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ABSTRACT

Demand and capacity factor design (DCFD) is a probability-based load and resistance factor
(LRFD)-like format used for performance-based seismic design and assessment of structures.
The DCFD format is based on a technical framework that provides a closed-form analytical
expression for the mean annual frequency of exceeding (or not exceeding) a structural
performance level, which is usually defined as specified structural parameters (e.g., ductility,
strength, maximum drift ratio) reaching a structural limit state (e.g., onset of yield, collapse).

This report, which is presented in two parts, provides a step-by-step and detailed
description of the development of the technical framework underlying the DCFD format,
accompanied by helpful illustrations and numerical examples. In the first part, a closed-form
analytic expression for the mean annual frequency of exceeding a structural limit state is derived
based on certain simplifying assumptions. The expression for mean annual frequency of
exceedance is derived by taking into account the aleatory uncertainty (due to inherent
randomness) and the epistemic uncertainty (due to limited knowledge) in three main elements,
seismic hazard, structural response (as a function of ground motion intensity) and capacity. A
schematic plot of these three parameters is shown in the figure below.
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In the second part of this report, the closed-form expression for the mean annual
frequency of exceeding a limit state is re-arranged into alternative formats, suitable for
implementation in seismic design and assessment guidelines. These formats can be used to
ensure that the structural seismic design can be expected to satisfy specified probabilistic
performance objectives, and perhaps (more novel) that it does so with a desired, guaranteed
degree of confidence. The degree of confidence in meeting the specified performance objectives
may be quantified through the upper confidence bound on the (uncertain) probability. These
proposed formats are based on alternative conventional design methods such as LRFD design
and fragility-hazard design. Versions of the new developments reported here are aready in place
in recently completed seismic guidelines such as the FEMA 350-352 documents and the SO
seismic design guidelines for offshore platforms. Numerical applications of the DCFD format
and its underlying framework can be found in papers by the authors and other researchers,

instances of which are outlined in this report.
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1 A Closed-Form Analytic Foundation for
Probabilistic Seismic Assessments

1.1 INTRODUCTION

The demand and capacity factor design (DCFD) format is a probability-based load and resistance
factor (LRFD)-like format for the seismic design and assessment of structures. The DCFD
format is based on a technical framework for probabilistic performance-based design and
assessment of structures. The performance objective in this framework is stated in terms of the
mean annual frequency of exceeding the desired performance level. This closed-form expression
is derived by taking into account the uncertainty in the estimation of seismic hazard, structural
response (as a function of the ground motion intensity level), and structural capacity (for the
desired performance level) based on certain simplifying assumptions.

Recent seismic assessment guidelines such as FEMA 356 pre-standard and FEMA 273
guidelines define their rehabilitation objective as consisting of a target building performance
level and an anticipated earthquake hazard level. The target performance levels are described
gualitatively in terms of building safety before and after the earthquake, repair cost, and
downtime; whereas the earthquake hazard levels can be defined on a probabilistic basis in terms
of the mean probability of exceeding a certain hazard level in 50 years. In comparison to the
rehabilitation objective defined in FEMA 356 and FEMA 273, the DCFD probabilistic
framework states the performance objective by defining the building performance on a
probabilistic basis and taking into account both the desired building performance as well as the
expected seismic hazard.

Nonlinear dynamic analysis procedures can be used in order to both obtain parameter
estimates for the DCFD format and/or its analytical basis and also to test the validity of the
simplifying assumptions made in the derivations. Many researchers such as the authors (Jalayer
and Cornell 2003a, 2003b; Medina 2002; Yun et al. 2002; and Cordova et al. 2001) have studied

the implementation of nonlinear dynamic procedures both for parameter estimation and also for



checking the robustness of DCFD’s analytic basis. Such research efforts are mentioned in
relevant sections in this report.

This report is a step-by-step and detailed guide to the construction of the probabilistic
framework that underlies the DCFD format. In order for the report to be more tractable, the
derivations are arranged so that each step is based on the results of the previous one(s).
Whenever possible, the derivations are also accompanied by numerical examples and graphic
illustrations to help the reader. The report is divided into two main parts and a summary. The
first part is dedicated to the development of the technical framework underlying the DCFD
format, at the core of which is the derivation of the closed-form expression for the mean annual
probability of exceeding the desired performance level. The second part discusses alternative
design and assessment formats that stem from the probabilistic framework developed in Chapter
1. Most of these formats are analogous to Load and Resistance Factor Design (LRFD)
procedures associated with static, force-based structural engineering, e.g., the AISC LRFD Code.
Due to the generalizations here to a nonlinear, dynamic displacement basis, we refer to these new
formats as DCFD (Demand and Capacity Factor Design). The choice among these alternative
formats must be made on grounds such as familiarity and practicality because in many cases they

are technically equivalent.

1.1.1 Organization of the Report

Chapter 1 of the report, the foundation development, is intended to serve as a step-by-step
derivation of a closed-form expression for the mean annual frequency of exceeding structural
performance level(s) based on certain simplifying assumptions. The formulation of every piece is
explained in detail in order to provide an insight into probabilistic assessments for the interested
reader, including those with limited experience with such probabilistic derivations. The
derivations start with hazard estimations for the intensity measure of choice, which is the first-
mode spectral acceleration. The next step is to derive the mean annual frequency of exceeding
the structural displacement response based on the derived expression for the spectral acceleration
hazard and also on an assumed analytical form (e.g., lognormal distribution) for the (conditional)
probability distribution of the displacement response given spectral acceleration. In the final step,
the information about structural limit state capacity is taken into account in order to derive the
expression for the mean annual frequency of exceeding a structural limit state, or limit state
frequency in short, which is the primary goal of this chapter. Another layer of complexity is
2



added by considering the uncertainty due to limited knowledge (epistemic uncertainty) in the
formulation of the limit state frequency.

In Chapter 2, the format development discusses several of the many alternative design
formats that can stem from the expression for limit state frequency. Demand and capacity factor
design (DCFD) is a closed-form design and assessment format that directly results from the
original formulation for the mean annual frequency of exceeding a limit state derived in Chapter
1. This format has been implemented in FEMA 350, 351, and, 352 and in an ISO offshore
structure guideline (Banon et. al. 2001). The fragility-hazard design format is another way of
transforming the closed-form expression for the probability of exceeding a limit state from
Chapter 1 into a (potentially) graphical design format. A variation of this format has been
implemented in the Department of Energy Guidelines (DOE 1020) for nuclear power plants
(PRA 1983). As in Chapter 1, another level of complexity is added by including the epistemic
uncertainty in the formulations. The consideration of this type of uncertainty may manifest itself
in the form of a confidence statement about the performance objective being met (which may in
effect modify the demand and capacity factors in the DCFD format, as adopted in FEMA 350),
or in the use of the mean estimate for the limit state frequency (as in DOE 1020, 1994).

12 SOURCESOF UNCERTAINTY IN ENGINEERING PROBLEMS

Sources of uncertainty in engineering safety problems are classified into two major groups
known, confusingly and unfortunately, by various pairs of words in the broader reliability
community, for example, randomness and statistical uncertainty, aleatory uncertainty and
epistemic uncertainty, frequency, and probability, and simply Type | and Type II. Moreover,
there are ongoing discussions about the nature of uncertainty each group identifies and whether
they should be distinguished in the first place. However, in the present work, the first term
identifies the more familiar “natural variability” such as the times and magnitudes of future
earthquakes in a region, record-to-record variability in acceleration time-history amplitudes and
phases. The second term of each pair signifies the limited knowledge and data the profession
currently has about, for example the modeling of structural systems in the highly nonlinear range
and exact numerical values of parameters of physical and random (stochastic) models, e.g., the
median value of the maximum interstory drift of a particular model frame under a population of
future ground motions of specified intensity. This second kind of uncertainty can be reduced by
more data (larger sample sizes) and/or by more research. In the following text, we shall typically

3



use the simple pair of words “randomness” and “uncertainty.” Therefore we shall be using the
second word in the more restrictive sense of epistemic uncertainty and not in the broader sense as
in the title of this section. Occasionally, for example when precision is imperative, we shall use
the longer unambiguous terms “aleatory uncertainty” and “epistemic uncertainty,” which are

now quite common in seismic hazard analysis.

1.3 DOCUMENT MAP

This report contains a complete analytical background for DCFD probability-based seismic
design and assessment procedure. For pedagogical reasons the development of the text follows a
detailed step-wise manner that makes it somewhat long. However, it is possible to bypass some
sections without losing the general picture. The document map that follows illustrates two

possible routes the patient reader can follow.

Source of Uncertainty: Limit State Probability
Randomness Only

\ Sources of Uncertainty: Limit State Probability
Randomness and with Uncertainty
Uncertainty

Route 1 |:|
Route2 [N

DCFD Formats

Source of Uncertainty:

ﬁ Randomness

Fragility/Hazard

Format Development

DCFD Format s

Sources of Uncertainty: with Uncertainty
Randomness and
Uncertainty Fragility/Hazard

with Uncertainty

Route 1 goes through the entire development of the technical framework taking into
account randomness as the only source of uncertainty. Route 2 goes through a more generalized

derivation that considers uncertainty also.



1.4 FOUNDATION DEVELOPMENT

The probabilistic foundation developed in this report involves the entire endeavor that leads to
the derivation of a closed-form expression for the mean annual frequency of exceeding a
specified limit state for a given structural system. In other words, the final product of this chapter
is a closed-form solution for the mean annual frequency of exceeding a limit state calculated
taking into account the uncertainty in the various parameters involved in the seismic design of
the structural system.

The derivation of the limit state frequency (short for “the mean annual frequency of
exceeding a specified limit state”) will be presented in two parts. In the first part, the limit state
frequency is derived considering only the uncertainty due to randomness. In the second part, the
more generalized form of limit state probability is introduced, which accounts for both

randomness and uncertainty.

1.4.1 Structural Limit States

The desired structural performance levels for the seismic design or assessment of a structure can
be defined in terms of specified thresholds of structural behavior known as the “structural limit
states.” A structural limit state is usually defined by the structural behavior at the onset of
structural demand being equal to the capacity corresponding to that limit state. Global collapse,
an example of a structural limit state, is used in this report for defining the desired structural
performance level. The foundation derivation represented in this text applies to virtually any
limit state; however, for simplicity and clarity, this report focuses on the global collapse limit

state.

1.4.2 Structural Demand Variable (State Variable)

Demand, or state variable, is normally chosen as a displacement-based structural response
representative of structural dynamic and nonlinear behavior. The most common examples for
buildings include: roof displacement or interstory drift.

In this report, we have chosen the maximum interstory drift ratio (MIDR) as the
displacement-based structural demand variable (the maximum is obtained as the peak in response

time histories over all stories in the building). MIDR is particularly relevant to global collapse



predictions for moment-frame structures (FEMA 350). Maximum interstory drift values may be
obtained from the results of structural analyses for various ground motion intensities.

We have chosen to refer to the maximum interstory drift variable as D hereafter. This will
keep the future derivations general with respect to a generic demand variable D. It is also

suggestive of the displacement-based nature of the demand variable.

1.4.3 Structural Capacity Variable (Limit State Variable)

Capacity, or the limit state variable, is as the name suggests a limit (threshold) for acceptable
structural behavior. We have already introduced the demand (state) variable for describing the
structural behavior. The capacity (limit state) variable describes the limiting value for the
demand (state) variable. Obviously, it will be represented on the same basis as the structural
demand variable, maximum interstory drift ratio in this case. The capacity can be defined as a
prespecified interstory drift ratio, e.g., 2% (which FEMA 350 uses for an “onset of damage limit
state””), or alternatively as capacity with respect to connection failure modeled as a random
variable based on test data. In this report, we shall focus on global (dynamic) collapse limit state
capacities extracted from the incremental dynamic analysis (IDA) curves, which are plotted
using the nonlinear dynamic response of the structure to a suite of ground motion recordings (see
Vamvatsikos and Cornell 2001).

In order to keep the derivations general, we have used the generic notation C for the
random interstory drift capacity. This will also be consistent with the demand variable denoted as

D.

144 Limit State Frequency H.s

In the probabilistic framework discussed in this report, the performance objective is stated in
terms of a target or desired mean annual frequency of exceeding a performance level. The
performance levels can be designated as structural limit states defined by the condition, D = C.

Hence, the performance objective can be stated as the mean annual frequency of exceeding a

specified limit state and denoted by, H . We will also refer to H ¢ as limit state frequency in
order to be brief. H g is defined as the product of the mean rate of occurrence of events with

seismic intensity larger than a certain “minimum” level, v, and the probability that demand D

exceeds capacity C, when such an event occurs.
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Hs=v-P[D>C]

It should be noted that since the rate parameter v is in frequency terms (times a
nondimensional probability term), the limit state frequency is also expressed as a rate of
exceedance rather than the probability of exceedance. As will be seen later in the section on
seismic hazard, the above definition of limit state frequency is consistent with (and related to) the

seismic hazard definition.

145 General Solution Strategy

In order to determine H, 4, we are going to decompose the problem into more tractable pieces

and then re-assemble it. First, we introduce a ground motion intensity measure IM (such as the

spectral acceleration, S,, at say 1 second period) because the level of ground motion is the major
determinant of the demand D and because this permits us to separate the problem into a
seismological part and a structural engineering part. To do this, we make use of a standard tool in
applied probability, known as the “total probability theorem” (TPT) (see Appendix B), which
permits the following decomposition of the expression for limit state frequency with respect to
an interface variable (here, the spectral acceleration):

Hs=v-P[D>C]=v-) PID>C|S, =X]-P[S, =X] (1.1)

all x

where v is the rate parameter that was defined in Section 1.4.4 as the mean annual rate of
occurrence of events with seismic intensity more than a certain minimum level. In Equation 1.1
we have introduced S, as the intensity measure. In simple terms, the problem of calculating the
limit state frequency has been decomposed into two problems that we already know how to
solve. The first problem is to calculate the term P[S, =x] or the likelihood that the spectral
acceleration will equal a specified level, X. This likelihood (together with v) is a number we can
get from a probabilistic seismic hazard analysis (PSHA) of the site. The second problem is to
estimate the term P[D>C|S, =x] or the conditional limit state probability for a given level of
ground motion intensity, here represented by, S, =x. Estimating the conditional limit state
probability, for a given ground motion intensity, requires an understanding of, for example,

response/demand variability from record-to-record of the same intensity, which is an easier and
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“purely” structural problem to resolve. The TPT simply tells us how to recombine these two

pieces of the problem back into H . The solution strategy outlined above, calculating the limit

state probability by decomposing it with respect to spectral acceleration, shall be referred to as
the “IM-based” solution strategy hereafter.

An alternative solution strategy (the main strategy employed in this chapter) consists of
decomposing the derivation of the limit state probability in two steps, and hence it employs two
interface variables. The first step is to decompose the limit state probability with respect to the
displacement-based demand (the first interface variable) using TPT:

Hs=v-P[D>C]=v-) PID>C|D=d]-P[D=d]
all d

The second step is to decompose the term,P[D=d], or the likelihood that the

displacement-based demand is equal to a value d, with respect to the spectral acceleration (the

second interface variable):

Hs=v-PID>C]=v-> > PID>C|D=d]P[D=d|S, =x]-P[S, =X] (1.2)
all dall x

This two-step solution strategy, which employs the displacement-based demand as one of
the interface variables, shall be referred to as the “displacement-based” solution strategy.
Equation 1.2 is a special case of the framework equation used by Pacific Earthquake Engineering

Research (PEER) as a basis for probabilistic design and assessments.
It should be noted that the equations introduced in this section are valid for discrete
interface variables. However, here they solely serve as a schematic outline of the solution
strategy. Later in this chapter, we are going to present the parallel expressions for limit state

frequency based on continuous interface variables.

1.4.6 Ground Motion Intensity Measure

The ground motion intensity measure, |M, implemented in the solution strategies outlined in the
previous section, serves as an interface between the seismicity characterization and structural
behavior assessment. Ideally, such a variable should contain sufficient information about the
ground motion to serve as an accurate and efficient predictor of structural response, and it should

preferably be a variable for which the PSHA results are available (or readily obtainable). This



problem has been studied by Shome et al. (1998) and by Luco and Cornell, (2003). It has been
demonstrated by Shome and Cornell (1999) that, for short- and moderate-period structures, the
spectral acceleration at a period approximately equal to that of the fundamental mode of the
structure satisfies the criteria mentioned above. In fact, the study of such “intensity measure” is
the subject of significant current research by a variety of investigators within PEER. We shall
use this variable here for specificity, but the resulting derivations will not change if spectral
acceleration is replaced by any other scalar intensity measure, such as, for example, the inelastic

spectral acceleration (Luco and Cornell 2003).

1.4.7 Randomness. The Only Source of Uncertainty

The probability-based seismic assessment and design procedure presented here aims to evaluate
the mean annual frequency Hs that the limit state variable exceeds a limit state threshold LS
Our first objective here is to derive the limit state frequency assuming that randomness is the
only source of uncertainty in the demand and capacity variables.

We will follow the displacement-based solution strategy discussed in Section 1.4.5 in
order to derive the limit state frequency. The derivations are presented in a step-by-step manner
in order to make them easier to follow. At the end of this section we will also briefly present the
IM-based solution strategy for deriving the limit state frequency. We start by deriving the hazard
values for our adopted seismic intensity measure, which is the spectral acceleration of the “first”
structural mode. Then we use common probabilistic tools (e.g., TPT as explained previously) in
order to first derive the hazard values (i.e., the MAF of exceedance) for the displacement-based

demand, (here, maximum interstory drift angle) and then to derive the limit state frequency His.

1.4.7.1 Spectral acceleration hazard

The hazard corresponding to a specific value of the ground motion intensity measure (here
spectral acceleration S,) is defined as the mean annual frequency that the intensity of future
ground motion events are greater than or equal to that specific value X and denoted by Hg (X).
We are also going to refer to Hg (X) as spectral acceleration hazard, which can be defined as the

product of the rate parameter v (defined in section 1.4.4) and the probability of exceeding the

spectral acceleration value, X, denoted by Gg (X):



He (X)=V-Gg (X)

Now that we have chosen S, as the measure of ground motion intensity, we can be more

specific in the definition of the rate v and set it as the mean annual rate of earthquake events
with spectral acceleration greater than a (designated)! minimum value. Also implicit in the

probability term Gg (X) is that the spectral acceleration value X is greater than or equal to the
minimum intensity level. In other words, Gg (.) is equal to unity at spectral acceleration values

less than or equal to the minimum intensity level designated in the definition of the rate

parameter V. The spectral acceleration hazard values Hg (X) are usually plotted against

different spectral acceleration values, X; this results in a curve that is usually referred to as a
spectral acceleration hazard curve.

Spectral acceleration hazard curves are normally provided by seismologists for a given
site (e.g. the USGS website). Each curve provides the mean annual frequency of exceeding a
particular spectral acceleration value for a given period and damping ratio. It is advantageous to
approximate such a curve in the region of interest by a power-law relationship (see DOE 1994

and Luco and Cornell 1998):
Hsa(sa): P[SaZX]:kO-X_k (1.3)

where Ko and K are parameters defining the shape of the hazard curve.

Figure 1.1 shows a typical hazard curve for a Southern California site that corresponds to
a period of 1.8 seconds and damping ratio of 5%. As it can be seen from the figure, a line with
slope k and intercept k, is fit to the hazard curve (on the two-way logarithmic paper) around the
region of interest (e.g., MAFs between 1/475 or 10% frequency of exceedance in 50 years, and

1/2475 or 2% frequency of exceedance). Here, k=2.73 and k,=0.00012.

" A designated minimum value so that it is generally agreed that earthquakes with spectral acceleration values lower
than this certain level don’t cause significant damage in the structure.
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Santa Barbara Channel: SHA curve for T = 1.8sec

| Hsa(sa) =ko (s) ™

mean frequency of exceedance
=
T

Spectral Acceleration (g) (5% damping)

Fig. 1.1 A typical hazard curvefor spectral acceleration. It correspondsto a damping

ratio of 5% and a structural fundamental period of 1.8 seconds

It is important to note that the hazard values are usually provided in terms of the “mean
rates” of exceedance over a certain time interval (usually a year) rather than the “probabilities”
of exceedance. Therefore, it is more appropriate to refer to the hazard function as, for example,
the “mean annual frequency” rather than the “annual probability” of exceeding a certain value.
Nonetheless, for very small probability values, which are for example derived from a Poisson
model, the average rate and the resulting probability value are almost the same. For simplicity,
we are going to drop the “mean” term before the frequency. However, where epistemic
uncertainty is introduced into the problem, we will need to be more precise in how we refer to

the hazard function.

1.4.7.2 Median relationship between spectral acceleration and interstory drift demand

Observations of demand values are normally obtained from the result of structural time history
analyses performed for various ground motion intensity levels. Figure 1.2 shows such results,
e.g. maximum interstory drift, D versus S,. For a given level of ground motion intensity, there
will be variability in the displacement-based demand results over any suite of ground motion

records applied to the structure. It is assumed here that this variability is a result of randomness

in the seismic phenomena as discussed before (later in Section 1.4.8 we will take into account the
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epistemic uncertainties, such as uncertainty due to limited number of records, in addition to

record-to-record variability). It is convenient to introduce a functional relationship between the
ground motion intensity measure and a central value, specifically the median 77, of the demand

parameter based on the data available from such time history analyses.
In general, for a spectral acceleration equal to x, the functional relationship will be:

1o (X) = 9(X)

This is called the conditional median of D given S, (more formally denoted by 7ps (),

but we shall keep the simpler notation). We can construct a full conditional probabilistic model
of the variability displayed in Figure 1.2 by writing:
D=np(X)-£=9(X)-€

where ¢ is a random variable with a median equal to unity and a probability distribution to be
discussed below. At this point a particular functional relationship is introduced that both
conforms to our perceptions of a structural performance curve and also helps simplify future

analytical efforts. We have used linear regression in logarithmic space (i.e., In7p(x,) =Ina+blnx )
in order to fit a power-law function, a-S,”, to our collection of maximum interstory drift ratio
and “first-"mode spectral acceleration data pairs.

L.A. 3- Story Model Structure with Brittle (Boffom Flange Omiy) Connections
3
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This is a probabilistic model of the
(conditional) distribution of demand
given an intensity level.

1 1 1 1 1 1
u] o.o1 0.0z o D_3 0.04 o.o0s EI.DEE o.ov 0.08 o.o0g9 0.1
Maximum Inter-story Drift, D

Fig. 1.2 A set of spectral acceleration and demand data pairs and the regression model fit

to these data points.
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It is not an objective here to describe the various ways 7,(X) may be estimated. In design

practice it is likely to come from one or more structural analysis procedures, perhaps previously
calibrated to nonlinear dynamic results for similar structures (FEMA 350 2000 and Yun and
Foutch 2002). In assessment practice or research it can be obtained through one or more schemes
of selecting and processing records and results (Bazzurro et al. 1998; Luco and Cornell 1998;
Vamvatsikos and Cornell 2001). We shall see below that the number of required time history
analyses may be quite small (e.g., on the order of 5 to 10). For a set of drift demand and spectral
acceleration data points, such a regression in the logarithmic scale will result in the following

relationship between spectral acceleration and (median) interstory drift response:

Mo (X)=a-X,” (1.4)

Figure 1.2 illustrates a typical power-law relationship between the median maximum
interstory drift demand and the spectral acceleration for a three-story steel frame building located
in Los Angeles. In this case, b=1 which is consistent with the so-called “equal displacement

rule” (Veletsos and Newmark 1960).

1.4.7.3 Mean annual frequency of exceeding demand: drift hazard

We are going to break the displacement-based approach for deriving the limit state frequency in
Equation 1.2 into two parts. The first part is to derive the mean annual frequency (MAF) that the
displacement-based demand exceeds a given value d, also referred to as the “drift hazard,” and
the second part is to derive the MAF that the displacement-based demand exceeds limit state
capacity, also referred to as the “limit state frequency.” In simple terms, the uncertainty due to
randomness in demand and capacity is taken into account in two stages. This section describes
the derivation of a closed-form expression for the mean annual frequency of exceeding a certain
demand value d, also known as the “drift hazard,” by taking into account the randomness in the
displacement-based demand.

Recall from the last section that the median demand versus spectral acceleration

relationship was introduced as:

To()=a-x (15)

As shown above, the demand can be written in terms of the product of its median value and a

lognormal random variable & with the following characteristics:
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D=n,(x)-€ (1.6)

We assume (based on observation of data) that £ can be represented by a lognormal distribution,
in which case we define its parameters, the median and standard deviation of In¢, to be:

mean(In(¢g)) — 1

n.=e
One) = IBD|Sa (1.7)

where 7, denotes the median value for e. Note that what we call the “dispersion,” i.e., Bpys,

will in general depend to some degree on the level of S,. Here for analytical tractability, we
assume that it is constant; the value should be chosen for S, values in the range of primary
interest. If 75(x) is replaced with its corresponding value from Equation 1.4, the following

expression for drift demand as a function of spectral acceleration and lognormal random variable
£ 1s obtained:

b

D=ax, -¢€ (1.8)

Since we have assumed that £ is a lognormal variable, we can also conclude that the
displacement-based demand D is also a random variable with the following statistical properties:
Mps, (X)) =a- X°
Oups, ()= ﬁD\Sa (1.9)

where 7ps () and oy,ps (¥) are the conditional median and standard deviation of the natural

logarithm for the displacement-based demand given spectral acceleration. As mentioned above,

the conditional standard deviation of the natural logarithm oy, (x) or the conditional
“fractional” standard deviation g5 (x) of demand given spectral acceleration is assumed to be
constant. The conditional median demand for a given spectral acceleration 7pg (x) (or more

briefly 7, (x)) is approximated as a power-law function of the spectral acceleration level, X.

Figure 1.3 illustrates a graphical presentation of basic components of the derivation of a
closed-from expression for drift hazard in which the median drift curve, the variability of the
displacement-based response around it, and the conditional lognormal distribution fit to the data

(at any given S,) are all plotted together with the spectral acceleration hazard. The median drift

times exp(fps, ) is referred to as the “mean plus one sigma” curve as it corresponds to the 84"
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percentile of the data for a lognormal variable; this is illustrated in the figure as 7, (x)-exp(Bps, ) -
In a similar manner, the median drift times exp(-fps, ) is referred to as the “mean minus one
sigma” curve as it corresponds to the 16™ percentile of the data (for a lognormal variable) that is
illustrated in the figure as 7, (X)-exp(-fps, ) -

In the previous sections we have defined the spectral acceleration hazard and limit state
frequency as the product of a probability of exceedance term (i.e., a complementary cumulative

probability density function or CCDF for brevity) times a rate parameter. Here we are also going

to define the drift hazard H(d)as the product of the rate parameter (also encountered in

sections 1.4.4. and 1.4.7.1) v and the probability of exceeding a specific demand value, d:

H,(d)=v-P[D>d]

L.A. 3- Story Model Structure with Brittle (S otfom Flange Orv) Connections
3

mean minus sigma - ---
median
mean plus sigma ==---

2% ) [g]

1.03sec, &

T

0.1

0.01 0.02 003 0.04 005 0.06 0.07 0.08 0.09
Hga(x) Maximum inter-story drift angle (Demand), D

Fig. 1.3 Basic elements of the derivation of a closed-form expression for drift
hazard,H (x), and of modeling the distribution of D given S, characterized by

no(and Bps -

In this section we are going to derive the drift hazard by decomposition and

recomposition with respect to spectral acceleration via the total probability theorem (TPT),
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similar to the IM-based solution strategy outlined in Section 1.4.5 for deriving the limit state
frequency. Applying the general solution strategy to the derivation of the drift hazard in this
section, we can decompose the drift hazard into the conditional probability of exceeding drift
value d for a given spectral acceleration value X and the likelihood that the spectral acceleration

is equal to the value x:

H,(d)=v-P[D> d]=V-ZP[D >d|S, =x]-P[S, =X] (1.10)

allx
where, as mentioned before, v represents the (mean annual) rate of the occurrence of the “events
of interest,” e.g., events with spectral acceleration greater than a designated minimum value.

Thus, the drift hazard in Equation 1.10 is equal to P[D >d] times the rate of occurrence of the

earthquake events that interest us. Therefore, the drift hazard itself is expressed in terms of the
“rate of exceedance,” or the mean annual frequency of exceedance (MAF).

We should note that the above expression involves discrete variables. However, since we
are using analytic parameter estimations, we are going to base our derivations on an equivalent

expression for the drift hazard derived for continuous variables:

H,(d)=v-P[D>d]=

S —3

PID>d|S, =x]-v- fsa(x)~dx:]:P[D>d|Sa =x]-[-dGg (x)|  (1.11)

where fg (x) is the probability density function (PDF) at spectral acceleration value X, and,
Gs, (¥) is the complementary cumulative distribution function (CCDF) at S, =x. It should be
noted that the ‘v-dGSa(x)‘ term in Equation 1.11 is resulting from the following relationship

between F() or the cumulative distribution function (CDF) and f() or the PDF for a random

variable (e.g., spectral acceleration S, ):

- dF. (X) |dG. (x
fsa(x):hmP[XSSaSX+AX]:hmP[SaSX+AX] PS, <x] _ dFs (x) _|dGs (¥)| 112)

Ax—0 AX AX—0 AX ax B ‘ dx ‘

The last equality is based on the fact that the CCDF is expressed in terms of the probability of
exceedance whereas the CDF is expressed in terms of the probability of being less than or equal
to exceedance. Therefore, their corresponding derivatives are equal in absolute values but will

have opposite signs.
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It should be noted that the spectral acceleration hazard Hg (x) is equal to the spectral

acceleration CCDF, Gg (x) times the rate of seismicity v :

Hs (X)=v-Gg (X) (1.13)
Therefore, we can rewrite Equation 1.11 as a function of the spectral acceleration hazard:

HD(d):TP[D>d S, :x]-‘v-dGSa(x)‘z]iP[D>d S, =x]-\dHSa(x)\ (1.14)

Since we have assumed that the displacement-based demand is a lognormal variable,

P[D>d|S, =x] can be derived using the tables that provide the CDF of a standardized normal

variable (Rice 1995). In order to use the normal tables, we first need to transform the random

variable D into a standardized normal variable:

InD-—meaninD _Ind-meanln D

PID>d|S,=x]=1-P[D<d|S,=x]=1-P[ < |S, =X]
ﬂo\sa ﬂDISa
)
_ _P[lnD_lnnD‘S’"(X)glnd_lnnD‘SA(x)]zl_q) a. x° (L15)
'BD\Sa ﬂD\Sa ﬂD\Sa

where ®() is the standardized Gaussian CDF. The above equation is derived based on the

following property of a lognormal variable in which the mean of the logarithm is equal to the

logarithm of the median (Benjamin and Cornell 1970):

meanin D =In7np

If we substitute the standardized Gaussian representation of P[D>d|S, =x] in Equation

1.15 into Equation 1.14, the drift hazard will be expressed as:

d
- e In(——)
HD(d)=jP[D>d\sa=x]-\dHSa(x)\=j{1—cp nﬂa—xb FldHg 0] (1.16)
0 0 DIS,
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We are going to use integration by parts in order to re-arrange the above equation so that

we can integrate it analytically. We first need to calculate the derivative of the first term in the

integrand:
In( d )
— . b —_— . b
d i a-x° - d Ind-Ina-x b . Ind-Ina- x (1.17)
dx ﬂD\Sa dx ﬂD‘Sa X- Z;DISa ﬂD‘Sa

where ¢() is the standardized Gaussian PDF which is equal to:

1 -
pu)=—e 2 (1.18)
N2r
for any standardized normal variable u. The drift hazard in Equation 1.14 is re-arranged into the

following form after applying the integration by parts assuming that the term

PID>d|S, =x]-Hg (x)is close to zero for the integration limits, i.e., very small and very large
S, values. It should be noted that for a lognormal variable, the range of possible values vary from

0 to oo.

“dP[D>d S, = ]
Hp(d) = .
° l. dx

T b Ind-Ina-x°
‘Hsa(x)‘dxz_[ .¢{
0

Ho(¥)-dx (1.19)
X Bos, Pos, J >

Now we are going to replace the hazard term Hg (x) by its power-law approximation

from Equation 1.3 and also replace the Gaussian PDF by its analytical form in Equation 1.17:

T b | l(lnd—lna—blnx

. —— ko-x7*.d 1.20
oy 7 J) ,xdx (1.20)

In order to calculate the above integral analytically, we are going to form a square term in
the power of the exponential term inside the integral (so that we can form a Gaussian PDF). This
way we can calculate the integral by using the fact that the integral of a PDF function (over all
possible values of the variable) is equal to unity. We begin by some simple algebraic

manipulations in order to simplify the equation a bit:
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H,(d)= kj /’D\sa \/1_”~exp(—%T )-exp(—%-2klnx)-dx (1.21)

The next step is to form a full squared term inside the integral and also take all the

constant terms out of the integral:

Hp(d)=
Loy e
Ko eXP(Ek (—)): eXIO(—klﬂ(—) )j ﬁmsa T xp(=7( Fos )dx - (1.22)
b

Note that the term inside the integral is indeed the PDF for the standardized Gaussian variable u

with the derivative %:
X

B d -
In X— {K( D'Sa> ~In()®}
u=
ﬂD|Sa
b
du_ b
dx X fps,

Therefore the expression for drift hazard can be also written as:

B I e lnX—{k(ﬂDﬁ)z—ln(E)B}
H,(d) =Kk, exp(—k —= D‘Sa) ) exp(— kln(—) )j—{cp 3 a__ h.dx (1.23)
Pos,
b

Noting that the integral of a normal PDF over all the possible values is equal to unity, the

drift hazard can be written in the following simplified form:

_ k2
d X 5 Boisa

Hp(d) =k, eXP(%kz(ﬂDTsa)z)exp(—kln(—) )=k, (— )b- v’ (1.24)
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In order to have a more condensed formulation of the drift hazard, we introduce the

notation S or spectral acceleration “ corresponding” to drift angle d :

This is also the solution of Equation 1.4 for a given value of d, i.e., if we read the
corresponding S, value’ from d=a-S,° curve. The graphic interpretation of S¢ can be seen
from Figure 1.4. In simple terms, this means that for a given drift demand value d, we find the
corresponding S, value from the median curve 7, (S,)=a-S,".

The derived closed-form expression can be further simplified by making use of the

hazard curve definition in Equation 1.3:

* e 1k?
7~7~ﬂ20 Sa _ 7f2ﬂ2|:> Sa
HD(d): ko‘(%jb'e“’ | =ko'(Sd>k-e2b

1k,
B pisa

= Hy(d)=Hg (S!) e (1.25)

n=aSe

v

d
Maximum Interstory drift Angle,Omax

Fig. 1.4 Spectral acceeration corresponding to the demand value, d

2 Note that s;‘ is not necessarily the median S, for a given value of drift angle d . It is just the corresponding S,
value found from the curve. In other words, the fact that the D - S, curve gives the median drift d for a given

value of S, does not mean that it will also provide the median S, for a given value of drift d .
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It can be seen by inspection of Equation 1.25 that the hazard curve for the drift demand

Hp(d) is equal to the hazard function Hg () evaluated at the spectral acceleration corresponding

to this drift demand times a (magnifying) factor related to dispersion in the drift demand for a
given spectral acceleration. The first factor can be interpreted as a “first order” estimate; it is also

the drift hazard if the dispersion Sy is zero. Experience suggests that the second factor may

typically have values in the order of 1.5 to 3. Note that in this form one can read the first factor
directly from a given hazard curve without actually making the approximating fit, k,-x*. The

log-log slope k of the approximation is needed for the second factor, however. Numerical
applications of the closed-form expression for drift hazard developed in this section can also be
found in Medina ( 2002), where the drift hazard was derived both by using the closed-form in
Equation 1.25 and also by the numerical integration of Equation 1.14 for a nine-story generic
frame. Medina observed that the closed-form solution was reasonably close to the numerical
integration. However, the results indicated a strong sensitivity to the estimated standard deviation
that is assumed to be constant with respect to the intensity level (one of the assumptions
underlying the closed-form solution). The authors (Jalayer and Cornell, 2003a,b) have plotted the
drift hazard curve by incorporating local parameter-estimates (obtained from the results of
nonlinear dynamic analyses) in the closed-form solution and have compared the results to that of
the numerical integration for a seven-story reinforced concrete frame with degrading behavior in
shear and flexure. It should be noted that by using local parameter estimates, some of the
assumptions that led to the derivation of the closed-form expression (including the assumption of
a constant standard deviation and of a power-law form for the median demand as a function of
spectral acceleration) are overruled. Nonetheless, the results demonstrate good agreement

between the numerical integration and the closed-form with local parameter estimates.

1.4.7.3.1 Numerical example

We will now derive the drift hazard curve for a three-story (model) structure with brittle
connections located in Los Angeles. This structure is a typical three-story steel moment resisting
frame building used in the SAC project (Luco and Cornell 1998). A set of nonlinear dynamic
analyses has been conducted, and the resulting maximum interstory drift ratios have been plotted
versus the first mode spectral acceleration as it is illustrated in Figure 1.5. The hazard curve

represented in Figure 1.5 corresponds to oscillators with a fundamental period around 1.0 sec and
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located in Los Angeles, thus we have used it as the spectral acceleration hazard curve for our

model structure. In approximate analytical form it is:

H s, (s,)=P[S, =25s,]=0.00124- sa—}os

Note that the k value is nearly equal to 3.0. Our next step is to determine the median
relationship between spectral acceleration and drift. This is done in Figure 1.5, by fitting a line to

the data points in a log-log scale; which gives the following information:

Mo (S,)=0.0325-S,"

...... {084, 1475) .

MY S0y ea s I R e e L LEL L
+ 2% in B0 years : : Basasasacaaaaaa
I I i i i
0 05 1 15 2 25 3
8, (T,=1.02sec £=2% )

Fig. 1.5 Hazard curvefor spectral acceleration at a period equal to 1.0 second and

damping ratio of 2%.

Note that b~1 for this range of data, i.e., the median drift is approximately proportional to S,. It
should be mentioned, however, that there may be a certain level of nonlinearity (material or
geometric) in which b is not close to 1.0 anymore. Linear behavior is limited in this structure to
interstory drifts less than about 0.01. We would like to evaluate the probability that the
maximum interstory drift angle exceeds a specific value, say 2%, Hp(0.02). If we substitute

0.02 for d in Equation 1.25:

1k* .,
—— B Disa
Hp(0.02)=P[D>0.02]= Hg (S2%)-e2¥ "~

22



1
Recall that S? is equal to S¢ :(gjb per definition:

1
0.02
S0 = =0.615

@ 0.0325 le]

Equivalently we could simply have read this value from median line in Figure 1.5 by

entering at a drift value equal to 0.02. Now we will look up the value of Hg (0.615) for the

spectral acceleration hazard curve. As illustrated in Figure 1.5 it is equal to 0.007. Hence,

Hp(0.02) can be derived as:

2
(%(f—zxo.sz)

Hp (0.02) = P[D >0.02] = 0.007 - e 2 =0.007x1.5=0.0105

2
Note that the factor exp(%-?—z- 0.3%)is equal to 1.50.

We can repeat the above calculations for multiple drift values in order to obtain the drift
hazard curve, or we can find an analytical expression for the drift hazard. In general, we can
compute the drift hazard for a specified drift value, d, as follows:

1 k?
= *'ﬂzD\Sa

Hp(d)=P[D>d]= Hg (S¢)-e2 ¥

2 i
Recalling that exp(a->—-03%)is equal to 1.5 and g :[ijb =9 | the above equation
2 12 @ a 0.0325
becomes:
1k* ,
S B0is d
Hp(d)= Hg (S)-€2b =15 Hg (——
p(d)=Hg (S) 53(000325)

Next we need to find the expression for the spectral acceleration hazard curve evaluated

d
0.0325

at . This is:

d

d
H
S (0.0325

0.0325

-3.03
)=0.00124-( ] ~425.10%.d7°

Finally the drift hazard for a specified value of drift, d is derived as:

H,(d)=6375-10"°-d
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The above relationship is plotted in Figure 1.6.

Annua Hazard Curve for Maximum Inter Story Drift Angle
Based on a dataset of n=30 records for Los Angeles

T

F{D>d]

Hy td)

1
.08 0.08 o1

o oo 0.02 0.03 0.04 0.05 0.0B n.o7 0.
Maximum Dift Angle Corresponding to 8_ (T, =1 sec.2 = &%)

Fig. 1.6 Hazard curvederived for maximum interstory drift values

The above curve can be used to determine, for example, the 100-year return period drift,

by setting Hp(d,,4,) to 1/100 and solving for d,

1/100=6.375-10"% - (d, ;100)

solving for d,,y,: dy/100 =0.0185 . The same value can also be found simply from Figure 1.6.

1.4.7.4 Annual frequency of exceeding a limit state

We have already derived the mean annual frequency that the displacement response variable, D,
exceeds a certain value. The next step is to find the probability that the response variable, D,
exceeds a specified limit state threshold or capacity, C. The difference in this case is due to the
fact that the limit state threshold can be a random variable itself. For example in the SAC project
(FEMA 350, 2000) modern “reduced beam section” (RBS) connections were concluded to have

a median capacity of 7. =0.07 (interstory drift ratio) with a dispersion of S. =0.2 reflecting

specimen-to-specimen variability in (hypothetical®) test results and even possible record-to-

3 In fact no connections were able to be tested by the SAC project to such large drift ratios. The parameters were
estimated indirectly and are based on some level of expert opinion.
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record variations in the drift failure due to sequence effects in the low-cycle fatigue suffered by
the connection. Beyond the drift capacity, the connection lost virtually all vertical load-carrying
(shear) capacity, implying the potential collapse of the floor above. In this section we will derive
the expression for the limit state frequency, H g, by introducing the variability in the limit state
capacity. The basic elements involved in the derivation are illustrated in Figure 1.7. Once again
we use the total probability theorem to sum up the joint probabilities that limit state variable
exceeds the capacity variable for a given value of capacity, over the entire range of possible

values for the capacity variable:

PID>C]=) P[D>c|C=c]P[C=c] (1.26)

alc

We next assume that demand and capacity are (statistically) independent, i.e., that:

PID>C|C=c]=P[Dz>c] (1.27)

In Appendix C, we have outlined a derivation of limit state frequency when demand and

capacity are correlated.

L.A. 3- Story Model Structure with Brittle (Bofiom Flange Ony) Connections

2% ) (9]

1.03sec, &

(T,-

S

Ne »Be)

HSa(X)

0.03 0.04 0.05 0.0 o.o7 0.08 o.o0g 0.1

0.01 0.0z

Hsa(53)
Fig. 1.7 Basic elements of the derivation of a closed-form expression for limit state
frequency Hg (v, distribution of drift variable D given S, characterized by

no(xand gy , distribution of capacity variable C characterized by 7. and 4
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The annual frequency of exceeding the limit state, H, g, can be expressed as the limit

state probability P[D > C] times the seismicity rate v (as mentioned in Section 1.4.7.3):

Hs=v-Ps=v-P[D2C] (1.28)

Since we are going to base our derivations in this section on the expression for drift hazard, our
calculations are going to yield the mean annual frequency of exceedance (or limit state frequency

in short), H.,"* as the end result. Therefore, the limit state frequency can be calculated by

substituting Equations 1.26 and 1.27 into Equation 1.28:

His=Vv-Ps=v-P[D2C]=>v-P[D2c]P[C =] (1.29)

alc

The probability that drift demand exceeds drift capacity for a given value of drift capacity

can be readily determined from the drift hazard curve:

H,(c)=v-P[D2c] (1.30)

Substituting the term v-P[D >c] in Equation 1.29 by the expression for Hy(c) from the above
equation:

H=v-Ps=Y Hy(c)-P[C=c] (1.31)

alc

However, the above equation is valid for discrete variables; in the continuous form, the

summation is replaced by an integral and the probability term, P[C=c], is replaced by the

probability density function term, f.(c)-dc:

His=v-Ps=[Hy(©) fc(c)-dc (1.32)

Substituting the drift hazard value for Hy(c) from Equation 1.25 into Equation 1.32

results in:

1k,

His = [Ho©@ fe(@de= [Hg (8- e ™ fo (e (133)

* In this chapter, we have used the notation H(.) in order to refer to the mean annual rate of exceedance. However,

in the next chapters we may use the notation A(.) instead.
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-k

From Equations 1.3 and 1.4, Hg (S;) is equal toko(ﬁjb . Thus, the limit state frequency is
a

obtained by performing the following integration:

1k?
EFﬁZD\

HLsz_[Hsa(S:)'e

-k 1k* ,
Sa.fc(c)-dc=jk0.(3b e’ ™t (o) -de (1.34)

For the above integral to be evaluated, the probability density function of the random

variable C, f-(c), has to be known. Here for tractability, it is assumed that C is a lognormal

random variable with following characteristics:

median(C) =77

Omc) = Bc

After some simple re-arrangements:

k

-k 2 2
c)bo %ET':BZD\Sa 1\b %Ejﬁzmsa %
H.s :Iko 3 e fc(c)dc =Kk, 3 ‘e -Ic fc(c)dc

k

(1.35)

It can be seen that the term inside the last integral equals expectation of ¢ b . It has been shown

in Appendix A that the expected value of lognormal random variable Y (with median 7, and

dispersion o,y ), to the power of o equals to:

1 2 2

E(YY) = EE@™) =(p) e

Since limit state capacity C is assumed to be a lognormal variable, the above property can

be used to solve the integral in Equation 1.35 as follows (For further details regarding the

integration scheme refer to Appendix A):

o ps, K b A
PR a T T TR a 5.2 FC
HLssz(_j . @2b? E(c® )=k0(—] e P .e2b’ .e2b’
a a

We conclude that:



We can recognize in the above expression the spectral acceleration hazard from Equation
1.3 combined with the spectral acceleration-median drift relationship in Equation 1.4,
ko(nc /@) 7*'®, which equals the hazard value for the spectral acceleration corresponding to
median capacity, S/ :

-k

He (SP) = k[%j (1.36)

Thus:

1K o2

K>
— B pisa _ e szﬂc _
=Hs (5°)-e =Hp () (1.37)

where the last equality is based on the expression for drift hazard H () at median capacity, 7.,
from Equation 1.25, and S[°, as mentioned before, is the spectral acceleration “corresponding”

to a drift value equal to 7., i.e., SJ¢ =(nc /a)b_] . Finally, the limit state frequency is derived as:

1 k? 1 k? 1k2
é S Blos SR

B . -
Hs=v-PID>C]=H,(n.)-e*" =Hsa(82°)'e2b -e?b (1.38)

It can be observed that the limit state frequency (or the MAF of demand exceeding the
limit state capacity) is equal to the hazard curve for the spectral acceleration corresponding to the
median drift capacity times two coefficients accounting for the randomness in drift demand for a
given spectral acceleration and the randomness in drift capacity itself. Again the first factor can

be seen as a first-order approximation to the limit state frequency, H .

1.4.7.4.1 Numerical example:

Returning to our three-story frame numerical example of the last section, we now assume that the
median drift collapse capacity and its dispersion parameter are given as (the same as the SAC
connections example mentioned in Section 1.4.7.4):

median(C) =7 = 0.07

Oy = Bc =020
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We first need to find Hg (Si¢). We can do this graphically, where Si° can be calculated
as the spectral acceleration corresponding to 7. =0.07 from the median-spectral acceleration
curve in Figure 1.7 resulting in S =2.15g (note that the capacity points in the figure are only

for schematic representation). The corresponding hazard value from the hazard curve (Fig. 1.8

below) is equal to, Hg (2.15)=0.00012.

10% in 50 years
2% in 50 years : :

1 1 i i i
s} 05 1

15 2
8, ( T,=1.08se0 E=2% )

Fig. 1.8 The spectral acceleration hazard curve. The hazard valuefor a
spectral acceleration equal to 2.15 isshown on thefigure.

Alternatively, we can use the closed-form expression derived in the previous section for
the limit state frequency. Using Equation 1.36, we can calculate the hazard value for the spectral

acceleration corresponding to the median drift capacity as:

-3
Hg (S)=Hsg (S377) =0.00124~(00£;5] =1.2x10"*

Also, the capacity factor in Equation 1.38 can be calculated as follows:
1k* 5 132,
eXp(Eb_zﬂC )= exp[z-l—z-O.Z ]=exp[0.18]=1.19

2
This value and the 1.50 value for the coefficient exp(%E—z B*ps,) already calculated in Section

1.4.7.3.1 are used to calculate the annual frequency of exceeding the limit state from Equation

1.38 as follows:
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1k, 1K
= =
HLS=HSa(Sgc)_eZb2 _ezbz

2
ﬂD\Sa

=1.2x10"%*x1.50x1.19=2.2x10"*

It can be seen that in this example that the randomness in the drift capacity and in the

drift demand for a given spectral acceleration cause the limit state frequency to increase about a

factor of 2 over its first order approximation of, Hg (S7°¢)= 1.2x107*.

1.4.7.5 Annual frequency of exceeding a limit state, using the | M-based solution strategy

In this section we are going to derive the annual frequency of exceeding a limit state, H g, by

following the IM-based solution strategy outlined in Section 1.4.5. The total probability theorem
(TPT) is used to decompose the expression for the limit state frequency into (conditional)
frequencies of exceeding the limit state for a given spectral acceleration (the adopted M), and to

compose the results by integration over all spectral acceleration values:

His=v-PIS, 2S,.]=[P[S, 28, |S, =x]v- fg (0-dx=[P[x2 S, ]-|dHg (| (1.39)

where S, represents the IM-based demand, S, represent the limit state capacity also expressed

in spectral acceleration terms, and v represents the seismicity rate (the reason for including it in
the derivations is explained before for the displacement-based derivation). We have used
Equation 1.12 in order to express the PDF of spectral acceleration in terms of the increment in
the spectral acceleration hazard. We assume that the spectral acceleration capacity is a lognormal

variable with the following statistical parameters:
median(S, ¢ ) = Ns, .

Tins, o) = Ps,.

We can observe that the first term in the integral P[s, >S,] can be also interpreted as the
CDF of the spectral acceleration capacity at, S, =x:

Fs,. (00=P[x2S,(]

Since S, is assumed to be a lognormal variable, the corresponding CDF can be expressed in

terms of the standardized normal CDF:
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In_ >~

s,

Fs..(0=P[x2S,.]=® (1.40)

Sac

In order to be able to integrate Equation 1.39, we use integration by parts and transform the

equation into the following form:

X X
In—" In—"
HLS:v-P[sazsac]:—jq> Ts.c ~dHSa(x):Id{CI) Ts.c VHg (0 (141
, ﬂsa,c ﬁsa,c

Just as in Section 1.4.7.3, the derivative of the standard normal CDF can be calculated as:

X

In——
d Ms,. 1 Inx—Inng _
— D ’ = . ’ 1.42
dX{ s, } X fs, . ¢{ Ps, } 4

After the derivative of the normal CDF in Equation 1.42 is substituted into Equation 1.41, and

the hazard term is replaced by the power-law approximation from Equation 1.3:

InX—In
HLSZV'P[SaZSa,c]=I Ko [ s,

: X € dx (1.43)
X fs, B, J

If we substitute the expression for the normal PDF in Equation 1.18 into the above equation:

2
H.=v-P[S > ‘1(%
LS — a —

k
S .]=|—2—exp— X7 dx 1.44
L -

Similar to the derivation in Section 1.4.7.3, we transform the integrand into a complete

square term and take all the constant terms outside of the integrand:

Hs=v-P[S,2S,.]=

2
| 1{lnx—{kﬂsaj ~ln7g_}

K, exp(% k* ‘:Bsa,cz) -exp(-k- s, )I#E : eXP(—E 8 J )-dx - (1.45)
0 Sic Sac

The term inside the integral is itself the derivative for a standard normal CDF:
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k- 2
Inx-Inng -e Poac

ﬁsa.c

XK B")expik- 15, )] 10X )} dx (1.46)

Noting that the integral is equal to unity, the limit state probability can be derived as:

1 _ 1
His =PIS, 2 S,c1=k, -exp( k* Bs,.”)-exp(=k 715, )=k, 115 " -exp( K’ Bs) (1.47)

We can observe the power-law term outside the exponential is equal to the frequency of

exceeding (i.e., hazard) a spectral acceleration equal to the median spectral acceleration capacity:

1
His =PIS, 2 S.cl=Hs (75, ) expCK - B ) (148)

We can argue that Hg (775 ) is a first-order approximation to the limit state frequency

and the exponential term exp(k” - Bs, . ?/2) is a magnifying factor that accounts for the sensitivity

of the limit state probability to the randomness in the spectral acceleration capacity. If we
compare the IM-based expression for the limit state frequency in Equation 1.48 to the
displacement-based one in Equation 1.38, we can observe that the exponential term accounting
for the dispersion in displacement-demand is missing. Also the slope parameter b that measures
the gradient of the displacement-based demand with regard to spectral acceleration is absent.
This is because the IM-based solution strategy, when applying TPT to derive the limit state
frequency, does not employ the displacement-based demand as (one of the) an intermediate
variable(s).

A numerical application of the IM-based closed-form expression for the limit state
frequency in Equation 1.48 can be found in a paper by Cordova et al. (2000), where the closed-
form solution is used for the seismic assessment of a composite frame, using spectral

acceleration and a proposed IM that also carries spectral shape information as intensity measures.

1.4.8 Randomnessand Uncertainty asthe Sour ces of Uncertainty

In previous sections, a closed-form expression for the mean annual frequency of exceeding a
limit state (here, the collapse limit state) was derived. We observed that the hazard value for the

load intensity measure corresponding to median drift capacity (i.e., the MAF of exceeding the
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load intensity measure corresponding to median drift capacity) is a first-order approximation to
the limit state frequency. This first-order approximation is multiplied by two coefficients
accounting for the randomness in drift demand for a given spectral acceleration and the
randomness in drift capacity itself.

Our objective here is to derive the limit state frequency when there is both randomness
and uncertainty in the design variables such as spectral acceleration hazard, drift demand given
spectral acceleration, and drift capacity. Our derivations are going to be based on the assumption
that, to a first approximation, we can represent all the epistemic uncertainty in variable X by the

uncertainty in its median. The model becomes:

X =1y €, & (1.49)

where 7y is the current point estimate of the median of X, the unit-median random variable ¢,

represents the epistemic uncertainty in the estimation of the median of X, and the unit-median

random variable ey represents the aleatory randomness of X . We are also going to assume that

the deviation from median, €, , can be properly modeled by a lognormal distribution. In general,

of course, the epistemic uncertainty in S, should also be taken into account. Also, the shape of

the distribution of X may not be properly described by a lognormal distribution.

As in the previous section, we start by deriving the hazard values for the load intensity
variable, spectral acceleration of the “first” structural mode. We use some probabilistic tools
(e.g., TPT as explained previously) to derive the hazard values for the limit state variable,
maximum interstory drift, and then complete the derivation by obtaining the limit state
probability P s Whenever possible the results obtained in the previous part are used and

generalized to the case where there is both randomness and uncertainty in the design variables.

1.4.8.1 Spectral acceleration hazard

The concept of hazard curves for the load intensity measure was introduced in the previous
section. Our focus was on the spectral acceleration hazard curves which are normally provided
by seismologists for a given site condition and its location with respect to a fault. The hazard
curve estimation involves many scientific assumptions (Kramer 1996). In other words there is

uncertainty in the estimation of a hazard curve. That is why spectral acceleration hazard curves
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are normally provided as mean and 84™ percentile hazard curves (Fig. 1.9). Here we are going to
take into account the uncertainty in the estimation of the spectral acceleration hazard.
In the previous sections, we found it advantageous to approximate the hazard curve by a

power-law relationship as proposed by Kennedy and Short (1994) and Luco and Cornell (1998):
H Sa(sa) = I(O ' X_k

where k, and k are parameters defining the shape of the hazard curve. We are going to let an

equation of the same form as the one above represent the median estimate of the uncertain hazard

curve:

He () =k, x* (1.50)

Further, we introduce the random variable &, that represents the uncertainty in the

spectral acceleration hazard, so that we have:

He (X)=Hg (%) &y (1.51)

Here we have assumed that g, is a lognormal random variable whose statistical parameters
have the following characteristics:

median(e, ) =7,, =€™"" =1

Olneny) = Bow (1.52)
where [, reflects the degree of uncertainty in the PSHA estimation. We recognize the spectral

acceleration hazard itself as an uncertain (random) variable, H s, (), which can be represented as

the median (“best”) estimate times this uncertain deviation, &, :

He®=Hg (%) & (1.53)

Note the use of a tilde to denote a random variable when clarity is needed. Considering our

assumption about &, being lognormal, we can observe from the above equation that the hazard
value for any value of S, can also be treated as a lognormal random variable (i.e., instead of
having a single deterministic value assigned to it, it has a probability distribution). The spectral

acceleration hazard can be written as:

He(¥)=Hg (X)- &y =Ko X ¥ £, (1.54)
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where H s, (%) 18 a lognormal random variable with its median equal to H s, (%) from Equation

1.50 and its dispersion measure (i.e., the standard deviation of the natural logarithm or fractional
standard deviation) equal to S, . The mean hazard curve can be written as:
_ - - B
Hs (X)=Hg (X)-mean(g,,)=Hg (X)- €’ (1.55)
This equation is based on a property of the lognormal variables, where the expected value
of a lognormal variable is equal to its median times the exponential of half of the squared
standard deviation (Appendix A). Figure 1.9 shows the 16™ percentile, median, mean, and 84"
percentile hazard curves for a California site that corresponds to a period of 1.8 seconds and
damping ratio of 5%. Note that the median curve in the figure is the same hazard curve used in

the previous section. The g4™h percentile is given by: H s, (x)-ePom

Santa Barbara Channel: SHA curve for T = 1.8sec

th

84
Hia(x) =ko (x) *ePo

a0 =k (00" "

N

2 Haa(x) =ko (0

mean frequency of exceedance

Spectral Acceleration (g) (5% damping)

Fig. 1.9 16™, 50" (median), and 84™ per centile spectral acceleration hazard
corresponding to a damping ratio equal to 5% and a structural fundamental

period of 1.8 seconds

Figure 1.10 shows the basic components of drift hazard estimation when there is
uncertainty (due to limited knowledge and data) in the estimation of the spectral acceleration

hazard, HNSa(sa). The probability density for uncertainty in hazard is plotted with solid black
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lines. The two hazard curves on the graph correspond to the median estimate of hazard, H s, (Sa)
and hazard curve for a given value of deviation, &, in the estimation of hazard curve,

He, (Sa)- €un » Tespectively.

1.4.8.2 Mean annual frequency of exceeding a drift demand value: drift hazard

Recall from the previous section that the drift demand variable (given a specified S, level) was

introduced as the median demand value times a random variable € representing the random
variation (e.g., record-to-record) around the median value. We assumed that £ has a lognormal

distribution:

D=n,(X)-€ (1.56)

Randomness is assumed to be the only source of variability in the above expression. In
general, the median drift demand is also an uncertain quantity. The uncertainty in the median
drift demand is caused by the limited knowledge and data about modeling and analysis of the
structural system especially in the highly nonlinear range and/or exact numerical values of the

parameters of the structural model.

L.A. 3 Story Model Structure with Brittle (Bottom Fiange Omy) Cannections
3 T T T T T T T

a=00325:
b=1.002

0'”(9:."“) | 535: 0 299?

e T ORI T SRS S R e SR SR 1

U\'mr%r Po s;é)

; i i i
- o.om 0.02 0.03 0.04 005 0.0B o.07 0.08 0.09 0.1

Hazard Hg,(.) Maximum inter-story drift angle (Demand), D

Fig. 1.10 Basic componentsfor the evaluation of drift hazard taking into account the

uncertainty in the estimation of spectral acceleration hazard, Hg_ (x)
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The uncertainty is also caused by using a finite number of nonlinear analyses to estimate
the median value. The scatter of the displacement-based response in Figure 1.2 indicating record-

to-record variability implies that the estimate of the median, 7, (x), can depend on the particular

sample of records used and its size. In order to distinguish this type of uncertainty from the one
considered in the previous section, we refer to it as epistemic uncertainty. The median interstory

drift can be expressed as the product of its median estimate,7j,(x) and a random variable g,

(UD stands for the uncertainty in evaluation of D) representing the uncertainty involved in the

evaluation of 7y (x) :
Mo (X) =175 (X) - Eyp (1.57)

Replacing 7,(x) in Equation 1.56 with its representation in Equation 1.57, the drift

demand can be written as:

D=75(X)-&yp - € (1.58)

In order to be consistent with the notation, £,,, we now subscript € with RD, standing

for the randomness (aleatory uncertainty) in drift demand evaluation. Finally the drift demand is

represented as:

D=n5(X) & =Mp(X)Eyp  Erp (1.59)

where €, and g, are assumed to be independent and to have lognormal distributions with

the following characteristics:
— — amean(in(e)) _
ngRD_ 77'9UD =€ =1

Oln(ery) — IBRD
Onieyy) = B (1.60)

Our objective in this section is to derive the probability that the drift demand D exceeds a
specific value d. In order to minimize the calculation efforts, we will make use of the drift
demand hazard that was derived in the previous section assuming that there was no epistemic
uncertainty. The drift hazard or the mean annual frequency that the drift demand exceeds a

specific value was derived from Equation 1.25 as:
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lﬁﬁZRD LS 2

_ 5 *fzﬁRD
Ho(d)=v-PID>d]=k, (s3] -e20"" "~ =Hg (s0)-e2"

The spectral acceleration hazard for a given value of deviation (from the median) in its

estimation, £, , can be found from Equation 1.54 as:
Hs g, (X = ﬁsa(x)'gUH = ko - x " -£un

Replacing the above value for spectral acceleration hazard in Equation 1.25, we obtain
the drift demand hazard for a given value of deviation in the estimation of the spectral

acceleration hazard, &, :
12, 1K

- L2 . LK 4
HD|€UH (d)=VP[D >d]=HSa‘€UH (Sg)'ez b* = Hsa(sg).gUH .e2 b’

In the next step, we derive the drift hazard function for a given value of deviation in the

estimation of spectral acceleration hazard, g, and a given value of deviation in the estimation
of the median drift demand, &, :

1 k>,

A 7-7-,5’ RD
(d)=v-PID>d|&yp,en1=Hg, (S3) &y €° (1.61)

Dley »€up

The term H Sl (sd) can be interpreted as the median spectral acceleration hazard for the

spectral acceleration that corresponds to drift d for a given value of deviation €, in the median

drift estimation:

l:l Saléup (Sg ) = I_A| S, (SglgUD ) (1 62)

In order to be able to calculate the above value, we need to find st or the spectral
acceleration corresponding to drift d for a given value of deviation &, in drift estimation. The

median drift demand for a given value of deviation ¢y, can be found from Equation 1.57 as:

M (X)=17p (X)- €up

At this stage we assume that 7, (x) has the same functional form as the one 7,(x) had in the
previous part, stated in Equation 1.4, namely:
Ay (X)=a-x° (1.63)
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Substituting the value for 7 (x) from Equation 1.63 in Equation 1.57, the median drift

demand can be derived as:

n,(X)=a-x"-g (1.64)

st or the spectral acceleration corresponding to drift d for a given value of deviation &, in
drift estimation can be calculated by setting 7, (x) in Equation 1.64 equal to d and solving for

5
sl Hence, s% can be defined as”:

1 1
b d
o :( d T’ _ (d/ﬂ]b _ g (1.65)
a-€yp a

A graphic interpretation of s> can be seen in Figure 1.11. As can be observed from the figure,

sdléw is the S, corresponding to drift value d from the curve a-x°- g,y :

Sa at Tt

v

diew d
Maximum Interstory Drift Angle, b

Fig. 1.11 Spectral acceleration corresponding to the interstory drift ratio value d

for a given value of deviation in the estimation of median drift, g,

> In fact sg'fw is nothing but the spectral acceleration corresponding to drift demand d which is being calculated

from the curve a- x" -&yp 1nstead of a-x° .
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Replacing the value for sfé from Equation 1.65 in Equation 1.61:

1k> 2 y S K e
H Dléyn »€up (d) Sa\EUD (S ) €UH ez ° Sa (S e ) eZ ° ’ €UH (166)
where H (Sd/gUH ) can be calculated from Equations 1.65 and 1.50 as follows:

-k

Sa(s/“f’) K, - [ d jb (1.67)

a-&p

Substituting the value of H(sS’% ) from Equation 1.67 in Equation 1.66 results in:
K

1k
d ﬂ DISa d b ——5Bpisa
H Dl&yn »& ( ) H S, (SAUD ) e2 b2 : gUH = ko : . gUH . e2 b’
UH »€Up a- Eup

-«
L K
:ko-(%]b L (1.68)

In short, we have an expression for the drift hazard conditioned on given values of
deviations in the estimation of spectral acceleration hazard, g, and drift demand, &, due to
epistemic uncertainty. Recalling from the last section, the spectral acceleration hazard could be

interpreted as an uncertain variable,

-k

~ d)b
HSa(Sg): Ko (EJ "€UH

In the same manner, the drift hazard can also be interpreted as an uncertain (random)

variable Hpy(d), which is a function of the uncertain spectral acceleration hazard, I:isa(sa) , and

the uncertain variable representing the epistemic uncertainty in drift prediction, &, :

™
o|x

~ d % *TﬂZRD - NK ~ d 1k2ﬁ
HD(d):v-P[D>d]=k0-[gj e g, B = A () e w  (1.69)

The product of independent lognormal random variables raised to powers, such as k/b, is

again a lognormal random variable (Benjamin and Cornell 1970). Therefore, we can conclude

that the drift hazard can also be represented by a lognormal random variable whose distribution
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parameters can be calculated based on the information about the distribution characteristics of
&y, and £, from Equations 1.52 and 1.60:

i - R ] R d lkiz/;ZRD k . q leﬁZRD
median(H (d)) = Hp (d) = median(Hg (s;)-€*P gun ~€Pup)= Hg (55)-€°P

K2
Bum, :\//BUHZ +b—2ﬂUD2

Therefore, the drift hazard H,(d)is an uncertain quantity with median:

12,

A A ~—Bro
Hy(d)=Hg (s)-e (1.70)
and fractional standard deviation:
2 k2 2
ﬂUHD :\/ﬂUH +Fﬂuo (1.71)
Also, the mean drift hazard, ﬁD (d), is equal to:
. lki,52UH lﬁﬂzm lki/32UH
Ho(d)=H,(d) e =Hg (s))-e? e (1.72)
After substituting S, from Equation 1.69:
1k> , 1 1>, k>, 1>,
_ ~ —— B0 — % —— B _ ——Bro ——B°w
Ho(d)=Hg (s])-e® -e* " .e’® = =Hg(s]) e .e (1.73)

Note that the uncertainty in the hazard curve can be dealt with simply by using the mean
estimate of the hazard curve. Similar to Figure 1.3, Figure 1.12 illustrates a graphical
presentation of basic components for the derivation of drift hazard, but in this case there is

uncertainty both in the estimation of median drift curve 7, and spectral acceleration hazard,
I-|Sa(sa). Figure 1.12 is a plot of the median estimate, 7, of the median drift curve (that is
treated as an uncertain quantity itself), the probability density reflecting the uncertainty in 7,
about that estimate, with a fractional standard deviation equal to, 5, a realization of median
drift curvesj; - gyp for a given value of deviation &, and the fractional standard deviation Sy

due to record to record variability in the results of dynamic analyses around it. The median
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estimate for spectral acceleration hazard H s, (S2) and the spectral acceleration hazard for a given

value of deviation in hazard estimation, H s, (Sa)-€un » are shown in the same manner as in Figure

1.10.

L A 3 Story Model Structure with Brittle (B affom Fiange Ony) Connections
3

=

i
A 7 un
HSQ(X)~8L,SH _'g }

18

(T-

LN(ﬁs;l(X)~ Bun)

s

< > =
- g.01 0.0z 0.03 0.04 o.0s 0.06 0.07 0.08 0.09 0.1

Hazard Hg,(.) Maximum inter-story drift angle (Demand), D

Fig. 1.12 Basic components for the derivation of drift hazard taking into account the
epistemic uncertainty in the estimation of spectral acceleration hazard

Hs, (s,) @and median drift 7,

1.4.8.2.1 Numerical example

Returning to our numerical example, we are going to calculate the mean drift hazard in the case
where there is epistemic uncertainty in the evaluation of the drift demand. We have the
maximum interstory drift values resulting from 30 different nonlinear time history runs plotted in

Figure 1.2. Fitting a line in log-log space to the data points gives us the following information

about the median interstory drift and the dispersion around it:

7o (X) = 0.0325s," %

42



But strictly, this is just the median estimate, 7 (x), of the median drift curve. The error in

the estimation of the median interstory drift can be due to modeling errors and other
approximations involved in the analysis procedure. Here we limit the consideration to the
statistical uncertainty in the median due to the finite sample size (Nsample=30). The statistical
properties of the median interstory drift can be calculated as (see Rice 1995 for the statistical
parameters for the mean estimate):

fp (X) =0.0325- 02

Buo :&:ﬁ: 0.055

\/ n sample

Analogous to the previous section, we would like to evaluate the mean estimate of the
MAF that the maximum interstory drift angle exceeds a specific value, say 2%, H(0.02). If we

substitute 0.02 for d in Equation 1.73:

lkzﬂZUH 1k? 200 1k2ﬂ2LJD
pu— A D D pu— D D
Hp(0.02) = H (0.02) - €2 =Hg (sp%) e et

1

b
Recall that s! is equal to s = (gj per definition:
a

0.02

0.02 _
a 0.0325

1
j =0.615 [g]

The mean estimate for the spectral acceleration hazard can be calculated from:

1

— ~ B
s, (5.)=Hs (s0)-€2

Here, it is assumed that 3, is equal 0.50. With this assumption we can look up the value for
Iflsa(o.615) from the spectral acceleration hazard curve in Figure 1.5, which is equal to 0.007.

Hence,

1 2
_ R —(0.5)
Hg (0.615)=Hg (0.615)-€2  =0.007x1.13=0.079

H(0.02) can be calculated as:

2 2
lXS—)(O.OSS
212

1 3%

— —X—X0.
Hp(0.02)=v-P[D >0.02]= 0.0079 -2 I’ =0.0079%1.5%1.014=0.012
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Note that in the previous section, where (it was assumed that) there was no epistemic

uncertainty in the estimation of interstory drift demand, H(0.02) was equal to 0.0105. The net
uncertainty here in the estimation of H(0.02) can be represented by the fractional standard

deviation of the drift hazard:

2
Bon, = \/ (0.5)? +1—20.055 =0.526

It can be observed that the primary contribution to /3, comes from the epistemic uncertainty in

probabilistic seismic hazard estimation (PSHA). However, this can change if /3, increases to as

large as 0.15. If nonlinear dynamic modeling errors are considered, this value is likely to be

considerably larger than 0.15.

1.4.8.3 Annual frequency of exceeding a limit state

Next, we will derive a closed-form expression for the frequency that the drift demand exceeds
the drift capacity or the limit state frequency taking into account the epistemic uncertainty. In the
last section a closed-form expression was derived for the mean annual frequency that the drift
demand exceeds a specified value of drift (also known as drift hazard), in which epistemic
uncertainty in the estimation of spectral acceleration hazard and drift demand were taken into
account. Now, we are interested in calculating the probability that the drift demand exceeds drift
capacity, which is an uncertain quantity itself. In the previous section (1.4.7), the capacity was
assumed to be an uncertain (random) variable due to aleatory uncertainty in its estimation, e.g.,
connection-to-connection variability in a to-be-built design and record-to-record variability.

The drift capacity variable was introduced above as a median capacity value times a

random variable &; representing the deviations from the median value. We assumed that & is
represented by a lognormal distribution:

C=n.-& (1.74)

In general, median capacity can also be treated as an uncertain (random) variable. The
epistemic uncertainty in the median capacity is caused by the limited knowledge and data about
for example, untested connection designs or nonlinear structural modeling and/or structural

analysis for global stability prediction. The median capacity variable can be expressed as the
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product of its median value, 7., and a random variable ¢, (UC stands for the uncertainty in

evaluation of capacity, C) representing the uncertainty involved in the estimation of 7 :
Ne =Tc " Euc (1.75)
Finally, we subscript € with RD, standing for the randomness in drift demand evaluation:
C=1c - €yc =T - Euc *Ere (1.76)

€xc and &g, are assumed to be independent and to have lognormal distributions with the
following characteristics:
median(e. ) = median(g,.) = €™ =1

Oln(ere) = ﬁRC
Olneye) = Boc (1.77)

Our objective in this section is to derive the probability that drift demand, D, exceeds
drift capacity, C, recognizing the uncertainty in spectral acceleration hazard, structural demand,
and structural capacity. Based on the expression derived for the limit state frequency in the

previous part, Equation 1.38:

1k* ,

B
H=v-P[D>C]=H,(7.) -e*" (1.78)

We are going to use the above equation and combine it with the closed-form expression

derived for the drift hazard (taking into account epistemic uncertainty) in order to derive the limit
state frequency, H 5. Assuming that capacity is a specific deterministic value, C, (i.e., there is
neither randomness nor uncertainty associated with the evaluation of capacity), the drift hazard
function for drift level ¢ (for a given value of uncertainty in spectral acceleration hazard, £, ,
and uncertainty in drift demand, £ ) can be derived based on the results of the previous section

from Equation 1.61, substituting c for d:
-k

C\b > B rD
H Dléeyn -€up (C) = P[D >C ‘ Eun ’gUD] = ko . (Ej “Eun e’’ ’ gl?D (179)

We are going to first find the limit state frequency conditioned on the uncertainties in

spectral acceleration hazard, drift demand, and drift capacity. The median capacity for a given
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deviation, £ , of the estimated median drift capacity from median drift capacity is written below

based on Equation 1.75:

NMee,e = Ne " Euce (1.80)

If we substitute the median capacity associated with this given deviation, 7¢, , from

Equation 1.80 for ¢ in Equation 1.79, the drift hazard conditioned on the uncertainties in spectral
acceleration hazard, drift demand and drift capacity will be found as:

-k

e 1k2 K
URP b 57@?@ =
HD\€UH,€UD,5uc (nc\fuc): kO ( aUC "€y - € i ~€°up - (181)

Substituting the conditional drift hazard term, calculated at 7.,  into Equation 1.78, the

limit state frequency for a given value of uncertainty in spectral acceleration hazard, drift
demand and drift capacity can be found:

1k? ,
_ _ YR
H LSleun -€up-fuc v P[D >C | €un>€up ’guc] =H Dléym »€up »€uc (nqguc ) e

N Eue P L. L
. 1K k 1X g2
= ko(&] 'gUH .ezb2 .(c:bUD.ezb2
a
—k
A — 1K, 1k, k —k
e |° gowf™ gy hee b . ob
= HLS\%H upfue ko [ a € € “Eun “€up " €uc (1-82)

The above expression gives the limit state frequency conditioned on the uncertainty in the
estimation of spectral acceleration hazard, drift demand, and drift capacity as an analytical
function of £,,,&,,, and &,., the random variables representing the above-mentioned
uncertainties. Similar to what we did in the previous section for the derivation of drift hazard,
here we can interpret the limit state frequency itself as an uncertain (random) variable, H .

Recall from Equation 1.54 that the term

-k

e | b
Ko-|—| ‘&
o 22" aom
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is equal to HNSa (SZC ). Hence, the limit state frequency can be introduced as an uncertain quantity

that is a function of the spectral acceleration hazard, ﬁsa(ﬁc) , the deviation in drift demand

prediction, £, and the deviation in drift capacity prediction, £ :

1k, 1 k? k -k

B re K K
-&Pup € P uc (1.83)

H _=H. (Sk).e © g2V
Ls — SA(a)e €

It can be observed that the limit state frequency is also a lognormal random variable
whose distribution parameters can be calculated based on the information about the distribution

characteristics of £, , £,p, and g,c from Equations 2.52, 2.60, and 2.77:

TS

median(H, ) =H ¢ = median(HNSA(sZC)-eEUD £byc e

1 k? 1k2 1 k?
ﬁzRD EbTﬁé = 2
-e

B2

)= |‘A|sa(77c)'ez'72 T e

, K ,  K? 2
ﬂﬁLS: ﬂUH +Fﬂuo +b_2ﬂuc

Therefore, the uncertain limit state frequency H, g is an uncertain quantity with median,

. lﬁ 200 1&.52
His = Hg (sh)-e ~ e?¥ (1.84)
and, fractional standard deviation equal to:
'S k*
ﬁﬁLs :\/ﬁUH2+b_2ﬁUD2 +Fﬂuc2 (1.85)

Also, the mean estimate of limit state frequency denoted by, H g, is equal to:

l[gl lﬂz lkiﬁZUD l,kiﬂzuc
ﬁ|_s:|:||_5'€‘2 HLS=|'A||_S'(5‘2 Mg’ .g2b’

1K

2
_ R (B*ro+/%up) l-kfz~(,5’2Rc+ﬂ2uc)
=H (Sﬂc)_e2b2 .a@2b

S, \“a

(1.86)
Note that in this final form, the mean estimate of H g looks like H, ¢ without uncertainty
(Equation 1.38) but now based on the mean estimate of ﬁsa(sa), and with increased A%in

capacity and demand (given S,) exponential terms. Figure 1.13 illustrates a graphical

presentation of basic components for the derivation of the limit state frequency; where there is
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(epistemic) uncertainty in the estimation of spectral acceleration hazard, ﬁsa(sa) , median drift
demand curve, 7j,, and median drift capacity, 7. . In Figure 1.13, we plot together the median
estimate, 7j. , of the uncertain drift capacity, the probability density reflecting the uncertainty in
nc about that estimate, with dispersion, S, , median drift capacity for a given deviation, g,c , in
the estimation of median drift capacity 7. -eyc, and the probability density reflecting the

randomness type of uncertainty (e.g., specimen-to-specimen variability in the estimation of

capacity) in capacity C about the median drift capacity 7 - £,c , With dispersion, [ .

L.A. 3- Story Model Structure with Brittle (B otfom Flange Omiy) Connections

3 ; T T ; ; ; T ; ;
a=10.0325 i ; ; AT ; :
b=jooz 0 0 T
A5 e B b b P
Sa Intﬂ s, 00200 : : : 4 : :
= ; f ; ; ; ‘ ‘1[) SUD
e AT 5' """""" ﬁf)'"B{'b """""" T T G 1
Py l?hl ; ; : 5\ : ﬁ
Hsu(X).SU}\;; H\l(x) : 3 . : LA EN(_ D- S{ .D BRD)
L ) 07 B =Rl - I R S
Lo 5 | 2"
/ L IR _. - .-_—_.é._’_ o __;._' =kl o i
. : o % : :
J =) H
g LN C> Puc i
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Hazard Hg,(.) Maximum inter-story drift angle (Demand), D

Fig. 1.13 Basic components for the derivation of the limit state frequency when there is

uncertainty in the estimation of the spectral acceleration hazard, Hg(s,),

median drift demand, 7, , and median drift capacity, 7. .

1.4.8.3.1 Numerical example

For our three-story frame numerical example, we would like to calculate the mean estimate of
the limit state frequency when there is uncertainty both in the estimation of median drift demand

and median drift capacity. Recall from the last section that the median drift and the dispersion of
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drift for a given level of spectral acceleration was estimated (by fitting a line in the log-log space

to the data points obtained by performing 30 different nonlinear time history analyses) as:

7 (X) =0.0325-s,"
Bro = Bojs, =0.299 =03
We have also estimated the statistical properties of the uncertain median drift demand as:

fip (X) =17p (X) = 0.0325 - x**
ﬁD\Sa 0.3
Bup = = e

RY, n sample 548

The median and dispersion for drift capacity were given before:

=0.055

Bre = Oe) = Bc =020

Note that the dispersion parameter S represents the aleatory (randomness) type of

uncertainty in drift capacity. We have estimated the statistical properties of the (now uncertain)
median drift capacity as follows (for an assumed sample of size 4 as the number of tests upon

which the estimate of the median connection capacity is based):
flc =0.07

0.2
Buc =

Be
—=—=0.1

Ja o2

Equation 1.86 gives the mean limit state frequency as:

1k k 1k 1K
—pw  ——puc ——(B’ro+f’w)  ——(f’re+fuc)

1 2
—[BUH 5 — A 2

2 _ 2 2
-e?b =Hg, (si°)-e?P -e?b

H=Hs-e? .e2b

We have defined s? equal to [%jb ; therefore S’ can be calculated as:

1

~ — 1
Mc \P. Ae _ <007 0.07
L igle =0 =| ——| =2.15
( a j @ 0.0325 le]

Our next step is to calculate the median spectral acceleration hazard at a spectral

acceleration corresponding to median drift capacity:

49



1 1 1
0 el A Y s Yk oA 2(0.5%)
Hs, (s1) = Ag (sl)e2” ™ =ko (s ] e ™" =0.00124x2.157 xe?

=0.000124x1.13=0.00014

assuming that 5, =0.5, the same as in the previous sections. We can also look up the value for

Hs, from the spectral acceleration hazard curve, which is equal to 0.00012 (Fig. 1.14 below).

from Figure 1.5,. Hence, the mean estimate of the limit state frequency H g can be derived as:

2 2 2 2
SC03) SCH02) JEH0P) JCH0055)
21 o2 o2l

H s =0.00014.¢2 1’
=0.00014x1.5x1.2x1.014x1.05=2.68x10™*

€

Note that in Section 1.4.7 we calculated the limit state frequency when the epistemic
uncertainty in the estimation of median demand and capacity was not taken into account. The
limit state frequency in that case was equal to 2.2x10™*, whereas the mean estimate of the limit
state frequency calculated in the presence of uncertainty in the estimation of hazard, demand and
capacity is 2.68x107*

10°

PIS,> 8]
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s

£
[=]

Hg (57,1

10% in 50 years ]
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S'a(T1=1.Oasec: E=2% )

Fig. 1.14 Median estimate for the spectral acceleration hazard curve. The hazard value
for a spectral acceleration equal to 2.15 is shown.
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1.4.8.4 Annual frequency of exceeding a limit state: the | M-based approach

The MAF of exceeding a limit state following the IM-based solution strategy was derived in
Section 1.4.7.5, considering only the aleatory uncertainty (due to record-to-record variability) in
demand and capacity. This section follows the same approach in order to derive the limit state
frequency considering also the epistemic uncertainty. Similar to the previous sections, it is
assumed that the median capacity variable can be expressed as the product of its median

value,fig - and a random variable &g _ representing the uncertainty in the prediction of 7 _:

=h - (1.87)

Ns,. =1s,. "€us,.

Similar to the previous sections, we can represent the spectral acceleration capacity as:
S nsa c Rsa c ﬁsa,c ' gRSa,c ' gusa,c (1 88)
where egs  and gyg  are assumed to be independent and to have lognormal distributions with

the following characteristics:
median(egs, ) = median(eys, ) =1

lﬂ(é‘Rsa ) ’BRSa c
Crnies, o) = Pus,e (1.89)

where fgs and fys = are fractional standard deviations representing the randomness and

uncertainty in the spectral acceleration capacity, respectively. It can be shown (the procedure is

similar to the one described for the displacement-based approach in detail) that the limit state

frequency H,g is an uncertain quantity with its median equal to,
A PR 1
His = Hg (75,) - exp(C K Bes, . *) (1.90)

and the fractional standard deviation equal to:

Ba =P’ T s’ (191

and the mean limit state frequency, H s, is equal to:

1 1 1k?
—Brs n —Blun —KBus,c = (Brsac +B7Usac)

Ho=H e ~=Hg e .e =Hg () e (1.92)
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As with the limit state frequency derived following the displacement-based case, the

mean estimate of H s looks like H, s without uncertainty (Equation 1.48) but based on the mean

estimate of ﬁsa(sa), and with increased B%in the spectral acceleration capacity due to the

consideration of epistemic uncertainty.

151 Summary

A closed-form analytic foundation for the probabilistic seismic assessment of structures has been
developed, taking into account the randomness (aleatory uncertainty) and uncertainty (epistemic
uncertainty) in the seismic hazard, demand, and capacity parameters. This foundation is based on
a closed-form analytical expression for the mean annual frequency of exceeding a limit state
(limit state frequency in short). Two different solution strategies were presented for deriving the
limit state frequency, namely, displacement-based and |M-based. Both approaches are based on
simplifying assumptions regarding the shape of the hazard curve and the probabilistic models
representing demand and capacity. This technical foundation forms an analytic basis upon which
alternative design and assessment formats can be developed. These formats are discussed in the

next chapter.

15.1 TheDeveloped Technical Framework in the Context of PEER

A probabilistic foundation for seismic performance assessment of structures can be based on the
acceptable probability of exceeding specific performance levels (Cornell and Krawinkler 2001).

The performance levels can be described and quantified as different levels of acceptable
structural behavior. The Pacific Earthquake Engineering Center (PEER) employs the notion of
decision variable vector (DV ) to quantify various performance levels, in which DV may
include a discrete (e.g., a binary variable indicating collapse) and/or a continuous (e.g., amount
of loss in dollar terms) indicator variable(s) marking the exceedance of one or more limit states.
Hence the probability of exceeding a specific performance level can be expressed as the mean
annual frequency (MAF) that the corresponding DV indicator variables exceeds zero. A practical
way of estimating the MAF for the decision variable vector consists of expanding it with respect

to structural demand vector, D, and the vector of ground motion intensity measures, |M

H(DV) = [[G(DV | D,IM)-dG(D | IM)-dH(IM)
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where H(DV) is the MAF of exceeding the vector of decision variables DV, and
G(DV | D,IM) is the conditional probability of exceeding DV given the demand vector D and
the vector of ground motion intensity measures IM , G(D | IM) is the probability of exceeding
the structural demand vector D given IM , and, H(IM) is the MAF of exceeding IM .

In this report we outlined a step-by-step procedure for evaluating H(DV) from the above

integral for a special case where (a) the decision variable is defined as a (scalar) binary indicator
variable that assumes the value of 1 when the capacity for a specified limit state is exceeded and
0 otherwise, (b) the structural demand vector is a scalar displacement-based demand variable
(e.g., maximum interstory drift ratio), (c) the ground motion intensity measure is the scalar

spectral acceleration at the first mode frequency of the structure, and (d) given D, DV is
conditionally independent of |IM . Therefore, the MAF of exceeding the decision variable is

written as:

Hs =H(DV =1)=[[G[D>C|D]-dG(D|S,)-dH(S,)

where DV =1 when the demand variable D exceeds C g, the capacity for limit state LS
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2 Probability-Based Design (DCFD) Seismic
Formats

21 INTRODUCTION: FORMAT DEVELOPMENT

Chapter 1 of this report was dedicated to developing an analytical foundation for the probability-
based seismic assessment of structures. The final product of this foundation development was the
mean annual frequency of exceeding a limit state or the “limit state frequency” in short. Limit

state frequency H,; was calculated taking into account the uncertainty in various elements

involved in the seismic assessment and design of the structural system. An analytical framework
for calculating the limit state frequency is helpful for seismic assessment of the structures, e.g.,
calculating the limit state frequency for an existing structure and checking to see if its design
falls within the acceptable region. However, in a design problem, the actual structural members
and connections are not known beforehand. They are, rather, the end product of the design
process. Conversely, the performance objective for the design is usually set beforehand and can
be expressed in terms of the limit state frequency that isin turn afunction of the structural design
properties. Therefore, a design process has an iterative nature and consists of assessing a
proposed design against a specified performance objective(s) and modifying the proposed design
if it does not meet the performance objective(s).

This part of the report addresses problems similar to the following: how to assess a
proposed (or existing) design for a structure with respect to a specified collapse limit state
frequency of, e.g.,0.04% per annum or how to address the uncertainty (due to limited
knowledge) involved in the estimation of the design parameters. This uncertainty is usually
stated through questions such as how to design a structure for a known mean annual collapse
limit state frequency of 0.04% with a confidence interval level of 95%.

We shall discuss various alternative design formats that stem from the probability-based
foundation developed in the first part of this report. These formats are in general suitable for



guidelines and code implementation. A mgjor class of these formats, which is analogous in form
to (linear, static, force-based) load and resistance factor design (LRFD) procedures (A1SC LRFD
code), is discussed in this chapter. However, these formats are based on generic, random
(usualy) displacement-based, nonlinear dynamic response variables: “demand” and “ capacity”,
and hence are referred to as “demand and capacity factor design” (DCFD). The DCFD format
can aso be formulated in terms of /M-based generic demand and capacity variables. The
fragility-hazard format, also discussed in this chapter, is another /M-based format that is useful
for designing/assessing the global behavior of a structure or a class of structures.

Unlike the foundation, which is unique (with respect to the set of assumptions made and
the solution strategy used for the derivation of the limit state probability), the formats are
numerous. They are just various representations of a common foundation. Hence, the choice
among these alternative formats is subjective. It is to be made on grounds such as familiarity and

practicality.

22 RANDOMNESS: THE ONLY SOURCE OF UNCERTAINTY

Similar to the foundation development in Chapter 1, the alternative design formats discussed in
this chapter are also presented in two parts. The probability-based formats developed in this
section are based on the assumption that randomness is the only source of uncertainty, and
hence, they are based on the expression for limit state frequency derived in the Section 1.4.7
(Equations 1.38 and 1.48).

Recall from Equation 1.38 that the mean annual frequency of exceeding a limit state that
is expressed in displacement-based terms, was derived as:

lki./g% E-ﬁﬂzms }k:.ﬂz
HLS:V'P[D>C]:HD(77€)'eZb2 ’:HSH(SZC)'eZbZ e (2.1)

where H () denotes the mean annual frequency of exceedance in general. We are going to re-

arrange the above equation into alternative forms, also known as “DCFD design formats.” The
purpose for this re-arrangement is to present this probability-based formulation in a way that is
easy to be implemented in the design practice. The basic components of demand and capacity
factor design format (DCFD) are outlined in the following equation,

1k 1k ,
5“;‘/BD|SG 77'7‘16(*

nDlPoSa e :77C e 2h (22)
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where s is the median drift demand for a given spectral acceleration, s, , corresponding to

hazard levels in the proximity of an acceptable limit state probability, 7. 77, is the median drift

capacity, exp(%%- B%pis,)is the demand factor, and exp(—%-%- B%c)is the capacity factor.

Equation 2.2 offers an alternative presentation of the formal foundation equation (Equation 2.1),
and is obtained by re-arranging Equation 2.1. We shall go through the re-arrangement step-by-
step later in this chapter.

The fragility-hazard format is another format discussed in this chapter. This format is
derived by re-arranging the closed-form derivation of the limit state frequency following the /M-
based solution strategy in Chapter 1 (Equation 1.48):

=g ¢ 20" (2.3)

where % is the spectra acceleration with a hazard value equal to the acceptable limit state
probability, Py, and s isthe spectral acceleration with a fragility of 50%. Each format will be

developed and discussed in detail in the corresponding section. Before proceeding to the details
of the derivations, we are going to outline a few parameters that are going to be helpful in our

future format derivations.

2.2.1 Spectral Acceleration s’ Corresponding to a Displacement-Based Demand Equal
tod

s, the spectral acceleration corresponding to displacement-based demand value, d , is defined

as the spectral acceleration corresponding to the value, d, from the median displacement-based

curve as afunction of the spectral acceleration, in fact as the inverse of this function:

sd = 775|1sa (d)

Recalling from the previous chapter, the median displacement-based demand was

approximated by a power-law function of the spectral acceleration, 77ps, (x)=a-x". Based on

d

a !

this power-law approximation, s, or the spectral acceleration corresponding to the

displacement-based response d, can be expressed as:
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Displacement-based demand, D

Fig. 2.1 Spectral acceleration corresponding to a displacement-based demand equal to d

s¢ isillustrated graphically in Figure 2.1. In simple terms, s¢ represents the spectral acceleration

value corresponding to a given demand value d from the median demand curve approximated by

b1

a

a-S

2.2.2. Spectral Acceleration s, for aHazard Level Equal to P,

"5 isthe spectral acceleration with a mean annual frequency of being exceeded (also known as

the hazard, defined in Chapter 1) equal to £, :

p
b5, = A (R)= () 3
0

in which we make use of the fact that (in Chapter 1) the mean annual frequency of exceeding a
given spectral acceleration value (also known as the spectral acceleration hazard curve) can be

approximated (at least locally) by the power-law function, As (x)=ko-x™* . Figure 2.2 illustrates

! parameters @ and b can be determined by performing linear regression analysis on a sample of spectral
acceleration and demand pairs obtained from nonlinear dynamic analyses (see Jalayer and Cornell, 20034).
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the graphical presentation of *s,. The spectral acceleration s¢ corresponding to a drift demand

egual to d is also plotted on the same figure.

Sa at Tt

n-a SaIJ /

o
ur
QO

wn
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v

Po

d
Asi(Sa) = A[Sa>sa] Displacement-based demand, D

Fig. 2.2 Spectral acceleration for a hazard level equal to 7,

2.2.3 DCFD Format

The DCFD format is analogous in form to the load and resistant factor design (LRFD)
procedures (see AISC design procedures, 1994). As the name suggests, this format is constituted
of demand and capacity multiplied by their respective factors. As with LRFD procedures, the
DCFD format can be used to design a building against a certain factored demand by finding a
factored capacity. The probabilistic demand and capacity factors for the DCFD format are very
similar in concept to the partial safety factors applied to the load and resistance in LRFD design
procedures.

This format stems directly from the expression for limit state frequency (Equation 2.1)
after some re-arrangements. It should be noted that the same simplifying assumptions that led to
the derivation of the closed-form foundation equation in the previous chapter are implicit herein
the derivation of the DCFD format. In order to develop a design format, we first need to set a
design criterion. A criterion can be stated as designing a structure so that the mean annual
frequency of exceeding a certain limit state (limit state frequency in short) is less than or equal to
the allowable annual probability of exceedance, P,

2 Note the mixing of the usage of the terms “mean annual frequency” and “annual probability.” Although the more
precise term to be used in these derivations is “mean annua frequency,” for the type of rare events that we are
interested, the corresponding values are virtually numerically identical.
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H, <P, (2.6)

where the equality holds at the onset of the limit state. Recalling from the previous chapter, the

limit state frequency can be expressed through a closed-form relationship (Equation 1.38 or 2.1).
This closed-form expression can be substituted for #,¢ in Equation 2.6:

(2.7

where H; (s)<) is the hazard value (mean annual frequency of exceedance) for a spectra

acceleration equal to s’ (i.e., the spectral acceleration corresponding to the median capacity

1. ), and it can be derived from Equation 1.36 as:

-k

Hy, (s)¢) = ko(%jb (2.8)

If H (s!) fromthe Equation 2.8 isreplaced in Equation 2.7:

k

n _7 1 k2 Foois 1k2 52
IK prps, AR p2
ko[fj o2V e <P, (2.9

After re-arranging the above equation in order to solve for median capacity, 7., we get

the following expression for the median capacity required so that the limit state frequency #, is
less than or equal to the allowable probability, Py:

P & Eiﬂzr)sa Ek.ﬁg
n-<a- (k—OJ e2h g2t (2.10)
0

The expression in the parentheses, (P,/k,) ™", is nothing but the spectral acceleration,

fg,, having a hazard value equal to the allowable probability P, as given in Equation (2.5).
Substituting (7, /k, )% with %5, in Equation 2.10 will makeit look simpler:

1k , 1k
Ne Sa-(P"sa)b‘ez” e (2.11)
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where a(P 0S5, )b isinturn equal to the median drift demand 7, for agiven spectral acceleration

POS
a

vaue of ®s, (Equation 2.4). Thus, Equation 2.11 can be further simplified by replacing a(Posa)b

with Mppos, -
Nppos, ~€ e s Te

Finally we transfer the capacity-related exponential term, exp(%-%- B%c), to the other side

of the equation changing the sign of the exponent:
Mpops, e2? <n.-e 2 (2.12)

Equation 2.12 represents the DCFD format in its fina form. The right-hand, or
“capacity,” side of the equation is called the “factored capacity,” parallel to LRFD’s factored
resistance. In asimilar manner, the left-hand, or the “demand” side” of the equation is called the
“factored demand for the allowable probability 7", parallel to LRFD’s factored load. It should
be noted that the factored demand (the equivalent to LRFD’ s factored load) is a function of the
allowable probability level, p,, whereas the factored capacity does not depend on £, in contrast
to the two factors in the AISC LRFD, where neither the demand factor nor the capacity factor
depends on P,. The DCFD format offers an aternative and equivalent statement for the design
criterion, according to which the factored demand for the allowable probability £, should be less
than or equal to the factored capacity. Thisimpliesthat at the onset of the limit state, the factored
demand for the allowable probability P, is equal to the factored capacity. One of the main

advantages of the DCFD design format is that the probabilistic design criteria can be stated in
terms of familiar displacement-based response parameters. This makes the DCFD format
compatible with existing (deterministic) design procedures.

The following sections will discuss in more detail the components of the DCFD format
(Equation 2.12).

61



2.2.3.1 Displacement-based demand, 7,

M ppos is the median displacement-based demand for a spectral acceleration equal to spectral

acceleration, s, (i.e., spectral acceleration with a mean annual frequency of exceedance equal

to the allowable probability, ~y). We may also refer to it as the median demand for a given

ground motion intensity, s, , in short. Adopting the analytical definitions outlined in Sections

2.2.1 and 2.2.2, the median demand can be cal culated from the following expression:
b
k
Moy, =al®s,) = a(ij (213)

But Figure 2.3 illustrates a graphical presentation of Mo that demonstrates its more

general applicability. Looking at the figure, we can see that 7y, CEN be calculated in two

simple steps. Step 1 is to find the spectral acceleration s, that has a mean annual frequency of
exceedance (i.e., hazard) equal to the allowable probability, 7, from the hazard curve for the

spectral acceleration. Step 2 is to find the displacement-based demand o, that corresponds to

a spectral acceleration equal to s, from the median demand curve. Note that in application

neither the hazard curve nor the median demand curve need to be in analytical form to evaluate

fog, and Mo, - This fact can be exploited in seismic assessments of structures implementing

nonlinear dynamic procedures (e.g., see Jalayer and Cornell, 2003a).
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Displacement-based demand, D

Fig. 2.3 Graphical presentation of median demand o, for a spectral acceleration equal

to’s,

2.2.3.2 Displacement-based capacity, 77,

The median displacement-based capacity for the structure is denoted by 7.. Figure 2.4

illustrates the median drift demand, Doy, and capacity, 7., on the same graph.

2.2.3.3 Demand factor exp(%%- B2pis,)

The displacement-based demand factor denoted by exp(%%-ﬂzmsa) is a magnifying factor that

takes into account the randomness in the displacement-based demand. The randomness
represented by the demand factor is usually due to record-to-record variability. The dispersion

measure for the displacement-based demand denoted by 4, , is equa to the standard deviation

of the (natural) logarithm of displacement-based demand for a given spectral acceleration.

Typica valuesfor £, , inthe nonlinear range, are about 0.30 to 0.60. In the special case (e.g.,

alinear SDOF oscillator) where there is no dispersion in demand (given s, ), the demand factor

will be equal to unity. k/b can beinterpreted as the sensitivity of the probability of exceedance to

63



a unit change in the displacement-based demand; which means that a factor of x change on the

displacement scale will cause afactor of x> change on the probability scale.

Po %|P°Sa nc

Displacement-based demand, D

Fig. 2.4 Graphical presentation of median drift capacity 7,

Asin the LRFD design procedures, the demand factor exp(%-%- B%pis,)is also denoted by

y. Clearly, y is aways greater than or equal unity (an exponential raised to a non-negative

power). Thus, the “design” displacement-based demand is always greater than or equal to the
median demand due to the randomness-type of uncertainty in displacement-based demand.

2.2.3.4 Capacity factor exp(—%%- BE)

The capacity factor, exp(—%% B2), is areduction factor that takes into account the randomness

type of uncertainty in the displacement-based capacity. It is an exponential term raised to a non-
positive power and hence is always smaller than one. Therefore, the design capacity is always

less than or equal to the median capacity due to the randomness-type of uncertainty. The

dispersion term in the exponential power, f,.., is the standard deviation of the (natural) logarithm

of the displacement-based capacity. Also k/p is a factor reflecting the sensitivity of the
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probability of exceedance to a unit change in displacement-based capacity. Similar to the LRFD

design procedures, the capacity factor exp(—%%- B2) isasodenoted by ¢.

2.2.3.5 Factored demand and demand hazard

The following presents an alternative interpretation of factored demand. This alternative
interpretation relates the factored demand to the demand hazard (mean frequency of
exceedance).In DCFD format, the factored demand (FD) was derived as.

1k
FD=1pm, 'eXp(E';'ﬁleSa)

Replacing the analytic expression for i from Equation 2.13:

Py & 1k
FD=a|-%| -exp(=-—-
a(koJ p(2 ; Bpis,)

Now we can solve the above equation for 7, :

k
FD\'» 1 k°
PO:k()[Tj P o) (2.14)

Realizing that (according to Equation 2.8) the term &, - (FD/a)™*'* is equal to the hazard

value for a spectral acceleration corresponding to a (median) demand value equal to FD:

k
Hg (s,”)= ko(ﬂj ' (2.15)
‘ a
Replacing theterm k, - (FD/4)™*'? in Equation 2.14 with its equivalent from Equation 2.15:
FD 1 k2 2
Fy=Hg (s, )'eXp(E'b_Z' Dis, ) (2.16)

We can observe that the right side of the above equation is equal to the (demand) hazard for a
demand value equal to FD (Equation 2-25):

P, =H,(FD) (2.17)

Conversely, the factored demand can be written as the inverse of the hazard function at value P, :
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FD = H,'(P,) (2.18)

The above equation states that the factored demand for an alowable probability 7, is

equal to the (displacement-based) demand with a mean annual frequency of exceedance (hazard)

equal to P,. This dternative interpretation for the factored demand is going to be helpful when

we need to estimate the factored demand for more general cases (i.e., when the anaytic
assumptions underlying the derivation of DCFD may not be valid). Numerical examples related
to the interpretation of factored demand as the inverse of the hazard function for demand can be
found in Jalayer and Cornell 2003 a, b. In both papers, this property is used to estimate the
factored demand using numerical integration and comparing it to the one calculated from the
left-hand side of Equation 2.12. This is quite helpful since the numerical integration can be used
to check the robustness of the closed-form solution in providing accurate estimates for the

factored demand.

2.2.3.6 General form for the DCFD design format

We have already discussed the derivation of a closed-form for the DCFD format (Equation 2.12),
which resulted from re-arranging the expression for limit state probability in Equation 2.1:

f-f-ﬂzms _lf.ﬂg
. ‘ .o 2b
nD|P0Sa e S 77C e

However, it should be kept in mind that this format is based on the same simplifying
assumptions that were made in the foundation derivations in Chapter 1. The general form for the
DCFD design can be introduced based on the format we derived in Equation 2.12, but replacing

3 . 1k : 1k - :
M s, with’ D, 7. with C, exp(z-;ﬁzmsa)WIth y, and exp(—E-;ﬂg) with ¢:

D-y<C -¢ (2.19)

where D and C refer to demand and capacity displacement-based parameters, and yand ¢ are

their corresponding factors. It can be noted that the DCFD format presented in its general form

as in Equation 2.19 looks similar to the LRFD format presentation. Another aternative general

3 Despite their capital letter designation, D and C do not represent stochastic variables in this DCFD context. (They
do typically represent stochastic variablesin Chapters 2and 3). Here, they are just referring to some generic
displacement-based demand and capacity parameter.
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way to present the DCFD format is by simply comparing the factored demand to factored
capacity:
F.D.<F.C. (2.20)

The benefit of this alternative representation is that factored demand and factored
capacity can be defined in a different manner from the DCFD format. A generalized definition
for factored demand is already discussed in the previous section. According to this definition the
factored demand is the demand value that has a mean annual frequency of exceedance equal to

the allowable probability, P,. The authors (Jalayer and Cornell 2003 a,b) implement alternative

nonlinear dynamic analysis procedures to assess the performance of an existing seven-story
reinforced concrete frame for the global instability performance level using the DCFD format.

These (nonlinear dynamic) procedures are used to locally estimate the parameters, Mppos, Bos. »

and, b in the closed-form expression for the factored demand.

2.2.3.7 Numerical example: Performance evaluation for an existing building

Returning to the numerical example presented in Chapter 1, now we can assess the performance
of an existing three-story frame for the collapse limit state for an alowable probability of
Py =4x107* (2% in 50 years). Based on the DCFD design format, we are going evaluate and
compare factored demand for the allowable probability P, = 4x10™ and factored capacity for the

collapse limit state.

2.2.3.7.1 Factored demand D -y

Evaluation of the factored demand consists of two parts: (a) calculating the median drift demand

1 ppotoss. for a spectral acceleration with a hazard equal to 4x10™ and (b) calculating the demand

factor. The median demand 17 oo itself can be calculated in two steps. The first step is to

0.0004

calculate the spectral acceleration ™™ 's_ with a MAF of exceedance (i.e., hazard) equal to

a

4x10™*. This can be done either by using Equation 2.5 or more generaly by simply finding the
spectral acceleration corresponding to P, = 4x10™* from the hazard curve. The advantage of the

second approach is that the hazard curve does not necessarily need to have a power-law form.
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Here, we are going find ®*s_ both analytically and graphically. *®*s_ can be calculated from

Equation 2.5 for Py =4x107™:

00004 :(0.0004)’71
a ko
Recalling from the first part of the numerical example in the previous chapter, the
parameter estimates for k,and © were equal to:

ko = 0.00124
k=3.03

Finally, *®*s_ can be calculated as:

0,000 0.0004 , .
= (———1)3% =1.458
%= (000122 ld]

Graphically speaking, ®®'s is the spectral acceleration corresponding to the hazard

a

value equal to 0.0004 from the spectral acceleration hazard curve. The hazard curve with

parameters k,and « (listed above) is plotted in Figure 2.5. It can be observed that a hazard value

0.0004 corresponds to *®*s_ equal to 1.45. After *s_ is calculated, the next step is to find

the median displacement-based demand that corresponds to this spectral acceleration. Again, the
median demand can be either calculated from the power-law approximation, 775, (¥)=a-x”, or

estimated graphically from the median displacement-based demand curve that is plotted versus

spectral acceleration.
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Fig. 2.5 Thehazard curvefor S, (T =1 ¢ =2%)

The median demand corresponding to a spectral acceleration equal to % =1.45g8¢]

can be calculated from the following power-law relation:

b
0.0004 _ 0.0004
77D|Sa( Sa)_a'( Sa)

Recalling from the previous chapter, the parameter estimates for « and » are equal to:
a =0.0325
b =1.002

Finally, 7,5 (°®*s,) can be calculated as:

Nogs, (°®s,) =0.0825. (2% % = 00325 (1.458 }**% = 0.047

We can also obtain 7,(°®s,) graphicaly by finding the median demand value

0.0004

corresponding to a given spectral acceleration o s, or 1.45 [g] from the median demand

curve. In this example, we have chosen the maximum interstory drift angle (the “absolute”
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maximum of the response time-history over all the stories in the structure) as the displacement-
based demand parameter. The maximum interstory drift angle is plotted versus spectral

acceleration in Figure 2.6 below.

L.A. 3- Story Model Structure with Brittle (B offom Flange Onwy) Connections

3 ! ! ! ! ! ! ! ! !
a=0.0325
b=1.002 ! : : : ! L %
25p e SR Do b b e b o .
GIn(E:Im s & 0.299 5 : : :
= I ND=NDjsa(Sa)
S e
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TMpjsa( 2090 55)= 0.047
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Maximum inter-story drift, D

Fig. 2.6 Spectral acceleration plotted versus maximum interstory drift angle, and the
power-law function fitted to the plotted data points (a line on the two-way

logarithmic paper)

The next step isto calculate the demand factor, exp(%-%- B%ps,) . Asmentioned in Section

2233, B, isequd to the standard deviation of the (natural) logarithm of the demand given
spectral acceleration, o, Dis, -+ Oinbis, that is denoted by o,,  =0.299 on the graph in Figure

2.6 (6, Stands for maximum interstory drift angle, which is in fact the demand parameter D

used in this example), is estimated by the standard error of the regression. The hazard slope
parameter k is reported in Figure 2.5 as 3.0. Also the median demand-spectral acceleration slope
parameter b is equal to 1.0 (Fig. 2.6). Now that the necessary parameter estimates for factored

demand estimation are obtained, we are ready to cal cul ate the demand factor or exp(%-%~ﬁ21)|sa ):
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LK g2, _ e(%)(f)(osz) _

y=e2b 1.144

Finaly, the factored demand is calculated by multiplying the median demand

1k 2
o Bis,
s, (*®s,) =0.047 and the demand factor, ¢2* " _1.144:

1k

=252,

" (0.047)(1.144) = 0.0538  (2.21)

2.2.3.7.2 Factored capacity C - ¢

As mentioned before, this numerical example demonstrates the assessment of structural
performance for the limit state of global collapse, using maximum interstory drift angle as the
displacement-based parameter. Therefore, the displacement-based capacity is represented by
maximum interstory drift angle at the onset of global collapse. Similar to factored demand
estimation, the estimation of factored capacity consists of two parts: (a) calculating the median
capacity 7. for the collapse limit state and (b) calculating the capacity factor. Recalling from the

previous parts of this numerical example in Chapter 1, the median (drift) capacity n. for the
collapse limit state and its dispersion parameter g. (i.e., the standard deviation of the natural

logarithm of maximum interstory drift angle capacity values) are equal to:

nc =0.07
Bc =020
Hence, the capacity factor or exp(—%-%- B&) can be calculated as:
1k 1,3 2
4= e—ﬁﬂzc _o QD0 _ o,

Finally, the factored capacity is calculated by multiplying the median capacity 7. =0.07

by the capacity factor, exp(—%% - BE)=0.94:

1k
C-¢p=n.-e2" * =(0.07)(0.94) = 0.0658 (2.22)
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Comparing the factored demand from Equation 2.21 and factored capacity from Equation 2.22,
we can observe that:

D-7=0.0538 < C-¢=0.0658

We can conclude that the structure satisfies the design criteria in Equation 2.19 for an
allowable (mean annual) frequency of 0.0004 (i.e., 10% in 50 years) corresponding to the
collapse limit state. This conclusion implies that the limit state frequency (mean annua

frequency of exceeding the collapse limit state) is less than 0.0004 per annum.

2.24 Fragility/Hazard Format: An IM-Based Probabilistic Format

In the previous sections, we outlined in detail the main components of DCFD format, which is a
displacement-based probabilistic design/assessment format. Here, we are going to discuss the
fragility/hazard format, a design/assessment format that stems from the /M-based framework
equation derived in Chapter 1. One main advantage of an /M-based design format is that design
and/or assessments are performed in the spectral acceleration ordinate and do not explicitly
involve the displacement-based response.

The design criterion for the fragility/hazard format (see e.g., DOE 1020, 1994, and
Kennedy and Short, 1994) is tested by comparing “fragility” curves to “hazard” curves for a
given alowable probability level. The hazard curves represent the probabilistic ground motion
intensity or, in general terms, the “loading” characteristics, whereas the “fragility” curves
represent the probabilistic structural capacity or the structural “resistance.”

As with the DCFD design format, the first step in developing a design format is to set the
design criteria. The (/M-based) design criterion can be stated similar to the one in Equation 2.6
for DCFD format for a given allowable annual probability, 7:

Higs —pasea <Fo

where the limit state frequency, H ;s ... » 1S caculated from the /M-based expression for limit
state frequency in Chapter 1 (Equation 1.48):

1
k% fPsc

HLS,Sa _based = HSa (775‘“‘(; ) e 2 N (223)
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The expression for the /M-based limit state frequency can be substituted in the design
criterion (Equation 2.6):

1
*'kz'ﬁzsa,c

Hy (g, )-e? " <P, (2.29

where S, is an IM-based random variable representing the limit state capacity (or spectral
acceleration capacity in short) and & is the parameter reflecting the steepness of the hazard curve
for spectral acceleration. The authors have discussed in a separate paper (Jalayer and Cornell,
2003a) few alternative methods for estimating the statistical properties (i.e., median, 75, ., and

standard deviation of the natural logarithm, ﬁSa,c,) of this random variable using nonlinear

dynamic analysis procedures such as incremental dynamic analysis (Vamvatsikos and Cornell,
2001). Recalling from Chapter 1, the spectral acceleration hazard can be approximated (at |east
locally) by a power-law relationship:

As () =ky- x* (2.25)

Therefore, 45, (15, ), the mean annual frequency of exceeding the median spectral

acceleration capacity, can be calculated from the above expression and then substituted in
Equation 2.24:

1.2 52
L2 i
> lB Su,C

ko1, e <P, (2.26)

After some simple re-arrangements, with the objective of separating the “load” and

“resistance” sides, Equation 2.26 takes the following form:

1

B g

ns e s(P—OJ (2.27)
a,C ko

Recalling from Equation 2.5, the right-hand side of the equation is in fact the spectral

B

acceleration °s, for a hazard level equal to the allowable probability P, (or spectra

acceleration for alowable probability in short), which was defined in Section 2.2.2 in the
beginning of this chapter:

73



1
Sa ST, et (2.28)

which is the closed-form expression for the fragility/hazard format. A similar closed-form
expression, but with the exponential term (with a positive sign) applied to s, , has been used in
the current draft of 1SO seismic criteria for offshore structures (Banon et al. 2001). It will be
shown below how this expression (Equation 2.28) relates to the fragility and hazard curves.
Similar to the DCFD format, the left-hand side of this expression represents the “factored
demand for the allowable annua probability, F,,” and the right-hand side represents the
“factored capacity.” However, if compared to the expression for the DCFD format in Equation
2.12, one can observe that the demand factor representing the dispersion in displacement-based
demand is missing in the demand side of the expression. Nonetheless, the factored capacity |ooks
similar to that of the DCFD format except for the fact that the » value is missing from the
capacity factor. This is to be expected since the 5 value represents the (log) slope of the
displacement-based demand parameter versus spectral acceleration; and the fragility/hazard
format does not explicitly involve the displacement-based demand. Therefore, the design
criterion based on the fragility/hazard format can be stated in terms of the /M-based factored
capacity being less than or equal to the IM-based factored demand for a given allowable annual
probability, P,. The following sections will discuss fragility and hazard curves and how they can
be employed in order to make parameter estimates for the fragility/hazard format in Equation
2.28.

2.2.4.1 Hazard curves

The hazard function, H; (s,), for a given spectra acceleration vaue, s,, can be defined as the

mean annual frequency of exceeding the spectral acceleration value, s,. The hazard function

Hyg (s,)is discussed in more detail in Chapter 1. Figure 2.7 illustrates a schematic hazard curve.

As mentioned before, the hazard curve is approximated by a power-law relation,

Hg (s,)=ko -Sa_k where parameter & represents the steepness of the hazard curve. Strictly

speaking, & is the slope of the power-law hazard curve plotted on a two-way logarithmic paper.
The slope parameter £ may be estimated as the local slope of the hazard curve (Fig. 2.7) in the
region of hazard/spectral acceleration valuesthat are of interest.
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In the context of the fragility/hazard format, the hazard curve represents the probabilistic
characteristics of “load” or demand. It is demonstrated in Figure 2.7 how the “factored demand

for the allowable probability »,” in the fragility/hazard format, which is denoted by *s,, can be

derived from the hazard curve. As shown in the figure, s, is the spectral acceleration with a

mean annual frequency of exceedance (hazard) equal to, ~,.

2.2.4.2 Fragility curves

The structura fragility for a specified limit state is defined as the conditional probability of
exceeding the limit state capacity for a given level of ground motion intensity (conditional
probability of failure in short). If the ground motion intensity is represented in terms of the
spectral acceleration, the fragility can be expressed as:

Fi(s,)=PS,28,.|S,=s,]1=P[S,. <s,] (2.29)

where F¢(s,) isthe structural fragility at spectral acceleration s, for limit state LS. It can be
observed from the above equation that structural fragility is expressed as the probability that the

random variable S, . is less than or equal the given value, s,. In other words, fragility is the
cumulative distribution function of the random capacity, S,.. If it is assumed that the

probability distribution of the spectral acceleration capacity, S, , is lognorma with median,
s, . » and standard deviation of the natural logarithm, ﬂsa,c , fragility can be expressed in terms

of the standardized Gaussian distribution function:

Fis(s,)=PS,c <5,]=0(In(

) /ﬂsw) (2:30)

It can be observed from the above equation that structural fragility for limit state, LS,
can be plotted as a function of spectral acceleration. For a certain limit state, a monotonically
increasing “fragility curve’ can be plotted. A schematic fragility curve is shown in Figure 2.7.
According to Equation 2.30:

Tsac ) /ﬂsa,c )= ®(0) = 0.50

Sac

Fis(ns, ) =o(In(
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Therefore, median spectral acceleration capacity S, is marked on the figure as the spectral
acceleration corresponding to afragility of 50%. Also according to Equation 2.30:

P My, e
Fis(s,, e " )=@(n(—"——) /B, )=P(-1)=0.16

Sac
_ﬂsaC
N, e
Bs,. =-In Sn—z InF,52(0.50) - In F, 5 2(0.16)
Su,C

Therefore, the standard deviation of the (natural) logarithm of S, ~ is marked on the figure asthe

difference between the spectral accelerations (on the logarithmic paper) corresponding to

fragility values 16% and 50%.
The fragility curve for a specific limit state represents the probabilistic characteristics of

structural resistance or capacity for that limit state. Once the fragility curve is available for a

limit state, the “factored capacity” according to the fragility/hazard format,

1 .
ns, . -eXp(—E-k-ﬂzsa,C), can be calculated based on the parameter estimates for &, 7, ., and

Bs, . » obtained from the hazard and fragility curves (Fig. 2.7).
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Fig. 2.7 A schematic plot of hazard and fragility curves. The basic parameters of
hazar d/fragility format are also shown.
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2.2.4.3 The IM-based limit state frequency in terms of the fragility and hazard functions

It was demonstrated in the previous sections that fragility and hazard curves are helpful graphic
tools for estimating the /M-based factored demand and capacity. Moreover, it will be shown in
this section that fragility and hazard curves can also be used in order to calculate the limit state
frequency. The /M-based limit state frequency can be derived from the following equation
(Equation 1.39):

HLS,SH—based = IP[X 2 Sa,C] "sta (x)‘ (2.3

where the first term in the integrand is nothing but the fragility 7,4 (s,) at a spectral acceleration
equal to s, from Equation 2.29. Therefore, the limit state frequency in Equation 2.31 can also be

written as;

o5, sea = | Fus (0)-|dH g, (x) (2.32)

where the /M-based limit state frequency is derived in terms of fragility and hazard. This
equation states that the mean annual frequency of exceeding a limit state can be calculated as the
area under the product of the structural fragility curve for that limit state multiplied by the

(absolute value of) the increment in the spectral acceleration hazard.

2.2.4.4 Numerical example: Performance evaluation for an existing building

In the numerical example presented earlier for the DCFD format, we presented an assessment of
the performance of an existing three-story frame for the collapse limit state for an alowable

probability of P, =4x107*(2% in 50 years). Here, we are going to use the same example in order

to make probabilistic assessments based on the fragility/hazard format. Based on the
fragility/hazard design format, we are going to calculate the /M-based factored demand for the
allowable probability r, =4x10™*, and then compare it to the factored capacity for the collapse

limit state.

Factored demand: The /M-based factored demand for a given probability 7, =4x10™ is equal
to h=0004 ¢ - (Equation 2.28). Back in Section 2.2.3.7, the spectral acceleration with P, = 4x10™
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frequency of exceedance was found to be equal to 7=0%* —1.45[4]. Therefore the factored

demand for an allowable probability p, = 4x10™ isequd to:

F.D.(Py)="07000%g —1.45[g]

Factored capacity: In order to calculate the factored capacity for fragility/hazard format, we
assume that the (uncertain) spectral acceleration capacity has median and (fractional) standard
deviation equa to:

s, . =2.15[¢g]
Bs, . =020

Recalling from the previous numerical example for DCFD format, the slope parameter &
for spectral acceleration hazard curveis equal to 3 (Fig. 2.5). Now that we have obtained the

parameter estimates for estimatesfor 4, 775, ., and B, ., we can calculate the factored capacity:

FC.=ng, - exp(—% k- B%s,.)=2.15. exp(—% x3x0.2%) = 2.15x0.94=2.0[¢]

Comparing the factored demand for allowable probability, 7, = 4x10™*, with the factored
capacity, we can observe that:

F.D.(Py)=145[g] <F.C.=2][g]

Hence, we can conclude that the fragility/hazard design criterion is satisfied for an
alowable annual probability of p,=4x10" (i.e., 10% in 50 years) for the global collapse limit
state. However, it should be noted that the parameter estimates used in this section for the
spectral acceleration capacity are only for the sake of demonstration. In practical applications,
nonlinear dynamic analysis procedures (Vamvatsikos and Cornell 2001) can be implemented in
order to build the structural fragility curve(s). Then, the factored capacity can be calculated using
the structural fragility curve as it is shown in Section 2.2.4.2. A numerical application of this
format is demonstrated in Cordova et al. (2000), in which a design format similar to the one in
Equation 2.28 is employed for seismic assessment of a composite moment frame for global
collapse limit state.
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23 RANDOMNESSAND UNCERTAINTY, THE SOURCES OF UNCERTAINTY

The design/assessment formats introduced in Section 2.2 only considered the randomness (or
aleatory) type of uncertainty in demand and capacity parameter estimations. This type of
uncertainty results in record-to-record variability in demand and capacity estimations. However,
it isof interest to include the uncertainty due to incomplete knowledge (epistemic uncertainty) in
the estimation of spectral acceleration hazard, demand, and capacity. As seen in Chapter 1,
consideration of the uncertainty due to incomplete knowledge affects the mean estimate of the
limit state frequency and/or the confidence statements that can be made about the bounds on
estimates of the limit state frequency. Therefore, it is desirable to measure the epistemic
uncertainty involved in the estimation of the parameters, and also to represent such uncertainty in

the design or the assessments. One way to do this is to simply replace H,  in the previous
section (Section 2.2) everywhere by its mean estimate, . As per Equation 1.86 in Chapter 1:

1 k2 142
**'(ﬁZRD"’ﬁZL’D) Ebji(ﬁgc)ﬂbf’c)

H, =v-P[D>C]=H, (SI)-e2" ‘e (2.33)

Inwhich 7 isthe mean estimate of the hazard curve, fy.?+fyc? and B,,° + B,,° are

the total aeatory and epistemic uncertainty variances in demand and capacity, respectively. It is
then clear when comparing this to Equation 2.1 that both of the DCFD formats introduced in
Section 2.2 can be “upgraded” to include epistemic uncertainty by simply replacing #,, by its
mean estimate, H,,, and the aleatory uncertainty variances, g2, for demand given spectra
acceleration (D|s,) and capacity by their total p?’s, i.e., the total aleatory and epistemic

variances. For example, Equation 2.2 transforms into the following:
1k, 2 1k, 2 2
7"7'(ﬂRD5a ﬁL’DSa) _7'7'(ﬂRC ﬂUC‘)
R (2.34)
where it is understood that the spectral acceleration s, is obtained from the mean estimate of
the hazard curve at P,. Therefore, it is implied that the allowable limit state frequency

corresponds to the mean estimate of the limit state frequency. While not precisely in this format,
DOE 1020 is based on using such a mean estimate approach with combined or total (aleatory

plus epistemic) variances used for the demand and capacity.
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In this section we chose to outline a hybrid scheme. The DCFD format is extended to
account for the epistemic uncertainty in demand and capacity parameter estimations. This is
achieved by associating a level of confidence with the frequency of exceeding the limit state.
Thisformat has recently been implemented for performance evaluation of existing steel moment-
resisting structuresin FEMA 351.

The DCFD format presented in this section focuses mainly on the consideration of
epistemic uncertainty in the structural demand and capacity parameter estimations. However, it
(implicitly) takes into account the epistemic uncertainty in the seismic hazard estimations by

incorporating the “mean” estimate for the hazard instead of the “median” estimate.

2.3.1 A Confidence-Based DCFD Format

In Chapter 1, the mean annual frequency of exceeding a limit state was derived by taking into
account the uncertainty due to both aleatory and epistemic uncertainty. In such derivations, the
limit state frequency was an uncertain quantity and could assume a range of possible values
represented by a central value (median) and a dispersion measure (standard deviation of the

natural logarithm):

1k, 1k% ,
~ - —— Bk ——B%kc
HLS:HS,,(SZC)'ezb -e??
k? k?
B, = \/ﬂUHz +b_2ﬁUD2 +b—2,BUC2 (2.35)

where H,, isthe median estimate of the limit state frequency and I—AISa () isthe median estimate
of the spectral acceleration hazard. S, is the dispersion measure (standard deviation of the

natural logarithm) for the limit state frequency; it contains the epistemic uncertainty-related
dispersion terms for hazard, demand, and capacity. We note that these could be used to develop
one or more DCFD formats that treat the epistemic uncertainty in hazard, demand, and capacity
in a more uniform manner. Here, however, we chose to develop the hybrid scheme introduced
above. Suppose we assume that there is no epistemic uncertainty in the estimation of the median

spectral acceleration hazard (i.e., 5, =0), the dispersion term g, ~in Equation 2.35 would be

simplified to:
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ﬂHLS = %\/ ﬂUDz + :BUC2 = %ﬁUT (2.36)

where p,, is the dispersion parameter representing the total epistemic uncertainty in

displacement-based demand and capacity. In order to account for the epistemic uncertainty in the
estimation of hazard, we substitute the “median” estimate of the spectral acceleration hazard,

H,;, in Equation 2.35 by the “mean” estimate of the spectral acceleration hazard,
H s, -exp(% BZ,). The resulting median estimate for the limit state frequency is denoted by
"H,s" (inorder to distinguish it from the median hazard #,; in Equation 2.35):

~ _ lkfzﬁzm }kfzﬁzkc _ == p%r
"HLS":HS(, (SZC)'eZ”Z e’ = Hs(, (Sgp)'ezb2 (237)
where the bar “— represents the mean estimate; and (parallel to B,;) Bk 1S the dispersion

parameter representing total aleatory uncertainty in displacement-based demand and capacity
parameters. It should be noted that the hazard curves provided by the seismologists are usually in
terms of the mean estimates of the annual frequency of exceedance, or “mean hazard” in short.

Now, we can build a confidence interval around the “median” estimate for the limit state
frequency reflecting the epistemic uncertainty in the estimation of the demand (given s,) and
capacity parameters. The limit state frequency corresponding to the confidence level, x, denoted
by, H;j,, can be expressed as.

Hys ="H """ (2.38)

where K, is the standard Gaussian variate associated with the probability x of not being
exceeded. Values for k., are tabulated in standard probability tables under the normal

distribution as a function of the number of standard deviations above or below the mean.
Substituting the “median” estimate for the frequency of exceeding the limit state from Equation
2.37 into Equation 2.38, one obtains the upper %x confidence limit #; of the limit state

frequency:

142,
PRt KBy

Hy =H, (SI)-e?" e (2.39)
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Recalling from Chapter 1 and earlier sections in this chapter the mean annual frequency
of exceeding (hazard), the spectral acceleration corresponding to median displacement-based
capacity can be calculated from the following power-law expression:

k
Hi (SI) = ko (1) = ko (1) (2.40)

Clearly this result represents a theoretically inconsistent treatment of the total epistemic

uncertainty, since the uncertainty in hazard, g,,, isincorporated in A , while the uncertainty in

capacity and demand (given s,) is represented via the confidence factor ¢*#%s . The main

objective of this hybrid formulation of DCFD format is to focus on structura epistemic

uncertainties. More precisely, one should say that this represents an x% confidence limit on H
given the mean hazard curve. After substituting the estimate for H, (s/<) from Equation 2.40

into Equation 2.39, H;, or the limit state frequency corresponding to the confidence level x is

derived as:

77 b }Eﬁzkr
H}. =k, (—Cj o2 N s (2.41)
a

Parallel to the derivation of the DCFD format in Section 2.2.3 (Equation 2.6), the design

criterion can be tested by comparing the limit state frequency #; corresponding to a confidence

level x to an alowable probability, P,:

H <P, (2.42)

Substituting the expression for #; from Equation 2.41 into the design criterion in Equation 2.42

above:
n b lfzﬁzkr K.
ko | =< | -e? e s <Py (2.43)
Similar to the derivation of the DCFD format in Section 2.2.3, we make some re-

arrangements in the above inequality mainly in order to separate the demand and capacity sides:
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b

1k b -

L A R P\ *
Ne-e? e KT Za-(—oj (2.44)

Recalling the relationship between the dispersion parameter 5, ~ for the limit state frequency

and S, that measurestotal epistemic uncertainty in Equation 2.36:
b
Bur = ; IBHLS (2.45)

Replacing the above in Equation 2.44, it is simplified to:

1k s

_,,ﬁzkr . P k

IS T Za-[—;] (2.46)
0

Now, we multiply both sides of the inequality in eXp(—%%,BZUT) (in order to make it look similar

to DCFD):

1k , 1k , )
——fB%rr ——pfr K. P k ——B%ur
Ne-e? .e? e P Za-(—k()] e 2 (2.47)
0

After further simplifications noting that: N, (s,)=a [/f—OJ ¢ , and also breaking up the total

0

variance terms into the corresponding demand and capacity variance terms:

1k g2 1k go 1k g2 1k g2 1k g2
25 % e 257 e B SpPe e 2P 7 oK Pur

N.-e 2 T pys, (s,)- €2t e (2.48)
Now, we can define the demand and capacity factors as:
p= gy et o
PEPRVINS L (249)

Also the confidence factor corresponding to the confidence level, x, denoted by 4. isdefined as:

1k
—Pur (K, *E;ﬁur )

A =e

X

(2.50)
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After demand, capacity, and confidence factors are substituted from Equations 2-49 and 2-50
into Equation 2.48:

Mps, (Posa) YN P A, (2.91)

or:

Mps, (5,) -7 .

A 2.52
Ne ¢ ( )

This is the final form for the DCFD format that takes into account both aleatory and
epistemic uncertainty. This looks very similar to Equation 2.12 for the DCFD format considering

only the aleatory uncertainty, except for the confidence factor 4. and also that the demand and

capacity factors in Equation 2.51 also include the effect of epistemic uncertainty. As mentioned
before, this format isimplemented in FEMA 351 for the performance evaluation of existing steel
moment-resisting structures. If Equation 2.51 is satisfied, one can say that the probability of

fallureislessthan p, with confidence x%.

It is aso interesting to re-arrange Equation 2.51 in terms of the ratio of the factored

demand to factored capacity related to aleatory uncertainty (according to Equation 2.49):

FDR) _Mos, ("52) Ve _ o, (2.53)
F.C. Ne - ¢R

or:

F.D.(P) """ < FC. (2.54)

which is the equivalent design criterion for the DCFD format taking into account the epistemic
uncertainty. It should be noted that the factored demand and capacity in Equation 2.54 take into
account only the aleatory uncertainty and are identical to those of Section 2.2.3.

The design criterion in Equation 2.53 can also be implemented in order to assess the level of
confidence in an existing design for an allowable probability, 7, by following the steps outlined

below:

1. Calculate the factored demand for an allowable probability 7, and also the factored

capacity from Equation 2.12, taking into account only the aleatory uncertainty.
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2. Findtheratio of the calculated factored demand to factored capacity.
3. Estimate the dispersion measure g, =+/f8up> + Buc> accounting for the total uncertainty

in the estimation of demand and capacity factors; examples appear in DOE 1020, FEMA
351, etc.
4. Solve the equation

FDAR) _ s

F.C. (259

in order to find the corresponding Gaussian variate x,. Note that Equation 2.55 is a

special case of the design criteria in Equation 2.54 that holds at the onset of the limit
state.

5. Find the corresponding confidence level x for the existing design.

2.3.1.1 Numerical example

The procedure outlined above for finding the confidence level corresponding to an existing
design can be applied to the numerical example in Section 2.2.3.7 where the factored demand for
an allowable probability of R =0.0004 and factored capacity for the collapse limit state were
calculated. Theratio of the factored demand to factored capacity is equal to:

F.D.(0.0004) _ 0.0538

= 0.817
F.C. 0.0658

We have used the tables in the FEMA 351 guidelines in order to estimate g,,. For a
three-story (low-rise) structure, the tables recommend the value j,, =0.15 accounting for the

uncertainty in the estimation of the displacement-based response using nonlinear dynamic

procedures for the collapse limit state. Also the guidelines recommend the value A, =0.15

associated with the uncertainty in the estimation of the global dynamic collapse capacity for a
low-rise structure. Therefore, g, can be estimated as:

1
Bur =(0.152 +0.15%)2 =0.212

The next step isto calculate the Gaussian variate x, from Equation 2.55:
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F.D.(0.0004)
FC.

=0817 = k¥ 022

whichimpliesthat: k. =0.953. Hence, the corresponding confidence level for k. =0.953 can

be found from anormal distribution table:

x=®(0.953) = 0.83

Hence, we can conclude that the confidence associated with the existing design of this structure
is 83%. Precisely the same conclusion will be reached following the SAC-like format based on
the definitions in Equations 2.49 and 2.50 for demand, capacity, and, confidence factors. The
factored demand and capacity would differ in value as would their ratio, but the numerical
confidence calculated via 2.50 would be the same. Yun et al. (2002) have followed a similar
procedure to the one outlined above in order to estimate the confidence of a nine-story building
(with both pre-Northridge and post-Northridge designs) in satisfying collapse prevention and

immediate occupancy performance levels according to FEMA 273 guidelines.

24 SUMMARY AND CONCLUSIONS

A probabilistic framework for the assessment of the performance of structures under seismic
excitations was developed in the Chapter 1. Chapter 2 discusses severa of the many possible
aternative design and assessment formats that stem from this probabilistic framework. The
design formats discussed can all be traced back to a general probabilistic design criterion, which
is satisfied when the frequency of exceeding a certain limit state is less than or equal to an

allowable probability, P,. A design format usually offers equivalent displacement-based or

spectral acceleration-based criteria parallel to the general design criterion. The advantage of
these equivalent criteriais that they are expressed in terms of structural response parameters and
hence the resulting format can be incorporated more easily into the existing design codes.

These formats can be categorized based on the types of uncertainty involved in parameter
estimations. The first category takes into account the randomness, also known as the aleatory
uncertainty, in the assessment of demand and capacity. The second category takes into account
both the randomness (aleatory uncertainty) in the estimation of the demand and capacity and also
the uncertainty due to limited knowledge (epistemic uncertainty) in the estimation of the hazard,

demand, and, capacity parameters.
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Within the first category, the demand and capacity factor design (DCFD) format was
discussed. This format is a (displacement-based) design format, analogous to the LRFD
procedures, that stems directly from the expression for the mean annua frequency that the
displacement-based demand exceeding capacity for a certain limit state. The DCFD format is
based on a displacement-based design criterion in which the factored (displacement-based)
demand (representing “load”) for the allowable probability 7, should be less than or equal to the

factored (displacement-based) capacity (representing “resistance”) for a certain limit state.
Another format discussed under the first category is an IM-based format known as the
fragility/hazard format, in which the fragility curves represent the structural “resistance” and the
hazard curves represent the seismic “load.” This format is based on a design criterion in which
the spectral acceleration for a hazard value (i.e., frequency of exceedance) equal to the allowable

probability P,, is less than or equal to the factored capacity expressed in spectral acceleration

terms. Each fragility curve is specific to a its corresponding limit state and can be used in order
to obtain parameter estimates for the calculation of the factored capacity. The fragility/hazard
format has been implemented for the design and evaluation of energy facilities (e.g., nuclear
power-plants) in the DOE 1020 guidelines and for offshore structuresin 1SO guidelines.

Within the second category of the design formats that also address the epistemic
uncertainties, a more general form of the displacement-based DCFD format is discussed. This
format associates a level of confidence with the estimated frequency of exceeding a limit state.
This confidence level represents explicitly the epistemic uncertainties involved in the estimation
of the demand and capacity parameters and implicitly (and approximately) the epistemic
uncertainty in the hazard estimation. The displacement-based design criterion for this format is
very similar to that of the DCFD considering only the aleatory type of uncertainty except for an
additional factor that reflects the level of confidence in the estimation of the limit state
frequency. The DCFD format can be used for both designing a building with a certain level of
confidence and also determining the level of confidence associated with an existing design for an
allowable limit state frequency. This format is implemented in the guidelines for the performance
evaluation of existing and earthquake damaged buildingsin FEMA 351.

As a final note, it should be mentioned that there are numerous ways to transform the
probabilistic design criterion stated in Equation 2.6 into design criteria that are suitable for code
implementation. This chapter discusses only the most commonly used of these formats.
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Nevertheless, the fundamentals used for deriving these formats can be applied toward developing
new design/assessment formats.
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3 Summary and Conclusions

A closed-form analytic foundation for the design and assessment of structures under seismic
loads was developed using basic probabilistic concepts (Chapter 1). This foundation forms the
theoretical basis to alternative formats suitable for implementation in design and assessment

guidelines (Chapter 2).

3.1 CHAPTER 1. A TECHNICAL FRAMEWORK FOR PROBABILITY-BASED

DESIGN AND ASSESSMENT
A probabilistic foundation is developed based on simplifying assumptions. This results in an
analytic closed-form expression for the mean annual frequency of exceeding specified structural
performance levels or, more briefly, limit state frequency. The limit state frequency is derived by
assuming that the parameters involved in the assessments have a stochastic nature, which is
modeled by considering two different types of uncertainty. The first type identifies the more
familiar “natural variability” in the parameters, and is referred to as “randomness’ or, more
precisely, the “aleatory uncertainty.” The second type addresses limited knowledge and data, and
isreferred to as “ uncertainty,” or “epistemic uncertainty.” This second kind of uncertainty can be
reduced by acquiring more data (larger sample sizes) and/or by increasing the knowledge upon
further research.

The derivation of the limit state frequency employs a probabilistic tool known as the
“total probability theorem” (TPT) in order to decompose the derivations into smaller and less
complex parts. Therefore, the process of evaluating the limit state frequency involves additional
“interface” variables. Two alternative solution strategies for deriving the expression for limit
state frequency are presented, namely, the displacement-based strategy and the ground motion
intensity-based solution strategy. The displacement-based approach evaluates the limit state
frequency as the frequency that a displacement-based demand variable exceeds the

corresponding limit state capacity. The derivations in this case are performed in two steps. (1)



The first step evaluates the frequency that the displacement-based demand exceeds a given value
by decomposing it with respect to the ground motion intensity level and then composes the
results by integration over all possible intensity levels. This first step is done by employing the
total probability theorem and an interface variable representing the ground motion intensity. This
variable is referred to as the intensity measure (IM). The assumptions made in this step of the
derivation include approximating the frequency that the IM exceeds a certain level, also known
as the “hazard” for the IM, by a power-law function, modeling the probability distribution of the
displacement-based demand for a given level of ground motion intensity by a lognormal
distribution, and assuming that this lognormal distribution is defined by a median (central value)
that is itself a power-law function of the ground motion IM and a (log) standard deviation
(dispersion measure) that isinvariant with respect to the ground motion intensity. (2) The second
and final step is to evaluate the frequency that the displacement-based demand exceeds capacity
by decomposing it into (conditional) frequencies of exceeding given values for the limit state
capacity and then composing these frequencies by integration over al possible values of
capacity. In this step it is assumed that probabilistic distribution of the (displacement-based)
capacity can be modeled with a lognormal distribution with constant median and standard
deviation and also that capacity and demand are uncorrelated. The second or ground motion
intensity-based approach evaluates the mean annual frequency that the IM variable exceeds the
corresponding limit state capacity IM or more briefly the IM capacity for a specific limit state
(also called “limit state frequency”). The derivation involves decomposing the limit state
frequency into conditional limit state frequencies that the IM exceeds IM capacity for a given
intensity measure and integrating the conditional limit state frequencies over all levels of ground

motion intensity.

3.2 CHAPTER 2: PROBABILITY-BASED DEMAND AND CAPACITY FACTOR
DESIGN (DCFD) FORMATS

The closed-form analytic expression(s) derived for the limit state frequency can be formed into

aternative formats. These formats are alternative representations of the closed-form expression

for the frequency of exceeding a certain limit state based on displacement-based or IM-based

design/assessment criteria. These criteria, which are expressed in common structural engineering

terms rather than the more abstract probabilistic ones, can be implemented in existing design and

assessment procedures and guidelines.
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Demand and capacity factor design (DCFD) represents a family of displacement-based
design formats that are distinguished with regard to the types of uncertainties considered in the
formulation of the limit state frequency. This format has already been implemented in FEMA
350 for the design of new steel moment-resisting frames, in FEMA 351 for the assessment of the
existing steel moment-resisting frames, and in 1SO guidelines for the design of offshore
structures. The fragility/hazard format represents a ground motion intensity-based family of
design formats, also capable of considering both types of uncertainty. The fragility/hazard format
has a graphic representation based on fragility and hazard curves and has been implemented in
various forms in the nuclear power plant PRAs and DOE 1020 seismic criteria (Kennedy and
Short 1994). Consideration of the epistemic uncertainty in the development of these formats
results in designing the structure with a certain degree of confidence or in assessing the level of

confidence in the design of an existing structure for a given allowable probability level.
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Appendix A: The Expected Value of Y* Where Y
is a Lognormal Random Variable:

Assume InY is a norma random variable (i.e., Y is lognormal) with mean m and standard

deviation o. One can always write the following relationship for Y raised to a power, «:

Ya :eaInY

InY can be transformed into a standard normal variable U,

U= InNY —m (A1)
o
for which, the standard normal probability density function (PDF) at U=u is equal to:
1 -
u=—e? A.2
olu)=—— (1.2

Based on the linear relation between InY and U (Equation A.1) and the standard normal PDF for
U (Equation A.2), the PDF for normal random variable InY at InY=x can be obtained as:

1 1 1 ey
fInY(X) =E¢(u)= O'\/Ee = O'\/Ee (A3)

where f(.) denotes the PDF function. The expected value for a function g(.) of a continuous

random variable Z can calculated as:
El02) = [9(2)- 1, () <z (A4

Therefore, the expected value of g(Y)=Y“ can be written as (using Equations A.2, A.3 and A.4):

+oo 1 x-mg,
=M
I 1 e®*.@2 o dx
o2

EY“]= E[e"™ )= €™ fipy (- 0x=

—oo —oo



After some algebraic operations, which involves adding and subtracting afew (necessary)

sguare terms, the following equation is obtained:

oo (x=m)?2 g o5 oo (x-m-ac?)?

1
1 2 a0 1 2
E(eaInY )= J' % .a 20° dgx=e™ .@2 .
o2 ~oN2r

—oo

e 20 dx

We can recognize that the term inside the integral is nothing but the PDF for a normal variable
with a mean equal to m+ea-o?, and a standard deviation equal to, o . Therefore, the resulting
integral (from —-t0 «) is equal to unity. Hence, the expected value of Y* is simplified to the

product of the following two terms:

1
Za’o?

E[YOC] — E[eaInY] — ema_ez

For a lognorma random variable, the mean of the logarithm of the variable is equa to the
logarithm of the median of the variable (Benjamin and Cornell 1970):

Inny =E[InY]

where 7(.) denotes the median. Hence, for normal random variable InY with mean m and

standard deviation o, the expected values of Y* can be written as:

122 1,5 122

E[Y“]=E[e“"]=e™ €2 =" .e2" " =(3,)" € (A.5)
Thus, the expected value of alognormal random variable raised to a power « can be expressed

as the product of the median value raised to the power times a magnification factor, which is an

exponential function of the variance of InY times %0{2 .
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Appendix B: Statement of the Total Probability
Theorem

Given a set of mutualy exclusive and collectively exhaustive events, Bi, By, ..., Bn, the
probability P[A] of another event A can always be expanded in terms of the following joint
probabilities (Benjamin and Cornell 1970):

P[A] = P[Bi~ Al + P[B2n Al +. . .+ P[Bn A :Z_n:P[Bi A A (B.1)



Appendix C: Annual Frequency of Exceeding a
Limit State — Demand and
Capacity are Correlated

In Chapter 1 of this report, we derived a closed-form expression for the mean annual frequency
of exceeding limit state capacity. However, the derivations were based on the assumption that the
limit state capacity is not correlated with displacement-based demand. In this appendix we will
derive the limit state frequency for a more general case in which demand and capacity are
correlated. As it turns out, incorporating the correlation between demand and capacity in the
formulations is simple and may be carried out by modifying the total fractional standard
deviation in the closed-form expression for the limit state frequency. As in the report, here we
will study the effect of correlation between demand and capacity in two categories, namely (a)
when the aeatory part of the uncertainties (e.g., randomness due to record-to-record variability
in demand and capacity) in demand and capacity are correlated and (b) the epistemic part of the
uncertainties (e.g., due to imperfect knowledge in estimating structural model parameters) in
demand and capacity are correlated. In fact, as mentioned in the appendix of a paper by the
authors (Cornell et al. 2002), some deliberations on the correlation between demand and capacity
in the FEMA/SAC project indicated significant correlation between the epistemic uncertainties
in the estimation of the displacement-based demand at larger ground motion levels and (global)
collapse capacity. We will discuss each of the above a and b cases separately without loss of

generality, asthey can be simply combined if needed.

C.1. CORRELATION BETWEEN ALEATORY UNCERTAINTIESIN DEMAND AND
CAPACITY

The annual frequency of exceeding a limit state, H g, can be expressed as the limit state
probability P[D > C] times the occurrence rate parameter v (Equation 1.28):
Hs=v-Pg=v-P[D2>C] (C21)



In the report, we derived the limit state frequency in two steps: (1) by deriving the mean annual
frequency of exceedance (MAF) for the displacement-based demand or the drift hazard and (2)
by deriving the conditional probability that demand exceeds capacity for a given value of
capacity and combining it with the MAF for the displacement-based demand in the first step.
However, that approach is based on the assumption that demand and capacity are uncorrelated,
and hence can be treated in two separate steps. In this appendix, we will derive the limit state
frequency by conditioning the probability that demand exceeds capacity on spectral acceleration
and then integrating it with respect to spectral acceleration:

HLS:v-P[DZC]:V-TP[D2C|Sa:x]- fsa(x)-dx:TP[D2C|Sa:x]-|dHSa(x)| (C.2)

where |dHg (X) Fv-dGg (X) =v- fg (X)-dx, as it is explained in Section 1.4.7.3. The term
P[D=C|S, = x] can bere-arranged as follows:

D(X)

P[D2C|Sa=x]=P[%21|Sa=x]=P[T21] (C.3)

It is assumed that displacement capacity is not correlated with spectral acceleration®. The

term, D(X), denotes the displacement-based demand for a given spectral acceleration value, x.
Assuming that both conditional demand for a given spectral acceleration, D(x), and capacity,
C, are lognormal random variables, the ratio of the two variables, D(x)/C, is aso alognormal

random variable with the following mean and standard deviation of the log:

mean(ln?) =107 5 = mean(in D(x) - mean(inC) = N7y, (4 ~In7 = nTes o

var(ln?) =var(InD(x)) —InC) = var(InD(X)) =2 p,pis. inc * Oinpys, * Tinc + Var(InC)

:ﬂ%22ﬂ0|%2_2'plnD|%,lnc 'IBD|sa ':Bc +:Bcz (b)
(C.49)

where we have made use of the fact that the mean (expected value) is alinear operator in order to
expand the mean of the (log of) demand to capacity ratio (Equation C.4.a). We can observe that
the mean of the logarithm of the demand to capacity ratio is equal to the logarithm of the ratio of

! This assumption makes the derivations more consistent with that described in the part 1 of the report.
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the median demand (given spectral acceleration), 77,5 (X), to median capacity, 7. . We arrived at
this conclusion based on a property of a lognormal random variable, in which the mean of the
logarithm is equal to the logarithm of the median. The variance term is aso expanded into the

sum of the variance of the log of demand for a given spectral acceleration, ,BDlsaz , the variance of

the log of capacity, ,BCZ, and a correlation term that has the correlation factor between the (log)
demand (given spectral acceleration) and (log) capacity, p,ps 1nc - It should be noted that the
fractional standard deviation, S, , isassumed to be a constant and not a function of the spectral

acceleration, which is one of the assumptions made in order to arrive at a closed-form solution
for limit state frequency in Chapter 1. The standard deviation of the (log of) demand to capacity
ratio is also a constant, if we assume that the fractional standard deviation in capacity and the
correlation factor between (log) demand and capacity are constants and do not depend on the
spectral acceleration level.

Having derived the statistical properties of the lognormal variable, D(x)/C, we can
further expand theterm P[D >C | S, = X] in Equation C.3:

N o,
In—=
pD>CS, =x=PPX s - pinPX 5 g 1- ey =
C C e
C
ln’?msa(x) | - n ncb
—1-@(-— e yo1-@ X Ty g g ax) (C.5)
ois, ors, ois,
C C C

where ®(.) is the standard normal cumulative distribution function. We have also replaced
Nois, (X) by a- X" (Section 1.4.7). We can substitute the above expression for P[D>C|S, = X]
in Equation C.2 in order to derive the limit state frequency:

|n777(:

HLs=v-P[DzC]=°f{1—<I>( )} [dHg, ()| (C6)

DS,
c

Comparing the above expression for the limit state frequency to that of the MAF of
exceeding displacement-based demand value, d (i.e., drift hazard), in Equation 1.16, we can

observe that the two expressions will be identical if 7. isreplaced by d and S . isreplaced

99



by Lo, 2. Therefore, we can use the resulting closed-form solution for the MAF of exceeding
the demand value d in Equation 1.25 by replacing d with 7. and S5 with Sy !

1K
2 b?

Replacing the expression for s ,c from C.4.bin the above equation:

Hs= Hg (S3°) - exp( “ois./c) (C.7)

1 k?
Hi = Hsa(sgc)'eXp{E'F'(ﬂmsaz =2 Pinpis, Inc 'ﬂD|sa - Pe +,Bc2)}
1 k2 1k? k2

—Pc e“g'ﬁln D|Sg.InC 'ﬁmsa Be

7'72'ﬁD5a2 52
=Hg (S))- e " .e?® (C8)

which is the closed-form analytic solution for the limit state frequency taking into account the
correlation between the aeatory uncertainties in demand (given spectral acceleration) and
capacity. Comparing Equation C.8 to the closed expression for limit state frequency in Equation
1.38, we can observe that the two expressions are identical except for the exponential correlation

2

term exp(—E—-p.nDlsa,mc - Pogs, - Bc) appearing in Equation C.8. It can be argued that if the

2

correlation factor is positive, the limit state frequency in Equation 1.38 overestimates the limit
state frequency, wheresas if the correlation factor is negative. the limit state frequency will be
underestimated.

C.2. CORRELATION BETWEEN EPISTEMIC UNCERTAINTIESIN DEMAND AND
CAPACITY
We will now base our derivation of the limit state frequency directly on the derivations outlined
in Section 1.4.8.
The limit state frequency conditioned on the deviations due to epistemic uncertainty in
spectral acceleration hazard, ¢, demand, g,,, and capacity, &, can be calculated from

Equation 1.82:

-k
~ —  1Kk® , 1k% , k -k
Me |°  qav’™ 2/ b b
HLSISUH 0D, ayc = k0 [ a e e “Eun Eup " Euc (C_9)

? 1t should be noted that we are using the assumption that 77 and pis, /c are both constants (with respect to
spectral acceleration) in order to make the above statement.
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where 7. is the estimated median capacity. The above expression can be rewritten by treating

the limit state frequency, spectral acceleration hazard, and the deviations in demand and capacity

as random variables (Equation 1.83):

1k% , 1k?

|_~||_s = |_~|SA (S‘Zc)'eEF T e?v T Ehyy b (C.10)

where

where we have used the “tilde” symbol to distinguish the uncertain quantities from deterministic
ones. We will now calculate the mean and standard deviation of the logarithm of limit state
frequency from Equation C.10, taking into account the correlation between random variables

&, ad g, that represent epistemic uncertainty in demand and capacity. In doing so, we will
use the statistical properties of £,, and £, listed in Equations 1.60 and 1.77; we will also use

the expressions for mean and standard deviation of two or more correlated random variables as

in the previous section:

1 k2

,72/6' 7‘72”62%
delan(HLs) H (Snc) e’r -e?b (C.11.a)
and,
2 2 K’ 2 K k? 2
'BHLS = Pon +FﬁUD _2'6’/)|nEUD-|nEUc Buo * Buc +F,BUC (C.11.b)
where Piné,y I denotes the correlation factor between the (log of) epistemic deviations in

demand and capacity. The above expression is based on the assumption that neither of the
epistemic deviations in demand and capacity is correlated with that of the spectral acceleration

hazard. Hence the mean estimate for the limit state frequency can be derived as.

1K 1K go g k
ﬁLS _ HSa (S”c) sz(ﬂ ro+uD) o2 b? (Bre+B%uc) ‘ e*B‘PmEUD inauc “BuoPuc (C12)

2

1
— A ~ A —Bun . H
where Hg (s;°)=Hg (S)°)-€? denotes the mean estimate of the spectral acceleration

hazard. Comparing the above expression for the mean estimate of the limit state frequency in

Equation 1.86, we will observe that they differ by the exponential correlation term,

k? - : : I
exp(— ra *Pinz,oing,e Bogs, - Bc) - Similar to the previous section on aleatory uncertainties, the
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mean estimate for limit state frequency from Equation 1.85 will be underestimated if the

epistemic uncertainties in demand and capacity are negatively correlated.
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