal displacements shown in Figures 6-31 and 6-32 were calculated using the

average of the results from virtual system A and B. The average produced better agreement with

306



thelongitudinal displacements measured by the global instruments. The contributions of the defor-
mations in each panel to the longitudinal displacement were determined using the external virtual
forces shown in Figure B-25. Although shown here applied to virtual system A, similar external
virtual forces were applied to both virtual systems and the results were averaged.

A description of the method used to calculate the panel deformations without rigid body
rotations can be found in Section 6.3.2.

Outside column initial forces: The force transducers were unable to monitor the column
reactions accurately over an extended period of time, such as the one week required to install the
gpecimen and mount the masses. Furthermore, unlike the center column, the dead-load shear
present in the outside columns required that the threadbars and bolts securing the force transducers
to the footings and the base plate remain tightened to ensure that no slip occurred between the spec-
imen and the base plate. In effect, the only dead-load reaction recorded from the force transducers
with reasonable accuracy was the initial axial load on the center column. The initial moments and
shears on the center column were assumed to be negligible. The remaining reactions (i.e., shear,
moment, and axial load on the outsi de columns) were determined from the dead-load model for the
loaded specimen described in Section 8.2.3. Theinitial loads on the outside columns, summarized
in Table B-6, are used in Figures 6-36 through 6-49.

Table B-6. Initial loads on outside columns based on final dead-load model

Load Type Specimen 1 | Specimen 2
Axial load 194 kips | 21.5kips
Shear 1.15kips | 1.39kips

Moment (Top of Column) 76.3kipin | 92.1kipin

Moment (Bottom of Column) | 9.2kipin |11.1kipin

Outside column moments: The outside column moments shown in Figures 6-36, 6-37,
and 6-46 through 6-49 were calculated according to the procedures described above for the center
column and using Equations B.4 and B.5.

As noted in Section 6.3.3, for positive displacement cycles the yield strength at the top of
the west column appears to be approximately 50% higher than the yield strength at the bottom of
the column, while the top and bottom yield strengths for negative cycles for the west column and
both cycles for the east column appear to be within expected tolerances. It should be noted that

water damage to the solo-tube forms used for the outside columns resulted in a reduction of the
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cover at the base of both Specimen 1 outside columns. Although this would result in a dightly
lower moment capacity for the base of the column relative to the top of the column, it is not
expected to account for the large discrepancy in yield strengths observed in the data. Furthermore,
the reduction in the cover concrete should influence the strength of both the east and west columns
of Specimen 1, not just the west column of both specimens as seen in the data. It is concluded,
therefore, that, aswith the center column, the discrepancy intheyield strengthsfor the west column
ismost likely dueto errorsin the axial 1oad readings from the force transducers.

Outside column shear and axial loads: The shear and axial loads in the outside columns
plotted in Figures 6-36 and 6-37 were determined by summing the shear and axial load data from
the two force transducers under each column. Theinitial shear and axial loads were determined as
described above.

Outside column vertical displacements: The outside column vertical displacements plot-
ted in Figures 6-36 and 6-37 were based directly on the data from instruments GDV BUCIS for
the west column and GDV BUC3S for the east column.

Total vertical load: Two methods were used to calculate the total vertical load acting on
the specimen:

1. Thetota weight of the beam and lead packets (67.9 kips) was added to the recorded prestress
force. The result of this method is denoted in Figure 6-55 asthe “ Total Gravity Load.”

2. The axial loads from each column (based on the force transducer data) were added to the verti-
cal inertial forces, calculated based on the vertical accel erations measured on the beam over the
center column (average of data from instruments AV CGC2S and AV CGC2N) and the total
mass of the beam and lead packets. (All frequencies above 25 hz were removed from the
recorded accelerations.) The result of this method isdenoted in Figure 6-55as XP, , + ma

vert"®

The results from the second method exhibit some high-frequency axial load oscillations,
which may be attributed to the broader range of frequency content recorded by the accelerometers
compared with the force transducers. At the end of the test there was a difference of 2.5 kips

between the “ Total Gravity Loads” and the sum of the column axial loads.

B.7 DERIVATION OF BAR SLIP MODEL

When areinforced concrete column issubjected to lateral forces, dip of the reinforcing bars within

the anchor blocks will result in lateral displacementsin addition to those caused by flexural defor-
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Figure B-26. Slip of longitudinal reinforcement from anchorage block

mation of the column. This section describes the derivation of Equation 7.3 used to estimate the
lateral displacement due to bar dip before yielding of the longitudinal reinforcement.

Moments at the anchored end of a reinforced concrete column may cause tension in the
anchored reinforcing bars as shown in Figure B-26. The tension force, 7;, must be resisted by the
bond stress, u, between the reinforcement and the anchorage block concrete. Thisresultsin thefol-

lowing equilibrium equation, if the bond stressis approximately constant:
Af, = ndylu (B.10)

where A; is the area of one longitudinal reinforcing bar, £, is the stress in the reinforcing bar (less
than or equal to the yield stress), d;, isthe nominal diameter of areinforcing bar, and / isthe length
over which the bond stress acts as shown in Figure B-26. The dlip of the reinforcing bar, 3, can

be found by integrating the strain diagram shown in Figure B-26:

5. =1

slip égsl (B.11)

where g, isthe strain in the reinforcing bar corresponding to the stress f;. Using Equation B.10 to

find the length /, Equation B.11 can be rewritten asfollows:

Ssdbfs
8yiip = g (B.12)

The rotation at the anchorage due to dlip of the reinforcing bars, 6, is given by the ratio

of &, to the distance from the reinforcement to the neutral axis, ¢. Using Equation B.12, and rec-

slip
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ognizing that (e,/c) is equal to the curvature at the section, ¢, the rotation can be expressed as fol-
lows:

= 90

eslip - 8u

(B.13)

Finally, the lateral displacement of a column of length L due to slip of the reinforcement
from the anchorage block is given by:

_ Ldpf0

slip Su

(B.14)

For the slip displacement at yield, f; and ¢ in Equation B.14 are replaced by f, and ¢,
respectively, as shown in Equation 7.3. The dip displacement beyond yield can be estimated using
asimilar model presented by Sezen (2002).
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Appendix C: Experimental Results from
Low-level Tests

This appendix documents selected recorded results for the low-level shake table tests performed
before each of the shear-failure tests described in Chapter 6. The experimental setup for the low-
level testsisidentical to that described in Chapter 5 and Appendices A and B for the shear-failure
tests.

The results indicate that column longitudinal reinforcement did not yield during the low-

level tests. Only limited cracking of the outside columns was observed after the tests.
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Figure C-1. Global response histories for low-level test — Specimen 1
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Figure C-2. Global response histories for low-level test — Specimen 2
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Figure C-5. West column response histories for low-level test — Specimen 1
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Figure C-6. West column response histories for low-level test — Specimen 2
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Figure C-9. Specimen 1 base shear hysteretic response for low-level test
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Figure C-10. Specimen 1 center column shear hysteretic response for
low-level test
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Figure C-11. Specimen 1 west column shear hysteretic response for low-level test
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Figure C-12. Specimen 1 east column shear hysteretic response for low-level test
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Figure C-13. Specimen 2 base shear hysteretic response for low-level test
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Figure C-14. Specimen 2 center column shear hysteretic response for low-level test
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Figure C-15. Specimen 2 west column shear hysteretic response for low-level test
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Figure C-16. Specimen 2 east column shear hysteretic response for low-level test
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Appendix D: C++ Implementation of Limit State
Failure Model

D.1  CLASS STRUCTURE FOR LIMIT STATE FAILURE MODEL

This section will describe the classes required for the new uniaxial material model described in
Chapter 4, and their interaction with existing OpenSees classes. The new material model will be
referred to as “LimitStateMaterial.” Further information on OpenSees and object-oriented finite-
element programing can be found in OpenSees (2002) and McKenna (1997).

The LimitStateM aterial classis a subclass of UniaxialMaterial, as shown in Figure D-1. It
is based on the HystereticMaterial class and uses the same hysteretic rules (see Section D.4 for
more information on HystereticMaterial). As described in Chapter 4, the LimitStateMaterial
changes its backbone when the appropriate force-deformation response intersects the limit curve.
Since the shape of thiscurveisdifferent for the shear and axial failure models (see Figures 4-1 and
4-2), new classes AxialCurve and ShearCurve (used for the axial and shear-failure models, respec-
tively) have been created to define the limit curve and determine when it is exceeded. A third sub-
class, ThreePointCurve, has also been created to define a general-purpose limit curve. These sub-
classesinherit from anew base class LimitCurve, which is aggregated with the LimitStateM aterial
class (Figure D-1). If aLimitCurveis not aggregated with LimitStateMaterial, then the behavior of
LimitStateMateria isthe same as HystereticMaterial.

Deformation measures such as chord rotations are known only by the Elements, and dis-
placements are known only by the Nodes, in the OpenSees framework. Hence, the LimitCurve
requires information from either the associated beam-column element or the associated nodes to
determine when the limit curve is reached. To achieve this, the beam-column element class (e.g.,

BeamWithHinges) and the Node class are made component classes of each of the LimitCurve sub-
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Figure D-1. Partial OpenSees Class Diagram including LimitStateMaterial and LimitCurve

classes, as shown by the “has-a’ relationship in Figure D-1. Since the materials are created by the
OpenSees ModelBuilder before the elements are created, it is necessary to form the aggregation
between the LimitCurve subclasses and the element after the material class has been constructed.
Thisis done by passing a pointer to the Domain into the LimitCurve subclass and then asking the

Domain to provide a copy of the appropriate element to the LimitCurve. The aggregation between

Aggregation done
using a pointer
to the Domain

| | )\

NLBeamColumn

[

BeamWithHinges

the nodes and the LimitCurve subclasses is done in a similar manner.
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D.2 TCL INTERFACE FOR LIMIT STATE FAILURE MODEL

The scripting language Tcl isused to enter commandsin OpenSees. The following section, describ-
ing the syntax of the new Tcl commands, can be used asa“User’s Guide” for thelimit state failure
model in OpenSees.

Theinput command for LimitStateMaterial isgivenin Table D-1. All of theinput variables
except for thelast two are the same asthose for HystereticM aterial and are defined in Section D.4.
The input command for AxialCurve is given in Table D-2. The limit curve is based on the axial

failure model from Chapter 3:

2
A_ 4 1+(anb)
L 100tan9+ P (0.1)
F_ tan®

sw

where 6 = 65° and P isthe axia load in the associated beam-column element. The drift ratio, A/
L, can be determined based on the displacements of nodes | and Jor approximated by the maximum
beam-column chord rotation. The input variable $delta can be used to shift the limit curve, as
shown in Figure D-2, to evaluate the influence of variability in the position of the limit curve.

The input command for ShearCurveis givenin Table D-3. Note that all input variables for
the OpenSees model are assumed to be in kips and inches, except for the concrete compressive
strength, .’ , which must be specified in psi. Thelimit curve is based on the empirical drift capacity
model from Chapter 2:

A3 ., AV/bd) 1 P _1
L~ 100" P 7500 [ T 40bhf,~ 100

(psi units) (D.2)

where P and V are the axial load and shear in the associated beam-column element, respectively.
Similar to the AxialCurve, the drift ratio, A/L, can be determined based on the displacements of
nodes| and Jor approximated by the maximum beam-column chord rotation, and the input variable
$delta can be used, asshown in Figure D-2, to shift the limit curve to evaluate the influence of vari-
ability in the position of the limit curve.

The input command for ThreePointCurveisgivenin Table D-4. Any failure model that can

be reasonably approximated by the trilinear surface shown in Figure D-3, and does not depend on
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Table D-1. OpenSees input command for LimitStateMaterial

Limit State Material

This command is used to construct a uniaxial hysteretic material object with
pinching of force and deformation, damage due to ductility and energy, and
degraded unloading stiffness based on ductility. Failure of the material is defined
by the associated limit curve.

uniaxialMaterial LimitState $matTag $s1p $el1p $s2p $e2p $s3p $e3p
$s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinch¥Y
$damage1 $damage2 $bheta $curveTag $curveType.

$matTag

$s1p $elp
$s2p $e2p
$s3p $e3p
$sin $eln
$s2n $e2n
$s3n $e3n
$pinchX
$pinchY
$damage1
$damage2
$beta
$curveTag
$curveType

unique material object integer tag

stress and strain (or force & deformation) at first point of
the envelope in the positive direction

stress and strain (or force & deformation) at second point
of the envelope in the positive direction

stress and strain (or force & deformation) at third point of
the envelope in the positive direction (optional)

stress and strain (or force & deformation) at first point of
the envelope in the negative direction”

stress and strain (or force & deformation) at second point
of the envelope in the negative direction”

stress and strain (or force & deformation) at third point of
the envelope in the negative direction (optional)*

pinching factor for strain (or deformation) during reloading
pinching factor for stress (or force) during reloading
damage due to ductility: D4(u-1)

damage due to energy: Do(E/Eur)

power used to determine the degraded unloading stiffness
based on ductility, w® (optional, default=0.0)

an integer tag for the LimitCurve defining the limit surface

an integer defining the type of LimitCurve (0 = no curve,
1 = axial curve, all other curves can be any other integer)

*NOTE: negative backbone points should be entered as negative numeric values
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Table D-2. OpenSees input command for AxialCurve

Axial Limit Curve

This command is used to construct an axial limit curve object that is used to
define the point of axial failure for a LimitStateMaterial object. Point of axial
failure based on model from Chapter 3. After axial failure response of
LimitStateMaterial is forced to follow axial limit curve.

limitCurve Axial $curveTag $eleTag $Fsw $Kdeg $Fres $defType
$forType <$ndl $ndJ $dof $perpDirn $delta>.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$Fsw floating point value describing the amount of transverse
reinforcement (Fsw = Asify1dc/s)

$Kdeg floating point value for the slope of the third branch in the
post-failure backbone, assumed to be negative (see
Figure 4-6)

$Fres floating point value for the residual force capacity of the

post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve
1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndl and ndJ

$forType integer flag for type of force defining the ordinate of the
limit curve*
0 = force in associated limit state material
1 = shear in beam-column element
2 = axial load in beam-column element

$ndl integer node tag for the first associated node
(normally node | of $eleTag beam-column element)
$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)
$dof nodal degree of freedom to monitor for drift**
$perpDirn perpendicular global direction from which length is

determined to compute drift**
$delta drift (floating point value) used to shift axial limit curve

NOTE: * Options 1 and 2 assume no member loads.
**1:X,2=Y,3:Z
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axial limit curve based
on Equation D.1

shear limit curve based
on Equation D.2

AlL AlL

Figure D-2. Shifting of limit curve using $delta input variable

guantities which may vary during the analysis (such as beam-column shear or axial load), can be
modeled using ThreePointCurve.

D.3 C++ CODE FOR LIMIT STATE FAILURE MODEL

This section describes select portions of the C++ implementation for the limit state failure model.

The complete code can be found at http:llopensees.berkeley.edu.

D.3.1 LimitStateMaterial

Upon convergence of each time step a material commits the current state of the history variables
within commitstate. The following code was added t0 commitstate to check if the limit curve,

defined by thecurve, had been exceeded in that time step.

/I check element state if using limit curve option
/I and not beyond residual capacity (CstateFlag == 4)
if (curveType!=0&& CstateFlag != 4)

/I Check state of element relative to the limit state surface.

/I Note that steps should be kept small to minimize error

/I caused by committed state being far beyond limit state surface
int stateFlag = theCurve->checkElementState(Cstress);

II'1f beyond limit state surface for first time,

/I get the new fina slope and residual capacity
/I for this LimitState material

if (stateFlag == 1)

/I get backbone in current direction
result += getNewBackbone(stateFl ag);

/I if not an axial curve, cause failure in both directions

if (curveType!=1)
result += mirrorBackbone();
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Table D-3. OpenSees input command for ShearCurve

Shear Limit Curve

This command is used to construct a shear limit curve object that is used to
define the point of shear failure for a LimitStateMaterial object. Point of shear
failure based on empirical drift capacity model from Chapter 2.

limitCurve Shear $curveTag $eleTag $rho $fc $b $h $d $Fsw $Kdeg
$Fres $defType $forType <$ndl $ndJ $dof $perpDirn $delta>.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$rho transverse reinforcement ratio (As/bh)

$fc concrete compressive strength (psi)

$b column width (in.)

$h full column depth (in.)

$d effective column depth (in.)

$Fsw floating point value describing the amount of transverse

reinforcement (Fsw = Asifyido/s)

$Kdeg If positive: unloading stiffness of beam-column element
(Kunioad from Figure 4-8)
if negative: slope of third branch of post-failure backbone
(see Figure 4-6)

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve
1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndl and ndJ

$forType integer flag for type of force defining the ordinate of the
limit curve
0 = force in associated limit state material
1 = shear in beam-column element

$ndl integer node tag for the first associated node
(normally node | of $eleTag beam-column element)
$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)
$dof nodal degree of freedom to monitor for drift
$perpDirn perpendicular global direction from which length is

determined to compute drift
$delta drift (floating point value) used to shift shear limit curve
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Table D-4. OpenSees input command for ThreePointCurve

Three-Point Limit Curve

This command is used to construct a three-point limit curve object that is used to
define the point of failure for a LimitStateMaterial object.

limitCurve ThreePoint $curveTag $eleTag $x1 $y1 $x2 $y2 $x3 $y3
$Kdeg $Fres $defType $forType <$ndl $ndJ $dof

$perpDirn>.
$curveTag unique limit curve object integer tag
$eleTag integer element tag for the associated beam-column
element
$x1  $yi coordinates for the first point on the limit curve

(see Figure D-3)

$x2  $y2 coordinates for the second point on the limit curve
(see Figure D-3)

$x3  $y3 coordinates for the third point on the limit curve
(see Figure D-3)

$Kdeg floating point value for the slope of the third branch in the
post-failure backbone, assumed to be negative
(see Figure 4-6)

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve
1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndl and ndJ

$forType integer flag for type of force defining the ordinate of the
limit curve*
0 = force in associated limit state material
1 = shear in beam-column element
2 = axial load in beam-column element

$ndl integer node tag for the first associated node
(normally node | of $eleTag beam-column element)
$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)
$dof nodal degree of freedom to monitor for drift**
$perpDirn perpendicular global direction from which length is

determined to compute drift**

NOTE: * Option 1 assumes no member loads.
**1:X’2=Y,3:Z
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forType A

(x1,y1l) ® (x2,v2)
(x3,y3)
- _
(-x3,-v3) defType
(-x2,-y2) —e (-x1,-v1)

Figure D-3. Definition of limit curve for ThreePointCurve

First, the checkeiementstate function of the LimitCurve object, thecurve, isused to deter-
mineif the limit curve has been exceeded. This function returns an integer flag, stateFlag, indi-
cating the current state of the material (O = initial state before hitting curvefor first time, 1 = limit
curve reached for first time, 2 = on limit curve, 3 = off limit curve, 4 = at residual capacity). (Note
that staterFlag = 1, 2, 3, and 4 are used to define the behavior of the material after axial failure,
but are equivalent for the ShearCurve and ThreePointCurve). Then the post-failure backbone is
defined in the direction of motion by the getnewsackbone function. For the shear-failure limit curve,
the post-failure backbone is reflected in the opposite direction, since shear failure is assumed to
reduce the capacity in both directions.

To define the behavior after axial failure (asdescribed in Section 4.5.3), the following code

is added to the commitstate function:

/I special functionsfor axia curve
if (curveType==1) {

/I'1f on surface, get axial load lost
if (stateFlag == 1 || stateFlag == 2 || stateFlag == 4) {
Pl oss += theCurve->getUnbal anceForce();

}
/I'if moving off surface, get new backbone with 1/100elastic 3rd slope
if (CstateFlag == 2 || CstateFlag == 1) {
if (stateFlag == 3) {
result += getNewBackbone(stateFl ag);
}

}
//'if moving onto surface then get new backbone with degrading slope

if (CstateFlag == 3) {
if (stateFlag == 2) {
result += getNewBackbone(stateFl ag);
}

/1'if forceSurface governed by residual capacity set new flat backbone
/I do not allow backbone to be changed again.

333



if (stateFlag == 4) {
result += getNewBackbone(stateFl ag);

}
}

/I commit the current state if needed outside commitState
CstateFlag = stateFlag;
}
The getunbalanceForce function from AxialCurve provides the axial load required to

return the material to the limit curve at the same displacement. Thisforce, rioss, isused to deter-
mine the stress and strain in the material for the next time step. The getNewBackbone function is
used twice to redefine the post-failure backbone such that the material responds with a stiffness
equivalent to 1/100 timesthe el astic stiffnesswhen it isoff thelimit curve and to restore the degrad-
ing sope when the response returns the material to the limit curve. Once the axial capacity has
degraded down to the residual capacity, the column is assumed to have lost a significant amount
of core concrete, and, hence can no longer sustain axial loads above the residual capacity. To
achievethisthe backboneisredefined with aflat slopeat theresidual capacity, andthecstateriag
variable is set to 4 to ensure that the backbone is not redefined in future load steps.

All uniaxial materialsmust providethefunctionsgetstrain, getStress, and getTangent
in order for the elementsto determine the current state of the materials. In LimitStateMaterial these
functions must be adapted as shown below to account for the behavior of the material after axial

failure.

double
LimitStateMateria ::getStrain(void)
{
/I Return trail strain plus strain due to loss of axial load.
/I Ploss will be zero if no axial failure or not using AxialCurve.
/I Ploss is always positive.
/I E3 set to any number if not using limit curve,
/I otherwise should be negative for axia curve.
double strain;
double E3;

if (curveType!=0)

E3 = theCurve->getDegSlope();
else

E3=1.0;

if (Tstrain < 0.0)

strain = Tstrain + Ploss/ES;
else

strain = Tstrain - Plosy/E3;

return strain;

}

double
LimitStateMaterid ::getStress(void)
{

/I Return trail stress minus the loss of axial load.
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/I Ploss will be zero if no axial failure or not using AxialCurve.
I/l Ploss is always positive.

/I For axial failure Tstressis negative in compression

doubl e stress;

stress = Tstress + Ploss;

return stress,

}

double

LimitStateM ateria ::getTangent(void)

{
/'1f on the limit state surface use degrading slope,
/I but if beyond third corner point use approx zero slope (axial curve only)
if (curveType==1)

double E3 = theCurve->getDegSlope();
if (CstateFlag == 1 || CstateFlag == 2) {
if (Tstrain>0.0) {
if (Tstrain > rot3p) {
Ttangent = E1p* 1.0e-9;
}else{

Ttangent = E3p;
}
} else{
if (Tstrain < rot3n) {
Ttangent = E1p*1.0e-9;
} else{
Ttangent = E3n;
}

}
}

return Ttangent;

Thetrial strain, stress, and tangent variables (Tstrain, Tstress, and Ttangent) are deter-
mined by the hysteretic rules of HystereticMaterial. The trial strain and stress are modified using
Ploss to account for any unbalance forces needed to return the response of the material to the limit
curve. To ensurethat aloss of axial load is accompanied by an increase in vertical displacements,
thetrial tangent is set equal to the degrading slope (or zero slope if degraded to residual capacity)
if the response of the LimitStateM aterial is on the axial limit curve.

For an axial limit state material, r1oss is defined when a load step is committed. Hence,
whenthe getstress Or getstrain functions are called by the recorder before the start of the next
step, the stress or strain provided by the LimitStateMaterial will include the effect of p1oss. Since
Ploss ISnot, in fact, applied to the material until the next load step, the stress and strain from the

recorder will be in error. This problem can be averted by recording the axia force in the beam-

column element and the node displacements.
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D.3.2 ShearCurve

The checkElementstate function is used by the LimitStateMaterial to determine if the beam-
column element response has exceeded the limit curve. The following section of code finds the
beam-column element that is associated with this instantiation of LimitCurve:

/I check if limit state surface has been reached
int
ShearCurve::checkElementState(double springForce)

/I find associated beam-column element on first visit
if (theElement == 0)
{
theElement = theDomain->getElement(eleTag);

if (theElement == Q)

g3ErrorHandler->fatal ("WARNING ShearCurve -

no element with tag %i existsin Domain" eleTag);
/I find length between nodes if drift is desired

if (defType==2)
{

Node * nodel = theDomain->getNode(ndl);

Node * nodeJ = theDomain->getNode(ndJ);

const Vector &crdl = nodel->getCrds();
const Vector & crdJ = nodelJ->getCrds();

oneOverL = 1.0/fabs(crd)(perpDirn) - crdl(perpDirn));

}
}

If a copy of the beam-column element is not yet available (i.e, the first time checkEle-
mentState IS called), the Domain is asked the make a copy of the element with the user-provided
element tag e1eTag. A fatal error isdisplayed if acopy cannot be created. This procedure was done
outside the constructor because OpenSees creates the material objects before the element objects.
If the abscissa of the limit curve is defined by interstory drift (defType = 2), then the Domain is
also asked to make a copy of the nodes with the user-provided node tagsnar and ndJ. The height
of the beam-column element is determined by finding the coordinates of the nodes and finding the
projection of the element along the axis defined by perppirn.

The checkElementstate function continues to determine if the beam-column response
has exceeded the limit curve:

if (defType == 1) // maximum chord rotations for x-axis of limit curve

Response *theRotations =0; // integer element returns in setResponse
char *1{1] = {"basicDeformations’} ; // must be implemented in element
Information* rotlnfoObject =0;

Vector *rotVec; //vector of chord rotations at beam-column ends

/] set type of beam-column element response desired
theRotations = theElement->setResponse(r, 1, * rotInfoObject);
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/I put e ement response in the vector of "mylnfo"
result = theRotations->getResponse();

/I access the mylnfo vector containing the response (new for Version 1.2)
rotVec = (theRotations->mylnfo.theVector);

/luse larger of two end rotations
deform = (fabs((*rotVec)(1)) > fabs((* rotVec)(2))) ?
fabs((*rotVec)(1)) : fabs((*rotVec)(2));

}
elseif (defType == 2) // interstory drift for x-axis of limit curve
{

/I find associated nodes

Node * nodel = theDomain->getNode(ndl);

Node * nodeJ = theDomain->getNode(ndJ);

/I get displacements

const Vector &displ = nodel ->getTrialDisp();

const Vector & dispJ = nodeJ->getTrial Disp();

/I calc drift

double dx = fabs(dispJ(dof)-displ (dof));

deform = dx*oneOverL;
}
else{

g3ErrorHandler->fatal (" Deformation type flag %i not implemented",def Type);
}

/I get beam-column local forces

Response *theForces =0;

char *f[1] = {"localForce"}; // does not include influence of P-delta
/I for P-deltause forType=0

Information*forl nfoObject =0;

Vector *forceVec; //vector of basic forces from beam column

/] set type of beam-column element response desired
theForces = theElement->setResponse(f, 1, *forlnfoObject);

/I put e ement response in the vector of "mylnfo"
result += theForces->getResponse();

/I access the mylnfo vector containing the response (new for Version 1.2)
forceVec = (theForces->my|nfo.theVector);

/I Force for y-axis of limit curve
if (forType==0)
force = fabs(springForce); // forcein associated LimitState material
elseif (forType==1)
force = fabs((*forceVec)(1)); // shear
elseif (forType==2)
force = fabs((*forceVec)(0)); // axia
else{
g3ErrorHandler->fatal (" Force type flag %i not implemented"” forType);

/I axial load at shear failure
P = fabs((*forceVec)(0));

/I Determine if (deform,force) is outside limit state surface.

I

/I Use absolute value of deform and force

double forceSurface = findLimit(deform); // force on surface at deform

if (stateFlag == 0) //prior to failure

if (force >= forceSurface) // on/outside failure surface

{
337



stateFlag = 1;
//set degrading slope based on drift at axid failure
setDegSlope(force, deform);

}

else// inside failure surface

{
}

stateFlag = O;

else//after failure
{

if (force >= forceSurface) // on/outside failure surface

{
stateFlag = 2;

else// inside failure surface

{
}

stateFlag = 3;

}

return stateFlag;

The strings “basicDeformations’” and “localForce” are passed to the setResponse function
for theElement to let the element know which response quantities are requested. The getre-
sponse functions are used to place the response quantities selected by setResponse in avector of
myInfo, apublic object defined for each response oObject. Finally, the vector of selected response
quantities are obtained from myInfo. thevector for each rResponse oObject.

The aefType and forType flagsare used to determine which response quantities define the
limit surface space. Element chord rotations (de fType = 1) or interstory drift (defrype = 2) can be
selected as deformations. The force in the associated LimitStateMaterial (fortype = 0), the
column shear (forType = 1), or column axia load (forType = 2) can be used as forces. For the
ShearCurve, it assumed that forType isequal to 0 or 1.

The findrimit function, shown below, is used to determine the force on the limit surface
at the deformation deform. The limit surfaceis defined by the empirical drift capacity model from
Chapter 2. The drift capacity model requiresall input variablesfor the OpenSees model to be spec-
ified in kips and inches, with the exception of the concrete compressive strength which must be
givenin ps.
double
ShearCurve::findLimit(double DR)

{ doubleV = 0.0; //Shear in kips!!

if (DR < 0.01)

V =9.9€9; //no shear failure below drift ratio of 1%

else
V = 500* (0.03+delta+4* rho-DR-0.025* P/b/h/(fc/1000))* (b* d* sgrt(fc)/1000);
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if (V <0.0)
V =0.0;

return V;

Based on the force returned by findrimit tO checkElementState, an if-statement isused
to set the stateFlag variable indicating whether or not the limit surface has been exceeded. For
ShearCurve, only the first change of state results in any change in behavior (i.e., when failure is
detected and stateF1ag changesfrom 0 to 1 resulting in the redefinition of the backbone by Lim-
itStateM aterial). When failure is detected, the degrading slope of the new backbone is determined

by the setpegsiope function shown below.

void
ShearCurve:: setDegSlope(double V, double Dshear)
{
if (Kdeg > 0.0)
{
/I Calculate degrading slope based on point of shear failure and
/I calculated deformation at axial failure based on current axial
/I load and axial failure model by Elwood (2002).
I 1f positive, Kdeg is assumed equal to the flexural stiffness

double theta = 65.0* P1/180.0;
double Daxid;

Daxiad = 0.04* (1+tan(theta)* tan(theta))/(tan(theta)+P/Fsw/tan(theta));
if (defType==2)
{

double K = -V/(Daxia-Dshear)* oneOverL;
Kdeg = V(1K - 1/Kdeg);

g3ErrorHandler->fatal ("Must use def Type = 2 for calculated Kdeg");
}

If the user-specified kaeg is positive, the setDegSlope function is used to determine the
degrading slope of the new backbone based on the axial failure model from Chapter 3. The speci-
fied value for xdeg is assumed to be equal to the unloading stiffness of the flexural component. If
the user-specified xdeg is negative, the setDegSlope function does nothing and xdeg is left
unchanged.

D.3.3 AxialCurve

The checkElementstate function for AxialCurve isthe same as that for ThreePointCurve except
that if the response of the material isbeyond the limit curve, then the unbalance force to return the

response of the material to the limit curveis calculated asfollows:
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dP = force - forceSurface

Also note that the Axial Curve does not take the absolute value of the force variable, sincefailure
occurs only in compression. The checkElementstate function assumes that the force variable
will be positive for compression (valid if using fortype = 2 and avertical column element).

The findrimit function shown below is based on the axial failure model developed in
Chapter 3. The function defining the limit curve requires only the constant rsw, describing the
amount of transverse reinforcement. An optional variable, deita, may aso be specified to shift

the limit curve to higher or lower drift values.

double
AxialCurve:findLimit(double x)
{

doubley =0.0;

if (x<0]|x>0.08)
g3ErrorHandler->warning("Warning: Outside limits of AxiaCurve");

double theta = 65.0* P1/180.0;
double d = x-delta;

if (d<=0.0)
d=1.0e9;

/I positive for compression
y = ((1+tan(theta)* tan(theta) )/(25* d)-tan(theta) ) * Fsw* tan(theta);
//Do not allow axial load to be reduced below residual capacity (may be zero)
//Input as positive
if (y <Fres){
y = Fres;

}
returnyy;

D4 HYSTERETIC UNIAXIAL MATERIAL

This section describesthe Hysteretic uniaxial material availablein OpenSeesto model a piece-wise
linear constitutive relationship including strength degradation, stiffness degradation, and pinching.
The LimitState uniaxial material described in this chapter, and used to define the response of the
shear and axial failure springs described in Chapters 4 and 8, was developed based on Hysteretic
material. The Hysteretic material model in OpenSees was developed based on a similar material
model implemented in the finite-element library FEDEAS (Filippou and Spacone, 1996).

The input command for Hysteretic material is given in Table D-5. The backbone parame-
ters are defined in Figure D-4. The pinching parameters are defined in Figure D-5. The unloading
stiffness parameter is defined in Figure D-6. The damage parameters are not used in the study
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described in this report. Given p, = 1.0, py = 1.0, 3 =0.0, D1 =0.0, D, = 0.0 (i.e., no effect from
damage parameters), Hysteretic material will obey Clough-type hysteretic laws (Clough, 1966).

Figure D-7 illustrates the response of Hysteretic material for the parameters used for the
center column shear spring mode! described in Chapter 8 (i.e., p, = 0.5, p, = 0.4, 3 = 0.4, D1 = 0.0,
D, =0.0).

Table D-5. OpenSees input command for Hysteretic uniaxial material
(OpenSees, 2002)

Hysteretic Material

This command is used to construct a uniaxial hysteretic material object with
pinching of force and deformation, damage due to ductility and energy, and
degraded unloading stiffness based on ductility.

uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p
$e3p> $s1n $e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY
$damage1 $damage2 <$bheta>.

$matTag unique material object integer tag

$si1p $elp stress and strain (or force & deformation) at first point of
the envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point
of the envelope in the positive direction

$s3p $e3p stress and strain (or force & deformation) at third point of
the envelope in the positive direction (optional)

$s1in $eln stress and strain (or force & deformation) at first point of
the envelope in the negative direction”

$s2n $e2n stress and strain (or force & deformation) at second point
of the envelope in the negative direction*

$s3n $e3n stress and strain (or force & deformation) at third point of
the envelope in the negative direction (optional)*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchY pinching factor for stress (or force) during reloading

$damage1 damage due to ductility: D1(u-1)

$damage2 damage due to energy: Do(E/E.x)

$beta power used to determine the degraded unloading stiffness

based on ductility, u* (optional, default=0.0)

*NOTE: negative backbone points should be entered as negative numeric values
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Figure D-4. Definition of backbone parameters for Hysteretic material
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Figure D-S. Definition of pinching parameters for Hysteretic material
(adapted from Scott, 2003)
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Figure D-6. Definition of unloading parameter for Hysteretic material
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Figure D-7. Example of Hysteretic material response with pinching and unloading stiff-
ness degradation parameters (py = 0.5, p, = 0.4, B=04,D;=0.0,D,=0.0)

343



Appendix E: Videos from Shear-Failure Shake
Table Tests

The attached compact disk contains processed videos from the shear-failure shake table tests
described in Chapter 6. The videos are approximately synchronized with data plots, allowing for
comparison of the damage states of the specimens with measured response quantities. The synchro-
nization was achieved by aligning an audio signal from the shake table operator with the start of
the recorded data. Synchronization was further improved by matching the observed peaksin dis-
placement with the significant peaks in the recorded data.

The videos are provided in two formats: AVI and MPEG. The AVI files provide higher
quality images but require significantly more disk space. The contents of each file is described in
Table E-1.



Table E-1. Description of video files

Filename

File Type

Description

Specl 25fps

AVI, MPEG

Shear hysteretic response using relative displacements for
Specimen 1 (Figure 6-15) synchronized with:
Video of full frame (total displacements)
Video of center column (relative displacements)
Video of top of center column (total displacements)

Spec2_25fps

AVI, MPEG

Shear hysteretic response using relative displacements for
Specimen 2 (Figure 6-16) synchronized with:
Video of full frame (total displacements)
Video of center column (relative displacements)
Video of top of center column (total displacements)

Spec2_axial

AVI, MPEG

Relations from Figure 6-19 using relative displacements for
Specimen 2 synchronized with:
Video of top of center column (total displacements)

axial_compare

AVI, MPEG

Center column axial load histories from Figure 6-14 synchro-
nized with:

Video of top of center column (Specimen 1)

Video of top of center column (Specimen 2)

fullcolumn_splitscreen

AVI

Videos of center column from both specimens synchronized.

dataPlots

HTML

Comparison of lateral drift response (Figure 6-5) with state of
center columns at 0.0, 16.7, 24.9, 29.8, 70.0 seconds.
Roll mouse over symbols to see changes to center column.
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