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ABSTRACT 

Demand and capacity factor design (DCFD) is a probability-based load and resistance factor 

(LRFD)-like format used for performance-based seismic design and assessment of structures. 

The DCFD format is based on a technical framework that provides a closed-form analytical 

expression for the mean annual frequency of exceeding (or not exceeding) a structural 

performance level, which is usually defined as specified structural parameters (e.g., ductility, 

strength, maximum drift ratio) reaching a structural limit state (e.g., onset of yield, collapse). 

This report, which is presented in two parts, provides a step-by-step and detailed 

description of the development of the technical framework underlying the DCFD format, 

accompanied by helpful illustrations and numerical examples. In the first part, a closed-form 

analytic expression for the mean annual frequency of exceeding a structural limit state is derived 

based on certain simplifying assumptions. The expression for mean annual frequency of 

exceedance is derived by taking into account the aleatory uncertainty (due to inherent 

randomness) and the epistemic uncertainty (due to limited knowledge) in three main elements, 

seismic hazard, structural response (as a function of ground motion intensity) and capacity. A 

schematic plot of these three parameters is shown in the figure below. 
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Main parameters in the development of the technical framework: mean annual frequency of 

exceeding spectral acceleration, x , characterized by )(xH
sS , distribution of demand variable D 

given Sa characterized by )(xDη and 
aSD|β , and distribution of capacity variable C characterized by 

Cη and Cβ  
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In the second part of this report, the closed-form expression for the mean annual 

frequency of exceeding a limit state is re-arranged into alternative formats, suitable for 

implementation in seismic design and assessment guidelines. These formats can be used to 

ensure that the structural seismic design can be expected to satisfy specified probabilistic 

performance objectives, and perhaps (more novel) that it does so with a desired, guaranteed 

degree of confidence. The degree of confidence in meeting the specified performance objectives 

may be quantified through the upper confidence bound on the (uncertain) probability. These 

proposed formats are based on alternative conventional design methods such as LRFD design 

and fragility-hazard design. Versions of the new developments reported here are already in place 

in recently completed seismic guidelines such as the FEMA 350-352 documents and the ISO 

seismic design guidelines for offshore platforms. Numerical applications of the DCFD format 

and its underlying framework can be found in papers by the authors and other researchers, 

instances of which are outlined in this report. 
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1 A Closed-Form Analytic Foundation for 
Probabilistic Seismic Assessments 

1.1 INTRODUCTION 

The demand and capacity factor design (DCFD) format is a probability-based load and resistance 

factor (LRFD)-like format for the seismic design and assessment of structures. The DCFD 

format is based on a technical framework for probabilistic performance-based design and 

assessment of structures. The performance objective in this framework is stated in terms of the 

mean annual frequency of exceeding the desired performance level. This closed-form expression 

is derived by taking into account the uncertainty in the estimation of seismic hazard, structural 

response (as a function of the ground motion intensity level), and structural capacity (for the 

desired performance level) based on certain simplifying assumptions. 

Recent seismic assessment guidelines such as FEMA 356 pre-standard and FEMA 273 

guidelines define their rehabilitation objective as consisting of a target building performance 

level and an anticipated earthquake hazard level. The target performance levels are described 

qualitatively in terms of building safety before and after the earthquake, repair cost, and 

downtime; whereas the earthquake hazard levels can be defined on a probabilistic basis in terms 

of the mean probability of exceeding a certain hazard level in 50 years. In comparison to the 

rehabilitation objective defined in FEMA 356 and FEMA 273, the DCFD probabilistic 

framework states the performance objective by defining the building performance on a 

probabilistic basis and taking into account both the desired building performance as well as the 

expected seismic hazard. 

Nonlinear dynamic analysis procedures can be used in order to both obtain parameter 

estimates for the DCFD format and/or its analytical basis and also to test the validity of the 

simplifying assumptions made in the derivations. Many researchers such as the authors (Jalayer 

and Cornell 2003a, 2003b; Medina 2002; Yun et al. 2002; and Cordova et al. 2001) have studied 

the implementation of nonlinear dynamic procedures both for parameter estimation and also for 
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checking the robustness of DCFD’s analytic basis. Such research efforts are mentioned in 

relevant sections in this report. 

This report is a step-by-step and detailed guide to the construction of the probabilistic 

framework that underlies the DCFD format. In order for the report to be more tractable, the 

derivations are arranged so that each step is based on the results of the previous one(s). 

Whenever possible, the derivations are also accompanied by numerical examples and graphic 

illustrations to help the reader. The report is divided into two main parts and a summary. The 

first part is dedicated to the development of the technical framework underlying the DCFD 

format, at the core of which is the derivation of the closed-form expression for the mean annual 

probability of exceeding the desired performance level. The second part discusses alternative 

design and assessment formats that stem from the probabilistic framework developed in Chapter 

1. Most of these formats are analogous to Load and Resistance Factor Design (LRFD) 

procedures associated with static, force-based structural engineering, e.g., the AISC LRFD Code.  

Due to the generalizations here to a nonlinear, dynamic displacement basis, we refer to these new 

formats as DCFD (Demand and Capacity Factor Design). The choice among these alternative 

formats must be made on grounds such as familiarity and practicality because in many cases they 

are technically equivalent. 

1.1.1 Organization of the Report 

Chapter 1 of the report, the foundation development, is intended to serve as a step-by-step 

derivation of a closed-form expression for the mean annual frequency of exceeding structural 

performance level(s) based on certain simplifying assumptions. The formulation of every piece is 

explained in detail in order to provide an insight into probabilistic assessments for the interested 

reader, including those with limited experience with such probabilistic derivations. The 

derivations start with hazard estimations for the intensity measure of choice, which is the first-

mode spectral acceleration. The next step is to derive the mean annual frequency of exceeding 

the structural displacement response based on the derived expression for the spectral acceleration 

hazard and also on an assumed analytical form (e.g., lognormal distribution) for the (conditional) 

probability distribution of the displacement response given spectral acceleration. In the final step, 

the information about structural limit state capacity is taken into account in order to derive the 

expression for the mean annual frequency of exceeding a structural limit state, or limit state 

frequency in short, which is the primary goal of this chapter. Another layer of complexity is 
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added by considering the uncertainty due to limited knowledge (epistemic uncertainty) in the 

formulation of the limit state frequency. 

In Chapter 2, the format development discusses several of the many alternative design 

formats that can stem from the expression for limit state frequency. Demand and capacity factor 

design (DCFD) is a closed-form design and assessment format that directly results from the 

original formulation for the mean annual frequency of exceeding a limit state derived in Chapter 

1. This format has been implemented in FEMA 350, 351, and, 352 and in an ISO offshore 

structure guideline (Banon et. al. 2001). The fragility-hazard design format is another way of 

transforming the closed-form expression for the probability of exceeding a limit state from 

Chapter 1 into a (potentially) graphical design format. A variation of this format has been 

implemented in the Department of Energy Guidelines (DOE 1020) for nuclear power plants 

(PRA 1983). As in Chapter 1, another level of complexity is added by including the epistemic 

uncertainty in the formulations. The consideration of this type of uncertainty may manifest itself 

in the form of a confidence statement about the performance objective being met (which may in 

effect modify the demand and capacity factors in the DCFD format, as adopted in FEMA 350), 

or in the use of the mean estimate for the limit state frequency (as in DOE 1020, 1994). 

1.2 SOURCES OF UNCERTAINTY IN ENGINEERING PROBLEMS  

Sources of uncertainty in engineering safety problems are classified into two major groups 

known, confusingly and unfortunately, by various pairs of words in the broader reliability 

community, for example, randomness and statistical uncertainty, aleatory uncertainty and 

epistemic uncertainty, frequency, and probability, and simply Type I and Type II. Moreover, 

there are ongoing discussions about the nature of uncertainty each group identifies and whether 

they should be distinguished in the first place. However, in the present work, the first term 

identifies the more familiar “natural variability” such as the times and magnitudes of future 

earthquakes in a region, record-to-record variability in acceleration time-history amplitudes and 

phases. The second term of each pair signifies the limited knowledge and data the profession 

currently has about, for example the modeling of structural systems in the highly nonlinear range 

and exact numerical values of parameters of physical and random (stochastic) models, e.g., the 

median value of the maximum interstory drift of a particular model frame under a population of 

future ground motions of specified intensity. This second kind of uncertainty can be reduced by 

more data (larger sample sizes) and/or by more research. In the following text, we shall typically 
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use the simple pair of words “randomness” and “uncertainty.” Therefore we shall be using the 

second word in the more restrictive sense of epistemic uncertainty and not in the broader sense as 

in the title of this section. Occasionally, for example when precision is imperative, we shall use 

the longer unambiguous terms “aleatory uncertainty” and “epistemic uncertainty,” which are 

now quite common in seismic hazard analysis. 

1.3 DOCUMENT MAP 

This report contains a complete analytical background for DCFD probability-based seismic 

design and assessment procedure. For pedagogical reasons the development of the text follows a 

detailed step-wise manner that makes it somewhat long. However, it is possible to bypass some 

sections without losing the general picture. The document map that follows illustrates two 

possible routes the patient reader can follow. 

 

 
 

Route 1 goes through the entire development of the technical framework taking into 

account randomness as the only source of uncertainty. Route 2 goes through a more generalized 

derivation that considers uncertainty also. 
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1.4 FOUNDATION DEVELOPMENT 

The probabilistic foundation developed in this report involves the entire endeavor that leads to 

the derivation of a closed-form expression for the mean annual frequency of exceeding a 

specified limit state for a given structural system. In other words, the final product of this chapter 

is a closed-form solution for the mean annual frequency of exceeding a limit state calculated 

taking into account the uncertainty in the various parameters involved in the seismic design of 

the structural system. 

The derivation of the limit state frequency (short for “the mean annual frequency of 

exceeding a specified limit state”) will be presented in two parts. In the first part, the limit state 

frequency is derived considering only the uncertainty due to randomness. In the second part, the 

more generalized form of limit state probability is introduced, which accounts for both 

randomness and uncertainty. 

1.4.1 Structural Limit States  

The desired structural performance levels for the seismic design or assessment of a structure can 

be defined in terms of specified thresholds of structural behavior known as the “structural limit 

states.” A structural limit state is usually defined by the structural behavior at the onset of 

structural demand being equal to the capacity corresponding to that limit state. Global collapse, 

an example of a structural limit state, is used in this report for defining the desired structural 

performance level. The foundation derivation represented in this text applies to virtually any 

limit state; however, for simplicity and clarity, this report focuses on the global collapse limit 

state. 

1.4.2 Structural Demand Variable (State Variable)  

Demand, or state variable, is normally chosen as a displacement-based structural response 

representative of structural dynamic and nonlinear behavior. The most common examples for 

buildings include: roof displacement or interstory drift.  

In this report, we have chosen the maximum interstory drift ratio (MIDR) as the 

displacement-based structural demand variable (the maximum is obtained as the peak in response 

time histories over all stories in the building). MIDR is particularly relevant to global collapse 
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predictions for moment-frame structures (FEMA 350). Maximum interstory drift values may be 

obtained from the results of structural analyses for various ground motion intensities.  

We have chosen to refer to the maximum interstory drift variable as D hereafter. This will 

keep the future derivations general with respect to a generic demand variable D. It is also 

suggestive of the displacement-based nature of the demand variable.  

1.4.3 Structural Capacity Variable (Limit State Variable) 

Capacity, or the limit state variable, is as the name suggests a limit (threshold) for acceptable 

structural behavior. We have already introduced the demand (state) variable for describing the 

structural behavior. The capacity (limit state) variable describes the limiting value for the 

demand (state) variable. Obviously, it will be represented on the same basis as the structural 

demand variable, maximum interstory drift ratio in this case. The capacity can be defined as a 

prespecified interstory drift ratio, e.g., 2% (which FEMA 350 uses for an “onset of damage limit 

state”), or alternatively as capacity with respect to connection failure modeled as a random 

variable based on test data. In this report, we shall focus on global (dynamic) collapse limit state 

capacities extracted from the incremental dynamic analysis (IDA) curves, which are plotted 

using the nonlinear dynamic response of the structure to a suite of ground motion recordings (see 

Vamvatsikos and Cornell 2001). 

In order to keep the derivations general, we have used the generic notation C for the 

random interstory drift capacity. This will also be consistent with the demand variable denoted as 

D. 

1.4.4 Limit State Frequency HLS 

In the probabilistic framework discussed in this report, the performance objective is stated in 

terms of a target or desired mean annual frequency of exceeding a performance level. The 

performance levels can be designated as structural limit states defined by the condition, CD = . 

Hence, the performance objective can be stated as the mean annual frequency of exceeding a 

specified limit state and denoted by, LSH . We will also refer to LSH  as limit state frequency in 

order to be brief. LSH  is defined as the product of the mean rate of occurrence of events with 

seismic intensity larger than a certain “minimum” level, ν , and the probability that demand D  

exceeds capacity C , when such an event occurs. 
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][ CDPH LS >⋅= υ  

It should be noted that since the rate parameter ν  is in frequency terms (times a 

nondimensional probability term), the limit state frequency is also expressed as a rate of 

exceedance rather than the probability of exceedance. As will be seen later in the section on 

seismic hazard, the above definition of limit state frequency is consistent with (and related to) the 

seismic hazard definition. 

1.4.5 General Solution Strategy 

In order to determine LSH , we are going to decompose the problem into more tractable pieces 

and then re-assemble it. First, we introduce a ground motion intensity measure IM (such as the 

spectral acceleration, aS , at say 1 second period) because the level of ground motion is the major 

determinant of the demand D and because this permits us to separate the problem into a 

seismological part and a structural engineering part. To do this, we make use of a standard tool in 

applied probability, known as the “total probability theorem” (TPT) (see Appendix B), which 

permits the following decomposition of the expression for limit state frequency with respect to 

an interface variable (here, the spectral acceleration): 

(1.1)                               ][]|[][
   xall

xSPxSCDPCDPH aaLS =⋅=>⋅=>⋅= ∑νν  

where ν  is the rate parameter that was defined in Section 1.4.4 as the mean annual rate of 

occurrence of events with seismic intensity more than a certain minimum level. In Equation 1.1 

we have introduced aS  as the intensity measure. In simple terms, the problem of calculating the 

limit state frequency has been decomposed into two problems that we already know how to 

solve. The first problem is to calculate the term ][ xSP a =  or the likelihood that the spectral 

acceleration will equal a specified level, x. This likelihood (together with υ) is a number we can 

get from a probabilistic seismic hazard analysis (PSHA) of the site. The second problem is to 

estimate the term ]|[ xSCDP a =>  or the conditional limit state probability for a given level of 

ground motion intensity, here represented by, xSa = . Estimating the conditional limit state 

probability, for a given ground motion intensity, requires an understanding of, for example, 

response/demand variability from record-to-record of the same intensity, which is an easier and 
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“purely” structural problem to resolve. The TPT simply tells us how to recombine these two 

pieces of the problem back into LSH . The solution strategy outlined above, calculating the limit 

state probability by decomposing it with respect to spectral acceleration, shall be referred to as 

the “IM-based” solution strategy hereafter. 

An alternative solution strategy (the main strategy employed in this chapter) consists of 

decomposing the derivation of the limit state probability in two steps, and hence it employs two 

interface variables. The first step is to decompose the limit state probability with respect to the 

displacement-based demand (the first interface variable) using TPT: 

][]|[][
d  all

dDPdDCDPCDPH LS =⋅=>⋅=>⋅= ∑νν  

The second step is to decompose the term, ][ dDP = , or the likelihood that the 

displacement-based demand is equal to a value d, with respect to the spectral acceleration (the 

second interface variable): 

(1.2)                ][]|[]|[][
d  all   xall

xSPxSdDPdDCDPCDPH aaLS =⋅==⋅=>⋅=>⋅= ∑∑νν  

This two-step solution strategy, which employs the displacement-based demand as one of 

the interface variables, shall be referred to as the “displacement-based” solution strategy. 

Equation 1.2 is a special case of the framework equation used by Pacific Earthquake Engineering 

Research (PEER) as a basis for probabilistic design and assessments. 

It should be noted that the equations introduced in this section are valid for discrete 

interface variables. However, here they solely serve as a schematic outline of the solution 

strategy. Later in this chapter, we are going to present the parallel expressions for limit state 

frequency based on continuous interface variables. 

1.4.6 Ground Motion Intensity Measure  

The ground motion intensity measure, IM, implemented in the solution strategies outlined in the 

previous section, serves as an interface between the seismicity characterization and structural 

behavior assessment. Ideally, such a variable should contain sufficient information about the 

ground motion to serve as an accurate and efficient predictor of structural response, and it should 

preferably be a variable for which the PSHA results are available (or readily obtainable). This 
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problem has been studied by Shome et al. (1998) and by Luco and Cornell, (2003). It has been 

demonstrated by Shome and Cornell (1999) that, for short- and moderate-period structures, the 

spectral acceleration at a period approximately equal to that of the fundamental mode of the 

structure satisfies the criteria mentioned above. In fact, the study of such “intensity measure” is 

the subject of significant current research by a variety of investigators within PEER. We shall 

use this variable here for specificity, but the resulting derivations will not change if spectral 

acceleration is replaced by any other scalar intensity measure, such as, for example, the inelastic 

spectral acceleration (Luco and Cornell 2003). 

1.4.7 Randomness:  The Only Source of Uncertainty 

The probability-based seismic assessment and design procedure presented here aims to evaluate 

the mean annual frequency HLS that the limit state variable exceeds a limit state threshold LS. 

Our first objective here is to derive the limit state frequency assuming that randomness is the 

only source of uncertainty in the demand and capacity variables. 

We will follow the displacement-based solution strategy discussed in Section 1.4.5 in 

order to derive the limit state frequency. The derivations are presented in a step-by-step manner 

in order to make them easier to follow. At the end of this section we will also briefly present the 

IM-based solution strategy for deriving the limit state frequency. We start by deriving the hazard 

values for our adopted seismic intensity measure, which is the spectral acceleration of the “first” 

structural mode. Then we use common probabilistic tools (e.g., TPT as explained previously) in 

order to first derive the hazard values (i.e., the MAF of exceedance) for the displacement-based 

demand, (here, maximum interstory drift angle) and then to derive the limit state frequency HLS . 

1.4.7.1 Spectral acceleration hazard 

The hazard corresponding to a specific value of the ground motion intensity measure (here 

spectral acceleration aS ) is defined as the mean annual frequency that the intensity of future 

ground motion events are greater than or equal to that specific value x  and denoted by )(xH
aS . 

We are also going to refer to )(xH
aS  as spectral acceleration hazard, which can be defined as the 

product of the rate parameter ν  (defined in section 1.4.4) and the probability of exceeding the 

spectral acceleration value, x , denoted by )(xG
aS : 
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 xGxH
aa SS )()( ⋅= ν  

Now that we have chosen aS  as the measure of ground motion intensity, we can be more 

specific in the definition of the rate ν  and set it as the mean annual rate of earthquake events 

with spectral acceleration greater than a (designated)1 minimum value. Also implicit in the 

probability term )(xG
aS  is that the spectral acceleration value x  is greater than or equal to the 

minimum intensity level. In other words, (.)
aSG  is equal to unity at spectral acceleration values 

less than or equal to the minimum intensity level designated in the definition of the rate 

parameter ν . The spectral acceleration hazard values )(xH
aS  are usually plotted against 

different spectral acceleration values, x ; this results in a curve that is usually referred to as a 

spectral acceleration hazard curve. 

Spectral acceleration hazard curves are normally provided by seismologists for a given 

site (e.g. the USGS website). Each curve provides the mean annual frequency of exceeding a 

particular spectral acceleration value for a given period and damping ratio. It is advantageous to 

approximate such a curve in the region of interest by a power-law relationship (see DOE 1994 

and Luco and Cornell 1998): 

(1.3)                                 ][)( 0
k

aaS xkxSPsH
a

−⋅=≥=  

where 0k  and k  are parameters defining the shape of the hazard curve.  

Figure 1.1 shows a typical hazard curve for a Southern California site that corresponds to 

a period of 1.8 seconds and damping ratio of 5%. As it can be seen from the figure, a line with 

slope k  and intercept 0k  is fit to the hazard curve (on the two-way logarithmic paper) around the 

region of interest (e.g., MAFs between 1/475 or 10% frequency of exceedance in 50 years, and 

1/2475 or 2% frequency of exceedance). Here, k =2.73 and 0k =0.00012. 

 

                                                 
1 A designated minimum value so that it is generally agreed that earthquakes with spectral acceleration values lower 
than this certain level don’t cause significant damage in the structure. 
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HSa(sa) =k0 (sa) -k 

 

Fig. 1.1 A typical hazard curve for spectral acceleration. It corresponds to a damping 

ratio of %5  and a structural fundamental period of 1.8 seconds 

  

It is important to note that the hazard values are usually provided in terms of the “mean 

rates” of exceedance over a certain time interval (usually a year) rather than the “probabilities” 

of exceedance. Therefore, it is more appropriate to refer to the hazard function as, for example, 

the “mean annual frequency” rather than the “annual probability” of exceeding a certain value. 

Nonetheless, for very small probability values, which are for example derived from a Poisson 

model, the average rate and the resulting probability value are almost the same. For simplicity, 

we are going to drop the “mean” term before the frequency. However, where epistemic 

uncertainty is introduced into the problem, we will need to be more precise in how we refer to 

the hazard function. 

1.4.7.2 Median relationship between spectral acceleration and interstory drift demand  

Observations of demand values are normally obtained from the result of structural time history 

analyses performed for various ground motion intensity levels. Figure 1.2 shows such results, 

e.g. maximum interstory drift, D versus aS . For a given level of ground motion intensity, there 

will be variability in the displacement-based demand results over any suite of ground motion 

records applied to the structure. It is assumed here that this variability is a result of randomness 

in the seismic phenomena as discussed before (later in Section 1.4.8 we will take into account the 
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epistemic uncertainties, such as uncertainty due to limited number of records, in addition to 

record-to-record variability). It is convenient to introduce a functional relationship between the 

ground motion intensity measure and a central value, specifically the median Dη  of the demand 

parameter based on the data available from such time history analyses. 

In general, for a spectral acceleration equal to x , the functional relationship will be: 

) ()( xgxD =η  

This is called the conditional median of D  given aS  (more formally denoted by )(| x
aSDη , 

but we shall keep the simpler notation). We can construct a full conditional probabilistic model 

of the variability displayed in Figure 1.2 by writing: 
     ) ()( εεη ⋅=⋅= xgxD D  

where ε  is a random variable with a median equal to unity and a probability distribution to be 

discussed below. At this point a particular functional relationship is introduced that both 

conforms to our perceptions of a structural performance curve and also helps simplify future 

analytical efforts. We have used linear regression in logarithmic space (i.e., xbaxaD lnln)(ln +=η  ) 

in order to fit a power-law function, b
aSa ⋅ , to our collection of maximum interstory drift ratio 

and “first-”mode spectral acceleration data pairs. 

 

η D=g(Sa) 

This is a probabilistic m odel of the 
(conditional) d istribution of dem and 
given an intensity level. 

            M axim um  Inter-story Drift, D  

η D.e-β
 

η D.eβ
 

D

D 

 
Fig. 1.2 A set of spectral acceleration and demand data pairs and the regression model fit 

to these data points. 
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It is not an objective here to describe the various ways )(xDη  may be estimated. In design 

practice it is likely to come from one or more structural analysis procedures, perhaps previously 

calibrated to nonlinear dynamic results for similar structures (FEMA 350 2000 and Yun and 

Foutch 2002). In assessment practice or research it can be obtained through one or more schemes 

of selecting and processing records and results (Bazzurro et al. 1998; Luco and Cornell 1998; 

Vamvatsikos and Cornell 2001). We shall see below that the number of required time history 

analyses may be quite small (e.g., on the order of 5 to 10). For a set of drift demand and spectral 

acceleration data points, such a regression in the logarithmic scale will result in the following 

relationship between spectral acceleration and (median) interstory drift response: 

)4.1(                                           )( b
aD xax ⋅=η  

Figure 1.2 illustrates a typical power-law relationship between the median maximum 

interstory drift demand and the spectral acceleration for a three-story steel frame building located 

in Los Angeles. In this case, 1≅b  which is consistent with the so-called “equal displacement 

rule” (Veletsos and Newmark 1960). 

1.4.7.3 Mean annual frequency of exceeding demand: drift hazard 

We are going to break the displacement-based approach for deriving the limit state frequency in 

Equation 1.2 into two parts. The first part is to derive the mean annual frequency (MAF) that the 

displacement-based demand exceeds a given value d, also referred to as the “drift hazard,” and 

the second part is to derive the MAF that the displacement-based demand exceeds limit state 

capacity, also referred to as the “limit state frequency.” In simple terms, the uncertainty due to 

randomness in demand and capacity is taken into account in two stages. This section describes 

the derivation of a closed-form expression for the mean annual frequency of exceeding a certain 

demand value d, also known as the “drift hazard,” by taking into account the randomness in the 

displacement-based demand.  

Recall from the last section that the median demand versus spectral acceleration 

relationship was introduced as: 

(1.5)                                     )( bxaxD ⋅=η  

As shown above, the demand can be written in terms of the product of its median value and a 

lognormal random variable ε  with the following characteristics: 
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(1.6)                                       )( εη ⋅= xD D  

We assume (based on observation of data) that ε  can be represented by a lognormal distribution, 

in which case we define its parameters, the median and standard deviation of εln , to be: 

(1.7)                                      
1

|)ln(

))(ln(

aSD

meane
βσ

η

ε

ε
ε

=
==

 

where εη  denotes the median value for ε . Note that what we call the “dispersion,” i.e., 
aSD|β , 

will in general depend to some degree on the level of aS . Here for analytical tractability, we 

assume that it is constant; the value should be chosen for aS  values in the range of primary 

interest. If )(xDη  is replaced with its corresponding value from Equation 1.4, the following 

expression for drift demand as a function of spectral acceleration and lognormal random variable 

ε  is obtained: 

(1.8)                                   ε⋅⋅= b
axaD  

Since we have assumed that ε  is a lognormal variable, we can also conclude that the 

displacement-based demand D is also a random variable with the following statistical properties: 

(1.9)            )(

)(

||ln

|

aa

a

SDSD

b
SD

x

xax

βσ
η

=

⋅=
 

where )(| x
aSDη  and )(|ln x

aSDσ  are the conditional median and standard deviation of the natural 

logarithm for the displacement-based demand given spectral acceleration. As mentioned above, 

the conditional standard deviation of the natural logarithm )(|ln x
aSDσ  or the conditional 

“fractional” standard deviation )(| x
aSDβ  of demand given spectral acceleration is assumed to be 

constant. The conditional median demand for a given spectral acceleration )(| x
aSDη  (or more 

briefly )(xDη ) is approximated as a power-law function of the spectral acceleration level, x.  

Figure 1.3 illustrates a graphical presentation of basic components of the derivation of a 

closed-from expression for drift hazard in which the median drift curve, the variability of the 

displacement-based response around it, and the conditional lognormal distribution fit to the data 

(at any given aS ) are all plotted together with the spectral acceleration hazard. The median drift 

times )exp( | aSDβ is referred to as the “mean plus one sigma” curve as it corresponds to the 84th 
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percentile of the data for a lognormal variable; this is illustrated in the figure as )exp()( | aSDD x βη ⋅ . 

In a similar manner, the median drift times )exp( | aSDβ− is referred to as the “mean minus one 

sigma” curve as it corresponds to the 16th percentile of the data (for a lognormal variable) that is 

illustrated in the figure as )exp()( | aSDD x βη −⋅ . 

In the previous sections we have defined the spectral acceleration hazard and limit state 

frequency as the product of a probability of exceedance term (i.e., a complementary cumulative 

probability density function or CCDF for brevity) times a rate parameter. Here we are also going 

to define the drift hazard )(dH D as the product of the rate parameter (also encountered in 

sections 1.4.4. and 1.4.7.1) ν and the probability of exceeding a specific demand value, d: 

][)( dDPdH D >⋅=ν  

 

Maximum inter-story drift angle (Demand), D HSa(x) 

D|Sa 
ηD=g(x) 

ηD (x)

x 

HSa(x) 

mean minus sigma  
median 
mean plus sigma  ηD.e-β

 

ηD.eβ
 D|Sa 

LN(ηD , βD|Sa) 

 
Fig. 1.3 Basic elements of the derivation of a closed-form expression for drift 

hazard, )(xH
sS , and of modeling the distribution of D  given aS  characterized by 

)(xDη and 
aSD|β . 

 

In this section we are going to derive the drift hazard by decomposition and 

recomposition with respect to spectral acceleration via the total probability theorem (TPT), 
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similar to the IM-based solution strategy outlined in Section 1.4.5 for deriving the limit state 

frequency. Applying the general solution strategy to the derivation of the drift hazard in this 

section, we can decompose the drift hazard into the conditional probability of exceeding drift 

value d for a given spectral acceleration value x and the likelihood that the spectral acceleration 

is equal to the value x: 

(1.10)                               ][]|[][)(
 xall

xSPxSdDPdDPdH aaD =⋅=>⋅=>⋅= ∑νν  

where, as mentioned before, ν  represents the (mean annual) rate of the occurrence of the “events 

of interest,” e.g., events with spectral acceleration greater than a designated minimum value. 

Thus, the drift hazard in Equation 1.10 is equal to ][ dDP >  times the rate of occurrence of the 

earthquake events that interest us. Therefore, the drift hazard itself is expressed in terms of the 

“rate of exceedance,” or the mean annual frequency of exceedance (MAF). 

We should note that the above expression involves discrete variables. However, since we 

are using analytic parameter estimations, we are going to base our derivations on an equivalent 

expression for the drift hazard derived for continuous variables: 

(1.11)     )(]|[)(]|[][)(
00
∫∫
∞∞

⋅⋅=>=⋅⋅⋅=>=>⋅= xdGxSdDPdxxfxSdDPdDPdH
aa SaSaD ννν  

where )(xf
aS  is the probability density function (PDF) at spectral acceleration value x, and, 

)(xG
aS  is the complementary cumulative distribution function (CCDF) at xSa = . It should be 

noted that the )(xdG
aS⋅ν  term in Equation 1.11 is resulting from the following relationship 

between )(⋅F  or the cumulative distribution function (CDF) and )(⋅f  or the PDF for a random 

variable (e.g., spectral acceleration aS ): 

(1.12)         
)()(][-][

lim
][

lim)(
00 dx

xdG
dx

xdF
x

xSPxxSP
x

xxSxP
xf aa

a

SSaa

x

a

xS ==
∆

≤∆+≤
=

∆
∆+≤≤

=
→∆→∆

 

The last equality is based on the fact that the CCDF is expressed in terms of the probability of 

exceedance whereas the CDF is expressed in terms of the probability of being less than or equal 

to exceedance. Therefore, their corresponding derivatives are equal in absolute values but will 

have opposite signs. 
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It should be noted that the spectral acceleration hazard )(xH
aS  is equal to the spectral 

acceleration CCDF, )(xG
aS  times the rate of seismicity ν : 

(1.13)                              )()(  xGxH
aa SS ⋅=ν  

Therefore, we can rewrite Equation 1.11 as a function of the spectral acceleration hazard: 

(1.14)         )(]|[ )(]|[)(
00
∫∫
∞∞

⋅=>=⋅⋅=>= xdHxSdDPxdGxSdDPdH
aa SaSaD ν  

Since we have assumed that the displacement-based demand is a lognormal variable, 

]|[ xSdDP a =>  can be derived using the tables that provide the CDF of a standardized normal 

variable (Rice 1995). In order to use the normal tables, we first need to transform the random 

variable D into a standardized normal variable: 

(1.15)                   
)ln(

1]
)(lnln)(lnln

[1                               

]|lnlnlnln[1]|[1]|[

||

|

|

|

||

⎟
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⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
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−
≤

−
−=

=−≤−−==≤−==>
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aa

SD

b

SD

SaD

SD

SaD

a
SDSD

aa

xa
d

xdxD
P

xSDmeandDmeanDPxSdDPxSdDP

ββ
η

β
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ββ

 

where )(⋅Φ  is the standardized Gaussian CDF. The above equation is derived based on the 

following property of a lognormal variable in which the mean of the logarithm is equal to the 

logarithm of the median (Benjamin and Cornell 1970): 

DDmean ηlnln =  

If we substitute the standardized Gaussian representation of ]|[ xSdDP a =>  in Equation 

1.15 into Equation 1.14, the drift hazard will be expressed as: 

(1.16)        )( }
)ln(

1{)(]|[)(
0 |0
∫∫
∞∞

⋅
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⋅Φ−=⋅=>= xdHxa
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xdHxSdDPdH
a

a

a S
SD

b

SaD β
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We are going to use integration by parts in order to re-arrange the above equation so that 

we can integrate it analytically. We first need to calculate the derivative of the first term in the 

integrand: 

(1.17)           lnlnlnln-  }
)ln(

1{
||||

⎟
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⎠
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⎜
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⎝
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⋅

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅−Φ=
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b
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x
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where ( )⋅φ  is the standardized Gaussian PDF which is equal to: 

( ) (1.18)       
2
1 2

2
1u

eu
−

=
π

φ  

for any standardized normal variable u. The drift hazard in Equation 1.14 is re-arranged into the 

following form after applying the integration by parts assuming that the term 

)(]|[ xHxSdDP
aSa ⋅=> is close to zero for the integration limits, i.e., very small and very large 

aS values. It should be noted that for a lognormal variable, the range of possible values vary from 

0  to ∞ . 

(1.19)       )(lnln)(
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0 ||0
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Now we are going to replace the hazard term )(xH
aS  by its power-law approximation 

from Equation 1.3 and also replace the Gaussian PDF by its analytical form in Equation 1.17: 

(1.20)             )lnlnln
2
1exp(

2
1)(

0
0

2

||
∫
∞

− ⋅⋅⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−⋅⋅
⋅

= dxxkxbad
x

bdH k

SDSD
D

aa
βπβ

 

In order to calculate the above integral analytically, we are going to form a square term in 

the power of the exponential term inside the integral (so that we can form a Gaussian PDF). This 

way we can calculate the integral by using the fact that the integral of a PDF function (over all 

possible values of the variable) is equal to unity. We begin by some simple algebraic 

manipulations in order to simplify the equation a bit: 
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The next step is to form a full squared term inside the integral and also take all the 

constant terms out of the integral: 
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Note that the term inside the integral is indeed the PDF for the standardized Gaussian variable u 

with the derivative 
dx
du : 
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Therefore the expression for drift hazard can be also written as: 
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Noting that the integral of a normal PDF over all the possible values is equal to unity, the 

drift hazard can be written in the following simplified form: 
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In order to have a more condensed formulation of the drift hazard, we introduce the 

notation d
aS  or spectral acceleration “corresponding” to drift angle d : 

  

1
bd

a a
dS ⎟
⎠
⎞

⎜
⎝
⎛=  

This is also the solution of Equation 1.4 for a given value of d , i.e., if we read the 

corresponding aS  value2 from b
aSad ⋅=  curve. The graphic interpretation of d

aS  can be seen 

from Figure 1.4. In simple terms, this means that for a given drift demand value d, we find the 

corresponding aS  value from the median curve b
aaD SaS ⋅=)(η .  

The derived closed-form expression can be further simplified by making use of the 

hazard curve definition in Equation 1.3: 

( )

(1.25)                                                                     )( )(
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eSHdH
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⋅=⇒

⋅⋅=⋅⎟
⎠
⎞

⎜
⎝
⎛⋅=

 

 

Fig. 1.4 Spectral acceleration corresponding to the demand value, d 
  

                                                 
2 Note that d

aS  is not necessarily the median aS for a given value of drift angle d . It is just the corresponding aS  
value found from the curve. In other words, the fact that the D - aS  curve gives the median drift d  for a given 
value of aS  does not mean that it will also provide the median aS for a given value of drift d . 
 

Maximum Interstory drift Angle,θmax 

Sa
  a

t  
 T

1   

η = a Sa 
b 

d 

Sa d 
D 
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It can be seen by inspection of Equation 1.25 that the hazard curve for the drift demand 

)(dH D  is equal to the hazard function (.)
aSH  evaluated at the spectral acceleration corresponding 

to this drift demand times a (magnifying) factor related to dispersion in the drift demand for a 

given spectral acceleration. The first factor can be interpreted as a “first order” estimate; it is also 

the drift hazard if the dispersion 
aSD|β  is zero. Experience suggests that the second factor may 

typically have values in the order of 1.5 to 3. Note that in this form one can read the first factor 

directly from a given hazard curve without actually making the approximating fit, kxk −⋅0 . The 

log-log slope k of the approximation is needed for the second factor, however. Numerical 

applications of the closed-form expression for drift hazard developed in this section can also be 

found in Medina ( 2002), where the drift hazard was derived both by using the closed-form in 

Equation 1.25 and also by the numerical integration of Equation 1.14 for a nine-story generic 

frame. Medina observed that the closed-form solution was reasonably close to the numerical 

integration. However, the results indicated a strong sensitivity to the estimated standard deviation 

that is assumed to be constant with respect to the intensity level (one of the assumptions 

underlying the closed-form solution). The authors (Jalayer and Cornell, 2003a,b) have plotted the 

drift hazard curve by incorporating local parameter-estimates (obtained from the results of 

nonlinear dynamic analyses) in the closed-form solution and have compared the results to that of 

the numerical integration for a seven-story reinforced concrete frame with degrading behavior in 

shear and flexure. It should be noted that by using local parameter estimates, some of the 

assumptions that led to the derivation of the closed-form expression (including the assumption of 

a constant standard deviation and of a power-law form for the median demand as a function of 

spectral acceleration) are overruled. Nonetheless, the results demonstrate good agreement 

between the numerical integration and the closed-form with local parameter estimates. 

1.4.7.3.1 Numerical example 

We will now derive the drift hazard curve for a three-story (model) structure with brittle 

connections located in Los Angeles. This structure is a typical three-story steel moment resisting 

frame building used in the SAC project (Luco and Cornell 1998). A set of nonlinear dynamic 

analyses has been conducted, and the resulting maximum interstory drift ratios have been plotted 

versus the first mode spectral acceleration as it is illustrated in Figure 1.5. The hazard curve 

represented in Figure 1.5 corresponds to oscillators with a fundamental period around 1.0 sec and 
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located in Los Angeles, thus we have used it as the spectral acceleration hazard curve for our 

model structure. In approximate analytical form it is: 

   00124.0][)( 03.3−⋅=≥= aaaS ssSPsH aa
 

Note that the k  value is nearly equal to 3.0. Our next step is to determine the median 

relationship between spectral acceleration and drift. This is done in Figure 1.5, by fitting a line to 

the data points in a log-log scale; which gives the following information: 

3.0299.0 
0325.0)(

|

002.1

≈=
⋅=

aSD

aaD SS
β
η

 

 

Sa  =0.6150.02 

HSa(sa)=0.007 

 

Fig. 1.5 Hazard curve for spectral acceleration at a period equal to 1.0 second and 

damping ratio of 2%. 

 

Note that 1≈b  for this range of data, i.e., the median drift is approximately proportional to aS . It 

should be mentioned, however, that there may be a certain level of nonlinearity (material or 

geometric) in which b  is not close to 1.0 anymore. Linear behavior is limited in this structure to 

interstory drifts less than about 0.01. We would like to evaluate the probability that the 

maximum interstory drift angle exceeds a specific value, say 2%, )02.0(DH . If we substitute 

0.02 for d in Equation 1.25: 

 )(  ]02.0[)02.0(
|

2
2

2

2
1

02.0 aSD

a
b
k

aSD eSHDPH
β⋅⋅

⋅=>=  
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Recall that d
aS  is equal to   

1
bd

a a
dS ⎟
⎠
⎞

⎜
⎝
⎛= per definition: 

  [g]   0.615
0325.0
02.0 1

02.0 =⎟
⎠
⎞

⎜
⎝
⎛=aS  

Equivalently we could simply have read this value from median line in Figure 1.5 by 

entering at a drift value equal to 0.02. Now we will look up the value of )615.0(
aSH for the 

spectral acceleration hazard curve. As illustrated in Figure 1.5 it is equal to 0.007. Hence, 

)02.0(DH can be derived as: 

 

0.0105  1.50.007.0070  ]02.0[)02.0(
)3.0)(

1
3)(

2
1( 2

2

2

=×=⋅=>= eDPH D  

Note that the factor )3.0
1
3

2
1exp( 2

2

2
⋅⋅ is equal to 1.50. 

We can repeat the above calculations for multiple drift values in order to obtain the drift 

hazard curve, or we can find an analytical expression for the drift hazard. In general, we can 

compute the drift hazard for a specified drift value, d, as follows: 

aSD

a
b
k

d
aSD eSHdDPdH

|
2

2

2

2
1

)(  ][)(
β⋅⋅

⋅=>=  

Recalling that )3.0
1
3

2
1exp( 2

2

2
⋅⋅ is equal to 1.5 and   

0325.0

1
d

a
dS

bd
a ≅⎟

⎠
⎞

⎜
⎝
⎛= , the above equation 

becomes: 

  )
0325.0

(5.1)(  )(
|

2
2

2

2
1

dHeSHdH
a

aSD

a S
b
k

d
aSD ⋅=⋅=

⋅⋅ β
 

Next we need to find the expression for the spectral acceleration hazard curve evaluated 

at   
0325.0
d . This is: 

   1025.4
0325.0

00124.0)
0325.0

( 38
03.3

−−
−

⋅⋅≈⎟
⎠
⎞

⎜
⎝
⎛⋅= dddH

aS  

Finally the drift hazard for a specified value of drift, d is derived as: 

   10375.6)( 38 −− ⋅⋅≈ ddH D  
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The above relationship is plotted in Figure 1.6. 

 

d1/100

1/100

 
Fig. 1.6 Hazard curve derived for maximum interstory drift values 

  

The above curve can be used to determine, for example, the 100-year return period drift, 

by setting )( 100/1dH D  to 1/100 and solving for 100/1d : 

 )(10375.6100/1 3
100/1

8 −− ⋅⋅= d  

solving for 100/1d :  0185.0100/1 =d . The same value can also be found simply from Figure 1.6. 

1.4.7.4 Annual frequency of exceeding a limit state 

We have already derived the mean annual frequency that the displacement response variable, D, 

exceeds a certain value. The next step is to find the probability that the response variable, D, 

exceeds a specified limit state threshold or capacity, C. The difference in this case is due to the 

fact that the limit state threshold can be a random variable itself. For example in the SAC project 

(FEMA 350, 2000) modern “reduced beam section” (RBS) connections were concluded to have 

a median capacity of 07.0=Cη  (interstory drift ratio) with a dispersion of 2.0=Cβ  reflecting 

specimen-to-specimen variability in (hypothetical3) test results and even possible record-to-

                                                 
3 In fact no connections were able to be tested by the SAC project to such large drift ratios. The parameters were 
estimated indirectly and are based on some level of expert opinion. 
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record variations in the drift failure due to sequence effects in the low-cycle fatigue suffered by 

the connection. Beyond the drift capacity, the connection lost virtually all vertical load-carrying 

(shear) capacity, implying the potential collapse of the floor above. In this section we will derive 

the expression for the limit state frequency, LSH , by introducing the variability in the limit state 

capacity. The basic elements involved in the derivation are illustrated in Figure 1.7. Once again 

we use the total probability theorem to sum up the joint probabilities that limit state variable 

exceeds the capacity variable for a given value of capacity, over the entire range of possible 

values for the capacity variable: 

(1.26)                         ][]|[][
 
∑ ==≥=≥

call
cCPcCcDPCDP  

We next assume that demand and capacity are (statistically) independent, i.e., that: 

(1.27)                                ][]|[ cDPcCCDP ≥==≥  

In Appendix C, we have outlined a derivation of limit state frequency when demand and 

capacity are correlated. 

HSa(sa ) 

LN(ηD|Sa,βD|Sa) 

ηD(x) 

sa 

HSa(x) 
LN(ηC ,βC) ηC

 ηC 

x 

 ηC 
 

Fig. 1.7 Basic elements of the derivation of a closed-form expression for limit state 

frequency )(xH
sS , distribution of drift variable D given aS  characterized by 

)(xDη and 
aSD|β , distribution of capacity variable C characterized by Cη and Cβ  
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The annual frequency of exceeding the limit state, LSH , can be expressed as the limit 

state probability ][ CDP ≥  times the seismicity rate ν  (as mentioned in Section 1.4.7.3): 

(1.28)                                     ][ CDPPH LSLS ≥⋅=⋅= νν  

Since we are going to base our derivations in this section on the expression for drift hazard, our 

calculations are going to yield the mean annual frequency of exceedance (or limit state frequency 

in short), LSH 4, as the end result. Therefore, the limit state frequency can be calculated by 

substituting Equations 1.26 and 1.27 into Equation 1.28: 

(1.29)                         ][][][
 
∑ =≥⋅=≥⋅=⋅=

call
LSLS cCPcDPCDPPH ννν  

The probability that drift demand exceeds drift capacity for a given value of drift capacity 

can be readily determined from the drift hazard curve: 

(1.30)                                 ][ )( cDPcH D ≥⋅= ν  

Substituting the term ][ cDP ≥⋅ν  in Equation 1.29 by the expression for )(cH D  from the above 

equation: 

(1.31)                         ][)(
 
∑ =⋅=⋅=

call
DLSLS cCPcHPH ν  

However, the above equation is valid for discrete variables; in the continuous form, the 

summation is replaced by an integral and the probability term, ][ cCP = , is replaced by the 

probability density function term, dccfC ⋅)( : 

(1.32)                       )()(∫ ⋅⋅=⋅= dccfcHPH CDLSLS ν  

Substituting the drift hazard value for )(cH D  from Equation 1.25 into Equation 1.32 

results in: 

(1.33)              )( )()()(
|

2
2

2

2
1

∫ ∫ ⋅== dccfeSHdccfcHH C
b
k

c
aSCDLS

aSD

a

β
 

                                                 
4 In this chapter, we have used the notation (.)H  in order to refer to the mean annual rate of exceedance. However, 
in the next chapters we may use the notation (.)λ instead. 
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From Equations 1.3 and 1.4, )( c
aS SH

a
 is equal to  0

b
k

a
ck

−

⎟
⎠
⎞

⎜
⎝
⎛⋅ . Thus, the limit state frequency is 

obtained by performing the following integration: 
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aSDaSD
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⎠
⎞
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⎛⋅=⋅⋅⋅=

−
ββ

 

For the above integral to be evaluated, the probability density function of the random 

variable C , )(cfC , has to be known. Here for tractability, it is assumed that C  is a lognormal 

random variable with following characteristics: 

CC

CCmedian
βσ

η
=

=

)ln(

)(
 

After some simple re-arrangements: 
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It can be seen that the term inside the last integral equals expectation of b
k

c
−

. It has been shown 

in Appendix A that the expected value of lognormal random variable Y (with median Yη and 

dispersion Ylnσ ), to the power of α equals to: 

 .e)( )()(
2
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aln Ya
Y

Yaa eEYE
σ

η==  

Since limit state capacity C is assumed to be a lognormal variable, the above property can 

be used to solve the integral in Equation 1.35 as follows (For further details regarding the 

integration scheme refer to Appendix A): 
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We conclude that: 
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We can recognize in the above expression the spectral acceleration hazard from Equation 

1.3 combined with the spectral acceleration-median drift relationship in Equation 1.4, 
bk

C ak /
0 )/( −η , which equals the hazard value for the spectral acceleration corresponding to 

median capacity, C
aSη : 

(1.36)                 )( 0

b
k

C
aS a

kSH C

a

−

⎟
⎠
⎞

⎜
⎝
⎛=
ηη  

Thus: 
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where the last equality is based on the expression for drift hazard  (.)DH at median capacity, Cη , 

from Equation 1.25, and C
aSη , as mentioned before, is the spectral acceleration “corresponding” 

to a drift value equal to Cη , i.e., ( ) 1
/

−
= b

Ca aS C ηη . Finally, the limit state frequency is derived as: 

(1.38)               )()( ][
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CDLS eeSHeHCDPH
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⋅⋅⋅⋅⋅

⋅⋅=⋅=>⋅=  

It can be observed that the limit state frequency (or the MAF of demand exceeding the 

limit state capacity) is equal to the hazard curve for the spectral acceleration corresponding to the 

median drift capacity times two coefficients accounting for the randomness in drift demand for a 

given spectral acceleration and the randomness in drift capacity itself. Again the first factor can 

be seen as a first-order approximation to the limit state frequency, LSH . 

1.4.7.4.1 Numerical example: 

Returning to our three-story frame numerical example of the last section, we now assume that the 

median drift collapse capacity and its dispersion parameter are given as (the same as the SAC 

connections example mentioned in Section 1.4.7.4): 

20.0
07.0)(

)ln( ≅=
≅=

CC

CCmedian
βσ

η
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We first need to find )( C
a aS SH η . We can do this graphically, where C

aSη  can be calculated 

as the spectral acceleration corresponding to 07.0=Cη  from the median-spectral acceleration 

curve in Figure 1.7 resulting in gSa 15.207.0 ≅  (note that the capacity points in the figure are only 

for schematic representation). The corresponding hazard value from the hazard curve (Fig. 1.8 

below) is equal to, 00012.0)15.2( ≅
aSH . 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8 The spectral acceleration hazard curve. The hazard value for a 

spectral acceleration equal to 2.15 is shown on the figure. 

 
Alternatively, we can use the closed-form expression derived in the previous section for 

the limit state frequency. Using Equation 1.36, we can calculate the hazard value for the spectral 

acceleration corresponding to the median drift capacity as: 

4-
3

07.0 101.2
0325.0
07.000124.0)()( ×=⎟

⎠
⎞

⎜
⎝
⎛⋅==

−

aSaS SHSH
a

C
a

η  

Also, the capacity factor in Equation 1.38 can be calculated as follows: 

19.1]18.0exp[]2.0
1
3

2
1exp[)

2
1exp( 2

2

2
2

2

2
==⋅⋅=C

b
k β  

This value and the 1.50 value for the coefficient )
2
1exp( |

2
2

2

aSD
b
k β  already calculated in Section 

1.4.7.3.1 are used to calculate the annual frequency of exceeding the limit state from Equation 

1.38 as follows: 

Sa  =2.150.007
HSa(Sa       )=0.000120.007
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 102.219.11.50101.2 )( 4-4-2
1

2
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×=×××=⋅⋅= aSDC
C

a
b
k

b
k

aSLS eeSHH
ββη  

It can be seen that in this example that the randomness in the drift capacity and in the 

drift demand for a given spectral acceleration cause the limit state frequency to increase about a 

factor of 2 over its first order approximation of, 4102.1)( −×=C
a aS SH η . 

1.4.7.5 Annual frequency of exceeding a limit state, using the IM-based solution strategy 

In this section we are going to derive the annual frequency of exceeding a limit state, LSH , by 

following the IM-based solution strategy outlined in Section 1.4.5. The total probability theorem 

(TPT) is used to decompose the expression for the limit state frequency into (conditional) 

frequencies of exceeding the limit state for a given spectral acceleration (the adopted IM), and to 

compose the results by integration over all spectral acceleration values: 

)39.1(        )(][)(]|[][ ,,, ∫∫ ⋅≥=⋅⋅⋅=≥=≥⋅= xdHSxPdxxfxSSSPSSPH
aa SCaSaCaaCaaLS νν  

where aS  represents the IM-based demand, CaS ,  represent the limit state capacity also expressed 

in spectral acceleration terms, and ν  represents the seismicity rate (the reason for including it in 

the derivations is explained before for the displacement-based derivation). We have used 

Equation 1.12 in order to express the PDF of spectral acceleration in terms of the increment in 

the spectral acceleration hazard. We assume that the spectral acceleration capacity is a lognormal 

variable with the following statistical parameters: 

CaCa

Ca

SS

SCaSmedian

,,

,

)ln(

, )(

βσ

η

=

=
 

We can observe that the first term in the integral ][ ,Caa SsP ≥  can be also interpreted as the 

CDF of the spectral acceleration capacity at, xSa = : 

][)( ,, CaS SxPxF
Ca

≥=  

Since CaS ,  is assumed to be a lognormal variable, the corresponding CDF can be expressed in 

terms of the standardized normal CDF: 



 31

(1.40)               
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In order to be able to integrate Equation 1.39, we use integration by parts and transform the 

equation into the following form: 
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Just as in Section 1.4.7.3, the derivative of the standard normal CDF can be calculated as: 
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After the derivative of the normal CDF in Equation 1.42 is substituted into Equation 1.41, and 

the hazard term is replaced by the power-law approximation from Equation 1.3: 
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If we substitute the expression for the normal PDF in Equation 1.18 into the above equation: 
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Similar to the derivation in Section 1.4.7.3, we transform the integrand into a complete 

square term and take all the constant terms outside of the integrand: 
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The term inside the integral is itself the derivative for a standard normal CDF: 
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(1.46)                              )}
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Noting that the integral is equal to unity, the limit state probability can be derived as: 

(1.47)       )
2
1exp(  )exp()

2
1exp(][ 22

0
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0, ,,,, CaCaCaCa S
k

SSSCaaLS kkkkkSSPH βηηβ ⋅⋅⋅=⋅−⋅⋅⋅=≥= −  

We can observe the power-law term outside the exponential is equal to the frequency of 

exceeding (i.e., hazard) a spectral acceleration equal to the median spectral acceleration capacity: 

(1.48)          )
2
1exp() (][ 22

, ,, CaCaa SSSCaaLS kHSSPH βη ⋅⋅=≥=  

We can argue that ) (
,Caa SSH η  is a first-order approximation to the limit state frequency 

and the exponential term )2/exp( 22
,CaSk β⋅  is a magnifying factor that accounts for the sensitivity 

of the limit state probability to the randomness in the spectral acceleration capacity. If we 

compare the IM-based expression for the limit state frequency in Equation 1.48 to the 

displacement-based one in Equation 1.38, we can observe that the exponential term accounting 

for the dispersion in displacement-demand is missing. Also the slope parameter b that measures 

the gradient of the displacement-based demand with regard to spectral acceleration is absent. 

This is because the IM-based solution strategy, when applying TPT to derive the limit state 

frequency, does not employ the displacement-based demand as (one of the) an intermediate 

variable(s). 

A numerical application of the IM-based closed-form expression for the limit state 

frequency in Equation 1.48 can be found in a paper by Cordova et al. (2000), where the closed-

form solution is used for the seismic assessment of a composite frame, using spectral 

acceleration and a proposed IM that also carries spectral shape information as intensity measures. 

1.4.8 Randomness and Uncertainty as the Sources of Uncertainty 

In previous sections, a closed-form expression for the mean annual frequency of exceeding a 

limit state (here, the collapse limit state) was derived. We observed that the hazard value for the 

load intensity measure corresponding to median drift capacity (i.e., the MAF of exceeding the 
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load intensity measure corresponding to median drift capacity) is a first-order approximation to 

the limit state frequency. This first-order approximation is multiplied by two coefficients 

accounting for the randomness in drift demand for a given spectral acceleration and the 

randomness in drift capacity itself.  

Our objective here is to derive the limit state frequency when there is both randomness 

and uncertainty in the design variables such as spectral acceleration hazard, drift demand given 

spectral acceleration, and drift capacity. Our derivations are going to be based on the assumption 

that, to a first approximation, we can represent all the epistemic uncertainty in variable X by the 

uncertainty in its median. The model becomes: 

(1.49)                     ˆ XXX εεη η ⋅⋅=  

where Xη̂  is the current point estimate of the median of X , the unit-median random variable ηε  

represents the epistemic uncertainty in the estimation of the median of X , and the unit-median 

random variable Xε  represents the aleatory randomness of X . We are also going to assume that 

the deviation from median, ηε , can be properly modeled by a lognormal distribution. In general, 

of course, the epistemic uncertainty in Xβ  should also be taken into account. Also, the shape of 

the distribution of X  may not be properly described by a lognormal distribution. 

As in the previous section, we start by deriving the hazard values for the load intensity 

variable, spectral acceleration of the “first” structural mode. We use some probabilistic tools 

(e.g., TPT as explained previously) to derive the hazard values for the limit state variable, 

maximum interstory drift, and then complete the derivation by obtaining the limit state 

probability PLS. Whenever possible the results obtained in the previous part are used and 

generalized to the case where there is both randomness and uncertainty in the design variables. 

1.4.8.1 Spectral acceleration hazard 

The concept of hazard curves for the load intensity measure was introduced in the previous 

section. Our focus was on the spectral acceleration hazard curves which are normally provided 

by seismologists for a given site condition and its location with respect to a fault. The hazard 

curve estimation involves many scientific assumptions (Kramer 1996). In other words there is 

uncertainty in the estimation of a hazard curve. That is why spectral acceleration hazard curves 
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are normally provided as mean and 84th percentile hazard curves (Fig. 1.9). Here we are going to 

take into account the uncertainty in the estimation of the spectral acceleration hazard.  

In the previous sections, we found it advantageous to approximate the hazard curve by a 

power-law relationship as proposed by Kennedy and Short (1994) and Luco and Cornell (1998): 

  )( 0
k

aS xksH
a

−
⋅=  

where 0k  and k  are parameters defining the shape of the hazard curve. We are going to let an 

equation of the same form as the one above represent the median estimate of the uncertain hazard 

curve: 

(1.50)                                                 )(ˆ
0

k
S xkxH

a

−
⋅=  

Further, we introduce the random variable UHε  that represents the uncertainty in the 

spectral acceleration hazard, so that we have: 

(1.51)                                                )(ˆ)( UHSS xHxH
aa

ε⋅=  

Here we have assumed that UHε  is a lognormal random variable whose statistical parameters 

have the following characteristics: 
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where UHβ  reflects the degree of uncertainty in the PSHA estimation. We recognize the spectral 

acceleration hazard itself as an uncertain (random) variable, )(~ xH
aS , which can be represented as 

the median (“best”) estimate times this uncertain deviation, UHε~ : 

(1.53)~)()(~
                                                                                          UHSS xHxH

aa
ε⋅=

)
 

Note the use of a tilde to denote a random variable when clarity is needed. Considering our 

assumption about UHε~  being lognormal, we can observe from the above equation that the hazard 

value for any value of aS  can also be treated as a lognormal random variable (i.e., instead of 

having a single deterministic value assigned to it, it has a probability distribution). The spectral 

acceleration hazard can be written as: 

(1.54)                                )()(~
0 UH

k
UHSS xkxHxH
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εε ⋅=⋅= −

⋅
)
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where )(~ xH
aS  is a lognormal random variable with its median equal to )(xH

aS
)

 from Equation  

1.50 and its dispersion measure (i.e., the standard deviation of the natural logarithm or fractional 

standard deviation) equal to UHβ . The mean hazard curve can be written as: 

(1.55)                          )( )()()(
2

2
1
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aaa
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β
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))
 

This equation is based on a property of the lognormal variables, where the expected value 

of a lognormal variable is equal to its median times the exponential of half of the squared 

standard deviation (Appendix A). Figure 1.9 shows the 16th percentile, median, mean, and 84th 

percentile hazard curves for a California site that corresponds to a period of 1.8 seconds and 

damping ratio of 5%. Note that the median curve in the figure is the same hazard curve used in 

the previous section. The 84th percentile is given by: UH
a

exH S
β⋅)(ˆ . 

 

HSa(x) =k0 (x)–ke βUH
 84th 

HSa(x) =k0 (x)–keβ2
UH/2

HSa(x) =k0 (x)k 

 

Fig. 1.9 16th, 50th (median), and 84th percentile spectral acceleration hazard 

corresponding to a damping ratio equal to %5  and a structural fundamental 

period of 1.8 seconds 

 

Figure 1.10 shows the basic components of drift hazard estimation when there is 

uncertainty (due to limited knowledge and data) in the estimation of the spectral acceleration 

hazard, )(~
aS sH

a
. The probability density for uncertainty in hazard is plotted with solid black 
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lines. The two hazard curves on the graph correspond to the median estimate of hazard, )(ˆ
aS sH

a
, 

and hazard curve for a given value of deviation, UHε , in the estimation of hazard curve, 

UHaS sH
a

ε⋅)(ˆ , respectively. 

1.4.8.2 Mean annual frequency of exceeding a drift demand value: drift hazard 

Recall from the previous section that the drift demand variable (given a specified aS  level) was 

introduced as the median demand value times a random variable ε  representing the random 

variation (e.g., record-to-record) around the median value. We assumed that ε  has a lognormal 

distribution: 

)56.1(                                   )( εη ⋅= xD D  

Randomness is assumed to be the only source of variability in the above expression. In 

general, the median drift demand is also an uncertain quantity. The uncertainty in the median 

drift demand is caused by the limited knowledge and data about modeling and analysis of the 

structural system especially in the highly nonlinear range and/or exact numerical values of the 

parameters of the structural model. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.10 Basic components for the evaluation of drift hazard taking into account the 

uncertainty in the estimation of spectral acceleration hazard, )(~ xH
aS  
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The uncertainty is also caused by using a finite number of nonlinear analyses to estimate 

the median value. The scatter of the displacement-based response in Figure 1.2 indicating record-

to-record variability implies that the estimate of the median, )(ˆ xDη , can depend on the particular 

sample of records used and its size. In order to distinguish this type of uncertainty from the one 

considered in the previous section, we refer to it as epistemic uncertainty. The median interstory 

drift can be expressed as the product of its median estimate, )(ˆ xDη  and a random variable UDε  

(UD stands for the uncertainty in evaluation of D) representing the uncertainty involved in the 

evaluation of )(xDη : 

(1.57)                                 )(ˆ)( UDDD xx εηη ⋅=  

Replacing )(xDη  in Equation 1.56 with its representation in Equation 1.57, the drift 

demand can be written as: 

)58.1(                                           )(ˆ εεη ⋅⋅= UDD xD  

In order to be consistent with the notation, UDε , we now subscript ε with RD, standing 

for the randomness (aleatory uncertainty) in drift demand evaluation. Finally the drift demand is 

represented as: 

(1.59)                               )(ˆ)( RDUDDUDD xxD εεηεη ⋅⋅=⋅=  

where RDε  and UDε  are assumed to be independent and to have lognormal distributions with 

the following characteristics: 
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Our objective in this section is to derive the probability that the drift demand D exceeds a 

specific value d. In order to minimize the calculation efforts, we will make use of the drift 

demand hazard that was derived in the previous section assuming that there was no epistemic 

uncertainty. The drift hazard or the mean annual frequency that the drift demand exceeds a 

specific value was derived from Equation 1.25 as: 
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The spectral acceleration hazard for a given value of deviation (from the median) in its 

estimation, UHε , can be found from Equation 1.54 as: 

UH
kxUHSS kxHxH

aUHa
εεε ⋅=⋅= −⋅0  | )()(
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Replacing the above value for spectral acceleration hazard in Equation 1.25, we obtain 

the drift demand hazard for a given value of deviation in the estimation of the spectral 

acceleration hazard, UHε : 
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In the next step, we derive the drift hazard function for a given value of deviation in the 

estimation of spectral acceleration hazard, UHε , and a given value of deviation in the estimation 

of the median drift demand, UDε  : 
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The term )(ˆ
|

d
aS sH

UDa ε  can be interpreted as the median spectral acceleration hazard for the 

spectral acceleration that corresponds to drift d for a given value of deviation UDε  in the median 

drift estimation:  

(1.62)                                    )(ˆ )(ˆ |
|

UD

aUDa

d
aS

d
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ε =  

In order to be able to calculate the above value, we need to find UDd
as ε|  or the spectral 

acceleration corresponding to drift d for a given value of deviation UDε  in drift estimation. The 

median drift demand for a given value of deviation UDε  can be found from Equation 1.57 as: 

UDDD xx εηη ⋅= )(ˆ)(  

At this stage we assume that )(ˆ xDη  has the same functional form as the one )(xDη  had in the 

previous part, stated in Equation 1.4, namely: 

(1.63)                                                     )(ˆ b
D xax ⋅=η  
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Substituting the value for )(ˆ xDη  from Equation 1.63 in Equation 1.57, the median drift 

demand can be derived as: 

)64.1(                                               )( UD
b

D xax εη ⋅⋅=  

UDd
as ε|  or the spectral acceleration corresponding to drift d for a given value of deviation UDε  in 

drift estimation can be calculated by setting )(xDη  in Equation 1.64 equal to d and solving for 

UDd
as ε| . Hence, UDd

as ε|  can be defined as5: 
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A graphic interpretation of UDd
as ε|  can be seen in Figure 1.11. As can be observed from the figure, 

UDd
as ε|  is the aS  corresponding to drift value d  from the curve UD

bxa ε⋅⋅ : 

 

Fig. 1.11 Spectral acceleration corresponding to the interstory drift ratio value d

for a given value of deviation in the estimation of median drift, UDε  

 

                                                 
5 In fact UDd

as ε|  is nothing but the spectral acceleration corresponding to drift demand d which is being calculated 

from the curve UD
bxa ε⋅⋅  instead of bxa ⋅  . 
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 Replacing the value for UDd
as ε|  from Equation 1.65 in Equation 1.61: 

(1.66)            )(ˆ)(ˆ )(
2

2

2
2

2

2

2
1

2
1

|,| UH
b
kd

aS
b
k

UH
d
aSD

RD
UD

a

RD

UDaUDUH
esHesHdH εε

βεβ

εεε ⋅⋅=⋅⋅=
⋅⋅⋅⋅

 

where )(ˆ / UHd
asH ε  can be calculated from Equations 1.65 and 1.50 as follows: 

 

(1.67)                                   )(ˆ
0

b
k

UD

d

aS a
dksH UD

a

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅=
ε

ε  

Substituting the value of )(ˆ / UHd
asH ε from Equation 1.67 in Equation 1.66 results in: 
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In short, we have an expression for the drift hazard conditioned on given values of 

deviations in the estimation of spectral acceleration hazard, UHε , and drift demand, UDε , due to 

epistemic uncertainty. Recalling from the last section, the spectral acceleration hazard could be 

interpreted as an uncertain variable, 

UH
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−

0)(~  

In the same manner, the drift hazard can also be interpreted as an uncertain (random) 

variable )(~ dH D , which is a function of the uncertain spectral acceleration hazard, )(~
aS sH

a
, and 

the uncertain variable representing the epistemic uncertainty in drift prediction, UDε : 
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The product of independent lognormal random variables raised to powers, such as bk / , is 

again a lognormal random variable (Benjamin and Cornell 1970). Therefore, we can conclude 

that the drift hazard can also be represented by a lognormal random variable whose distribution 
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parameters can be calculated based on the information about the distribution characteristics of 

UHε  and UDε  from Equations 1.52 and 1.60: 
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Therefore, the drift hazard )(~ dH D is an uncertain quantity with median: 
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and fractional standard deviation: 
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Also, the mean drift hazard, )(dH D , is equal to: 

(1.72)                       )(ˆ)(ˆ)(
2

2

2
2

2

2
2

2

2

2
1

2
1

2
1

DUHRD

a

DUH
b
k

b
k

d
aS

b
k

DD eesHedHdH
βββ

⋅⋅=⋅=  

After substituting 
DUHβ  from Equation 1.69: 
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Note that the uncertainty in the hazard curve can be dealt with simply by using the mean 

estimate of the hazard curve. Similar to Figure 1.3, Figure 1.12 illustrates a graphical 

presentation of basic components for the derivation of drift hazard, but in this case there is 

uncertainty both in the estimation of median drift curve Dη~  and spectral acceleration hazard, 

)(~
aS sH

a
. Figure 1.12 is a plot of the median estimate, Dη̂ , of the median drift curve (that is 

treated as an uncertain quantity itself), the probability density reflecting the uncertainty in Dη̂  

about that estimate, with a fractional standard deviation equal to, UDβ , a realization of median 

drift curve UDD εη ⋅ˆ  for a given value of deviation UDε , and the fractional standard deviation RDβ  

due to record to record variability in the results of dynamic analyses around it. The median 
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estimate for spectral acceleration hazard )(ˆ
aS sH

a
 and the spectral acceleration hazard for a given 

value of deviation in hazard estimation, UHaS sH
a

ε⋅)(ˆ , are shown in the same manner as in Figure 

1.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.12 Basic components for the derivation of drift hazard taking into account the 

epistemic uncertainty in the estimation of spectral acceleration hazard 

)(~
aS sH

a
and median drift Dη~  

 

1.4.8.2.1 Numerical example 

Returning to our numerical example, we are going to calculate the mean drift hazard in the case 

where there is epistemic uncertainty in the evaluation of the drift demand. We have the 

maximum interstory drift values resulting from 30 different nonlinear time history runs plotted in 

Figure 1.2. Fitting a line in log-log space to the data points gives us the following information 

about the median interstory drift and the dispersion around it: 

3.0299.0 
                              0325.0)(

|

002.1

≈==
=

aSDRD

aD sx
ββ

η  

Maximum inter-story drift angle (Demand), D 

 

ηD

HSa(x).εUH 

LN(ηD.εUD, βRD) LN(ηD, βUD)

ηD.εUD 

HSa(x) 

LN(HSa(x), βUH) 

Hazard HSa(.) 



 43

But strictly, this is just the median estimate, )(ˆ xDη , of the median drift curve. The error in 

the estimation of the median interstory drift can be due to modeling errors and other 

approximations involved in the analysis procedure. Here we limit the consideration to the 

statistical uncertainty in the median due to the finite sample size (nsample=30). The statistical 

properties of the median interstory drift can be calculated as (see Rice 1995 for the statistical 

parameters for the mean estimate): 
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Analogous to the previous section, we would like to evaluate the mean estimate of the 

MAF that the maximum interstory drift angle exceeds a specific value, say 2%, )02.0(DH . If we 

substitute 0.02 for d in Equation 1.73: 
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The mean estimate for the spectral acceleration hazard can be calculated from:  
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Here, it is assumed that UHβ  is equal 0.50. With this assumption we can look up the value for 

)615.0(ˆ
aSH  from the spectral acceleration hazard curve in Figure 1.5, which is equal to 0.007. 

Hence, 
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Note that in the previous section, where (it was assumed that) there was no epistemic 

uncertainty in the estimation of interstory drift demand, )02.0(DH was equal to 0.0105. The net 

uncertainty here in the estimation of )02.0(DH  can be represented by the fractional standard 

deviation of the drift hazard: 

526.0 055.0
1
3)5.0( 2

2
2 =+=

DUHβ  

It can be observed that the primary contribution to 
DUHβ  comes from the epistemic uncertainty in 

probabilistic seismic hazard estimation (PSHA). However, this can change if UDβ  increases to as 

large as 0.15. If nonlinear dynamic modeling errors are considered, this value is likely to be 

considerably larger than 0.15. 

1.4.8.3 Annual frequency of exceeding a limit state  

Next, we will derive a closed-form expression for the frequency that the drift demand exceeds 

the drift capacity or the limit state frequency taking into account the epistemic uncertainty. In the 

last section a closed-form expression was derived for the mean annual frequency that the drift 

demand exceeds a specified value of drift (also known as drift hazard), in which epistemic 

uncertainty in the estimation of spectral acceleration hazard and drift demand were taken into 

account. Now, we are interested in calculating the probability that the drift demand exceeds drift 

capacity, which is an uncertain quantity itself. In the previous section (1.4.7), the capacity was 

assumed to be an uncertain (random) variable due to aleatory uncertainty in its estimation, e.g., 

connection-to-connection variability in a to-be-built design and record-to-record variability. 

The drift capacity variable was introduced above as a median capacity value times a 

random variable Cε  representing the deviations from the median value. We assumed that Cε  is 

represented by a lognormal distribution: 

)74.1(                                                      CCC εη ⋅=  

In general, median capacity can also be treated as an uncertain (random) variable. The 

epistemic uncertainty in the median capacity is caused by the limited knowledge and data about 

for example, untested connection designs or nonlinear structural modeling and/or structural 

analysis for global stability prediction. The median capacity variable can be expressed as the 
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product of its median value, Cη̂ , and a random variable UCε  (UC stands for the uncertainty in 

evaluation of capacity, C) representing the uncertainty involved in the estimation of Cη : 

)75.1(                                                    ˆ UCCC εηη ⋅=  

Finally, we subscript ε with RD, standing for the randomness in drift demand evaluation: 

)76.1(                                         ˆ RCUCCUCCC εεηεη ⋅⋅=⋅=  

RCε  and RCε  are assumed to be independent and to have lognormal distributions with the 

following characteristics: 
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Our objective in this section is to derive the probability that drift demand, D, exceeds 

drift capacity, C, recognizing the uncertainty in spectral acceleration hazard, structural demand, 

and structural capacity. Based on the expression derived for the limit state frequency in the 

previous part, Equation 1.38: 
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We are going to use the above equation and combine it with the closed-form expression 

derived for the drift hazard (taking into account epistemic uncertainty) in order to derive the limit 

state frequency, LSH . Assuming that capacity is a specific deterministic value, c, (i.e., there is 

neither randomness nor uncertainty associated with the evaluation of capacity), the drift hazard 

function for drift level c (for a given value of uncertainty in spectral acceleration hazard, UHε , 

and uncertainty in drift demand, UDε ) can be derived based on the results of the previous section 

from Equation 1.61, substituting c for d: 
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We are going to first find the limit state frequency conditioned on the uncertainties in 

spectral acceleration hazard, drift demand, and drift capacity. The median capacity for a given 
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deviation, UCε , of the estimated median drift capacity from median drift capacity is written below 

based on Equation 1.75: 

)80.1(                                        ˆ  | UCCC UC
εηη ε ⋅=  

If we substitute the median capacity associated with this given deviation, 
UCC εη | , from 

Equation 1.80 for c  in Equation 1.79, the drift hazard conditioned on the uncertainties in spectral 

acceleration hazard, drift demand and drift capacity will be found as: 
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Substituting the conditional drift hazard term, calculated at 
UCC εη |  into Equation 1.78, the 

limit state frequency for a given value of uncertainty in spectral acceleration hazard, drift 

demand and drift capacity can be found: 
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The above expression gives the limit state frequency conditioned on the uncertainty in the 

estimation of spectral acceleration hazard, drift demand, and drift capacity as an analytical 

function of UHε , UDε , and UCε , the random variables representing the above-mentioned 

uncertainties. Similar to what we did in the previous section for the derivation of drift hazard, 

here we can interpret the limit state frequency itself as an uncertain (random) variable, LSH~ . 

Recall from Equation 1.54 that the term  
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is equal to )(~ ˆC

a aS SH η . Hence, the limit state frequency can be introduced as an uncertain quantity 

that is a function of the spectral acceleration hazard, )ˆ(~
CSa

H η , the deviation in drift demand 

prediction, UDε  and the deviation in drift capacity prediction, UCε : 
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It can be observed that the limit state frequency is also a lognormal random variable 

whose distribution parameters can be calculated based on the information about the distribution 

characteristics of UHε , UDε , and UCε  from Equations 2.52, 2.60, and 2.77: 
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Therefore, the uncertain limit state frequency LSH~  is an uncertain quantity with median, 
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and, fractional standard deviation equal to: 
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Also, the mean estimate of limit state frequency denoted by, LSH , is equal to: 
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Note that in this final form, the mean estimate of LSH~  looks like LSH  without uncertainty 

(Equation 1.38) but now based on the mean estimate of )(~
aS sH

a
, and with increased 2β in 

capacity and demand (given aS ) exponential terms. Figure 1.13 illustrates a graphical 

presentation of basic components for the derivation of the limit state frequency; where there is 
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(epistemic) uncertainty in the estimation of spectral acceleration hazard, )(~
aS sH

a
, median drift 

demand curve, Dη~ , and median drift capacity, Cη~ . In Figure 1.13, we plot together the median 

estimate, Cη̂ , of the uncertain drift capacity, the probability density reflecting the uncertainty in 

Cη about that estimate, with dispersion, UCβ , median drift capacity for a given deviation, UCε , in 

the estimation of median drift capacity UCC εη ⋅ˆ , and the probability density reflecting the 

randomness type of uncertainty (e.g., specimen-to-specimen variability in the estimation of 

capacity) in capacityC about the median drift capacity UCC εη ⋅ˆ , with dispersion, RCβ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.13 Basic components for the derivation of the limit state frequency when there is 

uncertainty in the estimation of the spectral acceleration hazard, )(~
aS sH

a
, 

median drift demand, Dη , and median drift capacity, Cη . 

 

1.4.8.3.1 Numerical example 

For our three-story frame numerical example, we would like to calculate the mean estimate of 

the limit state frequency when there is uncertainty both in the estimation of median drift demand 

and median drift capacity. Recall from the last section that the median drift and the dispersion of 
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drift for a given level of spectral acceleration was estimated (by fitting a line in the log-log space 

to the data points obtained by performing 30 different nonlinear time history analyses) as: 

3.0299.0 
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We have also estimated the statistical properties of the uncertain median drift demand as: 
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The median and dispersion for drift capacity were given before: 
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Note that the dispersion parameter Cβ  represents the aleatory (randomness) type of 

uncertainty in drift capacity. We have estimated the statistical properties of the (now uncertain) 

median drift capacity as follows (for an assumed sample of size 4 as the number of tests upon 

which the estimate of the median connection capacity is based): 
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Equation 1.86 gives the mean limit state frequency as: 
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Our next step is to calculate the median spectral acceleration hazard at a spectral 

acceleration corresponding to median drift capacity: 
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assuming that 5.0=UHβ , the same as in the previous sections. We can also look up the value for 

aSĤ  from the spectral acceleration hazard curve, which is equal to 0.00012 (Fig. 1.14 below). 

from Figure 1.5,. Hence, the mean estimate of the limit state frequency LSH  can be derived as: 
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Note that in Section 1.4.7 we calculated the limit state frequency when the epistemic 

uncertainty in the estimation of median demand and capacity was not taken into account. The 

limit state frequency in that case was equal to 4102.2 −× , whereas the mean estimate of the limit 

state frequency calculated in the presence of uncertainty in the estimation of hazard, demand and 

capacity is 41068.2 −×  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.14 Median estimate for the spectral acceleration hazard curve. The hazard value 

for a spectral acceleration equal to 2.15 is shown. 

 

 

Sa  =2.150.007 
HSa(Sa       )=0.00012 0.007 
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1.4.8.4 Annual frequency of exceeding a limit state: the IM-based approach 

The MAF of exceeding a limit state following the IM-based solution strategy was derived in 

Section 1.4.7.5, considering only the aleatory uncertainty (due to record-to-record variability) in 

demand and capacity. This section follows the same approach in order to derive the limit state 

frequency considering also the epistemic uncertainty. Similar to the previous sections, it is 

assumed that the median capacity variable can be expressed as the product of its median 

value,
CaS ,

η̂  and a random variable 
CaUS ,

ε  representing the uncertainty in the prediction of 
CaS ,

η : 

)87.1(                                         ˆ
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Similar to the previous sections, we can represent the spectral acceleration capacity as: 
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where 
CaRS ,

ε  and 
CaUS ,

ε  are assumed to be independent and to have lognormal distributions with 

the following characteristics: 
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where 
CaRS ,

β  and 
CaUS ,

β  are fractional standard deviations representing the randomness and 

uncertainty in the spectral acceleration capacity, respectively. It can be shown (the procedure is 

similar to the one described for the displacement-based approach in detail) that the limit state 

frequency LSH~  is an uncertain quantity with its median equal to, 
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and the fractional standard deviation equal to: 
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and the mean limit state frequency, LSH , is equal to: 
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As with the limit state frequency derived following the displacement-based case, the 

mean estimate of LSH~  looks like LSH  without uncertainty (Equation 1.48) but based on the mean 

estimate of )(~
aS sH

a
, and with increased 2β in the spectral acceleration capacity due to the 

consideration of epistemic uncertainty. 

1.5.1 Summary 

A closed-form analytic foundation for the probabilistic seismic assessment of structures has been 

developed, taking into account the randomness (aleatory uncertainty) and uncertainty (epistemic 

uncertainty) in the seismic hazard, demand, and capacity parameters. This foundation is based on 

a closed-form analytical expression for the mean annual frequency of exceeding a limit state 

(limit state frequency in short). Two different solution strategies were presented for deriving the 

limit state frequency, namely, displacement-based and IM-based. Both approaches are based on 

simplifying assumptions regarding the shape of the hazard curve and the probabilistic models 

representing demand and capacity. This technical foundation forms an analytic basis upon which 

alternative design and assessment formats can be developed. These formats are discussed in the 

next chapter.  

1.5.1 The Developed Technical Framework in the Context of PEER 

A probabilistic foundation for seismic performance assessment of structures can be based on the 

acceptable probability of exceeding specific performance levels (Cornell and Krawinkler 2001).  

The performance levels can be described and quantified as different levels of acceptable 

structural behavior. The Pacific Earthquake Engineering Center (PEER) employs the notion of 

decision variable vector ( DV ) to quantify various performance levels, in which DV  may 

include a discrete (e.g., a binary variable indicating collapse) and/or a continuous (e.g., amount 

of loss in dollar terms) indicator variable(s) marking the exceedance of one or more limit states. 

Hence the probability of exceeding a specific performance level can be expressed as the mean 

annual frequency (MAF) that the corresponding DV indicator variables exceeds zero. A practical 

way of estimating the MAF for the decision variable vector consists of expanding it with respect 

to structural demand vector, D , and the vector of ground motion intensity measures, IM  

∫∫ ⋅⋅= )()|(),|()( IMdHIMDdGIMDDVGDVH  
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where )(DVH  is the MAF of exceeding the vector of decision variables DV , and 

),|( IMDDVG  is the conditional probability of exceeding DV  given the demand vector D  and 

the vector of ground motion intensity measures IM , )|( IMDG  is the probability of exceeding 

the structural demand vector D  given IM , and, )(IMH  is the MAF of exceeding IM . 

In this report we outlined a step-by-step procedure for evaluating )(DVH  from the above 

integral for a special case where (a) the decision variable is defined as a (scalar) binary indicator 

variable that assumes the value of 1 when the capacity for a specified limit state is exceeded and 

0 otherwise, (b) the structural demand vector is a scalar displacement-based demand variable 

(e.g., maximum interstory drift ratio), (c) the ground motion intensity measure is the scalar 

spectral acceleration at the first mode frequency of the structure, and (d) given D , DV  is 

conditionally independent of IM . Therefore, the MAF of exceeding the decision variable is 

written as: 

∫∫ ⋅⋅>=== )()|(]|[)1( aaLSLS SdHSDdGDCDGDVHH  

where 1=DV  when the demand variable D  exceeds LSC , the capacity for limit state LS. 



 

 

2 Probability-Based Design (DCFD) Seismic 
Formats 

2.1 INTRODUCTION:  FORMAT DEVELOPMENT 

Chapter 1 of this report was dedicated to developing an analytical foundation for the probability-

based seismic assessment of structures. The final product of this foundation development was the 

mean annual frequency of exceeding a limit state or the “limit state frequency” in short. Limit 

state frequency LSH  was calculated taking into account the uncertainty in various elements 

involved in the seismic assessment and design of the structural system. An analytical framework 

for calculating the limit state frequency is helpful for seismic assessment of the structures, e.g., 

calculating the limit state frequency for an existing structure and checking to see if its design 

falls within the acceptable region. However, in a design problem, the actual structural members 

and connections are not known beforehand. They are, rather, the end product of the design 

process. Conversely, the performance objective for the design is usually set beforehand and can 

be expressed in terms of the limit state frequency that is in turn a function of the structural design 

properties. Therefore, a design process has an iterative nature and consists of assessing a 

proposed design against a specified performance objective(s) and modifying the proposed design 

if it does not meet the performance objective(s). 

This part of the report addresses problems similar to the following: how to assess a 

proposed (or existing) design for a structure with respect to a specified collapse limit state 

frequency of, e.g.,0.04% per annum or how to address the uncertainty (due to limited 

knowledge) involved in the estimation of the design parameters. This uncertainty is usually 

stated through questions such as how to design a structure for a known mean annual collapse 

limit state frequency of 0.04% with a confidence interval level of 95%. 

We shall discuss various alternative design formats that stem from the probability-based 

foundation developed in the first part of this report. These formats are in general suitable for 
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guidelines and code implementation. A major class of these formats, which is analogous in form 

to (linear, static, force-based) load and resistance factor design (LRFD) procedures (AISC LRFD 

code), is discussed in this chapter. However, these formats are based on generic, random 

(usually) displacement-based, nonlinear dynamic response variables: “demand” and “capacity”, 

and hence are referred to as “demand and capacity factor design” (DCFD). The DCFD format 

can also be formulated in terms of IM-based generic demand and capacity variables. The 

fragility-hazard format, also discussed in this chapter, is another IM-based format that is useful 

for designing/assessing the global behavior of a structure or a class of structures. 

Unlike the foundation, which is unique (with respect to the set of assumptions made and 

the solution strategy used for the derivation of the limit state probability), the formats are 

numerous. They are just various representations of a common foundation. Hence, the choice 

among these alternative formats is subjective. It is to be made on grounds such as familiarity and 

practicality. 

2.2 RANDOMNESS: THE ONLY SOURCE OF UNCERTAINTY 

Similar to the foundation development in Chapter 1, the alternative design formats discussed in 

this chapter are also presented in two parts. The probability-based formats developed in this 

section are based on the assumption that randomness is the only source of uncertainty, and 

hence, they are based on the expression for limit state frequency derived in the Section 1.4.7 

(Equations 1.38 and 1.48). 

Recall from Equation 1.38 that the mean annual frequency of exceeding a limit state that 

is expressed in displacement-based terms, was derived as: 
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where )(⋅H denotes the mean annual frequency of exceedance in general. We are going to re-

arrange the above equation into alternative forms, also known as “DCFD design formats.” The 

purpose for this re-arrangement is to present this probability-based formulation in a way that is 

easy to be implemented in the design practice. The basic components of demand and capacity 

factor design format (DCFD) are outlined in the following equation, 
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where 
a

P sD 0|η  is the median drift demand for a given spectral acceleration, a
P s0 , corresponding to 

hazard levels in the proximity of an acceptable limit state probability, 0P . Cη  is the median drift 

capacity, )
2
1exp( |

2
aSD

b
k β⋅⋅ is the demand factor, and )

2
1exp( 2

C
b
k β⋅⋅− is the capacity factor. 

Equation 2.2 offers an alternative presentation of the formal foundation equation (Equation 2.1), 

and is obtained by re-arranging Equation 2.1. We shall go through the re-arrangement step-by-

step later in this chapter. 

The fragility-hazard format is another format discussed in this chapter. This format is 

derived by re-arranging the closed-form derivation of the limit state frequency following the IM-

based solution strategy in Chapter 1 (Equation 1.48): 
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where a
P s0 is the spectral acceleration with a hazard value equal to the acceptable limit state 

probability, 0P , and C
asη  is the spectral acceleration with a fragility of 50%. Each format will be 

developed and discussed in detail in the corresponding section. Before proceeding to the details 

of the derivations, we are going to outline a few parameters that are going to be helpful in our 

future format derivations. 

2.2.1 Spectral Acceleration d
as  Corresponding to a Displacement-Based Demand Equal  

to d 

d
as , the spectral acceleration corresponding to displacement-based demand value, d , is defined 

as the spectral acceleration corresponding to the value, d, from the median displacement-based 

curve as a function of the spectral acceleration, in fact as the inverse of this function: 

)(1
| ds

aSD
d
a

−= η  

Recalling from the previous chapter, the median displacement-based demand was 

approximated by a power-law function of the spectral acceleration, b
SD xax

a
⋅=)(|η . Based on 

this power-law approximation, d
as , or the spectral acceleration corresponding to the 

displacement-based response d, can be expressed as: 
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Fig. 2.1  Spectral acceleration corresponding to a displacement-based demand equal to d 

d
as  is illustrated graphically in Figure 2.1. In simple terms, d

as  represents the spectral acceleration 

value corresponding to a given demand value d from the median demand curve approximated by 
b

aSa ⋅ 1. 

2.2.2. Spectral Acceleration a
P s0  for a Hazard Level Equal to 0P  

a
P s0  is the spectral acceleration with a mean annual frequency of being exceeded (also known as 

the hazard, defined in Chapter 1) equal to 0P : 
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in which we make use of the fact that (in Chapter 1) the mean annual frequency of exceeding a 

given spectral acceleration value (also known as the spectral acceleration hazard curve) can be 

approximated (at least locally) by the power-law function, k
S xkx

a

−⋅= 0)(λ . Figure 2.2 illustrates 

                                                 
1 parameters a  and b  can be determined by performing linear regression analysis on a sample of spectral 
acceleration and demand pairs obtained from nonlinear dynamic analyses (see Jalayer and Cornell, 2003a). 
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the graphical presentation of a
P s0 . The spectral acceleration d

as  corresponding to a drift demand 

equal to d is also plotted on the same figure. 

Fig. 2.2  Spectral acceleration for a hazard level equal to 0P  

2.2.3  DCFD Format 

The DCFD format is analogous in form to the load and resistant factor design (LRFD) 

procedures (see AISC design procedures, 1994). As the name suggests, this format is constituted 

of demand and capacity multiplied by their respective factors. As with LRFD procedures, the 

DCFD format can be used to design a building against a certain factored demand by finding a 

factored capacity. The probabilistic demand and capacity factors for the DCFD format are very 

similar in concept to the partial safety factors applied to the load and resistance in LRFD design 

procedures.  

This format stems directly from the expression for limit state frequency (Equation 2.1) 

after some re-arrangements. It should be noted that the same simplifying assumptions that led to 

the derivation of the closed-form foundation equation in the previous chapter are implicit here in 

the derivation of the DCFD format. In order to develop a design format, we first need to set a 

design criterion. A criterion can be stated as designing a structure so that the mean annual 

frequency of exceeding a certain limit state (limit state frequency in short) is less than or equal to 

the allowable annual probability of exceedance, 0P 2: 

                                                 
2 Note the mixing of the usage of the terms “mean annual frequency” and “annual probability.” Although the more 
precise term to be used in these derivations is “mean annual frequency,” for the type of rare events that we are 
interested, the corresponding values are virtually numerically identical. 
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(2.6)                                                               0PH LS ≤  

where the equality holds at the onset of the limit state. Recalling from the previous chapter, the 

limit state frequency can be expressed through a closed-form relationship (Equation 1.38 or 2.1). 

This closed-form expression can be substituted for LSH  in Equation 2.6: 

(2.7)                                            )( 0
2
1

2
1 2

2

2

|
2

2

2

    PeesH
CaSD

C

a

b
k

b
k

aS ≤⋅⋅
⋅⋅⋅ ββη  

where )( C
a aS sH η  is the hazard value (mean annual frequency of exceedance) for a spectral 

acceleration equal to C
asη  (i.e., the spectral acceleration corresponding to the median capacity 

Cη ), and it can be derived from Equation 1.36 as: 

(2.8)                                              )( 0
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C
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If )( C
a aS sH η  from the Equation 2.8 is replaced in Equation 2.7: 
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After re-arranging the above equation in order to solve for median capacity, Cη , we get 

the following expression for the median capacity required so that the limit state frequency LSH  is 

less than or equal to the allowable probability, 0P : 

(2.10)                                   
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The expression in the parentheses, ( ) kkP 1
00

− , is nothing but the spectral acceleration, 

a
P s0 , having a hazard value equal to the allowable probability 0P  as given in Equation (2.5). 

Substituting ( ) kkP 1
00

−  with a
P s0  in Equation 2.10 will make it look simpler: 

( ) (2.11)                                         
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where ( )ba
P sa 0 is in turn equal to the median drift demand 

a
P SD 0|η  for a given spectral acceleration 

value of a
P s0  (Equation 2.4). Thus, Equation 2.11 can be further simplified by replacing ( )ba

P sa 0  

with 
a

P SD 0|η : 

C
b
k

b
k

SD
CaSD

a
P ee ηη

ββ
          

2
|
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0
2
1

2
1

| ≤⋅⋅
⋅⋅⋅⋅

 

Finally we transfer the capacity-related exponential term, )
2
1exp( 2

C
b
k β⋅⋅ , to the other side 

of the equation changing the sign of the exponent: 

(2.12)                                          
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Equation 2.12 represents the DCFD format in its final form. The right-hand, or 

“capacity,” side of the equation is called the “factored capacity,” parallel to LRFD’s factored 

resistance. In a similar manner, the left-hand, or the “demand” side” of the equation is called the 

“factored demand for the allowable probability 0P ”, parallel to LRFD’s factored load. It should 

be noted that the factored demand (the equivalent to LRFD’s factored load) is a function of the 

allowable probability level, 0P , whereas the factored capacity does not depend on 0P  in contrast 

to the two factors in the AISC LRFD, where neither the demand factor nor the capacity factor 

depends on 0P . The DCFD format offers an alternative and equivalent statement for the design 

criterion, according to which the factored demand for the allowable probability 0P  should be less 

than or equal to the factored capacity. This implies that at the onset of the limit state, the factored 

demand for the allowable probability 0P  is equal to the factored capacity. One of the main 

advantages of the DCFD design format is that the probabilistic design criteria can be stated in 

terms of familiar displacement-based response parameters. This makes the DCFD format 

compatible with existing (deterministic) design procedures. 

The following sections will discuss in more detail the components of the DCFD format 

(Equation 2.12). 
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2.2.3.1 Displacement-based demand, 
a

P SD 0|η  

a
P SD 0|η  is the median displacement-based demand for a spectral acceleration equal to spectral 

acceleration, a
P s0 , (i.e., spectral acceleration with a mean annual frequency of exceedance equal 

to the allowable probability, 0P ). We may also refer to it as the median demand for a given 

ground motion intensity, a
P s0 , in short. Adopting the analytical definitions outlined in Sections 

2.2.1 and 2.2.2, the median demand can be calculated from the following expression: 

( ) (2.13)                                                 
0

0
|

0
0

k
b

b
a

P
sD k

P
asa

a
P

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==η  

But Figure 2.3 illustrates a graphical presentation of 
a

P sD 0|η  that demonstrates its more 

general applicability. Looking at the figure, we can see that 
a

P sD 0|η can be calculated in two 

simple steps. Step 1 is to find the spectral acceleration a
P s0  that has a mean annual frequency of 

exceedance (i.e., hazard) equal to the allowable probability, 0P , from the hazard curve for the 

spectral acceleration. Step 2 is to find the displacement-based demand 
a

P sD 0|η  that corresponds to 

a spectral acceleration equal to a
P s0  from the median demand curve. Note that in application 

neither the hazard curve nor the median demand curve need to be in analytical form to evaluate 

a
P s0  and 

a
P sD 0|η . This fact can be exploited in seismic assessments of structures implementing 

nonlinear dynamic procedures (e.g., see Jalayer and Cornell, 2003a). 
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Fig. 2.3 Graphical presentation of median demand

a
P sD 0|η  for a spectral acceleration equal 

to a
P s0  

 

2.2.3.2 Displacement-based capacity, Cη  

The median displacement-based capacity for the structure is denoted by Cη . Figure 2.4 

illustrates the median drift demand, 
a

P sD 0|η , and capacity, Cη , on the same graph.  

2.2.3.3 Demand factor )
2
1exp( |

2
aSD

b
k β⋅⋅  

The displacement-based demand factor denoted by )
2
1exp( |

2
aSD

b
k β⋅⋅  is a magnifying factor that 

takes into account the randomness in the displacement-based demand. The randomness 

represented by the demand factor is usually due to record-to-record variability. The dispersion 

measure for the displacement-based demand denoted by 
aSD|β , is equal to the standard deviation 

of the (natural) logarithm of displacement-based demand for a given spectral acceleration. 

Typical values for 
aSD|β , in the nonlinear range, are about 0.30 to 0.60. In the special case (e.g., 

a linear SDOF oscillator) where there is no dispersion in demand (given aS ), the demand factor 

will be equal to unity. bk  can be interpreted as the sensitivity of the probability of exceedance to 

Displacement-based demand, D λSa(sa) =  λ [Sa > sa ] 

Sa
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a unit change in the displacement-based demand; which means that a factor of x  change on the 

displacement scale will cause a factor of bkx /−  change on the probability scale. 

  

Fig. 2.4  Graphical presentation of median drift capacity Cη  

 

As in the LRFD design procedures, the demand factor )
2
1exp( |

2
aSD

b
k β⋅⋅ is also denoted by 

γ . Clearly, γ  is always greater than or equal unity (an exponential raised to a non-negative 

power). Thus, the “design” displacement-based demand is always greater than or equal to the 

median demand due to the randomness-type of uncertainty in displacement-based demand.  

2.2.3.4 Capacity factor )
2
1exp( 2

Cb
k β⋅⋅−  

The capacity factor, )
2
1exp( 2

Cb
k β⋅⋅− , is a reduction factor that takes into account the randomness 

type of uncertainty in the displacement-based capacity. It is an exponential term raised to a non-

positive power and hence is always smaller than one. Therefore, the design capacity is always 

less than or equal to the median capacity due to the randomness-type of uncertainty. The 

dispersion term in the exponential power, Cβ , is the standard deviation of the (natural) logarithm 

of the displacement-based capacity. Also bk  is a factor reflecting the sensitivity of the 

Displacement-based demand, D λSa(sa) =  λ[Sa > sa ] 
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probability of exceedance to a unit change in displacement-based capacity. Similar to the LRFD 

design procedures, the capacity factor )
2
1exp( 2

Cb
k β⋅⋅−  is also denoted by φ . 

2.2.3.5 Factored demand and demand hazard 

The following presents an alternative interpretation of factored demand. This alternative 

interpretation relates the factored demand to the demand hazard (mean frequency of 

exceedance).In DCFD format, the factored demand (FD) was derived as: 

)
2
1exp( |

2
| 0 a

a
P SDsD b

kFD βη ⋅⋅⋅=  

Replacing the analytic expression for 
a

P sD 0|η from Equation 2.13: 
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Now we can solve the above equation for 0P : 

(2.14)                                    )
2
1exp( |

2
2

2

00 aSD
b
k

b
k

a
FDkP β⋅⋅⋅⎟

⎠
⎞

⎜
⎝
⎛=

−

 

Realizing that (according to Equation 2.8) the term bkaFDk /
0 )/( −⋅  is equal to the hazard 

value for a spectral acceleration corresponding to a (median) demand value equal to FD: 

(2.15)                                                 )( 0

b
k

FD
aS a

FDksH
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Replacing the term bkaFDk /
0 )/( −⋅  in Equation 2.14 with its equivalent from Equation 2.15: 

(2.16)                                        )
2
1exp()( |

2
2

2

0 aa
SD

FD
aS b

ksHP β⋅⋅⋅=  

We can observe that the right side of the above equation is equal to the (demand) hazard for a 

demand value equal to FD (Equation 2-25): 

(2.17)                                                      )(0 FDHP D=  

Conversely, the factored demand can be written as the inverse of the hazard function at value 0P : 
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(2.18)                                                     )( 0
1 PHFD D

−=  

The above equation states that the factored demand for an allowable probability 0P  is 

equal to the (displacement-based) demand with a mean annual frequency of exceedance (hazard) 

equal to 0P . This alternative interpretation for the factored demand is going to be helpful when 

we need to estimate the factored demand for more general cases (i.e., when the analytic 

assumptions underlying the derivation of DCFD may not be valid). Numerical examples related 

to the interpretation of factored demand as the inverse of the hazard function for demand can be 

found in Jalayer and Cornell 2003 a, b. In both papers, this property is used to estimate the 

factored demand using numerical integration and comparing it to the one calculated from the 

left-hand side of Equation 2.12. This is quite helpful since the numerical integration can be used 

to check the robustness of the closed-form solution in providing accurate estimates for the 

factored demand. 

2.2.3.6 General form for the DCFD design format 

We have already discussed the derivation of a closed-form for the DCFD format (Equation 2.12), 

which resulted from re-arranging the expression for limit state probability in Equation 2.1: 
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However, it should be kept in mind that this format is based on the same simplifying 

assumptions that were made in the foundation derivations in Chapter 1. The general form for the 

DCFD design can be introduced based on the format we derived in Equation 2.12, but replacing 

a
P SD 0|

η with3 D, Cη  with C, )
2
1exp( |

2
aSD

b
k β⋅⋅ with γ , and )

2
1exp( 2

Cb
k β⋅⋅−  with φ : 

(2.19)                                                              φγ ⋅≤⋅ CD  

where D and C refer to demand and capacity displacement-based parameters, and γ and φ  are 

their corresponding factors. It can be noted that the DCFD format presented in its general form 

as in Equation 2.19 looks similar to the LRFD format presentation. Another alternative general 

                                                 
3 Despite their capital letter designation, D and C do not represent stochastic variables in this DCFD context. (They 
do typically represent stochastic variables in Chapters 2and 3). Here, they are just referring to some generic 
displacement-based demand and capacity parameter. 
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way to present the DCFD format is by simply comparing the factored demand to factored 

capacity: 

(2.20)                                                         .. . CFF.D ≤  

The benefit of this alternative representation is that factored demand and factored 

capacity can be defined in a different manner from the DCFD format. A generalized definition 

for factored demand is already discussed in the previous section. According to this definition the 

factored demand is the demand value that has a mean annual frequency of exceedance equal to 

the allowable probability, 0P . The authors (Jalayer and Cornell 2003 a,b) implement alternative 

nonlinear dynamic analysis procedures to assess the performance of an existing seven-story 

reinforced concrete frame for the global instability performance level using the DCFD format. 

These (nonlinear dynamic) procedures are used to locally estimate the parameters, 
a

P SD 0|
η , 

aSD|β , 

and, b in the closed-form expression for the factored demand. 

2.2.3.7 Numerical example: Performance evaluation for an existing building 

Returning to the numerical example presented in Chapter 1, now we can assess the performance 

of an existing three-story frame for the collapse limit state for an allowable probability of 
4

0 104 −×=P (2% in 50 years). Based on the DCFD design format, we are going evaluate and 

compare factored demand for the allowable probability 4
0 104 −×=P  and factored capacity for the 

collapse limit state. 

2.2.3.7.1 Factored demand         γ⋅D  

Evaluation of the factored demand consists of two parts: (a) calculating the median drift demand 

aSD 0004.0|
η for a spectral acceleration with a hazard equal to 4104 −×  and (b) calculating the demand 

factor. The median demand 
aSD 0004.0|

η  itself can be calculated in two steps. The first step is to 

calculate the spectral acceleration as0004.0  with a MAF of exceedance (i.e., hazard) equal to 

4104 −× . This can be done either by using Equation 2.5 or more generally by simply finding the 

spectral acceleration corresponding to 4
0 104 −×=P  from the hazard curve. The advantage of the 

second approach is that the hazard curve does not necessarily need to have a power-law form. 
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Here, we are going find as0004.0  both analytically and graphically. as0004.0  can be calculated from 

Equation 2.5 for 4
0 104 −×=P : 

k
a k

s
1

0

0004.0 )0004.0(
−

=  

Recalling from the first part of the numerical example in the previous chapter, the 

parameter estimates for 0k and k  were equal to: 

  03.3
00124.00

=
=

k
k  

Finally, as0004.0  can be calculated as: 

[g]  1.458)
00124.0
0004.0( 03.3

1
0004.0 ==

−

as  

 Graphically speaking, as0004.0  is the spectral acceleration corresponding to the hazard 

value equal to 0004.0  from the spectral acceleration hazard curve. The hazard curve with 

parameters 0k and k  (listed above) is plotted in Figure 2.5. It can be observed that a hazard value 

0.0004 corresponds to as0004.0  equal to 1.45. After as0004.0  is calculated, the next step is to find 

the median displacement-based demand that corresponds to this spectral acceleration. Again, the 

median demand can be either calculated from the power-law approximation, b
SD xax

a
⋅=)(|η , or 

estimated graphically from the median displacement-based demand curve that is plotted versus 

spectral acceleration. 
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Sa       =1.45
0.0004 

λSa(sa)=0.0004 

 
 

Fig. 2.5  The hazard curve for %)2,1( == ξTSa  

 

 The median demand corresponding to a spectral acceleration equal to ][458.10004.0 gsa =  

can be calculated from the following power-law relation: 

( )  )( 0004.00004.0
|

b
aaSD sas

a
⋅=η  

Recalling from the previous chapter, the parameter estimates for a and b are equal to: 

   002.1
0325.0

=
=

b
a  

Finally, )( 0004.0
| aSD s

a
η  can be calculated as: 

( ) ( )  0.047 1.4580325.0   0325.0)( 002.1002.10004.00004.0
| =⋅=⋅= aaSD ss

a
η  

We can also obtain )( 0004.0
aD sη  graphically by finding the median demand value 

corresponding to a given spectral acceleration of as0004.0 or 1.45 [g] from the median demand 

curve. In this example, we have chosen the maximum interstory drift angle (the “absolute” 
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maximum of the response time-history over all the stories in the structure) as the displacement-

based demand parameter. The maximum interstory drift angle is plotted versus spectral 

acceleration in Figure 2.6 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Spectral acceleration plotted versus maximum interstory drift angle, and the 

power-law function fitted to the plotted data points (a line on the two-way 

logarithmic paper) 

 

The next step is to calculate the demand factor, )
2
1exp( |

2
aSD

b
k β⋅⋅ . As mentioned in Section 

2.2.3.3, 
aSD|β  is equal to the standard deviation of the (natural) logarithm of the demand given 

spectral acceleration, 
aSD|lnσ . 

aSD|lnσ that is denoted by 299.0|ln max
=

aSθσ  on the graph in Figure 

2.6 ( maxθ stands for maximum interstory drift angle, which is in fact the demand parameter D  

used in this example), is estimated by the standard error of the regression. The hazard slope 

parameter k is reported in Figure 2.5 as 3.0. Also the median demand-spectral acceleration slope 

parameter b is equal to 1.0 (Fig. 2.6). Now that the necessary parameter estimates for factored 

demand estimation are obtained, we are ready to calculate the demand factor or )
2
1exp( |

2
aSD

b
k β⋅⋅ : 

 

ηD=ηD|Sa(sa) 

Maximum inter-story drift, D 

ηD|Sa(         sa)= 0.047 

sa =1.45 0.0004 

0.0004 
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Finally, the factored demand is calculated by multiplying the median demand 

047.0)( 0004.0
| =aSD s

a
η and the demand factor, 144.1
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2.2.3.7.2 Factored capacity φ⋅C   

As mentioned before, this numerical example demonstrates the assessment of structural 

performance for the limit state of global collapse, using maximum interstory drift angle as the 

displacement-based parameter. Therefore, the displacement-based capacity is represented by 

maximum interstory drift angle at the onset of global collapse. Similar to factored demand 

estimation, the estimation of factored capacity consists of two parts: (a) calculating the median 

capacity Cη  for the collapse limit state and (b) calculating the capacity factor. Recalling from the 

previous parts of this numerical example in Chapter 1, the median (drift) capacity Cη  for the 

collapse limit state and its dispersion parameter Cβ  (i.e., the standard deviation of the natural 

logarithm of maximum interstory drift angle capacity values) are equal to: 

20.0
07.0

=
≅

C

C

β
η  

Hence, the capacity factor or )
2
1exp( 2

Cb
k β⋅⋅−  can be calculated as: 

   94.0e
)2.0)(

1
3)(

2
1(

2
1 22

===
−⋅⋅− C

b
k

e
β

φ  

Finally, the factored capacity is calculated by multiplying the median capacity 07.0=Cη  

by the capacity factor, 94.0)
2
1exp( 2 =⋅⋅− Cb

k β : 
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Comparing the factored demand from Equation 2.21 and factored capacity from Equation 2.22, 

we can observe that: 

      0.0658   0.0538 =⋅≤=⋅ φγ CD  

We can conclude that the structure satisfies the design criteria in Equation 2.19 for an 

allowable (mean annual) frequency of 0.0004 (i.e., 10% in 50 years) corresponding to the 

collapse limit state. This conclusion implies that the limit state frequency (mean annual 

frequency of exceeding the collapse limit state) is less than 0.0004 per annum. 

2.2.4 Fragility/Hazard Format: An IM-Based Probabilistic Format 

In the previous sections, we outlined in detail the main components of DCFD format, which is a 

displacement-based probabilistic design/assessment format. Here, we are going to discuss the 

fragility/hazard format, a design/assessment format that stems from the IM-based framework 

equation derived in Chapter 1. One main advantage of an IM-based design format is that design 

and/or assessments are performed in the spectral acceleration ordinate and do not explicitly 

involve the displacement-based response. 

The design criterion for the fragility/hazard format (see e.g., DOE 1020, 1994, and 

Kennedy and Short, 1994) is tested by comparing “fragility” curves to “hazard” curves for a 

given allowable probability level. The hazard curves represent the probabilistic ground motion 

intensity or, in general terms, the “loading” characteristics, whereas the “fragility” curves 

represent the probabilistic structural capacity or the structural “resistance.” 

As with the DCFD design format, the first step in developing a design format is to set the 

design criteria. The (IM-based) design criterion can be stated similar to the one in Equation 2.6 

for DCFD format for a given allowable annual probability, 0P :  

                0, PH basedSLS a
≤−  

where the limit state frequency,  , basedSLS a
H − , is calculated from the IM-based expression for limit 

state frequency in Chapter 1  (Equation 1.48): 
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The expression for the IM-based limit state frequency can be substituted in the design 

criterion (Equation 2.6):  

(2.24)                                       )( 0
2
1

,
22

,
PeH CaS

Caa

k

SS ≤⋅
⋅⋅ β

η  

where CaS ,  is an IM-based random variable representing the limit state capacity (or spectral 

acceleration capacity in short) and k is the parameter reflecting the steepness of the hazard curve 

for spectral acceleration. The authors have discussed in a separate paper (Jalayer and Cornell, 

2003a) few alternative methods for estimating the statistical properties (i.e., median, 
CaS ,

η , and 

standard deviation of the natural logarithm, CaS ,
β ) of this random variable using nonlinear 

dynamic analysis procedures such as incremental dynamic analysis (Vamvatsikos and Cornell, 

2001). Recalling from Chapter 1, the spectral acceleration hazard can be approximated (at least 

locally) by a power-law relationship: 

(2.25)                                                          )( 0
k

S xkx
a

−⋅=λ  

Therefore, )(
,Caa SS ηλ , the mean annual frequency of exceeding the median spectral 

acceleration capacity, can be calculated from the above expression and then substituted in 

Equation 2.24: 

(2.26)                                         0
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After some simple re-arrangements, with the objective of separating the “load” and 

“resistance” sides, Equation 2.26 takes the following form: 

(2.27)                                      
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Recalling from Equation 2.5, the right-hand side of the equation is in fact the spectral 

acceleration a
P s0  for a hazard level equal to the allowable probability 0P  (or spectral 

acceleration for allowable probability in short), which was defined in Section 2.2.2 in the 

beginning of this chapter: 

 



 

 74

(2.28)                                                  ,
2

,

0 2
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   es CaS
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⋅≤  

which is the closed-form expression for the fragility/hazard format. A similar closed-form 

expression, but with the exponential term (with a positive sign) applied to a
P s0 , has been used in 

the current draft of ISO seismic criteria for offshore structures (Banon et al. 2001). It will be 

shown below how this expression (Equation 2.28) relates to the fragility and hazard curves. 

Similar to the DCFD format, the left-hand side of this expression represents the “factored 

demand for the allowable annual probability, 0P ,” and the right-hand side represents the 

“factored capacity.” However, if compared to the expression for the DCFD format in Equation 

2.12, one can observe that the demand factor representing the dispersion in displacement-based 

demand is missing in the demand side of the expression. Nonetheless, the factored capacity looks 

similar to that of the DCFD format except for the fact that the b value is missing from the 

capacity factor. This is to be expected since the b value represents the (log) slope of the 

displacement-based demand parameter versus spectral acceleration; and the fragility/hazard 

format does not explicitly involve the displacement-based demand. Therefore, the design 

criterion based on the fragility/hazard format can be stated in terms of the IM-based factored 

capacity being less than or equal to the IM-based factored demand for a given allowable annual 

probability, 0P . The following sections will discuss fragility and hazard curves and how they can 

be employed in order to make parameter estimates for the fragility/hazard format in Equation 

2.28. 

2.2.4.1 Hazard curves 

The hazard function, )( aS sH
a

, for a given spectral acceleration value, as , can be defined as the 

mean annual frequency of exceeding the spectral acceleration value, as . The hazard function 

)( aS sH
a

is discussed in more detail in Chapter 1. Figure 2.7 illustrates a schematic hazard curve. 

As mentioned before, the hazard curve is approximated by a power-law relation, 
k

aaS sksH
a

−⋅= 0)(  where parameter k represents the steepness of the hazard curve. Strictly 

speaking, k is the slope of the power-law hazard curve plotted on a two-way logarithmic paper. 

The slope parameter k may be estimated as the local slope of the hazard curve (Fig. 2.7) in the 

region of hazard/spectral acceleration values that are of interest.  
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In the context of the fragility/hazard format, the hazard curve represents the probabilistic 

characteristics of “load” or demand. It is demonstrated in Figure 2.7 how the “factored demand 

for the allowable probability 0P ” in the fragility/hazard format, which is denoted by a
P s0 , can be 

derived from the hazard curve. As shown in the figure, a
P s0  is the spectral acceleration with a 

mean annual frequency of exceedance (hazard) equal to, 0P . 

2.2.4.2 Fragility curves 

The structural fragility for a specified limit state is defined as the conditional probability of 

exceeding the limit state capacity for a given level of ground motion intensity (conditional 

probability of failure in short). If the ground motion intensity is represented in terms of the 

spectral acceleration, the fragility can be expressed as: 

)29.2(                                    ][]|[)( ,, aCaaaCaaaLS sSPsSSSPsF ≤==≥=  

where )( aLS sF  is the structural fragility at spectral acceleration as  for limit state LS. It can be 

observed from the above equation that structural fragility is expressed as the probability that the 

random variable CaS ,  is less than or equal the given value, as . In other words, fragility is the 

cumulative distribution function of the random capacity, CaS , . If it is assumed that the 

probability distribution of the spectral acceleration capacity, CaS , , is lognormal with median, 

CaS ,
η , and standard deviation of the natural logarithm, CaS ,

β , fragility can be expressed in terms 

of the standardized Gaussian distribution function: 

(2.30)                             ))ln((][)(
,

,

, Ca

Ca

S
S

a
aCaaLS

s
sSPsF β

η
Φ=≤=  

It can be observed from the above equation that structural fragility for limit state, LS , 

can be plotted as a function of spectral acceleration. For a certain limit state, a monotonically 

increasing “fragility curve” can be plotted. A schematic fragility curve is shown in Figure 2.7. 

According to Equation 2.30: 

 

       0.50(0) ))ln(()(
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,

,
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SLSF β

η

η
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Therefore, median spectral acceleration capacity CaS ,  is marked on the figure as the spectral 

acceleration corresponding to a fragility of 50%. Also according to Equation 2.30: 

)16.0(ln)50.0(ln  ln  

0.16(-1) ))ln(()(

11
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Therefore, the standard deviation of the (natural) logarithm of CaS ,  is marked on the figure as the 

difference between the spectral accelerations (on the logarithmic paper) corresponding to 

fragility values 16% and 50%. 

The fragility curve for a specific limit state represents the probabilistic characteristics of 

structural resistance or capacity for that limit state. Once the fragility curve is available for a 

limit state, the “factored capacity” according to the fragility/hazard format, 

)
2
1exp( ,,

2
CaCa

SS k βη ⋅⋅−⋅ , can be calculated based on the parameter estimates for k , 
CaS ,

η , and 

CaS ,
β , obtained from the hazard and fragility curves (Fig. 2.7).  

 

 

 
Fig. 2.7 A schematic plot of hazard and fragility curves. The basic parameters of 

hazard/fragility format are also shown. 
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2.2.4.3 The IM-based limit state frequency in terms of the fragility and hazard functions 

 
It was demonstrated in the previous sections that fragility and hazard curves are helpful graphic 

tools for estimating the IM-based factored demand and capacity. Moreover, it will be shown in 

this section that fragility and hazard curves can also be used in order to calculate the limit state 

frequency. The IM-based limit state frequency can be derived from the following equation 

(Equation 1.39): 

)31.2(                                              )(][ ,, xdHSxPH
aa SCabasedSLS ⋅≥= ∫−  

where the first term in the integrand is nothing but the fragility )( aLS sF  at a spectral acceleration 

equal to as  from Equation 2.29. Therefore, the limit state frequency in Equation 2.31 can also be 

written as: 

)32.2(                                               )()(, xdHxFH
aa SLSbasedSLS ⋅= ∫−  

where the IM-based limit state frequency is derived in terms of fragility and hazard. This 

equation states that the mean annual frequency of exceeding a limit state can be calculated as the 

area under the product of the structural fragility curve for that limit state multiplied by the 

(absolute value of) the increment in the spectral acceleration hazard. 

2.2.4.4 Numerical example: Performance evaluation for an existing building 

In the numerical example presented earlier for the DCFD format, we presented an assessment of 

the performance of an existing three-story frame for the collapse limit state for an allowable 

probability of 4
0 104 −×=P (2% in 50 years). Here, we are going to use the same example in order 

to make probabilistic assessments based on the fragility/hazard format. Based on the 

fragility/hazard design format, we are going to calculate the IM-based factored demand for the 

allowable probability 4
0 104 −×=P , and then compare it to the factored capacity for the collapse 

limit state. 

 

Factored demand: The IM-based factored demand for a given probability 4
0 104 −×=P  is equal 

to a
P s0004.00 =  (Equation 2.28). Back in Section 2.2.3.7, the spectral acceleration with 4

0 104 −×=P  
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frequency of exceedance was found to be equal to ][45.10004.00 gs a
P == . Therefore the factored 

demand for an allowable probability 4
0 104 −×=P  is equal to: 

][ 45.1).(. 0004.0
0

0 gsPDF a
P == =  

 

Factored capacity: In order to calculate the factored capacity for fragility/hazard format, we 

assume that the (uncertain) spectral acceleration capacity has median and (fractional) standard 

deviation equal to: 

][ 15.2
,

g
CaS ≅η  

20.0
,

≅
CaSβ  

Recalling from the previous numerical example for DCFD format, the slope parameter k 

for spectral acceleration hazard curve is equal to 3 (Fig. 2.5). Now that we have obtained the 

parameter estimates for estimates for k , 
CaS ,

η , and 
CaS ,

β , we can calculate the factored capacity: 

][ 0.294.015.2)2.03
2
1exp(.15.2)

2
1exp(.. 22

,,
gxkCF CaCa

SS ==××−=⋅⋅−⋅= βη  

Comparing the factored demand for allowable probability, 4
0 104 −×=P , with the factored 

capacity, we can observe that: 

       ][2..][ 45.1).(. 0  g CFgPDF =≤=  

Hence, we can conclude that the fragility/hazard design criterion is satisfied for an 

allowable annual probability of 4
0 104 −×=P  (i.e., 10% in 50 years) for the global collapse limit 

state. However, it should be noted that the parameter estimates used in this section for the 

spectral acceleration capacity are only for the sake of demonstration. In practical applications, 

nonlinear dynamic analysis procedures (Vamvatsikos and Cornell 2001) can be implemented in 

order to build the structural fragility curve(s). Then, the factored capacity can be calculated using 

the structural fragility curve as it is shown in Section 2.2.4.2. A numerical application of this 

format is demonstrated in Cordova et al. (2000), in which a design format similar to the one in 

Equation 2.28 is employed for seismic assessment of a composite moment frame for global 

collapse limit state. 
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2.3 RANDOMNESS AND UNCERTAINTY, THE SOURCES OF UNCERTAINTY 

The design/assessment formats introduced in Section 2.2 only considered the randomness (or 

aleatory) type of uncertainty in demand and capacity parameter estimations. This type of 

uncertainty results in record-to-record variability in demand and capacity estimations. However, 

it is of interest to include the uncertainty due to incomplete knowledge (epistemic uncertainty) in 

the estimation of spectral acceleration hazard, demand, and capacity. As seen in Chapter 1, 

consideration of the uncertainty due to incomplete knowledge affects the mean estimate of the 

limit state frequency and/or the confidence statements that can be made about the bounds on 

estimates of the limit state frequency. Therefore, it is desirable to measure the epistemic 

uncertainty involved in the estimation of the parameters, and also to represent such uncertainty in 

the design or the assessments. One way to do this is to simply replace LSH  in the previous 

section (Section 2.2) everywhere by its mean estimate, LSH . As per Equation 1.86 in Chapter 1: 

(2.33)                     )( ][
)22

2

2
22

2

2
(

2
1)(

2
1

UCRCUDRD
C

a

b
k

b
k

aSLS eeSHCDPH
ββββην

+⋅+⋅⋅
⋅⋅=>⋅=  

In which 
aSH  is the mean estimate of the hazard curve, 22

UCRC ββ +  and 22
UDRD ββ +  are 

the total aleatory and epistemic uncertainty variances in demand and capacity, respectively. It is 

then clear when comparing this to Equation 2.1 that both of the DCFD formats introduced in 

Section 2.2 can be “upgraded” to include epistemic uncertainty by simply replacing LSH  by its 

mean estimate, LSH , and the aleatory uncertainty variances, 2β , for demand given spectral 

acceleration ( aSD | ) and capacity by their total 2β ’s, i.e., the total aleatory and epistemic 

variances. For example, Equation 2.2 transforms into the following: 

(2.34)                                     
)(

2
1)(

2
1

|

222
|

2
|

0

UCRCaSUDaSRD

a
P

b
k

C
b
k

sD
ee

ββββ
ηη

+⋅⋅−+⋅⋅⋅
⋅=⋅  

where it is understood that the spectral acceleration a
P s0  is obtained from the mean estimate of 

the hazard curve at 0P . Therefore, it is implied that the allowable limit state frequency 

corresponds to the mean estimate of the limit state frequency. While not precisely in this format, 

DOE 1020 is based on using such a mean estimate approach with combined or total (aleatory 

plus epistemic) variances used for the demand and capacity.  
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In this section we chose to outline a hybrid scheme. The DCFD format is extended to 

account for the epistemic uncertainty in demand and capacity parameter estimations. This is 

achieved by associating a level of confidence with the frequency of exceeding the limit state. 

This format has recently been implemented for performance evaluation of existing steel moment-

resisting structures in FEMA 351. 

The DCFD format presented in this section focuses mainly on the consideration of 

epistemic uncertainty in the structural demand and capacity parameter estimations. However, it 

(implicitly) takes into account the epistemic uncertainty in the seismic hazard estimations by 

incorporating the “mean” estimate for the hazard instead of the “median” estimate. 

2.3.1 A Confidence-Based DCFD Format  

In Chapter 1, the mean annual frequency of exceeding a limit state was derived by taking into 

account the uncertainty due to both aleatory and epistemic uncertainty. In such derivations, the 

limit state frequency was an uncertain quantity and could assume a range of possible values 

represented by a central value (median) and a dispersion measure (standard deviation of the 

natural logarithm): 

(2.35)                                  
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⋅⋅=
 

where LSĤ  is the median estimate of the limit state frequency and (.)ˆ
aSH  is the median estimate 

of the spectral acceleration hazard. 
LSHβ  is the dispersion measure (standard deviation of the 

natural logarithm) for the limit state frequency; it contains the epistemic uncertainty-related 

dispersion terms for hazard, demand, and capacity. We note that these could be used to develop 

one or more DCFD formats that treat the epistemic uncertainty in hazard, demand, and capacity 

in a more uniform manner. Here, however, we chose to develop the hybrid scheme introduced 

above. Suppose we assume that there is no epistemic uncertainty in the estimation of the median 

spectral acceleration hazard (i.e., 0=UHβ ), the dispersion term 
LSλβ  in Equation 2.35 would be 

simplified to: 
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(2.36)                                        22
UTUCUDH β

b
k

b
k

LS
=+= βββ  

where UTβ  is the dispersion parameter representing the total epistemic uncertainty in 

displacement-based demand and capacity. In order to account for the epistemic uncertainty in the 

estimation of hazard, we substitute the “median” estimate of the spectral acceleration hazard, 

LSĤ , in Equation 2.35 by the “mean” estimate of the spectral acceleration hazard, 

)
2
1exp(ˆ 2

UHSa
H β⋅ . The resulting median estimate for the limit state frequency is denoted by 

"ˆ" LSH  (in order to distinguish it from the median hazard LSĤ  in Equation 2.35): 
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where the bar “–“ represents the mean estimate; and (parallel to UTβ ) RTβ  is the dispersion 

parameter representing total aleatory uncertainty in displacement-based demand and capacity 

parameters. It should be noted that the hazard curves provided by the seismologists are usually in 

terms of the mean estimates of the annual frequency of exceedance, or “mean hazard” in short.  

Now, we can build a confidence interval around the “median” estimate for the limit state 

frequency reflecting the epistemic uncertainty in the estimation of the demand (given aS ) and 

capacity parameters. The limit state frequency corresponding to the confidence level, x, denoted 

by, x
LSH , can be expressed as: 

(2.38)                                               "ˆ" LSHxK
LS

x
LS eHH β⋅⋅=  

where xK  is the standard Gaussian variate associated with the probability x of not being 

exceeded. Values for xK  are tabulated in standard probability tables under the normal 

distribution as a function of the number of standard deviations above or below the mean. 

Substituting the “median” estimate for the frequency of exceeding the limit state from Equation 

2.37 into Equation 2.38, one obtains the upper %x confidence limit x
LSH  of the limit state 

frequency: 

(2.39)                                   )(
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Recalling from Chapter 1 and earlier sections in this chapter the mean annual frequency 

of exceeding (hazard), the spectral acceleration corresponding to median displacement-based 

capacity can be calculated from the following power-law expression: 

(2.40)                                  )()()( 00
b
k

Ck
aaS a

kSkSH CC

a

−
⋅=⋅=

ηηη  

Clearly this result represents a theoretically inconsistent treatment of the total epistemic 

uncertainty, since the uncertainty in hazard, Hβ , is incorporated in H , while the uncertainty in 

capacity and demand (given aS ) is represented via the confidence factor LSHxKe β⋅ . The main 

objective of this hybrid formulation of DCFD format is to focus on structural epistemic 

uncertainties. More precisely, one should say that this represents an x% confidence limit on LSH  

given the mean hazard curve. After substituting the estimate for )( C
a aS SH η  from Equation 2.40 

into Equation 2.39, x
LSH  or the limit state frequency corresponding to the confidence level x is 

derived as: 
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Parallel to the derivation of the DCFD format in Section 2.2.3 (Equation 2.6), the design 

criterion can be tested by comparing the limit state frequency x
LSH  corresponding to a confidence 

level x to an allowable probability, 0P : 

(2.42)                                                           0PH x
LS ≤  

Substituting the expression for x
LSH  from Equation 2.41 into the design criterion in Equation 2.42 

above: 
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Similar to the derivation of the DCFD format in Section 2.2.3, we make some re-

arrangements in the above inequality mainly in order to separate the demand and capacity sides: 
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(2.44)                                  
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Recalling the relationship between the dispersion parameter 
LSHβ  for the limit state frequency 

and UTβ 
 
that measures total epistemic uncertainty in Equation 2.36: 

(2.45)                                                        
LSHUT k

bβ β=  

Replacing the above in Equation 2.44, it is simplified to: 
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Now, we multiply both sides of the inequality in )
2
1exp( 2

UT
b
k β−  (in order to make it look similar 

to DCFD): 
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After further simplifications noting that:  
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| )( 0η , and also breaking up the total 

variance terms into the corresponding demand and capacity variance terms: 
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Now, we can define the demand and capacity factors as: 
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Also the confidence factor corresponding to the confidence level, x, denoted by xλ  is defined as: 

(2.50)                                                   
)
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After demand, capacity, and confidence factors are substituted from Equations 2-49 and 2-50 

into Equation 2.48: 

(2.51)                                               )( 0
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or: 
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This is the final form for the DCFD format that takes into account both aleatory and 

epistemic uncertainty. This looks very similar to Equation 2.12 for the DCFD format considering 

only the aleatory uncertainty, except for the confidence factor xλ  and also that the demand and 

capacity factors in Equation 2.51 also include the effect of epistemic uncertainty. As mentioned 

before, this format is implemented in FEMA 351 for the performance evaluation of existing steel 

moment-resisting structures. If Equation 2.51 is satisfied, one can say that the probability of 

failure is less than 0P  with confidence x%.  

It is also interesting to re-arrange Equation 2.51 in terms of the ratio of the factored 

demand to factored capacity related to aleatory uncertainty (according to Equation 2.49): 
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or: 

(2.54)                                             .. ).(. 0 CFePDF UTXK ≤⋅ ⋅β  

which is the equivalent design criterion for the DCFD format taking into account the epistemic 

uncertainty. It should be noted that the factored demand and capacity in Equation 2.54 take into 

account only the aleatory uncertainty and are identical to those of Section 2.2.3. 

The design criterion in Equation 2.53 can also be implemented in order to assess the level of 

confidence in an existing design for an allowable probability, 0P , by following the steps outlined 

below: 

 

1. Calculate the factored demand for an allowable probability 0P  and also the factored 

capacity from Equation 2.12, taking into account only the aleatory uncertainty. 



 

 85

2. Find the ratio of the calculated factored demand to factored capacity. 

3. Estimate the dispersion measure 22
UCUDUTβ ββ +=  accounting for the total uncertainty 

in the estimation of demand and capacity factors; examples appear in DOE 1020, FEMA 

351, etc. 

4. Solve the equation 

(2.55)                                              
..

).(. 0 UTXKe
CF

PDF β⋅−=  

in order to find the corresponding Gaussian variate xK . Note that Equation 2.55 is a 

special case of the design criteria in Equation 2.54 that holds at the onset of the limit 

state. 

5. Find the corresponding confidence level x for the existing design. 

2.3.1.1 Numerical example 

The procedure outlined above for finding the confidence level corresponding to an existing 

design can be applied to the numerical example in Section 2.2.3.7 where the factored demand for 

an allowable probability of 0004.00 =P  and factored capacity for the collapse limit state were 

calculated. The ratio of the factored demand to factored capacity is equal to: 

0.817
0658.0
0538.0

..
)0004.0.(.

==
CF

DF  

We have used the tables in the FEMA 351 guidelines in order to estimate UTβ . For a 

three-story (low-rise) structure, the tables recommend the value 15.0=UDβ  accounting for the 

uncertainty in the estimation of the displacement-based response using nonlinear dynamic 

procedures for the collapse limit state. Also the guidelines recommend the value 15.0=UCβ  

associated with the uncertainty in the estimation of the global dynamic collapse capacity for a 

low-rise structure. Therefore, UTβ  can be estimated as: 

212.0)15.015.0( 2
1

22 =+=UTβ  

The next step is to calculate the Gaussian variate xK  from Equation 2.55: 
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212.0817.0
..

)0004.0.(. ⋅−== XKe
CF

DF  

which implies that: 953.0=xK . Hence, the corresponding confidence level for 953.0=xK  can 

be found from a normal distribution table: 

83.0)953.0( =Φ=x  

Hence, we can conclude that the confidence associated with the existing design of this structure 

is 83%. Precisely the same conclusion will be reached following the SAC-like format based on 

the definitions in Equations 2.49 and 2.50 for demand, capacity, and, confidence factors. The 

factored demand and capacity would differ in value as would their ratio, but the numerical 

confidence calculated via 2.50 would be the same. Yun et al. (2002) have followed a similar 

procedure to the one outlined above in order to estimate the confidence of a nine-story building 

(with both pre-Northridge and post-Northridge designs) in satisfying collapse prevention and 

immediate occupancy performance levels according to FEMA 273 guidelines.  

2.4 SUMMARY AND CONCLUSIONS 

A probabilistic framework for the assessment of the performance of structures under seismic 

excitations was developed in the Chapter 1. Chapter 2 discusses several of the many possible 

alternative design and assessment formats that stem from this probabilistic framework. The 

design formats discussed can all be traced back to a general probabilistic design criterion, which 

is satisfied when the frequency of exceeding a certain limit state is less than or equal to an 

allowable probability, 0P . A design format usually offers equivalent displacement-based or 

spectral acceleration-based criteria parallel to the general design criterion. The advantage of 

these equivalent criteria is that they are expressed in terms of structural response parameters and 

hence the resulting format can be incorporated more easily into the existing design codes. 

These formats can be categorized based on the types of uncertainty involved in parameter 

estimations. The first category takes into account the randomness, also known as the aleatory 

uncertainty, in the assessment of demand and capacity. The second category takes into account 

both the randomness (aleatory uncertainty) in the estimation of the demand and capacity and also 

the uncertainty due to limited knowledge (epistemic uncertainty) in the estimation of the hazard, 

demand, and, capacity parameters. 
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Within the first category, the demand and capacity factor design (DCFD) format was 

discussed. This format is a (displacement-based) design format, analogous to the LRFD 

procedures, that stems directly from the expression for the mean annual frequency that the 

displacement-based demand exceeding capacity for a certain limit state. The DCFD format is 

based on a displacement-based design criterion in which the factored (displacement-based) 

demand (representing “load”) for the allowable probability 0P  should be less than or equal to the 

factored (displacement-based) capacity (representing “resistance”) for a certain limit state. 

Another format discussed under the first category is an IM-based format known as the 

fragility/hazard format, in which the fragility curves represent the structural “resistance” and the 

hazard curves represent the seismic “load.” This format is based on a design criterion in which 

the spectral acceleration for a hazard value (i.e., frequency of exceedance) equal to the allowable 

probability 0P , is less than or equal to the factored capacity expressed in spectral acceleration 

terms. Each fragility curve is specific to a its corresponding limit state and can be used in order 

to obtain parameter estimates for the calculation of the factored capacity. The fragility/hazard 

format has been implemented for the design and evaluation of energy facilities (e.g., nuclear 

power-plants) in the DOE 1020 guidelines and for offshore structures in ISO guidelines. 

Within the second category of the design formats that also address the epistemic 

uncertainties, a more general form of the displacement-based DCFD format is discussed. This 

format associates a level of confidence with the estimated frequency of exceeding a limit state. 

This confidence level represents explicitly the epistemic uncertainties involved in the estimation 

of the demand and capacity parameters and implicitly (and approximately) the epistemic 

uncertainty in the hazard estimation. The displacement-based design criterion for this format is 

very similar to that of the DCFD considering only the aleatory type of uncertainty except for an 

additional factor that reflects the level of confidence in the estimation of the limit state 

frequency. The DCFD format can be used for both designing a building with a certain level of 

confidence and also determining the level of confidence associated with an existing design for an 

allowable limit state frequency. This format is implemented in the guidelines for the performance 

evaluation of existing and earthquake damaged buildings in FEMA 351. 

As a final note, it should be mentioned that there are numerous ways to transform the 

probabilistic design criterion stated in Equation 2.6 into design criteria that are suitable for code 

implementation. This chapter discusses only the most commonly used of these formats. 
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Nevertheless, the fundamentals used for deriving these formats can be applied toward developing 

new design/assessment formats. 



 

 

3 Summary and Conclusions 

A closed-form analytic foundation for the design and assessment of structures under seismic 

loads was developed using basic probabilistic concepts (Chapter 1). This foundation forms the 

theoretical basis to alternative formats suitable for implementation in design and assessment 

guidelines (Chapter 2). 

3.1 CHAPTER 1:  A TECHNICAL FRAMEWORK FOR PROBABILITY-BASED 
DESIGN AND ASSESSMENT 

A probabilistic foundation is developed based on simplifying assumptions. This results in an 

analytic closed-form expression for the mean annual frequency of exceeding specified structural 

performance levels or, more briefly, limit state frequency. The limit state frequency is derived by 

assuming that the parameters involved in the assessments have a stochastic nature, which is 

modeled by considering two different types of uncertainty. The first type identifies the more 

familiar “natural variability” in the parameters, and is referred to as “randomness” or, more 

precisely, the “aleatory uncertainty.” The second type addresses limited knowledge and data, and 

is referred to as “uncertainty,” or “epistemic uncertainty.” This second kind of uncertainty can be 

reduced by acquiring more data (larger sample sizes) and/or by increasing the knowledge upon 

further research. 

The derivation of the limit state frequency employs a probabilistic tool known as the 

“total probability theorem” (TPT) in order to decompose the derivations into smaller and less 

complex parts. Therefore, the process of evaluating the limit state frequency involves additional 

“interface” variables. Two alternative solution strategies for deriving the expression for limit 

state frequency are presented, namely, the displacement-based strategy and the ground motion 

intensity-based solution strategy. The displacement-based approach evaluates the limit state 

frequency as the frequency that a displacement-based demand variable exceeds the 

corresponding limit state capacity. The derivations in this case are performed in two steps: (1) 
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The first step evaluates the frequency that the displacement-based demand exceeds a given value 

by decomposing it with respect to the ground motion intensity level and then composes the 

results by integration over all possible intensity levels. This first step is done by employing the 

total probability theorem and an interface variable representing the ground motion intensity. This 

variable is referred to as the intensity measure (IM). The assumptions made in this step of the 

derivation include approximating the frequency that the IM exceeds a certain level, also known 

as the “hazard” for the IM, by a power-law function, modeling the probability distribution of the 

displacement-based demand for a given level of ground motion intensity by a lognormal 

distribution, and assuming that this lognormal distribution is defined by a median (central value) 

that is itself a power-law function of the ground motion IM and a (log) standard deviation 

(dispersion measure) that is invariant with respect to the ground motion intensity. (2) The second 

and final step is to evaluate the frequency that the displacement-based demand exceeds capacity 

by decomposing it into (conditional) frequencies of exceeding given values for the limit state 

capacity and then composing these frequencies by integration over all possible values of 

capacity. In this step it is assumed that probabilistic distribution of the (displacement-based) 

capacity can be modeled with a lognormal distribution with constant median and standard 

deviation and also that capacity and demand are uncorrelated. The second or ground motion 

intensity-based approach evaluates the mean annual frequency that the IM variable exceeds the 

corresponding limit state capacity IM or more briefly the IM capacity for a specific limit state 

(also called “limit state frequency”). The derivation involves decomposing the limit state 

frequency into conditional limit state frequencies that the IM exceeds IM capacity for a given 

intensity measure and integrating the conditional limit state frequencies over all levels of ground 

motion intensity.  

3.2 CHAPTER 2:  PROBABILITY-BASED DEMAND AND CAPACITY FACTOR 
DESIGN (DCFD) FORMATS 

The closed-form analytic expression(s) derived for the limit state frequency can be formed into 

alternative formats. These formats are alternative representations of the closed-form expression 

for the frequency of exceeding a certain limit state based on displacement-based or IM-based 

design/assessment criteria. These criteria, which are expressed in common structural engineering 

terms rather than the more abstract probabilistic ones, can be implemented in existing design and 

assessment procedures and guidelines. 
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Demand and capacity factor design (DCFD) represents a family of displacement-based 

design formats that are distinguished with regard to the types of uncertainties considered in the 

formulation of the limit state frequency. This format has already been implemented in FEMA 

350 for the design of new steel moment-resisting frames, in FEMA 351 for the assessment of the 

existing steel moment-resisting frames, and in ISO guidelines for the design of offshore 

structures. The fragility/hazard format represents a ground motion intensity-based family of 

design formats, also capable of considering both types of uncertainty. The fragility/hazard format 

has a graphic representation based on fragility and hazard curves and has been implemented in 

various forms in the nuclear power plant PRAs and DOE 1020 seismic criteria (Kennedy and 

Short 1994). Consideration of the epistemic uncertainty in the development of these formats 

results in designing the structure with a certain degree of confidence or in assessing the level of 

confidence in the design of an existing structure for a given allowable probability level. 



 

Appendix A: The Expected Value of Yα Where Y 
is a Lognormal Random Variable: 

Assume lnY is a normal random variable (i.e., Y is lognormal) with mean m and standard 

deviation σ. One can always write the following relationship for Y raised to a power, α : 

YeY lnαα =  

lnY can be transformed into a standard normal variable U, 

(A.1)                                                      ln
σ

mYU −=  

for which, the standard normal probability density function (PDF) at U=u is equal to: 
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Based on the linear relation between lnY and U (Equation A.1) and the standard normal PDF for 

U (Equation A.2), the PDF for normal random variable lnY at lnY=x can be obtained as: 
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where f(.) denotes the PDF function. The expected value for a function g(.) of a continuous 

random variable Z can calculated as: 
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Therefore, the expected value of αYYg =)(  can be written as (using Equations A.2, A.3 and A.4): 
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After some algebraic operations, which involves adding and subtracting a few (necessary) 

square terms, the following equation is obtained: 
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We can recognize that the term inside the integral is nothing but the PDF for a normal variable 

with a mean equal to 2σα ⋅+m , and a standard deviation equal to, σ . Therefore, the resulting 

integral (from −∞ to ∞ ) is equal to unity. Hence, the expected value of αY  is simplified to the 

product of the following two terms:  
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For a lognormal random variable, the mean of the logarithm of the variable is equal to the 

logarithm of the median of the variable (Benjamin and Cornell 1970): 

   ][lnln Y YE=η  

where (.)η denotes the median. Hence, for normal random variable lnY with mean m and 

standard deviation σ , the expected values of αY  can be written as: 
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Thus, the expected value of a lognormal random variable raised to a power α  can be expressed 

as the product of the median value raised to the power times a magnification factor, which is an 

exponential function of the variance of lnY times 2

2
1 α . 



 

 

Appendix B: Statement of the Total Probability 
Theorem 

Given a set of mutually exclusive and collectively exhaustive events, B1, B2, …, Bn, the 

probability P[A] of another event A can always be expanded in terms of the following joint 

probabilities (Benjamin and Cornell 1970): 
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Appendix C: Annual Frequency of Exceeding a 
Limit State — Demand and 
Capacity are Correlated 

In Chapter 1 of this report, we derived a closed-form expression for the mean annual frequency 

of exceeding limit state capacity. However, the derivations were based on the assumption that the 

limit state capacity is not correlated with displacement-based demand. In this appendix we will 

derive the limit state frequency for a more general case in which demand and capacity are 

correlated. As it turns out, incorporating the correlation between demand and capacity in the 

formulations is simple and may be carried out by modifying the total fractional standard 

deviation in the closed-form expression for the limit state frequency. As in the report, here we 

will study the effect of correlation between demand and capacity in two categories, namely (a) 

when the aleatory part of the uncertainties (e.g., randomness due to record-to-record variability 

in demand and capacity) in demand and capacity are correlated and (b) the epistemic part of the 

uncertainties (e.g., due to imperfect knowledge in estimating structural model parameters) in 

demand and capacity are correlated. In fact, as mentioned in the appendix of a paper by the 

authors (Cornell et al. 2002), some deliberations on the correlation between demand and capacity 

in the FEMA/SAC project indicated significant correlation between the epistemic uncertainties 

in the estimation of the displacement-based demand at larger ground motion levels and (global) 

collapse capacity. We will discuss each of the above a and b cases separately without loss of 

generality, as they can be simply combined if needed. 

C.1. CORRELATION BETWEEN ALEATORY UNCERTAINTIES IN DEMAND AND 
CAPACITY 

The annual frequency of exceeding a limit state, LSH , can be expressed as the limit state 

probability ][ CDP ≥  times the occurrence rate parameter ν  (Equation 1.28): 

(C.1)                                     ][ CDPPH LSLS ≥⋅=⋅= νν  
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In the report, we derived the limit state frequency in two steps: (1) by deriving the mean annual 

frequency of exceedance (MAF) for the displacement-based demand or the drift hazard and (2) 

by deriving the conditional probability that demand exceeds capacity for a given value of 

capacity and combining it with the MAF for the displacement-based demand in the first step. 

However, that approach is based on the assumption that demand and capacity are uncorrelated, 

and hence can be treated in two separate steps. In this appendix, we will derive the limit state 

frequency by conditioning the probability that demand exceeds capacity on spectral acceleration 

and then integrating it with respect to spectral acceleration: 
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where dxxfxdGxdH
aaa SSS ⋅⋅=⋅= )()(|)(| νν , as it is explained in Section 1.4.7.3. The term 

]|[ xSCDP a =≥  can be re-arranged as follows: 
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It is assumed that displacement capacity is not correlated with spectral acceleration1. The 

term, )(xD , denotes the displacement-based demand for a given spectral acceleration value, x. 

Assuming that both conditional demand for a given spectral acceleration, )(xD , and capacity, 

C , are lognormal random variables, the ratio of the two variables, CxD /)( , is also a lognormal 

random variable with the following mean and standard deviation of the log: 
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where we have made use of the fact that the mean (expected value) is a linear operator in order to 

expand the mean of the (log of) demand to capacity ratio (Equation C.4.a). We can observe that 

the mean of the logarithm of the demand to capacity ratio is equal to the logarithm of the ratio of 
                                                 
1 This assumption makes the derivations more consistent with that described in the part 1 of the report. 
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the median demand (given spectral acceleration), )(| x
aSDη , to median capacity, Cη . We arrived at 

this conclusion based on a property of a lognormal random variable, in which the mean of the 

logarithm is equal to the logarithm of the median. The variance term is also expanded into the 

sum of the variance of the log of demand for a given spectral acceleration, 2
| aSDβ , the variance of 

the log of capacity, 2
Cβ , and a correlation term that has the correlation factor between the (log) 

demand (given spectral acceleration) and (log) capacity, CSD a ln,|lnρ . It should be noted that the 

fractional standard deviation, 
aSD|β , is assumed to be a constant and not a function of the spectral 

acceleration, which is one of the assumptions made in order to arrive at a closed-form solution 

for limit state frequency in Chapter 1. The standard deviation of the (log of) demand to capacity 

ratio is also a constant, if we assume that the fractional standard deviation in capacity and the 

correlation factor between (log) demand and capacity are constants and do not depend on the 

spectral acceleration level. 

Having derived the statistical properties of the lognormal variable, CxD /)( , we can 

further expand the term ]|[ xSCDP a =≥  in Equation C.3: 
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where (.)Φ  is the standard normal cumulative distribution function. We have also replaced 

)(| x
aSDη  by bxa ⋅  (Section 1.4.7). We can substitute the above expression for ]|[ xSCDP a =≥  

in Equation C.2 in order to derive the limit state frequency: 
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Comparing the above expression for the limit state frequency to that of the MAF of 

exceeding displacement-based demand value, d (i.e., drift hazard), in Equation 1.16, we can 

observe that the two expressions will be identical if Cη  is replaced by d  and CSD a /|β  is replaced 
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by 
aSD|β 2. Therefore, we can use the resulting closed-form solution for the MAF of exceeding 

the demand value d in Equation 1.25 by replacing d  with Cη  and 
aSD|β  with CSD a /|β : 
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Replacing the expression for CSD a /|β  from C.4.b in the above equation: 
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which is the closed-form analytic solution for the limit state frequency taking into account the 

correlation between the aleatory uncertainties in demand (given spectral acceleration) and 

capacity. Comparing Equation C.8 to the closed expression for limit state frequency in Equation 

1.38, we can observe that the two expressions are identical except for the exponential correlation 

term )exp( |ln,|ln2

2

CSDCSD aab
k ββρ ⋅⋅⋅−  appearing in Equation C.8. It can be argued that if the 

correlation factor is positive, the limit state frequency in Equation 1.38 overestimates the limit 

state frequency, whereas if the correlation factor is negative. the limit state frequency will be 

underestimated. 

C.2. CORRELATION BETWEEN EPISTEMIC UNCERTAINTIES IN DEMAND AND 
CAPACITY 

We will now base our derivation of the limit state frequency directly on the derivations outlined 

in Section 1.4.8. 

The limit state frequency conditioned on the deviations due to epistemic uncertainty in 

spectral acceleration hazard, UHε , demand, UDε , and capacity, UCε  can be calculated from 

Equation 1.82: 
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2 It should be noted that we are using the assumption that Cη  and CSD a /|β are both constants (with respect to 
spectral acceleration) in order to make the above statement. 
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where Cη̂  is the estimated median capacity. The above expression can be rewritten by treating 

the limit state frequency, spectral acceleration hazard, and the deviations in demand and capacity 

as random variables (Equation 1.83): 
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where we have used the “tilde” symbol to distinguish the uncertain quantities from deterministic 

ones. We will now calculate the mean and standard deviation of the logarithm of limit state 

frequency from Equation C.10, taking into account the correlation between random variables 

UDε~  and UCε~  that represent epistemic uncertainty in demand and capacity. In doing so, we will 

use the statistical properties of UDε~  and UCε~  listed in Equations 1.60 and 1.77; we will also use 

the expressions for mean and standard deviation of two or more correlated random variables as 

in the previous section: 
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where 
UCUD εερ ~ln~ln ⋅  denotes the correlation factor between the (log of) epistemic deviations in 

demand and capacity. The above expression is based on the assumption that neither of the 

epistemic deviations in demand and capacity is correlated with that of the spectral acceleration 

hazard. Hence the mean estimate for the limit state frequency can be derived as: 
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⋅=  denotes the mean estimate of the spectral acceleration 

hazard. Comparing the above expression for the mean estimate of the limit state frequency in 

Equation 1.86, we will observe that they differ by the exponential correlation term, 

)exp( |~ln~ln2
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k ββρ εε ⋅⋅⋅− ⋅ . Similar to the previous section on aleatory uncertainties, the 
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mean estimate for limit state frequency from Equation 1.85 will be underestimated if the 

epistemic uncertainties in demand and capacity are negatively correlated. 
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