
Uncertainty Specification and Propagation for Loss
Estimation Using FOSM Method

Jack W. Baker
Stanford University

and

C. Allin Cornell
Stanford University

Pacific Earthquake Engineering
Research Center

PEER 2003/07
SEPT.  2003



 

 

 

Uncertainty Specification and Propagation for  
Loss Estimation Using FOSM Methods 

 

 

 

Jack W. Baker 
and  

C. Allin Cornell 
Department of Civil and Environmental Engineering 

Stanford University 
 

 

 

 

 

 

 

 

 

 

 

 
PEER Report 2003/07 

Pacific Earthquake Engineering Research Center 
College of Engineering 

University of California, Berkeley 
September 2003 



 iii

ABSTRACT 

The estimation of repair costs in future earthquakes is one component of loss estimation 

currently being developed for use in performance-based engineering. An important component of 

this calculation is the estimation of total uncertainty in the result, as a result of the many sources 

of uncertainty in the calculation. Monte Carlo simulation is a simple approach for estimation of 

this uncertainty, but it is computationally expensive. The procedure proposed in this report uses 

the first-order second-moment (FOSM) method to collapse several conditional random variables 

into a single conditional random variable, total repair cost given IM (where IM is a measure of 

the ground motion intensity). Numerical integration is then used to incorporate the ground 

motion hazard. The ground motion hazard is treated accurately because it is the dominant 

contributor to total uncertainty. Quantities that can be computed are expected annual loss, 

variance in annual loss, and the mean annual rate (or probability) of exceeding a given loss. 

A general discussion of element-based loss estimation is presented, and a framework for 

loss estimation is outlined. The method works within the framework proposed by the Pacific 

Earthquake Engineering Research (PEER) Center  

 The report makes suggestions for the representation of correlation among the random 

variables, such as repair costs, where data and information are very limited. Guidelines for the 

estimation of uncertainty in peak interstory drift given IM are also presented. This includes using 

structural analysis to estimate aleatory uncertainty, and correlations for an example structure. 

Several studies attempting to characterize epistemic uncertainty are referenced as an aid. 

A simple numerical calculation is presented to illustrate the mechanics of the procedure. 

The results of the example are also used to illustrate the effect of uncertainty on the rate of 

exceeding a given total cost. This illustrates that uncertainty in total repair cost given IM may or 

may not have a significant effect on the annual rate of exceeding a given cost. 
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1 Introduction 

The estimation of annual losses in a building due to earthquake damage is a quantity of interest 

to decision makers, and is a current topic of study in performance-based earthquake engineering. 

Among the quantities to be determined are the uncertainty in the annual losses and the 

contribution of each source of uncertainty to the total uncertainty in annual losses. Current 

efforts in this field consider the ground motion hazard, building response, damage to building 

elements, element repair costs, and total repair cost as individual random variables, and then 

propagate uncertainty through each step to find a final result. 

One option for propagating this uncertainty is through Monte Carlo simulation (e.g. 

Porter and Kiremidjian 2001). Although straightforward, it can be very expensive 

computationally, especially when multiple runs are required to calculate sensitivities and/or 

when low probabilities are needed. In this paper, we present an alternative solution employing a 

hybrid of simple numerical integration supplemented by the first-order second-moment, or 

FOSM, method (e.g., Melchers 1999) applied to the higher dimensional response and loss 

variables.  

Regardless of the propagation method used, it is necessary to represent and estimate what 

may be a complex variance and covariance structure. This report presents several models which 

may be adopted for these estimates, and the models are equally useful when using Monte Carlo 

simulation. 

The report is broken into several sections, which may be viewed somewhat 

independently. They are as listed below: 

1. Section 2 reviews a framework used in loss estimation, and describes the elements of 

this framework.  

2. Section 3 presents a procedure for propagating uncertainty through the various 

random variables. Sections 3.1 through 3.5, 3.8 and 3.9 present the propagation 

procedure considering aleatory uncertainty only. Section 3.6 and 3.7 describe several 
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generalizations of the model that have been included for completeness, but are not 

needed for an understanding of the basic procedure. Sections 3.10 through 3.14 

incorporate epistemic uncertainty and the model generalizations into the calculations. 

Consideration of epistemic uncertainty results in equations of increased length and 

complexity, but if implemented in a computer program, the computations should not 

be overwhelming. For a first-time reader, Sections 3.6, 3.7 and 3.10 through 3.14 can 

be skipped without losing the primary methods of the procedure. 

3. Section 4 presents a numerical example to illustrate how the equations of Section 3 

would be implemented. It is intended only as a simple illustration, and so the model 

generalizations are excluded from the example, as is consideration of epistemic 

uncertainty.  

4. Section 5 uses the results from the example in Section 4 to examine the effect of 

variance in TC given IM on the final results.  

5. During the course of this procedure, there are many times when variances and 

covariances of random variables need to be estimated. Although the quantification of 

these second moments is a relatively undeveloped field at present, several useful 

resources are described in Section 6.  

The report is concluded in Section 7, which summarizes the findings and features of this report. 

Several Appendices are also included to give additional background into ideas presented in the 

body of the report. It is hoped that the modular format of this report will allow the reader to 

examine sections of interest, while skipping sections (e.g. Section 2) which may not be new 

material.  

 



 

2 The Model Framework  

The proposed procedure works within the framework proposed by the Pacific Earthquake 

Engineering Research (PEER) Center. Familiarity with this general framework is presumed 

(Cornell and Krawinkler 2000; Krawinkler 2002a). This framework is presented in the form of 

the following equation: 

| | | |( ) ( , ) ( , ) ( , ) ( , ) ( )TC TC IM IM
xu v y

z G z f f f x d xλ λ= ∫ ∫ ∫ ∫ DVE DVE DM DM EDP EDPu u v v y y   (2.1) 

with terms defined as follows: 

)(zTCλ  is the annual rate of exceeding a total repair cost of z, where total repair cost, TC 

is the decision variable under study. 

| ( , )TCG zDVE u is the Complimentary Cumulative Distribution Function (CCDF) of TC, 

conditioned on the vector of damage values of each element (DVEj is the damage 

value of element j) 

)v,u(DM|DVEf is the PDF of the vector of damage values of each element, given the vector 

of damage states of each element (DMj is the damage state of element j) 

)y,v(EDP|DMf is the PDF of the vector of (the typically discrete) damage states, given the 

vector of engineering demand parameters  

),y(|EDP xf IM is the PDF of the vector of engineering demand parameters, given the 

intensity measure 

)(xd IMλ is the absolute value of the derivative of the annual rate of exceeding a given 

value of the intensity measure (the seismic hazard curve). The absolute value is 

needed because the derivative is negative. 

Elements of this framework are developed further in the following subsections.  
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2.1 TOTAL REPAIR COST  

The assumption in this study is that the total cost of repair to the structure is the sum of the repair 

costs of all elements in the structure, but this can easily be generalized. A modification to this 

assumption accounting for collapse cases is presented in Section 3.6. 

2.2 ELEMENT DAMAGE VALUES 

Means and variances of repair costs for each possible damage state are needed for all element 

types under consideration. Mean repair costs can be estimated from sources such as R.S. Means 

Company’s published materials on construction cost estimating (R.S. Means Co. 2002). 

Additional quantification of repair costs is a topic of current research. 

2.3 ELEMENT DAMAGE MEASURES 

In current research, damage measures are typically not continuous, but a discrete set of damage 

states (e.g., Porter and Kiremidjian 2001; Aslani and Miranda 2002). We shall adopt this format 

to facilitate such efforts. Discrete damage states are described by fragility functions, which return 

the probability of an element exceeding given damage states at a given Engineering Demand 

Parameter (EDP) level. One fragility function is needed for each potential damage state of the 

element. Typically, fragility functions with cumulative lognormal functional shapes are used. 

The development of fragility functions for structural and nonstructural components is a topic of 

current research. 

2.4 BUILDING RESPONSE 

A probabilistic model is needed for the distribution of EDPs for the structure (e.g., the interstory 

drifts and peak floor accelerations for each floor), conditioned on a level of IM. Conditional 

mean values and variances due to aleatory uncertainty can be determined from analysis 

techniques such as Incremental Dynamic Analysis (Vamvatsikos and Cornell 2002). 

2.5 SITE SEISMIC HAZARD 

It is necessary to determine the hazard curve for the predictor IM at the location of interest, 

through either PSHA or seismic hazard maps. This topic has been developed in detail elsewhere 

(e.g., Kramer 1995), and is not further covered in this study. 
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2.6 ASSUMPTIONS 

Several assumptions are made in this framework, and are described below. They are believed to 

be consistent with the most advanced current seismic loss estimation efforts. Most can be 

reduced without formal difficulty. 

Markovian dependence is assumed for all distributions in the framework. For example, it 

is assumed that the distribution of the DM vector can be conditioned solely on the EDP vector, 

and that knowledge of the IM provides no additional information. In this way, previous 

conditioning information does not need to be carried forward through all future distributions, 

reducing complexity. A conditioning variable that contains all necessary conditional information 

is deemed a “sufficient” descriptor (Luco 2002).  

All damage is assumed to occur on an element level. The total cost of damage to the 

structure is then the sum of the damage cost of each element in the structure. This technique is 

explained in more detail by Porter and Kiremidjian (2001). This assumption can easily be 

generalized, if desired. In this paper, the exception to this assumption is when collapse occurs, 

and repair costs will be a function of the collapse rather than individual element responses. The 

collapse case is set aside in the initial presentation of the procedure, and then accounted for in a 

later section.  

All relations in the framework are assumed to be scalar functions. For example, the 

conditional distribution of the Damage Measure of element j is a function of only the ith 

Engineering Demand Parameter. Or alternatively, ),()y,( |EDP| ijEDPDMjDM yvfvf
ijj

= . Note also 

that the function is not conditioned on variables from any previous steps because of the 

Markovian process assumption. 

To calculate total uncertainty in our decision variable, it will be necessary to incorporate 

both epistemic and aleatory uncertainty. These two sources of uncertainty are uncorrelated, 

allowing their contributions to be calculated separately for simplicity. It is recommended that the 

variance of TC given IM be calculated once for the variance due to epistemic uncertainty, and 

once for the variance due to aleatory uncertainty. 



 

3 Procedure 

The procedure outlined makes use of FOSM approximations to calculate the mean and variance 

of TC given IM. A distribution ),(| xzF IMTC is then fit to these moments, and integrated 

numerically or analytically over the hazard curve, i.e., )(xd IMλ  to generate the mean annual rate 

of exceeding a given repair cost:  

|( ) 1 ( , ) ( )TC TC IM IM
IM

z F z x d xλ λ= −∫  (3.1) 

The FOSM approximations used to obtain moments of TC|IM from EDP, DM and DVE 

are justified by the assumption that the uncertainty in the IM hazard curve is the most significant 

contributor to variance of the total loss. Therefore, we are retaining the full distribution for IM 

itself, but using the FOSM approximations for all (first and second) moments conditioned on IM. 

In addition, we likely do not have information about the full distributions of some variables (e.g., 

repair costs), and so using only the first two moments of these distributions does not result in a 

significant loss of available information.  

Note that we are working with natural logarithms of the variables described previously. 

This allows us to work with sums of terms, rather than products. We revert to a non-log form for 

the final result. 

3.1 SPECIFY IM|ln EDP  

The proposed model1 in this study is )()(| IMIMHIMEDP iii ε= , where Hi(IM) is the 

(deterministic) mean value of EDPi given IM, and )(IMiε is a random variable with mean of 

one, and conditional variance adjusted to model the variance in EDPi. Then when we use the log 

form of EDPi, we have a random variable of the form ( ) ( ) ( ))(ln)(ln|ln IMIMHIMEDP iii ε+= . 

                                                 
1 We introduce the random variable notation X|Y, to denote that the model of X is conditioned on Y. 
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Note that the expected value of ( )IMEDPi |ln  is ( ))(ln IMH i , and that the variance of 

( )IMEDPi |ln  is equal to the variance of ( ))(ln IMiε .  Both ln(Hi(IM)) and ))]([ln( IMVar iε , as 

well as the correlations between EDPs, can be determined from Incremental Dynamic Analysis. 

We will need the following information for our calculations2: 

E[ln EDPi | IM], denoted hi(IM) for all EDPi  (3.2) 

Var[ln EDPi | IM], denoted h*i(IM) for all EDPi (3.3) 

ρ(ln EDPi, ln EDPj | IM), denoted ĥij (IM) for all {EDPi, EDPj}  (3.4) 

As an example, using nonlinear time history analysis of the Van Nuys building (Lowes 2002), 

the results needed for these equations are presented in Section 6.2 below. For illustration, plots of 

the logs of floor interstory drift ratios are shown in Figure 3.1. Note that these results have been 

conditioned on no collapse—a procedure that will be explained in Section 3.6. They are also 

presented as the exponential of the estimated natural logs of the results (denoted )lnexp( iIDR ), 

because we want the expected natural log of the drifts. 

0
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Fig. 3.1: Estimated median of IDRi  ( )lnexp( iIDR ), conditioned on no collapse and Sa  

The data from this figure could be used in Equation 3.2 above. 

                                                 
2 Note that our model is limited to the first and second moments. The full distribution model is not needed 

in what follows. 
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3.2 SPECIFY EDPDM ln| AND DM|DVEln , AND COLLAPSE TO EDPDVE ln|ln  

The discrete states of the Damage Measure variable found in current loss estimation (Porter and 

Kiremidjian, 2001) are not compatible with the FOSM approach, which requires continuous 

functions for the moments. To deal with the discrete states, we take advantage of the fact that we 

can always “collapse” the two distributions EDPDM ln| and DM|DVEln  into one continuous 

distribution EDPDVE ln|ln  by integrating over the appropriate variable. This is illustrated in 

Figure 3.2 below.  

 

∫ ∫ ∫ ∫=
u v y

EDPEDPDMDMDVEDVE yyvvuu
x

IMIMTCTC xdxfffzfz )(),(),(),(),()( |||| λλ  (3.5)

 

∫ ∫ ∫=
u y

EDPEDPDVEDVE yyuu )(),(),(),()( |||
x

IMIMTCTC xdxffzfz λλ  (3.6)

because ∫=
v

EDPDMDMDVEEDPDVE yvvuyu ),(),(),( ||| fff  (3.7)

Fig. 3.2: Collapsing out DM 

For a given element with n possible damage states, we use a set of element fragility 

functions F1, F2 … Fn, such that )|()( yEDPdDMPyF ii =>=  (Fig. 3.3). These functions will 

have a corresponding set of distributions c1, c2 … cn of element repair costs such that )(vci  is a 

probability distribution of DVE, given that the damage state equals id  (Fig. 3.4). With this 

information, we can determine the first two moments of the collapsed distributions. Miranda et 

al. (2002) documents the development of one set of these functions. 
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Fig. 3.3: Element Fragility Functions Fig. 3.4: Element Repair Costs 

 

From the total probability theorem, we know that in this case, Equation 3.7 can be written 

in scalar form for each DVE as ∑ ===
States Damage

||| EDPdDMdDMDVEEDPDVE ii
Pff  (recall by assumption that 

each DVE is dependent on a single EDP). For our FOSM purposes, furthermore, it is sufficient to 

find simply the conditional means, variances, and covariances of the DVEs given the EDPs. 

Thus, taking the mean of this PDF, we have the result: 

]|[ EDPDVEE  ∑ ===
States
Damage

ii dDMPdDMDVEE )(]|[  (3.8)

( )1( ) ( )i i i
Damage
States

F EDP F EDPµ µ+= − ≡∑  (3.9)

Applying the same thinking to ]|[ 2 EDPDVEE , and recognizing that 
22 ][][ XXEXVar µ−= , we have the following result (see Appendix B for derivation): 

2
|EDPDVEσ

 

]]|[[]]|[[ DMDVEEVarDMDVEVarE DVEDMDVEDM +=  (3.10)

))()(()(

))()(((

1
2

1
2

EDPFEDPF

EDPFEDPF

ii

States
Damage

i

States
Damage

iiDVEi

+

+

−−+

−=

∑

∑

µµ

σ

 (3.11)

Figure 3.5 shows an example of the mean and mean plus or minus one sigma, as generated from 

the example distributions shown in Fig. 3.3 and 3.4. 
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Fig. 3.5: Collapsed distribution DVE | EDP 

Finally, to complete this collapsing exercise, we need to determine correlations among 

the DVEs of all elements in the structure. Note that like the mean and variance, these correlations 

are conditioned on the EDPs. While these calculations are straightforward, estimation of the 

necessary correlation inputs is a difficult task due to a lack of data. In the absence of additional 

information, it may be helpful to use the following characterization scheme. Let us assume for 

this purpose a model of the form: 
km ElElClassStrucikik EDPgEDPDVE εεε lnlnln)(lnln|ln +++= , 

where Strucε  represents uncertainty common to the entire structure, 
mElClassε  represents uncertainty 

common only to elements of class “m” (e.g., drywall partitions, moment connections, etc.), and 

kElε represents uncertainty unique to element k. All of these ε’s are assumed to be mutually 

uncorrelated. We then define 2]ln|[ln StruciStruc EDPVar βε = , 2]ln|[ln ElClassiElClass EDPVar
m

βε =  

for all m, and 2]ln|[ln EliEl EDPVar
k

βε =  for all k. Then the variance of ik EDPDVE ln|ln  is the 

sum of these variances. For this special case, a simple closed-form solution exists for the 

correlation coefficient (see Appendix A, Equations A.9 and A.12). Loosely speaking, the 

correlation coefficient between two DVE’s can be said to be the ratio of their shared variances to 

their total variance. The following examples are illustrative: 
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Example 1: correlation between two elements, DVEk, DVEl, if both elements are of class 1 

kElElClassStrucikik EDPgEDPDVE εεε lnlnln)(lnln|ln
1

+++=  (3.12)

 

lElElClassStrucjljl EDPgEDPDVE εεε lnlnln)(lnln|ln
1

+++=  (3.13)

Then (see Appendix A, Equation A.9): 

222

22

)ln,ln|ln,(ln
ElElClassStruc

ElClassStruc
jilk EDPEDPDVEDVE

βββ
ββρ

++
+=  (3.14)

 

Example 2: correlation between two elements, DVEk, DVEl, if DVEk is of element class 1, and 

DVEl is of element class 2 

kElElClassStrucikik EDPgEDPDVE εεε lnlnln)(lnln|ln
1

+++=  (3.15)

 

lElElClassStrucjljl EDPgEDPDVE εεε lnlnln)(lnln|ln
2

+++=  (3.16)

Then (see Appendix A, Equation A.12): 

222

2

)ln,ln|ln,(ln
ElElClassStruc

Struc
jilk EDPEDPDVEDVE

βββ
βρ

++
=  (3.17)

 

Note that this formulation requires 2
ElClassβ  to be equal for all element classes, and 2

Elβ to 

be equal for all elements. If this is excessively limiting, a closed-form solution also exists that 

allows 2
ElClassβ  to vary by class, and 2

Elβ to vary by element, and be functionally dependent on 

the EDP value. This solution is also outlined in Appendix A. Note also that this model can be 

expanded to more than three ε terms if desired. The use of more than two uncertain terms, and 

the use of 2β  terms that vary by class or element are both generalizations of the basic equi-

correlated model, and thus we will refer to a model incorporating any of these generalizations as 

a generalized equi-correlated model. The correlation matrix for a generalized equi-correlated 

model will have off-diagonal terms that vary from term to term, as opposed to the strict equi-

correlated model, where all off-diagonal terms are identical. 

We now have the conditional mean and variance functions of ik EDPDVE ln|ln , obtained 

by collapsing the distributions provided (Equations 3.9 and 3.11), and correlation coefficients 
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determined using the generalized equi-correlated model (Equations 3.14 and 3.17). We choose 

for future notational clarity to denote these results as: 

E[ln DVEk | ln EDPi], denoted gk(ln EDPi) for all DVEk  (3.18) 

Var[ln DVEk | ln EDPi], denoted g*k(ln EDPi) for all DVEk  (3.19) 

ρ(ln DVEk, ln DVEl | ln EDPi, ln EDPj), denoted ĝkl(ln EDPi, ln EDPj) for  

all {DVEk, DVEl}  (3.20) 

3.3 CALCULATE IM|ln DVE  

Using information from above, we can calculate the first and second moments of IM|ln DVE . 

This involves collapsing out the dependence onEDP , as suggested in Figure 3.6 below.  

| | |( ) ( , ) ( , ) ( , ) ( )TC TC IM IM
x

z f z f f x d xλ λ= ∫ ∫ ∫ DVE DVE EDP EDP
u y

u u y y  (3.21) 

| |( ) ( , ) ( , ) ( )TC TC IM IM
x

z f z f x d xλ λ= ∫ ∫ DVE DVE
u

u u  (3.22) 

because ∫=
y

EDPEDPDVEDVE yyuu ),(),(),( ||| xffxf IMIM  (3.23) 

Fig. 3.6: Collapsing out EDP 

To maintain tractability, we shall do this in an approximate way referred to in structural 

reliability literature as first-order second-moment, or FOSM. To remove dependence on EDP , 

we take the expectation of DVEln  with respect to EDPln  (given IM). We write this 

as [ ][ ]ikIMEDPk EDPDVEEEIMDVEE
i

ln|ln]|[ln |= , where [ ]⋅IMEDPi
E |  denotes this particular 

conditional expectation operator. Substituting our notation from Equation 3.18, we have 

( )[ ]ikIMEDPk EDPgEIMDVEE
i

ln]|[ln |=  (3.24) 

Taking a Taylor expansion of ( )ik EDPg ln  about ][ln iEDPE  gives: 

( )[
( ) ( ) ]K+−

∂
∂

+

=

][lnln
ln
ln

][ln]|[ln

][ln

|

i
EDPEi

ik

ikIMEDPk

EDPEEDP
EDP
EDPg

EDPEgEIMDVEE

i

i

 (3.25) 

The first-order approximation of this series is thus: 
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( )[ ]
( ) ( )

⎥
⎥
⎦

⎤

⎢
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⎣

⎡
−

∂
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+

≈

][lnln
ln
ln

][ln]|[ln

][ln
|

|

ii
EDPEi

ik
IMEDP

ikIMEDPk

EDPEEDP
EDP
EDPg

E

EDPEgEIMDVEE

i

i

i

  

( ) 0][ln += ik EDPEg   

( ))(IMhg ik=  (3.26) 

where the substitution ( ) [ln | ]i ih IM E EDP IM=  has been made, as defined in Equation 3.2. 

Using a similar approach to conditional moments (Equation B.7, Appendix B), it can be shown 

that: 

]ln[ln[ 

]lnln[[]|[ln

lnlnln

lnlnln

ikEDP|DVE|IMEDP

ikEDPi|DVE|IMEDPk

 EDP |  DVEEVar

 EDP |  DVEVarEIMDVEVar

iki

ki

+

=
 

)(*
ln

))((*
)(

2

IMh
EDP
g

IMhg i
IMhi

k
ik

i

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+≈  (3.27) 

and similarly, 

],|ln,ln[[

],|ln,[ln[]|ln,[ln

jilk

jilklk

EDPEDPDVEDVEECov

EDPEDPDVEDVECovEIMDVEDVECov

+

=
 

)(*)(*)(ˆ
lnln

))((*))((*))(),((ˆ

)()(

IMhIMhIMh
EDP
g

EDP
g

IMhgIMhgIMhIMhg

jiij
IMhj

l

IMhi

k

jlikjikl

ji

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

≈

 (3.28) 

Although not needed for the calculations in this framework, correlation coefficients can be easily 

calculated using the above information, if they are of interest: 

]|[ln]|[ln
]|ln,[ln

)|ln,(ln
IMDVEVarIMDVEVar

IMDVEDVECov
IMDVEDVE

lk

lk
lk =ρ  (3.29) 

Subscripts on the expectation operators were initially used on the expectation and 

variance terms above to emphasize which variable the expectation was being taken with respect 

to. For the sake of conciseness, these subscripts are dropped in future equations.  

3.4 SWITCH TO THE NON-LOG FORM IM|DVE  

Using first-order second-moment methods, as in the previous step, we have the following results: 
))((]|[ln|ln ][]|[ IMhgIMDVEEIMDVE

k
ikkk eeeEIMDVEE ≈≈=  (3.30) 
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]|[ln))((2 IMDVEVare k
IMhg ik=  (3.31) 
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]|ln,[ln))(())(( IMDVEDVECove lk
IMhgIMhg jlik +=  (3.32) 

3.5 COMPUTE MOMENTS OF  TC | IM 

We now aggregate the results from all individual elements to compute an expectation and 

variance for the total cost of damage to the entire building. Using information from previous 

steps, we have the following results: 

∑∑
==

=⎥
⎦

⎤
⎢
⎣

⎡=
elements

k
k

elements

k
k IMDVEEIMDVEEIMTCE

#

1

#

1
]|[|]|[ , denoted q(IM)  (3.33) 

 

]|[ IMTCVar

 

∑ ∑
= =

=
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k

elements

l
lk IMDVEDVECov

#

1

#

1
]|,[  

∑ ∑∑
= +==

+=
elements

k

elements

kl
lk

elements

k
k IMDVEDVECovIMDVEVar

#

1

#

1

#

1

]|,[2]|[ , (3.34) 

denoted q*(IM) 

3.6 ACCOUNTING FOR COLLAPSE CASES 

At high IM levels, the potential exists for a structure to experience collapse (defined here as 

extreme deflections at one or more story levels). In this building state, repair costs are more 

likely a function of the collapse rather than individual element damage. In fact, the structure is 

likely not to be repaired at all. Thus, our predicted loss may not be accurate in these cases. In 

addition, the large deflections predicted in a few cases will skew our expected values of some 

EDPs such as interstory drifts, although collapse is only occurring in a fraction of cases. To 

account for the possibility of collapse, we would like to use the technique outlined above for no-
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collapse cases, and allow for an alternate loss estimate when collapse occurs. The following 

modification is suggested. Note, in the following calculations, we are conditioning on a collapse 

indicator variable. To communicate this, we have denoted the collapse and no collapse condition 

as  “C” and “NC” respectively.  

• At each IM level, compute the probability of collapse. This probability, ( | )P C IM , is 

simply the fraction of analysis runs where collapse occurs. 

• Calculate results using the FOSM analysis as before, but using only the runs that resulted 

in no collapse. We now denote these results ],|[ NCIMTCE  and ],|[ NCIMTCVar . 

• Define an expected value and variance of total cost, given that collapse has occurred, 

denoted ],|[ CIMTCE  and ],|[ CIMTCVar . These values will likely not be functions of 

IM, but the conditioning on IM is still noted for consistency. 

• The expected value of TC for a given IM level is now the average of the collapse and no 

collapse TC, weighted by their respective probabilities of occurring 

( )[ | ] 1 ( | ) [ | , ] ( | ) [ | , ]E TC IM P C IM E TC IM NC P C IM E TC IM C= − +  (3.35) 

• The variance of TC for a given IM level can be calculated using the result from 

Appendix B: 

( )
( )( )

( )

2

2

[ | ] [ [ | ,  or ]] [ [ | ,  or ]]

1 ( | ) [ | , ] ( | ) [ | , ]

1 ( | ) [ | ] [ | , ]
  

( | ) [ | ] [ | , ]

Var TC IM E Var TC IM NC C Var E TC IM NC C

P C IM Var TC IM NC P C IM Var TC IM C

P C IM E TC IM E TC IM NC

P C IM E TC IM E TC IM C

= +

⎡ ⎤= − +⎣ ⎦
⎡ ⎤− −
⎢ ⎥+
⎢ ⎥+ −⎣ ⎦

 (3.36) 

The procedure can now be implemented as before, using these moments. This collapse-

case modification is probably necessary for any implementation of the model, as analysis of 

shaking (IM) levels sufficient to cause large financial loss are likely also to cause collapse in 

some representative ground motion records. 

3.7 OTHER GENERALIZATIONS OF THE MODEL 

Several other modifications to this model can potentially be used to increase the accuracy of the 

estimate, without fundamentally changing the approach outlined above. One such modification 

to the model is incorporation of demand surge (the increase in contractor costs after a major 

earthquake) using the following steps: 

1. Determine the demand surge cost multiplier as a function of magnitude, g(M) 
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2. Determine the PDF pM|IM(mi | im) from deaggregation of the hazard 

3. Demand surge as a function of IM is ∑=
im

iIMMi immpmgimh )|()()( |  

4. The new total cost as a function of IM can be calculated as ]|[)()( IMTCEIMhIMTC = , 

where ]|[ IMTCE is the expected total cost given IM, as calculated previously. 

Another modification to the model is a revision to allow the calculation of an element damage 

measure based on a vector of EDPs, rather than just a scalar. A simple way to accommodate this 

possibility is to create additional EDPs that describe the vector of interest: 

1. Create a new “derived” EDP that is a function of the vector of “basic” EDPs of interest 

(e.g., if DM is a function of the average of EDPi and EDPj, create a new EDP, EDPk = 

(EDPi + EDPj)/2 ).  

2. Compute mean, variance, and covariances of EDPk using first-order approximations, and 

the second moment information calculated for EDPi and EDPj 

3. The damage measure can then be a function of the scalar EDPk 

This method allows the simple scalar algebra to be used, at the expense of needing to track an 

increased number of EDPs. If many additional EDPs are needed, it may be preferable to develop 

a more complex vector-based procedure. 

3.8 INCORPORATE THE GROUND MOTION HAZARD TO DETERMINE E[TC] 
AND VAR[TC] 

Using the functions q(IM) and q*(IM), and the derivative of the ground motion hazard curve, 

)(IMdλ , the mean and variance of TC per annum can be calculated by numerical integration: 

∫=
IM

IM xdxqTCE )()(][ λ  (3.37) 

][TCVar  [ [ | ]] [ [ | ]]E Var TC IM Var E TC IM= +  

2 2*( ) ( ) [ ( )] [ ( )]IM
IM

q x d x E q x E q xλ= + −∫  

∫ ∫ −+=
IM

IM
IM

IM TCExdxqxdxq 22 ][)()()()(* λλ  (3.38) 

Note that the first term of Equation 3.38 is the contribution from uncertainty in the cost function 

given IM, and that the second two terms are the contribution from uncertainty in the IM. 
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3.9 RATE OF EXCEEDANCE OF A GIVEN TC 

The first- and second-moment information for TC|IM can also be combined with a site hazard to 

compute )(zTCλ , the annual frequency of exceeding a given Total Cost z. For this calculation, it 

is necessary to assume a probability distribution for TC|IM that has a conditional mean and 

variance equal to the values calculated previously. The rate of exceedance of a given TC is then 

given by 

|( ) ( , ) ( )TC TC IM IM
IM

z G z x d xλ λ= ∫   (3.39) 

where | ( , ) ( | )TC IMG z x P TC z IM x= > =  is the Complementary Cumulative Distribution Function 

of TC|IM. By evaluating the integral for several values of z, a plot can be generated relating 

damage values to rates of exceedance. 

Generally, the integral above will require a numerical integration. However, if the 

following simplifying assumptions are made, an analytic solution is available: 

1. E[TC|IM=im] is approximated by a function of the form a′(im)b, where a′ and b are 

constants. Note that this is consistent with fitting the median of TC|IM with a(im)b, where  
2

|*2
1

' IMTCeaa β−=  (3.40)  

2. The uncertainty TC|IM is characterized as follows: ||   [ | ] TC IMTC IM E TC IM im ε= = , 

where |TC IMε  is a lognormal random variable with median equal to 1 and logarithmic 

standard deviation ( )|
|ln

*
TC IM

TC IMεσ β=  (note that this is constant for all IM).  

3. An approximate function of the form 0
ˆ ( ) k

IM x k xλ −=  is fit to the true mean site hazard 

curve. Note, this form for the hazard curve has been proposed previously by Kennedy and 

Short (1984) and Luco and Cornell (1998).  

Under these conditions, the annual rate of exceeding a given Total Cost is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

−
2

|0 *1
2
1exp

'
)( IMTC

b
k

TC b
k

b
k

a
zkz βλ   (3.41) 

We note that if the a from Equation 3.40 is substituted into Equation 3.41, then the result 

becomes  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

−
2

|2

2

0 *
2
1exp)( IMTC

b
k

TC b
k

a
zkz βλ  (3.42) 
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Equation 3.41 is useful as a simple estimate of ( )TC zλ , but it is also very informative as a 

measure of the relative importance of uncertainty in the calculation. The term 

b
k

a
zk

−

⎟
⎠
⎞

⎜
⎝
⎛

'0   (3.43) 

in the equation would be the result if IMTC|*β were to equal zero — that is, if we made all 

calculations using only expected values and neglected uncertainty. The term  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ − 2

|*1
2
1exp IMTCb

k
b
k β   (3.44) 

is an “amplification factor” that varies with the uncertainty in TC|IM present in the problem. 

Thus for this special case, it is simple to calculate the effect of uncertainty on the rate of 

exceeding a given Total Cost. As we shall show below, it may not be unreasonable for this factor 

to increase )(zTCλ  by a factor of 10, so the effect of uncertainty may very well be significant. 

However, even for large values of IMTC|*β , the annual rate of exceedance is still dominated by 

the deterministic term. It is for this reason that it has been proposed here that the FOSM 

approximations of IMTC|*β  performed above are sufficient to provide an accurate result. 

3.10 INCORPORATION OF EPISTEMIC UNCERTAINTY  

Equations 3.37, 3.38, and 3.41 are valid for the case when there is no epistemic uncertainty in the 

ground motion hazard curve or TC|IM. However, we now need to extend our calculation to 

account for this uncertainty, which is expected to be significant. To do this, we first introduce the 

effect of epistemic uncertainty in TC|IM, and then introduce epistemic uncertainty in the ground 

motion hazard. 

3.10.1 Epistemic Uncertainty in TC|IM 

We have previously assumed a model which can be written | [ | ] RTC IM E TC IM ε= , where Rε  

is a random variable representing aleatory uncertainty. Now, we extend that model to incorporate 

epistemic uncertainty. We now assume a simplified (first-order) model of epistemic uncertainty 

in which that uncertainty is attributed only to the central or mean value of a random variable and 

not for example, its variance or distribution shape. (In practice, one may inflate somewhat this 

uncertainty in the mean to reflect these second-order elements of epistemic uncertainty.) This 
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model means that we represent the total uncertainty in TC as | [ | ] R UTC IM E TC IM ε ε= , where 

[ | ]E TC IM  is the best estimate of the (conditional) mean and Rε  and Uε  are uncorrelated 

random variables representing aleatory uncertainty and epistemic uncertainty, respectively. Note 

that  [ | ] UE TC IM ε  is a random variable representing the (uncertain) estimate of the mean value 

of |TC IM , with variance [ ][ | ]Var E TC IM . 

We have a total model of the form | ( ) R UTC IM q IM ε ε= . So taking logs gives us 

ln | ln ( ) ln ( ) ln ( )R UTC IM q IM IM IMε ε= + + . The random variables Rε  and Uε  are 

uncorrelated, so we may deal with them in separate steps. The above procedure, described in 

Sections 3.1 through 3.7, accounted for aleatory uncertainty and allowed us to find the variance 

due to Rε . We must now repeat the procedure to calculate the variance due to Uε . Note that we 

have switched to logs again to allow use of sums rather than products. The change can be made 

using the following relationship:  

2

[ | ][ln ( )] ln 1
[ | ]
R

R
R

Var TC IMVar IM
E TC IM

ε
⎛ ⎞

≅ +⎜ ⎟
⎝ ⎠

 (3.45)  

We denote [ln ]RVar ε and [ln ]UVar ε  as 2
Rβ  as 2

Uβ , respectively. Note that in the previous 

sections, the uncertainty that we have denoted as 2
|TC IMβ  is now referred to as 2

Rβ , to distinguish 

it from the 2
Uβ  that we are now adding. 

Representation of Conditional Variables in the Framework Equation  

To distinguish between aleatory and epistemic uncertainties of various conditional random 

variables, we introduce an additional notation. For example, we denote the epistemic and 

aleatory uncertainty of ln |EDP IM , as: 
2

; |[ln | ] R EDP IMVar EDP IM β= , for variance due to aleatory uncertainty in 

ln |EDP IM  (3.46) 

[ ] 2
; |[ln | ] U EDP IMVar E EDP IM β= , for variance due to epistemic uncertainty in the 

estimate of the mean of ln |EDP IM  (3.47) 

These values are equivalent to h*i(IM) in Equation 3.3. This notation is introduced simply to 

distinguish between aleatory and epistemic uncertainty. As a guideline for estimating 
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uncertainty, several references are included in later sections. Example results for IMEDPR |;β  are 

presented in Section 6.2, and guidelines for estimating IMEDPU |;β  are presented in Section 6.3. 

As a final note, one should be aware of the potential for double-counting of a source of 

uncertainty when constructing these models and classifying sources of uncertainty as epistemic 

or aleatory. Any single source of uncertainty should be accounted for as either aleatory or 

epistemic uncertainty, but it should not be included in both. 

 

Accounting for Correlations in | IMEDP  

Estimates of correlations need to be made at each step of the PEER equation (i.e., | IMEDP , 

DVE | EDP  after DM has been collapsed out, and |TC DVE ). In this section, we propose a 

model, and demonstrate its use for correlations in | IMEDP . The same model is generally 

applicable to the other variables as well. Consider the following model for ln | IMEDP : 

; | ; |ln( | ) [ln( | )] R EDP IM U EDP IMIM E IM= + +EDP EDP ε ε  (3.48) 

where [ln( | )]E IMEDP  is the mean estimate of [ln( | )]E IMEDP  and ; | ; | and R EDP IM U EDP IMε ε  are 

random variables representing aleatory and epistemic uncertainty, respectively. Both random 

variables have an expected value of zero. Remember that we are using boldface notation because 

EDP is a vector of random variables. The aleatory uncertainty term ( ; |R EDP IMε ) can be estimated 

directly from data (see Section 6.2.2), so now we need to address the epistemic uncertainty term 

( ; |U EDP IMε ).  

Some of our epistemic uncertainty comes from model uncertainty (uncertainty about the 

accuracy of the structural model we are using—see Section 6.1 and Appendix E). Another 

portion of our uncertainty comes from estimation error—we are estimating the moments of 

ln( | )IMEDP  by using the sample averages of a finite set of records. This “estimation 

uncertainty” is most famously seen when estimating a mean of a distribution by the average of n 

samples, each with variance 2σ . The variance of this estimate is 2 2
ˆ / nµσ σ= . This 2 / nσ  is an 

epistemic uncertainty that we have referred to as “estimation uncertainty.” So we now split our 

epistemic uncertainty into two terms: 

; | ; | ; |model estimateU EDP IM U EDP IM U EDP IM= +ε ε ε  (3.49) 
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where 
mod ; |elU EDP IMε  is a random variable representing model uncertainty and ; |estimateU EDP IMε  is a 

random variable representing estimation uncertainty, and both random variables have a mean of 

zero. These two random variables are assumed to be uncorrelated, so they can be analyzed 

separately.  

When calculating the epistemic uncertainty, we will also need to calculate correlations 

between estimates of means at differing IM levels (e.g., correlation of estimates of the expected 

value of lnEDP at 1IM im=  and 2IM im= : 
1 2[ln | ], [ln | ]E EDP IM im E EDP IM imρ = = ). Although there is no 

correlation between aleatory uncertainties, epistemic uncertainty (representing our uncertainty 

about the mean values) will potentially be correlated. The modeling uncertainty, represented by 

; |modelU EDP IMε , may presumably, to a first approximation, be assumed to have a perfect correlation 

at two IM levels, because the models tend be common at least within the linear and nonlinear 

ranges. The same perfect correlation could be applied to two different E[lnEDP]’s at a single 

given IM level. Our estimation uncertainty, represented by ; |estimateU EDP IMε , may also be correlated 

at two IM levels. For instance, if we use the same set of ground motion records to estimate the 

E[lnEDP]’s at more than one IM level by using scaling, our estimates at the varying IM levels 

will be correlated. In order to measure this correlation, we can utilize the bootstrap. (Efron and 

Tibshirani, 1998). The use of bootstrapping to calculate the correlation for a given EDP at two 

IM levels is outlined in Appendix D. The variance of ; |estimateU EDP IMε  can also be calculated from the 

bootstrap, as mentioned in the Appendix. 

Once we have measured the variance and correlation of ; |modelU EDP IMε  and ; |estimateU EDP IMε  at 

two IM levels, we can combine them to find the correlation of ; |U EDP IMε  at two IM levels. If the 

variance of ; |modelU EDP IMε , denoted 2
; |modelU EDP IMβ  is equal at both IM levels, and the variance of 

; |estimateU EDP IMε , denoted 2
; |estimateU EDP IMβ  is equal at both IM levels, then the correlation of ; |U EDP IMε  at 

two IM levels, denoted 
1 2; | ,U EDP IM IMρ  is: 

1 2

2 2
; | ; |

; | , 2 2
; | ; |

model estimate

model estimate

U EDP IM U EDP IM
U EDP IM IM

U EDP IM U EDP IM

β ρ β
ρ

β β
+ ⋅

=
+

 (3.50) 

where ρ  is the correlation between [ln | ]E EDP IM  at two IM levels due to estimation 

uncertainty (the correlation we measured from the bootstrap). We note, however, that if ρ  is 
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expected to be near one, or if 2
; |modelU EDP IMβ  is much greater than 2

; |estimateU EDP IMβ , then 

1 2; | ,U EDP IM IMρ will be nearly one. Under these conditions, it is thus reasonable to simply assume a 

perfect correlation, and thus skip the computations of the bootstrap. Note that if the more 

complex model of Equation 3.50 is used, it is not necessary that the variance of ; |estimateU EDP IMε  is 

equal at both IM levels as we have assumed above. An equation following the form of Equation 

A.5 will allow for the variance of ; |estimateU EDP IMε  to be different at the two IM levels. 

Additional Correlations 

In addition to correlations between one [ln | ]E EDP IM at two IM levels, it is also necessary to 

find correlations between two [ln | ]E EDP IM ’s at the same IM level (e.g., 

1 1[ [ln | ], [ln | ]]i jCorr E EDP IM im E EDP IM im= = ). For aleatory uncertainty, it was possible to 

make a direct estimate from the data available, but it is slightly more complicated for epistemic 

uncertainty. However, the model of Equation 3.50 is suitable for this situation as well. The 

correlation coefficient from estimation uncertainty can be computed from the bootstrap, and for 

model uncertainty, a perfect correlation could again be assumed. Then the estimate of total 

correlation can be calculated in a similar manner to Equation 3.50. 

We also need an estimate of [ ]1 2[ln | ln ], [ln | ln ]i iCov E DVE EDP E DVE EDP . The 

conditional random variable 1[ln | ln ]iE DVE EDP  will have epistemic uncertainty. The model 

developed in the previous section for [ln | ]E EDP IM could be applied in the same way to 

1[ln | ln ]iE DVE EDP . Again, it is worth considering whether the simple assumption of a perfect 

correlation model may be appropriate before using the slightly more complex model proposed 

here.  

Propagation of Uncertainty, Accounting for Correlations at Two IM Levels 

Earlier, in Equation 3.38, we did not consider correlations in TC at two IM levels.  However, if 

there is correlation in [ln | ]E EDP IM  at two IM levels, as we have introduced in this section, 

then this correlation will propagate through to [ | ]E TC IM , and result in correlation between 

[ | ]E TC IM  at two IM levels. We now show the FOSM approximation that accounts for this 

correlation.  
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Once we have specified the correlation between 1[ln | ]iE EDP IM  and 2[ln | ]iE EDP IM , 

and the correlation between 1 2[ln | ln ] and E[ln | ln ]k kE DVE EDP DVE EDP , as described in this 

section, and we have the expected values from Sections 3.1 and 3.2, we can use FOSM to 

combine this information and compute the covariance between 

1 2[ln | ] and E[ln | ]k kE DVE IM DVE IM  as shown below: 

1 2

1

1 2

1 2

[ln | ] [ln | ]

[ln | ],

[ [ln | ], [ln | ]]
[ [ln ] | , [ln | ]]

[ln | ln ] [ln | ln ]   *
ln ln

   [ [ln | ln ], [ln | ln ]]
i i

i

k k

i i

k i k i

i iE EDP IM E EDP IM

k i k i E EDP IM E

Cov E DVE IM E DVE IM
Cov E EDP IM E EDP IM

E DVE EDP E DVE EDP
EDP EDP

Cov E DVE EDP E DVE EDP

≈

∂ ∂
∂ ∂

+
2[ln | ]iEDP IM

 (3.51) 

In the same way, we can compute the covariance between 1[ln | ]kE DVE IM  and 

2E[ ln | ]lDVE IM : 

1 2

1

1 2

1 2

[ln | ] [ln | ]

[ln | ],

[ [ln | ], [ln | ]]
[ [ln ] | , [ln | ]]

[ln | ln ][ln | ln ]   *
ln ln

   [ [ln | ln ], [ln | ln ]]

i j

i

k l

i j

l jk i

i jE EDP IM E EDP IM

k i l j E EDP IM E

Cov E DVE IM E DVE IM
Cov E EDP IM E EDP IM

E DVE EDPE DVE EDP
EDP EDP

Cov E DVE EDP E DVE EDP

≈

∂∂
∂ ∂

+
2[ln | ]jEDP IM

 (3.52) 

As in Equation 3.32, we must convert the covariance of the E[lnDVE]’s to the covariance 

of the (non-log) E[DVE]’s: 

1 2

1 2

1 2

[ln | ] [ln | ]

1 2[ln | ] [ln | ]

1 2

[ [ | ], [ | ]]

[ln | ] [ln | ]

   * [ [ln | ], [ln | ]]

k l

k l

k l

E DVE IM E DVE IM

k lE DVE IM E DVE IM

k l

Cov E DVE IM E DVE IM

e e
E DVE IM E DVE IM

Cov E DVE IM E DVE IM

∂ ∂≈
∂ ∂

 (3.53) 

We sum the E[DVE|IM] random variables to get E[TC|IM] (e.g., 

all 
[ | ] [ | ]ii

E TC IM E DVE IM=∑ ). So given the values from the above equation, we can compute 

the covariance of E[TC|IM] at two IM levels: 
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[ ]

1 2 1 2

1 2

1 2

[ [ | ], [ | ]] [ | ] , [ | ]

[ [ | ], [ | ]]

2 [ | ], [ | ]

k l
k l

k k
k

k l
k l

Cov E TC IM E TC IM Cov E DVE IM E DVE IM

Cov E DVE IM E DVE IM

Cov E DVE IM E DVE IM
<

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

=

+

∑ ∑

∑

∑∑

 (3.54) 

This covariance is merely a summation of many covariance terms that we can now calculate. 

Note that we will need to repeat this calculation for different 1 2{ , }IM IM  pairs. We will use these 

values in the sections below (e.g., in Equation 3.61).  

3.10.2 Epistemic Uncertainty in the Ground Motion Hazard 

It is now necessary to account for epistemic uncertainty in the ground motion hazard. This 

uncertainty is often displayed qualitatively as the fractile uncertainty bands about the mean 

estimate of the hazard curve, as shown in Fig. 3.7. 

 

Fig. 3.7: Sample Hazard Curve for the Van Nuys Site 

Formally, we represent the ground motion hazard at a given IM level as a random variable. 

( ) ( ) ( )IM IM UIMim im imλ λ ε=  (3.55) 
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where ( )IM imλ  is our best estimate or mean estimate of ( )IM imλ , and ( )UIM imε  is a random 

variable with a mean of 1. Considering the entire range of IM levels implies that ( )UIM imε  is in 

fact a random function of IM. We will again need to consider correlations, because the first and 

second moment representation of this function will involve a covariance function that is 

parameterized by the two im levels considered, 1 2[ ( ), ( )]IM IMCov im imλ λ . However, before we 

discuss the random function theory solution to this problem (e.g., Nigam, 1983), let us realize 

that we will be performing all of our calculations using numerical integration. For example, the 

integral of Equation 3.37 will in practice be calculated as a discrete summation, which we shall 

discuss further in the next section: 

1

1 1

0 1

( ) ( )[ ] [ | ] ( ) [ | ]

where 0 ...

n
IM i IM i

IM i
i i iIM

n

x xE TC E TC IM x d x E TC IM x
x x

x x x

λ λλ −

= −

⎛ ⎞−= = ≅ = ⋅ −⎜ ⎟−⎝ ⎠
≡ < < <

∑∫  (3.56) 

Here it is only important to recognize that we are now dealing with a discrete set of ( )IM xλ . 

Therefore we define a new random vector: 

1

1

( ) ( )( ) IM i IM i
IM i

i i

x xx
x x

λ λλ −

−

−∆ = −
−

 (3.57) 

The mean and covariance of the array ( ), 1, ,IM ix i nλ∆ = K  can be computed if we know the 

mean and covariance of the array of ( ), 1, ,IM ix i nλ = K . We have previously used the mean 

value of this array, ( )IM imλ , which we get from PSHA software. The variances can be estimated 

from the fractile uncertainty typically displayed in a graph of the seismic hazard curve (e.g., Fig. 

3.7). The covariances of the array are potentially available from the output of PSHA software as 

well (see Appendix F). Using this formulation, the random variable E[TC] can be represented as: 

1
[ ] [ | ] ( )

n

i IM i
i

E TC E E TC IM x xλ
=

⎡ ⎤= = ⋅ ∆⎢ ⎥
⎣ ⎦
∑  (3.58) 

in which we understand that there is now epistemic uncertainty in [ | ]iE TC IM x=  and 

( )IM ixλ∆ . Further, we assume that there is no stochastic dependence between the epistemic 

aspects of [ | ]iE TC IM x=  and ( )IM ixλ∆ .  
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Now that we have quantified the epistemic uncertainty in [ | ]E TC IM im=  and in 

( )IM imλ , we will apply this model to assessment of epistemic uncertainty in [ ]E TC , collapseλ  and 

( )TC zλ . 

3.11 EXPECTATION AND VARIANCE OF E[TC] , ACCOUNTING FOR EPISTEMIC 
UNCERTAINTY 

Consider first the effect of epistemic uncertainty on the mean estimate ( [ ]E TC ) and epistemic 

variance ( [ ][ ]Var E TC ) of [ ]E TC . We calculate [ ]E TC  by taking advantage of the independence 

of [ | ]iE TC IM x=  and ( )IM ixλ∆ , and using the linearity of the expectation operator: 

[ ]

[ ] [ ]

[ ]

[ ]

1

1

1 1

1

1 1

1

[ ] | ( )

( ) ( )
|

( ) ( )|

| ( )

n

i IM i
i

n
IM i IM i

i
i i i

n
IM i IM i

i
i i i

n

i IM i
i

E TC E E TC IM x x

E x x
E TC IM x

x x

x xE TC IM x
x x

E TC IM x x

λ

λ λ

λ λ

λ

=

−

= −

−

= −

=

⎡ ⎤= = ⋅ ∆⎢ ⎥
⎣ ⎦

⎛ ⎞−
= = ⋅ −⎜ ⎟−⎝ ⎠

⎛ ⎞−= = ⋅ −⎜ ⎟−⎝ ⎠

= = ⋅ ∆

∑

∑

∑

∑

 (3.59) 

This is the discrete analog of Equation 3.37 (where we used the mean hazard curve in the 

calculation). So we see that our estimate of expected total cost is unchanged when we include 

epistemic uncertainty in the analysis, provided that we use the mean estimate of the ground 

motion hazard curve. 

However, because we are now uncertain about [ | ]iE TC IM x=  and ( )IM ixλ∆  (for all i), 

[ ]E TC  is now uncertain. So we would like to calculate the epistemic variance in [ ]E TC . This 

calculation involves a summation of products of random variables. Consider equation 3.58. If we 

denote [ | ]iE TC IM x=  as Xi, and ( )IM ixλ∆  as Yi, then [ ]E TC  is of the form: 

1
[ ]

n

i i
i

E TC X Y
=

= ⋅∑  (3.60) 

where X, and Y  are random arrays. There is no correlation between Xi, and Yi, but there is quite 

likely to be a correlation between Xi and Xj, and also between Yi and Yj ( i j≠ ), as discussed 

above. We have calculated [ , ]i jCov X X  in Equation 3.54 and [ , ]i jCov Y Y  is discussed in Section 
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3.10.2 and Appendix F. Given that the needed covariance matrices have been calculated, from 

Ditlevsen (1981) we have the following result for a product of random arrays: 

[ , ] [ ]

[ , ] [ , ]
[ ] [ ] [ , ]
[ ] [ ] [ , ]

i i i j i j i i
i i j i

i j i j

i j i j
i j

i j i j

Var X Y E X X Cov Y Y Var X E Y

Cov X X Cov Y Y
E X E X Cov Y Y
E Y E Y Cov X X

⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎣ ⎦

∑ ∑∑ ∑

∑∑
 (3.61) 

The above equation becomes very long when [ | ]i iX E TC IM x= =  and ( )i IM iY xλ= ∆  is 

substituted back in. It is left to the reader to make this change of notation at the time of 

implementation in a computer program.  

To match the other computations in this report, we would hope to have an analytical 

solution for the expectation and variance of [ ]E TC . However, it can be shown that under similar 

analytical assumptions to those made elsewhere in this report, an analytical solution does not 

exist3. 

                                                 
3 An Analytical Solution? Equation 3.62 should be easy to implement in a simple computer program, 

although it is not feasible for “back-of-the-envelope” calculations. So we would hope to have a closed form 

solution for [ ]E TC  and  Var[E[TC]]. We can compute [ ]E TC   using the following integral:  

 
0

[ ] ( )TCE TC z d z dzλ
∞

= ∫  

We note however, that when we try to evaluate this integral using our analytic functional forms, we have a 

problem. Substituting our analytical solution for ( )TC zλ  from Equation 3.72 (developed in Section 3.13 

below), we have: 
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( )

( )

2 2
0
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1
2 2

0
0

2 2
0

0
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0

0

1[ ] exp 1
' 2

1 1exp 1
' ' 2

1 1exp 1
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k
b

R U

k
b

R U

k
b k

b
R U

k
b
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dz a b b

k z k kz k dz
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k k kk z dz
b a b b

K z

β β

β β

β β

−∞

− −∞

− ∞
−

∞− +

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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∫

∫

∫

 

where  

  ( )2 2
0 0

1 1exp 1
' 2

k
b

R U
k k kK k
b a b b

β β
−

⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
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Note that we have not yet included costs due to collapse, so we will address collapses in 

the following section, and then revisit the [ ]E TC  calculation with collapses in mind. 

3.12 EXPECTATION AND VARIANCE OF THE ANNUAL FREQUENCY OF 
COLLAPSE, ACCOUNTING FOR EPISTEMIC UNCERTAINTY 

Within the framework outlined here, we have acquired the information necessary to compute the 

mean and variance in annual probability of collapse—another decision variable of interest to 

project stakeholders. This process is described below, as a relevant aside to our repair cost 

calculations. The notation follows that proposed in Section 3.7. To compute the mean annual 

frequency of collapse, we use the following equation: 

[ ]
1

| ( )
n

collapse i IM i
i

P C IM x xλ λ
=

= = ⋅∆∑  (3.62) 

We have already determined the mean and covariance ( )IM ixλ∆  in Section 3.10.2, so 

now we need information about the mean and covariance of ( | )P C IM . We can take the mean 

value of ( | )P C IM  to be the fraction of records that collapse at a given IM level. To estimate the 

variance, we will consider variance due to model uncertainty, and variance due to our estimation 

uncertainty. This is the same problem as we outlined in the section titled “Accounting for 

Correlations in | IMEDP ” on page 21. In order to quantify the estimation uncertainty, we could 

again take advantage of the bootstrap, as we did in Section 3.10.1. That is, we could make 

bootstrap replicates of the records used in the analysis. We could then use these replicates to 

make new estimates of p. These replicates of p will help us determine both the epistemic 

                                                                                                                                                             
This integral does not converge unless k = b, so the simplified analytical solution is not a useful method for 

obtaining [ ]E TC . We find the same problem when we try to calculate Var[E[TC]]. The reason that this 

does not converge is due to inadequacies of the analytical model at extreme values of IM. The integral 

given in this footnote is the product of the rate of equaling and IM and the repair cost given that IM. At 

extreme values of this problem, the analytical forms result in infinities. If k>b, then as IM 0, the rate of 

equaling IM goes to infinity faster than the repair cost goes to zero. If k<b, then as IM  ∞, repair costs go 

to infinity faster than the rate of equaling IM goes to zero. In either case, the expected value goes to 

infinity. For this reason, it is recommended that the numerical integration technique be used to calculate 

[ ]E TC  and Var[E[TC]], rather than a simplified analytic solution. In the numerical integration case, we are 

not limited by the functional forms that are inadequate in this analytical solution case. 
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uncertainty in our estimate, [ ]( | )Var P C IM , and also the covariance for differing IM levels, 

( | ), ( | )i jCov P C IM P C IM⎡ ⎤⎣ ⎦ . This bootstrap method accounts for uncertainty due to the records 

used in estimation. However, additional epistemic uncertainty should be added to account for 

modeling uncertainty, etc (see Section 6.1 and Appendix E). Then the total covariance could be 

calculated using the form of equation 3.50 as described above. 

These values are now put in the notation of Equation 3.61, to show the parallel with this 

previous calculation. Define ( | )iP C IM  as iX . We know that [ ]iE X p= , and we have discussed 

how to find [ ] and [ , ] i i jVar X Cov X X above. And the mean and covariance of the ground motion 

hazard, iY , remain identical to the results needed for Section 3.11. So now we have reduced the 

problem to one that was previously solved in Equations 3.59 and 3.61: 

1
[ ] [ ] [ ]

n

collapsecollapse i i
i

E E X E Yλ λ
=

= = ⋅∑  (3.63) 

[ , ] [ ]

[ , ] [ , ]
[ ] [ ] [ , ]
[ ] [ ] [ , ]

collapse i j i j i i
i j i

i j i j

i j i j
i j

i j i j

Var E X X Cov Y Y Var X E Y

Cov X X Cov Y Y
E X E X Cov Y Y
E Y E Y Cov X X

λ
⎡ ⎤ ⎡ ⎤⎡ ⎤ = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎣ ⎦

∑∑ ∑

∑∑
 (3.64) 

where we have denoted the mean estimate of the annual frequency of collapse as collapseλ .  

Analytical Solution 

Additionally, we can make the several functional form assumptions to take advantage of a closed 

form analytical solution: 

1. Consider a random variable for capacity, C, of the form C UC RCC η ε ε= , where Cη  is the 

median value of C (expressed in units of IM), and and UC RCε ε  are lognormal random 

variables. RCε  accounts for aleatory uncertainty in the capacity, and UCε  accounts for 

epistemic uncertainty in the median value of C. These random variables have the 

following properties: 
( )( ) ( ) 1mean

UC RCmedian median e εε ε= = =  

ln( )RC RCεσ β=  (3.65) 
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ln( )UC UCεσ β=  

We can find the moments of these random variables using information previously 

calculated. First, we note that what we previously called P(C|IM) is in fact the CDF of a 

random variable for collapse: ( )CF IM . So we can fit a lognormal CDF P(C|IM) (we 

would actually fit a normal CDF to P(C|lnIM)). We can find the mean and standard 

deviation of this normal distribution, and these values represent Cη  and RCβ , 

respectively. We can estimate UCβ  in the same way that we estimated variance due to 

epistemic uncertainty earlier in this section. We now need to specify a constant UCβ , 

however. 

2. The ground motion hazard is fit in the same way as described above. That is, 

0( ) k
IM UIMx k xλ ε−= , where UIMε  is a lognormal random variable with mean equal to 1 and 

standard deviation ( )ln UIM UIMεσ β= . 

Under these assumptions, the mean estimate of the annual frequency of collapse is given by: 
2 2 2 21 1

2 2
0

UC RCk kk
collapsecollapse CE k e eβ βλ λ η −⎡ ⎤ = = ⋅ ⋅⎣ ⎦  (3.66) 

We also have a result for the uncertainty in this estimate. Under the assumptions above, collapseλ  is 

a lognormal random variable. So we represent its uncertainty by a lognormal standard deviation, 

as we have throughout this exercise: 

2 2 2
ln( )collapse collapse UIM UCkλ λσ β β β≡ = +  (3.67) 

This result is derived from related problems that have previously been solved (e.g., Cornell et al., 

2002). 

3.13 REVISED CALCULATION FOR E[TC] , ACCOUNTING FOR COSTS DUE TO 
COLLAPSES  

In Section 3.11 we calculated the mean and variance of E[TC]. However, we did not include the 

effect of collapses on Total Cost, in the way that we outlined in Section 3.6. Now that we have 

information about the mean and variance of ( | )P C IM  from Section 3.12, we can revise our 

calculation of E[TC] to include this generalization. 

In Section 3.11 (Equation 3.59), we represented TC as: 

[ ][ ] | ( )i IM iE TC E TC IM x xλ= = ⋅ ∆∑  (3.68) 
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But incorporating the possibility of collapse into the calculation results in the equation: 

[ ] [ ] [ ]{ }[ ] 1 ( | ) | , ( | ) | ( )i i i IM iE TC P C IM x E TC NC IM x P C IM x E TC C xλ= − = = + = ⋅∆∑
 (3.69) 

To calculate the mean and variance of E[TC], we need the mean and variance of E[TC|IM] and 

( | )P C IM , which have been calculated above. We will also need to specify a mean and variance 

of E[TC|C] (i.e., the Total Cost given that the structure has collapsed) as noted in Section 3.6. 

We then assume that the random variables [ ]iE TC | NC,IM = x , E[TC|C], ( | )iP C IM x= , and 

( )IM ixλ∆  are mutually uncorrelated. It is now necessary to compute means, variances, and 

covariances of E[TC|IM]: 

[ ] [ ] [ ][ | ] 1 ( | ) | , ( | ) |i i iE TC IM P C IM x E TC NC IM x P C IM x E TC C= − = = + =  (3.70) 

The mean and variance of E[TC|IM] can be calculated in a manner closely related to  

Equations 3.35 and 3.36, as before:  

[ ] [ ] [ ]
[ ] [ ]

[ | ] 1 ( | ) | ,

   ( | ) |
i i

i

E E TC IM E P C IM x E E TC NC IM x

E P C IM x E E TC C

⎡ ⎤ ⎡ ⎤= − = =⎣ ⎦ ⎣ ⎦
⎡ ⎤+ = ⎣ ⎦

 (3.71) 

[ ] [ ]( ) [ ]
[ ] [ ]

[ ]( ) [ ]( )
[ ] [ ]( )

2

2

[ | ] 1 ( | ) | ,

   ( | ) |

   1 ( | ) [ | ] [ | , ]

   ( | ) [ | ] [ | ]

Var E TC IM E P C IM Var E TC IM NC

E P C IM Var E TC C

E P C IM E E TC IM E TC IM NC

E P C IM E E TC IM E TC C

⎡ ⎤= − ⎣ ⎦
⎡ ⎤+ ⎣ ⎦

+ − −

+ −

 (3.72) 

In addition, we now need to calculate the covariance in TC|IM at two IM levels. This result is 

shown in the footnote below4. Once we have calculated these moments of E[TC|IM], we simply 

                                                 
4 We derive the covariance calculation by switching to the following notation for brevity: 

1 1 1 1

2 2 2 2

[ | ] (1 )
[ | ] (1 )

TC

TC

E TC IM P NC PC
E TC IM P NC P C

≡ − +
≡ − +

             where  
( | )

[ | , ]
[ | ]

i i

i i

TC

P P C IM
NC E TC IM NC
C E TC C

≡
≡
≡

  

Then the covariance calculation is (after expansion and collection of terms):  

[ ] [ ] [ ] [ ]
{ }{ }

[ ] [ ]{ } [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ]( )

1 2 1 2 1 2

1 1 1 2 2 2

1 1 1 2 2 2

22
1 2 1 2 1 2 1 2

2 1

[ | ], [ | ] [ | ] [ | ] [ | ] [ | ]

(1 ) (1 )

   [(1 ) ] [(1 ) ]

   1

TC TC

TC TC

TC TC

Cov E TC IM E TC IM E E TC IM E TC IM E E TC IM E E TC IM

E P NC PC P NC P C

E P NC PC E P NC P C

E PP E NC NC E C E P E P E NC E NC E C

E P E P Cov N

= −

⎡ ⎤= − + − +⎣ ⎦
− − + − +

⎡ ⎤= + + −⎣ ⎦

+ − − [ ] [ ] [ ]( ) [ ] [ ]1 2 2 1 1 2, ,TCC NC E NC E NC E C Cov P P− +
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combine them with our previous ground motion hazard curve and use Equations 3.60 and 3.61 as 

before. 

3.14 RATE OF EXCEEDANCE OF A GIVEN TC, ACCOUNTING FOR EPISTEMIC 
UNCERTAINTY 

With epistemic uncertainty in [ | ]E TC IM im=  and ( )IM imλ∆  described in Section 3.10, we can 

set about to compute the mean annual frequency of exceeding a level of TC, say z (i.e., ( )TC zλ ). 

Recall that the integral of defining ( )TC zλ  (Equation 3.39) is given by 

|( ) ( , ) ( )TC TC IM IM
IM

z G z x d xλ λ= ∫ . Now, because | ( , )TC IMG z x  and ( )IM xλ  are uncertain (random) 

functions, the expected value of ( )TC zλ  is given by: 

[ ] |( ) ( ) ( , ) ( )
i

TCTC TC IM i IM i
x

E z z G z x xλ λ λ≡ = ∆∑   (3.73) 

where [ ]| ( , ) ( | )TC IMG z x E P TC z IM x= > =  is our mean estimate of the Complementary 

Cumulative Distribution Function of TC|IM, and ( )IMd xλ is our mean estimate of the derivative 

of the hazard curve. This problem is more difficult than the analogous problem of Equation 3.62, 

because we don’t have the epistemic variance in the probability ( | ( , )TC IMG z x ). We only know the 

epistemic variance in [ | ]E TC IM , and we need to propagate this variance to | ( , )TC IMG z x . 

To compute the epistemic variance in ( )TC zλ , we will need to know both the variance in 

our estimate of ( )IMd xλ  (which we have already addressed in Section 3.10.2) and the epistemic 

variance of | ( , )TC IMG z x . If we assume that | ( , )TC IMG z x  is a lognormal distribution (with the 

mean of ln(x) equal to [ln | ]E TC IM x=  and the standard deviation of ln(x) equal to Rβ ), then 

| ( , )TC IMG z x  is defined by:  

|
ln [ln | ]( , )TC IM

R

z E TC IM xG z x
β

⎛ ⎞− == Φ ⎜ ⎟
⎝ ⎠

  (3.74) 

                                                                                                                                                             
where 1 2 1 2 1 2[ ] [ , ] [ ] [ ]E PP Cov P P E P E P= +  and 1 2 1 2 1 2[ ] [ , ] [ ] [ ]E NC NC Cov NC NC E NC E NC= +  
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We are assuming that the epistemic uncertainty is limited (in a first-order sense) to 

[ln | ]E TC IM x= , which has standard deviation ( )U xβ  (as calculated in Section 3.10.1). Using a 

first-order expansion, we can estimate the variance in | ( , )TC IMG z x  as: 

2

2
|

[ln | ]

2 2

2

ln [ln | ]
( )

[ ( , )] ( )
[ln | ]

( )ln [ln | ]
( ) ( )

R
TC IM U

E TC IM x

U

R R

z E TC IM x
x

Var G z x x
E TC IM x

xz E TC IM x
x x

β
β

βφ
β β

=

⎛ ⎞⎛ ⎞− =∂Φ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟≈ ⋅⎜ ⎟∂ =

⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞− == ⋅⎜ ⎟
⎝ ⎠

  (3.75) 

where ( )R xβ is the aleatory dispersion of |TC IM (as calculated in Section 3.10.1).  Similarly, 

the covariance between | ( , )TC IMG z x  evaluated at two IM levels is: 
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  (3.76) 

Note that the needed covariance between [ln | ]E TC IM x= at two levels of IM was given in 

Equation 3.54. We have now reduced this problem to the one solved earlier in Equation 3.61: 

[ , ] [ , ]
( ) [ ] [ ] [ , ]

[ ] [ ] [ , ]

i j i j

TC i j i j
i j

i j i j

Cov X X Cov Y Y
Var z E X E X Cov Y Y

E Y E Y Cov X X
λ

⎡ ⎤
⎢ ⎥⎡ ⎤ = +⎢ ⎥⎣ ⎦
⎢ ⎥+⎣ ⎦

∑∑  (3.77) 
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Where | ( , )i TC IM iX G z x=  and ( )i IM iY xλ= ∆ . Again, although these computations look 

complicated, once implemented in a computer program, they should not be difficult to evaluate. 

Accounting for Collapses 

Again, we can modify our result to account for costs due to collapse, if collapses are expected to 

contribute significantly to total repair costs in the structure. We could simply increase the 

variance in lnTC|IM ( 2
Rβ ) and E[lnTC|IM] ( 2

Uβ ) to account for the additional variability in TC. 

However, it may no longer be reasonable to assume that E[lnTC|IM] is Gaussian, because the 

collapse and non-collapse cases may result in a bimodal distribution (see Fig. 3.8).  In this case, 

we could model the distribution as the sum of two Gaussian distributions, weighted by the 

probabilities of collapse and non-collapse: 

( )|
ln [ln | , ]( , ) 1 ( | )

[ln | , ]

ln [ln | ]  ( | )
[ln | ]

TC IM
z E TC IM x NCG z x P C IM x
Var TC IM x NC

z E TC CP C IM x
Var TC C

⎛ ⎞− == − = Φ ⎜ ⎟⎜ ⎟=⎝ ⎠
⎛ ⎞−+ = Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

  (3.78) 

ln(TC|IM )

f T
C

|IM
(z

|x
)

Non-Collapse 
Region

Collapse 
Region

 
Fig. 3.8: Hypothetical distribution of TC|IM when both non-collapse and collapse cases 

are considered 
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Then we have: 
2
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  (3.80) 

Again, we are assuming no cross-correlation between [ ]ln iE TC | NC,IM = x , E[lnTC|C], 

( | )iP C IM x=  and ( )IM ixλ∆ , as stated above in Section 3.13. These new values can now be 

used in Equations 3.73 and 3.77 as before. 
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Analytical Solution 

As an alternative to the computation described above, there is a less complicated closed form 

solution that follows the analytic solutions in preceding sections. The result is very similar to 

Equation 3.41, but includes epistemic uncertainty as well. Using the functional form assumptions 

of the analytic solutions in previous sections, we have the result: 

[ ] ( )2 2
0

1( ) exp 1
' 2

k
b

TC R U
z k kE z k
a b b

λ β β
−

⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  (3.81) 

We see that this is identical to Equation 3.41, except that both 2 2and R Uβ β  are included to 

represent both epistemic and aleatory uncertainty, rather than just aleatory uncertainty as we had 

before. In addition, we can compute the lognormal epistemic standard deviation of ( )TC zλ : 

2
2 2

( ) 2TC z UIM U
k
bλβ β β= +   (3.82) 

This standard deviation allows us to put error bounds on our TC hazard curve, but it is 

only valid when specified analytic assumptions are made. There are several limitations to this 

analytical model: it assumes perfect correlation in ln [ | ]E TC IM x=  and ( )IM xλ  over varying 

levels of x, there is no consideration of collapse and the epistemic and aleatory variances 
2 2 and R Uβ β  are assumed to be constant at all levels. Nonetheless, this analytical formulation is 

clearly simpler than the full numeric solution outlined in this section, and so it may be useful in 

some situations. 

This completes our calculations of the means and variances of TC , collapseλ , and ( )TC zλ  

when accounting for epistemic uncertainty. Some of these calculations may be unfamiliar to or 

conceptually difficult for the reader, and so a very simple numerical example is presented in the 

next section for illustration. 



 

4 Simple Numerical Example  

It is anticipated that the method outlined above will be implemented as a computer algorithm to 

facilitate bookkeeping. However, to demonstrate the mechanics of the methods presented, a 

simple analytical calculation is performed. No collapse cases are included, and the procedure is 

performed for only aleatory uncertainty (rather than for aleatory and epistemic uncertainty, as 

would be required in a complete analysis).  

Consider a two-story frame with two elements per floor. Let EDP1 and EDP2 be the 

EDPs for the first and second floor, respectively. Let DVE1 and DVE2 be the damage values of 

the elements on the first floor, and DVE3 and DVE4 be the damage values for the elements on the 

second floor. To demonstrate the generalized equi-correlated model, we will assume that DVE1 

and DVE2 are of element class 1, and DVE3 and DVE4 are of element class 2. Example functions 

are included as needed, to facilitate demonstration of the method. 

4.1 SPECIFY IM|ln EDP  

Assume a function of the form i
b

i aIMIMEDP ε=|  for both EDPs. Then 

ii IMbaIMEDP εlnlnln|ln ++= . Let a = 2, b = 2, and define the other needed information as 

follows (these functions are referred to as Equations 3.2, 3.3, and 3.4 in the above procedure): 

E[ln EDPi | IM] = hi(IM) = ln2 + 2lnIM   for i = 1,2 (4.1) 

Var[ln EDPi | IM] = h*i(IM) = 0.2   for i = 1,2 (4.2) 

ρ(ln EDP1, ln EDP2 | IM) = ĥ12 (IM) = 0.8  (4.3) 

thus, ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

18.0
8.01

ˆˆ
ˆˆ

2221

1211

hh
hhρ  (4.4) 
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4.2 SPECIFY COLLAPSED FUNCTION EDPDVE ln|ln   

For the sake of simplicity in the example, we assume that the collapse of EDPDM ln|  and 

DMDVE |ln has already been performed, and that we have a function of the form 

DEkDFiDS
mEDP

ik
iedEDPDVE εεε)1(| −−= . 

Then ln DVEk | ln EDPi = ( )
km

iEDP

ElElClassStruc
emed εεε lnlnln))1(ln(

ln

+++− − . Let d = 0.25, 

m = 1, 2.0][ln =StrucVar ε , 2.0][ln =
mElClassVar ε , 2.0][ln =

kElVar ε . Note that we are choosing to 

express cost as a function of replacement cost, so that when IM becomes large, TC is equal to 

one. Conditional expectations and variances are defined, using the notation in Equations 3.18 and 

3.19, as: 

E[ln DVEk | ln EDPi] = gk(ln EDPi) = )25.025.0ln(
ln iEDPee−−    for k =1,2,3,4 (4.5) 

Var[ln DVEk | ln EDPi] = g*k(ln EDPi) = 0.2 + 0.2 + 0.2 = 0.6   for k =1,2,3,4 (4.6) 

Using the procedure demonstrated in Equations 3.12 through 3.17, we can calculate correlation 

coefficients as follows: 

ρ(ln DVE1,ln DVE2 | 
ln EDP1, ln EDP1) 

=  ĝ12(ln EDP1, ln EDP1) 

= 
][ln][ln][ln

][ln][ln

1

1

kElElClassStruc

ElClassStruc

VarVarVar
VarVar

εεε
εε

++
+

 

= 
2.02.02.0

2.02.0
++

+  

= 0.67 (4.7) 

(Note that ρ12 = ρ34) 

ρ(ln DVE1,ln DVE3 | 
ln EDP1, ln EDP2) =

][ln][ln][ln
][ln

km ElElClassStruc

Struc

VarVarVar
Var

εεε
ε

++
 

= 0.33 (4.8) 

(Note that ρ13 = ρ14 = ρ23 = ρ24) 

These results can be summarized in a correlation matrix, using the notation from Equation 3.20: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

167.033.033.0
67.0133.033.0
33.033.0167.0
33.0033.67.01

ˆˆˆˆ
ˆˆˆˆ
ˆˆˆˆ
ˆˆˆˆ

44434241

31313131

24232221

14131211

gggg
gggg
gggg
gggg

ρ  (4.9) 
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4.3 CALCULATE IM|ln DVE   

Using the FOSM technique and result from Equation 3.26, we can determine the expected value: 

]|[ln 1 IMDVEE  ( ))(11 IMhg≈  

( )IMee
ln22ln

25.025.0ln
+−−=  

( )2225.025.0ln IMe−−=  (4.10) 

(Note E[ln DVE1 | IM] = E[ln DVE2 | IM] = E[ln DVE3 | IM] = E[ln DVE4 | IM]) 

Variance can be calculated from Equation 3.27: 
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(Note Var[ln DVE1 | IM]=Var [ln DVE2 | IM]=Var [ln DVE3 | IM]=Var [ln DVE4 | IM]) 

Covariance can be calculated from Equation 3.28: 
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(Note Cov12 = Cov34) 
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Cov[ln DVE1, ln 
DVE3 | IM]  
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(Note Cov13 = Cov14   = Cov23  = Cov24) 

4.4 SWITCH TO THE NON-LOG FORM IM|DVE   

From Equations 3.30, 3.31, and 3.32, we can compute the following: 
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4.5 COMPUTE MOMENTS OF TC|IM 

From Equations 3.33 and 3.34, we can compute the following: 
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For illustration, we can calculate the coefficient of variation: 
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It can be shown that in Equation 4.20, the “0.35” term is the contribution due to 

uncertainty in the cost given the structural response, and the 
2
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−

IM

IM

e
eIM  term is the 

contribution due to uncertainty in the structural response given IM. For illustration, the mean of 

TC|IM plus/minus one sigma are plotted in Figures 4.1, 4.2, and 4.3, with the various 

uncertainties present. We can see from these plots that for this example the uncertainty in 

DVE|EDP is dominant, and the uncertainty in EDP|IM has negligible effect. This type of result is 

quickly calculated using the method outlined above, without any need to re-run records, as would 

be required with a Monte Carlo technique. 

 

Fig. 4.1: E[TC|IM], plus/minus one sigma, 

with uncertainty only in EDP|IM 

 

Fig. 4.2: E[TC|IM], plus/minus one sigma, 

with uncertainty only in DVE|EDP 
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Fig. 4.3: E[TC|IM], plus/minus one sigma, 

with all uncertainties 

 

Fig. 4.4: ]|[ln IMTCVar , denoted βTC|IM 

 

In Figure 4.4, we have plotted βTC|IM vs. IM to see how the uncertainty varies as ground 

motion levels change. For this example, βTC|IM is approximately constant and equal to 0.6. We 

will take advantage of this in our analytical solution to follow. Note that we usually consider 

βTC|IM as approximately equal to the coefficient of variation (e.g., from Equation 4.20), for beta 

less than 0.3, but this relation is not true for large values of beta, such as in this case. 

4.6 INCORPORATE THE SITE HAZARD 

For this example, we use a ground motion hazard from the Van Nuys Testbed site, where the IM 

used is Sa at T=0.85s (Fig. 4.6). Then we can use the local slopes of this hazard curve, along with 

the expected cost function E[TC|IM] to calculate the mean annual value of TC ( Equation 3.37). 
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In a similar way, the variance can be calculated using Equation 3.38: 
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and also, 
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The above integrals have been computed numerically. As discussed in Section 3.11, there is not 

an analogous analytic solution, using the functional forms used for the analytic solution of 

)(zTCλ . 

We can also calculate the annual rate of exceeding a given value of TC by numerical 

integration using Equation 3.39. Let us assume that IMTC | has a lognormal distribution with 

mean equal to E[TC | IM]  and variance equal to Var[TC | IM], as calculated above. Under this 

assumption, a plot of )(zTCλ for several values of TC is shown in Figure 4.7 on page 48. 

The annual rate of exceeding a given TC can also be calculated using the analytical 

solution of Equation 3.41, if more assumptions are made. Let us approximate βTC|IM as constant 

and equal to 0.6. This approximation is reasonable given the plot of βTC|IM shown in Figure 4.4. 

We then fit E[TC|IM] by the function E[TC|IM] = 1.4 IM1.8. As seen in Figure 4.5, this fit is good 

over the range 5.00 << IM .  
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Fig. 4.5: Expected TC | IM, for example solution and 1.4IM1.8 fit 

Finally, we use a ground motion hazard curve of the form k
IM xkx −= 0)(λ , where k0 and k are 

constants equal to 0.00322 and 3.83, respectively. This hazard curve was obtained by fitting the 

actual hazard curve at the 2/50 and 10/50 hazard levels (Fig. 4.6). 
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Fig. 4.6: Van Nuys ground motion hazard, and analytical fit  
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Then the annual rate of exceeding a given value of TC can be estimated analytically using 

Equation 3.41: 
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A plot of )(zTCλ  obtained by numerical integration is plotted against the solution of 

Equation 4.24 in Figure 4.7. We see that the results of the analytical and numerical solutions are 

in good agreement.  
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Fig. 4.7: λTC(z): Comparison of  numerical integration and analytical solution 

Note that the results are in good agreement even for high values of TC, where the analytical fit of 

E[TC|IM] was not good. This is because low values of expected TC|IM have a significant impact 

on high TC values due to the high variance in TC|IM. High values of expected TC|IM are not as 

significant due to the infrequent occurrence of high values of IM.  



 

 

5 The Role of Variance in TC given IM 

Most studies have limited themselves to E[TC|IM] (neglecting Var[TC|IM]) with the objective of 

estimating E[TC] itself. We now examine the role of uncertainty in TC given IM (which we 

choose to measure with βTC|IM), to understand its effect on our results. 

We first examine the analytical solution of the above example. The exponential term of 

Equation 4.24, which we previously called the amplification factor (Equation 3.44), has a value 

of 1.22. Equivalently, we can say that the annual rate of exceeding a given total cost is increased 

22% due to the effects of uncertainty in TC (for a given IM) in this problem. 

More generally, the effect of uncertainty in TC given IM can easily be seen in Figure 5.1 

below. The E[TC|IM]  from equation 4.18 above was used, with three constant values of β*TC|IM 

assumed. Numerical integration was used to calculate )(zTCλ , per Equation 3.39. We see that for 

β*TC|IM =1, the result is not dramatically different until we reach high values of TC (because our 

E[TC|IM]  never exceeds one, 0)( =zTCλ  for z>1 when we have no uncertainty). Note that the 

β*TC|IM=0.6 case from Figure 4.7 would be in between the β*TC|IM =0 and β*TC|IM=1 in this plot. 

For β*TC|IM =2, the )(zTCλ  curve is shifted upward by a factor of three to ten. Also, if we hold 

)(zTCλ  constant, the TC we expect to see with that given frequency is approximately doubled for 

β*TC|IM=2.  

Note that β*TC|IM =1 implies that the 84th percentile of TC|IM is e1, or 2.7 times the 

median. So the effect of this large variability in TC|IM is damped by the large implied variability 

in IM (or hazard curve). 
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Fig. 5.1: Effect of uncertainty, βTC|IM, on frequency of exceedance of Total Cost, calculated 

using numerical integration 

To further improve our understanding of the role of uncertainty, we can look at the 

analytical solution of Equation 3.41. We believe it provides some insight to recognize that for a 

fixed mean, E[TC|IM], the median TC given IM must decrease as β*TC|IM increases (recall that 

the mean of a lognormal random variable is the median times 
2

|*2
1

IMTCe β ). Figure 5.2 shows the 

shift in the λTC(z) curve as β*TC|IM changes from 0 to 1. Case 0 shows the result for β*TC|IM=0. 

Case 1 shows what the cost curve would look like if the median TC|IM for β*TC|IM=1 were used 

in place of the mean, but with zero uncertainty (βTC|IM=0). Case 2 shows what the cost curve 

would look like if the mean TC|IM were used as the median, and with uncertainty included 

(β*TC|IM=1). The effects of Case 1 and Case 2 can not be separated though, so the true result is 

given by Case 3.  
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Fig. 5.2: Effect of uncertainty examined using the analytical solution for λTC(z), when β = 1 

We see from this graph that there are two competing effects as we increase β*TC|IM for a given 

mean of TC|IM: the reduction due to the median decreasing, and the increase due to the 

dispersion. The net effect may be either an increase or a decrease depending on the slope of the 

hazard curve and the rate of increase of TC as IM increases (these are represented by k and b, 

respectively in Equation 3.41). 

The important conclusion to be drawn from this section is that using expected values 

alone and ignoring uncertainties, although tempting because of its ease, can potentially lead to 

inaccurate results. 



 

6 Guidelines for Uncertainty Estimation  

The procedure outlined in this report is dependent on having values for the means, variances, and 

covariances of the conditional random variables present in the framing equation (Equation 2.1), 

which is not a trivial matter. The following may be helpful in providing guidance to those 

estimating these values. Section 6.1 presents potential sources of structural uncertainty. Section 

6.2 presents sample results for expected values and aleatory uncertainty in the Van Nuys 

Testbed. Section 6.3 provides several references for estimation of uncertainty. Virtually all of the 

literature discussed here relates to epistemic and aleatory uncertainty in EDP given IM. The 

literature on uncertainty in damage and costs (e.g., DM|EDP and DVE|DM) is as yet limited. 

6.1 POTENTIAL SOURCES OF STRUCTURAL UNCERTAINTY 

As an aid in thinking about uncertainty, the following partial list of structural uncertainties 

proposed by Krawinkler (2002b) is presented:  

Global Properties: 

1. Period 
• Effects of nonstructural elements (cladding, partitions, infill walls, etc.) 
• Effects of not considered structural elements (staircases, floor systems, etc.) 
• Effect on scaling of Spectral Acceleration at first-mode period 

2. Global strength 
3. Effective damping 

 
Element Properties 

1. Effective initial loading stiffness 
• Modeling uncertainties (e.g., engineering models, using piecewise linear models 

fit to curves, etc.) 
• Measurement uncertainties 
• Material uncertainties 
• Construction uncertainties 
• History uncertainties (e.g., aging, previous damage, etc.) 

2. Effective yield strength 
• Same sources as 1. 
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3. Effective strain-hardening stiffness 
• Same sources as 1. 

4. Effective unloading stiffness 
• Same sources as 1. 

5. Ductility capacity 
• Same sources as 1. 

6. Post-cap stiffness 
• Same sources as 1. 

7. Residual strength 
• Same sources as 1. 

8. Cyclic Deterioration 
 

Other Effects 

1. Effect of soil-structure interaction 
2. 3-D effects 

 
Clearly, there are many sources of uncertainty to consider. These uncertainties, with the 

possible exceptions of material properties and history, are usually considered to be epistemic 

uncertainties. Work is progressing toward evaluating a subset of these sources, estimating their 

uncertainty, and assessing their implied effect on uncertainty in EDP|IM (e.g. Ibarra, 2003). 

To account for these uncertainties in the structural analysis, it is necessary to vary the 

above parameters in accordance with the estimated distribution of possible values, and evaluate 

the resulting uncertainty in the structural response. This could be performed using Monte Carlo 

simulation or using a finite difference method (see Appendix E for an example procedure). Note 

that in addition to estimating uncertainty, it will also be necessary to estimate correlations, both 

in the structural parameters and in EDPs. For example, it has been proposed that the element 

unloading stiffness and element ductility capacity are positively (but not perfectly) correlated 

(Ibarra, 2003). This correlation should be accounted for in any studies evaluating uncertainty. 

When using this uncertain element model in an MDOF structure, it will be necessary to assume a 

correlation structure between, for example, the ductility capacities of each element in the MDOF 

structure. Here, an assumption of perfect correlation among modeling uncertainties may be valid 

in some cases. 

6.2 ALEATORY UNCERTAINTY IN EDP|IM FOR THE VAN NUYS TESTBED 

The Van Nuys Testbed is a structure currently being used by PEER to develop analysis 

methodologies. Results of nonlinear time history analyses are available for several different IM 

levels (Lowes 2002). We present results of these analyses, as an example of results that could be 



 55

used in the analysis procedure outlined above. Spectral acceleration at T=1.5 seconds was used 

as the IM. Records were scaled to the 50% in 50 year hazard level, as well as the 10% in 50 

years, and 2% in 50 year hazard (Sa equal to 0.21g, 0.53g, and 0.97g, respectively). Ten scaled 

records were run for each IM level. Results from these runs are presented in this section (as 

discussed further below 0, 5, and 7 collapses were observed at the three hazard levels, and are 

excluded from the analysis). 

6.2.1 Expected value of EDPs 

The EDPs selected for study are interstory drift ratios (denoted IDRi for floor i), and peak floor 

accelerations (denoted ACCi for floor i). For consistency with the procedure above, we have 

averaged the natural logs of the analysis results (denoted iEDPln ), but we display the 

exponential of this average, (which is an estimate of the median drift or acceleration). Plots of 

the data are shown below in Figures 6.1 and 6.2. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8 1 1.2

IM = Sa at T = 0.85s

IDR1

IDR2

IDR3

IDR4

IDR5

IDR6

IDR7

 

Fig. 6.1: Estimated median of IDRi  ( )lnexp( iIDR ), conditioned on no collapse and Sa  

This data was previously presented in Section 3.1. Data on accelerations is also presented: 
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Fig. 6.2: Estimated median of ACCi ( )lnexp( iACC ), conditioned on no collapse and Sa  

We see that for the acceleration data, results are very similar for all floors, so perhaps the same 

function could be used for each lnACCi when an analysis is performed. 

This data on estimates of expected values of lnIDRi and lnACCi would be used in 

Equation 3.2 above. 

6.2.2 Aleatory Uncertainty 

Aleatory uncertainty in lnEDP|IM can be computed easily by taking logs of the analysis output, 

and computing variances. Plots of the data are shown below in Figures 6.3 and 6.4. 
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Fig. 6.3: Estimated standard deviation in lnIDRi, conditioned on no collapse and Sa  

The same results are shown for accelerations: 
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Fig. 6.4: Estimated standard deviation in lnACCi, conditioned on no collapse and Sa  
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This data represents estimates of the IMEDPR |;β values referred to in Equation 3.46. These 

estimates would be used in Equation 3.3 above. Note that in addition to providing an estimate of 

variance in the data, we can also estimate the variance in the estimate of the mean, due to the 

limited sample size. This variance is equal to n2σ  (in our case, we could state that the 

variance in lnEDP is equal to  n2β ). This is one part of the epistemic uncertainty in 

lnEDP|IM, and could be combined with estimates of epistemic uncertainty of other types.   

6.2.3 Correlations 

Correlations between lnEDPs are presented5 from the 50/50 hazard analyses (Table 6.1). It is 

suggested that these correlations be assumed constant for all IM levels. Correlations are available 

from analysis at higher IM levels, but due to a lack of data (because many runs result in collapse 

and are excluded from this statistical analysis), it is more difficult to estimate correlations.  

Table 6.1 Sample Correlation Coefficients for lnEDPs 

 
Some relationships are apparent in this data. For example, the correlation between IDRs is higher 

for floors near each other than it is for floors far apart. A plot of correlation coefficients versus. 

number of stories of separation is shown in Figure 6.5.  

                                                 
5 For low β’s, the correlation coefficients between lnEDPs are not significantly different than the 

correlations between the non-log EDPs, but at the higher levels of β seen in this example, some correlation 

coefficients do differ significantly. Here we have presented the lnEDPs for consistency with the procedure 

of Section 4. 
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Fig. 6.5: Correlation coefficient vs. number of stories of separation (for interstory drift 

ratios) at 50/50 hazard level 

If desired, a regression line could be fit to this data, and the predicted correlation coefficient 

could be used in place of the data points calculated. Similar plots can be produced for floor 

acceleration correlations, and correlations between IDRs and accelerations, but the results do not 

show relations as strong as that in Figure 6.5. Note that this data on correlations would be used in 

Equation 3.4 above.  

6.2.4 Probability of Collapse 

Probability of collapse was estimated by the fraction of the 10 runs that resulted in collapse for a 

given IM level. Collapse was assumed to occur if any floor experienced an IDR of greater than 

10%. At the 50/50 hazard, no collapses occurred, while five collapses occurred at the 10/50 

hazard level, and seven at the 2/50 hazard. Predictions for the probability of collapse at levels 

other than these three stripes could be estimated using linear interpolation, or by fitting a 

lognormal CDF, as shown in Fig. 6.6. 
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Fig. 6.6: Probability of collapse, conditioned on IM 

This probability of collapse data is needed for the procedure presented in Section 3.6. The data 

from the preceding sections are all that is needed for the EDP|IM section of analysis with 

aleatory uncertainty. The additional information needed is an estimate of epistemic uncertainty. 

6.3 REFERENCES FOR ESTIMATION OF EPISTEMIC UNCERTAINTY IN 
EDP|IM 

As a resource for researchers quantifying epistemic uncertainty, several publications in this area 

are cited, including a brief description of their applicability to this problem. All of these 

publications are concerned with the uncertainty in EDP|IM. There is little or no literature on the 

uncertainty in DVE|EDP.  

Kennedy and Ravindra (1984) published a reference on seismic fragilities for nuclear 

power plants (NPPs) that is a standard reference in that industry. Several tables in this document 

list βR and βU,  (quantifying logarithmic aleatory and epistemic standard deviations, respectively) 

disaggregated by source of uncertainty (e.g., modeling effects, soil-structure interaction, 

damping effects, etc.). The individual entries represent the uncertainty in the effect of each 

parameter, i.e., the product of the uncertainty in a particular parameter (e.g., damping) times the 

sensitivity of the demand or capacity to that factor (e.g., the partial derivative of demand with 

respect to damping). See Appendix E for an example technique for computing this partial 
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derivative and resulting effect on uncertainty in demand. The sources of uncertainty presented in 

this reference are similar to the list given in Section 6.1 above (Table 6.2 for values quoted in 

that reference). However, the numbers presented are for a limited class of structures, which vary 

greatly in structural system, quality control, etc., from most other civil structures. The numbers 

are based primarily on elastic analysis, they reflect comparatively small ductility levels and use 

peak ground acceleration (PGA) as the IM. For these reasons, the numbers presented are not very 

appropriate for general use, but they do present a good example of uncertainty quantification. If 

one were analyzing a structure of this class using the procedure outlined in this paper, the value 

of epistemic uncertainty in EDP given IM would be the value highlighted in Table 6.2, i.e., βUD = 

0.18 to 0.33. This value would be used for IMEDPU |;β , as denoted in Equation 3.47, and used in 

Equation 3.3 of the procedure. 

Table 6.2 Examples of βR and βU for NPP Structures, from Kennedy and Ravindra (1984) 

βR βU 
Capacity  

Ultimate strength vs. code allowable 0.06-0.12 0.12-0.18 
Inelastic absorption capacity 0.08-0.14 0.18-0.26 

Total capacity uncertainty 0.10-0.18 0.22-0.32 
 

Demand  
Design response spectra 0.16-0.22 0.08-0.11 
Damping effects 0.05-0.10 0.05-0.10 
Modeling effects 0 0.12-0.18 
Modal and component combination 0.10-0.20 0 
Soil-structure interaction 0.02-0.06 0.10-0.24 

Total demand uncertainty 0.20-0.32 0.18-0.33 
 

Total uncertainty 0.22-0.37 0.28-0.46 

 

FEMA-350 (2000a) incorporates uncertainty into the analysis procedure for regular steel 

moment-frame buildings and provides procedures for estimating this uncertainty. Appendix A of 

the document contains recommended values for βUD (Table 6.3 for example data) for steel 

moment resisting frames of varying heights, at two performance levels (i.e., levels of 

nonlinearity), and for two connection types (pre- and post-Northridge). This table also shows 

variation of uncertainty in the results for several analysis methods. Note that these values are 

based on interstory drift demand given first-period spectral acceleration. Several other 

publications (e.g., FEMA, 2000b and Yun et al., 2002) show the bases for these values. These 
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values of βUD could be used for IMEDPU |;β , as denoted in Equation 3.47, and used in Equation 3.3 

of the procedure. 

Table 6.3  Uncertainty Coefficient βUD for Evaluation of Steel Moment-Frame Buildings 

(FEMA 2000a) 

Analysis Procedure  
Linear Static Linear 

Dynamic 
Nonlinear 

Static 
Nonlinear 
Dynamic 

Performance Level IO CP IO CP IO CP IO CP 
Type I Connections 

Low Rise (<4 stories) 0.17 0.22 0.15 0.16 0.14 0.17 0.10 0.15 

Mid Rise (4-12 stories) 0.18 0.29 0.15 0.23 0.15 0.23 0.13 0.20 
High Rise (>12 stories) 0.31 0.25 0.19 0.29 0.17 0.27 0.17 0.25 

Type II Connections 
Low Rise (<4 stories) 0.19 0.23 0.16 0.25 0.18 0.18 0.10 0.15 

Mid Rise (4-12 stories) 0.20 0.30 0.17 0.33 0.14 0.21 0.13 0.20 

High Rise (>12 stories) 0.21 0.36 0.21 0.31 0.18 0.33 0.17 0.25 

 

The seismic assessment guidelines under development by PEER for several classes of 

buildings in an electrical distribution system (Bazzurro et al. 2002) provide expert-elicitation-

based estimates of uncertainty, as measured in first-mode spectral acceleration terms. These 

values represent total epistemic uncertainty in the ground motion capacity — i.e., uncertainty in 

the level of ground motion that will result in the given limit state. These values give an idea of 

the relative uncertainties associated with different building types (e.g., newer, cleaner SMRFs 

versus older, irregular mill-type construction) and for different limit states (nearly linear versus 

collapsed). It is presumed that a nonlinear static pushover analysis has been conducted. See 

Table 6.4 below for examples of values quoted in that reference.  The authors in this publication 

are estimating uncertainty in a manner similar to that used by Kennedy and Ravindra above, 

except that Kennedy and Ravindra use PGA as the IM, and Bazzurro et al. used first-mode 

spectral acceleration. The difference in values results primarily from the great difference in 

classes of structures being studied, the levels of nonlinearity, the information available on 

material properties, quality control, etc. Note that, at best, the values in Table 6.4 are an upper 

bound to the IMEDPU |;β  used in the procedure above. Uncertainty in a different quantity than 

EDP|IM  is being measured, so the values cannot be simply substituted into the equations above. 

They are most appropriately used merely as an example of uncertainty estimation/quantification 

in a somewhat-related structural analysis problem. 
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Table 6.4  Example Uncertainty Coefficients βU for Collapse Capacity in Different Damage 

States (Bazzurro et al. 2002) 

 βU 
Unretrofitted tilt-up buildings  

Onset of Damage 0.7 
Collapse 0.8 

SMRF Buildings  
Onset of Damage 0.3 
Collapse 0.5 

Mill-type buildings  
Onset of Damage 0.7 
Collapse 1.0  

 

These references above may be useful in the analysis of some classes of buildings. In the 

absence of any other information to quantify epistemic uncertainty in EDP given IM, we suggest 

using 5.0|; ≅IMEDPUβ  (with correlations between EDPs equal to one) as a very rough value, 

assuming nonlinear time history analysis is used. It is not realistic to define a single value for a 

large class of structures, but this starting point will at least roughly account for epistemic 

uncertainty in EDP given IM when performing the calculations in this procedure. 



 

7 Conclusion 

A procedure for calculating an estimate of the uncertainty in repair costs due to earthquake 

damage has been proposed. This procedure works within the framework proposed by PEER for 

performance-based earthquake engineering. The Total Cost is defined is a function of repair 

costs for individual building elements, except in the collapse case, where separate cost estimation 

is used. The calculation procedure combines inputs of aleatory and epistemic uncertainty in 

ground motion hazard, building response, damage to building elements, and element repair costs 

to produce an estimate of the uncertainty in total repair cost. 

The proposed procedure uses the approximate first-order second-moment (FOSM) 

method to collapse what may be high-dimensional vectors of conditional random variables into a 

single conditional random variable, Total Cost given IM. Numerical integration is then used to 

incorporate the ground motion hazard. This uncertainty is treated accurately because it is likely 

to be the dominant contributor. The quantities that can be computed are the expected value and 

variance of the mean annual loss, expected value and variance in mean frequency of collapse, 

and the expected value and variance of the mean annual rate of exceeding a given cost. It is 

anticipated that this procedure will be implemented in the form of a computer program. In this 

form, it should be easy to vary input values of means, variances, and correlations, and quickly 

see the end effect of these variations (i.e., a sensitivity analysis). 

The report incorporates both aleatory and epistemic uncertainty in all of the analysis. 

While this aleatory/epistemic treatment is well developed in some areas (e.g., annual frequency 

of failure calculations in the nuclear industry), in cost estimation efforts to date, quantification of 

uncertainty is generally limited to the aleatory type. Recognizing this, we have tried to lay out 

consistent schemes for the incorporation of epistemic uncertainty in the future. While we 

appreciate the increased complexity (both in estimation and analysis) this entails, we believe it to 

be a necessary component in the development of this field. This is especially true because in its 

current data-poor early stages, cost analysis involves very large epistemic uncertainties which 
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may have a very different correlation structure than their aleatory counterparts, affecting 

significantly the net variance of TC|IM.. 

The report makes suggestions for representation of correlation among the aleatory and 

epistemic variables, such as element repair costs, where data and information are very limited. 

These representations take the form of generalizations of the concept of “equi-correlations.” 

Guidelines for estimating uncertainty in EDP|IM are also presented. Values for aleatory 

variances, and correlations, are presented for an example structure. Several previous studies 

attempting to characterize epistemic uncertainty are referenced as an aid. By contrast, uncertainty 

in repair costs given EDP or DM is as yet a relatively undeveloped topic. 

To facilitate understanding of the calculations, an example analysis has been performed. 

This example allows illustration of the mechanics of the calculations. The results of the example 

are also useful for illustrating the effect of variance on the mean annual rate of exceedance of a 

given Total Cost. It illustrates that variance in TC|IM may or may not have a significant effect on 

the annual rate of exceeding a given Total Cost. 

 



 

APPENDIX A:  DERIVATION OF CORRELATION USING THE EQUI-
CORRELATED MODEL 

 

A general notation is used in this appendix, rather than notation for a specific case from the text. 

The following derivations are applicable to several situations in the text, such as Examples 1 and 

2 in Section 3.2. In the case of the Section 3.2 examples, Y1 is equivalent to ik EDPDVE ln|ln , a1 

is equivalent to )(ln ik EDPg , B is equivalent to Strucεln , C1 is equivalent to
kElεln , etc. 

Let  
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where a1 and a2 are constants, and B, C1 and C2 are mutually uncorrelated random variables. 

Let variances of the random variables be: 
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Which implies that:  
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Then  

],[ 21 YYCov
 

( ) ( )

...00],[
...],[],[],[],[

],[

211121

2211

+++=
++++=

++++=

BBCov
aBCovCaCovBaCovaaCov

CBaCBaCov
 

2
Bσ=  (A.4) 

 

21 ,YYρ
 

 
( )( )2222

2

21

21

21

][][
],[

CBCB

B

YVarYVar
YYCov

σσσσ
σ

++
=

=

 



 68

( )( )11

1
2222

21
++

=
BCBC σσσσ

 (A.5) 

 

In the special case where 222
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For a system of n random variables nYYY K,, 21 , we can define a random variable B 

common for all elements and a unique Ci for each element. If Var[Ci] is equal for all i, then the 

values of the correlation matrix would be equal (Equation A.6) for all {Yi, Yj} when i ≠  j, and 

have value 1 for i = j.  This is known as the equi-correlated model. 

The equi-correlated model can be easily extended to a sum of more than two random 

variables, as long as all of the random variables are either perfectly correlated or uncorrelated. 

For example, let 

2122

1111

EDBaY
EDBaY

+++=
+++=

 (A.7) 

where 2
1 1
][ DDVar σ= , 2

1 1
][ EEVar σ=  and 2

2 2
][ EEVar σ=  

Noting that (B + D1) is equivalent to B in equations A.1, it is easily shown that 
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And when 222
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This formulation is used for Example 1 on page 12 of the text.  

Consider next the case where the “D” random variable is not common to Y1 and Y2, that 

is: 
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where 2
2 2
][ DDVar σ=  and the other random variables are defined as above. Noting that (D1 + 

E1) is equivalent to C1 in equation A.1, it is easily shown that 
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And when 222
21 DDD σσσ ==  and 222

21 EEE σσσ == , 
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This formulation is used for Example 2 on page 12 of the text. 

For a system of random variables nYYY K,, 21 , we can define B common for all elements, a 

series of Eis unique for each element, and a series of Dks shared between only variables of class 

k. If Var[Ei] is equal for all i, then we can use the simple Equations A.9 and A.12 to calculate 

correlation coefficients. However, now the correlation matrix will not be equal for all {Yi, Yj} 

when i ≠  j, but will instead depend on whether the variables share the same Dk. We shall refer to 

this as the generalized equi-correlated model. 

Note that throughout this appendix, we have not explicitly shown any conditioning notion 

or notation. But as seen for example in Equation 3.20, where conditioning on EDP is displayed, 

in virtually all applications here these results will be conditioned upon values such as EDPi and 

EDPj, in which case the correlation coefficient (such as that in A.6) will simply be a function of 

EDPi and EDPj. In the simplest application this functional dependence will not exist (i.e., these 

variances and covariances will be constant with respect to EDP levels). This has been assumed 

for the development and examples in this paper. 

The principles used to develop these results are taken from Ditlevsen (1981). This line of 

thinking is further developed in this reference. 



 

APPENDIX B: DERIVATION OF MOMENTS OF CONDITIONAL 
RANDOM VARIABLES 

 

Let X, Y, and Z be random variables, with the distributions of X and Y conditioned on Z. 

]|[ zZXE =  is the conditional expectation of X given Z=z: 

|[ | ] ( , )X ZE X Z z x f x z dx
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We have used ]|[ zZXE =  to spell out in detail what we mean by the conditional expectation, 

but normally we shall write ]|[ zZXE =  as ]|[ ZXE  as a shorthand notation.  

 

[ ]]|[ ZXEE  is the expectation (with respect to Z) of ]|[ ZXE , i.e., when Z is recognized as 

random: 
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Note that the same result is found by reversing the order of integration. 
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Then we see that  
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This is a very important result useful in many applications. For example, if 

bzazZXE +== ]|[ and 2]|[ czdzZXVar +== , then  
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Similarly, we see that: 
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These formulas are of use, for instance, in Equation 3.27:  
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Expanding a Taylor series about the mean of lnEDPi: 
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Taking a first-order approximation yields: 
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In this equation, the functions )(IMhi , )(* IMh i , )(ln ik EDPg , and )(ln* ik EDPg were 

substituted, as defined in Equations 3.2, 3.3, 3.18, and 3.19, respectively. Equation 3.28 can be 

derived using the same procedure. 



 

 

APPENDIX C: DERIVATION OF THE ANALYTICAL SOLUTION FOR 
)(zTCλ  

 

The derivation of the analytical solution for )(zTCλ  is performed under the assumptions of 

Section 4.6. A similar solution, under the same assumptions, has been previously derived by 

Cornell et al. (2002). The solution of this paper is presented below. 

The assumptions used in this solution are repeated for clarity. Namely, the distribution of 

IMTC | is lognormal with median  

baIMCT =ˆ  (C.1) 

where a and b are constants. This is equivalent to fitting the mean of IMTC |  by a′IMb, where 
2

|*2
1

' IMTCeaa β−= . βTC|IM is approximated as a constant β*TC|IM. Finally, the ground motion hazard 

is approximated by  
k

IM xkx −= 0)(λ  (C.2) 

where k0 and k are constants.  

We evaluate )(zTCλ  using the formulation of Equation 3.39. Namely,  

( ) )(),(1)( | xdxzFz IM
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IMTCTC λλ ∫ −=   (C.3) 

With the lognormality assumption of Equation C.1, the first term of Equation C.3 becomes 

( ) [ ]( )IMTC
b

IMTC axzxIMzTCPxzF || *//ln1)|(),(1 βΦ−==>=−  (C.4) 

where ( )•Φ  is the Standard Normal distribution function. Using this result and Equation C.2, 

Equation C.3 becomes, on integration, 
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We now make the substitution: 
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Factoring the 
2
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Finally, combining exponential terms: 
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This is the result presented in Equation 3.41. 

 



 

APPENDIX D: Use of the Bootstrap to Compute Sample Variance and 
Correlation 

 

The bootstrap is a simple but versatile tool that allows us to compute, for instance, variances and 

correlations of sample averages, using the same set of data that we used to compute the sample 

average itself (Efron and Tibshirani, 1998). 

This idea is applicable to several problems in the body of this report. For instance, we 

estimate the two mean values of a particular EDP at two IM levels by scaling a set of records to 

the two IM values and then taking the average values of the observed EDPs. The estimates of the 

mean values are uncertain (random) and correlated. This correlation can be estimated using the 

bootstrap, as outlined below: 

1. For the set of N records, scale the records to two IM levels, 1im  and 2im . Run all of the 

records through the model at both IM levels to compute N realizations of EDP at 1im and 

N realizations at 2im .  

2. Compute estimates of ln 1 1( ) [ln | ]EDP im E EDP IM imµ = =  and 

ln 2 2( ) [ln | ]EDP im E EDP IM imµ = =  as before 

3. For b = 1, 2, … B, generate bootstrap replicates: 

a. Sample N records from the original set of records, with replacement. 

b. Select the N realizations of EDP from 1im  and 2im  corresponding to the N 

records selected in step 3a (there will be duplicate record realizations in these 

sets). We denote these sets as  ( ) ( )
1 2( ) and ( )b bEDP im EDP im . Compute the 

geometric means of these sets, ( ) ( )
1[ln | ]b by mean EDP IM im= =  and 

( ) ( )
2[ln | ]b bz mean EDP IM im= =  

4. Estimate the correlation between ln 1( )EDP imµ  and ln 2( )EDP imµ  by computing the 

correlation coefficient between the B bootstrap replicates  ( )by  and ( )bz : 
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Where ( )ˆ by
µ  and ( )ˆ bz

µ  are the sample averages of ( )by  and ( )bz , respectively. 

This technique is very useful for computing statistics such as these, where our only estimate of 

the underlying distribution is based on samples that we have (e.g., we are estimating the response 

of our building under the population of all ground motions by averaging the response of a few 

representative ground motions). 

We can also compute several other statistics using this same method. For instance, 

computing the variance of the ( )by  replicates above gives an estimate of the variance due to 

estimation uncertainty in 1[ln | ]E EDP IM im=  (i.e. 2
; | ; |[ ]

estimate estimateU EDP IM U EDP IMVar β≡ε ): 
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In addition, this technique can be easily used to compute the correlation between two 

EDP’s at one IM level. For this case, we would define ( ) ( )
1[ln | ]b by mean EDP IM im= =  and  

( ) ( )
2[ln | ]b bz mean EDP IM im= = . The procedure is then the same as outlined above. Or we could 

compute the correlation between two EDP’s at two IM levels. In this case, we would define 
( ) ( )

1 2[ln | ]b by mean EDP IM im= =  and  ( ) ( )
2 2[ln | ]b bz mean EDP IM im= = . 

 



 

APPENDIX E: ESTIMATING THE ROLE OF SUPPLEMENTARY 
VARIABLES IN UNCERTAINTY 

 

To estimate the effect of uncertainties in supplementary variables, it is necessary to measure the 

sensitivity of EDP to changes in these variables. As noted in the body, this uncertainty can be 

measured in several ways. For instance Monte Carlo or Latin Hypercube simulation could be 

used. This appendix outlines a technique known as the finite difference method. 

We use a model assuming that for a given level of IM, 3)2,1( XXXgEDP += , where 

X1 and X2 are parameters to be studied, and X3 is a zero-mean random residual. X3 represents 

the record-to-record variability that we have already captured. X1 and X2 are the supplementary 

variables that we now wish to study. They may represent either random or uncertain parameters 

in the nonlinear model. (Note that we may want to think of EDP here as being the natural log of 

the drift, in which case Var[X3] is the β2 we have been using in the text.) This model is easily 

expanded to more than n uncertain variables, but two are shown here for simplicity. 

The first-order approximation of the mean and variance (using mean-centered Taylor 

expansions) are given by: 
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(For n parameters, )( xMgEDP ≅µ  and [ ] jiji
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∂≅ , where 

X is the vector of all n parameters, and Mx is the vector of mean values of X) 

In our case, we do not know the function )2,1( XXg  explicitly, but using NLTH analysis 

and the finite difference procedure below, we can estimate the derivatives needed for these first-

order approximations.  
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Procedure: 

1. Select an IM level 

2. Estimate by data and/or judgment the means, variances, and correlation of X1 and X2 

3. Set ,2 and ,1 21 XX XX µµ ==  and make several (say n=10) runs with records scaled to the 

selected IM level 

4. Estimate EDPµ by ∑ =

n

i iEDPn 1
1  (the sample average of the set of runs) 

5. Estimate [ ] ( )∑ =
−−

n

i EDPiEDPnXVar
1

2

)1(
1by  3 µ (the sample variance of the runs) 

6. Rerun the analyses with  ( ) 11'1 XyX µ+=  (the best multiplier here is 1... XVOCy ≅ ) and 

average the results of these runs—call this ]'[EDPE  

7. Calculate 
1

2
1 '1
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2

1 X
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X
X X

EDPE
X

XXg

X

X µ
µ

µ
µ −

−
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∂
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=
=

. (Note this is numerically equal to 

estimating the derivative for each record and then averaging.) 

8. Repeat steps 6 and 7 for X2 (and for all other parameters if more than two are involved) 

9. Evaluate ][EDPVar  using Equation E.4 

10. Repeat for several values of IM, to estimate the change in  ][EDPVar  with IM. This is 

]|[ IMEDPVar  

The value of ]|[ IMEDPVar  estimated using this procedure can now be used in Equation 3.3 of 

the text. 

In addition, this idea can be extended to compute covariances. To compute 

1 2[ | , | ]Cov EDP IM EDP IM , one would use the above procedure, but simultaneously compute 

EDPµ  and ]'[EDPE  at two IM levels simultaneously. Computed once for X1 and once for X2. 

The resulting information can be used to compute the covariance: 
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X

X

X X
X
X

Var X Var X

Var X

µ
µ

ρ
=
=

+
 (E.5) 

In this equation, 1( 1, 2)g X X  represents 1|EDP IM  and 2 ( 1, 2)g X X  represents 2|EDP IM .  

The same covariance relation could be used for 1 2[ | , | ]Cov EDP IM EDP IM  as well (e.g., 

two EDP’s at the same IM level, rather than the same EDP at two IM levels). Before proceeding 

with these computations, however, it is worth considering whether a simple covariance structure 

such as perfect correlation is appropriate. This would simplify the computational complexity, and 

may not result in a significant change in the final results.  

 

Example of Procedure Using Hypothetical Results: 

 

We study a hypothetical EDP, assuming a function of the form: 321 X),Xg(XEDP +=  

1. We select IM = 0.2 

2. Our best judgments for the moments of X1 and X2 are: 

5.0
1.0]2[
5.0]1[

5.1
2

2,1
2

1 =
=
=

=
=

XX
X

X

XVar
XVar

ρ
µ
µ

 

(Note: 21.0... and 25.0
]1[

... 2
1

1 === X
X

X VOC
XVar

VOC
µ

) 

3. We Set ,5.12 and ,21 == XX  and make 10 analysis runs with records scaled to IM=0.2. 
Our results are:  

    8.0755 

    6.7431 

    5.6429 

    6.7663 

    7.1667 

  7.1321 

  5.9607 

  7.1268 

  7.8334 

    6.6033 

4. 91.6≅EDPµ   
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5. [ ] 56.03 =XVar  

6. Rerunning the analyses with ( ) 5.225.01'1 1 =+= XX µ  gives results: 

    9.2464 

    9.8014 

   10.4101 

   10.4688 

   11.4150 

    9.2410 

   11.0976 

   10.0271 

    9.6521 

    9.1090 

 

23.7]'[ =EDPE  

7. Calculate 65.0
25.2
91.623.7

1
)2,1(

2

1

2
1

=
−

−=
∂

∂

=
=

X

X

X
XX

XXg

µ
µ

 

8. Repeating steps 6 and 7 with ( ) 815.121.01'2 ,21 2 =+== XXX µ  gives: 

    9.0824 

   12.6917 

   10.0145 

   11.0657 

   11.0814 

  

   10.7085 

   11.6775 

   10.6867 

    8.5867 

    9.5392 

04.10]'[ =EDPE  

93.9
5.1815.1
91.604.10

2
)2,1(

2

1

2
1

=
−

−=
∂

∂

=
=

X

X

X
XX

XXg

µ
µ

 

9. Using the formula for the variance of )2,1( XXg : 

2 2[ ] (0.65) (0.5) (9.93) (0.1) 2(0.65)(9.93)0.5 0.5 0.1 0.56
0.423 9.880 2.043 0.56
12.91

Var EDP ≅ + + +
= + + +
=

 

52.0
91.12

91.6... ==EDPVOC  

Results: 19.6≅EDPµ , [ ] 12.91Var EDP ≅ , and 59.3≅EDPσ , for 2.0=IM  

 

Looking at the four terms from the variance calculation, we see that the second term dominates 

the result. This is the term corresponding to uncertainty in X2. We also see that the C.O.V. of 

EDP is about 0.5, while the C.O.V.’s of X1 and X2 were 0.25 and 0.21, respectively. This is 
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because of a nonlinearity in the function used to generate these results (the function is given at 

the end of this example. 

 

Example of Procedure, Part 2: 

Repeat the procedure from the previous page, but with a new IM level 

1. We select IM = 1.0 

2. Our judgments for the moments of X1 and X2 remain the same 

3. Make 10 runs using mean values with records scaled to IM=1.0. Our results are:  
    8.1356 

    8.4307 

    8.8036 

    8.5007 

    8.4565 

 10.0192 

    9.2481 

    8.5052 

    7.6260 

    8.6631 

4. 64.8≅EDPµ   

5. [ ] 41.03 =XVar  

6. Rerunning the analyses with 5.2'1 =X  gives results: 
   10.1096 

   10.0504 

    8.8515 

   10.0022 

    9.3404 

    8.9187 

    9.5999 

    8.6263 

    9.3211 

    9.3973 

42.9]'[ =EDPE  

7. Calculate 57.1
25.2
64.842.9

1
)2,1(

2

1

2
1

=
−

−=
∂

∂

=
=

X

X

X
XX

XXg

µ
µ

 

8. Repeating steps 6 and 7 with ( ) 815.121.01'2 ,21 2 =+== XXX µ  gives: 

   11.7027 

   12.5720 

   12.4860 

   11.9975 

   12.5987  

   11.9354 

   11.6243 

   13.0486 

   10.8452 

   11.9870 

08.12]'[ =EDPE  
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92.10
5.1815.1
64.808.12

2
)2,1(

2

1

2
1

=
−

−=
∂

∂

=
=

X

X

X
XX

XXg

µ
µ

 

9. Using the formula for the variance of g: 

[ ] 22.2041.01.05.05.0)92.10)(57.1(2)1.0()92.10()5.0()57.1( 22 =+++≅EDPVar
 

52.0
22.20

64.8... ==EDPVOC  

 

Results: 64.8≅EDPµ , [ ] 22.20≅EDPVar , and 50.4≅EDPσ , for 0.1=IM  

 

Note: the function used to generate the results for this example is 

323*1 2 XXIMXEDP ++= , where X3 is normal with Mean = 0 and Variance = 0.5. With a 

structural model, the function could be determined by a regression analysis on NLTH results, but 

it is not needed for this procedure. 



 

 

APPENDIX F: ESTIMATING THE VARIANCE AND COVARIANCE 
STRUCTURE OF THE GROUND MOTION HAZARD 

 

When performing a PSHA analysis, many combinations of models of fault structure, recurrence 

relationship, ground motion attenuation, etc., are used. The full set of models is described by a 

logic tree, composed of all possible models, and weights associated with each model. Each one 

of these individual models results in a hazard curve, representing the annual frequencies of 

exceeding a range of ground motion levels, given the particular model. The collection of 

weighted hazard curves associated with all models is then a stochastic description of the ground 

motion hazard. For a given ground motion level, the mean and variance of the ground motion 

hazard can be easily calculated by taking the mean and variance of the population of hazard 

curves at that given level. However, there also exists a covariance structure in the ground motion 

hazard between two different ground motion levels. If there are many hazard curves, this may be 

somewhat more expensive to compute.  The Final Report of the Diablo Canyon Long Term 

Seismic Program, as constructed by Robin McGuire (Pacific Gas & Electric, 1988), provides a 

procedure for collapsing a large number of hazard curves into a few while retaining most of the 

variance and covariance structure of the original full set of curves. The procedure of this 

document is reprinted below: 
To derive hazard results appropriate for a probabilistic risk 
assessment, an aggregation process is employed that reduces the 
large number of hazard curves (20,700) to a few (typically 8 to 
12), using a procedure that optimally determines how to combine 
pairs of curves sequentially so that the character of the 
original curves will be maintained, and the set of aggregate 
curves will represent as much of the original uncertainty in 
hazard as possible for each ground-motion amplitude. The 
procedure uses the following steps: 

1. A contribution to variance analysis is used to select nodes 
on the logic tree that do not contribute significantly to 
uncertainty in hazard. The logic tree is then restructured 
to reduce the number of end branches by combining hazard 
results for end branches by combining hazard results for 
end branches at nodes that contribute little to the 
uncertainty in hazard. By this mechanism the family of 
hazard curves is reduced to several hundred in number. 
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These hazard curves typically represent greater than 96 
percent of the total uncertainty in hazard.  

2. The hazard curves are characterized by the frequency of 
exceedance at three ground-motion amplitudes, chosen as 
those most critical to the determination of Plant response 
and system states. The total variance in frequency of 
exceedance at these three amplitudes is calculated. 

3. A small number of possible aggregate curves (for example, 
64) is estimated by dividing the ranges of frequencies of 
exceedance into intervals and constructing a first set of 
aggregates at the centers of these intervals. 

4. Each of the hazard curves is assigned to a tentative 
aggregate hazard curve, based on its proximity in 
frequency-of-exceedance for the three amplitudes. 

5. The tentative aggregate curves are recomputed as the 
conditional mean of the assigned curves. 

6. Steps 4 and 5 are repeated, because step 5 may change the 
assignments based on proximity, until the tentative 
aggregate curves are stable (that is, until there are no 
more changes in assignments). A weight for each tentative 
aggregate curve is calculated as the sum of the weights of 
the assigned curves. 

7. All possible pairs of tentative aggregate curves are 
examined as candidates for combination; the pair that, when 
combined, will result in the minimum reduction of variance 
is selected and combined by computing the weighted average 
frequency of exceedance for all three amplitudes. The 
combined curve is assigned a weight equal to the sum of the 
weights of the two curves used to calculate it. 

8. Steps 4 through 7 are repeated to reduce sequentially the 
number of tentative aggregate curves. The process ends when 
the desired number of aggregate curves is reached. 

9. The curve assignments are used to calculate aggregate 
hazard curves for all ground-motion amplitudes; the weight 
given to each aggregate is the sum of the weights of the 
assigned curves. 

There are no general solution techniques for aggregating a 
discrete, multidimensional distribution, but the above algorithm 
has been tested for a number of seismic hazard problems and works 
well. It is efficient up to several hundred initial hazard curves 
(which is the reason for Step 1). Typically 8 to 12 aggregate 
curves can be constructed with this algorithm that replicate 
about 90 percent of the total variance of the original data set, 
for all ground-motion amplitudes (that is, the standard deviation 
of frequency of exceedance is 95 percent of the original). Figure 
6-4 [Fig. F.1 below] illustrates how this procedure would work 
for the case of reducing nine hazard curves. Three aggregate 
curves adequately represent the amplitude and slope of the 
original nine curves.  
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Fig. F.1: Example of aggregation of nine hazard curves to obtain three curves (Figure 6-4 

taken from Pacific Gas & Electric, 1988) 

This procedure is a more detailed implementation of the following idea, as communicated by 

Veneziano (2003): 

1. Read the hazard curves for a discrete number of values, generating vectors from the 

functions 

2. Cluster the vectors by minimizing a distance function such as squared errors (where the 

errors can more generally be weighted to reflect greater emphasis on a region of interest). 
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Veneziano suggests that a K-means algorithm could be used, for a varying number of 

clusters K. 

3. Choose K to retain a desired level of the original variance, and then collapse the curves 

into their clusters-means, ignoring the within-cluster variance (recognizing that the 

clusters were selected to keep within-cluster variance to a minimum).  

An additional reference by Veneziano et al. (1984) provides an algorithm this calculation.  

Once this collapse to a few representative hazard curves has been performed, the 

covariance of the hazard at two ground motion levels can be inexpensively calculated by 

calculating the covariance of the representative hazard curves. 
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