
Finite Element Reliability and Sensitivity Methods
for Performance-Based Earthquake Engineering

Terje Haukaas
Department of Civil and Environmental Engineering

University of British Columbia

and

Armen Der Kiureghian
Department of Civil and Environmental Engineering

University of California, Berkeley

Pacific Earthquake Engineering
Research Center

PEER 2003/14
APRIL 2004

Finite Element Reliability and Sensitivity Methods for
Performance-Based Earthquake Engineering

Terje Haukaas

Department of Civil Engineering
University of British Columbia

and

Armen Der Kiureghian

Department of Civil and Environmental Engineering
University of California, Berkeley

PEER Report 2003/14
Pacific Earthquake Engineering Research Center

College of Engineering
University of California, Berkeley

April 2004

ABSTRACT

The work in this report is motivated by the performance-based engineering approach advocated

by PEER. A comprehensive, object-oriented software framework for finite element sensitivity and

reliability analysis is developed. The work builds on the existing software OpenSees.

An essential ingredient in finite element reliability analysis is accurate, consistent and efficient

computation of response sensitivities. Using the direct differentiation method, a unified formulation of

finite element response sensitivities with respect to material, load and shape parameters is developed

and implemented. Shape sensitivity results allow inclusion of uncertainty in nodal coordinates in

reliability analysis.

The developed software framework is used to investigate and address challenges particular to

nonlinear finite element reliability analysis. As a result, smoothed material models, modifications

in existing search algorithms, and a search algorithm hitherto not used in reliability analysis are

developed. The first-order reliability method and the importance sampling method are used for

computing probabilities and mean out-crossing rates, the latter for dynamic problems.

A User’s and Developer’s Guide for the sensitivity and reliability modules in OpenSees is de-

veloped. Several numerical examples, including a highway bridge used as a test-bed by PEER, are

presented to demonstrate the new capabilities of the software.

iii

ACKNOWLEDGEMENTS

This research investigation is primarily funded by the Pacific Earthquake Engineering Research

(PEER) Center through the Earthquake Engineering Research Centers Program of the National

Science Foundation under award number EEC-9701568. This support is gratefully acknowledged.

The first author would like to acknowledge The Research Council of Norway for a three-year

doctoral fellowship and the U.S.-Norway Fulbright Foundation for a Fulbright Fellowship.

iv

CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . ix

LIST OF TABLES . xiii

1 INTRODUCTION . 1
1.1 Background: Performance-Based Earthquake Engineering 1
1.2 OpenSees and Object-Oriented Programming . 2
1.3 Previously Developed Software . 5
1.4 Objectives and Scope . 6
1.5 Organization . 6

2 FINITE ELEMENT RESPONSE SENSITIVITY ANALYSIS 9
2.1 General Response Sensitivity Equations by Direct Differentiation 10

2.1.1 Review of Finite Element Response Equations 11
2.1.2 Top-Level Response Sensitivity Equations . 17
2.1.3 Displacement Sensitivity with Respect to Material Parameters 19
2.1.4 The Possibility of Non-Linear Sensitivity Equations 22
2.1.5 Displacement Sensitivity with Respect to Nodal Coordinates 23
2.1.6 Displacement Sensitivity with Respect to Load Parameters 27
2.1.7 Sensitivity of Derived Response Quantities . 28

2.2 Special Considerations for Inelastic Problems . 29
2.2.1 Conditional and Unconditional Sensitivities; Two Phases 29
2.2.2 Element Assembly Procedures . 29
2.2.3 On Using the Updated Consistent Tangent . 30

2.3 Element-Level Sensitivity Equations . 31
2.3.1 Isoparametric Quad4 Element . 31
2.3.2 Displacement-Based Beam-Column Element 32
2.3.3 Nonlinear Truss Element . 34

2.4 Cross-Sectional Level Sensitivity Equations . 34
2.5 Material-Level Sensitivity Equations . 35
2.6 Uniaxial Bouc-Wen Material . 35

2.6.1 Fundamental Model Assumptions . 36
2.6.2 Incremental Response Equations . 37
2.6.3 Conditional Stress Sensitivity Equations . 39
2.6.4 Unconditional Sensitivity History Variables . 42
2.6.5 Example Results . 42

2.7 Generalized Plasticity Material . 43
2.7.1 Fundamental Model Assumptions . 44

v

2.7.2 Incremental Response Equations . 44
2.7.3 Conditional Stress Sensitivity Equations . 47
2.7.4 Unconditional Sensitivity History Variables . 48
2.7.5 Example Results . 49

2.8 Uniaxial Smoothed Bi-Linear Material . 50
2.8.1 Fundamental Model Assumptions . 51
2.8.2 Geometry of the Smoothing Circular Segment 51
2.8.3 Updating of Circular Segments . 53
2.8.4 Incremental Response Equations . 54
2.8.5 Conditional Stress Sensitivity Equations . 55
2.8.6 Unconditional Sensitivity History Variables . 55
2.8.7 Example Results . 55

2.9 Uniaxial Smoothed Concrete Material . 56
2.9.1 Fundamental Model Assumptions . 57
2.9.2 Incremental Response Equations . 57
2.9.3 Conditional Stress Sensitivity Equations . 59
2.9.4 Unconditional Sensitivity History Variables . 59

2.10 Discontinuities in Sensitivity Results . 60
2.11 Applicability of the Adjoint Method . 63
2.12 Implementations in OpenSees . 64

2.12.1 Forming the Right-Hand Side for Static Problems 65
2.12.2 Forming the Right-Hand Side for Dynamic Problems 66

3 FINITE ELEMENT RELIABILITY ANALYSIS . 85
3.1 Reliability Analysis in Performance-Based Earthquake Engineering 85
3.2 Uncertainty Modeling . 87

3.2.1 Library of Marginal Distribution Functions . 87
3.2.2 User-Defined Distributions . 88
3.2.3 Correlation Structures . 88
3.2.4 Joint Probability Distributions . 90
3.2.5 Discretized Random Process Loading . 93

3.3 Performance Functions . 96
3.3.1 Component and System Reliability Problems 96
3.3.2 General Characteristics of Performance Functions 96
3.3.3 Performance Functions for Performance-Based Earthquake Engineering 97
3.3.4 Performance Functions in Nonlinear Finite Element Reliability Analysis 98

3.4 Estimation of Performance Probabilities and Response Statistics 99
3.4.1 Second-Moment Response Statistics . 100
3.4.2 FORM . 102
3.4.3 Importance Sampling Analysis . 102
3.4.4 Parametric Reliability Analysis . 104
3.4.5 System Reliability Analysis . 105
3.4.6 Mean Out-Crossing Rate by FORM . 106

3.5 Finding the Design Point . 109
3.5.1 The General Search Scheme . 110
3.5.2 Convergence Criteria . 111
3.5.3 Step Size Selection and Restricting the Search to the Safe Domain 113
3.5.4 The Gradient Projection Algorithm . 115
3.5.5 The Improved HLRF Algorithm . 117

vi

3.5.6 The Polak-He Algorithm . 118
3.5.7 The Sequential Quadratic Programming (SQP) Algorithm 120

3.6 Parameter Importance Measures . 122
3.7 Implementations in OpenSees . 125

4 USER’S GUIDE TO RELIABILITY AND SENSITIVITY ANALYSIS IN
OPENSEES . 135
4.1 Elementary Requirements . 136
4.2 Uncertainty Modeling . 136
4.3 Performance Functions . 142
4.4 Analysis Tools . 143
4.5 Analysis Execution and Results . 149
4.6 Response Sensitivity Analysis by Direct Differentiation 154

5 NUMERICAL EXAMPLES AND CASE STUDIES . 157
5.1 A Basic Example . 157
5.2 Push-Over Analysis of 3-D Truss . 162
5.3 Reinforced-Concrete Fiber-Frame Example . 167
5.4 I-880 Highway Bridge Example . 169

5.4.1 Performance Criteria . 170
5.4.2 Response Statistics . 171
5.4.3 Importance Ranking by FOSM Analysis . 172
5.4.4 Reliability Analysis . 173
5.4.5 Importance Ranking by FORM Analysis . 175
5.4.6 Verification of Results by Sampling Analysis 175
5.4.7 Dynamic Time-Variant Reliability Analysis, Mean Out-Crossing Rates 176
5.4.8 Dynamic Reliability Analysis with Damage Index 177

5.5 Mean Out-Crossing Rate Analysis of Simple Structures 178

6 CONCLUSIONS . 215
6.1 Summary of Major Findings . 215
6.2 Future Work . 217

REFERENCES . 219

APPENDIX A Class Interfaces for Implementations in OpenSees 227
A.1 Analysis types . 228
A.2 Framework of Analysis Components . 228
A.3 The Domain . 232
A.4 DDM Sensitivity Interface Additions . 235

APPENDIX B Algorithms for Sensitivity Computations . 237
B.1 Incremental Response Equations for Uniaxial Smoothed Bi-Linear Steel Material . . . 237
B.2 Conditional Stress Derivative for Uniaxial Smoothed Bi-Linear Steel Material 242
B.3 Unconditional Sensitivity History Variables for Uniaxial Smoothed Bi-Linear Steel

Material . 243
B.4 History Variables for Uniaxial Smoothed Concrete Material 247
B.5 Backbone Curve for the Uniaxial Smoothed Concrete Material 248
B.6 Smoothing Line Between Two Points for Uniaxial Smoothed Concrete Material 249
B.7 Derivative of Backbone Curve for Uniaxial Smoothed Concrete Material 249

vii

B.8 Derivative of Smoothing Line Between Two Points for Uniaxial Smoothed Concrete
Material . 250

B.9 Sensitivity History Variables for Uniaxial Smoothed Concrete Material 251

APPENDIX C Probability Distributions . 253

viii

LIST OF FIGURES

1.1 Symbolic representation of the principal concepts of an object-oriented software frame-
work. 7

2.1 Framework of equilibrium and kinematics equations for displacement-based beam-
column element. 69

2.2 Load-displacement curve for one-member truss model with degrading Bouc-Wen ma-
terial. 70

2.3 Displacement sensitivity results ∂u
∂h
· h for a material point with degrading Bouc-Wen

model. 70
2.4 Load-displacement curve for 3-D truss structure with Bouc-Wen material. 71
2.5 Displacement sensitivity results for 3-D truss structure with Bouc-Wen material. . . . 71
2.6 Single four-node quad element for demonstration of sensitivity results for J2 and Gen-

eralized Plasticity material models. 72
2.7 Load-displacement curve for one four-node quad element with Generalized Plasticity

and J2 plasticity material. 72
2.8 Displacement sensitivity results ∂u

∂σy
for one Quad4 element with two plasticity models. 73

2.9 Displacement sensitivity results ∂u
∂E

for one Quad4 element with two plasticity models. 73
2.10 Displacement sensitivity results ∂u

∂ν
for one Quad4 element with two plasticity models. 74

2.11 Displacement sensitivity results ∂u
∂Hiso

for one Quad4 element with two plasticity models. 74
2.12 Bi-linear steel material smoothed with circular segment. 75
2.13 Example of stress-strain curve produced by smoothed material for E = 30000, σy = 60,

b = 2%, γ = 60% and η = 3.0. 75
2.14 Determination of the center of the smoothing circular segment. 76
2.15 Shift of circle center after elastic material state determination. The point (εi+1, σi+1)

denotes the current material state. 76
2.16 Determination of the new coordinates of the center of the circle after elastic unloading

in inelastic region. 77
2.17 Stress-strain curves for bi-linear and smoothed bi-linear material. 77
2.18 Strain sensitivity results ∂ε

∂σy
for bi-linear and smoothed bi-linear material. 78

2.19 Strain sensitivity results ∂ε
∂E

for bi-linear and smoothed bi-linear material. 78
2.20 Strain sensitivity results ∂ε

∂b
for bi-linear and smoothed bi-linear material. 79

2.21 Load-displacement curve for 3-D truss model with bi-linear and smoothed bi-linear
material. 79

2.22 Sensitivity results of x-displacement at node 21 for 3-D truss with bi-linear and
smoothed bi-linear material models. 80

2.23 Sensitivity results of y-displacement at node 21 for 3-D truss with bi-linear and smoothed
bi-linear material models. 80

2.24 Sensitivity results for 3-D truss with bi-linear and smoothed bi-linear material models. 81
2.25 Sensitivity results of axial force in element 4 for 3-D truss with bi-linear and smoothed

bi-linear material models. 81
2.26 The original “Concrete01” material model in OpenSees. 82
2.27 Smoothed backbone curve of Concrete01. 82
2.28 Smoothing of the unloading-reloading curve of the Concrete01 material model in

OpenSees. 83

ix

2.29 Example of stress-strain curve produced by smoothed concrete material model. In this
example f ′c = −5.0, f ′cu = −2.0, εc0 = −0.005, εcu = −0.01, γ = 0.3 and η = 0.3. . . . 83

2.30 Example of stress-strain curve produced by original “Concrete01” material in OpenSees.
Parameter values equal to those in Figure 2.29. 84

2.31 Conceptual displacement response for SDOF system with bi-linear material. 84
3.1 Determination of design point values of random variables for shifted time series. . . . 130
3.2 Illustration of design point convergence criterion. 130
3.3 Example of a “too large” step size in nonlinear finite element reliability analysis. . . . 131
3.4 Initial search direction for the gradient projection algorithm. 131
3.5 Step length of a directional Newton scheme in multi dimensions. 132
3.6 Search direction for the HLRF algorithm as a sum of vectors. 132
3.7 Scheme for updating parameters in the finite element model with new realizations of

random variables. 133
4.1 Overview of Tcl commands for reliability and sensitivity analysis in OpenSees. 156
5.1 Performance of the Polak-He algorithm for different start values of the performance

function. 194
5.2 Limit-state surface and iHLRF trial steps for the “basic” reliability analysis example. 194
5.3 Complementary CDF and PDF from parametric reliability analysis of performance

function of the basic reliability analysis example. 195
5.4 3-D truss example. 195
5.5 Sample stress-strain curves for uniaxial materials employed in 3-D truss example. . . 196
5.6 Displacement response at top of truss structure during search for the design point. . . 196
5.7 Explanation of element and node numbers of 3-D truss structure. 197
5.8 Reinforced concrete frame structure with node numbers and element numbers. 197
5.9 CDF and PDF for roof displacement. Threshold is varied from 1% to 2%. 198
5.10 Identification of element and node numbers for I-880 highway bridge model. 199
5.11 Mean point load-displacement curve for transversal (y-direction) displacement of node

15005 due to inelastic static pushover analysis with reference load applied at each bent.200
5.12 Probability distributions of response based on reliability analysis. 200
5.13 Load-displacement curve (top) and corresponding tangent for transversal (y-direction)

displacement (bottom) of node 15005 due to inelastic static pushover analysis at the
mean point. 201

5.14 Second-moment load-displacement curves from first-order second-moment analysis for
response quantity in performance function 1. 201

5.15 Second-moment load-displacement curves from first-order second-moment analysis for
response quantity in performance function 2. 202

5.16 Probability distribution for displacement response at load factor 0.20; obtained by a
series of FORM reliability analyses of performance function number 1. 202

5.17 Probability distribution for load factor level at displacement 0.3 meters; obtained by
a series of FORM reliability analyses of performance function number 2. 203

5.18 Example stress-strain curve for bi-linear and smoothed material model used for rein-
forcing steel. 203

5.19 Effect on response and tangent of using smoothed material for steel reinforcement. . . 204
5.20 Detailed effect on tangent of using smoothed material for steel reinforcement. 204
5.21 Probability distribution for displacement at 20% of elastic tangent; obtained by a series

of FORM reliability analyses of performance function number 3. 205
5.22 Probability distribution for load factor at 20% of elastic tangent; obtained by a series

of FORM reliability analyses of performance function number 4. 205
5.23 Modulating functions and corresponding filter data. 206

x

5.24 Sample stochastic ground motion acceleration. Target standard deviation at 4.0 sec-
onds: 0.2g = 1.96 m/s2. 206

5.25 Mean out-crossing rate over threshold 0.10m for linear I-880 bridge structure 207
5.26 Design point response at 4.5 seconds for mean out-crossing rate estimation for linear

I-880 bridge. 207
5.27 Design point excitation at 4.5 seconds for mean out-crossing rate estimation for linear

I-880 bridge. 208
5.28 Mean point response for applied recorded ground motion. The upper left figure shows

the displacement response; the upper right figure shows the stress-strain curve of the
concrete fiber 1 in Figure 5.29; lower left figure shows the stress-strain curve of the steel
fiber 2 in Figure 5.29; lower right figure shows the stress-strain curve of the concrete
fiber 3 in Figure 5.29. Part of the tension strain-history of the concrete fibers is outside
the plot area. 208

5.29 Response sampling from fiber-discretized cross section. 209
5.30 One-degree-of-freedom structure. 209
5.31 Start point excitation (top) and response (bottom) for mean up-crossing analysis of

single-degree-of-freedom example. 210
5.32 Performance function and zero plane for SDOF example with bi-linear material and

two random pulses. 210
5.33 Limit-state line for the SDOF example with bi-linear material and two random pulses. 211
5.34 Effect on limit-state line of using smoothed material model instead of bi-linear material

model. 211
5.35 Mean up-crossing rate results for SDOF structure. 212
5.36 Two-degrees-of-freedom structure. 212
5.37 Mean up-crossing rate results for interstory drift of first floor of 2-DOF structure. . . 213
5.38 Mean up-crossing rate results for interstory drift of second floor of 2-DOF structure. . 213

xi

LIST OF TABLES

3.1 Permissible response quantities in the performance function, depending on the type of
finite element analysis. 128

3.2 Framework of analysis components and currently available specific implementations. . 128
3.3 Domain components for reliability analysis in OpenSees. 129
3.4 Analysis types related to reliability analysis available in OpenSees. 129
4.1 Syntax to identify material, section and element parameters available for uncertainty

characterization. 156
5.1 Uncertain model parameters in 3-D truss model. 180
5.2 40 most important random variables at the design point for static 3-D truss structure. 181
5.3 Uncertainty characterization of FE model parameters of reinforced concrete frame;

mean (µ), standard deviation (σ) and correlation (ρ). 182
5.4 Reliability index β and coefficient of variation for importance sampling for reinforced

concrete frame. 182
5.5 Parameter importance rankings for reinforced concrete frame. Superscripts inn and

out denote inner (confined) and outer (unconfined) concrete, respectively. “El” denotes
element number. Element and node numbers are provided in Figure 5.8. 183

5.6 Nodal coordinates for I-880 Testbed bridge model. Unit: meters. 184
5.7 Uncertain parameters in I-880 Testbed bridge model, part 1. 185
5.8 Uncertain parameters in I-880 Testbed bridge model, part 2. 186
5.9 Uncertain parameters in I-880 Testbed bridge model, part 3. 187
5.10 Uncertain parameters in I-880 Testbed bridge model, part 4. 188
5.11 Response statistics results for performance functions g3 and g4. 189
5.12 40 most important random variables in initial region of load-displacement curve of

I-880 highway bridge. 190
5.13 40 least important random variables in initial region of load-displacement curve of

I-880 highway bridge. 191
5.14 40 most important random variables in yielding region of load-displacement curve of

I-880 highway bridge. 192
5.15 40 least important random variables in yielding region of load-displacement curve of

I-880 highway bridge. 193
C.1 The normal probability distribution. The PDF for the standard normal distribution

is usually denoted ϕ(x), while the corresponding CDF is denoted Φ(x). 253
C.2 The lognormal probability distribution. 253
C.3 The negative lognormal probability distribution. 254
C.4 The exponential probability distribution. 254
C.5 The shifted exponential probability distribution. 254
C.6 The Rayleigh probability distribution. 255
C.7 The shifted Rayleigh probability distribution. 255
C.8 The uniform probability distribution. 255
C.9 The gamma probability distribution. Γ() is the gamma function and Γ(,) is the

so-called incomplete gamma function. 256
C.10 The beta probability distribution. B(q, r) is the beta function defined as Γ(q) Γ(r)/Γ(q+

r). 256
C.11 The type I largest value probability distribution (identical to the Gumbel distribution).257

xiii

C.12 The type I smallest value probability distribution. 257
C.13 The type II largest value probability distribution. 257
C.14 The type III smallest value probability distribution. 258
C.15 The Weibull probability distribution. 258

xiv

1 Introduction

1.1 BACKGROUND: PERFORMANCE-BASED EARTHQUAKE ENGINEERING

In recent decades, a revolution in computer efficiency and capacity has occurred. Simultaneous ad-

vances in the fields of mechanics and structural engineering have made it possible to simulate the

behavior of complex structures on the computer. This has provided a strong impetus for the in-

troduction of the performance-based engineering approach. The client, or society, may now require

information about how a structure meets prescribed performance criteria for a given hazard level.

This approach is obviously a lot more informative than mere satisfaction of prescriptive code reg-

ulations, and is the approach advocated by the Pacific Earthquake Engineering Research (PEER)

Center.

Predictions of structural performance can only be done in a probabilistic sense. Unavoidable

uncertainties are present in the geometry, material, and load parameters of structures as well as

in the model itself and in the analysis procedure. Hence, the field of uncertainty analysis and

structural reliability is becoming a mainstream topic as the field of structural engineering enters the

performance-based engineering paradigm.

The finite element method is currently the dominating tool for simulating structural behavior.

A coupling of this method with reliability analysis algorithms leads to the finite element reliability

method described in this work. The first coupling between FORM (first-order reliability method)

reliability analysis and the finite element method is found in Der Kiureghian and Taylor (1983). Since

then, a number of advances have been reported, including those by Liu and Der Kiureghian (1991a),

Gutierrez et al. (1994), Zhang and Der Kiureghian (1997), Der Kiureghian and Zhang (1999), Sudret

and Der Kiureghian (2000), Imai and Frangopol (2000), Haldar and Mahadevan (2000), and Frier

and Sorensen (2003). Such methods address the key issue in performance-based engineering. Based

on performance criteria mandated by the client or the society, probability estimates for reaching

specified structural performance thresholds are computed. In addition, sensitivity and importance

measures for the model parameters are available.

1

Structural failures normally occur in the nonlinear structural response range. It is therefore

imperative that inelastic material behavior and geometric nonlinearity are considered in finite element

reliability analysis. The need for a modern and comprehensive computational framework to reveal

and address challenges in such analyses provides the motivation for the present study. This study

present the first attempt at incorporating reliability methods in an open-source, general-purpose

finite element software framework.

1.2 OPENSEES AND OBJECT-ORIENTED PROGRAMMING

The work in this report extends the OpenSees software framework. OpenSees (Open System for

Earthquake Engineering Simulation) is intended to serve as a computational platform for research at

PEER. It is designed to compute the seismic response of structural and geotechnical systems. The

source code of this software including the models developed as part of this report, can be found at the

website

http://opensees.berkeley.edu, where additional information about OpenSees can be obtained.

Software developed within an academic setting is often prone to developer discontinuity, as stu-

dents graduate and leave to pursue their careers. A nontransparent, personalized software design is

often employed. The end result often is a patchwork-type software. This is not desirable for several

reasons. Such software often become increasingly difficult to debug and maintain and extensions can

be added only in an ad-hoc manner. Furthermore, the cost of climbing the learning curve for new

students/developers who wish to utilize the software tends to become discouragingly high with time.

This adversely affects motivation and frequently leads to a decision to abandon the existing software.

These time- and resource-costly development cycles clearly are not desirable. These problems can

be remedied by the software architecture enabled by the object-oriented programming approach.

Object-oriented programming is employed in all implementations in OpenSees.

The introduction of object-oriented programming has brought with it a revolution in software

development (Deitel and Deitel 1998). This revolution is based on the notion of standardized, in-

terchangeable software components. These components are called “objects” or, abstractly, “classes.”

Objects are instantiated at run-time based on specifications made by the developer in the correspond-

ing classes. Each class, and hence object, may contain member functions, often called ”methods,”

and member data.

Detailed specification of the methods and the data members is found in the class “interfaces.” The

2

information in the class interfaces contains the information key to understanding an object-oriented

software framework. Appendix 6.2 describes the class interfaces used for the implementations in

this study. At the OpenSees website, these specifications are provided in separate files with the

.h extension. The interface of a class contains detailed specification of its methods, including the

argument list and return type, and data members. This is all the information needed to make use of an

object-oriented software library. Detailed knowledge of the algorithms that implement the promised

features of a class, provided in .cpp files, is not necessary. (Such information is useful, however,

if one insists on not making a “black box” use of the software.) The class interfaces facilitate the

transparent nature of object-oriented programming. Their structure is common to all object-oriented

software. With general knowledge of the syntax rules of the programming language, a user is able to

understand the software architecture. Such software design has extensibility and maintainability as

an integral part of the software design.

In object-oriented programming, increased emphasis is placed on the planning and design phase

of the software development. The task at hand is abstracted and separated into logical components.

Member functions are designed to handle the interaction between objects and to perform operations

on member data. Various design patterns can be employed, depending on the structure of the problem

(Gamma et al. 1995). In the present work, as in the core OpenSees framework, an analysis-domain

decomposition is employed. A framework of reliability analysis components acts on the domain that

contains random variables, correlation structures, performance functions, etc. Features of object-

oriented programming that enable such developments are now described.

Object-oriented programming is based on four key principles. These are general concepts, which,

in fact, are independent of the programming language. The concept of abstraction addresses trans-

formation of a real-world procedure into abstract data types, e.g., classes. Hence, data abstraction

is the process of organizing the problem into logical, self-contained components that interact. The

planning phase of object-oriented software development cannot be overemphasized. The second prin-

ciple, the concept of encapsulation, addresses a security concern. It is unsafe not to have clear

rules regarding which part of the code has access to modify the model data. In general, data ac-

cess should be restricted as much as possible. For example, it would be unsafe programming that

could potentially lead to extremely difficult debugging if data objects such as nodal coordinates were

passed around and could be modified by any subroutine. In object-oriented programming, this is

handled by usually allowing only the methods of a class to modify its data members. Thirdly, the

principle of inheritance permits the organization of classes into a framework of subclasses, which

inherit functionality from their associated base classes. Such a hierarchy can have several layers.

3

This concept is used extensively in the implementations presented in this study. For instance, a

base class named ProbabilityTransformation exists in the reliability analysis framework. This

class promises features such as transformation to/from the standard normal space and computation

of the corresponding Jacobian matrix, but it does not provide any specific implementations. For

this reason it is called a “virtual class.” A specific implementation of the probability transformation

task is provided by the NatafProbabilityTransformation subclass. This leads directly to the fi-

nal principle of object-oriented programming, namely polymorphism. This powerful concept further

enhances the extensibility of the software by allowing virtual methods to be created. This means

that the base classes contain virtual methods, namely methods without any implementations, that

are implemented by any number of subclasses. That is, a software framework can be built using

base classes, which make calls to virtual methods. Subclasses that actually carry out the promised

features can be implemented without making modifications to the framework itself.

Figure 1.1 illustrates the features described above. The concepts of inheritance and polymorphism

are indicated by a base class, which contains a virtual member function. The promises made by this

virtual method in the base class are implemented by two subclasses, each presumably solving the task

in a different way. The concept of composition implies that a class can contain data instances of other

classes. For instance, a software component responsible for iterating towards the design point may

contain a probability transformation, an object to compute the value of the performance function,

among others. Such aggregated classes that act as data members are referred to as “referenced”

classes.

In addition to the advantages outlined above, the object-oriented programming approach lends

itself to development of software libraries. Instead of downloading a packaged code, a user familiar

with the principles of object-oriented programming can download and make use of single software

components based on the specifications provided in the class interfaces.

The advantages of the above-described features of object-oriented programming in developing

software are presented this report. In particular, the analysis procedures are disaggregated into a

framework of interacting components. This software framework is easily extendable with new algo-

rithms to solve tasks such as evaluating performance functions, computing search direction vectors,

and selecting the step sizes. In this manner, unforeseen future developments are accommodated.

A disadvantage of the object-oriented programming approach may be a slight increase in the

computational time on tasks not associated with the finite element or reliability computations, but

rather with interaction between objects. It is believed, however, that the time and resources saved

in learning, debugging, maintaining, extending and continually using an object-oriented software

4

framework is well worth the possible sacrifice in computational time. Studies show that the increase

in computational effort with the object-oriented approach, as compared with the common procedural

approach, is of the order of 10-15% (McKenna 1997).

1.3 PREVIOUSLY DEVELOPED SOFTWARE

Previously developed software for reliability and sensitivity analysis are categorized into three groups:

(1) general purpose reliability codes, (2) finite element reliability codes and (3) finite element codes

extended to compute response sensitivities. For software in the first category the probabilistic model

is specified by algebraic expressions or user-defined algorithms involving the basic random variables.

Software in the second category enable reliability analysis of structures represented by finite element

models. In the first category are software such as CalREL (Liu et al. 1989), COMREL/SYSREL

(Reliability Consulting Programs 2003), ISPUD (IfM 2003), PROBAN (Det Norske Veritas 2003) and

UNIPASS (PredictionProbe, Inc. 2003). Software in the second category are either couplings between

separate codes, exemplified by the coupling of CalREL with the finite element code FEAP (Taylor

2003) and UNIPASS with the finite element code NASTRAN (MSC Software 2003). Alternative

finite element reliability codes include COSSAN (IfM 2003), DAKOTA (Sandia National Laboratories

2003), FERUM (Haukaas et al. 2003), NESSUS (Southwest Research Institute 2003) and STRUREL

(Reliability Consulting Programs 2003). To our knowledge, with the exception of the reliability codes

coupling with FEAP and NASTRAN, all existing finite element reliability codes are limited to linear

structural models.

Extended finite element codes which produce response sensitivities can be accomplished by em-

ploying finite difference methods or the Direct Differentiation Method. Of interest in this study is

the latter method which has unique efficiency and accuracy properties. Work by Zhang and Der

Kiureghian (1997) extended the finite element code FEAP (Taylor 2003) with such capabilities for

the J2 plasticity material. Similar work was performed by Roth and Grigoriu (2001) for the finite ele-

ment code DIANA (TNO Building and Construction Research 2003). Some codes, such as ABAQUS

(ABAQUS, Inc. 2003), employ a semi-analytical approach that combines direct differentiation with

finite difference computations to obtain response sensitivities.

The software developed in this study is unique in several aspects, including the focus on nonlinear

structural problems and the open-source, object-oriented software architecture.

5

1.4 OBJECTIVES AND SCOPE

The primary objective of this study is to develop a modern and comprehensive computational frame-

work for nonlinear finite element reliability analysis. Programming features that facilitate easy

maintenance and extensibility of the software are important goals. Particular attention is given

to obtaining accurate, consistent, and efficiently computed response sensitivities. Discontinuity in

response sensitivities, which poses a challenge in convergence of reliability analysis is to be addressed.

Documentation of the software implementations are to be provided for users and developers. The

developed state-of-the-art software is used to identify and address challenges particular to reliability

analysis of inelastic static and dynamic problems.

1.5 ORGANIZATION

Following the introduction of Chapter 1, finite element response sensitivity equations are derived in

Chapter 2. Starting from the fundamental equations of the finite element method, general top-level

sensitivity equations are first derived. Thereafter, sensitivity equations for particular parameters,

materials, and elements are developed. Important computer implementation issues related to inelas-

tic static and dynamic problems are treated. New developments include shape sensitivity equations,

sensitivity results for smoothed material models, and a proof of continuity of the displacement sen-

sitivity at points of elastic unloading. In Chapter 3 a review of the implemented reliability methods

is provided, together with developments to address challenges particular to nonlinear finite element

reliability methods. A User’s Guide for the new options for reliability and sensitivity analysis in

OpenSees is presented in Chapter 4. Chapter 5 presents numerical studies using the new software

framework. An array of examples are provided to demonstrate the various features of the software.

A comprehensive practical example involving a freeway overpass bridge (PEER’s I-880 testbed) is

included. Chapter 6 summarizes the main findings of the study and presents suggestions for further

study and development.

6

virtual int performOperation()

(data member)
“Referenced class”

(data member)
“Referenced class”

“Container class”

Composition (aggregation):

int performOperation() int performOperation()

“Derived class” “Derived class”

Inheritance and polymorphism:

“Base class”

Figure 1.1: Symbolic representation of the principal concepts of an object-oriented software
framework.

7

2 Finite Element Response Sensitivity

Analysis

Derivatives of response quantities obtained from a finite element code with respect to model pa-

rameters are desirable for a number of reasons. Such sensitivity results may be used in a variety of

applications, including (a) as indicators of parameter importance, guiding the allocation of resources

for gathering information, (b) in assessing the effect of parameter uncertainties on the response, (c) in

determining search directions in optimal design and system identification, and (d) for finding in the

first-order reliability method the so-called design point and for reliability sensitivity analysis. The

motivation in this study stems from applications to uncertainty propagation and reliability analysis.

There, gradients of limit-state functions involving finite element response quantities are needed, as

described in Chapter 2.12.2. It is essential that such gradients are computed accurately, efficiently,

and consistent with the approximations inherent in the computation of the response quantities them-

selves. The Direct Differentiation Method (DDM) (Arora and Haug 1979, Zhang and Der Kiureghian

1993, Kleiber et al. 1997, Roth and Grigoriu 2001) is ideal for this purpose, at the cost of an initial

investment of effort in deriving and implementing sensitivity algorithms into the finite element code.

The response sensitivity (or response gradient) is a measure of the change in a response quantity

due to a unit change in a system parameter. In the context of this report, the parameters may

describe material properties, cross-sectional geometry, nodal coordinates or applied loads of a finite

element model. The structural response refers to any quantity that may be used to characterize the

system behavior. Typically, these include deformations, such as displacements, rotations, and strains;

forces, such as bending moments, shear forces, axial forces or stresses; or integrated quantities, such

as dissipated energy and accumulated damage.

This chapter presents a unified framework for finite element response sensitivity analysis. First,

the top-level sensitivity equations are outlined. In subsequent sections, equations are developed

for particular parameters. These include nodal coordinates, leading to shape sensitivity equations.

9

Material models are developed and presented together with their sensitivity equations. These models

attempt to remedy the gradient discontinuity problem that arises with certain conventional material

models. The analytical models and derivations presented in this chapter are all implemented in

OpenSees and are available for download and use from the web site http://opensees.berkeley.edu.

2.1 GENERAL RESPONSE SENSITIVITY EQUATIONS BY DIRECT DIFFEREN-

TIATION

The use of response sensitivities in reliability analysis poses three requirements for the sensitivity

computations, namely, consistency, efficiency and accuracy. These are all addressed by the DDM.

Consistency with the computed response is provided by the fact that it is the discretized finite element

response equations themselves that are differentiated. Sensitivity derivations are performed after the

space- and time-discretization of the boundary value problem is carried out. The sensitivity equations

are then implemented on the computer as an extension of the finite element code so that sensitivity

results are produced along with the response itself. Efficiency is achieved because no re-run of the

finite element analysis is necessary, as would be the case in a finite difference approach. The response

sensitivity is solved from a linear equation upon convergence of the finite element response in each

step.

The accuracy of sensitivity results is a twofold issue. If the accuracy is compared to the “exact”

analytical solution of the boundary value problem, then the accuracy of the sensitivity results of an

order lower than the response itself is observed. This is analogous to the reduced accuracy of derivative

responses, such as strain and stress, compared to the accuracy of primary displacement responses.

Convergence studies performed by refining the finite element mesh confirm slower convergence of

sensitivity results, compared to that of the response itself (Gu and Conte 2003). However, this type

of accuracy is not of primary interest in application of sensitivity results in reliability analyses. Of

interest here is the accuracy of the sensitivity result relative to the exact derivative of the approximate

(discretized) finite element response. From this viewpoint, the accuracy of the DDM is of the same

precision as the response itself, as opposed to approximate finite difference methods.

A number of researchers have contributed to the field of response sensitivity analysis. Early works

include those of Frank (1978), Ray et al. (1978) and Arora and Haug (1979). While the sensitivity of

linear systems has long been a wellestablished field, developments for nonlinear structural problems

have appeared throughout the past decade. The DDM is currently recognized as the most accurate,

10

efficient and universal approach. This methodology has been advanced in a number of recent papers,

including those of Choi and Santos (1987), Tsay and Arora (1990), Liu and Der Kiureghian (1991a),

Zhang and Der Kiureghian (1993), Kleiber et al. (1997), Conte et al. (1999) and Roth and Grigoriu

(2001).

In this chapter, the fundamental finite element response equations are first reviewed. These

expressions are subsequently differentiated to obtain top-level sensitivity equations. Particular at-

tention is devoted to the evaluation of element integrals. Understanding of this topic is essential

for subsequent derivations of response sensitivities with respect to nodal coordinates. In the initial

sections of this chapter no assumption will be made regarding the parameter type with respect to

which the differentiation is performed. The generic parameter, denoted h, could represent a material

parameter, a cross-sectional geometry parameter, a nodal coordinate, or a nodal load. Furthermore,

the general case of inelastic dynamic finite element analysis is considered. Specializations to obtain

equations for elastic and/or static cases can be derived from this general case.

2.1.1 Review of Finite Element Response Equations

While the tensor notation may be visually more appealing, index notation is used here in order

to avoid confusion regarding dimensions and the order of multiplications. The index notation also

yields expressions which are closer to those implemented in the computer code. A comma is used to

indicate a partial derivative. Furthermore, unless noted otherwise, Einstein’s summation convention

over repeated indices is enforced. For clarity, the indices are distinguished as follows: i, j, k, and l

are used to denote spatial coordinate directions; the index n is used to denote quantities evaluated

at time tn; m is used to denote the iteration number; and p, q, r, and s are used as auxiliary indices

for vector elements. The latter are used, for instance, with the nodal displacement vector, where the

vector elements do not correspond to coordinate directions and can be placed in an arbitrary but

consistent order.

The Boundary Value Problem. Following Zienkiewicz and Taylor (2000), the strong form of

the boundary value problem reads:

Balance of linear momentum : σij,j + ρ bi = −ρ ¨̃ui (2.1)

Balance of angular momentum : σij = σji (2.2)

Kinematics : εij =
1

2
(ũi,j + ũj,i + ũk,iũk,j) (2.3)

11

Constitutive law : σij = σij (εij, ε̇ij) (2.4)

Surface tractions : ti = σijnj on Γt (2.5)

Prescribed displacements : ũi = ũpre
i on Γu (2.6)

In the above, σij is the stress tensor, ρ is the mass density, bi is the applied body force, typically

arising from gravity, ũi represents the displacement, where a tilde is used to distinguish the “exact”

displacement field from the nodal displacements to be defined below, εij is the strain tensor, ε̇ij is

the strain rate tensor, ti is the traction force acting on a surface with outward unit normal vector ni,

Γt is the surface on which traction forces are prescribed, and Γu is the surface where displacements

ũpre
i are prescribed.

The kinematic relation in Eq. (2.3) is stated in terms of the Green-Lagrange strain and has not

been linearized. Thus, non-linear geometrical effects are also included. It is noted that, since the

Green-Lagrange strain is employed, which is a “material tensor” existing in the original configura-

tion, the conjugate stress is the second Piola-Kirchhoff stress tensor. This is implied above, even

though σ and ε are kept as symbols. This Lagrangian formulation, referring quantities to a reference

configuration, is common in finite element methods applied to solids (Zienkiewicz and Taylor 2000).

Virtual Work Formulation. The displacement form of the principle of virtual work states

that a deformable body is in equilibrium if the sum of the external and internal works due to a

virtual displacement field satisfying kinematic restrictions on Γu is zero. The virtual work form of

the boundary value problem can be seen as a weighted, integrated form of the equation of balance

of linear momentum:

∫

Ω

σij δεij dV =

∫

Γt

ti δũi dA +

∫

Ω

ρ bi δũi dV −
∫

Ω

ρ ¨̃ui δũi dV (2.7)

In the above, the prescript δ indicates a virtual quantity. This weak form of the boundary value

problem is equivalent to the strong form if the virtual displacement field is arbitrary, though satisfying

kinematic restrictions on Γu.

Discretization by shape functions. In the displacement-based finite element method, the

displacement field ũi is discretized by the use of shape functions N multiplied by nodal displacements:

ũi = Nip up (2.8)

Here, i runs over the number of dimensions of the problem, while p runs over the number of degrees

of freedom. Commonly, the same shape functions are used for the virtual and the real displacement

fields.

12

Kinematic relations. The strain is determined from the displacement field according to the

kinematic relation in Eq. (2.3). For the discretized displacement field, this relation is written as

dεp = B̄pq duq, where the strain components are collected in a vector with the off-diagonal terms

in the strain tensor translated into engineering shear strains γij = 2 εij. The relation is written

in an incremental form since, in general, the B̄ matrix depends on the nodal displacement values.

When nonlinear geometrical effects are neglected, the relation is simply written as εp = Bo
pq uq. In

the geometrically nonlinear case it is possible to separate the “linear” and “non-linear” parts of the

B̄-matrix (Zienkiewicz and Taylor 2000). First, a relation between the strain εp and a vector θq

containing the displacement derivatives ũi,j is written:

εp =

(
Hpq +

1

2
Apq

)
θq (2.9)

The matrix Hpq contains only 0’s and 1’s, while the matrix Apq contains the elements of ũi,j and

takes care of the second-order term in Eq. (2.3). By defining a matrix ∇pq containing elements of 0

and ∂
∂xi

, where xi denotes coordinate direction i, we can write θq = ∇pi ũi. Hence, the equation to

relate strains to nodal displacements now reads:

dεp =

(
Hpq +

1

2
Apq

)
∇qk Nkr dur =

(
Bo

pr + Bnl
pr

)
dur = B̄pr dur (2.10)

where Bo
pr = Hpq ∇kq Nkr is the linear term and Bnl

pr = 1
2
Apq ∇kq Nkr introduces the non-linear

geometrical effects. The strain rate vector is obtained in the same way from the velocity vector:

dε̇p = B̂pr du̇r (2.11)

whereˆis used to indicate that the velocities instead of the displacements enter in the geometrically

nonlinear term of the “B-matrix.”

Space-discretization of the virtual work formulation. The finite element discretization in

Eq. (2.8) is applied to the virtual work equation in Eq. (2.7). The result is:

∫

Ω

σp B̄pqδuq︸ ︷︷ ︸
δεp

dV =

∫

Γt

ti Niq δuq dA +

∫

Ω

ρ bi Niq δuq dV −
∫

Ω

ρ Nip üp Niq δuq dV (2.12)

where σp is the stress tensor in vector notation. Since the virtual displacement is assumed to be

arbitrary while satisfying the kinematic constraints, δuq is an arbitrary vector. Hence, Eq. (2.12) can

be written: ∫

Ω

σp B̄pq dV

︸ ︷︷ ︸
P int

q

=

∫

Γt

ti Niq dA +

∫

Ω

ρ bi Niq dV

︸ ︷︷ ︸
P ext

q

−
∫

Ω

ρ NipNiq dV

︸ ︷︷ ︸
Mqp

üp (2.13)

13

where the internal force vector P int
q , the external force vector P ext

q , and the mass matrix Mqp have

been defined. An artificial damping term, written as Cqp u̇p, where Cqp is a user-selected damping

matrix, is usually also included so that the following equation of motion emerges:

Mqp üp + Cqp u̇p + P int
q = P ext

q (2.14)

As seen in Eq. (2.13), the internal forces P int
q implicitly depend on the displacements through the

stress vector σp, and also through B̄pq if nonlinear geometry is considered. If the constitutive law is

linear (σp = Dpqεq), then it is easily derived that the internal force term is given by P int
q = K̂qp up,

where K̂qp =
∫

Ω
B̄rq Drs B̄sp dV is the stiffness matrix. If non-linear geometrical effects are included,

it is common to distinguish between the linear part of the stiffness matrix and the displacement-

dependent part, as shown below.

Time-discretization. In the space-discretized equation of motion in Eq. (2.14), it is assumed

that the external load P ext
q and the response quantities up, u̇p, and üp, and hence P int

q , vary with

time. A time-discretization scheme is constructed by first writing the equation of motion at a specific

time instant tn+1:

Mqp üp (n+1) + Cqp u̇p (n+1) + P int
q (n+1) = P ext

q (n+1) (2.15)

Next, the nodal acceleration vector üp (n+1) and the nodal velocity vector u̇p (n+1) are expressed in

terms of up (n+1), up (n), u̇p (n) and üp (n). The following general time-stepping scheme, which includes

the well-known Newmark and Wilson schemes, is used:

üp (n+1) = a1 up (n+1) + a2 up (n) + a3 u̇p (n) + a4 üp (n) (2.16)

u̇p (n+1) = a5 up (n+1) + a6 up (n) + a7 u̇p (n) + a8 üp (n)

The coefficients ai are determined by selection of the time-stepping scheme.

Newton-Raphson solution scheme. Unless the constitutive law is linear and non-linear ge-

ometrical effects are neglected, the time- and space-discretized equation of motion in Eq. (2.15) is

a non-linear equation. The unknown variable is the nodal displacement vector up at time tn+1. A

Newton-Raphson scheme to solve for this quantity is developed by considering the residual:

Rq (n+1) = Mqp üp (n+1) + Cqp (n+1) u̇p (n+1) + P int
q (n+1) − P ext

q (n+1) = 0 (2.17)

and linearizing it by performing a Taylor series expansion:

R
(m+1)
q (n+1) = R

(m)
q (n+1) +

∂R
(m)
q (n+1)

∂up︸ ︷︷ ︸
K̃qp

(
u

(m+1)
p (n+1) − u

(m)
p (n+1)

)
+ . . . = 0 (2.18)

14

An iterative scheme, with superscript m denoting step number, to solve for the displacement at time

instant tn+1, is:

u
(m+1)
p (n+1) = u

(m)
p (n+1) − K̃−1

qp R
(m)
q (n+1) (2.19)

Various schemes may be employed to update the tangent K̃qp at each iteration. The so-called Modified

Newton-Raphson algorithm keeps the same tangent through all iterations at a time step. Convergence

is reached when, e.g., the difference between the norms of u
(m+1)
p (n+1) and u

(m)
p (n+1) is less than a specified

tolerance. The importance of updating the tangent before sensitivity computations is emphasized in

later derivations.

The needed derivative of the residual with respect to the displacement vector can be found by

differentiation of Eq. (2.17):

∂R
(m)
q (n+1)

∂up

= Mqp

∂üp (n+1)

∂up (n+1)

+ Cqp (n+1)

∂u̇p (n+1)

∂up (n+1)

+
∂P int

q (n+1)

∂up (n+1)

= Mqp a1 + Cqp (n+1) a5 +
∂P int

q (n+1)

∂u̇p (n+1)

∂u̇p (n+1)

∂up (n+1)

+
∂P int

q (n+1)

∂up (n+1)

∣∣∣∣
u̇p (n+1) fixed

= Mqp a1 + Cqp (n+1) a5 + Cvisc
qp (n+1) a5 + Kqp (n+1)

= Mqp a1 + Ĉqp (n+1) a5 + Kqp (n+1)

def
= K̃qp (n+1) (2.20)

A tilde is used to distinguish the dynamic tangent and Cvisc
qp (n+1) defines the damping tangent stemming

from viscosity. It is assumed that the external forces do not depend on the displacements. This

is a valid assumption for so-called conservative systems, which is the case considered here. This

assumption would not be valid for structures with follower loads, e.g., surface pressure loads.

Stiffness matrix. The static tangent stiffness matrix Kqp may be computed with the definition

of P int
q from Eq. (2.13) in mind: P int

q =
∫

Ω
σr B̄rq dV . When no geometrical non-linearities are

included the tangent of the internal forces reads:

Ko
qp =

∂P int
q

∂up

=

∫

Ω

∂σr

∂up

Bo
rq dV =

∫

Ω

∂σr

∂εs

∂εs

∂up

Bo
rq dV =

∫

Ω

∂σr

∂εs

Bo
sp Bo

rq dV (2.21)

It is seen that the global tangent is obtained by integration of the tangent of the stress-strain relation-

ship at the material level. In the general nonlinear case the B̄-matrix depends on the displacements

so that additional contributions to the tangent appear (Zienkiewicz and Taylor 2000):

Kqp =
∂P int

q

∂up

=

∫

Ω

∂σr

∂up

B̄rq dV +

∫

Ω

σr
∂B̄rq

∂up

dV

=

∫

Ω

B̄rq
∂σr

∂εs

B̄sp dV +

∫

Ω

σr
∂B̄rq

∂up

dV

15

=

∫

Ω

∂σr

∂εs

(
Bo

sp + Bnl
sp

) (
Bo

rq + Bnl
rq

)
dV +

∫

Ω

σr
∂B̄rq

∂up

dV

=

∫

Ω

∂σr

∂εs

Bo
sp Bo

rq dV

+

∫

Ω

∂σr

∂εs

(
Bo

sp Bnl
rq + Bnl

sp Bo
rq + Bnl

sp Bnl
rq

)
dV

+

∫

Ω

σr
∂B̄rq

∂up

dV

= Ko
qp + Knl

qp + Kσ
qp (2.22)

where use has been made of Eq. (2.10). Knl
qp and Kσ

qp are due to nonlinear geometrical effects, while

Ko
qp is the contribution from material stiffness. Analogously, the tangent damping matrix due to

material viscosity is obtained by use of Eq. (2.11):

Cvisc
qp =

∂P int
q

∂u̇p

=

∫

Ω

B̄rq
∂σr

∂ε̇s

B̂sp dV (2.23)

∂σr

∂ε̇s
= ηrs is the the material damping tangent and the fact that ∂B̄rq

∂u̇p
= 0 has been used.

Element integration. A key issue in the finite element method is the evaluation of volume

integrals to obtain the stiffness matrix, the mass matrix and the internal force vector. The domain

of the boundary value problem is divided into finite elements connected at the nodes. Integrals are

then calculated over each element and assembled:
∫

Ω

(·) dV =
⋃

el

∫

Ωel

(·) dV (2.24)

It is noted that the nodal coordinates enter the integration boundaries in Eq. (2.24). This must

be kept in mind when response sensitivities with respect to the nodal coordinates are computed.

Furthermore, the element integrals may be evaluated in several ways. For instance, a “direct stiff-

ness” approach may be used for linear truss and beam-column elements. However, in this report a

general approach is employed, with subsequent simplifications for special elements. The approach

is necessitated by two facts, namely that the element integrals may be evaluated exactly only for a

limited group of element types, and that the geometrical shape of the elements may vary through-

out the domain even though the same type of element is used. The first issue is handled by using

numerical integration, e.g., Gaussian quadrature. The second issue has motivated the use of the

so-called isoparametric formulation. The element integrals are transformed into a standardized “par-

ent domain.” The coordinates of the parent domain are denoted ξi and the shape functions Nip are

defined over this domain: Nip = Nip (ξi). The geometrical shape of the element is described similar

to Eq. (2.8):

xi = Nip x̂p (2.25)

16

where x̂p is the vector of nodal coordinates and Nip is commonly selected as the same shape functions

as the ones used to interpolate the displacement field. This motivates the term isoparametric. As

known from elementary calculus, the integrals are transformed into the parent domain through the

following relation: ∫

Ωel

f(xi) dxi =

∫

¦
f(ξj(xi)) |Jxk,ξl

| dξj (2.26)

where ¦ denotes the boundaries of the parent domain. |Jxk,ξl
| is the determinant of the Jacobian

matrix containing all information about the geometry of a particular element. For the purpose of

later sensitivity derivations, it is of interest to explain the factors entering the right-hand side of

Eq. (2.26). The Jacobian matrix is computed as:

Jxi,ξj
=

∂xi

∂ξj

=
∂Nip

∂ξj

x̂p (2.27)

The derivatives of the shape functions are easily found since they usually are simple functions of ξi.

The integrand f(ξi(xi)) in Eq. (2.26) contains terms from the B̄-matrix in Eq. (2.10). These include

the terms
∂Nip

∂xj
and ∂ũi

∂xj
, which are evaluated as follows:

∂Nip

∂xj

=
∂Nip

∂ξk

∂ξk

∂xj

(2.28)

and:
∂ũi

∂xj

=
∂Nip

∂xj

up =
∂Nip

∂ξk

∂ξk

∂xj

up (2.29)

Here,
∂Nip

∂ξk
is again easily derived and ∂ξk

∂xj
are elements of the inverse Jacobian matrix.

The numerical integration for the parent domain integral in Eq. (2.26) is written:
∫

♦
f(ξi(xi)) |Jxk,ξl

| dξi ≈
numPoints∑

m=1

ωm f(ξ
(m)
i) |J (m)

xk,ξl
| (2.30)

where ωm are the integration weights and ξ
(m)
i is the matrix containing the coordinates of the inte-

gration points.

2.1.2 Top-Level Response Sensitivity Equations

Sensitivity equations can be derived by returning to the space- and time-discretized equation of

motion in Eq. (2.15) with the time-stepping scheme in Eq. (2.16) included, namely:

Mqp

(
a1 up (n+1) + a2 up (n) + a3 u̇p (n) + a4 üp (n)

)

+ Cqp (n+1)

(
a5 up (n+1) + a6 up (n) + a7 u̇p (n) + a8 üp (n)

)

+ P int
q (n+1) = P ext

q (n+1) (2.31)

17

Differentiating throughout with respect to an arbitrary parameter h, leads to the following equation:

∂Mqp

∂h

(
a1 up (n+1) + a2 up (n) + a3 u̇p (n) + a4 üp (n)

)

+ Mqp

(
a1

∂up (n+1)

∂h
+ a2

∂up (n)

∂h
+ a3

∂u̇p (n)

∂h
+ a4

∂üp (n)

∂h

)

+
∂Cqp (n+1)

∂h

(
a5 up (n+1) + a6 up (n) + a7 u̇p (n) + a8 üp (n)

)

+ Cqp (n+1)

(
a5

∂up (n+1)

∂h
+ a6

∂up (n)

∂h
+ a7

∂u̇p (n)

∂h
+ a8

∂üp (n)

∂h

)

+
∂P int

q (n+1)

∂up (n+1)

∂up (n+1)

∂h

+
∂P int

q (n+1)

∂u̇p (n+1)

∂u̇p (n+1)

∂h

+
∂P int

q (n+1)

∂h

∣∣∣up (n+1) fixed

u̇p (n+1) fixed

=
∂P ext

q (n+1)

∂h
(2.32)

The implicit dependence of the internal force vector on the parameter h through the displacement

and velocity vectors is taken into account, together with the explicit dependence on h. Furthermore,

the term involving the derivative of the internal force vector with respect to the velocity vector at

time tn+1 can be re-written as:

∂P int
q (n+1)

∂u̇p (n+1)

u̇p (n+1)

∂h
= Cvisc

qp (n+1)

(
a5

∂up (n+1)

∂h
+ a6

∂up (n)

∂h
+ a7

∂u̇p (n)

∂h
+ a8

∂üp (n)

∂h

)
(2.33)

The damping tangent Cvisc
qp stemming from material viscosity can be evaluated in a manner similar

to the stiffness matrix in Eq. (2.22), and combined with the user-defined damping matrix Cqp. By

denoting the combined damping matrix C̃qp, using the notation vp = ∂up

∂h
, and re-arranging to have

the unknown displacement sensitivity vp (n+1) on the left-hand side, the following top-level sensitivity

equation is obtained:

K̃qp (n+1) vp (n+1) =
∂P ext

q (n+1)

∂h
−

∂P int
q (n+1)

∂h

∣∣∣up (n+1) fixed

u̇p (n+1) fixed

− ∂Mqp

∂h
üp (n+1) −

∂Cqp (n+1)

∂h
u̇p (n+1)

− Mqp

(
a2 vp (n) + a3 v̇p (n) + a4 v̈p (n)

)

− C̃qp (n+1)

(
a6 vp (n) + a7 v̇p (n) + a8 v̈p (n)

)
(2.34)

This result agrees with previous results obtained by Zhang and Der Kiureghian (1993), Kleiber et al.

(1997), Roth and Grigoriu (2001), and others. The tangent K̃qp (n+1) of this equation corresponds to

18

the one in Eq. (2.20):

K̃qp (n+1) = a1 Mqp + a5 C̃qp (n+1) +

Kqp (n+1)︷ ︸︸ ︷
∂P int

q (n+1)

∂up (n+1)

(2.35)

It is noted in passing that the simplified sensitivity equation obtained by neglecting dynamic

forces reads:

Kqp vp =
∂P ext

q

∂h
− ∂P int

q

∂h

∣∣∣
up fixed

(2.36)

Under certain assumptions to be described in Section 2.1.4, Eq. (2.34) is a linear equation in the

displacement sensitivities vp (n+1). Once vp (n+1) is determined, the time-stepping scheme in Eq. (2.16)

may be used to obtain v̇p (n+1) and v̈p (n+1).

The linearity of Eq. (2.34) is a cornerstone of the efficiency and accuracy of the DDM. An equally

important fact is that the tangent of this equation is the updated tangent of the Newton-Raphson

scheme already used to solve for the displacement response itself. Hence, only a new right-hand side

needs to be assembled to solve for the displacement sensitivity vector. It is emphasized that if a

Modified Newton-Raphson scheme is used to solve for the displacement vector, then it is critical that

the tangent be updated before the sensitivity computations are performed.

In the above derivations, no assumptions were made to exclude nonlinearities due to geometrical

effects or nonlinear constitutive laws. Neither have assumptions been made regarding the nature of

the parameter h with respect to which the differentiation is performed. Thus, h could represent a

material parameter, a cross-sectional geometry parameter, a nodal coordinate, or a load variable.

The following sections establish specific equations depending on the nature of the parameter h. It is

noted that the last two terms in the right-hand side of Eq. (2.34) must always be computed in the

general dynamic case, regardless of the nature of h. Subsequent sections will specify equations for

the computation of the remaining terms
∂P ext

q

∂h
,

∂P int
q

∂h
, ∂Mqp

∂h
and ∂Cqp

∂h
for particular parameter types.

In addition, important implementation aspects related to history variables and assembly procedures

for inelastic problems are discussed.

2.1.3 Displacement Sensitivity with Respect to Material Parameters

Material parameters enter the equation of motion, Eq. (2.14), as mass density in the mass matrix or as

constitutive parameters in the internal force vector. Additionally, the user may prescribe the artificial

damping matrix Cqp in terms of the stiffness matrix and/or the mass matrix. This is discussed in

19

further detail in the following section. In effect, material parameters enter the right-hand side of

Eq. (2.34) through
∂P int

q

∂h

∣∣∣
up fixed
u̇p fixed

, ∂Kqp

∂h
and ∂Mqp

∂h
. These quantities are derived in this section.

From Eq. (2.13) the internal force vector at time tn+1 is given by:

P int
q (n+1) =

∫

Ω

σp (n+1) B̄pq (n+1) dV (2.37)

This equation is differentiated with respect to h as a first step towards obtaining the conditional

derivative entering the right-hand side of Eq. (2.34). Again, the explicit dependence on h is taken into

account as well as the implicit dependence through the displacement and velocity vectors. Omitting

the subscript (n + 1) on all quantities for notational clarity, differentiation of Eq. (2.37) yields:

∂P int
q

∂up

∂up

∂h
+

∂P int
q

∂u̇p

∂u̇p

∂h
+

∂P int
q

∂h

∣∣∣∣
up fixed
u̇p fixed

=

∫

Ω

[
∂σp

∂h
B̄pq + σp

∂B̄pq

∂h

]
dV (2.38)

In Eq. (2.38) we recognize the global stiffness matrix
∂P int

q

∂up
= Kqp defined in Eq. (2.22) and the viscous

damping matrix
∂P int

q

∂u̇p
= Cvisc

qp . Substituting these relations into Eq. (2.38) and applying the chain

rule of differentiation to the terms ∂σp

∂h
and ∂B̄pq

∂h
leads to:

Kqp
∂up

∂h
+ Cvisc

qp

∂u̇p

∂h
+

∂P int
q

∂h

∣∣∣∣
up fixed
u̇p fixed

=

∫

Ω

[(
∂σp

∂εr

∂εr

∂h
+

∂σp

∂ε̇r

∂ε̇r

∂h
+

∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

)
B̄pq

+ σp

(
∂B̄pq

∂ur

∂ur

∂h
+

∂B̄pq

∂h

∣∣∣∣
ur fixed
u̇r fixed

)]
dV (2.39)

The chain rule of differentiation is applied to the strain derivatives:

∂εr

∂h
=

∂εr

∂us

∂us

∂h
+

∂εr

∂h

∣∣∣∣
us fixed

(2.40)

∂ε̇r

∂h
=

∂ε̇r

∂u̇s

∂u̇s

∂h
+

∂ε̇r

∂h

∣∣∣∣
u̇s fixed

(2.41)

By introducing the kinematic relations in Eqs. (2.10) and (2.11) and recognizing the material tangent

stiffness kpr = ∂σp

∂εr
and the material tangent viscosity ηpr = ∂σp

∂ε̇r
, Eq. (2.39) is rearranged to become:

Kqp
∂up

∂h
+ Cvisc

qp

∂u̇p

∂h
+

∂P int
q

∂h

∣∣∣∣
up fixed
u̇p fixed

=

∫

Ω

[
B̄pqkprB̄rs

∂us

∂h

+ B̄pqηprB̂rs
∂u̇s

∂h
+ B̄pqηpr

∂ε̇r

∂h

∣∣∣∣
u̇s fixed

+ B̄pqkpr
∂εr

∂h

∣∣∣∣
us fixed

+ B̄pq
∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

+ σp
∂B̄pq

∂ur

∂ur

∂h
+ σp

∂B̄pq

∂h

∣∣∣∣
ur fixed

]
dV (2.42)

20

By use of Eq. (2.22), the term Kqp
∂up

∂h
on the left-hand side cancels with the terms

∫
Ω

σp
∂B̄pq

∂ur

∂ur

∂h
dV

and
∫

Ω
B̄pqkprB̄rs

∂us

∂h
dV on the right-hand side. Similarly, using Eq. (2.23), the term Cvisc

qp
∂u̇p

∂h
on the

left-hand side cancels with the term
∫
Ω

B̄pqηprB̂rs
∂u̇s

∂h
dV on the right-hand side. Hence, Eq. (2.42)

simplifies to:

∂P int
q

∂h

∣∣∣∣
up fixed
u̇p fixed

=

∫

Ω

[
B̄pq

∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

+ σp
∂B̄pq

∂h

∣∣∣∣
ur fixed

+ B̄pqηpr
∂ε̇r

∂h

∣∣∣∣
u̇s fixed

+ B̄pqkpr
∂εr

∂h

∣∣∣∣
us fixed

]
dV (2.43)

Furthermore, since material parameters do not enter the kinematic relationships, we have:

∂B̄pq

∂h

∣∣∣
ur fixed

=
∂ε̇r

∂h

∣∣∣
u̇s fixed

=
∂εr

∂h

∣∣∣
us fixed

= 0 (2.44)

We are left with the following expression for the desired conditional derivative of the internal force

vector:

∂P int
q

∂h

∣∣∣∣
up fixed
u̇p fixed

=

∫

Ω

B̄pq
∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

dV (2.45)

This equation agrees with a result obtained earlier by Liu and Der Kiureghian (1991a). However,

the simplification in Eq. (2.44) is not valid when h represents a nodal coordinate. This is discussed

in Section 2.1.5.

Turning to the sensitivity of the stiffness matrix Kqp, the derivative without the assumption of

fixed displacements is to be computed. For reasons discussed in the following section, it is assumed

that only the initial linear stiffness, namely Ko
qp in Eq. (2.22), enters the right-hand side of the top-

level sensitivity equation. Then, the derivative of the stiffness matrix is found by differentiation of

the initial material stiffness ko
rs:

∂Ko
qp

∂h
=

∫

Ω

Bo
rq

∂ko
rs

∂h
Bo

sp dV (2.46)

The mass matrix is composed of lumped nodal masses and/or contributions from the integrals

of ρNiqNip over element volumes; see Eq. (2.13). In the former case, ∂Mqp

∂h
is a matrix containing 1

at the degree of freedom corresponding to the lumped mass and 0 elsewhere. In the latter case, the

following expression is obtained for the derivative of the mass matrix:

∂Mqp

∂h
=

∫

Ω

∂ρ

∂h
NipNiq dV (2.47)

where ∂ρ
∂h

= 1 if h represents the material density.

21

2.1.4 The Possibility of Non-Linear Sensitivity Equations

As mentioned in the previous section, the user may select an artificial damping model which

involves the mass matrix and the stiffness matrix. This is a common approach known as Rayleigh

damping. The concept is described in this section, followed by a discussion of the implications of

various choices for the sensitivity computations.

In OpenSees, Rayleigh damping is specified as follows (McKenna et al. 2002):

Cqp = αM Mqp + βK1 Kcurrent
qp + βK2 K initial

qp + βK3 K last committed
qp (2.48)

where Kcurrent
qp is the tangent stiffness matrix denoted Kqp (n+1) in this study, Kinitial

qp is the linear

stiffness matrix denoted Ko
qp in this study, and K last committed

qp is the tangent stiffness matrix at the

previously committed step, namely Kqp (n). Using Kcurrent
qp implies that the damping matrix is updated

during the iterations to equilibrium at each step. The coefficients αM , βK1 , βK2 and βK3 are selected

by the analyst.

The focus in this section is to illuminate the consequences for sensitivity analysis of selecting

βK1 6= 0 or βK3 6= 0. The discussion is motivated by the term ∂Cqp

∂h
appearing in the right-hand side of

Eq. (2.34). If the user selects βK1 6= 0 or βK3 6= 0 then the derivatives
∂Kqp (n+1)

∂h
or

∂Kqp (n)

∂h
will appear

in the right-hand side of Eq. (2.34). According to Eq. (2.22), these derivatives involve differentiation

of the integral
∫
Ω

B̄rq krs B̄sp dV with respect to h without the assumption of fixed displacement.

This poses a problem for sensitivity analysis due to the general dependence of both krs and B̄sp on

the displacement where material nonlinearity or nonlinear geometrical effects are present. In such

cases, the displacement sensitivity ∂up

∂h
will appear in the right-hand side of Eq. (2.34) and yield a

nonlinear equation for the unknown sensitivity.

In the situation described here, namely when the user selects βK1 6= 0 or βK3 6= 0 for problems

with nonlinear material behavior or nonlinear geometrical effects, Eq. (2.34) must be solved by an

iterative scheme. This is feasible, but it compromises the attractive efficiency and accuracy properties

of the DDM. Therefore, in this study, the choices βK1 = 0 and βK3 = 0 are recommended and an

iterative solution of Eq. (2.34) is not implemented. In OpenSees, an error message is given if βK1 or

βK3 are selected different from zero in conjunction with DDM sensitivity analysis.

One may argue that βK1 = 0 and βK3 = 0 are reasonable choices for Rayleigh damping from a

physical standpoint. There is no evidence that the damping matrix should vary in proportion to

the current stiffness in nonlinear structures. Furthermore, the theoretical attractiveness of Rayleigh

22

damping lies in the decoupled nature of the system of equations that are derived. This advantage is

no longer relevant in non-linear analysis.

2.1.5 Displacement Sensitivity with Respect to Nodal Coordinates

Obtaining response sensitivities with respect to nodal coordinates is often referred to as shape sensi-

tivity analysis. The nodal coordinates affect all element integrals, since they enter into the integral

boundaries in addition to the kinematic relations. For this reason the terms
∂P ext

q

∂h
,

∂P int
q

∂h

∣∣∣
up fixed
u̇p fixed

, ∂Mqp

∂h

and ∂Cqp

∂h
must all be given attention in this section. As discussed in the previous section, it is as-

sumed that the damping matrix is composed of the initial stiffness matrix Ko
qp and the mass matrix

according to Eq. (2.48). Hence, it is the derivatives of the stiffness matrix, the mass matrix and the

external and internal force vector that are of interest in this section.

Unlike the differentiation with respect to a material parameter, the differentiation with respect

to a nodal coordinate depends on the method used to evaluate the element integrals. The general

isoparametric formulation combined with Gauss quadrature is the method assumed in this section.

Other integration schemes for special elements are dealt with in subsequent sections. According to

Eqs. (2.26) and (2.30) the general scheme reads:

∫

Ωel

f(xi) dxi ≈
numPoints∑

m=1

ωm f(ξ
(m)
i) |J (m)

xk,ξl
| (2.49)

Hence, the desired derivative is obtained by the product rule of differentiation:

∂

∂h

(∫

Ωel

f(xi) dxi

)
=

numPoints∑
m=1

ωm

(
∂f(ξ

(m)
i)

∂h
|J (m)

xk,ξl
|+ f(ξ

(m)
i)

∂|J (m)
xk,ξl

|
∂h

)
(2.50)

Since the determinant of the Jacobian contains all the needed information about the geometry of

the element, it is
∂|Jxk,ξl

|
∂h

that takes care of the variation in integration boundaries. As a first step to

obtain this derivative we find by the chain rule of differentiation:

∂|Jxi,ξj
|

∂h
=

∂|Jxi,ξj
|

∂Jxk,ξl

∂Jxk,ξl

∂h
(2.51)

From elementary tensor calculus (Gurtin 1981), the derivative of the determinant of a matrix with

respect to the matrix itself reads:

∂|Jxi,ξj
|

∂Jxk,ξl

= |Jxi,ξj
| (Jxk,ξl

)−T (2.52)

23

where the superscript −T indicates the inverse transpose. Next, an expression for
∂Jxk,ξl

∂h
is obtained.

Using Eq. (2.27), keeping in mind that h now represents a nodal coordinate, the following expression

is obtained:
∂Jxk,ξl

∂h
=

∂

∂h

(
∂xk

∂ξl

)
=

∂Nks̃

∂ξl

(2.53)

where subscript s̃ denotes the position held by h in the vector of nodal coordinates. In conclusion,

the expression for the derivative of the determinant of the Jacobian matrix is:

∂|Jxi,ξj
|

∂h
= |Jxi,ξj

| (Jxk,ξl
)−T ∂Nks̃

∂ξl

(2.54)

Attention is now focused on the integrand f(ξ
(m)
i) of the constituents of the right-hand side of

Eq. (2.34). We start with the internal force vector, where the derivative with respect to the fixed

displacement and velocity vectors is needed. However, as in Section 2.1.3, it is recognized that the

proper approach is to first differentiate the expression for P int
q , namely:

P int
q ≈

numPoints∑
m=1

ωm σp B̄pq |J (m)
xk,ξl

| (2.55)

where it is implicitly assumed that the quantities in the right-hand side are evaluated at the integra-

tion points. By differentiation, taking into account the explicit dependence of P int
q on h as well as

the implicit dependence through the displacement and velocity responses, we obtain:

∂P int
q

∂up

∂up

∂h
+

∂P int
q

∂u̇p

∂u̇p

∂h
+

∂P int
q

∂h

∣∣∣
up fixed
u̇p fixed

≈
numPoints∑

m

ωm

(
∂σp

∂h
B̄pq |J (m)

xk,ξl
|

+ σp
∂B̄pq

∂h
|J (m)

xk,ξl
|+ σp B̄pq |J (m)

xi,ξj
|

(
J

(m)
xk,ξl

)−T ∂Nks̃

∂ξl

)
(2.56)

where use has been made of Eq. (2.54). The chain rule of differentiation is now used on the terms

∂σp

∂h
and ∂B̄pq

∂h
to differentiate through the constitutive law and the kinematic relation:

∂σp

∂h
=

∂σp

∂εr

∂εr

∂h
+

∂σp

∂ε̇r

∂ε̇r

∂h
+

∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

(2.57)

∂B̄pq

∂h
=

∂B̄pq

∂ur

∂ur

∂h
+

∂B̄pq

∂h

∣∣∣∣
ur fixed

(2.58)

The chain rule of differentiation is applied to the strain derivatives by substituting Eqs. (2.40) and

(2.41) into Eq. (2.57). Further, substituting Eqs. (2.57) and (2.58) into Eq. (2.56) we obtain:

Kqp
∂up

∂h
+ Cvisc

qp

∂u̇p

∂h
+

∂P int
q

∂h

∣∣∣
up fixed
u̇p fixed

≈
numPoints∑

m

ωm |J (m)
xk,ξl

|
(

B̄pqkprB̄rs
∂us

∂h

+ B̄pqkpr
∂εr

∂h

∣∣∣∣
us fixed

+ B̄pqηprB̂rs
∂u̇s

∂h
+ B̄pqηpr

∂ε̇r

∂h

∣∣∣∣
u̇s fixed

24

+ B̄pq
∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

+ σp
∂B̄pq

∂ur

∂ur

∂h
+ σp

∂B̄pq

∂h

∣∣∣∣
ur fixed

+ σp B̄pq

(
J

(m)
xi,ξj

)−T ∂Nis̃

∂ξj

)
(2.59)

where the definitions kpr = ∂σp

∂εr
, ηpr = ∂σp

∂ε̇r
, B̄rs = ∂εr

∂us
and B̂rs = ∂ε̇r

∂u̇s
have been used. The terms

involving B̄pqkprB̄rs
∂us

∂h
and σp

∂B̄pq

∂ur

∂ur

∂h
on the right-hand side cancel with the term Kqp

∂up

∂h
on the

left-hand side according to Eq. (2.22). Similarly, the term involving B̄pqηprB̂rs
∂u̇s

∂h
on the right-hand

side cancels with the term Cvisc
qp

∂u̇p

∂h
on the left-hand side according to Eq. (2.23). The conditional

derivative of the internal force vector is then obtained as:

∂P int
q

∂h

∣∣∣
up fixed
u̇p fixed

≈
numPoints∑

m

ωm |J (m)
xk,ξl

|
(

B̄pqkpr
∂εr

∂h

∣∣∣∣
us fixed

+ B̄pqηpr
∂ε̇r

∂h

∣∣∣∣
u̇s fixed

+ B̄pq
∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

+ σp
∂B̄pq

∂h

∣∣∣∣
ur fixed

+ σp B̄pq

(
J

(m)
xi,ξj

)−T ∂Nis̃

∂ξj

)
(2.60)

This result is consistent with, but more general than the result previously obtained by Liu and Der

Kiureghian (1991a). The terms B̄pqkpr
∂εr

∂h

∣∣∣∣
us fixed

, B̄pqηpr
∂ε̇r

∂h

∣∣∣∣
u̇s fixed

and σp
∂B̄pq

∂h

∣∣∣∣
ur fixed

are new and

account for differentiation of kinematic relations when the parameter h enters them. This is the case

when h represents a nodal coordinate.

The three new terms involve differentiation of the strain-displacement relationship. Hence, the

remaining task is to differentiate the strain-displacement matrix B̄pq and the strain rate-velocity

matrix B̂pq. This involves obtaining derivatives of the quantities in Eqs. (2.28) and (2.29) with

respect to a nodal coordinate for fixed displacement and velocity. The results read:

∂

∂h

∂Nip

∂xj

=
∂Nip

∂ξk

∂

∂h

∂ξk

∂xj

(2.61)

∂

∂h

∂ũi

∂xj

=
∂Nip

∂ξk

∂

∂h

∂ξk

∂xj

up (2.62)

The counterpart of Eq. (2.62) for the B̂qp matrix is identical but with the displacement replaced by

velocity. It is observed that the derivative of the inverse Jacobian is needed, namely ∂
∂h

∂ξk

∂xj
. In general,

the derivative of an inverse matrix [Tij]
−1 can be derived by starting with the property Tij [Tjk]

−1 = δik

where δik is the Kronecker-delta. The derivative becomes ∂
∂h

(
Tij [Tjk]

−1) =
∂Tij

∂h
[Tjk]

−1+Til
∂[Tlk]−1

∂h
=

0, from which the desired result may be extracted: ∂[Tlk]−1

∂h
= − [Tli]

−1 ∂Tij

∂h
[Tjk]

−1. The needed

derivative of the inverse Jacobian matrix may thus be computed as:

∂

∂h

[
∂xj

∂ξk

]−1

= −
[
∂xi

∂ξj

]−T
∂

∂h

∂xi

∂ξl

[
∂xl

∂ξk

]−1

(2.63)

The derivatives of the elements of the Jacobian matrix are given in Eq. (2.53).

25

The derivation of the conditional derivative of the internal force vector with respect to a nodal

coordinate is thereby complete. Eq. (2.60) has been implemented and verified in OpenSees, including

nonlinear geometrical effects but excluding viscous effects (ηpr = 0). It is noted that in the absence

of nonlinear geometrical effects, Eq. (2.60) becomes:

∂P int
q

∂h

∣∣∣
up fixed
u̇p fixed

≈
numPoints∑

m=1

ωm |J (m)
x,ξ |

(
Bo

pqkpr
∂Bo

rs

∂h
us + Bo

pqηpr
∂B̂o

rs

∂h
u̇s

+ Bo
pq

∂σp

∂h

∣∣∣∣
εr fixed
ε̇r fixed

+ σp

∂Bo
pq

∂h
+ σp Bo

pq

(
J

(m)
xi,ξj

)−T ∂Nis̃

∂ξj

)
(2.64)

For the mass matrix the integrand reads ρ NiqNir. The fact that the nodal coordinates do not

enter implies that only the determinant of the Jacobian needs to be differentiated. Making use of

Eq. (2.54), we obtain the following expression for the derivative of the mass matrix:

∂Mqr

∂h
=

numPts∑
m=1

ωm ρ NiqNir |J (m)
x,ξ |

(
J

(m)
xk,ξl

)−T ∂Nks̃

∂ξl

(2.65)

Now turning to the derivative of the stiffness matrix, only the initial stiffness is considered due

to the remarks made in Section 2.1.4. The derivative of the integrand then becomes:

∂
(
ko

rs Bo
sp Bo

rq

)

∂h
= ko

rs

(
∂Bo

sp

∂h
Bo

rq + Bo
sp

∂Bo
rq

∂h

)
(2.66)

where it is noted that ko
rs = ∂σr

∂εs

∣∣∣
ε=0

is a constant. The derivative of the Bo-matrix is computed

according to Eq. (2.61). Thus, the following expression for the derivative of the stiffness matrix is

obtained:

∂Kqp

∂h
=

numPts∑
m=1

ωm

[(
ko

rs

(∂Bo
sp

∂h
Bo

rq + Bo
sp

∂Bo
rq

∂h

))
|J (m)

xk,ξl
|

+ ko
rs Bo

sp Bo
rq |J (m)

x,ξ |
(
J

(m)
xi,ξj

)−T ∂Nis̃

∂ξj

]
(2.67)

The external load vector P ext
q may be composed of prescribed nodal loads or contributions from

distributed loads as defined in Eq. (2.13). In the former case, the derivative
∂P ext

q

∂h
when h represents a

nodal coordinate is zero. In the latter case the equations P ext, surface
q =

∫
Γt

ti Niq dA and P ext, volume
q =

∫
Ω

ρ bi Niq dV must be differentiated. Nodal coordinates do not enter the integrands but enter the

integration boundaries in the same manner as the other element integrals discussed in this section.

Hence, we obtain:

∂P ext, surface
q

∂h
=

numPts∑
m=1

ωm (ti Niq) |J (m)
x,ξ |

(
J

(m)
xk,ξl

)−T ∂Nks̃

∂ξl

(2.68)

∂P ext, volume
q

∂h
=

numPts∑
m=1

ωm (ρ bi Niq) |J (m)
x,ξ |

(
J

(m)
xk,ξl

)−T ∂Nks̃

∂ξl

(2.69)

26

We note that the Jacobian of the surface integral is of one dimension less than that of the volume

integral.

2.1.6 Displacement Sensitivity with Respect to Load Parameters

When h represents an external load parameter then the term
∂P ext

q

∂h
in the right-hand side of Eq. (2.34)

is of main concern. However, it is noted that when inelastic materials are employed then
∂P int

q

∂h

∣∣∣
up fixed
u̇p fixed

is non-zero even when h represents a nodal load. This fact is further discussed in the following Section

2.2.

It is assumed that external load is applied as distributed element loads, base motion or prescribed

nodal loads. In the first case the desired derivatives are obtained by employing Eqs. (2.13) and (2.30):

∂P ext, surface
q

∂h
=

∫

Γt

∂ti
∂h

Niq dA ≈
numPoints∑

m=1

ωm

(
∂ti
∂h

Niq

)
|J (m)

xk,ξl
| (2.70)

∂P ext, volume
q

∂h
=

∫

Ω

ρ
∂bi

∂h
Niq dV ≈

numPoints∑
m=1

ωm

(
∂bi

∂h
Niq

)
|J (m)

xk,ξl
| (2.71)

The case of sensitivities with respect to base motion parameters is discussed in Section 3.2.5.

Attention is now given to the case of prescribed nodal loads. By defining a vector hp of parameters

for which sensitivities are desired and a matrix of deterministic constants qqp the external force vector

is defined as:

P ext
q = qqp hp (2.72)

The desired derivative in the right-hand side of Eq. (2.34) reads:

∂P ext
q

∂h
= qqp

∂hp

∂h
(2.73)

where ∂hp

∂h
is a vector containing zero elements and one element with unit value. It is noted that

Eq. (2.72) includes the special case of one parameter representing one nodal load, in which case qqp

is a diagonal matrix. Additionally, Eq. (2.72) allows one parameter to represent all the nodal loads

in the structure, each multiplied by a user-defined coefficient.

27

2.1.7 Sensitivity of Derived Response Quantities

After Eq. (2.34) has been solved for the displacement sensitivity vector v(n+1), it can be used to obtain

sensitivity results for derived response quantities. Such quantities may include: (1) material strain,

(2) material stress, (3) element end rotations, (4) cross-sectional stress resultants such as bending

moment and axial force, (5) total base shear force, (6) inter-story drift and (7) accumulated response

quantities, such as accumulated plastic strain or dissipated energy. The following remarks are offered

on the computation of such response sensitivity results.

Material strain and stress: In OpenSees, these quantities are computed at the material level.

The strain sensitivity is passed to the material object in “phase 2” of the sensitivity computations

(see Section 2.2.1), namely after the displacement sensitivity vector is solved for. It is therefore

directly available to the user. The unconditional derivative of the stress at the material level can

also be easily computed once the strain sensitivity is known. The computations are similar to the

ones for the conditional stress sensitivity, simply with a few added terms to include non-zero strain

sensitivity. This is implemented for most material models with DDM capabilities in OpenSees.

Inter-story drift: Upon solving for the displacement sensitivity vector, sensitivity of quantities

such as inter-story drift is obtained in a trivial manner. Inter-story drift is defined as difference

between two nodal displacements. The corresponding sensitivity is the difference between the corre-

sponding nodal displacement sensitivity values.

Cross-sectional stress resultants: These quantities represent integration of stress over the

cross-section. In this study only fiber-discretized cross-sections are utilized. Hence, the sensitivities

of the bending moment and axial force associated with a cross-section are found by differentiating

the corresponding integrals of stress over the fiber cross-section. It is assumed that the unconditional

derivatives of the stress are available from the material (see above).

Element end rotations: These computations are simply a matter of differentiating the algo-

rithm which is used to obtain the element end rotations. This may involve obtaining the strain

sensitivities of the fibers from the material level, which again is provided through “phase 2” of the

sensitivity calculations (see Section 2.2.1).

Accumulated quantities: A typical accumulated response quantity is the accumulated plastic

strain parameter in, e.g., J2 plasticity. The sensitivity of this parameter is computed and stored as

a sensitivity history variable, see Section 2.7.4, and is therefore available to the user without further

implementation.

28

2.2 SPECIAL CONSIDERATIONS FOR INELASTIC PROBLEMS

The response of an inelastic material depends upon the previous loading history. In OpenSees, history

variables are committed upon convergence at each step and used in the subsequent material state

determinations. Response sensitivity analysis involving such materials require particular attention

to the issues discussed in the following subsections.

2.2.1 Conditional and Unconditional Sensitivities; Two Phases

A central task in sensitivity computations by the DDM is assembly of the derivative of the internal

force vector. According to Eq. (2.34), this derivative is to be computed with the assumption of fixed

current displacement and velocity. From Eqs. (2.45) and (2.60) it is clear that this translates into

assembly of stress derivatives from the material objects with the assumption of fixed current strain

and strain rate. It is essential for the implementation of the DDM that only the current deformation

be kept fixed. No assumption of fixed strains for the previous time steps should be made. For this

reason the derivatives of the history variables must be stored without any assumption of fixed strain

and strain rate. As emphasized by Zhang and Der Kiureghian (1993), this leads to a need for calling

the material objects twice during the sensitivity computations. In “phase 1,” the conditional stress

sensitivity is propagated up to the element level, where the conditional derivative of the internal force

vector is assembled. In “phase 2,” the displacement sensitivity vector for the current step is available

so that the corresponding strain sensitivities can be given to the material objects. Unconditional

sensitivity history variables can then be saved.

This procedure is implemented in OpenSees. The sensitivity equations to be presented in Sections

2.6 to 2.7 are organized so as to distinguish the computations in “phase 1” and “phase 2.”

2.2.2 Element Assembly Procedures

When assembling the conditional derivative of the internal force vector
∂P int

q (n+1)

∂h

∣∣∣up (n+1) fixed

u̇p (n+1) fixed

the ques-

tion may arise as to which elements contribute. Intuitively, one might assume that only the element

containing the parameter h need to be included. The issue in this section is to discuss why this is

29

not the case.

In general, all elements of the displacement sensitivity vector vp = ∂up

∂h
are non-zero at every

analysis step. In turn, this implies that the strain sensitivity ∂εp

∂h
at all material points is generally

non-zero. Since the sensitivity history variables must be computed and stored without the assumption

of fixed deformation, ∂εp

∂h
enters the expressions for the sensitivity history variables. Hence, after the

initial step of the finite element analysis,
∂P int

q (n+1)

∂h

∣∣∣up (n+1) fixed

u̇p (n+1) fixed

is non-zero for all inelastic elements. In

OpenSees, inelastic material objects are called to contribute to the derivative of the internal force

vector regardless of the nature of the parameter h.

2.2.3 On Using the Updated Consistent Tangent

Use of inelastic materials leads to a non-linear equation of motion, which can be solved by, e.g., a

Newton-Raphson scheme as shown in Eq. (2.19). As emphasized by Simo and Hughes (1998), it

is important that the algorithmically consistent tangent Kqp (n+1) is employed. The algorithmically

consistent tangent may be different from the analytical tangent and has the property of leading to

optimal convergence properties of the numerical solution procedure. It is derived by differentiating

the discretized equations instead of the continuous rate equations. Convergence may still occur,

though with a slower rate, even if the analytical tangent is used or if small errors are present in the

computation of the algorithmically consistent tangent.

In sensitivity analysis by the DDM this issue carries increased importance. Correct sensitivity

results depend on the use of the correct algorithmically consistent tangent. This is made clear by

the fact that no iterations are performed to solve Eq. (2.34). Hence, the accuracy of the constituent

K̃qp (n+1), which contains Kqp (n+1), is critical.

Furthermore, one must make sure that the tangent is updated upon convergence of the response

before it is employed in the sensitivity computations. In particular, this fact must be kept in mind

when employing a Modified Newton-Raphson scheme, where the tangent is not updated at every

step. In the implementations in OpenSees, an update of the algorithmically consistent tangent is

automatically performed prior to sensitivity computations.

30

2.3 ELEMENT-LEVEL SENSITIVITY EQUATIONS

In this study, DDM sensitivity equations have been derived and implemented in OpenSees for the

following structural components:

• Elements: (1) Four-node quad element, (2) displacement-based beam-column element with

fiber cross-sections, and (3) nonlinear truss element.

• Cross-sections: Fiber cross-section composed of uniaxial material models.

• Materials: (1) Uniaxial degrading Bouc-Wen material, (2) 3-D generalized plasticity material,

(3) uniaxial smoothed bi-linear steel material, and (4) uniaxial smoothed concrete material. In

addition, the DDM equations developed by Zhang and Der Kiureghian (1993) for uniaxial and

3-D J2 plasticity material models have been implemented.

The following sections describe the development of sensitivity equations for the above listed

structural components. The Bouc-Wen material model and the generalized plasticity material model

are introduced in OpenSees as part of this study. Also the hysteretic smoothing rules for the piecewise

linear steel and concrete materials are developed as part of this study.

2.3.1 Isoparametric Quad4 Element

In “phase 1” of the sensitivity computations, the task of the element is to return its contribution

to the derivative
∂P int

q

∂h

∣∣∣
up fixed

. The viscosity is assumed to be zero. For the isoparametric four-node

quad element this involves implementation of the equations provided in the previous sections for the

three types of parameters considered.

In “phase 2,” the element receives the displacement sensitivity vector from the top-level solution

algorithm and passes the strain sensitivity (or cross-section deformation sensitivity) down to the

material (or the cross-section). This is done according to the same procedure that is used to produce

the strain or cross-section deformation based on the current trial displacement vector in the ordinary

finite element analysis.

31

2.3.2 Displacement-Based Beam-Column Element

The beam-column element used in this study is of a distributed hinge type. The element is

“displacement-based” in the sense that the stiffness formulation is used as opposed to the flexi-

bility (force) approach. A user-selected number of integration points along the element is prescribed.

For the purpose of subsequent sensitivity derivations, the general framework of equilibrium and kine-

matic relations for this element is shown in Figure 2.1. The following notation is used: p and u

are, respectively, the force vector and the displacement vector associated with the degrees of freedom

in the global configuration; q and v are, respectively, the force vector and the displacement vector

associated with the degrees of freedom in the basic configuration (in the basic configuration the de-

grees of freedom are capable of describing the element deformation, but not rigid body motions); s

and e are, respectively, the section force vector and section deformation vector. For the purpose of

observing where nodal coordinates enter, the transformation matrices b, B, and a are given below

for the 2-D case:

a =




− cos(θ) − sin(θ) 0 cos(θ) sin(θ) 0

sin(θ)
L

− cos(θ)
L

1 − sin(θ)
L

cos(θ)
L

0

sin(θ)
L

− cos(θ)
L

0 − sin(θ)
L

cos(θ)
L

1


 (2.74)

B =




1
L

0 0

0 1
L

(
6 x

L
− 4

)
1
L

(
6 x

L
− 2

)


 (2.75)

b = [1 z] (2.76)

In the above equations, L is the element length, x is the longitudinal coordinate running from 0

to L, θ is the angle of the undeformed element with the horizontal axis, and z is the coordinate

perpendicular to the longitudinal coordinate.

Numerical integration over the specified number of integration points is performed along the

element, usually in a normalized parent domain characterized by the coordinate −1 ≤ ξ ≤ 1:

I =

∫ L

0

f(x)dx ≈ L
∑

i

ωi f(ξi) (2.77)

where ωi are weights corresponding to the integrations points ξi.

By combining the equilibrium equations in Figure 2.1, the internal force vector for the displacement-

based beam-column element is expressed as:

pint = aT

∫ L

0

BT

∫

A

bT σ dA dx (2.78)

32

We differentiate Eq. (2.78) with respect to h to subsequently arrive at the conditional derivative

needed in Eq. (2.34). This approach is also employed by Scott et al. (2003) for sensitivity analysis

with respect to material parameters for beam-column elements in a flexibility formulation. Neglecting

viscous effects, we obtain:

∂pint

∂u

∂u

∂h
+

∂pint

∂h

∣∣∣∣
u fixed

=
∂aT

∂h

∫ L

0

BT

∫

A

bT σ dA dx

+ aT

∫ L

0

∂BT

∂h

∫

A

bT σ dA dx + aT

∫ L

0

BT

∫

A

bT ∂σ

∂h
dA dx (2.79)

The chain rule of differentiation is then applied to the term ∂σ
∂h

so that all kinematic relations can be

introduced and differentiated:

∂σ

∂h
=

∂σ

∂ε

∂ε

∂h
+

∂σ

∂h

∣∣∣∣
ε fixed

= kmb
∂e

∂h
+

∂σ

∂h

∣∣∣∣
ε fixed

= kmb

(
∂B

∂h
v + B

∂v

∂h

)
+

∂σ

∂h

∣∣∣∣
ε fixed

= kmb

(
∂B

∂h
v + B

(
a

∂h
u + a

∂u

∂h

))
+

∂σ

∂h

∣∣∣∣
ε fixed

= kmb
∂B

∂h
v + kmbB

a

∂h
u + kmbBa

∂u

∂h
+

∂σ

∂h

∣∣∣∣
ε fixed

(2.80)

When substituted into Eq. (2.79), the third term of Eq. (2.80) cancels against the term ∂pint

∂u
∂u
∂h

. We

are then left with the following expression for the conditional derivative of the internal force vector:

∂pint

∂h

∣∣∣∣
u fixed

=
∂aT

∂h

∫ L

0

BT

∫

A

bT σ dA dx + aT

∫ L

0

∂BT

∂h

∫

A

bT σ dA dx

+ aT

∫ L

0

BT

∫

A

bT

(
kmb

∂B

∂h
v + kmbB

∂a

∂h
u

)
dA dx

+ aT

∫ L

0

BT

∫

A

bT ∂σ

∂h

∣∣∣∣
ε fixed

dA dx (2.81)

This formulation is implemented in OpenSees. If h represents a material parameter then only the

last term in the right-hand side of Eq. (2.81) is non-zero:

∂pint

∂h

∣∣∣∣
u fixed

= aT

∫ L

0

BT

∫

A

bT ∂σ

∂h

∣∣∣∣
ε fixed

dA dx (2.82)

On the other hand, if h represents a nodal coordinate then all terms in Eq. (2.81) must be computed.

Derivatives of the transformation matrices a and B with respect to a nodal coordinate are easily

derived.

In phase 2 of the sensitivity computations, the kinematic relations on the left side of Figure 2.1

are used to pass the displacement sensitivity down to the material object.

33

2.3.3 Nonlinear Truss Element

Similar to the beam-column element, for the truss element it is common to directly evaluate the

element integrals circumventing the general isoparametric formulation presented in Section 2.1. Re-

marks are therefore made here regarding the derivative of the internal force vector for this particular

element. The internal force vector is written:

Pint = σ A T (2.83)

where A is the cross-sectional area and T is a transformation vector between the basic configuration

(with one degree of freedom) and the global element configuration (with 4 or 6 degrees of freedom).

Differentiation of Eq. (2.83) with respect to h gives:

∂pint

∂u

∂u

∂h
+

∂pint

∂h

∣∣∣∣
u fixed

=
∂σ

∂h
A T + σ

∂A

∂h
T + σ A

∂T

∂h
(2.84)

Following the procedure described in the previous sections, the stress derivative is expanded by

introducing kinematic relations. In this case the strain is obtained as ε = ∆L
L

, where ∆L is found

from the global element displacement vector as: ∆L = u T. The stress derivative is therefore

expanded as follows:

∂σ

∂h
=

∂σ

∂ε

∂ε

∂h
+

∂σ

∂h

∣∣∣∣
ε fixed

= k

(
− 1

L2

∂L

∂h
uT +

1

L

∂u

∂h
T +

1

L
u

∂T

∂h

)
+

∂σ

∂h

∣∣∣∣
ε fixed

(2.85)

where k = ∂σ
∂ε

is the material tangent stiffness. Substituting Eq. (2.85) into Eq. (2.84) and cancelling

equal terms we obtain:

∂pint

∂h

∣∣∣∣
u fixed

= A T

(
−k

∆L

L2

∂L

∂h
+ k

1

L
u

∂T

∂h
+

∂σ

∂h

∣∣∣∣
ε fixed

)
+ σ

∂A

∂h
T + σ A

∂T

∂h
(2.86)

This is the general expression that is implemented in OpenSees. Certain terms cancel depending on

the nature of the parameter represented by h. In particular, if h represents a material parameter,

then Eq. (2.87) simplifies to:
∂pint

∂h

∣∣∣∣
u fixed

= A T
∂σ

∂h

∣∣∣∣
ε fixed

(2.87)

2.4 CROSS-SECTIONAL LEVEL SENSITIVITY EQUATIONS

The equations governing equilibrium and kinematics at the cross-sectional level are shown in Fig-

ure 2.1. In this work a fiber cross section is employed. In the ordinary finite element procedure the

34

cross sections are responsible for two tasks. Firstly, to assemble stiffness and internal force contri-

butions from the material fibers and pass them on to the element level. Secondly, to compute fiber

strains based on the cross-sectional deformations provided by the element.

In “phase 1” of the sensitivity computations, the fiber cross section is responsible for assembling

conditional stress derivatives from the fibers, as outlined in Eq. (2.82). In “phase 2” of the sensitivity

computations, the task of the fiber cross section is to convert the cross-section deformation sensitivity

∂e
∂h

into strain sensitivity ∂ε
∂h

at each fiber. These operations are implemented in OpenSees as part of

this study.

2.5 MATERIAL-LEVEL SENSITIVITY EQUATIONS

According to Eq. (2.45), the stress sensitivity for a fixed strain and strain rate is needed from the

material object. As discussed in Section 2.2, this quantity must be computed regardless of whether

the parameter h is part of the constitutive model of the material point in question. Equations

to obtain such results are presented in the following sections. The selection of material models is

motivated by applications in finite element reliability analysis. The material models presented here

attempt to remedy the gradient discontinuity that occurs at the transition between elastic and plastic

phases. This issue is further discussed in Section 2.10.

Four material models are considered in this study: namely, the uniaxial Bouc-Wen model, the 3-D

generalized plasticity model, a smoothed uniaxial bilinear model and a smoothed uniaxial concrete

model. In the past, sensitivity equations have been developed for the J2 plasticity model (Zhang and

Der Kiureghian 1993) and for the cap plasticity model (Vijalapura 1998, Conte 2000).

2.6 UNIAXIAL BOUC-WEN MATERIAL

The Bouc-Wen model is a smooth hysteretic material model developed by Bouc (1971) and Wen

(1976). As will be demonstrated, the smooth transition between elastic and plastic responses is an

attractive feature of this model for reliability analysis applications, since it avoids gradient disconti-

nuities. Baber and Noori (1985) have extended the original Bouc-Wen model to include a degrading

behavior. This version is considered for this implementation.

35

2.6.1 Fundamental Model Assumptions

The stress is defined as the sum of a linear part and a hysteretic part:

σ = α ko ε + (1− α) ko z (2.88)

In the above, ε is the strain, z represents the hysteretic deformation, ko is the elastic stiffness and α

is the ratio of the post-yielding to elastic stiffness. To accommodate degradation, Baber and Noori

(1985) formulated the rate of hysteretic deformation in the form:

ż =
Aε̇− {β |ε̇| z |z|n−1 + γ ε̇|z|n} ν

η
(2.89)

where β, γ, and n are parameters that control the shape of the hysteretic loop, while A, ν, and η are

variables that control the material degradation. The model may be rewritten as:

ż =
A− |z|n {β sgn(ε̇z) + γ} ν

η
ε̇ =

∂z

∂ε

∂ε

∂t
(2.90)

This leads to the following expression for the continuum tangent (not the algorithmically consistent

tangent):

k =
∂σ

∂ε
= α ko + (1− α) ko

A− |z|n {γ + β sgn(ε̇z)} ν

η
(2.91)

It is seen that the stiffness is composed of a linear term and a hysteretic contribution.

The evolution of material degradation is governed by the following choice of equations (Baber

and Noori 1985):

A = Ao − δA e

ν = 1 + δν e (2.92)

η = 1 + δη e

where e is defined by the rate equation

ė = (1− α) ko ε̇ z (2.93)

and Ao, δA, δν and δη are user-defined parameters.

36

2.6.2 Incremental Response Equations

To make the governing equations computer implementable one must first derive incremental response

equations. From the above equations the stress at time tn+1 is obtained as:

σ(n+1) = α ko ε(n+1) + (1− α) ko z(n+1) (2.94)

The rate equation for z is next discretized by a Backward Euler solution scheme. For a first-order

ordinary differential equation of the form ẏ = f(y(t)), the scheme reads y(n+1) = yn + ∆tf(y(n+1)).

Applied to Eq. (2.89) the following is obtained:

z(n+1) = z(n) + ∆t

A(n+1) − |z(n+1)|n
{

γ + β sgn

(
(ε(n+1)−ε(n))

∆t
z(n+1)

)}
ν(n+1)

η(n+1)

(
ε(n+1) − ε(n)

)

∆t
(2.95)

It is seen that ∆t cancels from the equation, yielding a nonlinear equation in z(n+1). A Newton

scheme of the form xm+1 = xm − f(xm)/f ′(xm) to solve a general nonlinear equation f(x) = 0 may

be used to solve for z(n+1) in Eq. (2.95).

The equations describing the degrading behavior are discretized as follows:

A(n+1) = Ao − δA e(n+1)

ν(n+1) = 1 + δν e(n+1) (2.96)

η(n+1) = 1 + δη e(n+1)

where e(n+1) is found by discretization of the rate equation in Eq. (2.93), again utilizing the Backward

Euler scheme:

e(n+1) = e(n) + ∆t (1− α) ko

(
ε(n+1) − ε(n)

)

∆t
z(n+1) (2.97)

where ∆t again cancels. From the above equations it is clear that z(n), ε(n), and e(n) are history

variables that must be saved at each converged step.

The procedure implemented in OpenSees to compute the stress for a given strain can now be

summarized as follows:

1. While (|zold
(n+1) − znew

(n+1)| > tol)

(a) Evaluate function f(z(n+1)):

e(n+1) = e(n) + (1− α) ko

(
ε(n+1) − ε(n)

)
z(n+1)

A(n+1) = Ao − δA e(n+1)

37

ν(n+1) = 1 + δν e(n+1)

η(n+1) = 1 + δη e(n+1)

Ψ = γ + β sgn
((

ε(n+1) − ε(n)

)
z(n+1)

)

Φ = A(n+1) − |z(n+1)|n Ψ ν(n+1)

f(z(n+1)) = z(n+1) − z(n) − Φ

η(n+1)

(
ε(n+1) − ε(n)

)

(b) Evaluate function derivatives (prime denotes derivative with respect to z(n+1)):

e′(n+1) = (1− α) ko

(
ε(n+1) − ε(n)

)

A′
(n+1) = −δA e′(n+1)

ν ′(n+1) = δν e′(n+1)

η′(n+1) = δη e′(n+1)

Φ′ = A′
(n+1) − n |z(n+1)|n−1 sgn

(
z(n+1)

)
Ψν(n+1) − |z(n+1)|nΨν ′(n+1)

f ′(z(n+1)) = 1−
Φ′ η(n+1) − Φ η′(n+1)

η2
(n+1)

(
ε(n+1) − ε(n)

)

(c) Obtain trial value in the Newton scheme:

znew
(n+1) = z(n+1) − f(z(n+1))

f ′(z(n+1))

(d) Update z(n+1) (and store the old value for the convergence check):

zold
(n+1) = z(n+1) and z(n+1) = znew

(n+1)

2. Compute stress: σ(n+1) = α ko ε(n+1) + (1− α) ko z(n+1)

In addition to the stress, the material algorithm must return the current algorithmically consistent

tangent. This tangent is used in the global scheme to compute the nonlinear structural response.

As pointed out in Section 2.2.3, the accuracy and consistency of the tangent is also crucial for

the sensitivity analysis. It may be tempting to simply discretize Eq. (2.91) to obtain the tangent.

However, this will lead to erroneous sensitivity results. We need to derive the tangent
∂σ(n+1)

∂ε(n+1)
by

utilizing the formulation by which the stress σ(n+1) is actually computed. Hence, the equations used

in the Newton scheme must be differentiated with respect to ε(n+1). It turns out that the equation

for
∂z(n+1)

∂ε(n+1)
is linear. The resulting implementable equations for the algorithmically consistent tangent

read as follows:

1. Compute material degradation parameters:

e(n+1) = e(n) + (1− α) ko

(
ε(n+1) − ε(n)

)
z(n+1)

38

A(n+1) = Ao − δA e(n+1)

ν(n+1) = 1 + δν e(n+1)

η(n+1) = 1 + δη e(n+1)

2. Compute auxiliary parameters:

Ψ = γ + β sgn
((

ε(n+1) − ε(n)

)
z(n+1)

)

Φ = A(n+1) − |z(n+1)|n Ψ ν(n+1)

b1 = (1− α) ko z(n+1)

b2 = (1− α) ko

(
ε(n+1) − ε(n)

)

b3 =

(
ε(n+1) − ε(n)

)

η(n+1)

b4 = −b3 δA b1 − b3 |z(n+1)|n Ψ δν b1

− Φ

η2
(n+1)

(
ε(n+1) − ε(n)

)
δη b1 +

Φ

η(n+1)

b5 = 1 + b3 δA b2 + b3 n |z(n+1)|n−1 sgn
(
z(n+1)

)
Ψ ν(n+1)

+ b3 |z(n+1)|n Ψ δν b2

+
Φ

η2
(n+1)

(
ε(n+1) − ε(n)

)
δη b2

3. Compute
∂z(n+1)

∂ε(n+1)
and tangent:

∂z(n+1)

∂ε(n+1)

=
b4

b5

k =
∂σ(n+1)

∂ε(n+1)

= α ko + (1− α) ko

∂z(n+1)

∂ε(n+1)

2.6.3 Conditional Stress Sensitivity Equations

According to the general procedures of sensitivity analysis by the DDM presented earlier in this study,

the material must compute
∂σ(n+1)

∂h

∣∣∣
ε(n+1) fixed

during “phase 1.” To accomplish this, the incremental

response equations are differentiated with respect to h, where h could be any of the involved material

parameters, a nodal coordinate or a load parameter.

39

First the derivative of z(n+1) is derived:

∂e(n+1)

∂h
=

∂e(n)

∂h

− ∂α

∂h
ko

(
ε(n+1) − ε(n)

)
z(n+1)

+ (1− α)
∂ko

∂h

(
ε(n+1) − ε(n)

)
z(n+1)

+ (1− α) ko

(
∂ε(n+1)

∂h
− ∂ε(n)

∂h

)
z(n+1)

+ (1− α) ko

(
ε(n+1) − ε(n)

) ∂z(n+1)

∂h
∂A(n+1)

∂h
=

∂Ao

∂h
− ∂δA

∂h
e(n+1) − δA

∂e(n+1)

∂h
∂ν(n+1)

∂h
=

∂δν

∂h
e(n+1) + δν

∂e(n+1)

∂h
∂η(n+1)

∂h
=

∂δη

∂h
e(n+1) + δη

∂e(n+1)

∂h
∂Ψ

∂h
=

∂γ

∂h
+

∂β

∂h
sgn

((
ε(n+1) − ε(n)

)
z(n+1)

)

∂Φ

∂h
=

A(n+1)

∂h

−
{
|z(n+1)|n

(
∂n

∂h
log

(|z(n+1)|
)

+ n
1

|z(n+1)|
∂z(n+1)

∂h
sgn

(
z(n+1)

))}
Ψ ν(n+1)

− |z(n+1)|n ∂Ψ

∂h
ν(n+1)

− |z(n+1)|n Ψ
∂ν(n+1)

∂h
∂z(n+1)

∂h
=

∂z(n)

∂h

+
∂Φ

∂h

1

η(n+1)

(
ε(n+1) − ε(n)

)

− Φ
1

η2
(n+1)

∂η(n+1)

∂h

(
ε(n+1) − ε(n)

)

− Φ

η(n+1)

∂ε(n)

∂h

When differentiating |z(n+1)|n, allowance is made for h to be the parameter n. For that case,

|z(n+1)|n = en log(|z(n+1)|) is used, where log() is the natural logarithm. The quantity
∂ε(n+1)

∂h
appears in

the above equations. During “phase 1” of the sensitivity computations, this quantity is set equal to

zero to obtain the desired conditional derivatives. It is included here so that the same equations can

be used in the following section when the unconditional sensitivity history variables are computed in

“phase 2.”

By combining the above equations it becomes clear that a linear equation for
∂z(n+1)

∂h
is obtained.

By rearranging, the complete procedure to compute the conditional stress sensitivity (where
∂ε(n+1)

∂h

40

should be set equal to zero to obtain the conditional derivatives) is as follows:

c1 =
∂e(n)

∂h

− ∂α

∂h
ko

(
ε(n+1) − ε(n)

)
z(n+1)

+ (1− α)
∂ko

∂h

(
ε(n+1) − ε(n)

)
z(n+1)

+ (1− α) ko

(
∂ε(n+1)

∂h
− ∂ε(n)

∂h

)
z(n+1)

c2 = (1− α) ko

(
ε(n+1) − ε(n)

)

c3 =
∂Ao

∂h
− ∂δA

∂h
e(n+1) − δA c1

c4 = −δA c2

c5 =
∂δν

∂h
e(n+1) + δν c1

c6 = δν c2

c7 =
∂δη

∂h
e(n+1) + δη c1

c8 = δη c2

A(n+1) = Ao − δA e(n+1)

ν(n+1) = 1 + δν e(n+1)

η(n+1) = 1 + δη e(n+1)

Ψ = γ + β sgn(
(
ε(n+1) − ε(n)

)
z(n+1))

∂Ψ

∂h
=

∂γ

∂h
+

∂β

∂h
sgn(

(
ε(n+1) − ε(n)

)
z(n+1))

Φ = A(n+1) − |z(n+1)|n Ψ ν(n+1)

c9 =

(
ε(n+1) − ε(n)

)

η(n+1)

c10 =
∂z(n)

∂h
+ c9 c3 − c9 |z(n+1)|n ∂n

∂h
log(|z(n+1)|) Ψ ν(n+1)

− c9 |z(n+1)|n ∂Ψ

∂h
ν(n+1) − c9 |z(n+1)|n Ψ c5

− Φ

η2
(n+1)

c7

(
ε(n+1) − ε(n)

)
+

Φ

η(n+1)

(
∂ε(n+1)

∂h
− ∂ε(n)

∂h

)

c11 = 1− c9 c4 + c9 |z(n+1)|n Ψ c6

+ c9 |z(n+1)|n n

|z(n+1)| sgn(z(n+1)) Ψ ν(n+1)

+
Φ

η2
(n+1)

c8

(
ε(n+1) − ε(n)

)

∂z(n+1)

∂h
=

c10

c11

41

∂σ(n+1)

∂h
=

∂α

∂h
ko ε(n+1)

+ α
∂ko

∂h
ε(n+1)

− ∂α

∂h
ko z(n+1)

+ (1− α)
∂ko

∂h
z(n+1)

+ (1− α) ko

∂z(n+1)

∂h

2.6.4 Unconditional Sensitivity History Variables

From the equations in Section 2.6.3 it is observed that
∂z(n)

∂h
,

∂e(n)

∂h
, and

∂ε(n)

∂h
are sensitivity history

variables. These must be stored at each step without the assumption of a fixed strain level (see

Section 2.2.1). The corresponding algorithm reads:

1.
∂ε(n+1)

∂h
is passed into the material routine from the element/section level.

2.
∂e(n+1)

∂h
=

∂e(n)

∂h
− ∂α

∂h
ko

(
ε(n+1) − ε(n)

)
z(n+1) + (1− α) ∂ko

∂h

(
ε(n+1) − ε(n)

)
z(n+1) +

(1− α) ko

(
∂ε(n+1)

∂h
− ∂ε(n)

∂h

)
z(n+1) + (1− α) ko

(
ε(n+1) − ε(n)

) ∂z(n+1)

∂h

3. c1, c2, c3, c4, c5, c6, c7, c8, A(n+1), ν(n+1), η(n+1), Ψ, ∂Ψ
∂h

, Φ, c9, c10, and c11 are computed by the

same equations as when computing the conditional sensitivities above, but now with the actual

value of
∂ε(n+1)

∂h
.

4.
∂z(n+1)

∂h
= c10

c11

2.6.5 Example Results

Sensitivity results for two examples are presented in this section. First, consider a single material

point subjected to a uniaxial stress history linearly interpolated between the following points:

Pseudo-time: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Stress: 0.0 1.0 0.0 −1.0 0.0 1.0 0.0 −1.0 0.0
(2.98)

The resulting stress-strain curve is shown in Figure 2.2 for the following selection of material param-

eters: α = 0.1, ko = 1.0, n = 1.5, γ = 0.5, β = 0.5, Ao = 1.0, δA = 0.02, δν = 0.08, and δη = 0.08.

42

Figure 2.3 presents the displacement sensitivity results in the form ∂u
∂h
·h. That is, for each parameter

the displacement sensitivity is multiplied by the value of the parameter itself. This normalizes the

sensitivity results to the same unit as that of the response. Alternative normalization procedures are

available (Roth and Grigoriu 2001), e.g., ∂u
∂h
· σh where σh is the standard deviation of h. Additional

importance measures obtained from reliability analysis will be discussed in Section 3.6. The results

in Figure 2.3 have been verified by finite difference calculations.

Several observations can be made in Figure 2.3. Firstly, the sensitivity results are continuous.

This is an important quality for the application of sensitivity results in reliability analysis. Secondly,

it is seen that the displacement is most sensitive to parameter ko for this example and the chosen

scaling. That is, ko is the parameter with the most influence on the displacement response if all

parameters are perturbed by the same relative magnitude.

The second example is the 3-D truss in Figure 5.4 on page 195, details of which are presented in

Section 5.2. By applying the load series

Time: 0.0 1.0 2.0 3.0 4.0

Load: 0.0 400 kN 0.0 −400 kN 0.0
(2.99)

at each of the top nodes, the load-displacement curve in Figure 2.4 is obtained for the x-direction

displacement of the top node versus the load factor. In Figure 2.5, the displacement sensitivities (for

x-displacement of the top node 21) are presented for a selection of parameters. The sensitivity results

are scaled by the respective standard deviations: ∂u
∂h
· σh. The standard deviations are calculated by

assuming 5% coefficient of variation for all variables, except for the nodal coordinates for which a

standard deviation of 10mm is assumed. From numerical studies in Chapter 4.6 it is found that

element 4 is the most important element for the top displacement in the x-direction. It is observed

that the top displacement is most sensitive to the parameter n of this element. It is also seen that

the x-coordinate of node 4 is also relatively important.

2.7 GENERALIZED PLASTICITY MATERIAL

The material model presented above is uniaxial. For reliability analysis purposes it is desirable

to also have available a multi-axial material model, which exhibits the same smooth features in

sensitivity. One of the most commonly used non-linear multi-axial material models is the J2 plasticity

model (Simo and Hughes 1998). However, this model has a nonsmooth transition between the elastic

43

regime and the plastic flow regime. Therefore, an alternative is sought. Casciati (1989) developed

an extension of the uniaxial Bouc-Wen model for the multi-axial case. However, in this study the

work of Lubliner et al. (1993) on the so-called generalized plasticity model is utilized. This material

model can be seen as an extension of the J2 plasticity model. Its main characteristic compared with

J2 plasticity is a smooth transition between the elastic and plastic response regimes.

2.7.1 Fundamental Model Assumptions

In classical plasticity theory the stress state is bounded by a yield function f , whose value is deter-

mined by the deviatoric stress state. f < 0 implies an elastic stress state, while plastic flow may

occur when the stress state is on the yield surface characterized by f = 0. In generalized plasticity

the stress state is allowed to exceed the yield surface. f ≥ 0 implies that inelastic effects are or are

not occurring, depending on whether loading or unloading occurs.

The generalized plasticity model is characterized by 7 parameters. The Young’s modulus E,

Poisson’s ratio ν, yield stress σy, isotropic hardening modulus Hiso, and kinematic hardening modulus

Hkin are known from classical plasticity theory. In generalized plasticity two additional parameters

β and δ are present. β is a scalar measure of the distance between the asymptotic and the original

yield surfaces. δ measures the speed by which the asymptotic yield state is reached. Furthermore,

from the algorithm described below it is seen that the deviatoric plastic strain ep
(n), the isotropic

hardening parameter ēp
(n), and the norm of the stress tensor σ(n) are history variables.

2.7.2 Incremental Response Equations

In the following the generalized plasticity model is presented in the form it has been implemented

in OpenSees. Kinematic hardening effects are neglected in this implementation. However, this effect

can be easily added according to the classical plasticity theory.

The stress and strain tensors are written in Voigt notation: σ = [σ11 σ22 σ33 σ12 σ23 σ13], ε =

[ε11 ε22 ε33 γ12 γ23 γ13], where γ denotes engineering shear strains. To handle the transformation

44

between continuum mechanics tensors and Voigt vectors, the following auxiliary matrices are defined:

m =




1

1

1

0

0

0




Io =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5




Idev =




2
3
−1

3
−1

3
0 0 0

−1
3

2
3
−1

3
0 0 0

−1
3
−1

3
2
3

0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5




Furthermore, the following alternative elastic constants are used: µ = E
2(1+ν)

, K = E
3(1−2ν)

and

λ = ν E
(1+ν)(1−2ν)

. The algorithm then proceeds as follows:

1. Compute the volumetric and deviatoric parts of the current strain tensor:

εvol
(n+1) = ε11,n+1 + ε22,n+1 + ε33,n+1

e(n+1) = ε(n+1) −m
εvol
(n+1)

3

2. Compute a trial elastic deviatoric stress vector:

strial
(n+1) = 2µ

(
e(n+1) − ep

(n)

)

3. Based on the trial elastic state, evaluate the yield function:

f trial
(n+1) = ‖strial

(n+1)‖ −
√

2

3

(
σy + Hisoē

p
(n)

)

4. Compute A2 as the difference between the current and the previous norm of the deviatoric

stress tensor:

A2 = ‖strial
(n+1)‖ − ‖s(n)‖

5. If f trial
(n+1) < 0 or A2 < 0 then the step is elastic (either because the stress state is inside the

elastic region or because the stress state moves towards the elastic region due to unloading).

Compute:

(a) Stress:

σ(n+1) = strial
(n+1) + m K εvol

(n+1)

(b) Tangent:

D(n+1) = Io 2µ + mmT λ

45

(c) History variables:

ep
(n+1) = ep

(n)

ē(n+1) = ē(n)

‖s(n+1)‖

6. Else, compute the plastic flow by solving the second-order equation (Lubliner et al. 1993):

(a) Auxiliary parameters:

A1 = f trial
(n+1)

A3 = δ − 2µ

A4 = β

(
δ +

2

3
Hiso

)

a =

(
2µ +

2

3
Hiso

)
A3

b = A4 − A1 A3 +

(
2µ +

2

3
Hiso

)
A2

c = −A1 A2

(b) The plastic flow parameter is the smallest positive root of the equation a (∆γ)2 + b (∆γ)+

c = 0:

∆γ = min
+

{−b±√b2 − 4 a c

2 a

}

(c) Yield surface normal: n =
strial

(n+1)

‖strial
(n+1)

‖

(d) Deviatoric stress: s(n+1) = strial
(n+1) − n (2µ∆γ)

(e) Stress:

σ(n+1) = s(n+1) + mK εvol
(n+1)

(f) Tangent:

B1 = ‖s(n+1)‖ − ‖s(n)‖+ δ ∆γ

B2 = A1 −
(
2µ + 2

3
Hiso

)
∆γ

B3 = A4

AGP = 2µ (B1+B2)

((2µ+ 2
3
Hiso)B1−A3 B2+B3)

CGP = 2µ ∆γ
‖σ(n+1)‖

Dvol = K mmT

Ddev = 2mu
(
1.0− CGP

)
Idev +

(
2µ

(
CGP − AGP

))
nnT

D(n+1) = Ddev + Dvol

46

(g) History variables:

ep
(n+1) = ep

(n) + n∆γ

ēp
(n+1) = ēp

(n) +
√

2
3
∆γ

‖s(n+1)‖ = ‖s(n+1)‖

2.7.3 Conditional Stress Sensitivity Equations

As stated previously, the stress derivatives for fixed strain must first be computed. For this material

model the algorithm takes the following form:

1. First the derivative of the trial elastic deviatoric stress state is computed:

∂strial
(n+1)

∂h
= 2

∂µ

∂h

(
e(n+1) − ep

(n)

)
− 2µ

∂ep
(n)

∂h

2. If the step is elastic, compute:

(a) Conditional stress derivative:
∂σ(n+1)

∂h
=

∂strial
(n+1)

∂h
+ m ∂K

∂h
εvol
(n+1)

(b) Derivative of elastic (initial) tangent:
∂D(n+1)

∂h
= Io 2∂µ

∂h
+ mmT ∂λ

∂h

3. Else plastic step, compute:

(a) Derivative of auxiliary parameters (it is assumed that the values of the parameters them-

selves are already computed and available):

∂‖strial
(n+1)‖
∂h

=
1

2‖strial
(n+1)‖

(
2 strial

11

∂strial
11

∂h
+ 2 strial

22

∂strial
22

∂h
+ 2 strial

33

∂strial
33

∂h

+ 4 strial
12

∂strial
12

∂h
+ 4 strial

23

∂strial
23

∂h
+ 4 strial

13

∂strial
13

∂h

)

∂f trial
(n+1)

∂h
=

∂‖strial
(n+1)‖
∂h

−
√

2

3

(
∂σy

∂h
+

∂Hiso

∂h
ēp
(n) + Hiso

∂ēp
(n)

∂h

)

∂A1

∂h
=

∂f trial
(n+1)

∂h

∂A2

∂h
=

∂‖strial
(n+1)‖
∂h

− ∂‖s(n)‖
∂h

∂A3

∂h
=

∂δ

∂h
− 2

∂µ

∂h

47

∂A4

∂h
=

∂β

∂h

(
δ +

2

3
Hiso

)
+ β

(
∂δ

∂h
+

2

3

∂Hiso

∂h

)

∂a

∂h
=

∂A3

∂h

(
2µ +

2

3
Hiso

)
+ A3

(
2
∂µ

∂h
+

2

3

∂Hiso

∂h

)

∂b

∂h
=

∂A4

∂h
− ∂A1

∂h
A3 − A1

∂A3

∂h
+

∂A2

∂h

(
2µ +

2

3
Hiso

)

+A2

(
2
∂µ

∂h
+

2

3

∂Hiso

∂h

)

∂c

∂h
= −∂A1

∂h
A2 − A1

∂A2

∂h

(b) The derivative of the plastic flow parameter (the plus or minus sign is selected according

to the root that governs):

∂∆γ

∂h
=

[
− ∂b

∂h
± 1

2
√

b2−4 a c

(
2 b ∂b

∂h
− 4 ∂a

∂h
c− 4 a ∂c

∂h

)]
2 a− (−b±√b2 − 4 a c

)
2 ∂a

∂h

(2 a)2

(c) Derivative of yield surface normal: ∂n
∂x

=

∂strial
(n+1)
∂x

‖strial
(n+1)

‖ −strial
(n+1)

∂‖strial
(n+1)

‖
∂x

‖strial
(n+1)

‖2

(d) Derivative of deviatoric stress tensor:
∂s(n+1)

∂h
=

∂strial
(n+1)

∂h
− ∂n

∂h
(2µ∆γ)− n

(
2∂µ

∂h
∆γ + 2µ∂∆γ

∂h

)

(e) Derivative of final stress:
∂σ(n+1)

∂h
=

∂s(n+1)

∂h
+ m ∂K

∂h
εvol
(n+1)

2.7.4 Unconditional Sensitivity History Variables

As seen in the previous section, three sensitivity history variables must be stored. These are
∂ep

(n+1)

∂h
,

∂ēp
(n+1)

∂h
and

∂‖s(n+1)‖
∂h

. In the “phase 2” call to the material object, the sensitivity of the strain tensor

is known since the displacement sensitivity vector is available. The needed unconditional sensitivity

history variables can then be stored in the following manner:

1. Compute the derivative of the deviatoric part of the current strain tensor:

∂e(n+1)

∂h
=

∂ε(n+1)

∂h
−m

1

3

∂εvol
(n+1)

∂h

where
∂εvol

(n+1)

∂h
= ∂ε11

∂h
+ ∂ε22

∂h
+ ∂ε33

∂h
.

2. Determine the derivative of the trial elastic deviatoric stress tensor:

∂strial
(n+1)

∂h
= 2

∂µ

∂h

(
e(n+1) − ep

(n)

)
+ 2µ

(
∂e(n+1)

∂h
−

∂ep
(n)

∂h

)

48

3. If the step is elastic:

(a) There is no change in the first two sensitivity history variables, while the value of the third

is set by using the result of the previous item:

1)
∂ep

(n+1)

∂h
=

∂ep
(n)

∂h

2)
∂ē(n+1)

∂h
=

∂ē(n)

∂h

3)
∂‖s(n+1)‖

∂h
=

∂‖strial
(n+1)

‖
∂h

(Computed as shown in item 3 (a) in the previous section.)

4. else plastic step:

(a) The derivatives of the plastic flow parameter ∆γ and its auxiliary parameters are computed

by the equations in item 3 in the previous section, but now including the strain sensitivity.

The same equations are also used for the derivative of the normal n to the yield surface

and the derivative of the deviatoric stress tensor s(n+1).

(b) Compute the derivative of the norm of the deviatoric stress tensor:
∂‖s(n+1)‖

∂h
= 1

‖s(n+1)‖

(
s11

∂s11

∂h
+ s22

∂s22

∂h
+ s33

∂s33

∂h
+ 2 s12

∂s12

∂h
+ 2 s23

∂s23

∂h
+ 2 s13

∂s13

∂h

)

(c) Compute and store the sensitivity history variables:

1)
∂ep

(n+1)

∂h
=

∂ep
(n)

∂h
+ ∂n

∂h
∆γ + n∂∆γ

∂h

2)
∂ēp

(n+1)

∂h
=

∂ēp
(n)

∂h
+

√
2
3

∂∆γ
∂h

3)
∂‖s(n+1)‖

∂h
=

∂‖s(n+1)‖
∂h

2.7.5 Example Results

A single four-node quad element with four integration points is used to exemplify the sensitivity

results obtained by the plain strain generalized plasticity model. It is of interest to see how this

material model compares to the classical J2 plasticity model. The element geometry is selected to be

square with L1 = L2 = 0.2 m. See Figure 2.6. The element is fixed against any displacement at the

lower left node and fixed against horizontal displacement at the upper left node. Concentrated nodal

loads are applied at the upper right node with magnitude Ph = 100.0 kN in the horizontal direction

and magnitude Pv = 25.0 kN in the vertical direction. These loads are multiplied by a load factor

interpolated linearly between the following points:

Pseudo-time: 0.0 1.0 2.0 3.0 4.0

Load factor: 0.0 1.0 0.0 −1.0 0.0
(2.100)

49

For the classical J2 plasticity model, the following material parameters are used: σy = 400.0 N/mm2,

E = 210, 000.0 N/mm2, ν = 0.2 and Hiso = 10% of E. For the generalized plasticity material the

distance between the asymptotic and the original yield surfaces is selected as β = 100.0 N/mm2. To

facilitate comparison between the two models the yield stress of the generalized plasticity model is

selected as σGP
y = σy − β = 300.0 N/mm2. The speed by which the asymptotic yield state is reached

is chosen as δ = 40.0 N/mm2. The other parameters are equal to those of the J2 plasticity material.

The resulting load-displacement curves for the horizontal displacement at the upper right node

for the two material models are shown in Figure 2.7. It is observed that the J2 plasticity material

exhibits kinks as the integration points reach yielding. The generalized plasticity material has a

smooth load-displacement curve. In this example the difference in response between the two models

is not significant. It is emphasized, however, that the difference between the two material models

may become substantial, depending on selection of material parameters and applied load series.

Figures 2.9, 2.8, 2.10 and 2.11 present the displacement sensitivity results. The results are ob-

tained by the DDM and have been verified by finite differences.

Figure 2.8 shows that the sensitivity results with respect to the yield stress are discontinuous

for the J2 plasticity model. This finding is consistent with the previous results of, e.g., Zhang and

Der Kiureghian (1993) and Kleiber et al. (1997). In contrast, Figure 2.8 shows that the generalized

plasticity model considered in this study exhibits continuous displacement sensitivity results. This

has an important bearing for the convergence behavior in the search for the design point in reliability

analysis. Figure 2.8 also reveals that, for the J2 plasticity model, only three of the four integration

points reach plasticity during the applied load series.

Figures 2.9, 2.10 and 2.11 further confirm the smoothing effects of the generalized plasticity

material model. The differences in the sensitivity results between the two material models are not

significant except for parameter σy. The discrepancy for σy is explained by the gradual versus instant

yielding for the two models, and the fact that the yield stress is different for the two models.

2.8 UNIAXIAL SMOOTHED BI-LINEAR MATERIAL

In practical applications, the uniaxial bi-linear material model is commonly used to represent the

behavior of steel. In this section we develop a smoothed version of this material model. The objective

is to avoid the gradient discontinuities that occur at the point of yielding. In this study, the transition

between the elastic and plastic response states is smoothed by a circular segment. By varying the

50

radius it is possible to investigate the effect of various levels of smoothing.

2.8.1 Fundamental Model Assumptions

The bi-linear model is characterized by two response regimes, namely elastic and plastic. In the

elastic range the tangent stiffness is equal to E. In the plastic range the stiffness is equal to bE,

where 0 < b < 1. The stress at which the transition between elastic and plastic states occurs is

determined by the yield strength σy. Unloading is assumed to be elastic.

The circular segment used to smooth the transition between elastic and plastic states is tangent to

both the elastic and plastic responses. The tangent stiffnesses coincide at the points of intersection.

See Figure 2.12. Due to the different scales of the strain and the stress, the smoothing line is

developed in a normalized x − y plane. The x − y plane is characterized by a yield strength equal

to 1.0. The corresponding yield strain is η−1 where η > 0 is a user-defined parameter. A second

user-defined parameter 0 < γ < 1 denotes the fraction of the yield strength at which the smoothing

segment intersects the elastic response. It is noted that, to obtain the correct hysteretic behavior,

the coordinates of the center of the circle must be updated during the analysis.

An example stress-strain curve using this material model as it is implemented in OpenSees is

shown in Figure 2.13.

2.8.2 Geometry of the Smoothing Circular Segment

In this section the coordinates of the center and the radius of the circular segment are derived.

Reference is made to Figure 2.14. It is noted that the elastic stiffness in the normalized plane is η

while the hardening stiffness is b η. The points A, B, C and D are distinguished. Ax and Ay denotes

the x and y coordinate of the center of the circle, respectively, and C is the point of yielding. Points

B and D mark the intersection between the circular segment and the elastic and hardening slopes,

respectively.

The length BC = CD is determined by the triangle equality:

BC√
1 + η2

=
1− γ

η
⇒ BC = CD =

1− γ

η

√
1 + η2 (2.101)

Next, the components of the line segment BD on the x and y axes are determined by similar triangle

51

equality considerations, adding contributions from lines BC and CD:

∆xBD =
1− γ

η
+

BC b η

b η
√

1 + (bη)2

∆yBD = (1− γ) +
BC b η√
1 + (bη)2

(2.102)

Equations defining line segments AB and AD are:

yAB = −x

η
+ γ +

γ

η2
(2.103)

yAD = − x

bη
+ γ + ∆yB−D +

1

bη

(
γ

η
+ ∆xB−D

)
(2.104)

The point at which lines AB and AD intersect defines the center of the circular segment. Its

coordinates are:

Ax =
∆yBD + 1

bη

(
γ
η

+ ∆xBD

)
− γ

η2(
1
bη
− 1

η

) (2.105)

Ay = −1

η
Ax + γ

(
1 +

1

η2

)
(2.106)

The equation for the circle reads (x− Ax)
2 + (y − Ay)

2 = R2, where R is the radius. Since the point(
γ
η
, γ

)
is located on the circle, R is given by:

R =

√
(γ − Ay)

2 +

(
γ

η
− Ax

)2

(2.107)

In conclusion, the equation for the circle on the tension side is:

y =

√
R2 − (x− Ax)

2 + Ay (2.108)

while on the compression side it is:

y = −
√

R2 − (x + Ax)
2 − Ay (2.109)

The transformation into the strain-stress plane is performed by the rules: x = ε
σy

E
η

and y = σ
σy

.

In implementation, the current strain is first transformed into its corresponding x value before the

above parameters of the circular segment are evaluated. The resulting y value is then multiplied by

σy to obtain the returned stress value.

52

2.8.3 Updating of Circular Segments

The coordinates of the smoothing circle determined in the previous section are applicable to the

first monotonic loading. To accommodate hysteretic behavior they must be updated at each material

state determination. Referring to the regions defined in Figure 2.14, four situations are distinguished:

1. Loading/unloading in the elastic region

2. Loading along the circle in the inelastic region in a) tension or b) compression

3. Elastic unloading in the inelastic region in a) tension or b) compression

4. Loading along the bE slope in a) tension or b) compression

When situation 1 is encountered then the circular segments in tension and compression are deter-

mined so that they align with the elastic loading/unloading line and the second slope. The amount

of shift compared to the original circular segment parameters is derived by considering Figure 2.15.

The strain at point F is simply εF = σy

E
, while the strain at point G is determined by line intersection

as:

εG =
σy

E
+

εi+1E − σi+1

E (1− b)
(2.110)

The shift of the circular segment along the strain axis is εG − εF = εi+1E−σi+1

E(1−b)
. This quantity is

transformed into the x− y plane where it is named ∆x. The corresponding shift along the y axis is

bη∆x.

When situation 2a is encountered, the parameters of the circular segment on the tension side

remain unchanged while the parameters of the circular segment on the compression side are updated

by the equations developed for situation 1, and visa versa for situation 2b.

Similarly, when situation 4a is encountered, the parameters of the circular segment on the tension

side remain unchanged, while the parameters of the circular segment on the compression side are

updated by the equations developed for situation 1, and visa versa for situation 4b.

When situation 3a is encountered, i.e., elastic unloading in tension, then the parameters of the

circular segment on the compression side are updated by the equations developed for situation 1.

The same is the case for the tension side when situation 3b, i.e., elastic unloading in compression, is

encountered.

The two remaining cases are concerned with elastic unloading in the inelastic region. For such a

case, the parameters of the circular segment need to be updated for a possible subsequent loading. If

the unloading stops in the inelastic region and is followed by loading then this must instantaneously

53

occur along a circular segment. With reference to Figure 2.16, the challenge is to determine the

coordinates of point K, which is the tangent point on the hardening slope, when point H is the

current material state. The coordinates of point K enable us to determine the coordinates of the

new center of the circle. The coordinates of point J are found to be:

Jx =
Hy + Hx

bη
− (1− b)

bη + 1
bη

(2.111)

Jy = bηJx + (1− b) (2.112)

The distance between points H and J is HJ =
√

(Hx − Jx)2 + (Hy − Jy)2 and the distance between

points J and K is JK =

√
R2 − (

HJ −R
)2

, where R is the radius of the circle. Components of

vector JK on the x and y axes are determined by triangle equality considerations:

∆xJK =
JK√

1 + (bη)2
(2.113)

∆yJK =
bη JK√
1 + (bη)2

(2.114)

The components of the vector AK on the two axes are obtained by use of triangle equalities:

∆xAK =
R√

1 +
(

1
bη

)2
(2.115)

∆yAK =
R

bη

√
1 +

(
1
bη

)2
(2.116)

In terms of the above defined quantities, the updated coordinates of the center of the circle in situation

3a read:

Ax = Jx + ∆xJK + ∆xAK (2.117)

Ay = Jy + ∆yJK + ∆yAK (2.118)

The coordinates of the center of the circle for the compression side in situation 3b are found analo-

gously.

2.8.4 Incremental Response Equations

In the implementation of the smoothed bi-linear material model in OpenSees, the initial parameters

∆xBD, ∆yBD, Ax, Ay and R of the circular segment are pre-computed in the constructor of the

material object according to the equations in the previous sections. The detailed incremental response

algorithm used in subsequent state determinations is presented in Section B.1 in Appendix A.4.

54

2.8.5 Conditional Stress Sensitivity Equations

The incremental response equations are differentiated to obtain conditional derivatives of the stress

with respect to the material parameters E, σy, b, γ or η for fixed strain. The resulting equations are

presented in detail in Section B.2 in Appendix A.4.

2.8.6 Unconditional Sensitivity History Variables

Detailed equations used to compute and store sensitivity history variables in “phase 2” of the sensitiv-

ity computations for the smoothed bi-linear material model are derived and presented in Section B.3

of Appendix A.4.

2.8.7 Example Results

The same examples as in Section 2.6.5 are used to examine the sensitivity results obtained by the

smoothed bi-linear material model. Of interest is to compare the sensitivity results obtained with

the smoothed and the non-smoothed models. For the example of a single material point being

subjected to the stress time-history in Eq. (2.98), the following material parameters are selected:

σy = 400.0 N/mm2, E = 210, 000.0 N/mm2, b = 0.05, η = 4.0 and γ = {0.25, 0.5, 0.6, 0.7, 0.8, 0.9}.
Several values of γ are analyzed to investigate the effect of different degrees of smoothing.

The stress-strain curves for all cases are shown in Figure 2.17. It is observed that the discrepancy

between the models for this example is located around the point of yielding. As expected, a value

of γ closer to 1 leads to a response estimate that is closer to the bi-linear case. Figures 2.18, 2.19

and 2.20 present the corresponding strain sensitivity results. Again it is observed that increasing γ

brings the results closer to those of the bi-linear model. Furthermore, it is seen in Figure 2.18 that

the smoothed model avoids the gradient discontinuities evident in the predictions by the bi-linear

model. In all strain sensitivity results obtained by the smoothed model, discontinuities are present

neither in loading nor in unloading phases.

Next, we consider the 3-D truss structure that was investigated in Section 2.6.5. The model

data specified in Section 5.2 are used, with the exception of varying the degree of smoothing: γ =

55

{0.25, 0.5, 0.6, 0.7, 0.8, 0.9}. The applied load series is:

Time: 0.0 1.0 2.0 3.0 4.0

Load: 0.0 430 kN 0.0 −430 kN 0.0
(2.119)

Load-displacement curves for different degrees of smoothing are shown in Figure 2.21. The response

is sampled at the top of the truss. It is observed that the discrepancy between the response of the

bi-linear model and the smoothed model with low γ value is significant. This is because the states of

many members in the structure fall in the region close to the yield point. This illuminates the need

for caution when selecting γ. If the bi-linear model is believed to best model reality, then a γ higher

than, say, 0.7 or 0.8 must be selected for cases when the member states are close to the bi-linear yield

point.

Four cases are considered to investigate the effect of smoothing on sensitivity results. Figure 2.22

shows the sensitivity of the top displacement of the truss with respect to the yield stress of the element

that first reaches yielding, namely element number 4. (Figure 5.7 on page 197 provides element and

node numbers.) The bi-linear model is seen to exhibit sensitivity discontinuities at instances when

elements enter yielding. These discontinuities are avoided with the smoothed model. As expected,

the smoothing effect increases with decreasing γ. It is interesting to observe a strong change in the

sensitivity result when γ is taken to be 0.7 or less. Figures 2.23 and 2.24 show the sensitivities of the

x and y-direction displacements at mid-height of the truss with respect to the yield stress of element

4, respectively. Figure 2.25 shows the sensitivity of the axial force of element number 4 with respect

to its yield stress. In all results it is observed that the smoothed material model avoids discontinuity

in the sensitivity results. It is also seen that low γ values lead to significant discrepancy between

sensitivity results of the bi-linear model and the smoothed model. According to this example, γ ≥ 0.8

can be recommended to avoid results that differ significantly from those obtained with the bi-linear

model.

2.9 UNIAXIAL SMOOTHED CONCRETE MATERIAL

In this section, smoothing techniques are applied to the “Concrete01” material model in OpenSees.

This is a model characterized by by a modified Kent-Park backbone curve (Scott et al. 1982), zero

stress in tension and linear unloading/reloading. The kinks in the backbone curve are smoothed by

polynomial functions. This procedure is also applied to the transitions between the linear unload-

ing/reloading and the backbone curve/zero-stress axis.

56

2.9.1 Fundamental Model Assumptions

The backbone curve of the “Concrete01” model in OpenSees is shown in Figure 2.26. It consists of a

parabola and two straight lines. Unloading and subsequent loading occur along the dotted lines. The

original model in OpenSees is described by four user-defined material parameters, namely f ′c, f ′cu,

εc0 and εcu, as shown in Figure 2.26. The parameters εmin and εend serve as history variables. They

mark the strain at the two end points of the linear unloading/reloading line currently in effect. For

convenience, a third history variable ku, namely the slope of the unloading/reloading line, is stored

in the original OpenSees implementation. The rules according to which the unloading/reloading line

is updated are provided in the following section.

In this study, the backbone curve is smoothed by a third-order polynomial between points 1 and

2 in Figure 2.26. The tangent of the polynomial at point 1 coincides with the tangent of the parabola

of the original model. The tangent of the polynomial at point 2 corresponds to the tangent of the

constant-stress line of the original model. An example of the resulting backbone curve is shown in

Figure 2.27 and detailed equations are provided in the following subsection.

For the purpose of smoothing the unloading-reloading line, two user-selected parameters 0 < γ <

0.5 and 0 < η are introduced. These are explained with reference to Figure 2.28. In this figure,

εmin2 and εend2 are the points of intersection between the original unloading/reloading line and the

smoothing curves. εmin3 and εend3 identify the end points of the smoothing curves. γ denotes the

distance from εmin to εmin2 and from εend to εend2 as a fraction of the distance between εend and

εmin. Similarly, η denotes the distance from εmin to εmin3 and from εend to εend3 as a fraction of the

distance between εend and εmin. A parabola with matching tangents at the end points is then used

to connect the points. Figure 2.29 shows an example stress-strain curve for the smoothed material

as it is implemented in OpenSees. An arbitrary sequence of loading/unloading events is applied.

A stress-strain curve for the original material model subjected to a similar load series is shown in

Figure 2.30.

2.9.2 Incremental Response Equations

The algorithmic implementation in OpenSees is now presented. First, the strain measures εend2, εend3,

εmin2 and εmin3 are computed by using the current value of the history variables:

εend2 = εend + γ (εmin − εend)

57

εend3 = εend − η (εmin − εend)

εmin2 = εmin − γ (εmin − εend)

εmin3 = εmin + η (εmin − εend)

The history variables are zero prior to the first state determination, which is described in the following.

For a given strain increment ∆ε = εi+1− εi, the stress and the algorithmically consistent tangent are

computed as follows:

1. if ∆ε < 0, i.e., applying compression to the material:

(a) if εi+1 < εmin3, i.e., loading along the backbone curve.

i. Compute the stress according to the algorithm presented in Section B.5 in Appendix A.4.

ii. Compute and save history variables according to the algorithm presented in Sec-

tion B.4 in Appendix A.4.

(b) else if εi+1 < εmin2, i.e., loading along the backbone curve or reloading on a smoothing line

between εmin2 and εmin3. The choice between these two states is determined by examining

the material state at the previous step. If the previous step is not on the backbone curve,

then reloading along the smoothed curve is the case and the stress is computed according

to Section B.6. If the previous step was unloading in the region between εmin2 and εmin3

then the smoothing line is updated so that its end points are the current stress-strain

state and the εmin3-point. If loading along the backbone curve is the case then the history

variables are updated according to Section B.4 in Appendix A.4.

(c) else if εi+1 < εend2, i.e., reloading on a straight line:

i. σi+1 = ku (εi+1 − εend)

ii. kT = ku

(d) else if εi+1 < εend3, i.e., reloading on a smoothing line between εend2 and εend3. The stress

is computed according to Section B.6 in Appendix A.4.

(e) else, reloading in the zero stress tension region:

i. σi+1 = 0

ii. kT = 0

2. else, strain increment in direction of tension:

58

(a) if previous material state involved loading along the smoothing line between εmin2 and

εmin3 then the history variables are updated according to Section B.4 in Appendix A.4

using the previous stress-strain state. This is done by first determining εmin, which is at

the point of intersection between the backbone curve and the line σi + (ε− εi) ku. Since

part of the backbone curve is a third-order polynomial, a Newton algorithm is implemented

for this purpose in OpenSees.

(b) if εi+1 < εmin2, i.e., linear elastic unloading:

i. σi+1 = ku (εi+1 − εend)

ii. kT = ku

(c) else if εi+1 < εend3, i.e., unloading along a smooth line between εend2 and εend3 according

to Section B.6 in Appendix A.4.

(d) else, unloading all the way down to zero stress:

i. σi+1 = 0

ii. kT = 0

2.9.3 Conditional Stress Sensitivity Equations

Derivation of the conditional stress sensitivity equations involves differentiation of the response al-

gorithm presented above. As seen, the stress was determined by three algorithms, depending on the

material state: The state is on the backbone curve, on the smoothed unloading/reloading line, or

on a linear elastic unloading line. The analysis in this section involves differentiation of these stress

states. The last stress state is the simplest, where the stress is computed by σi+1 = ku (εi+1 − εend)

and the conditional stress derivative simply reads: ∂σi+1

∂h
|εi+1 fixed = ∂ku

∂h
(εi+1 − εend) − ku

∂εend

∂h
. For

the other two cases the stress derivative is found by differentiation of the algorithms in Sections B.5

and B.6 in Appendix A.4. This is done in Sections B.7 and B.8 of Appendix A.4, respectively.

2.9.4 Unconditional Sensitivity History Variables

In the previous subsection ∂εmin

∂h
, ∂εend

∂h
and ∂ku

∂h
are sensitivity history variables. Section B.9 in

Appendix A.4 contains the detailed algorithm to compute these. It is noted that this algorithm is

59

not called at each step; only when ordinary history variables are committed. Additional sensitivity

history variables are present. These include the derivatives of the points of stress and strain, between

which smoothing lines are drawn, together with the derivative of the corresponding stiffness. These

are computed in Sections B.7 and B.8 in Appendix A.4.

2.10 DISCONTINUITIES IN SENSITIVITY RESULTS

In finite element reliability analysis, response sensitivities are used in the search for the so-called

design point. Most search algorithms used for this purpose assume that the response sensitivities

are continuous. Violation of this assumption may lead to difficulties in or failure to converge to

the design point. However, discontinuities in the response sensitivity occur even for commonly used

material models, unless proper measures are taken. For instance, the J2 plasticity model exhibits

discontinuities in the displacement sensitivity with respect to the yield stress along the pseudo-

time axis for static problems. This is observed, for instance, in Figure 2.8. The issue of how such

discontinuities can be remedied is the topic of this section.

A source of discontinuity in the response sensitivity is the computational “noise” in the finite

element response due to numerical approximations. This may occur, for example, when too large

a time step ∆t = tn+1 − tn is used in a dynamic analysis. However, the sensitivity discontinuities

caused by numerical noise is usually of a much smaller scale than the discontinuities stemming

from the material. The standard approach to handle the discontinuities arising from noise is proper

selection of approximation parameters and tolerances.

It is emphasized that it is discontinuities in the parameter space which are of concern; the search

for the design point is performed in the space of these parameters when they are considered as

random variables. Denoting the response sensitivity as ∇G(h), the requirement for the continuity of

the sensitivity reads:

lim
dh→0

(∇G(h± dh)−∇G(h)) = 0 (2.120)

Continuity is proven if, for any small ε > 0, we can select a finite but arbitrarily small dh such that

|∇G(h ± dh) −∇G(h)| < ε. However, it is often more convenient to study sensitivity results along

the (pseudo-) time axis. One can argue that these discontinuities are equivalent, since discontinuities

that appear along the time axis may also appear in the parameter space. This is exemplified in

Figure 2.31. A static single degree-of-freedom (DOF) system with bi-linear material behavior is

60

subjected to loading followed by unloading. It is seen that discontinuity in the displacement sensitivity

may occur along two lines; namely, along the thick line, where yielding occurs, or along the line

where unloading starts. It is observed that both these cases may be investigated by studying the

displacement sensitivity along the pseudo-time axis for a prescribed yield stress. Hence, the first part

of this section will discuss discontinuities along this axis (or the real time axis for dynamic problems).

The static case is considered first. Only the load-control analysis procedure is considered. This is

the most commonly used analysis scheme for static pushover analysis. Furthermore, the response sen-

sitivity for alternative analysis schemes may involve additional considerations. For instance, consider

the displacement-control procedure where the displacement at one (or more) control DOF’s are pre-

scribed at each pseudo-time step. The sensitivity derivations earlier in this chapter aim at computing

the sensitivity of the response by differentiating the governing equilibrium equation P int = P ext at

a single time step. It is clear that the displacement sensitivity at the control DOF is zero. The

force sensitivity, on the other hand, is not. In the analyses considered in this work the structures are

considered to deform under applied load, not applied displacement.

In the numerical studies presented earlier in this study, gradient discontinuities at points of sudden

elastic unloading were not observed. To discuss and explain this finding we consider Eq. (2.36).

Assuming that h represents a structural property (not an external load parameter), Eq. (2.36) reduces

to:
∂up (n+1)

∂h
= K−1

qp (n+1)

(
−

∂P int
q (n+1)

∂h

∣∣∣
up (n+1) fixed

)
(2.121)

The issue of continuity in the sensitivity result over the event of a sudden elastic unloading at tn is

first addressed. In such an event the displacement vector that provides equilibrium is found by using

the following linear expression for the internal force vector:

P int
q (n+1) = P int

q (n) + Ko
qp

(
up (n+1) − up (n)

)
(2.122)

where Ko
qp is the elastic stiffness matrix. Noting that Kqp (n+1) = Ko

qp, substitution of Eq. (2.122) into

Eq. (2.121) leads to:

∂up (n+1)

∂h
= − (

Ko
qp

)−1

(
∂P int

q (n)

∂h
+

∂Ko
qp

∂h

(
up (n+1) − up (n)

)−Ko
qp

∂up (n)

∂h

)
(2.123)

By rearranging, we obtain the following expression for the difference between the displacement sen-

sitivities at the two time steps:

∂up (n+1)

∂h
− ∂up (n)

∂h
= − (

Ko
qp

)−1

(
∂P int

q (n)

∂h
+

∂Ko
qp

∂h

(
up (n+1) − up (n)

)
)

(2.124)

61

To prove continuity, we must prove that the two terms on the right-hand side of Eq. (2.124) approach

zero as (tn+1 − tn) → 0. We start by studying the quantity
∂P int

q (n)

∂h
. We prove that this unconditional

derivative is zero by using the governing equilibrium equation P int
q (n) = P ext

q (n). As long as h does

not enter the external force vector, it is clear that
∂P int

q (n)

∂h
= 0. Next, by assuming continuity of the

displacement response itself, it is clear that:

lim
(tn+1−tn)→0

(
up (n+1) − up (n)

)
= 0 (2.125)

Hence, we conclude from Eq. (2.124):

lim
(tn+1−tn)→0

(
∂up (n+1)

∂h
− ∂up (n)

∂h

)
= 0 (2.126)

This proves continuity of the displacement sensitivity result at the event of sudden elastic unloading.

Even though
∂P int

q (n)

∂h
= 0, we cannot conclude that the sensitivities of individual element forces are

zero. On the contrary, considering P int
q (n) itself, we recall that the common situation is that the sum

of the forces along a degree-of-freedom is zero while the individual element forces of the adjacent

elements are not.

Now turning to the case of discontinuities due to material state changes during loading, Eq. (2.122)

is no longer generally valid. For instance, a return mapping algorithm must be employed in place

of the linear step for classical plasticity materials. Hence, we are not able to generally prove conti-

nuity of response sensitivity results. Indeed, numerical results indicate discontinuities as previously

mentioned. For specific constitutive models one may analytically predict when discontinuities will

appear. For instance, it is observed that the sensitivity results for a single DOF system with a bi-

linear material model are continuous for all parameters except the decision parameter σy. The term

“decision parameter” is used to describe parameters which to not determine the stiffness/flexibility

of a constitutive model but are used to determine the material state changes, e.g., yielding. The

only remedy to avoid such discontinuities is to make use of smooth material models, such that the

transition between material states occur in a gradual rather than sudden manner. It is easily proven,

by a finite-difference type formulation, that discontinuities in displacement sensitivity results can-

not appear when the displacement response itself does not have “kinks.” Hence, according to the

above derivations smooth material models will not exhibit gradient discontinuities. For this reason a

number of such material models have been presented in this chapter. Numerical results confirm the

conclusion made here.

In finite element analysis of dynamic problems all terms of Eq. (2.34) must be considered. The

question is whether these additional terms will introduce discontinuities. No proofs are presented

62

here. However, it is generally observed that the displacement response from a dynamic analysis is

smooth due to inertia effects. Again, based on a finite difference type formulation, one can argue that

discontinuities in the displacement sensitivity results cannot appear when the displacement response

itself does not have “kinks.”

2.11 APPLICABILITY OF THE ADJOINT METHOD

In finite element reliability applications the gradient of the performance rather than of the constituent

response quantities is needed. Strictly implementing Eq. (2.34) implies that the sensitivity of each

response quantity is computed prior to computing the gradient of the performance function itself. The

adjoint method (Arora and Haug 1979) is designed to make sensitivity computations more efficient

in such cases.

Consider the linear static case. If h represents a material parameter, the displacement sensitivity

is obtained according to Eq. (2.36) as:

vp =
∂up

∂h
=

(
Ko

qp

)−1
(

∂P ext
q

∂h
− ∂Ko

qp

∂h
up

)
(2.127)

Assuming that only displacement response quantities enter the performance function g, its gradient

reads:
∂g

∂h
=

∂g

∂up

∂up

∂h
(2.128)

Substitution of Eq. (2.127) into Eq. (2.128) leads to:

∂g

∂h
=

∂g

∂up

K−1
qp

︸ ︷︷ ︸
λq

(
∂P ext

q

∂h
− ∂Kqp

∂h
up

)
(2.129)

where λq = ∂g
∂up

K−1
qp is defined. The adjoint method for finding the gradient of g now proceeds as

follows:

1. Solve for λq from Kqp λq = ∂g
∂up

. Note that ∂g
∂up

is easily computed since g is usually a simple

algebraic expression of u.

2. For each parameter h:

(a) Assemble the right-hand side
(

∂P ext
q

∂h
− ∂Kqp

∂h
up

)

63

(b) Find the gradient of the performance function for each h by a vector-matrix product:

∂g
∂h

= λq

(
∂P ext

q

∂h
− ∂Kqp

∂h
up

)

The advantage of the adjoint method is that the back-substitution required in solving for the

constituent ∂up

∂h
of Eq. (2.128) for each h is replaced by a one-time back-substitution and a subsequent

vector-matrix products for each h.

The adjoint method avoids computing the displacement sensitivities. In analyses where these are

needed, such as inelastic or dynamic problems, no benefit is gained from use of the method. Such

problems are the focus of this study. Hence, although the adjoint method can be applied to nonlinear

and dynamic problems that are not path-dependent (Kleiber et al. 1997), the method has not been

implemented in OpenSees because of its limitations for inelastic problems.

2.12 IMPLEMENTATIONS IN OPENSEES

A characteristic of the DDM is that the core finite element procedure needs to be modified. The

present work includes such developments in OpenSees. While detailed class interfaces are provided

in Appendix 6.2, this section aims at explaining the overall principles of the framework for imple-

mentation of the response sensitivities in OpenSees.

At the top level, two new classes are implemented in OpenSees to orchestrate the sensitivity

computations. The “sensitivity algorithm” loops over all the parameters with respect to which

sensitivities are desired. The “sensitivity integrator” is responsible for assembling the right-hand

side of the sensitivity equation. At each step of an inelastic static analysis or a dynamic analysis,

the following operations are performed to obtain response sensitivities:

1. Convergence is achieved for the finite element response itself.

2. Before the finite element code commits history variables for the converged state, the sensitivity

algorithm is called to compute response sensitivities.

3. The sensitivity algorithm starts by making sure that the tangent matrix is updated (in case a

scheme other than the Newton-Raphson is used). If it is not updated, an update is initiated.

4. The sensitivity algorithm then calls the sensitivity integrator to form the part of the right-hand

side, which is independent of the sensitivity parameters. This is only relevant for dynamic

problems, see Eq. (2.34).

64

5. The sensitivity algorithm then loops over all parameters, performing the following operations:

(a) The current parameter is made “active.” This is done so that all elements, sections and

material objects know what to return. For example, a material object knows if one of

its parameters is tagged as active. As noted in Section 2.2.2, inelastic materials generally

return non-zero conditional stress derivative, even if the parameter in question does not

belong to it.

(b) The sensitivity integrator is called to form the right-hand side of the sensitivity equation.

(c) The system of equations is solved for the displacement sensitivity vector.

(d) Sensitivity results are saved for later recovery by the user or the reliability algorithm.

(e) The sensitivity integrator is called to store sensitivity history variables. The displacement

sensitivity vector is passed down and given as strain sensitivity to the inelastic material

objects.

For path-independent static problems, it is sufficient to compute response sensitivities only at the

last step of the analysis. No history variables need to be committed. In that case, the call to the

sensitivity algorithm can be made after convergence of the very last step. A special command for

this case is implemented in OpenSees.

2.12.1 Forming the Right-Hand Side for Static Problems

In the above procedure it is seen that the sensitivity integrator is responsible for forming the right-

hand side of Eq. (2.34). Two types of sensitivity integrators are implemented in OpenSees. One for

static problems and one for dynamic problems. This section describes how the static version interacts

with the finite element code to assemble the needed contributions.

Two terms in Eq. (2.34) contribute in the static case; namely,
∂P int

q (n+1)

∂h

∣∣∣up (n+1) fixed

u̇p (n+1) fixed

and
∂P ext

q (n+1)

∂h
.

The latter term is simpler. It is assembled by calling all load patterns. Each load pattern returns a

vector, which contains a list of node numbers and degrees-of-freedom represented by h. See Appendix

6.2 for detailed additions to the class interfaces of load patterns and nodal load classes.

Assembly of the derivative of the internal force vector involves a more elaborate procedure. To

understand it, it is necessary to be familiar with the interaction between the FE_Element class in

OpenSees and the integrator class (McKenna 1997). In short, FE_Element is an “umbrella” class,

65

not base class, for all finite elements in OpenSees. During the program execution each FE_Element

contains one finite element. Its usefulness may be seen in its interaction with the integrator class,

particularly in dynamic analysis (see below). In the context of static sensitivity analysis, the following

chain of calls is performed:

1. The sensitivity integrator loops over all FE_Element’s, calling the getResidual member func-

tion.

2. The FE_Element then calls the formEleResidual member function of the integrator. A pointer

to the FE_Element itself is passed in the call. The motivation for this call back to the integrator

is readily seen in dynamic analysis. The time-stepping parameters are then needed to form the

right-hand side. These parameters are encapsulated in the integrator.

3. The integrator now calls the FE_Element in question, first for initialization, then for assembly.

The assembly member function of the FE_Element being called by the sensitivity integrator is

addResistingForceSensitivity.

4. The getResistingForceSensitivity member function of the real element, e.g., a fiber beam-

column element, is now called.

5. In turn the section or material level is called to return the sensitivity contributions.

In “phase 2” of the sensitivity computations, the sensitivity integrator simply loops over all

FE_Elements which in turn call commitSensitivity member functions of the elements, sections,

and materials. It is noted that the procedure implemented in OpenSees is particularly convenient for

inelastic problems.

2.12.2 Forming the Right-Hand Side for Dynamic Problems

The implementation of DDM sensitivity options in OpenSees for dynamic problems raises a strategic

question; namely, how the dynamic sensitivity integrator should be related to the ordinary time-

stepping integrator. The static sensitivity integrator is simply a sub-class of the general

SensitivityIntegrator. This is not sufficient for the dynamic case because the dynamic sensi-

tivity integrator needs access to the time-stepping parameters of the ordinary integrator.

In the current version of OpenSees, this is solved in the following way. For each ordinary integrator

type (Newmark, HHT, etc.), one dynamic sensitivity integrator is implemented. Each such integrator

66

is a sub-class of both SensitivityIntegrator and of the ordinary integrator. For instance, a

sensitivity integrator called NewmarkSensitivityIntegrator has been implemented. It is a sub-

class of both the class SensitivityIntegrator and the class Newmark, the latter being the ordinary

integrator. Hence, the use of multiple inheritance is used to solve the problem. By making the

parameters of the Newmark class “protected,” the NewmarkSensitivityIntegrator has access to

them as intended.

All terms in the right-hand side of Eq. (2.34) must be assembled in the dynamic case. Three

key member functions are present in the dynamic sensitivity integrator: (1) formSensitivityRHS

is the top-level function being called by the sensitivity algorithm, (2) formEleResidual is called by

the FE_Element exactly as described for the static case, and (3) formNodUnbalance is called by the

DOF_Group class. The DOF_Group class is analogous to the FE_Element class, but for the nodes. The

operations in each of the three member functions are outlined in an algorithmic form in the following.

The “formSensitivityRHS” member function

1. Loop over all load patterns to assemble contributions if the parameter in question is a nodal

load. This is exactly the same as for the static case described above, and accounts for the term
∂P ext

q (n+1)

∂h
in Eq. (2.34).

2. Loop over all FE_Elements as described for the static case. The FE_Element immediately calls

the formEleResidual member function described below, passing a pointer to itself in the call.

3. Loop over all DOF_Groups to assemble contributions for the cases when nodal masses are rep-

resented by h. The DOF_Group immediately calls the formNodUnbalance member function

described below, passing a pointer to itself in the call.

The “formEleResidual” member function

1. Compute/retrieve parameters a1, a2, etc., of Eq. (2.16).

2. Obtain displacement sensitivity vectors (∂u
∂h

, ∂u̇
∂h

and ∂ü
∂h

) from the previous step.

3. Call the element to obtain the resisting force sensitivity, using the same member functions as

for the static case. This accounts for the term
∂P int

q (n+1)

∂h

∣∣∣up (n+1) fixed

u̇p (n+1) fixed

in Eq. (2.34).

4. Call the element to obtain the sensitivity of the element mass. This accounts for the element-

part of the term ∂Mqp

∂h
üp (n+1) in Eq. (2.34).

67

5. Call the element to obtain the element mass, accounting for the element-part of the term

Mqp

(
a2 vp (n+1) + a3 v̇p (n) + a4 v̈p (n)

)
.

6. Call the element to obtain the element viscosity, accounting for part of the term

C̃qp (n+1)

(
a6 vp (n) + a7 v̇p (n) + a8 v̈p (n)

)
.

7. if Rayleigh damping is present:

(a) Call the element to obtain the mass and stiffness matrices, multiply by the user-defined

coefficients from Eq. (2.48), thus accounting for the remainder of the term

C̃qp (n+1)

(
a6 vp (n) + a7 v̇p (n) + a8 v̈p (n)

)
.

The “formNodUnbalance” member function

1. Call the node to obtain the sensitivity of the element mass. This accounts for the node part of

the term ∂Mqp

∂h
üp (n+1) in Eq. (2.34).

2. Call the node to obtain nodal mass, accounting for the node-part of the term

Mqp

(
a2 vp (n+1) + a3 v̇p (n) + a4 v̈p (n)

)
.

3. if Rayleigh damping is present:

(a) Call the node to obtain the mass force, multiply by user-defined coefficients from Eq. (2.48),

thus accounting for parts of the term

C̃qp (n+1)

(
a6 vp (n) + a7 v̇p (n) + a8 v̈p (n)

)
.

4. In the dynamic case, the node is called to add the sensitivity of possible external forces represent-

ing the parameter h. This contribution has already been formed by an applyLoadSensitivity

member function. See item 1 of the formSensitivityRHS member function above.

68

Section

Basic system

Global system

Material

ke = ∂p
∂u

= aT ∂q
∂v

a

p = aTq v = au

ε = be

q =
∫ L

0
BT sdx

σ

s

v

p u

s =
∫

A
bT σdx

q

ks = ∂s
∂e

=
∫

A
bT ∂σ

∂ε
bdx e

km = ∂σ
∂ε

ε

e = Bv

Equilibrium Kinematics

ε

σ

kb = ∂q
∂v

=
∫ L

0
BT ∂s

∂e
Bdx

Figure 2.1: Framework of equilibrium and kinematics equations for displacement-based beam-column
element.

69

−5 −4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Stress−strain curve

Strain

S
tr

es
s

Figure 2.2: Load-displacement curve for one-member truss model with degrading Bouc-Wen material.

0 1 2 3 4 5 6 7 8
−25

−20

−15

−10

−5

0

5

10

15

20

25

Pseudo−time

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t s
en

si
tiv

ity

k
o

n
α
γ
β
A

o
δ

A
δν
δη

Figure 2.3: Displacement sensitivity results ∂u
∂h
· h for a material point with degrading Bouc-Wen

model.

70

−200 −150 −100 −50 0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Displacement at top of truss

Lo
ad

 fa
ct

or

Figure 2.4: Load-displacement curve for 3-D truss structure with Bouc-Wen material.

0 1 2 3 4
−0.6

−0.4

−0.2

0

0.2
α of element 4
α of element 2

0 1 2 3 4
−20

−10

0

10
k

o
 of element 4

k
o
 of element 2

0 1 2 3 4
−100

−50

0

50

D
is

pl
ac

em
en

t s
en

si
tiv

iti
es

 n
or

m
al

iz
ed

 b
y

re
sp

ec
tiv

e
st

an
da

rd
 d

ev
ia

tio
ns

n of element 4
n of element 2

0 1 2 3 4
−10

−5

0

5
A

o
 of element 4

A
o
 of element 2

0 1 2 3 4
−20

−10

0

10

Pseudo−time

Area of element 4
Area of element 2

0 1 2 3 4
−1

−0.5

0

0.5

Pseudo−time

x−coord. of node 4

Figure 2.5: Displacement sensitivity results for 3-D truss structure with Bouc-Wen material.

71

0.2 m

Ph

Pv

0.2 m

Figure 2.6: Single four-node quad element for demonstration of sensitivity results for J2 and Gener-
alized Plasticity material models.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Horizontal displacement of upper right node [mm]

Lo
ad

 fa
ct

or

J
2
 plasticity

Generalized Plasticity

Figure 2.7: Load-displacement curve for one four-node quad element with Generalized Plasticity and
J2 plasticity material.

72

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3

−2

−1

0

1

2
x 10

−3

Pseudo−time

D
is

pl
ac

em
en

t s
en

si
tiv

ity

J
2
 plasticity

Generalized Plasticity

Figure 2.8: Displacement sensitivity results ∂u
∂σy

for one Quad4 element with two plasticity models.

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6
x 10

−6

D
is

pl
ac

em
en

t s
en

si
tiv

ity

Pseudo−time

J
2
 plasticity

Generalized Plasticity

Figure 2.9: Displacement sensitivity results ∂u
∂E

for one Quad4 element with two plasticity models.

73

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−5

−4

−3

−2

−1

0

1

2

3

D
is

pl
ac

em
en

t s
en

si
tiv

ity

Pseudo−time

J
2
 plasticity

Generalized Plasticity

Figure 2.10: Displacement sensitivity results ∂u
∂ν

for one Quad4 element with two plasticity models.

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3
x 10

−5

D
is

pl
ac

em
en

t s
en

si
tiv

ity

Pseudo−time

J
2
 plasticity

Generalized Plasticity

Figure 2.11: Displacement sensitivity results ∂u
∂Hiso

for one Quad4 element with two plasticity models.

74

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
−80

−60

−40

−20

0

20

40

60

80
Smoothed Steel Material

Strain

S
tr

es
s

Original bi−linear model
Smoothed material model

Figure 2.12: Bi-linear steel material smoothed with circular segment.

−8 −6 −4 −2 0 2 4 6

x 10
−3

−80

−60

−40

−20

0

20

40

60

80

Strain

S
tr

es
s

Figure 2.13: Example of stress-strain curve produced by smoothed material for E = 30000, σy = 60,
b = 2%, γ = 60% and η = 3.0.

75

Inelastic region

γ

1.0

x

y

Elastic region

1 bη

1
η

A

B

C
D

Figure 2.14: Determination of the center of the smoothing circular segment.

σ = (ε− εi+1) E + σi+1σ = Eε

ε

σ

(εi+1, σi+1)

F

G

σ = bEε + σy (1− b)

Figure 2.15: Shift of circle center after elastic material state determination. The point (εi+1, σi+1)
denotes the current material state.

76

K

y = y1 + (x1 − x) 1
bη

y

R
y = b η x + (1− b)

H

J

x

A

Figure 2.16: Determination of the new coordinates of the center of the circle after elastic unloading
in inelastic region.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Strain

S
tr

es
s

Bi−linear
γ=0.25
γ=0.5
γ=0.6
γ=0.7
γ=0.8
γ=0.9

Figure 2.17: Stress-strain curves for bi-linear and smoothed bi-linear material.

77

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−4

Pseudo−time

S
tr

ai
n

se
ns

iti
vi

ty

Bi−linear
γ=0.25
γ=0.5
γ=0.6
γ=0.7
γ=0.8
γ=0.9

Figure 2.18: Strain sensitivity results ∂ε
∂σy

for bi-linear and smoothed bi-linear material.

0 1 2 3 4 5 6 7 8
−8

−6

−4

−2

0

2

4

6
x 10

−8

Pseudo−time

S
tr

ai
n

se
ns

iti
vi

ty

Bi−linear
γ=0.25
γ=0.5
γ=0.6
γ=0.7
γ=0.8
γ=0.9

Figure 2.19: Strain sensitivity results ∂ε
∂E

for bi-linear and smoothed bi-linear material.

78

0 1 2 3 4 5 6 7 8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Pseudo−time

S
tr

ai
n

se
ns

iti
vi

ty

Bi−linear
γ=0.25
γ=0.5
γ=0.6
γ=0.7
γ=0.8
γ=0.9

Figure 2.20: Strain sensitivity results ∂ε
∂b

for bi-linear and smoothed bi-linear material.

−300 −200 −100 0 100 200 300 400 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Displacement [mm]

Lo
ad

 fa
ct

or

Bi−linear
γ=0.9
γ=0.8
γ=0.7
γ=0.6
γ=0.5
γ=0.25

Figure 2.21: Load-displacement curve for 3-D truss model with bi-linear and smoothed bi-linear
material.

79

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Pseudo−time

S
en

si
tiv

ity
 o

f x
−d

is
pl

. o
f n

od
e

21
 w

rt
.

σ y o
f e

le
m

en
t 4

Bi−linear
γ=0.9
γ=0.8
γ=0.7
γ=0.6
γ=0.5
γ=0.25

Figure 2.22: Sensitivity results of x-displacement at node 21 for 3-D truss with bi-linear and smoothed
bi-linear material models.

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3

−2

−1

0

1

2

3

4

Pseudo−time

S
en

si
tiv

ity
 o

f x
−d

is
pl

. o
f n

od
e

12
 w

rt
.

σ y o
f e

le
m

en
t 4

Bi−linear
γ=0.9
γ=0.8
γ=0.7
γ=0.6
γ=0.5
γ=0.25

Figure 2.23: Sensitivity results of y-displacement at node 21 for 3-D truss with bi-linear and smoothed
bi-linear material models.

80

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

Pseudo−time

S
en

si
tiv

ity
 o

f y
−d

is
pl

. o
f n

od
e

21
 w

rt
.

σ y o
f e

le
m

en
t 4

Bi−linear
γ=0.9
γ=0.8
γ=0.7
γ=0.6
γ=0.5
γ=0.25

Figure 2.24: Sensitivity results for 3-D truss with bi-linear and smoothed bi-linear material models.

0 0.5 1 1.5 2 2.5 3 3.5 4
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

12000

Pseudo−time

S
en

si
tiv

ity
 o

f a
xi

al
 fo

rc
e

of
 e

l.
4

w
rt

. σ
y o

f e
le

m
en

t 4

Bi−linear
γ=0.9
γ=0.8
γ=0.7
γ=0.6
γ=0.5
γ=0.25

Figure 2.25: Sensitivity results of axial force in element 4 for 3-D truss with bi-linear and smoothed
bi-linear material models.

81

εc0

f ′cu

f ′c

ε

σ

εmin

εend εcu

1

2

Figure 2.26: The original “Concrete01” material model in OpenSees.

−20 −15 −10 −5 0 5

x 10
−3

−6

−5

−4

−3

−2

−1

0

1
Smoothed Concrete Material

Strain

S
tr

es
s

Original material model
Smoothed material model

Figure 2.27: Smoothed backbone curve of Concrete01.

82

ε

σ

εmin

εend

εmin2εmin3

εend3εend2

η (εmin − εend)γ (εmin − εend)

η (εmin − εend) γ (εmin − εend)

Figure 2.28: Smoothing of the unloading-reloading curve of the Concrete01 material model in
OpenSees.

−0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01

−5

−4

−3

−2

−1

0

Strain

S
tr

es
s

Figure 2.29: Example of stress-strain curve produced by smoothed concrete material model. In this
example f ′c = −5.0, f ′cu = −2.0, εc0 = −0.005, εcu = −0.01, γ = 0.3 and η = 0.3.

83

−0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Strain

S
tr

es
s

Figure 2.30: Example of stress-strain curve produced by original “Concrete01” material in OpenSees.
Parameter values equal to those in Figure 2.29.

response

Yielding

Pseudo-time

Loading Unloading

Yield stress (h)

Displacement

Figure 2.31: Conceptual displacement response for SDOF system with bi-linear material.

84

3 Finite Element Reliability Analysis

Structural reliability methods are employed in performance-based engineering to obtain probability

estimates for various performance events. Structural performance is usually specified in terms of

structural response quantities, such as strains and displacements, stresses and forces, and cumulative

response measures, such as cumulative plastic strain or cumulative dissipated energy. Deterministic

numerical prediction of structural response is commonly accomplished by use of the finite element

method (Zienkiewicz and Taylor 2000, Hughes 1987, Bathe 1996, Cook et al. 1989). The term “finite

element reliability methods” is used to describe the merging of advanced reliability methods, such

as first- and second-order reliability methods (FORM and SORM) and importance sampling, with

finite element methods to obtain probability estimates for predefined performance criteria. These

methods are generally applicable to both linear and nonlinear structural problems.

The purpose of this chapter is twofold. First, to present the methodology that has been imple-

mented in OpenSees and, second, to use the software to identify and address challenges in nonlinear

finite element reliability analysis.

3.1 RELIABILITY ANALYSIS IN PERFORMANCE-BASED EARTHQUAKE EN-

GINEERING

The level of safety in structural design is prescribed by the society or the owner of the structure. In

the past the concept of Allowable Stress was in use before the introduction of the load-and-resistance

factor-design (LRFD) method. In both approaches, safety or load and resistance factors prescribed

by the design code are used to account for uncertainties in structural properties, geometrical imper-

fections, and environmental demands. More recently, the concept of the performance-based design

approach has emerged. This development is motivated by the availability of computational tools to

simulate, in close approximation, real structural performance. Instead of satisfying nontransparent

code regulations, the society or client can now require satisfaction of realistic performance criteria

85

for given hazards at prescribed probabilities. Such performance levels may range from demanding

immediate occupancy to retainment of structural integrity. It is noted that most failures to meet

performance criteria for reasonably designed structures are rare events. That is, the failure event is

often in the tail of the probability distribution of the response. This determines the kind of reliability

method that can be used. Furthermore, nonlinear structural effects must be accounted for in most

failure modes. These facts motivate the developments in this chapter.

In the scheme used by the Pacific Earthquake Engineering Research (PEER) Center, performance

is defined in terms of so-called Decision Variables (DV). In general, these are functions of Damage

Measures (DM), which are functions of Engineering Demand Parameters (EDP), which again are

functions of Intensity Measures (IM). As an illustration, the peak ground acceleration is an IM , the

strain in the unconfined concrete of a column is an EDP , the amount of concrete spalling is a DM

and the cost of repair is a DV . Eq. (3.1) illustrates the inter-dependence between these quantities:

IM −→ EDP −→ DM −→ DV (3.1)

Each arrow represents a model. For example, a simulation model provides the EDP for a given IM ,

and a damage model provides the DM for a given EDP . Independence is assumed for quantities

that are not directly linked by a model. For instance, given the EDP , the DM are assumed to be

independent of the IM .

IM , EDP , DM and DV must be considered as random variables. Uncertainties are introduced in

each model. It is of interest to estimate the probability of events defined in terms of the DV . Several

methods are available for this purpose. One approach addresses the scalar case and employs the

theorem of total probability for this purpose. The total probability of an event A over a continuous

random variable X is given by:

P[A] =

∫ ∞

−∞
P[A |X = x] f(x) dx (3.2)

where P[A |X = x] is the conditional probability of A given the outcome X = x, and f(x) is the

probability density function (PDF) of X. Eq. (3.2) is applied to the random variables in Eq. (3.1)

by first assuming that the PDF f(im) of the intensity measure is available. The cumulative distri-

bution function (CDF) F (edp) of the engineering demand parameter is obtained by the rule of total

probability:

F (edp) = P[EDP ≤ edp] =

∫ ∞

−∞
P[EDP ≤ edp | IM = im] f(im) dim (3.3)

The corresponding PDF is obtained by differentiation:

f(edp) =
dF (edp)

dedp
(3.4)

86

Similarly, this procedure is applied to the DM and the DV . The end result is the triple integral:

F (dv) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F (dv|dm)f(dm|edp)f(edp|im)f(im) dim dedp ddm (3.5)

where F (dv|dm) denotes the conditional CDF of DV for given DM = dm and f(dm|edp) and

f(edp|im) are the conditional PDFs of DM and EDP . The triple-integral can be evaluated as a

matrix-vector quadruple product by arranging f(im) into a vector and the conditional CDF and PDF

values F (dv|dm), f(dm|edp) and f(edp|im) into matrices with the number of rows and columns equal

to the number of discrete values of the random variables.

Provided appropriate models, the reliability methodology described in this report is capable of

addressing the entire problem in one analysis, instead of evaluating the conditional probabilities

F (dv|dm), f(dm|edp) and f(edp|im) separately. This is done by incorporating IM and model pa-

rameters as random variables in the reliability analysis. The finite element model internally provides

the IM −→ EDP and EDP −→ DM models. The probability of events defined in terms of DV can

be estimated when the relevant DM −→ DV models are provided as input. The following sections

describe how OpenSees can be used for this purpose.

3.2 UNCERTAINTY MODELING

The parameters of a classical finite element model are selected deterministically. In finite element

reliability analysis, the uncertainty characterization of such parameters becomes an important task.

This section describes the formulation of marginal and joint probability distributions to characterize

random variables in the OpenSees environment. For convenience, the Nataf family of joint distri-

butions developed by Liu and Der Kiureghian (1986) is used. This family of joint distributions is

completely defined by specifying the marginal distributions and correlation structure of the random

variables.

3.2.1 Library of Marginal Distribution Functions

In OpenSees an option for a user-defined probability distribution is available together with a library of

predefined distributions. The library distributions include Normal, Lognormal, Negative lognormal,

Exponential, Shifted exponential, Rayleigh, Shifted Rayleigh, Uniform, Gamma, Beta, Type I Largest

87

Value (Gumbel), Type I Smallest Value, Type II Largest Value, Type III Smallest Value and Weibull.

A detailed description of these distributions and their parameters is given in Appendix B.9. The

User’s Guide in Chapter 3.7 provides the syntax for creating random variable objects in OpenSees

with these marginal distributions.

3.2.2 User-Defined Distributions

The user-defined distribution type allows the user to specify a random variable with a PDF of arbi-

trary shape. The PDF must obey the normalization rule
∫∞
−∞ f(x) dx = 1. In fact, OpenSees checks

that the distribution is normalized. If not normalized, the user is informed that all distribution func-

tion values are uniformly increased/decreased to obtain a normalized distribution. If any distribution

function value is negative, an error message is given. Any number of points can be specified, either

on the command line or in a file. See Section 4.2 for further description of the command syntax.

Based on the user’s specification of the PDF values f(xi) at discrete realization points x1 <

x2 < · · · < xn, the PDF f(x) for an arbitrary value x is found by linear interpolation. The CDF

F (x) =
∫ x

−∞ f(x) dx is obtained by applying the trapezoidal integration rule. The inverse CDF

x = F−1 (p) is obtained by first determining the discrete point x̃i = min {xi | F (xi) > p}. The

slope of the PDF in the interval where the solution is located is a = f(xi)−f(xi−1)
xi−xi−1

. The solution is

x = xi−1 + −B+
√

B2−4 A C
2 A

, where A = a
2
, B = f(xi−1) and C = F (xi−1) − p, unless a = 0, in which

case x = p−F (xi−1)+f(xi−1) xi−1

f(xi−1)
.

3.2.3 Correlation Structures

Each pair of random variables is assigned a correlation coefficient −1 ≤ ρ ≤ 1. The special case

ρ = 0 indicates no correlation, while the special cases ρ = ±1 indicate perfect positive or negative

correlation. In the latter two cases the random variables are linearly dependent.

All the correlation coefficients are assembled in a matrix R = [ρij], where the indices i and j

represent random variable numbers. The diagonal of this matrix contains entries with value 1.0. The

matrix R is required to be positive definite, provided no linear relation exists between the random

variables, in which case R is singular. This requirement may not be satisfied if the user specifies the

88

elements of R in an arbitrary manner. It is therefore of interest to (1) test for positive definiteness of

the matrix and (2) provide library correlation structures for groups of random variables. This is done

in OpenSees. One fruitful approach to the latter item is to establish so-called homogeneous correlation

matrices by using concepts from stationary random processes. Consider a stationary random process

x(t) with an auto-correlation function ρ(τ), where τ is the absolute difference between two time

points. If we select a set of discrete points ti, i = 1, . . . , n, then the auto-correlation matrix having

the elements ρij = ρ(|ti− tj|) is positive definite for any selections of ti provided ρ(τ) is a valid auto-

correlation function. In OpenSees, such correlation structures are specified by assigning a “time”

value to each random variable. This provides a method to establish valid correlation matrices from

known valid correlation functions.

The conditions for a valid correlation function ρ(τ) are as follows:

1. ρ(τ) must be symmetric.

2. |ρ(τ)| must be bounded by ρ(0), that is, |ρ(τ)| ≤ ρ(0).

3. ρ(τ) must be a non-negative definite function, that is, its Fourier transform must be non-

negative everywhere.

4. ρ(τ) must be continuous at all τ if it is continuous at 0.

5. If the random process has no periodic component, then lim|τ |→∞ ρ(τ) = 0

In OpenSees the following correlation structures satisfying the above conditions have been imple-

mented (see Chapter 3.7 regarding command syntax for specification of these correlation structures):

ρij = exp

(
−|i− j|

θ

)

ρij = exp

(
−(i− j)2

θ2

)

ρij =
1

1 + θ (i− j)2

ρij =

{
1− |i−j|

θ

0

for

for

|i− j| ≤ θ

|i− j| > θ
(3.6)

In addition to the above, a correlation structure according to the Dunnett-Sobel model (Dunnett

and Sobel 1955) is implemented. In this model the off-diagonal terms in the correlation matrix read:

ρij = ri rj (i 6= j) (3.7)

89

r is a user-defined vector with its elements satisfying the condition −1 < ri < 1. The diagonal

elements of R are set to unity. This correlation matrix is positive definite in the following manner. A

matrix R is said to be positive definite if, for all x 6= 0, xTRx > 0. For the correlation matrix given

by Eq. (3.7), using index notation (summation over repeated indices), we have two contributions to

the product xTRx. Firstly, from the diagonal terms of R:

xi δij xj = x2
i (3.8)

where δij is the Kronecker delta. It is noted that

x2
i > x2

i r2
i (3.9)

Secondly, the contribution from the off-diagonal terms of R is:

xiρijxj = xirirjxj i 6= j (3.10)

It is noted that xirirjxj = (xiri)
2. Adding the contributions from Eqs. (3.8) and (3.10) and employing

the inequality of Eq. (3.9), we obtain:

xTRx > (xiri)
2 > 0 (3.11)

This shows that R is positive definite for this class of correlation matrices.

3.2.4 Joint Probability Distributions

An essential ingredient in the FORM, SORM and importance sampling techniques in reliability

analysis is to find the so-called design point. This is described in Section 3.5. The search for this

point is performed in an uncorrelated standard normal space. It is therefore necessary to transform

the original vector of random variables into this space. The selection of joint probability distributions

and the transformation to the standard normal space are described in this section.

In OpenSees the Nataf model for joint distributions (Liu and Der Kiureghian 1986) is imple-

mented. This class of joint distributions is completely defined by specifying the marginal distributions

and the correlation structures of the random variables. Compared to other such joint distribution

models, e.g., the Morgenstern model (see Liu and Der Kiureghian 1986), the Nataf model allows

a relatively wide range of correlation values, depending on the distribution type. To explain the

implementation, first consider the case where the random variables x are jointly normal. The mean

90

vector is denoted Mx = {µi} and the covariance matrix Σxx = [ρijσiσj]. To transform x to the

uncorrelated standard normal space we seek a linear transformation y = a0 + Ax such that My = 0

and Σyy = I. Expressing the mean and the covariance of the linear function leads to two equations

in the unknowns a0 and A:

My = a0 + AMx = 0 (3.12)

Σyy = AΣxxA
T = I (3.13)

Since Σxx is a positive definite matrix, we can write Σxx = L̂L̂T where L̂ is the lower triangular

Cholesky decomposition of Σxx. Substitution into Eq. (3.13) leads to:

AΣxxA
T =

(
A L̂

) (
L̂TAT

)
=

(
A L̂

) (
AL̂

)T

= I (3.14)

It is clear that A L̂ = I and we have:

A = L̂−1 (3.15)

Next, Eq. (3.12) yields:

a0 + L̂−1Mx = 0 ⇒ a0 = −L̂−1 Mx (3.16)

Hence, the transformation into the uncorrelated standard normal space for a vector x of dependent

normal random variables reads

y = L̂−1 (x−Mx) (3.17)

Before proceeding, the same transformation is derived for the case when the covariance matrix is

written Σ = DRD, where D = diag [σi] is the diagonal matrix of standard deviations and R = [ρij]

is the correlation matrix. Using the same procedure as above, we obtain the transformation

y = L−1D−1 (x−Mx) (3.18)

where L now is the lower triangular decomposition of the correlation matrix R, i.e., R = LLT. This

form of the transformation is preferred, since the decomposition is done on the dimensionless matrix

R rather than the covariance matrix, which in general has elements with a mix of dimensions. The

Jacobian of the above transformation is:

Jy,x =
∂y

∂x
= L−1D−1 = L̂−1 (3.19)

Now, consider the case, where x consists of non-normal but statistically independent random

variables. In this case each random variable is transformed into the standard normal space by the

probability preserving transformation

Φ(yi) = Fi(xi) ⇒ yi = Φ−1 [Fi (xi)] (3.20)

91

where Φ(·) is the standard normal CDF and Fi(·) is the CDF of xi. The Jacobian of this trans-

formation is found by differentiating the first part of Eq. (3.20) on both sides with respect to xi.

Employing the chain rule ∂
∂x

= ∂
∂y

∂y
∂x

we find

Jy,x =
∂y

∂x
= diag

[
f (xi)

ϕ (yi)

]
(3.21)

We now consider the case of dependent non-normal random variables having the joint Nataf dis-

tribution. First a set of standard normal random variables z is obtained by marginal transformation

of the original random variables x:

Φ (zi) = Fi (xi) =⇒ zi = Φ−1 [Fi (xi)] (3.22)

Next, the assumption is made that the random variables z are jointly normal. This leads to the

so-called Nataf distribution for x (Liu and Der Kiureghian 1986). The expression for the joint

PDF of x is obtained from the elementary probability transformation rule: f(x) dx1 dx2 · · · dxn =

ϕ(z,Ro) dz1 dz2 · · · dzn, i.e.,

f(x) = ϕ(z, Ro)
dz1 dz2 · · · dz3

dx1 dx2 · · · dx3

= ϕ(z, Ro)
f(x1) f(x2) · · · f(x3)

ϕ(z1) ϕ(z2) · · ·ϕ(z3)
(3.23)

where ϕ(z, Ro) is the joint normal PDF of z having the correlation matrix Ro. The last equality in

Eq. (3.23) is obtained by differentiating Eq. (3.22) with respect to xi. The final transformation to

uncorrelated standard normal variables is obtained by making use of the special cases in Eqs. (3.18)

and (3.20):

y = L−1
0 z = L−1

0




Φ−1 [F (x1)]

Φ−1 [F (x2)]
...

Φ−1 [F (xn)]




(3.24)

where L0 now is the lower-triangular decomposition of the correlation matrix Ro of the standard but

correlated normal random variables z. Furthermore, from the preceding special cases, it is readily

seen that the Jacobian of the transformation in Eq. (3.24) is:

Jy,x = L−1
0 diag

[
f (xi)

ϕ (zi)

]
(3.25)

The remaining task is to obtain the correlation matrix R0 = ρ0, ij of z based on the correlation

matrix R = ρij of x as provided by the user. The correlation coefficient between two continuous

random variables X and Y can be written

ρXY =

∫ ∞

−∞

∫ ∞

−∞

(
X − µX

σX

)(
Y − µY

σY

)
fXY (x, y) dx dy (3.26)

92

where µ denotes the mean values, σ denotes the standard deviation values and fXY (x, y) is the joint

PDF. In the present case, the joint PDF is as in Eq. (3.23), leading to the following integral equation

to relate ρij and ρ0, ij:

ρij =

∫ ∞

−∞

∫ ∞

−∞

(
xi − µi

σi

)(
xj − µj

σj

)
ϕ2 (zi, zj, ρ0, ij)

f(xi) f(xj)

ϕ(xi) ϕ(zj)
dxi dxj (3.27)

=

∫ ∞

−∞

∫ ∞

−∞

(
F−1 (Φ(zi))− µi

σi

)(
F−1 (Φ(zj))− µj

σj

)
ϕ2 (zi, zj, ρ0, ij) dzi dzj

where F−1() indicates the inverse CDF and the bi-variate standard normal PDF reads:

ϕ2 (zi, zj, ρ) =
1

2π
√

1− ρ2
e
− 1

2(1−ρ2)
[z2

i−2 zi zj ρ+z2
j] (3.28)

The desired correlation coefficients ρ0, ij must be solved for by using Eq. (3.27). Closed-form ap-

proximate expressions for ρ0, ij for an array of probability distributions are provided in Liu and Der

Kiureghian (1986). These are implemented in OpenSees. The difference between the two correlation

coefficients ρ0, ij and ρij is usually small for all but strongly nonnormal distributions. Eq. (3.27) is

solved by a Newton scheme in OpenSees for cases where the user selects the user-defined probability

distribution type.

The random variables characterized by their marginal distributions and correlation structures

discussed above can be mapped into the finite element model of OpenSees. For instance, a random

variable may represent a material parameter, a geometry parameter, a load variable, etc. In the

following section an additional option for characterizing a stochastic load process is presented.

3.2.5 Discretized Random Process Loading

Time series objects are used in OpenSees to describe time variation of earthquake ground motions or

nodal loads. The work in this section enables specification of a discretized random process loading

to be applied to the structure in OpenSees.

Two principally different methods of creating realizations of random processes are currently im-

plemented in OpenSees. The first method is used in conjunction with sampling techniques to generate

realizations of a random process based on a pre-defined power spectral density (PSD) function. The

second option involves the specification of a filtered and modulated white noise process, which can

be used in FORM analysis to estimate the mean out-crossing rates of selected response quantities.

The latter option is motivated by the works of Li and Der Kiureghian (1995), Der Kiureghian and

Li (1996), Der Kiureghian (2000), and Koo and Der Kiureghian (2003).

93

First the option of generating a time series input from a user-defined PSD is described. The

spectrum is discretized into a number of frequency intervals of width ∆ω, with wi, i = 1, . . . , N ,

denoting the center frequency points. For a two-sided PSD function S(ω) the variance of a frequency

interval is σ2 = 2 S(ωi) ∆ω. One method of creating a realization is to create two vectors of randomly

selected numbers Ai = Normal(0, 1) and θi = Uniform(0, 2π) and evaluate the following sum at each

time instant t:

x(t) = µ(t) +
N∑

i=1

√
2 S(ωi) ∆ω Ai cos (ωit + θi) (3.29)

where µ(t) is a time-varying mean function. This is implemented in OpenSees.

The starting point for the second random process implementation in OpenSees is a train of pulses,

equally spaced along the time axis. By letting each pulse be represented by a standard normal random

variable yi, this train of pulses approaches the Gaussian white noise process as the number of pulses

over a finite time interval approaches infinity. This basic process is modified by multiplying each

pulse yi at time point ti by the unit impulse response function h(t − ti) of a filter. One option

for the filter implemented in OpenSees is the single-degree-of-freedom oscillator characterized by

its eigenfrequency and damping ratio. Furthermore, a mean function µ(t) may be added and a

modulating function q(t) can be applied to control the variance along the time axis. The simplest

form of this stochastic input model is, thus, written as:

x(t) = µ(t) + c1 q(t)
N∑

i=1

yi h(t− ti) (3.30)

where N is the number of equally spaced pulses along the time axis and c1 is a factor to control the

overall intensity of the process. It is noted that this time series may have a physical interpretation

in seismic engineering. Each pulse can be regarded as part of a fault rupture. These pulses are then

filtered through the ground medium before reaching the base of the structure.

The process definition in Eq. (3.30) contains only one filter. As a result, the output process has

a stationary frequency content. To introduce nonstationary frequency content, multiple filters with

different modulating functions may be used (Der Kiureghian 2000), i.e.,

x(t) = µ(t) + c2

K∑

k=1

qk(t)
N∑

i=1

yik hk(t− ti) (3.31)

In this most general case the number of random pulses is equal to the number of time steps multiplied

by the number of filters. A simpler alternative is implemented in OpenSees, where the original vector

yi of random variables is used with all filters:

x(t) = µ(t) + c3

K∑

k=1

qk(t)
N∑

i=1

yi hk(t− ti) (3.32)

94

In this case the stochastic model can be physically interpreted as a single train of white noise pulses

filtered through a model with K peaks in the transfer function. The magnitudes of these peaks are

controlled by the user’s selection of the modulating function for each filter, for instance to accommo-

date a target PSD function.

An important aspect of the implementations in OpenSees has been the DDM sensitivity calcula-

tions. It is noted that the derivatives of the above random load processes with respect to the random

variables yi or yik are quite simple. Using the simpler expression in Eq. (3.32), the sensitivity is:

∂x(t)

∂yi

= c3

K∑

k=1

qk(t)
N∑

i=1

hk(t− ti) if ti < t (3.33)

= 0 otherwise

To obtain the sensitivity with respect to a random variable, each random variable is replaced by

1 or 0, depending on whether it is the parameter in question or not.

The factors ci in Eqs. (3.30) to (3.32) scale the overall variance of the stochastic processes. In

OpenSees this factor is computed based on a target standard deviation prescribed by the user. Since

yi (or yik) are statistically independent random variables with unit variances, it is easy to see that

the variance of the process in Eq. (3.31) is:

Var[x(t)] = c2
2

K∑

k=1

N∑
i=1

qk(t)
2 hk(t− ti)

2 (3.34)

whereas that defined by Eq. (3.32) is:

Var[x(t)] = c2
3

K∑

k=1

K∑

l=1

N∑
i=1

qk(t)ql(t) hk(t− ti)hl(t− ti) (3.35)

For the simplified process implemented in OpenSees represented by Eq. (3.32) the factor c3 comes

out as:

c3 =

√
Var[x(t)]target∑K

k=1

∑K
l=1

∑N
i=1 qk(t)ql(t) hk(t− ti)hl(t− ti)

(3.36)

In OpenSees the user prescribes the target maximum standard deviation
√

V ar[X(t)]
target

of the

process. The program automatically searches for the time instant at which the maximum variance

is achieved and adjusts the parameter c3 accordingly. A number of modulating function forms are

available to control the relative temporal evolution of the outcome of each filter. Options in OpenSees

include a constant modulating function, a trapezoidal modulating function and a Gamma modulating

function of the form q(t) = a tb e−c t, where a and b and c are user-defined parameters. Chapter 3.7

provides the syntax for creating modulating functions in OpenSees.

95

3.3 PERFORMANCE FUNCTIONS

When applying reliability analysis methods in performance-based engineering, it is essential to have

means of defining performance criteria. This is done by so-called performance functions.1 In struc-

tural reliability analysis the term “failure” is used to denote the event of not meeting performance

criteria. While the methodology to compute estimates of the probability of failure is at a mature

stage for a range of performance functions, it may not be an obvious task as to how to define what

constitutes failure. This topic is discussed in this section.

3.3.1 Component and System Reliability Problems

By using the terminology introduced in Section 3.1, a performance function can be defined in terms

of engineering demand parameters, damage measures or decision variables. Estimation of the proba-

bility of the defined failure event poses a “component” reliability problem. However, failure according

to one performance criterion may not constitute failure of an entire structural system. It is there-

fore of interest to define “system” reliability problems as sets of components and rules as to which

combinations of component failures constitute system failure.

This chapter discusses methods to estimate failure probabilities of both component and system

problems. Component probabilities and information about dependence between components are used

when addressing the system reliability problem.

3.3.2 General Characteristics of Performance Functions

Performance functions for structural components are commonly denoted g(x), where x is the vector

of basic random variables. The dependence on x can be implicit and through structural response

quantities. However, g(x) must be a continuous and differentiable function of x, at least in the

realizable domain of x. The numerical value of the performance function distinguishes the failure

state from the safe state:

g > 0 : safe

1In this report the term “performance function” is used interchangeably with the term “limit-state function.”

96

g = 0 : limit-state

g ≤ 0 : failure

In the space of uncorrelated standard normal variates y the performance function is denoted

G(y). We have that:

G (y(x)) = g(x) ⇔ g (x(y)) = G(y) (3.37)

Finite element reliability methods are characterized by response quantities from a finite element

solution entering the performance function. For instance, a simple threshold performance function

is:

g = threshold− response quantity (3.38)

When the uncertain response quantity exceeds the specified threshold, the performance function takes

on a negative value and failure is implied. In OpenSees, any analytical expression involving stresses,

stress resultants, strains, displacements and accumulated damage can be specified as the response

quantity in Eq. (3.38). Note that both the specified threshold and the computed response can be

functions of the random variables x. Limitations on which response quantities can be included in

the performance functions are treated in Section 3.3.4.

3.3.3 Performance Functions for Performance-Based Earthquake Engineering

The performance-based engineering approach, as opposed to prescriptive rules of code-based design,

is based on simulation of real structural behavior. The client or government regulations prescribe

desired performance objectives, which are translated into decision variables, DV , or functions thereof.

In formalized performance-based engineering, four performance levels are distinguished relative to

earthquake events (Federal Emergency Management Agency 2000):

1. Operational performance: the event does not affect the occupants or functioning of the building.

2. Immediate occupancy performance: the occupants can immediately return to the building.

3. Life safety performance.

4. Collapse prevention performance.

The client or code regulations determine an acceptable hazard level for each of these performance

requirements. For an earthquake event with probability, say, 50% in 50 years, immediate occupancy

97

performance may be demanded. On the other hand, for an earthquake event with probability 2% in

50 years only life safety performance may be desirable. The remaining question in this section is how

to translate such performance requirements into performance functions in finite element reliability

analysis.

3.3.4 Performance Functions in Nonlinear Finite Element Reliability Analysis

Typically, the steps in a static nonlinear finite element analysis are governed by a load-control scheme.

That is, a load increment is applied at each step. Displacement control, on the other hand, implies

that a displacement increment is applied at each step. Other alternatives are available, e.g., the

arc-length method (Crisfield 1991). In static analysis, the employed finite element analysis scheme

may affect the selection of response quantities that can be included in the performance function.

This is readily seen by the following example. A user selects a displacement-control analysis scheme.

Furthermore, it is decided that the analysis should run to a displacement equal to 10 cm at a control

node. The user then defines a limit-state function, where a nodal displacement (not necessarily

the control node) at the end of the analysis is included. Such a reliability analysis will most likely

not converge. This is due to the fact that displacement responses in such a structure are largely

controlled by the imposed displacement at the control node and less by variations in the realizations

of the random variables. Similarly, a performance function involving a force quantity sampled at the

end of a force-controlled stepping scheme may not lead to convergence in reliability analysis.

Another important aspect of such analysis schemes is that if the response quantities in the per-

formance function are sampled at the end point of the analysis, then the analysis must be run to

a consistent pseudo-time, e.g., load factor, in every finite element analysis. This is particularly

important when the size of the pseudo-time steps are selected automatically by the finite element

analysis procedure. If measures are not taken to assure that the same final pseudo-time is reached in

each analysis, the arbitrary pseudo-time step size selection will contribute to determining the final

response. This may lead to convergence problems in the reliability analysis. In OpenSees it is possi-

ble to let the so-called integrator object select the sizes of the pseudo-time steps, within prescribed

boundaries. In Section 4.4 remedies are discussed to employ such schemes in reliability analysis.

In dynamic problems, the steps in the finite element analysis are usually taken with a prescribed

time increment ∆t. The problem mentioned above then is not encountered. However, it may not be

meaningful to define performance functions in the dynamic case in terms of response quantities at

98

the end of the finite element analysis. Rather, the mean out-crossing rate discussed in Section 3.4.6

may be of interest, or accumulated response/damage measures may be employed. More about this

kind of analysis is presented in Chapter 4.6.

Another restriction in defining performance functions for reliability analysis is related to the

maximum or minimum of a structural response over a time or space interval. Such problems are

known as space- or time-variant reliability problems. The gradient of the maximum or minimum of a

function is discontinuous, since it is not a-priori clear which point in time or space will govern. One

realization of the random model parameters may lead to one space/time point of maximum, while

another realization may shift the location. This violates the assumption of continuous gradients in

the search for the design point. Again, one approach to dealing with this challenge is the mean

out-crossing rate computations discussed in Section 3.4.6. It should be mentioned, however, that

in a static pushover analysis, where only one peak of the load-displacement curve is encountered, a

performance function can be defined in terms of the maximum force level.

Table 3.1 summarizes the quantities that can be included in the formulation of the performance

function for different types of reliability analysis.

3.4 ESTIMATION OF PERFORMANCE PROBABILITIES AND RESPONSE STATIS-

TICS

The primary concern in structural reliability analysis is to estimate probabilities of failure to achieve

predefined performance. In the simplest case of one performance function, the component reliability

problem is formulated as

pf =

∫

g(x)≤0

f(x) dx (3.39)

where pf is the probability of failure, x is the vector of random finite element model parameters, g(x)

is the performance function and f(x) is the joint PDF of x. Note that the integration is over the set

of random variables x, which in finite element reliability analysis can be large. Closed-form solutions

of Eq. (3.39) are unavailable except for a few special cases. For this reason, a number of methods have

been developed for the purpose of solving the integral approximately. These include the first- and

second-order reliability methods, FORM and SORM, sampling analysis, response surface methods

and numerical integration schemes. The latter method is usually not a feasible alternative when

the number of random variables is greater than 3 or 4. Furthermore, in finite element reliability

analysis, it is desirable to limit the number of evaluations of g and its gradient. This makes methods

99

such as FORM, SORM and importance sampling (IS) tractable, while it excludes the crude Monte

Carlo sampling scheme for problems with small failure probabilities. A common aspect of FORM,

SORM and IS is that they all employ the so-called design point. This is the most likely point in the

failure domain, when the variables are transformed to the standard normal space. As such, this is the

ideal point for approximating the limit-state surface separating the safe and failure domains. FORM

analysis estimates the failure probability by approximating the limit-state surface by the tangent

hyper-plane at the design point. SORM analysis estimates the failure probability by approximating

the limit-state surface by a quadratic surface tangent at the design point. An IS analysis may

subsequently use the design point as the center of sampling to obtain an improved estimate of the

failure probability. The options for FORM and IS analysis are implemented in OpenSees. The

framework for SORM analysis is also implemented in OpenSees. However, this option is currently

limited to a simple algorithm to estimate the first principal curvature for the fitting paraboloid using

a method developed by Der Kiureghian and DeStefano (1991). For this reason, a detailed description

of the SORM methodology is not presented in this chapter.

Before proceeding to discuss methods that address the probability integral in Eq. (3.39), the

method available in OpenSees for computing second moments of response quantities are described.

These statistics of the response describe the propagation of uncertainties through the finite element

model.

3.4.1 Second-Moment Response Statistics

Two methods are implemented in OpenSees for the purpose of computing second-moment statistics

of finite element response quantities. These can be used to estimate the mean and variance of a

response quantity and the correlation coefficient between pairs of response quantities. The first

method employs the well-known mean-centered, first-order Taylor series approximation of a function

of random variables:

g(x) ≈ g (µ) +∇g (x− µ) (3.40)

where µ is the vector of means of the random variables x, and the gradient ∇g =
[

∂g
∂x1

· · · ∂g
∂xn

]
is the

gradient row vector. This approach requires a single finite element analysis together with response

sensitivity computations at the mean point. If a finite difference scheme is used instead of the DDM

to compute the gradients, then additional finite element analyses are necessary.

100

The first-order estimate of the mean is the function value evaluated at the mean of the random

variables:

E[g] = µg ≈ g (µ) (3.41)

The variance is:

Var[g] = σ2
g ≈ ∇g Σ ∇gT (3.42)

where Σ is the covariance matrix of the random variables x. The covariance between two functions

g1 and g2 is given by:

Cov[g1, g2] ≈ ∇g1 Σ ∇gT
2 (3.43)

and the corresponding correlation coefficient is obtained by normalizing the covariance:

ρg1, g2 =
Cov[g1, g2]

σg1 σg2

(3.44)

Eqs. (3.41) to (3.44) are implemented in OpenSees to estimate second-moment statistics of user-

defined performance functions. If a user desires to compute the statistics of a particular response

quantity, then the performance function should be defined as only that response quantity, e.g., g =

u7,1 if the statistics of the displacement of node 7 along degree-of-freedom number 1 are required.

Correlation coefficients are automatically computed whenever two or more performance functions are

defined. In this study, the above method will be referred to as FOSM analysis.

As an alternative to FOSM analysis, a sampling scheme is implemented in OpenSees. Sample

realizations xi, i = 1, . . . , N , of x are generated and the corresponding performance function values

g(xi) are computed. The estimate of the mean reads:

E[g] = µg ≈ 1

N

N∑
i=1

g(xi) (3.45)

The estimate of the variance reads:

Var[g] = σ2
g ≈

1

N − 1




N∑
i=1

g(xi)
2 − 1

N

(
N∑

i=1

g(xi)

)2

 (3.46)

Similarly, the covariance between two performance functions g1 and g2 is obtained from:

Cov[g1, g2] ≈ 1

N − 1

[
N∑

i=1

g1(xi) g2(xi)− 1

N

(
N∑

i=1

g1(xi)

)(
N∑

i=1

g2(xi)

)]
(3.47)

The corresponding correlation coefficient is computed from Eq. (3.44).

The coefficient of variation of the estimated mean provides a measure of accuracy of the sampling

estimates. It is computed from:

c.o.vµg =
σg

µg

√
N

(3.48)

101

3.4.2 FORM

FORM analysis addresses the reliability problem in Eq. (3.39) by means of two key operations.

Firstly, we find the design point in the transformed uncorrelated standard normal space. Secondly,

we approximate the limit-state surface at this point and make use of the properties of the standard

normal space to obtain the probability estimate. The first item can be a challenging task in nonlinear

finite element reliability analysis. It is discussed in detail in Section 3.5.

The distance from the origin of the standard normal space to the design point, denoted y∗, is

termed the “reliability index” and denoted β. The first-order probability estimate is then found as

pf ≈ pf1 = Φ(−β) (3.49)

where Φ(·) denotes the standard normal CDF. It is common to define the “alpha vector” as the

negative normalized gradient row vector at the design point, i.e.,

α = − ∇G

‖∇G‖ (3.50)

where ∇G =
[

∂G
∂y1
· · · ∂G

∂yn

]
. In terms of α, the reliability index is given by β = αy∗. Additionally, α

is one of several parameter importance measures available as a by-product of FORM analysis. Such

measures are valuable in practical engineering design. They can also be used to reduce the number

of random variables in a model. This topic is treated separately in Section 3.6.

3.4.3 Importance Sampling Analysis

In the crude Monte Carlo method the sampling distribution is centered at the mean point. Since

failure events tend to occur in the tail regions of probability distributions, this implies that a large

number of samples are required to obtain good failure probability estimates. A concern in finite

element reliability analysis is that the large number of evaluations of the performance function may

be computationally costly. This inhibits the use of crude Monte Carlo sampling in most finite element

reliability applications. By centering the sampling distribution near the failure domain, a far more

efficient sampling scheme is obtained. This is the basic idea behind the importance sampling method.

By introducing an indicator function I(y) such that I(y) = 1 if g(x) ≤ 0, and I(y) = 0 otherwise,

we can rewrite Eq. (3.39) as follows (Ditlevsen and Madsen 1996):

pf =

∫

Ωy

I(y) ϕ(y) dy =

∫

Ωy

(
I(y)

ϕ(y)

f(y)

)
f(y) dy (3.51)

102

where Ωy denotes the entire standard normal space, ϕ(·) is the joint standard normal PDF and f(y)

is a joint PDF which must be non-zero within the region where I(y) = 1. It is observed that the last

integral in Eq. (3.51) is an expectation of the random variable I(y)ϕ(y)
f(y)

relative to the distribution

f(y). This expectation can be estimated by generating statistically independent realizations of the

random variable I(y)ϕ(y)
f(y)

derived from the distribution f(y). The average of this sample is an

unbiased estimator of the expectation and, thus, of pf . Crude Monte Carlo sampling analysis results

when f(y) is selected identical to ϕ(y) so that the distribution is centered at the mean point, i.e., the

origin in the standard normal space. In IS analysis the center of the sampling distribution is shifted

to a point selected by the user, e.g., the design point (Melchers 1999).

The sampling analysis implemented in OpenSees evaluates Eq. (3.51) by repeatedly generating

a vector ỹ of independent and normally distributed random numbers with zero means and unit

variances. ỹ is then transformed according to y = ycenter + L ỹ, where ycenter is a user-provided

mean vector and L is the Cholesky decomposition of a user-provided covariance matrix Σ. The mean

vector defines the center of the sampling density. The most effective choice is the design point. The

covariance matrix is typically chosen as a unit matrix. Increasing (decreasing) the value of a diagonal

element of Σ leads to a broader (narrower) sampling density along the axis of the corresponding

random variable. Off-diagonal elements may be added to make the sampling distribution elongated

in preferred directions.

The vector y is transformed back into the original space x = x(y) where the performance function

g(x) is evaluated for this realization of the random variables. I(x) is assigned a value based on the

outcome of g(x). The variable q(y) = I (x(y)) ϕ(y)
f(y)

is then evaluated with the following expressions

for the joint PDF in the standard normal space, ϕ(y), and the sampling density f(y):

f(y) =
1

(2π)n/2
√

detΣ
exp

[
−1

2
(y − ycenter)

T Σ−1 (y − ycenter)

]
(3.52)

ϕ(y) =
1

(2π)n/2
exp

[
−1

2
yTy

]
(3.53)

where n is the number of random variables.

The probability of failure is estimated as:

pf ≈ pf,sim = q̄ =
1

N

N∑
i=1

qi (3.54)

where qi = q(yi) and N is the number of samples. A measure of accuracy of the probability estimate

is the variance of pf,sim, which noting that qi are statistically independent and identically distributed,

103

is given by:

Var[pf,sim] =
N∑

i=1

1

N2
Var[qi] =

1

N
Var[q] (3.55)

where Var[q] is the common variance, which is estimated from the generated sample using the well-

known formula:

Var[q] ≈ 1

N − 1




N∑
i=1

q2
i −

1

N

(
N∑

i=1

qi

)2

 (3.56)

Substituting Eq. (3.56) into Eq. (3.55), the variance of the probability estimate is:

Var [pf,sim] ≈ 1

N(N − 1)




N∑
i=1

q2
i −

1

N

(
N∑

i=1

qi

)2

 (3.57)

Thus, we only need to store the sums of the qi and the q2
i values. In OpenSees, the coefficient of

variation of the probability estimate

c.o.v[pf,sim] =

√
Var [pf,sim]

pf,sim

(3.58)

is computed and monitored. The sampling is repeated a user-defined number of times, or until the

above c.o.v. estimate falls below a specified target.

3.4.4 Parametric Reliability Analysis

In OpenSees a particular tool is created to generate probability results by a sequence of reliability

analyses. CDF’s and PDF’s (or their complements) of finite element response quantities are obtained

by specifying performance functions in terms of parameterized thresholds. Similarly, fragility curves

are generated by designating demand parameters in the finite element model to be varied. More

generally, reliability results can be generated as a function of a designated parameter.

Consider a performance function g (x, θ), where θ is the parameter to be varied. While fragility

and CDF curves contain failure probabilities at discrete θ-values, reliability sensitivity analysis2 of

FORM results is needed to obtain corresponding PDF’s. For this purpose, the FORM estimate of

the failure probability, pf1 = Φ(−β), is differentiated with respect to θ:

∂

∂θ
Φ(−β) =

∂

∂θ
(1− Φ(β)) = −∂β

∂θ

∂

∂β
Φ(β) = −∂β

∂θ
ϕ(β) (3.59)

2The term reliability sensitivity analysis should not be confused with response sensitivity analysis. The former
involves differentiation of failure probability estimate or reliability index with respect to a distribution parameter or
a performance function parameter. The latter is treated in Chapter 1.5 and deals with derivatives of finite element
response quantities with respect to random model parameters.

104

The derivative of the reliability index is (Hohenbichler and Rackwitz 1986), (Bjerager and Krenk

1989):
∂β

∂θ
=

1

‖∇G‖
∂g

∂θ
(3.60)

where ∂g
∂θ

is easily computed since θ usually enters the performance function in a simple algebraic

form. The above is implemented in OpenSees such that probability density results for response

quantities are automatically generated together with the parametric reliability results.

3.4.5 System Reliability Analysis

A system reliability problem is one where several performance functions, each representing a compo-

nent, are defined and where the user specifies the sets of components whose joint failure constitutes

failure of the system. Three such formulations are considered.

A series system fails if any of its components fail, i.e., any performance function takes on a

negative value. The failure domain can thus be written as the union of the failure domains of the

individual components:

Fs =

{
K⋃

k=1

gk (x) ≤ 0

}
(3.61)

A parallel system fails if all of its components fail. The failure domain can thus be written as the

intersection of the failure domains of the individual components:

Fp =

{
K⋂

k=1

gk (x) ≤ 0

}
(3.62)

A cut set formulation is a more general definition of a system problem than the above two special

cases. A cut set is any set of components whose joint failure constitutes failure of the system. A

minimum cut set is a cut set that ceases to be a cut set if any of its components are removed. The

failure domain of such a system is defined as:

Fc =

{
K⋃

k=1

⋂

k∈Ck

gk (x) ≤ 0

}
(3.63)

where Ck is the k-th index set defining the component indices in the k-th cut set, and the union is

over all the cut sets of the system.

Estimation of system failure probabilities is not a trivial task. In OpenSees, the problem is

currently addressed by crude Monte Carlo sampling analysis and by computing probability bounds

105

for series systems. Sampling analysis is performed as described in the previous section with the

indicator function I defined in terms of the system failure rather than a component failure. Bounds

on the probability of failure of series systems are estimated according to the so-called KHD bounds

(Kounias 1968, Hunter 1976, Ditlevsen 1979):

Lower bound: Pf, s ≥ P1 +
K∑

k=2

max

{
Pk −

k−1∑

l=1

Pkl, 0

}
(3.64)

Upper bound: Pf, s ≤ P1 +
K∑

k=2

{
Pk −max

l<k
Pkl

}
(3.65)

Pk is the probability of failure of the k-th performance function and Pkl is the probability of joint

failures of the k-th and l-th components. The latter requires a parallel system reliability analysis

with two components. In FORM, this is approximated by Pkl ≈ Φ (−βi,−βj, ρij) where Φ (·, ·, ρ) is

the bi-normal CDF and is computed from (Ditlevsen and Madsen 1996):

Φ (−βi,−βj, ρij) = Φ (−βi) Φ (−βj) (3.66)

+

∫ ρij

0

1

2π
√

1− ρ2
exp

[
−β2

i + β2
j − 2ρβiβj

2 (1− ρ2)

]
dρ

where the correlation coefficient is given in terms of the respective alpha vectors: ρij = αiα
T
j .

3.4.6 Mean Out-Crossing Rate by FORM

The time- and space-variant reliability problem is a difficult challenge in structural reliability analysis.

The time or location of the maximum response is itself a random variable. It can, therefore, not be

specified a priori by the user. In time-variant reliability analysis a fundamental problem is the first

excursion problem. It stems from our desire to estimate the probability of a time-varying response

process x(t) entering the failure domain g(x(t), t) ≤ 0 over a finite time interval T :

pf (T) = P

({
min

0≤t≤T
g(x(t), t)

}
≤ 0

)
(3.67)

The input for this problem is defined in terms of the discretized stochastic process defined in Sec-

tion 3.2.5 and Eq. (3.32). One solution to this problem can be found by defining a limit-state function

at every time step of the analysis and solve it as a series system reliability problem. At each time

instant the problem is reduced to a time-invariant component problem, which can be treated with

methods such as FORM and IS analysis. However, it is readily seen that this represents a costly

106

analysis approach in a nonlinear finite element context. This approach has been used by Au and

Beck (2001) and Koo and Der Kiureghian (2003). An alternative is to employ an Active Set Gradient

Projection scheme, as suggested by Zhang and Der Kiureghian (1994). The approach employed here

is based on the earlier works of Li and Der Kiureghian (1995), Der Kiureghian and Li (1996), Der

Kiureghian (2000), and Koo and Der Kiureghian (2003), and estimates the mean out-crossing rate,

which is a critical response statistic for time-variant reliability analysis. Various reliability measures,

such as the upper bound to the exceedance probability during a time interval T , are available as

outlined below.

The out-crossing rate, denoted η(t), marks the number of times per unit time interval that the

response vector process x(t) makes a transition from the safe state into the failure state. For a

stochastic input, this number is random and varies with time. Our interest is in computing its mean

value, ν(t) = E [η(t)], as a function of time.

Consider the two events g(x(t), t) > 0 and g(x(t + δt), t + δt) ≤ 0, indicating the occurrence

of one or more out-crossings into the failure domain during (t, t + δt). Two auxiliary limit-state

functions are now defined: g̃1 = −g(x(t), t) and g̃2 = g(x(t), t) + ġ δt where ġ = ∂g
∂t

. g̃2 is the linear

Taylor expansion of g(x(t + δt), t + δt). The probability of an out-crossing can be written as the

probability of the intersection of the failure events of g̃1 and g̃2:

pf (t, t + δt) = P[g̃1 ≤ 0
⋂

g̃2 ≤ 0] (3.68)

The mean rate of out-crossings is written as (Hagen and Tvedt 1991):

ν(t) = lim
δt→0

P[g̃1 ≤ 0
⋂

g̃2 ≤ 0]

δt

≈ P[g̃1 ≤ 0
⋂

g̃2 ≤ 0]

δt
, δt small (3.69)

The numerator in Eq. (3.69) represents a parallel system reliability problem with two components.

This problem is discussed in Section 3.4.5; the numerator in Eq. (3.69) is addressed by Eq. (3.66).

However, the numerator in Eq. (3.69) represents a special case with high negative correlation between

g̃1 and g̃2 and βi ≈ −βj. Therefore care must be exercised when evaluating the integral in Eq. (3.66).

Koo and Der Kiureghian (2003) developed the following approximate expression to solve Eq. (3.66)

for this special case:

Φ (βi,−βi, −1 + δρ) ≈ 1

2π
exp

(
−β2

i

2

) [
sin−1 (−1 + δρ)− sin(−1)

]
(3.70)

In OpenSees, two approaches are implemented to evaluate the parallel probability at hand. One

alternative is to separately obtain the design point of g̃1 and g̃2. The expression for g̃2 is found by

107

g̃2 = g+ ġ δt. For example, for a performance function expressed in terms of displacement quantities,

the chain rule of differentiating is applied: ġ δt = ∂g
∂u

∂u
∂t

δt = ∂g
∂u

u̇ δt, effectively introducing velocity

response quantities in the expression for the second performance function.

The alternative method proposed by Koo and Der Kiureghian (2003) circumvents the cost of

searching for the design point of g̃2 by the following observation. Assume the performance function g

is of the threshold type, i.e., g = uo−u, where uo is the threshold and u is a response quantity. When

the design point is found for g̃1, the design point realization of the response shows a displacement u

equal to uo at time t. Similarly, the design point realization for g̃2 must show a displacement u equal

to uo at time t + δt. A simple approximation to the design point of g̃2 is obtained by simply shifting

the input time series (the realization of random pulses defined in Eq. (3.32)) of the design point of g̃1

along the time axis by a value of δt as illustrated in Figure 3.1. This facilitates the use of Eq. (3.70)

to evaluate the parallel probability in Eq. (3.69). The error of this approximation is small for small

δt and is mainly present at the beginning of the time series, which is not a critical segment of the

excitation for systems with damping. Numerical examples have shown that for δt small in relation

to the predominant period of the response, this method provides sufficiently accurate results for all

practical purposes.

Upon determination of the mean out-crossing rate ν(t) at discrete points along the time axis, the

upper bound to the probability of excursion into the failure domain during time interval T is:

p̃f (T) =

∫ T

0

ν(t) dt (3.71)

In cases where the out-crossing events may be assumed independent, an approximation to the

true failure probability is derived by the assumption of Poisson distributed out-crossing events (Li

and Der Kiureghian 1995):

pf (T) = 1.0− e−
∫ T
0 ν(t) dt (3.72)

Caution must be exercised when using Eq. (3.72). For narrow-band processes, the out-crossings

occur in clusters. This violates the assumptions of independence between out-crossing events. Fur-

thermore, the assumption may be invalid if structural properties are assumed random in addition to

the discretized stochastic input. In these cases, the upper bound in Eq. (3.71) should be used.

108

3.5 FINDING THE DESIGN POINT

As we have seen, the design point plays an essential role in reliability analysis. By definition, it is

the point on the limit-state surface in the standard normal space with highest probability density.

This is the ideal point for approximating the limit-state surface in FORM and SORM, and the ideal

point to center the sampling distribution in importance sampling.

The design point is the solution to the constrained optimization problem:

y∗ = argmin { ‖y‖ | G(y) = 0} (3.73)

where y is the vector of random variables in the standard normal space, y∗ is the design point, G

is the performance function in this space and “argmin” denotes the argument of the minimum of a

function.

In the optimization literature, see, e.g., Polak (1997), it is common to develop algorithms for

constrained optimization problems with inequality constraints. This is a different problem than

Eq. (3.73), where the constraint is an equality constraint. For this reason several of the algorithms

presented in this work address the following alternative problem:

y∗ = min { ‖y‖ | G(y) ≤ 0} (3.74)

When the origin in the standard normal space is in the safe domain, then Eqs. (3.73) and (3.74) lead to

equivalent solutions. However, when the origin is in the failure domain, that is, when g(‖y‖ = 0) < 0,

then the solution of Eq. (3.74) is the origin and not the actual design point that is the solution of

Eq. (3.73). Hence, caution must be exercised when using the formulation in Eq. (3.74).

The degree of difficulty involved in determining the design point y∗ depends on the problem at

hand. In finite element reliability applications the performance function g is defined in terms of

response quantities from a finite element analysis. This may introduce a number of challenges:

1. The limit-state function g may exhibit nonlinearities due to nonlinearities in the finite element

responses entering the performance function.

2. Local nonlinearities, or “noise,” in g may be experienced due to numerical approximations in

the finite element solution. These are regarded as “inner” approximations, while the design

point convergence tolerances in the reliability analysis are regarded as “outer” approximations.

3. The gradient of the performance function, which is needed in the search for the the design

point, may exhibit discontinuities. This was demonstrated in Chapter 1.5.

109

4. It is well known that a non-linear finite element analysis may not converge to equilibrium.

This is the case, for instance, when the choice of model parameters constitutes a nonphysical

configuration. Hence, for some realizations of the random variables it may not be possible to

evaluate the performance function. In the worst case the computer program terminates due to

lack of convergence in the finite element solution. It is reasonable to assume that this situation

may occur mostly in the failure domain, where gross nonlinearities in structural response are

expected.

The above challenges are addressed in the presented work.

3.5.1 The General Search Scheme

The so-called HLRF algorithm originally developed by Hasofer and Lind (1974) and later extended to

non-normal random variables by Rackwitz and Fiessler (1978) is perhaps the most popular algorithm

used to solve the constrained optimization problem of Eq. (3.73) in structural reliability analysis. It

is well known that this original form of the algorithm is unstable and may not converge under certain

conditions. Liu and Der Kiureghian (1991b) and Zhang and Der Kiureghian (1997) improved this

algorithm by adding a line search scheme. This improved algorithm, denoted iHLRF, is presented in

the following together with several alternatives. Of main interest is application of the algorithm to the

challenging problems of nonlinear finite element reliability analysis. Modifications to accommodate

challenges particular to such problems are proposed.

The key steps are the same for all algorithms considered here. They are implemented in OpenSees

as follows:

1. Transform the user-given starting point x1 in the original space into the corresponding point

y1 in the standard normal space. This is done according to Eq. (3.24).

2. Compute and store as Go the value of the performance function g(x1). This is done for scaling

purposes. If the start point is close to the limit-state surface then Go = 1.0 is used. This issue

is further discussed in the next section.

3. While convergence is not achieved and the user-specified maximum number of iterations is not

reached:

110

(a) Back-transform vector yi from the standard normal space to xi in the original space. The

details of this transformation are discussed in Section 3.2.4. Skip this step in the first

iteration, where x1 is already available.

(b) Compute the value of the performance function g(xi) by executing the OpenSees finite

element code. Note that the updated realization of the random variables must be given to

the finite element code. The interface between the finite element code and the reliability

algorithm is described in Section 3.7.

(c) Along with the finite element response, gradients are computed by the DDM within

OpenSees or by finite differences. For performance functions only involving displace-

ment quantities, the needed gradient vector is ∂u
∂x

. Elements of this vector enter into

the following expression for the needed gradient of the performance function: ∇yG =

∂g
∂u

∂u
∂x

∂x
∂y

= ∂g
∂u

∂u
∂x

Jx, y = ∂g
∂u

∂u
∂x

(Jy, x)
−1. The gradient ∂g

∂u
is easily found, since g is normally

an algebraic function of u. The Jacobian Jy, x is found as outlined in Section 3.2.4.

(d) Check convergence according to convergence criteria discussed in Section 3.5.2.

(e) Take a step if convergence is not achieved: y(m+1) = y(m) + λ d, d is the search direction

vector and λ is the step size.

The essential difference between the algorithms presented in the subsequent sections is the selec-

tion of the search direction d and step size λ.

3.5.2 Convergence Criteria

None of the algorithms presented in this report are guaranteed to find the global design point. This

is a fundamental challenge in optimization. However, proofs of convergence may be established for

local solutions satisfying certain convergence criteria or optimality conditions. The local solution

most often corresponds to the actual global solution. Usually this can be checked from the context of

the problem. When in doubt, one should repeatedly solve the problem with different starting points

to gain confidence that the solution is the global one.

Two convergence criteria must be met in our case. First, the point should be located on the

limit-state surface characterized by G = 0. Second, the point should be as close as possible to the

111

origin. In equation form, the first criterion reads:

∣∣∣∣
G

Go

∣∣∣∣ < e1 (3.75)

where Go is a scaling value usually selected as the value of the performance function at the start

point. In OpenSees, the user may alter this by providing Go in the input. This option is useful for

restarts of the search, where the limit-state function value at the start point is already small. The

constant e1 is a user-defined acceptance tolerance. A common choice is e1 = 10−3.

The second convergence criterion may be expressed by considering the two vectors y and α =

− ∇G
‖∇G‖ . At the design point the gradient vector must point towards the origin in the standard

normal space. Thus, α and y must be collinear at the design point. This convergence criterion may

be expressed as the vector difference between y and the component of y in the direction of α. The

latter quantity is expressed as αyαT ; Figure 3.2. The criterion is then written as:

‖y−αyαT‖ < e2 (3.76)

where e2 is a user-defined acceptance tolerance, commonly selected as 10−3 (Liu et al. 1989).

In this report the convergence criterion in Eq. (3.76) is modified. The criterion is meant to be a

measure of how coincident the vectors α and y are. It is clear from Figure 3.2 that the criterion in

Eq. (3.76) becomes stricter when the magnitude of the vector y increases. This is because it is the

difference vector that is measured and not the angle of deviation between the two vectors. This may

cause lack of convergence when the value of β is large. Two remedies are suggested.

In the first approach, the y vector is normalized to unit length for the purpose of the convergence

check. That is, it is assumed that the convergence criterion in Eq. (3.76) is appropriate at a unit

distance from the origin in the y space. The following revised criterion is introduced so that the

requirement is consistent, independent of the distance of the trial point from the origin:

∥∥∥∥
y

‖y‖ −
(

α
y

‖y‖
)

αT

∥∥∥∥ < e2 (3.77)

This is implemented as the standard second convergence criterion in OpenSees, but with the following

condition: if ‖y‖ < 1.0, then the original Eq. (3.76) is employed.

The second alternative is to consider the angle between the vectors α and y. From elementary

vector geometry we know that the cosine of this angle, denoted θ, is given by:

cos(θ) =
αy

‖y‖ (3.78)

112

Since θ is equal to zero at the design point, cos(θ) must be equal to unity. Hence, an alternative to

the criterion in Eq. (3.77) is:

1− αy

‖y‖ < e2 (3.79)

It is noted that Eq. (3.79) is related to the optimality conditions of the problem in Eq. (3.73) in

the following way. A Lagrange formulation of the optimization problem in Eq. (3.73) can be written

as l = 1
2
‖y‖2 + γG(y) = 0. The first optimality condition is g = 0, while the second condition is

obtained by requiring that the gradient of the Lagrangian be zero at the design point, namely

∇l = y + γ∇GT = 0 (3.80)

It is clear that a Lagrange multiplier γ = ‖y‖
‖∇G‖ scales the two vector terms such that the sum in

Eq. (3.80) is zero if the vectors are parallel:

y

‖y‖ +
∇GT

‖∇G‖ = 0 (3.81)

By multiplying Eq. (3.81) by yT

‖y‖ and using α = − ∇G
‖∇G‖ , Eq. (3.79) is obtained. Hence, Eq. (3.79)

can be regarded as a check on one of the optimality conditions of the problem in Eq. (3.73).

3.5.3 Step Size Selection and Restricting the Search to the Safe Domain

While the search direction is the most distinguishing characteristic of a search scheme, the step size

selection is equally important in nonlinear finite element reliability applications. The algorithms

outlined in this report are all termed “line search” schemes. This is due to the posterior step size

selection along a pre-selected search direction. Ideally, the step size is determined so that a so-called

merit function is minimized. Usually, this leads to an optimal rate of convergence. However, this

strategy poses a new optimization problem, namely the minimization of the merit function along the

search direction vector. A common strategy is therefore to employ the Armijo rule (Polak 1997).

With this rule the step size is selected as:

λ = bk (3.82)

The user selects a value 0.0 < b < 1.0, while k is an integer with initial value 0. k increases by unit

steps until an acceptable step size is found, that is, until the selected merit function value decreases

by a certain amount. See the subsequent sections for specific merit functions.

A typical value for b is 0.5, in which case the step size is divided in half each time a trial step

size is rejected, that is, for each increment of k. As seen, the initial step size with the Armijo

113

rule is λo = b0 = 1.0. This is altered in OpenSees, since an initial step size of 1.0 may lead to trial

points too far out in the failure domain, with resulting non-convergence in the finite element analysis.

Figure 3.3 illustrates the problem though the force-displacement curves of a hypothetical structure at

successive trial points. Usually, the structure is more nonlinear at the design point than at the start

point, which is often the mean point. For this reason the search algorithm often overestimates the

necessary reduction of random strength/stiffness and the increase in random load variables. Hence,

it is often experienced that the first trial step of the search algorithm falls too far in the nonlinear

domain, which sometimes results in non-convergence of the finite element code.

Several remedies for this problem are implemented in OpenSees. First, the step size of the Armijo

rule is implemented as

λ = bo · bk (3.83)

The user-given factor bo is by default equal to 1.0, but it gives the user the opportunity to force

the initial step size to be different from 1.0. The user also determines the number of steps for

which this modification is in effect. This simple modification has proven to be effective for successful

convergence of many nonlinear finite element reliability analyses in OpenSees. Furthermore, the

Armijo rule implemented in OpenSees in many cases is able to detect whether the finite element

analysis converges or not. This depends on how severe the error event in the finite element code is.

In case of a recoverable non-convergence event, the trial point is rejected and a step size reduction is

invoked according to the ordinary rule k = k + 1.

The second remedy to avoid random variable realizations in the domain where the finite element

code cannot converge is a “bounding sphere.” The user selects the radius of an initial hyper-sphere,

within which the trial point is restricted to stay. An initial guess of the radius of the sphere could be,

for instance, βsphere = 2.0. This choice of course depends on the expected reliability index. During

the search the sphere is gradually allowed to grow if the design point is not found inside it. Rules for

the evolution of the size of the sphere are implemented in OpenSees. These are described in Chapter

3.7.

Another alternative is to modify the algorithm that selects the search direction vector so that the

search is performed within the safe domain. Several such suggestions are made in the subsequent

sections. These include a modification to the iHLRF algorithm, and the introduction of a special

case of the Polak-He algorithm, which makes use of certain steering parameters that are useful for

this purpose.

114

3.5.4 The Gradient Projection Algorithm

The Gradient Projection algorithm has the simplest features of the algorithms presented in this work

and it addresses Eq. (3.73). Its main characteristic is that it performs the search along the limit-state

surface, namely, in the sub-domain where G = 0. Of course, for non-linear limit-state functions it

is not possible to immediately find a trial point exactly on the limit-state surface. Instead, a guess

is made based on the assumption that the limit-state surface is linear and a subsequent root-finding

algorithm is employed to bring the trial point onto the limit-state surface. The fundamental concepts

of the algorithm are first presented, followed by a discussion on possible remedies to ensure that the

search is restricted to the safe domain.

An expression for the initial search direction d at each step is derived by requiring that it be

perpendicular to ∇G and that it lie in the plane spanned by ∇G and y; see Figure 3.4. The first

requirement translates into ∇Gd = 0. The second reads d = a y + b ∇GT where a and b are

unknown constants. By selecting d as in Figure 3.4, namely such that d is the solution for the

linearized function, we have that b∇GT = y + d. Hence, a = −1. b can be solved from the

requirement ∇Gd = 0:

∇Gd = ∇G
(−y + b∇GT

)
= −∇Gy + b‖∇G‖2 = 0 ⇒ b =

∇Gy

‖∇G‖2
(3.84)

The search direction vector comes out as:

d = −y +
∇Gy

‖∇G‖2
∇GT = − [

I−αT α
]
y (3.85)

Note that αT α yields a matrix and that I is the identity matrix.

As mentioned earlier, unless the limit-state function is linear the new trial point will generally not

be located on the limit-state surface. This is remedied by employing a root-finding algorithm. The

problem is formulated as finding the root y of the function G(y) = 0 along the direction ∇G starting

from the trial point. Several algorithms are available for this purpose. Two well-known methods are

employed in this work and implemented in OpenSees, namely, the secant method and the Modified

Newton method. Both these methods use the recursive rule:

y(m+1),(p+1) = y(m+1),(p) − G(y(m+1),(p))

k

∇G(y(m))T

‖∇G(y(m))‖ (3.86)

Superscript m is the step number in the search for the design point, p is the counter in the root-finding

scheme and k is the tangent variable. The last quotient in the above expression is the normalized

direction vector, namely ∇G from the previous trial point of the global search algorithm. The

distinguishing factor between the two algorithms is the tangent variable k.

115

In the Modified Newton method, k is equal to the norm of the gradient vector from the previous

trial point, namely ‖∇G(y(m))‖, as shown in Figure 3.5. In the Modified Newton algorithm the

tangent is not updated. This may make this scheme less efficient than the strict Newton method,

but overall less costly, since it involves updating the gradient.

The secant method is characterized by updating k based on the previous values of the limit-state

function according to:

k =
G(y(m+1),(p))−G(y(m+1),(p−1))

‖y(m+1),(p) − y(m+1),(p−1)‖ (3.87)

The question arises as to how to find the initial point on the limit-state surface for the first step

of the search for the design point. The user usually is unable to specify a point on the surface as a

start point. If the user selects the origin in the standard normal space as the starting point, then

y = 0 and d = 0 and the algorithm fails.

In OpenSees, a direction towards the limit-state surface is found by solving the linearized problem.

As will be discussed in Section 3.5.5, the design point for the linearized performance function is found

by employing the search direction vector d =
(

G
‖∇G‖ + αy

)
αT − y. The first trial point is found

by applying the root-finding scheme along this direction vector. That is, the first trial point in the

gradient projection algorithm is found by the iterative scheme:

y(p+1) = y(p) +
G(y(p))

k

(
G

‖∇G‖ + αT y
)

α− y
∥∥∥
(

G
‖∇G‖ + αT y

)
α− y

∥∥∥
(3.88)

The selection k = ‖∇Gy(m)‖ for the Modified Newton method is used since the gradient vector in

the direction of d is not available.

As described in Section 3.5.3, a general feature of the search algorithms is that a step size is

selected along the selected search direction by monitoring a merit function. One may develop a merit

function appropriate for the gradient projection algorithm. However, this is not as effective as for

other algorithms. The search direction in the gradient projection algorithm is always selected to be

tangent to the limit-state surface. Thus, for non-linear performance functions the first trial point

of the next step will most likely be “worse,” at least for one of the optimality conditions, than the

previous step. Hence, the usual concept of the search direction being in a descent direction of a merit

function is not useful here. One might argue that a merit function could be developed involving the

α-y-collinear convergence criterion. However, guarantee of convergence could still not be proven and

it is doubtful that the convergence rate would be much improved.

In the implementation of the Gradient Projection algorithm in OpenSees, the user may select

either a fixed step size or an Armijo rule with one of the available merit function implementations. If

116

a fixed step size is selected, the search directions are computed such that the trial points are located

on the limit-state surface, regardless of the value of the step size λ. If the Armijo rule is employed,

all trial points in the line search are projected onto the limit-state surface. That is, the line search

is actually performed along the limit-state surface. Since the merit-function check is separated from

the step size rule this allows for a flexible line search approach for the gradient projection algorithm.

3.5.5 The Improved HLRF Algorithm

This is perhaps the most popular algorithm used to solve the problem in Eq. (3.73). The original

form was developed by Hasofer and Lind (1974) and Rackwitz and Fiessler (1978). This was later

modified and improved by Liu and Der Kiureghian (1991b) and Zhang and Der Kiureghian (1997)

by adding a line search scheme.

The search direction for this algorithm is considered as an extension of the gradient projection

search direction in Eq. (3.85). While the gradient projection algorithm assumes that the trial point

is located on the limit-state surface, the iHLRF algorithm does not. It is shown in Figure 3.6 how

this leads to an additional term in the expression for the search direction vector, namely G
‖∇G‖2∇GT

k .

This term is naturally the same as the step in Eq. (3.86) with a Newton-type root-finding scheme.

The complete expression for the search direction vector reads:

d = −y −
(∇Gy

‖∇G‖2

)
∇GT −

(
G

‖∇G‖2

)
∇GT (3.89)

With this choice of search direction vector and an initial step size λ = 1, the design point is found in

one step for linear performance functions. Eq. (3.89) is implemented in OpenSees in the form:

d =

(
G

‖∇G‖ + αy

)
αT − y (3.90)

For an Armijo rule of the form

m
(
y(m+1)

)−m
(
y(m)

) ≤ + a λ
(
∇m

(
y(m)

)T
d
)

(3.91)

the following merit function was suggested by Zhang and Der Kiureghian (1997):

m (y) =
1

2
‖y‖2 + c |G| (3.92)

Several remarks are made regarding this merit function check:

117

1. The constant a > 0 is defined by the user. It is a common parameter for the merit function

checks usually associated with Armijo-type line search schemes. It influences how much the

user wants the merit function to decrease at each step. A typical value is a = 0.5.

2. Note the plus sign in Eq. (3.91). This is to emphasize that the minus sign found in this position

in Zhang and Der Kiureghian (1997) is a misprint. As shown by Zhang and Der Kiureghian

(1997), the inner product ∇ym
(
y(m)

)T
d is negative. Thus, the right-hand side of Eq. (3.91)

indicates the decrease in the merit function value at the new trial point compared to the value

of the merit function at the previous trial point.

3. Zhang and Der Kiureghian (1997) have shown that the search direction vector in Eq. (3.90) is

a descent direction of the merit function in Eq. (3.92). However, the proof assumes the penalty

parameter c in Eq. (3.92) to be a constant along the search direction vector. For this reason

the gradient of the merit function reads: ∇m = y + c∇G sgn(G).

4. The penalty parameter c is not uniquely defined. Its selected value may influence the con-

vergence rate. It is shown in Zhang and Der Kiureghian (1997) that the condition c ≥ ‖y‖
‖∇G‖

must be satisfied for the search direction to be a descent direction of the merit function. In the

present implementations in OpenSees the penalty parameter c is selected as

c = γ
‖y‖
‖∇G‖ + η (3.93)

where y and ∇G are values at the previous trial point. The constants γ > 1 and η ≥ 0 are

specified by the user to ensure that the above-stated condition is satisfied. Currently, γ and η

may be varied through the analysis only by stopping the search and restarting it from the last

trial point with new values for γ and η. In OpenSees, the default values are γ = 2 and η = 10.

3.5.6 The Polak-He Algorithm

This is a general nonlinear optimization algorithm developed by Polak and He (1991) and Polak

(1997). It is also discussed by Royset (2002). It can be specialized to solve the problem in Eq. (3.74).

This algorithm has not been used in the reliability community. However, it has features which make it

attractive for finite element reliability analysis. Its main advantage is that it has steering parameters

to force the search to be performed in the safe domain. These features are explored in this study.

It is noted, however, that the Polak-He algorithm only possesses linear convergence properties. This

118

implies that it is scale-variant: the numerical value of the performance function matters. For this

reason the user should scale the performance function so that the starting value is of the order of 10.

The algorithm presented in Polak (1997) aims at solving a constrained optimization problem

with p number of cost functions and q number of constraints. The procedure involves solving an

unconstrained optimization problem prior to obtaining the search direction vector at each step. The

unknowns in the unconstrained optimization problem are µo, µ1, µ2, . . . , µq and ν1, ν2, . . . , νp.

They are subject to the conditions:

q∑
j=0

µj = 1,

p∑

k=1

νk = 1, 0 ≤ µj ≤ 1 and 0 ≤ νk ≤ 1 (3.94)

Our problem in Eq. (3.74) is characterized by p = q = 1. Hence, ν1 = 1 and the unconstrained

minimization problem takes the form:

θ = −min
µo,µ1

{
µoγ G+ + µ1 (G+ −G) +

1

2 δ
(µoy + µ1 ∇G)2

}
(3.95)

where G+ = max {0, G} and γ and δ are user-defined parameters discussed in the following. This

unconstrained optimization problem can be formulated in matrix form as follows:

θ = −min
µ

{
µTAµ + bT µ

}
(3.96)

where: A = 1
2 δ

[
yTy
∇Gy

∇Gy
∇G∇GT

]
and b = [γG+ G+ −G].

Due to the first condition in Eq. (3.94), the unconstrained minimization problem has its solution

along the line µo = 1− µ1, 0 ≤ µj ≤ 1. Thus, a single auxiliary unknown variable can be expressed

as x = µo = 1−µ1. The problem in Eq. (3.95) is then reformulated into θ = −minx {a x2 + b x + c},
where the constants a, b and c are found as extracts from A and b in Eq. (3.96): a = 1

2δ
yTy +

1
2δ
∇G∇GT − 1

δ
∇Gy, b = γG+ − (G+ −G) + 1

δ
∇Gy − 1

δ
∇G∇GT and c = 1

2δ
∇G∇GT + (G+ −G).

The extremum point is found as x = − b
2 a

unless a = 0, in which case the function is linear and the

extremum is found at either of the end points µo = 0 or µ1 = 0. One of the end points may in any

case be the correct solution; this is checked in OpenSees before accepting the solution.

Upon solving for µo and µ1, the search direction vector is obtained as:

d = −µ0 y− µ1 ∇GT (3.97)

In Polak (1997) the merit function criterion is written as follows:

m
(
y(m) , y(m+1)

) ≤ + a λ θ (3.98)

119

where θ is the solution of Eq. (3.95). The composite merit function m is defined as follows:

m (a , b) = max

{
1

2
‖b‖2 − 1

2
‖a‖2 − γ G(a)+ , G(b)−G(a)+

}
(3.99)

As mentioned earlier, an attractive feature of the Polak-He algorithm is that the user may influence

the search path. In fact, the γ parameter in the equations above is used for this purpose. Both γ

and δ have 1.0 as their default values. γ can be increased to make the trial steps approach the failure

domain faster. However, that is the opposite of what is desired in finite element analysis. Hence,

a small value, e.g., γ = 0.1, is recommended for highly non-linear finite element problems. In the

OpenSees implementation, the parameters γ and δ are user-selected parameters. The parameter δ

could alternatively be set to 1.0 in the first step and subsequently re-computed according to the

following expression (Polak 1997):

δ =
1
2
‖y(m+1)‖2 − 1

2
‖y(m)‖2 − y(m)T (

y(m+1) − y(m)
)

‖y(m+1) − y(m)‖2
(3.100)

3.5.7 The Sequential Quadratic Programming (SQP) Algorithm

This is the most complex of the algorithms presented in this report for solving the problem in

Eq. (3.73). It is often recommended to use a well-tested library implementation of this algorithm.

In this work the SQP algorithm presented in Liu and Der Kiureghian (1991a) for our particular

optimization problem is implemented in OpenSees.

The sequential quadratic programming method is based on a Lagrangian formulation of the

optimization problem. The Lagrangian formulation of the problem in Eq. (3.73) reads:

l =
1

2
‖y‖2 + γ g = 0 (3.101)

where γ is the Lagrange multiplier which enforces the requirement that the point be on the limit-state

surface. Hence, y and γ are the unknowns in Eq. (3.101). The problem is now of an unconstrained

form so that a Newton scheme may be applied. The iterative Newton scheme for Eq. (3.101) can be

written in the form (Luenberger 1984):


 y(m+1)

γ(m+1)


 =


 y(m)

γ(m)


− α(m)

A−1︷ ︸︸ ︷
 ∇2

yl(m) ∇GT (m)

∇G(m) 0



−1

b︷ ︸︸ ︷
 y(m)

g(m)




︸ ︷︷ ︸
[d κ]T

(3.102)

120

where ∇2
yl(m) denotes the Hessian (second-derivative) matrix of the Lagrangian. In finite element

analysis it is not feasible to compute the Hessian. For this reason, a sequential computation scheme is

employed. An approximation for ∇2
yl is first assumed, usually the identity matrix, and then updated

after each solution of the Newton scheme in equation (3.102). In this study the BFGS scheme

(Schittkowski 1985) is used to approximate the Hessian matrix. In summary, the algorithm described

below is implemented in OpenSees. In this formulation, c̄ and ē are user-selected parameters, while

∇2
yl

(m), δ, c and γ are stored as history variables at each step. Initial values are ∇2
yl(m) = I, δ = 1,

c = c̄ and γ = 1, where I is the identity matrix.

1. Compute the search direction and update history variables δ and c:

(a) Construct the coefficient matrix A and vector b of Eq. (3.102).

(b) Solve for the direction vector d and a coefficient κ by solving [d κ]T = A−1 b.

(c) Update history variable δ: δ(m+1) = min

{
δ(m) ,

dT [∇2
yl]d

dT d

}
.

(d) Compute temporary variable e = dT d
(κ−γ)2

if γ 6= κ, else e = ē.

(e) Compute temporary parameter i = ceiling
(

ln(0.25 e δ (1−0.25 δ))
ln(c̄)

)
, where the ceiling function

rounds the argument to the smallest integer greater than the argument.

(f) Update history variable c = max {c, c̄i}, where c̄i indicates c̄ to the power of i.

2. Check the merit function criterion:

(a) Compute the new value of the Lagrange multiplier (but do not store it as a history variable,

yet since the old value is needed by the update scheme for the approximation of the

Hessian): γ(m+1) = γ(m) + λ (κ − γ(m)), where λ is the step size determined by, e.g., the

Armijo rule.

(b) Evaluate the Lagrange function in Eq. (3.101) at the old and the new trial point, yielding

l(m+1) = l
(
y(m) + λ d

)
and l(m) = l

(
y(m)

)
, respectively. If l(m+1) − l(m) ≤ a λ (∇yl)

T d

then the step size λ is accepted. Otherwise a step size reduction as described in Section

3.5.3 is necessary. The gradient of the Lagrange function should be evaluated at the old

trial point according to:∇yl = y + γ ∇G

3. Update the approximation of the Hessian matrix, B ≈ [∇2
yl

]
if a new step is necessary:

(a) Compute the gradient of the Lagrange function at the old trial point: ∇yl(m).

121

(b) Update the Lagrange multiplier history variable: γ(m+1) = γ(m) + λ
(
κ− γ(m)

)
.

(c) Compute the gradient of the Lagrange function at the new trial point: ∇yl(m+1).

(d) Compute the intermediate quantity q̃ as the difference between the gradient of the La-

grange function at the new and the old trial point: q̃ = ∇yl
(m+1) −∇yl

(m).

(e) Compute the intermediate parameter θ = 1.0 if dT q̃ ≥ 0.2 λ dT
[∇2

yl
]
d and θ =

0.8 λ dT [∇2
yl]d

λ dT [∇2
yl]d − dT q̃

otherwise.

(f) Compute the intermediate quantity q = θ q̃ + (1− θ) λ (B d).

(g) Update the Hessian approximation: B(m+1) = B(m) + qT q
λ qT d

− 1
dT B(m)d

(
B(m)ddTB(m)

)
,

where B(m) denotes the approximation of the Hessian at the previous point.

Comparison of the stability and efficiency of the algorithms discussed above are presented in

Chapter 4.6.

3.6 PARAMETER IMPORTANCE MEASURES

Parameter importance measures represent a valuable by-product of finite element reliability analyses.

Such measures allow the user to rank model parameters according to the relative significance of their

uncertainty for specific performance functions. This information is useful for several purposes. It

may be used to gain physical insight into a problem or to reduce the problem size by neglecting

uncertainty in unimportant random variables. It may also be used as indicators to allocate resources

in the design phase.

In this study, importance measures are obtained from FOSM response statistics analysis and

FORM reliability analysis. An importance measure from FOSM analysis is obtained by examining

the contributions to the variance of the performance function. Expanding Eq. (3.42), the variance is

written as

Var[g] = (∇g1 σ1)
2 + (∇g2 σ2)

2 + · · ·+ (∇gn σn)2 +
n∑

i=1

n∑
j=1
j 6=i

∇gi∇gj σiσjρij (3.103)

where ∇gi = ∂g
∂xi

and σi is the standard deviation of random variable xi. It is observed that the

product (∇gi σi)
2 indicates the direct contribution of random variable xi to the total variance of

the performance function. Thus, the products ∇gi σi represent inexpensive, yet useful, importance

measures from a single finite element analysis. Care must be exercised, however, in circumstances

122

when the structural behavior at the mean point is principally different from the behavior at the

design point for the performance function in question. In such cases, importance measures from

FORM analysis must be considered.

In this study, four importance measures from FORM analysis are considered. First, consider the

performance function in the standard normal space linearized around the design point:

G ≈ Ḡ = ∇G (y − y∗) = ‖∇G‖ (β −αy) (3.104)

where use has been made of α = − ∇G
‖∇G‖ and β = αy∗ in the last equality. Similar to the approach

employed above, we investigate the variance of Ḡ:

Var[Ḡ] = ‖∇G‖2
(
α2

1 + α2
2 + · · ·+ α2

n

)
= ‖∇G‖2 (3.105)

The result confirms the well-known regard of the absolute values of the elements of α as indicative

of the relative importance of the corresponding random variables in the standard normal space.

Furthermore, a positive α-value indicates a load variable and a negative α-value indicates a resistance

variable. Care must be exercised when working with random variables with negative mean values.

The importance indicator (αi sign(µi)) where µi is the mean of random variable xi is then more

intuitive to judge the nature (load or resistance) of the random variable.

α is a valid importance measure in the dimensionless standard normal random space. However,

when the random variables are correlated then there is no one-to-one mapping between y and the

original random variables x. In that case, an importance ordering of the elements of y does not imply

the same importance ordering of the elements of x. To this end, following Der Kiureghian (2003),

consider the linearized probability transformation y = T(x) at the design point:

y ≈ y∗ + Jy∗,x∗ (x− x∗) (3.106)

Replacing the approximation by an equality, we can write:

y = y∗ + Jy∗,x∗ (x̂− x∗) (3.107)

where x̂ is slightly different from x. Since x̂ is a linear function of y, it must have the joint normal

distribution. Its covariance matrix is:

Σ̂ = J−1
y∗,x∗ J−T

y∗,x∗ (3.108)

The random variables x̂ are considered as “equivalent normals” of x at the design point. The covari-

ance matrix Σ̂ in general depends on the design point and is slightly different from the covariance

123

matrix Σ of x. The magnitude of the difference depends on the degree of non-normality of x. Substi-

tution of the linearized transformation in Eq. (3.107) into Eq. (3.104) leads to the following expression

for the linearized performance function:

Ḡ = −‖∇G‖αJy∗,x∗ (x̂− x∗) (3.109)

The corresponding variance is:

Var[Ḡ] = ‖∇G‖2
(
αJy∗,x∗Σ̂JT

y∗,x∗α
T
)

(3.110)

The contribution from the individual variances of the basic random variables can be separated from

the contribution from the covariances. The former is the importance measure of interest and reads

‖∇G‖2
(
‖αJy,xD̂‖2

)
where D̂ is the diagonal matrix of standard deviations σi. A normalized im-

portance vector for the vector of original random variables is thus defined as:

γ =
αJy,xD̂

‖αJy,xD̂‖
(3.111)

It is noted that for statistically independent random variables γ = α.

Next, it is of interest to obtain importance rankings of the means and the standard deviations of

the random variables. For this purpose we make use of the reliability sensitivity measures discussed

by Hohenbichler and Rackwitz (1986) and Bjerager and Krenk (1989):

∂β

∂µi

= αT ∂y∗

∂µi

(3.112)

∂β

∂σi

= αT ∂y∗

∂σi

(3.113)

where ∂y∗
∂θf

is obtained by differentiation of the probability transformation y = T(x) at the design

point. The elements of the vectors ∂β
∂µ

and ∂β
∂σ

are not immediately comparable. This is due to the

possible different units of the random variables. Importance measures are obtained from Eqs. (3.112)

and (3.113) by scaling each element by the corresponding standard deviation (Liu et al. 1989):

δ = ∇µβ D̂ (3.114)

η = ∇σβ D̂ (3.115)

where ∇µβ and ∇σβ are row vectors.

The four importance measures α, γ, δ and η are defined and implemented in OpenSees. They

are provided as part of the standard output from FORM analysis.

124

3.7 IMPLEMENTATIONS IN OPENSEES

Following recommended practice (Gamma et al. 1995) and as in the finite element analysis module,

the reliability module is divided into Domain and Analysis parts (Gamma et al. 1995). The Analysis

part contains a framework of analysis components, each component designed to solve a particular

task. Specific implementations (sub-classes) of these framework components are implemented to

actually solve the task. Several such implementations may be available for the same task. For

instance, there are several ways to select the search direction vector for finding the design point.

Hence, several subclasses are available to deliver the task promised by the general search direction

class. The Domain contains objects such as random variables, correlation coefficients and performance

functions.

An overview of the framework of analysis components is provided in Table 3.2. It is seen that

some of the base classes, such as the one representing the search direction computation tool, have

several sub-classes implemented already. Other framework components, such as the probability

transformation, have only one option available at this time. Table 3.3 provides an overview of

the available implementations in the Domain part. The random variable base class has a number of

sub-classes corresponding to the distributions listed in Section 3.2.1. The Domain classes representing

correlation coefficients, performance functions, random variable positioners and parameter positioners

are self-contained and do not need sub-classes. Table 3.4 provides an overview of the available analysis

types. Each of these analysis classes make use of aggregations of analysis components. The user is

prompted if adequate analysis tools are not provided. For further details, the implementations can

be browsed at http://opensees.berkeley.edu.

The interface between the reliability algorithm and the finite element code is an essential issue

in finite element reliability analysis. It involves mapping random variables onto the finite element

domain. Furthermore, uncertain parameters must be updated for each new trial point. Each time

the performance function is to be evaluated, the finite element model needs to receive the updated

realizations of the basic random variables. Upon completion of the finite element analysis, response

quantities entering the performance function must be returned to the reliability module. This is also

the case for DDM response sensitivities. This section describes how this interaction is handled in the

present version of the code.

Three classes of the framework are involved in this communication, namely the

RandomVariablePositioner, the OpenSeesGFunEvaluator and the OpenSeesSensitivityEvaluator. The

last comes into play only when the gradient of response quantities is to be computed by the DDM.

125

We first consider the issue of updating parameters in the finite element model. This is han-

dled by two features: (1) Each random variable in the finite element model has one or more

RandomVariablePositioner associated with it. (2) Two member functions called setParameter

and updateParameter are available in every object of the finite element domain. Recall that a key

issue in object-oriented programming is data encapsulation. The scheme presented here does not

break this principle, while providing the needed flexibility to alter data member values. Figure 3.7

shows the interaction that allows updating of parameters in the finite element code. Below is a

step-by-step description of the components in Figure 3.7 and their actions in the interface:

1. The analyst creates nodes, elements, materials, etc., of the finite element domain. Each of these

objects is referred to as “An object in the FE domain” as in Figure 3.7.

2. Using commands outlined in Chapter 3.7, the analyst then creates RandomVariable and

RandomVariablePositioner objects. An instance of the latter is shown in Figure 3.7.

3. When a RandomVariablePositioner is instantiated it obtains a pointer to the object in the

finite element model which contains the uncertain parameter. This is shown in Figure 3.7 where

the RandomVariablePositioner contains an object in the finite element domain as one of its

data members.

4. When the link in the previous item is created, the constructor (the member function which is

automatically called when an object is instantiated) of the RandomVariablePositioner object

calls the setParameter member function of the structural object (see Figure 3.7). It tries to

find the parameter that the user has specified and, if successful, a parameterID value is stored

for later use (see below). If not, an error message is given.

5. During the analysis phase, there is need to update the model parameters. This task is orches-

trated from within the OpenSeesGFunEvaluator object. It loops over all

RandomVariablePositioner objects and calls the update function shown in Figure 3.7 with

the current realization of the basic random variables. In turn, this member function calls the

updateParameter member function of its structural object (see Figure 3.7). A number to iden-

tify the parameter (the parameterID data member) and its new value are passed during the

call.

6. The command analyze is executed from within the OpenSeesGFunEvaluator object. After

convergence of the finite element calculations, the response quantities entering the performance

126

function are obtained from the finite element domain, e.g., by commands such as nodeDisp

of the Tcl interface of OpenSees. That is, the OpenSeesGFunEvaluator has a pointer to the

interpreter and can call ordinary Tcl commands from inside the C++ code. Values are then

assigned to the respective variables in the performance function and the expression is evaluated,

using Tcl also for this purpose.

7. If gradients are computed by DDM, the OpenSeesSensitivityEvaluator is used. The

getGrad_g member function of this class uses similar concepts as described above. The mem-

ber function activateParameter shown in Figure 3.7 is used to determine the contribution

from each object in the finite element model to the right-hand side of the sensitivity equa-

tion. Commands such as sensNodeDisp are used to obtain desired gradients. Alternatively,

response recorder objects can be used to store such results to a file. It is emphasized that

the gFunEvaluator is the only component in the reliability framework that executes the finite

element analysis. Once this is done, all needed information is available from the converged

finite element domain or from the recorder files.

Detailed information about the class interfaces for the reliability implementations in OpenSees is

provided in Appendix 6.2.

127

Table 3.1: Permissible response quantities in the performance function, depending on the type of
finite element analysis.

Response quantity Static load-control Static displacement-control Dynamics

Deformation-type Yes No Yes

Force-type No Yes Yes

Max. deformation Yes No No

Max. force No Yes No

Accumulated resp. Yes Yes Yes

Table 3.2: Framework of analysis components and currently available specific implementations.

Base class Currently available sub-classes
GFunEvaluator BasicGFunEvaluator

OpenSeesGFunEvaluator
TclGFunEvaluator

MatlabGFunEvaluator
GradGEvaluator OpenSeesGradGEvaluator

FiniteDifferenceGradGEvaluator
ProbabilityTransformation NatafProbabilityTransformation
FindDesignPointAlgorithm SearchWithStepSizeAndStepDirection

SearchDirection GradientProjectionSearchDirection
HLRFSearchDirection

PolakHeSearchDirectionAndMeritFunction
SQPSearchDirectionAndMeritFunction

StepSizeRule FixedStepSizeRule
ArmijoStepSizeRule

MeritFunctionCheck AdkZhangMeritFunctionCheck
CriteriaReductionMeritFunctionCheck

PolakHeSearchDirectionAndMeritFunction
SQPSearchDirectionAndMeritFunction

RandomNumberGenerator CStdLibRandGenerator
ReliabilityConvergenceCheck StandardReliabilityConvergenceCheck

OptimalityConditionReliabilityConvergenceCheck
RootFindingAlgorithm ModifiedNewtonRootFindingAlgorithm

SecantRootFindingAlgorithm
FindCurvaturesAlgorithm FirstPrincipalCurvature

128

Table 3.3: Domain components for reliability analysis in OpenSees.

Base class Currently available sub-classes
RandomVariable Normal

Lognormal
etc. (see overview in Section 3.2.1)

CorrelationCoefficient N/A
PerformanceFunction N/A

RandomVariablePositioner N/A
ParameterPositioner N/A

Filter StandardOscillatorFilter
ModulatingFunction ConstantModulatingFunction

GammaModulatingFunction
TrapezoidalModulatingFunction

Spectrum NarrowBandSpectrum
PointsSpectrum

JonswapSpectrum
TimeSeries DiscretizedRandomProcessSeries

SimulatedRandomProcessSeries

Table 3.4: Analysis types related to reliability analysis available in OpenSees.

FORMAnalysis

SamplingAnalysis

FOSMAnalysis

SORMAnalysis

SystemAnalysis

OutCrossingAnalysis

FragilityAnalysis

GFunVisualizationAnalysis

129

Linear interpolation of shifted pulse train

Linear interpolation of original pulse train

t

δt

ti

Gradient of g̃2 with respect to ui at design point

Gradient of g with respect to ui at design point

Figure 3.1: Determination of design point values of random variables for shifted time series.

−αyαT

−α

g = 0

y

y −αyαT

Figure 3.2: Illustration of design point convergence criterion.

130

Appropriate load level based on search direction vector and unit step size

threshold
function

Displacement

Force

Actual displacement
after first step

First trial point response

Start point response

Performance

Figure 3.3: Example of a “too large” step size in nonlinear finite element reliability analysis.

G = 0

∇G

G < 0G > 0

b∇GT

y
d

Figure 3.4: Initial search direction for the gradient projection algorithm.

131

∇G axis

1
‖∇G‖G

l

1
‖∇G‖ = l

G
→ l = G

‖∇G‖

G

∇G

Figure 3.5: Step length of a directional Newton scheme in multi dimensions.

y

∇G d

Eq. (3.85)

yi∇Gi

∇Gj∇Gj
∇Gk

trial point
Previous

G = 0

G
∇Gj∇Gj

∇Gk

G > 0 G < 0
linearized performance function
Limit-state surface for the

Figure 3.6: Search direction for the HLRF algorithm as a sum of vectors.

132

value is updated

Used in DDM sensitivity

setParameter(description)
updateParameter(ID, newValue)
activateParameter(ID, tag)

Data members

RandomVariablePositioner

Object from FE model
+

Information about what is random
in the FE object, e.g., E, σy, etc.

Created by the user to identify an uncertain
parameter in the finite element model.

Called every time the performance
function is evaluated, passing the
new value of the random variable.

Member functions

update(newValue)

Data members

Member functions

FE model parameters

An object in the FE domain

Used only once; when a
random variable is identified
in the FE domain

Called by the random variable
positioner when a parameter

computations

Figure 3.7: Scheme for updating parameters in the finite element model with new realizations of
random variables.

133

4 User’s Guide to Reliability and

Sensitivity Analysis in OpenSees

In essence, OpenSees is a software framework for developing computer applications. It should not

be regarded as a packaged “code” but as a collection of software components. The object-oriented

programming approach facilitates this development strategy. The reliability and sensitivity imple-

mentations of this work conform to this development strategy. Thus, maintainability and extensibility

of the software are central issues.

The scripting language Tcl (Welch 2000) is employed as an interface to make use of the OpenSees

software framework. Commands are added to Tcl to create model components and to aggregate

analysis tools. This chapter provides a detailed overview of the commands added to Tcl to make

use of the reliability and sensitivity implementations presented in the previous chapters. Together

with the finite element analysis module, OpenSees is now capable of conducting comprehensive finite

element reliability and sensitivity analyses.

It is assumed that the user is familiar with executing an ordinary OpenSees analysis by creat-

ing and running Tcl scripts. The inexperienced user is referred to the documentation provided by

McKenna and Fenves (2002) for further details. The reliability and sensitivity commands are pre-

sented below in the same format as in other OpenSees documentations. Namely, a command is given

in the form

commmandName arg1? arg2 arg3? <arg4? ...>

A question mark after an argument indicates that an integer or a floating point number should be

provided; otherwise, a character string should be given. Optional arguments are enclosed in angular

brackets. Figure 4.1 provides an overview of the commands that are presented in the subsequent

sections.

135

4.1 ELEMENTARY REQUIREMENTS

None of the commands presented in this chapter will work before the command

reliability

is issued. This command “activates” the reliability and sensitivity commands by loading them into

the Tcl script interpreter.

A typical reliability analysis with OpenSees involves the following tasks:

1. Create an input file. This can be done in any text editor provided it saves the file in an ascii

format (pure text). The alternative is to give the commands one-by-one at the command

prompt of the interpreter. The advantage of working with an input file is that the user may

experiment and edit parameters without having to re-type all input parameters and commands

for each re-run.

2. In reliability analysis, the reliability analysis object orchestrates the computations. For this

reason the user should not issue the “analyze” command that is issued in other OpenSees

analyses. The finite element analysis is executed from inside the reliability algorithm. However,

the finite element model and analysis setup must be specified as for any OpenSees finite element

analysis.

3. Execute the analysis by loading the input file. This is done either from the OpenSees command

prompt by issuing the command “source filename,” or in a command window of the operating

system by issuing the command “opensees inputfilename.”

4. Inspect the results in the specified output file. An error message is generated by the program

if the analysis fails.

4.2 UNCERTAINTY MODELING

An essential ingredient in finite element reliability analysis is to characterize parameters in the finite

element model as uncertain. This is done by mapping random variables into the finite element

domain. This section describes how this is done and which components need to be created.

A random variable object can be created in several ways. The simplest command for this

purpose is:

136

randomVariable tag? type mean? stdv? <startPt?>

The tag argument indicates the identification number of the random variable. These objects must

be ordered in a consecutive and uninterrupted manner. mean is the mean and stdv is the standard

deviation of the random variable. type identifies the distribution type. The following library of

types is available: normal, lognormal, uniform, chiSquare, exponential, gamma, gumbel, laplace,

pareto, rayleigh, shiftedExponential, shiftedRayleigh, type1LargestValue,

type1SmallestValue, type2LargestValue, type3SmallestValue, weibull and beta. It is noted

that type1LargestValue and gumbel are identical. Some of the distributions cannot be completely

defined by the mean and the standard deviation and must be specified by using the command

described next. The startPt argument allows the user to specify a value for the random variable

to be used as the start point in the search for the design point or as the center of the sampling

distribution in an importance sampling analysis. By default the startPt is equal to the mean. See

also the startPoint object in Section 4.4.

Alternatively, a random variable can be created by the command:

randomVariable tag? type par1? par2? par3? par4? <startPt?>

Here the parameters of the probability distribution are given instead of the mean and standard

deviation. See Appendix B.9 for a detailed list of the available probability distributions and their

parameters. This command option is needed for distributions with more than 2 parameters. In such

cases the mean and standard deviation do not uniquely define the distribution. An example is the

beta distribution type, which requires four parameters. For 2 or 3 parameter distributions par3

and/or par4 are only dummy input but still must be provided.

Refer to the randomVariablePositioner command later in this section for yet another alternative

for creating random variable objects in OpenSees.

A user-defined random variable type is also available. See Section 3.2.2. Two alternatives

are available to specify its probability distribution. Either it can be specified on the command line

(all on one line):

randomVariable tag? userdefined -list x1? pdf1? x2? pdf2?

< x3? pdf3? x4? pdf4? x5? pdf5? ...> <startPt?>

or in a separate file:

randomVariable tag? userdefined -file filename.txt

The file format is two columns. The first column consecutively defines the points xi while the second

column specifies the corresponding values f(xi) of the PDF. In both commands, the PDF is considered

to be a piecewise linear function between the specified points. Any number of points can be specified.

137

A random variable reduction command is available. It may be used to reduce the number

of random variables in the model based on knowledge of the relative importance of the random

variables. This command provides a means of retaining consecutive random variable numbering

without rearranging the uncertainty model. For instance, importance vectors obtained by running a

computationally inexpensive second-moment analysis prior to a more costly FORM analysis may be

used to decide to disregard the uncertainty in some of the random variables. Two command syntaxes

are available:

rvReduction arg1? arg2? ...

rvReduction -file filename arg?

The arguments arg1? arg2? ... represent the tag numbers of the random variables, which should

be kept for subsequent analysis. In the latter command option these numbers are provided in a

file. The file contains one column, listing the importance ordering of the random variables by their

tag numbers. The argument arg states the number of random variables, which should be kept for

subsequent analysis. For instance, if arg is set to 30 then only the 30 most important random

variables will be kept. After execution of either of these commands the tags of the remaining random

variables are altered to correspond to their importance ordering. This is done to ensure that the

random variable tags are consecutive and uninterrupted numbers.

Correlation between random variables may be specified in three different ways:

correlate rv1? rv2? correlation?

correlateGroup firstRV? lastRV? correlation?

correlationStructure type firstRV? lastRV? theta?

The first version specifies a correlation coefficient equal to correlation between random variable

number rv1 and random variable number rv2. The second command specifies that all pairs of

random variables between random variable number firstRV and random variable number lastRV

are equi-correlated with a correlation coefficient equal to correlation. The last command specifies

a correlation structure for a group of random variables. The following correlation structures are

available. See Section 3.2.3 for more details:

homogeneous1 : ρij = exp

(
−|i− j|

θ

)

homogeneous2 : ρij = exp

(
−(i− j)2

θ2

)

homogeneous3 : ρij =
1

1 + θ (i− j)2

homogeneous4 : ρij =

{
1− |i−j|

θ

0

for

for

|i− j| ≤ θ

|i− j| > θ

138

vectorProduct : ρij = r
(
i− rvFirst + 1

)
r
(
j − rvFirst + 1

)

where ρij represents the correlation coefficient between random variable number i and random variable

number j. The positive-valued parameter θ is specified by the theta input of the command, while

the vector r must be provided in a file named correlationVector.txt if the vecorProduct type is used.

As discussed in Section 3.2.3, the values of the elements of r must be between −1 and 1.

To position/map the random variables into the finite element model the following

command structure is available (all on one line):

randomVariablePositioner tag? (...random variable identification...)

(...parameter identification...)

The tag argument indicates the identification number of the random variable positioner. If the

random variable in question has already been created by the randomVariable command, then the

random variable identification simply reads: -rvNum rvNum?. However, the random variable identi-

fication can also be given as a command to create a new random variable. In this case the random

variable identification can have any of the following alternative forms (the random variable is auto-

matically assigned the same tag as the random variable positioner tag):

-createRV3 type mean? stdv?

-createRV4 type mean? stdv? startPt?

-createRV5 type par1? par2? par3? par4?

-createRV6 type par1? par2? par3? par4? startPt?

The same distribution types as listed above for the randomVariable command are available. Note

how the first argument informs the interpreter about the number of arguments that follows to char-

acterize the random variable.

The available parameter identification alternatives in the positioner command depend on which

parameters in the finite element code have been enabled for uncertainty characterization. New pa-

rameters are frequently made available on request from users. The current list of available parameters

is given below. The parameters are classified as either (1) belonging to material, section or element

objects, (2) being a nodal coordinate, (3) being a nodal load, or (4) representing a parameter of a

time series object. The first category of parameters is identified in the following manner:

-element arg1? <-section arg2?> <-material arg3?> type

Two examples are:

-element 4 E

-element 5 -section 6 -material 7 sigmaY

139

The first example identifies the Young’s modulus of element number 4. This is a typical positioner

command for a linear element, where the Young’s modulus is a parameter of the element object itself.

The second example identifies the yield strength of material 7 of section 6 of element 5. Table 4.1

contains an overview of the element, section and material parameters that have been made available

for uncertainty characterization.

A nodal coordinate is identified as follows:

-node nodenumber? -coord direction?

A nodal mass is identified as follows:

-node nodenumber? -mass direction?

A nodal load is identified as follows:

-loadPattern patternTag? -loadAtNode nodeNumber? dof?

A random variable of the discretized random process object described in Section 3.2.5 is identified

as follows:

-loadPattern patternTag? -randomProcessDiscretizer kickInTime?

The kickInTime argument indicates the point along the time axis, where the random impulse occurs.

Positioning of quantities other than random variables may be done with the command:

parameterPositioner tag? (...parameter identification...)

This command is especially useful in conjunction with parametric reliability analysis, see Section 4.5.

By employing this command and including quantities such as par_1 and par_2 in the performance

function (see Section 4.3) “fragility curves” for various demand parameters in the finite element

model may be obtained by automatic execution of a sequence of reliability analyses. The parameter

identification syntax is identical to the randomVariablePositioner command described above.

Discretized random processes can be used as a time series object. This object may be used to

create a stochastic ground motion input in OpenSees. In the core OpenSees framework, there exists

no stand-alone command to create time series objects McKenna and Fenves (2002). However, time

series may be used as arguments for a number of commands. Two new time series objects have been

added, corresponding to the following commands:

DiscretizedRandomProcess mean? maxStdv? modFuncTag1? <...>

SimulatedRandomProcess spectrumTag? mean? numFreqIntervals?

140

The mean argument is used to specify a constant mean which is added to the generated process. The

maxStdv argument is used to specify the target maximum standard deviation over all time points

with random pulses. The modFuncTag1? argument denotes the tag number of a modulating function.

The angular brackets emphasize that several modulating functions can be specified. Each modulating

function has a filter associated with it. A modulating function is created by the following command:

modulatingFunction tag? type filterTag? <arg1? arg2? ...>

The type argument can be either gamma (in which case arg1 represents a, arg2 represents b and

arg3 represents c in the equation a tb e−c t); constant (in which case the amplitude is provided by

arg1) and trapezoidal (in which case arg1, arg2, arg3 and arg4 represent the four time instants

t1, t2, t3 and t4 defining the trapezoidal and arg5 denotes the constant amplitude between points t2

and t3).

Filters to specify the frequency content of a discretized random process are created by the com-

mand:

filter tag? type <arg1? arg2? ...>

Currently only one type of filter is available, namely standard, which denotes the impulse-response

function for a standard linear oscillator.

Power spectral density (PSD) functions to be used in conjunction with the

SimulatedRandomProcess time series are created by the following command:

spectrum tag? type <arg1? arg2? ...>

The realization of the time series is based on the following equation:

x(t) = µ +
∑N

i=1

√
2 S(ωi) ∆ω Ai cos (ωit + θi), where S(ω) is the PSD amplitude at the fre-

quency ωi and θi and Ai are random generated numbers having uniform and normal distributions,

respectively. Available spectrum types are: (1) bandedWN, in which case arg1, arg2 and arg3 de-

notes ωmin, ωmax and PSD amplitude, respectively, of a banded white noise spectrum; (2) jonswap,

in which case arg1, arg2, arg3, arg4 and arg5 denotes ωmin, ωmax, α, ωp and γ in the equation

S(ω) = γ
exp

(
− ω−ωp

2 σ2 ω2
p

)

α ω−0.5 exp

(
−5

4

(
ω

ωp

)−4
)

where σ = 0.07 for ω ≤ ωp and σ = 0.09 for ω > ωp; and (3) points, in which case arg1, arg2,

arg3, arg4, etc., represent ω1, PSD1, ω2, PSD2, etc., of the arbitrary number of PSD coordinates

along the frequency axis.

141

4.3 PERFORMANCE FUNCTIONS

In structural reliability analysis performance functions are the means by which the “failure” and

“safe” states are distinguished. In OpenSees the command performanceFunction is available for

defining the performance function. The general syntax of the command is:

performanceFunction tag? "expression"

The expression must to be enclosed by double-quotes, as shown, and can be any analytical ex-

pression that can be evaluated by the Tcl interpreter (Welch 2000). Various quantities may be used

in the expression, including random variables, response quantities from an OpenSees finite element

analysis, quantities stored to file, and parameters defined in the Tcl interpreter. The syntax shown

below should be used. Note that the curly braces are mandatory and that the recorders are created

automatically for quantities starting with the phrase rec (the syntax corresponds to the syntax used

to create ordinary recorders in OpenSees)

• {x_5}: random variable number 5.

• {u_5_2}: displacement of node 5 along dof number 2.

• {ud_5_2}: velocity of node 5 along dof number 2.

• {rec_node_disp_5_2}: recorded displacement of node 5 along dof number 2.

• {rec_node_vel_5_2}: recorded velocity of node 5 along dof number 2.

• {rec_node_accel_5_2}: recorded acceleration of node 5 along dof number 2.

• {rec_element_5_globalForce_2}: recorded global element force in direction 2 of element

number 5.

• {rec_element_5_localForce_2}: recorded local element force in direction 2 of element num-

ber 5.

• {rec_element_5_section_2_force_1}: recorded section force component 1 (for instance axial

force) of section 2 in element 5.

• {rec_element_5_section_2_deformation_1}: recorded section deformation component 1 (for

instance axial deformation) of section 2 in element 5.

142

• {rec_element_5_section_2_stiffness_1}: recorded section stiffness component 1 of section

2 in element 5.

• {rec_element_5_section_2_fiber_2_36_6_54_stress}: stress of fiber at location y = 2.36, z =

6.54 in section 2 of element number 5.

• {rec_element_5_section_2_fiber_2_36_6_54_strain}: strain of fiber at location y = 2.36, z =

6.54 in section 2 of element number 5.

• {par_5}:parameter number 5 (e.g., in parametric reliability analysis).

• {file_filename_5_2}: quantity in row 5 and column 2 of a file. Tcl does not allow dots in

parameter names. Hence, it is not possible to include dots in the file name.

• {variableName}: parameter previously defined by a command

set variableName value? in the Tcl interpreter session.

All finite element response quantities are sampled at the final converged state of the analysis. An

example of a performance function for response statistics analysis of a single response quantity is:

performanceFunction 1 "{u_7_1}"

An alternative example involving more quantities and mathematical operations is:

performanceFunction 1 "{par_1}-2*({u_7_1}+{file_myFile_4_1})*log({x_4})"

A performance function involving the base shear force of a building may, for instance, be defined in

terms of the sum of global element forces.

4.4 ANALYSIS TOOLS

An important part of the development of the reliability analysis framework has been to modularize

the analysis algorithms. This is done in a fashion similar to the analysis component framework of the

core finite element implementations. A high level of maintainability and extensibility of the software

is obtained with this approach.

Before a reliability analysis is executed the user must create an aggregation of necessary analysis

components or “tools.” Which analysis components are needed depends on the analysis type, as

described in Section 4.5. Below is a review of the available tools. The order in which the tools are

143

provided are of importance, since some tools make use of others. The user will be notified by an

error message if such dependencies are violated.

A probability transformation object is needed for transformation of the random variables

between the original and standard normal spaces. This analysis tool must also provide the Jacobian

matrix of the transformation. Currently, the Nataf model (Liu and Der Kiureghian 1986) is the

available implementation of this component in OpenSees. The corresponding command reads:

probabilityTransformation Nataf <-print flag?>

The optional print flag is 0 by default but can be set to 1 to print realizations of the random variables

to screen. For instance, information about how many standard deviations the realizations are from

the mean can be provided. This information may be useful to detect causes of non-convergence due

to physically unrealistic realizations.

An object to compute the value of the performance function(s) for a given realization

of the random variables is created by the gFunEvaluator command. The following five alternative

implementations are available at this time:

gFunEvaluator Basic

gFunEvaluator OpenSees -analyze numIncr? <dt?>

gFunEvaluator OpenSees -file filename

gFunEvaluator Tcl -file codeFileName

gFunEvaluator Matlab realizationFile codeFile gFunFile

The Basic g-function evaluator is used when only basic random variables are included in the perfor-

mance function. In this case, no external analysis is needed to evaluate the performance function.

When the OpenSees g-function evaluator is specified, an OpenSees finite element analysis is

executed each time the performance function is evaluated. Hence, response quantities from such

analysis may be included in the performance function. The user may specify the number of analysis

increments (and ∆t for dynamic analysis) or a file with analysis commands. The latter option is

included since all finite element analysis commands must be orchestrated from the reliability analysis

algorithm. For a finite element analysis scheme that requires specification of more than the number

of increments and ∆t, the file option must be used. Each time the g-function evaluator is invoked the

commands in the file are executed. As mentioned in Section 3.3.4, it is essential that the finite element

domain reach the same final (pseudo-) time at each performance function evaluation. Variable time-

stepping schemes may be handled by using the -file option of the OpenSees g-function evaluator,

typically with the following file content:

set targetTime ...

144

set currentTime 0.0

while {$currentTime < $targetTime } {

analyze 1

set currentTime [getTime]

if { ($targetTime-$currentTime)<$maxLambda } {

set deltaLambda [expr $targetTime-$currentTime]

(Or choose some other scheme to approach the target time.)

Make integrator with step size equal to $deltaLambda

analyze 1

}

}

The Tcl g-function evaluator is provided so users may write their own algorithms in the Tcl

language to evaluate performance functions. A finite element analysis is not automatically executed.

If the user wants to execute an OpenSees finite element analysis as part of the performance function

evaluation, it is necessary that the reset command be issued in each evaluation. All necessary

computations and commands must be specified by the user in the file named by the codeFileName

argument. Values of the current realization of the random variables are available as parameters $x_1,

$x_2, etc., in the Tcl interpreter. At the end of the computations the user must make sure that all

quantities in the performance function(s) have been computed and either set as parameters in the

Tcl interpreter or stored in appropriate files. See Section 4.3 for syntax of the performance functions.

When this option is used together with a finite difference gradGEvaluator scheme, there is a danger

of round-off error. If sufficient accuracy cannot be provided, then the perturbationFactor option

of the finite difference gradGEvaluator may be used to increase the perturbation size.

The Matlab g-function evaluator is available for users who have their own Matlab (The Math-

works, Inc. 2003) algorithms available to evaluate performance functions. The essential ingredients

are: (1) the user must have the dynamic link libraries libeng.dll, libmi.dll, limmx.dll and libut.dll

available in the directory from where OpenSees is run, (2) realizations of the random variables are

printed to the file named as the realizationFile argument, (3) a Matlab file named as the codeFile

argument is executed, and (4) the values of the performance functions are stored in a column in a

file named as the gFunFile argument. Each row provides one performance function value and the

row number corresponds to the performance function number.

Gradients of the performance functions with respect to the random variables are computed

by the gradGEvaluator object. Currently two alternatives are available:

145

gradGEvaluator OpenSees <-check>

gradGEvaluator FiniteDifference <-pert arg1?> <-check>

The first command makes use of the DDM implementations available in OpenSees, while the second

command perturbs the values of the random variables and re-evaluates the performance functions to

obtain a forward finite difference estimate of the gradient vectors. The perturbation is equal to

∆xi =
σi

arg1
(4.1)

where σi is the standard deviation of random variable xi. The default value of the perturbation factor

arg1 is 1000, but can be modified by the user. The -check flag is available to have the gradient vector

printed to the screen. This option may be useful to developers for debugging purposes; comparison

of gradients computed by finite difference and the DDM can be obtained by using this option.

A search direction object to obtain the search direction vector in the algorithm for finding the

design point is created by the searchDirection command. Specific implementations at this time

are:

searchDirection iHLRF

searchDirection PolakHe

searchDirection SQP c_bar? e_bar?

searchDirection GradientProjection

See Section 3.5 for details on the four algorithms. c̄ and ē are parameters of the sequential quadratic

programming (SQP) algorithm. A root-finding algorithm to find the limit-state surface must be

provided before a Gradient Projection algorithm is created.

A step size selection object to obtain a step size in the line search along a search direction

is created by the stepSizeRule command. Two specific implementations are available at this time.

The simplest gives the user an opportunity to force the step size to be fixed throughout the search:

stepSizeRule Fixed stepSize?

stepSize is the user-selected constant step size. The alternative is to employ the Armijo line search

algorithm. The current implementation of the Armijo rule is tailor-made for finite element reliability

analysis. The command reads (all on one line):

stepSizeRule Armijo -maxNum arg1? -base arg2? <-print arg?>

<-initial b0? numSteps?> <-sphere radius? dist? evol?>

where arg1 represents the maximum number of step size reductions before the step size is accepted;

arg2 represents the base number b in the step size value bk, where k ≥ 0 is the smallest integer

satisfying the merit function check (see next item). The optional arguments in the command address

146

an important issue in finite element reliability analysis. In parts of the outcome space of the random

variables the performance function may not be computable due to non-convergence of the finite

element algorithm. The -initial and -sphere flags are available to avoid trial steps too far out

in the failure domain. With the -initial option the user specifies the value bo in Eq. 3.83. After

numSteps trial steps, the value of this parameter is restored to bo = 1.0. The alternative -sphere

option allows the user to define a hyper-sphere, within which the trial steps are restricted to stay.

The sphere is defined in the standard normal space and its radius is equal to ‖y‖ =radius. The user

should select a conservative initial value of the radius to avoid trial steps in the failure domain. Since

the design point may not be located inside the hyper-sphere, the radius may need to be increased.

The evolution of the radius is governed by the input argument evol in the following manner. If two

consecutive trial points have been located within a distance of dist of the hyper-sphere surface, then

the radius is increased by the amount specified by the evol argument. The default values of the

parameters are as follows: arg1 = 10, arg2 = 0.5, b0 = 1.0, numSteps = 2, radius = 50.0, dist = 0.1

and evol = 0.5. The user may consider using b0=0.3 or radius=3.0 to invoke the above-mentioned

remedies in typical finite element reliability problems.

A root finding algorithm is used by the gradient projection search algorithm and by a tool to

visualize the limit-state surface. Other applications are also possible. The rootFinding object is

created by the command:

rootFinding type -maxIter arg1? -tol arg2? -maxStepLength arg3?

Currently, the type can be Secant or ModNewton, corresponding to the secant method and the

modified Newton method, respectively. arg1 denotes the maximum number of iterations, while

arg2 denotes the tolerance measure on the performance function value, scaled by the initial value.

The argument arg3 can be used to limit the length of the steps of the search for the root. This

may be useful in nonlinear finite element reliability problems, where too large a step may lead to

non-convergence of the finite element analysis.

A merit function object to determine the suitability of a step size is created by the meritFunctionCheck

command. The following specific implementations are available at this time:

meritFunctionCheck AdkZhang -add arg? -multi arg? -factor arg?

meritFunctionCheck PolakHe -factor arg?

meritFunctionCheck SQP -factor arg?

meritFunctionCheck criteriaReduction

The arguments add and multi are used to compute the factor c so that c > ‖u‖
‖∇G‖ by the following

equation c = (multi) ‖u‖
‖∇G‖ + (add), see Section 3.5.5. Default values are multi=2 and add=10. The

147

argument -factor is used in the equation f1 (old and new trial point) ≤ factor λ f2(. . .), which is a

typical format of a merit function check. The criteriaReduction type requires that all convergence

criteria be improved to accept the step size. This option is not scientifically based and may jam the

algorithm, but is included for research purposes.

A convergence check object to determine if a design point has been found is created by the

reliabilityConvergenceCheck command. At this time there are two convergence check objects

available, each involving two convergence criteria (see Section 3.5.2):

reliabilityConvergenceCheck Standard -e1 arg? -e2 arg?

reliabilityConvergenceCheck OptimalityCondition -e1 arg? -e2 arg?

For the standard convergence check e1 governs the convergence criterion G
Go
≤ e1, which determines

the closeness of the design point to the limit-state surface, while e2 governs the convergence criterion

‖u − αT uαT‖ ≤ e2, which determines how closely the gradient vector points towards the origin in

the standard normal space. The alternative convergence check examines the optimality conditions

for the constrained optimization problem.

A start point object is used either as a starting point for the search for the design point, or as the

center of the sampling density in an importance sampling analysis. It is created by the startPoint

command:

startPoint Mean

startPoint Origin

startPoint Given

startPoint -file filename

These options respectively select the start point as the mean of the random variables, the origin

in the standard normal space, the values given by the startPt argument of the random variables, or

a vector provided in a file with name specified by the filename argument. The latter vector must

be specified in the original space of random variables.

An object responsible for finding the design point is created by the findDesignPoint

command:

findDesignPoint StepSearch -maxNumIter arg? <print option>

The search is performed by a step-by-step search scheme. Each trial point is determined by computing

a step size in a line search along a selected search direction. Objects to perform these tasks must

have been created before the findDesignPoint object can be instantiated. The print option enables

the user to have the trial points or the design point printed to a file named filename:

148

-printAllPointsX filename

-printAllPointsY filename

-printDesignPointX filename

-printDesignPointY filename

-printCurrentPointX filename

-printCurrentPointY filename

In the above, the suffix X denotes the vector in the original space, whereas Y denotes the vector in

the standard normal space. This option is useful for the restart of a design point search.

A random number generator object is created by the randomNumberGenerator command.

One specific implementation is available at this time, namely employing the standard library function

available in the programming language C++:

randomNumberGenerator CStdLib

When a generated realization of independent standard normal random variables is used by the sam-

pling analysis object then the pre-selected probability transformation object transforms the realiza-

tion into the original space for subsequent performance function evaluation.

An object responsible for finding the curvatures of the limit-state surface at the design

point is created by the findCurvatures command. At this time only the first principal curvature

can be computed according to the method developed by Der Kiureghian and DeStefano (1991):

findCurvatures firstPrincipal

4.5 ANALYSIS EXECUTION AND RESULTS

Eight analysis types are available in the reliability module of OpenSees. This section describes the

corresponding commands to execute them. Needed analysis tools must have been specified prior to

any of these commands. During the course of a reliability analysis, status information may be printed

to a file or to the computer monitor. The complete results from a successful analysis are printed to

an output file with a name specified by the user, as shown below.

A FORM analysis object is created and the corresponding analysis is executed by the following

command:

runFORMAnalysis outputfilename <-relSens arg1?>

The optional flag arg1 is set to 1 if reliability sensitivities (the sensitivity of the reliability index

and estimated probability of failure with respect to means and standard deviations) are desired. A

149

probability transformation and a find-design-point algorithm (with their respective analysis tools)

must have been created before the FORM analysis object is created. The results in the output file

are self-explanatory except for the vectors x*, u*, alpha, gamma, delta and eta, as described below

(see also Chapter 2.12.2):

• x* is the design point realization of the random variables in the original space.

• u* is the design point realization of the random variables in the standard normal space.

• alpha is the negative normalized gradient of the limit-state function at the design point in the

standard normal space. This vector is also an importance measure for the random variables

when no correlation is present. High absolute value indicates high importance. A negative

value identifies a resistance-type variable and a positive value indicates a load-type variable.

• gamma is the importance vector for the original random variables when correlation is present.

In the case of independent random variables gamma=alpha.

• delta is the sensitivity of the reliability index β with respect to the mean of each random

variable, as scaled by the corresponding standard deviation. This vector is scaled to unit

magnitude in OpenSees.

• eta is the sensitivity of the reliability index β with respect to the standard deviation of each

random variable, as scaled by the same standard deviation. This vector is scaled to unit

magnitude in OpenSees.

A sampling analysis object is created and the corresponding analysis is executed by the fol-

lowing command (all on one line):

runSamplingAnalysis outputfilename -type arg1 -maxNum arg2?

<-targetCOV arg3?> <-stdv arg4?> <-print arg5?>

The order of the optional arguments is arbitrary. arg1 must be given as either failureProbability

or responseStatistics, arg2 denotes the maximum number of simulations, arg3 denotes the target

coefficient of variation of the estimate (either the estimate of failure probability or the estimate of the

mean) (default = 0.05), arg4 denotes the standard deviation of the sampling distribution (default

= 1.0) and arg5 is a print flag with the following meaning: If arg5 is set to 0, then the status of

the sampling analysis is not printed to the screen nor to a file. If arg5 is set to 1, then the status

after each sample is printed only to the screen. If arg5 is set to 2, then it is assumed that the

150

sampling analysis is to be restarted. A file with the name “restart” preceding the output file name

is created the first time the analysis is executed. Subsequent restart analyses read information from

this file about the sampling number, the seed for the random number generation, and the status of

the failure probability estimates and the corresponding coefficients of variation. The restart option

is only available for failure probability sampling analysis.

The startPoint (see Section 4.4) is used as the center point for the sampling distribution. If a

file containing a vector is specified as the center of the sampling distribution, then it is assumed that

this is specified in the original space.

Note that it is inefficient to compute DDM sensitivities while performing a sampling analysis.

Gradients may be costly to compute and they are not needed in the implemented sampling analysis

schemes.

A probability transformation, a g-function evaluator and a random number generator must have

been created before the sampling analysis object is created. The results in the output file are self-

explanatory.

A mean out-crossing rate analysis object is created and the corresponding analysis is executed

by the following command (all on one line):

runOutCrossingAnalysis outputfilename

-results arg1? arg2? arg3? -littleDt arg4? arg5

arg1 indicates the number of the time steps (of the dynamic finite element analysis) until the start

of the interval in which out-crossing results are computed. arg2 indicates the number of time steps

until the end of the interval in which results are computed. arg3 indicates the number of time steps

between the points at which results are computed. arg4 is the quantity δt explained in Section

3.4.6. arg5 can be specified as either -Koo or -twoSearches. The latter option implies that two

design point searches will be performed for each evaluation point, while the former employs the

method developed by Koo (2003). See Section 3.4.6 for further details. It is assumed that the user

has specified a discretized random process as time series for at least one load pattern and that the

corresponding random variable positioners have been created to map random variables into this time

series object. See Section 4.2 for the syntax.

A performance function evaluator, a gradient evaluator and an algorithm to find the design point

must have been created before the out-crossing analysis object is created. The results in the output

file are self-explanatory.

A parametric reliability analysis object is created and the corresponding analysis is executed

by the following command (on one line):

151

runParametricReliabilityAnalysis outputfilename

-par arg1? -range arg2? arg3? -numInt arg4?

arg1 is the identification number of the parameter in the performance function, which is to be varied

to create the probability curve. See Section 4.3 for the syntax of the performance function and

Section 4.2 for the options of mapping the parameter values into the OpenSees finite element model.

arg2 and arg3 denote the start value and the end value of the parameter and arg4 represents the

number of intervals of equal length between the start value and the end value. A FORM analysis

and a subsequent reliability sensitivity analysis is performed at each discrete value of the parameter

to obtain parametric reliability results. A gradient evaluator and an algorithm to find the design

point must have been created before the parametric reliability analysis object is created. The results

in the output file are self explanatory.

A first-order second-moment (FOSM) analysis object is created and the corresponding

analysis is executed by the following command:

runFOSMAnalysis outputfilename

A performance function evaluator and a gradient evaluator must have been created before the FOSM

object is instantiated. The results in the output file are self-explanatory.

A SORM analysis object is created and the corresponding analysis is executed by the following

command:

runSORMAnalysis outputfilename

An algorithm to compute curvatures must have been created before the SORM object is created.

The results in the output file are self-explanatory.

A system reliability analysis object is created and the corresponding analysis is executed by

the following command:

runSystemAnalysis outputfilename arg1

where the only option for arg1 currently is allInSeries. This option indicates that all the per-

formance functions are treated as belonging to a series system. No analysis tools are needed for

the system analysis. However, similar to the SORM analysis, a prior FORM analysis is required.

Currently, the system reliability does not read any information from file. Hence, the prior FORM

analysis must have been run in the same Tcl interpreter session.

A visualization analysis to graphically visualize the performance function or the limit-state

surface is available. This may be useful to investigate reasons for convergence problems or to obtain

152

a visual picture of a reliability problem. While the dimension of the space in which the limit-state

surface is defined is equal to the number of random variables, only 2-D and 3-D visualization options

are available. The user selects the axes (random variables) to be spanned by the visualization plot.

The command reads as follows (all on one line):

runGFunVizAnalysis outputfile -space arg1 -funSurf arg2 ...

<-dir arg3 arg4> <-convResults filename>

arg1 should be set to either X or Y, depending on the space in which the input data is given.

arg2 can be either function or surface, depending on whether the user wishes to visualize the

performance function itself or the limit-state surface. The -dir flag is used only in the visualization

of the limit-state surface to indicate the direction along which the search for the limit-state surface

is to be performed. A root-finding algorithm is used in this direction. arg3 can be either rv or

file, depending on whether the search is to be conducted along the direction of random variable

number arg4 or along a vector specified in a file named arg4. The optional flag -convResults can

be included to have results from the convergence check, including the merit function value, printed

to a separate file. This is optional since the analysis then becomes more costly; the gradients need

to be computed at each visualization point. The three dots following arg2 can be replaced by either

one of the following specifications of the axes to be spanned by the visualization plot:

-coords1 rv1? from1? to1? numPts1?

-coords2 rv1? from1? to1? numPts1? rv2? from2? to2? numPts2?

-file filename numPts?

If the -coords option is used then the coordinate axes of the random variable space is used. A 2-D or

3-D plot is obtained depending on whether one or two random variables are specified, distinguished

by -coords1 and -coords2. The value of all other random variables are as specified by the “start

point” object. If the -file option is used then two or more points in the space of random variables

must be stored in one column in a file named filename. numPts denotes the number of evaluations

of either the performance function or the limit-state surface along straight lines stretched between

those points. For both the -coord and the -file options it is essential that the specification of the

space flag is consistent with the stored points or the to/from values. For instance, the user must

specify the X-space if the search points are stored in that space.

A performance function evaluator object, and possibly a root-finding object, must have been

created before the visualization analysis object is instantiated. When the -convResults flag is used

then the results in the corresponding output file are arranged into columns in the following order:

1. Performance function value

153

2. Distance from the origin to the current point in the standard normal space

3. The value of the merit function at the current point

4. The value of convergence criterion number 1 at the current point

5. The value of convergence criterion number 2 at the current point

If the visualization is performed along vectors between trial search points, then a division line is

printed in the file to distinguish the lines from each other. Such lines are characterized by containing

only zeros. In all other circumstances the visualization results (the values of the performance function

or the distance to the limit-state surface) are printed to a matrix in the corresponding output file.

This matrix has dimensions equal to the number of points along the axes specified by the -coord or

-file options.

4.6 RESPONSE SENSITIVITY ANALYSIS BY DIRECT DIFFERENTIATION

This section presents the commands currently available in OpenSees to compute response sensitivities

by direct differentiation. By setting up a “sensitivity algorithm” and a “sensitivity integrator,” DDM

sensitivity results are generated, which can then be used in a reliability analysis scheme or inspected

as stand-alone results from a deterministic ordinary finite element analysis.

Two alternatives are available to inspect sensitivity results in OpenSees. The first is by Tcl

commands that have been added to the interpreter:

sensNodeDisp nodeNum? dofNum? gradNum?

Alternatively, results can be obtained by creating recorder objects. This is analogous to the way

ordinary finite element results are obtained. To use the latter option, add -sensitivity arg? to an

ordinary recorder command. Then, instead of recording the response quantity itself, its sensitivity

is recorded. In this command, arg? denotes the gradient number, namely the tag number of the

variable in question. A typical command to set up a recorder for a DDM sensitivity analysis of a

response quantity reads:

recorder Node file.out disp -time -node 6 -dof 1 -sensitivity 1

DDM sensitivities are computed only if a so-called sensitivity algorithm has been created by the

command:

154

sensitivityAlgorithm arg1 <arg2>

The arg1 flag can be either -computeAtEachStep or -computeByCommand. The former alternative

must be used in all dynamic analysis and in all inelastic analysis. This is due to the need for

sensitivity results from the previous step in such analysis. When the -computeAtEachStep flag is

used, the response gradients are computed automatically at each step of the finite element analysis.

In elastic static analysis the -computeByCommand option is sufficient. The sensitivities can then be

computed at any time by issuing the Tcl command computeGradients. The optional arg2 flag can

be set to -parameters but is by default set to -randomVariables. This relates to whether the user

wants sensitivity results with respect to random variables or with respect to parameters defined by

the parameterPositioner command. The latter option is useful for stand-alone sensitivity analysis.

The sensitivity algorithm requires a sensitivity integrator to have been created:

sensitivityIntegrator arg1

This is the object responsible for assembling the right-hand side of the sensitivity equation. arg1 can

be either -static or -dynamic. If a dynamic sensitivity integrator is specified, then an additional

requirement is present. Namely, the ordinary integrator that has been specified for the ordinary finite

element analysis must have sensitivity capabilities. Currently, only one such “sensitivity enabled”

dynamic integrator is available (all on one line):

integrator NewmarkWithSensitivity gamma? beta?

<alphaM? betaK? betaKinit? betaKcomm?>

This command is identical to the one used to create an ordinary Newmark integrator object, except

for the NewmarkWithSensitivity type.

155

reliability

Uncertainty modelling
randomVariable
correlate
correlateGroup
correlationStructure
randomVariablePositioner
parameterPositioner
modulatingFunction
filter
spectrum

Performance functinos
performanceFunction

DDM sensitivity analysis
sensitivityIntegrator
sensitivityAlgorithm
(computeGradients)
(sensNodeDisp)
(recorder NodeGradient)

Analysis execution
runFORMAnalysis
runMVFOSMAnalysis
runFragilityAnalysis
runGFunVizAnalysis
runOutCrossingAnalysis
runSORMAnalysis
runSystemAnalysis
runSamplingAnalysis

Analysis components
findDesignPoint
startPoint
gFunEvaluator
gradGEvaluator
stepSizeRule
searchDirection
meritFunctionCheck

probabilityTransformation
randomNumberGenerator
findCurvatures
findRoots

reliabilityConvergenceCheck

Reliability model builder

Figure 4.1: Overview of Tcl commands for reliability and sensitivity analysis in OpenSees.

Table 4.1: Syntax to identify material, section and element parameters available for uncertainty
characterization.

Steel01 E, σy, b
SmoothSteel01 E, σy, b

Concrete01 fc, εco, fcu, εcu

SmoothConcrete01 fc, εco, fcu, εcu

BoucWen α, ko, n, γ, β, Ao, δA, δν , δη

Hardening E, σy, Hkin, Hiso

J2Plasticity E, ν, σy, Hiso, Hkin

GeneralizedPlasticity E, ν, σy, Hiso, Hkin, β, δ
Truss A

ElasticBeamColumn E, A, I (for the 2-D case)
DispBeamColumn (this object does not contain physical parameters)

NonlinearBeamColumn (this object does not contain physical parameters)
BeamWithHinges E, A, Iz (for the 2-D case)

Quad (this object does not contain physical parameters)

156

5 Numerical Examples and Case Studies

A number of examples are presented in this chapter. The main purpose is to demonstrate the

new features and analysis capabilities of OpenSees. The presentation starts with simple problems

and proceeds to a comprehensive example involving reliability analysis of a highway bridge used as a

“testbed” structure by the Pacific Earthquake Engineering Research Center. The chapter is concluded

with case studies discussing the problem of computing mean out-crossing rates of nonlinear response

to stochastic input.

5.1 A BASIC EXAMPLE

The first example model is termed “basic” since the performance function is defined explicitly in

terms of the basic random variables. A finite element analysis is not needed to evaluate it. This

example is also analyzed by the general-purpose structural reliability code CalREL (Liu et al. 1989)

and the results are compared. Three random variables are present. The first is assigned a lognormal

probability distribution with mean 500 and standard deviation 100. The second is also lognormal

but with mean 2000 and standard deviation 400. The last random variable is assigned the uniform

probability distribution with mean 5 and standard deviation 0.5. The correlation structure between

the random variables is specified in terms of the following correlation matrix:

[ρij] =




1.0 0.3 0.2

0.3 1.0 0.2

0.2 0.2 1.0


 (5.1)

The performance function reads (Liu et al. 1989, Example 2):

g(x) = par1 − x2

1000 x3

−
(

x1

200 x3

)2

(5.2)

where par1 = 1.0 is a deterministic parameter.

157

First a FORM reliability analysis is performed. Initially, the following input is used for the

analysis in OpenSees:

reliability

randomVariable 1 lognormal 500.0 100.0 500.0

randomVariable 2 lognormal 2000.0 400.0 2000.0

randomVariable 3 uniform 5.0 0.5 5.0

correlate 1 2 0.3

correlate 1 3 0.2

correlate 2 3 0.2

set a "{x_2}/(1000.0*{x_3})"

set b "{x_1}/(200.0*{x_3})"

performanceFunction 1 "1.0 - $a - $b*$b"

probabilityTransformation Nataf -print 0

reliabilityConvergenceCheck Standard -e1 1.0e-3 -e2 1.0e-3 -print 1

gFunEvaluator Basic

gradGEvaluator FiniteDifference -pert 1000

searchDirection iHLRF

meritFunctionCheck AdkZhang -multi 2.0 -add 10.0 -factor 0.5

stepSizeRule Armijo -maxNum 50 -base 0.5 -print 0

startPoint Mean

findDesignPoint StepSearch -maxNumIter 100

runFORMAnalysis FORMoutput.out

As seen, the search for the design point is performed by the improved HL-RF algorithm and it starts

at the mean point.

The search for the design point converges in 8 iterations. The following records are printed to the

screen during the analysis:

FORM Analysis is running ...

Limit-state function number: 1

Limit-state function value at start point, g=0.35

STEP #0: check1=(1.000e+000), check2=(6.798e-002), dist=0.126840

STEP #1: Armijo trial point rejected; reducing step size...

.......: check1=(4.168e-001), check2=(8.174e-002), dist=1.169291

STEP #2: check1=(3.782e-002), check2=(1.197e-001), dist=1.832142

STEP #3: check1=(6.233e-003), check2=(7.790e-002), dist=1.767500

STEP #4: Armijo trial point rejected; reducing step size...

.......: check1=(3.693e-003), check2=(1.696e-002), dist=1.767607

STEP #5: check1=(1.165e-004), check2=(1.087e-002), dist=1.772304

STEP #6: Armijo trial point rejected; reducing step size...

.......: check1=(6.924e-005), check2=(2.166e-003), dist=1.772303

STEP #7: check1=(6.385e-006), check2=(1.268e-003), dist=1.772392

STEP #8: check1=(3.523e-007), check2=(7.677e-004), dist=1.772399

Design point found!

Done analyzing limit-state function 1, beta=1.7724

FORMAnalysis completed.

158

Upon convergence the following output is stored in the output file:

###

FORM ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1

#

Limit-state function value at start point: 0.35

Limit-state function value at end point: -1.233e-007

Number of steps: 8

Number of g-function evaluations: 39

Reliability index beta: 1.7724

FO approx. probability of failure, pf1: 0.038164

#

rv# x* u* alpha gamma delta eta

1 6.319e+002 1.281e+000 0.72330 0.69625 -0.59008 -0.78831

2 2.320e+003 4.815e-001 0.27190 0.36613 -0.34354 -0.24828

3 4.526e+000 -1.126e+000 -0.63475 -0.61740 0.63013 -0.59776

###

The 39 evaluations of the performance function include 9 evaluations of the performance function and

its gradient by finite difference at the start point and the 8 trial points (9 · 4 = 36) plus 3 evaluations

during line searches that required reduction of the step size. The above results correspond to those

presented by Liu et al. (1989), except that 15 steps are reported for CalREL as opposed to 8 for

OpenSees. This is due to the use of the modified HLRF algorithm in CalREL while the improved

HLRF algorithm (Zhang and Der Kiureghian 1997) is used in OpenSees.

It is of interest to investigate the performance of the alternative search algorithms for this

problem. First the Gradient Projection algorithm (Section 3.5.4) is employed. To this end, the

meritFunctionCheck object is removed from the input file and a root-finding algorithm is intro-

duced. In addition, the step size and search direction algorithms are modified:

rootFinding Secant -maxIter 50 -tol 1.0e-2 -maxStepLength 1.0

stepSizeRule Fixed -stepSize 1.0

searchDirection GradientProjection

The following output is displayed during the analysis:

FORM Analysis is running ...

Limit-state function number: 1

Limit-state function value at start point, g=0.35

STEP #0: check1=(1.000e+000), check2=(6.798e-002), dist=0.126840

STEP #1: check1=(4.451e-003), check2=(2.223e-001), dist=1.798900

STEP #2: check1=(1.298e-005), check2=(1.258e-001), dist=1.781871

STEP #3: check1=(5.475e-003), check2=(7.073e-002), dist=1.767726

STEP #4: check1=(2.294e-007), check2=(4.237e-002), dist=1.773418

STEP #5: check1=(6.778e-004), check2=(2.515e-002), dist=1.771825

STEP #6: check1=(1.032e-006), check2=(1.520e-002), dist=1.772529

159

STEP #7: check1=(9.100e-005), check2=(9.144e-003), dist=1.772325

STEP #8: check1=(1.233e-004), check2=(5.563e-003), dist=1.772251

STEP #9: check1=(1.294e-004), check2=(3.361e-003), dist=1.772223

STEP #10: check1=(1.415e-004), check2=(2.039e-003), dist=1.772213

STEP #11: check1=(1.386e-004), check2=(1.233e-003), dist=1.772209

STEP #12: check1=(1.377e-004), check2=(7.478e-004), dist=1.772208

Design point found!

Done analyzing limit-state function 1, beta=1.77221

FORMAnalysis completed.

The number of steps with the Gradient Projection algorithm is comparable to the iHLRF algorithm.

However, the Gradient Projection algorithm requires 67 evaluations of the performance function

compared to 39 for the iHLRF algorithm. This is due to the root-finding procedure of the Gradient

Projection algorithm to project the trial points onto the limit-state surface. It is verified in the

output file that the same design point is found.

Next, the Polak-He algorithm is employed. For this purpose the root-finding algorithm is removed

and the Armijo step size rule from the iHLRF analysis is re-introduced. Furthermore, the search

direction and the merit function check are specified as:

searchDirection PolakHe

meritFunctionCheck PolakHe -factor 0.5

In addition, the performance function must be scaled due to the properties of the Polak-He algorithm

discussed in Section 3.5.6. As seen above, the value of the performance function at the mean point

is 0.35. Based on this information, it is selected to multiply the performance function by a factor of

15.0, that is:

performanceFunction 1 "15.0*(1.0 - $a - $b*$b)"

Keeping all other input the same, the following analysis progress is now observed:

FORM Analysis is running ...

Limit-state function number: 1

Limit-state function value at start point, g=5.25

STEP #0: check1=(1.000e+000), check2=(6.798e-002), dist=0.126840

STEP #1: check1=(2.451e-001), check2=(2.803e-001), dist=2.143408

STEP #2: check1=(8.753e-002), check2=(1.006e-001), dist=1.895190

STEP #3: check1=(3.075e-002), check2=(1.551e-002), dist=1.813694

STEP #4: check1=(9.815e-003), check2=(6.251e-003), dist=1.785576

STEP #5: check1=(3.084e-003), check2=(1.602e-003), dist=1.776539

STEP #6: check1=(9.655e-004), check2=(4.771e-004), dist=1.773694

Design point was found!

Done analyzing limit-state function 1, beta=1.77369

FORMAnalysis completed.

160

In this case the total number of evaluations of the performance function is only 28 (4 per trial point

due to the use of finite difference to compute the gradient). However, the scaling of the performance

function has an important influence on the convergence of the Polak-He algorithm. Figure 5.1 shows

the number of trial points for this algorithm with different start values of the performance function.

It is clear that proper scaling of the performance function is essential when using the Polak-He

algorithm.

Finally, the SQP algorithm discussed in Section 3.5.7 is applied to the problem. The same input

as the previous case is used, except for the following modifications:

searchDirection SQP -c_bar 200.0 -e_bar 0.5

meritFunctionCheck SQP -factor 0.5

This leads to the following display during the analysis:

FORM Analysis is running ...

Limit-state function number: 1

Limit-state function value at start point, g=0.35

STEP #0: check1=(1.000e+000), check2=(6.798e-002), dist=0.126840

STEP #1: Armijo trial point rejected; reducing step size...

.......: check1=(4.168e-001), check2=(8.174e-002), dist=1.169291

STEP #2: Armijo trial point rejected; reducing step size...

.......: check1=(1.991e-001), check2=(8.555e-002), dist=1.499568

STEP #3: Armijo trial point rejected; reducing step size...

.......: check1=(9.661e-002), check2=(3.124e-002), dist=1.641192

STEP #4: check1=(2.840e-003), check2=(4.043e-003), dist=1.776221

STEP #5: check1=(1.187e-006), check2=(8.522e-004), dist=1.772405

Design point found!

Done analyzing limit-state function 1, beta=1.7724

FORMAnalysis completed.

As seen, 5 steps and 3 step size reductions are used in the SQP algorithm to find the design point;

6 · 4 + 3 = 27 calls were made to evaluate the performance function.

In summary, for this example the SQP algorithm is most efficient followed closely by the Polak-He

algorithm when the performance-function is properly scaled. Next in efficiency comes the iHLRF

algorithm while the Gradient Projection algorithm ranks last in efficiency. Obviously, one example is

not sufficient to draw conclusions regarding the behavior of the different search algorithms. Results

of further testing are presented in the following sections.

An importance sampling analysis around the design point is now performed by executing the

following command (on one line):

runSamplingAnalysis file.out -type failureProbability

-variance 1.0 -maxNum 10000 -targetCOV 0.01 -print 0

161

The output file reads:

###

SAMPLING ANALYSIS RESULTS, LIMIT-STATE FUNCTION NUMBER 1

#

Reliability index beta: 1.8145

Estimated probability of failure pf_sim: 0.034799

Number of simulations: 10000

Coefficient of variation (of pf): 0.015994

#

###

It is seen that after 10,000 samples the probability estimate is obtained with a coefficient of variation

of 1.6%. The slightly higher reliability index of 1.81 from the sampling analysis as compared to the

FORM value of 1.77 suggests that the limit-state surface is curved away from the origin around the

design point. This may be investigated by employing the visualization analysis option in OpenSees.

Figure 5.2 shows different views of the limit-state surface in the standard normal space with the

following modification: To make it easier to interpret the surface the values exceeding the plot limits,

namely (y∗ ± 1), are set equal to ±1. The trial steps of the iHLRF algorithm are shown by squares

and connected by lines. The start point, which is close to the origin in the standard normal space,

is outside the plot limits. Figure 5.2 confirms that the limit-state surface is curved away from the

origin around the design point.

The parametric reliability analysis option in OpenSees is used to create a complementary CDF

for the random variable X = x2

1000 x3
−

(
x1

200 x3

)2

as defined in the performance function in Eq. (5.2).

This is done by automatically varying the parameter 0.3 < par1 < 1.3. By reliability sensitivity

analysis, as described in Section 3.4.4, the corresponding PDF is computed. Figure 5.3 shows the

result. Each point on the complementary CDF curve indicates one FORM reliability analysis.

5.2 PUSH-OVER ANALYSIS OF 3-D TRUSS

In this example the performance functions are specified in terms of response quantities from an

OpenSees finite element analysis involving a 3-dimensional truss model. DDM response sensitivity

equations for both 2-D and 3-D nonlinear truss elements are available in OpenSees. Typical reliability

results from OpenSees are presented to demonstrate features of the software framework.

The truss structure shown in Figure 5.4 is analyzed. Concentrated nodal loads are applied in the

x-direction at the four top nodes. The deterministic and uncertain model parameters are listed in

162

Table 5.1. Four different material models are considered: (1) elastic material, (2) bi-linear material,

(3) smoothed bi-linear material (as presented in Section 2.8) and (4) Bouc-Wen material (as presented

in Section 2.6). Example stress-strain curves for the mean-value materials are shown in Figure 5.5.

The bi-linear and smoothed bi-linear materials do not exhibit degrading behavior, as opposed to the

Bouc-Wen material model as shown in the figure. Degradation is, however, not considered in this

static example. While the load is applied along the x-axis direction, the truss is rotated 30 degrees

around its vertical axis compared to being aligned with axis directions. Hence, the example is not

symmetric and must be analyzed by a 3-D model.

First a linear static finite element reliability analysis is performed. 232 random variables are

present according to Table 5.1. Of interest is the probability that the top displacement in the x-

direction exceeds 110.0mm. The performance function for this event is formulated as

g = 110.0− x-displacementnode 21 (5.3)

Using the iHLRF algorithm, the first trial point is close to the design point for this linear structural

problem. The search converges in 2 steps to a reliability index β = 3.83.

Next, an inelastic static finite element reliability analysis is performed with the bi-linear mate-

rial model. 392 random variables are present according to Table 5.1. We now decide to seek the

probability that the top displacement in the x-direction exceeds 500.0mm. Hence, we define:

g = 500.0− x-displacementnode 21 (5.4)

An additional goal of this analysis is to identify which parameters/elements are important for this

performance function.

Using the iHLRF algorithm, the total analysis time was 4 minutes and 16 seconds on a 2.0 GHz

processor computer. The screen output is shown below:

DONE CREATING 392 RANDOM VARIABLES

FORM Analysis is running ...

Limit-state function number: 1

Limit-state function value at start point, g=325.027

STEP #0: check1=(1.000e+000), check2=(2.410e-001), dist=0.260802

STEP #1: Armijo starting gFun evaluation at distance 15.838...

.......: Armijo trial point rejected; reducing step size...

.......: Armijo starting gFun evaluation at distance 7.87007...

.......: Armijo trial point rejected; reducing step size...

.......: Armijo starting gFun evaluation at distance 3.88893...

.......: Armijo trial point rejected; reducing step size...

.......: Armijo starting gFun evaluation at distance 1.90422...

.......: check1=(1.862e-001), check2=(4.545e-001), dist=1.904219

163

STEP #2: Armijo starting gFun evaluation at distance 1.89189...

.......: check1=(3.623e-003), check2=(2.075e-002), dist=1.891885

STEP #3: Armijo starting gFun evaluation at distance 1.89531...

.......: check1=(2.237e-006), check2=(4.825e-004), dist=1.895307

Design point found!

Done analyzing limit-state function 1, beta=1.89531

FORMAnalysis completed.

Response gradients are computed by the DDM. Hence, as seen by the screen output, only 7 finite

element analyses were performed. The recorded displacement response for each iteration of the

search algorithm is shown in Figure 5.6. The results clearly show a problem commonly encountered

in nonlinear finite element reliability analysis when searching for the design point. Namely, the

start point is linear and the search algorithm tends to vastly overshoot the design point far into the

nonlinear domain in the first step. This is discussed below.

The resulting reliability index of β = 1.89 has a corresponding FORM estimate of the failure

probability of pf1 = 0.029026. Importance sampling around the design point gives the result pf si =

0.0447 (β = 1.70) with 6.5% coefficient of variation on the failure probability estimate after 1000

simulations. This indicates that the limit-state surface is curved towards the origin around the design

point in the standard normal space.

As discussed in Section 3.6, parameter importance measures are available as a by-product of

FORM analysis. These are useful in identifying structural elements and model parameters, which

have significant influences on the performance of the structure. A ranking according to the importance

vector γ defined in Section 3.6 is provided in Table 5.2. Figure 5.7 shows the corresponding element

and node numbers. It is observed that the yield strengths of the vertical elements 4, 20 and 2 are

most important, followed by the yield strengths of the surrounding cross braces. Based on physical

intuition it is reasonable that elements 2, 4 and 20 are important for the given performance function.

This exemplifies the usefulness of parameter importance measures from reliability analysis to gain

physical insight into a problem. It is also interesting to observe that the uncertainty in the nodal

coordinates is quite important, though the standard deviations are only 10.0mm.

The above reliability analysis converged to a reliability index of 1.89 for a displacement threshold

of 500.0mm. An attempt to compute a probability estimate for the displacement threshold equal to

600.0mm using the same iHLRF algorithm fails. This is because the trial point after the first step

in this algorithm is too far in the failure domain and the finite element analysis (for the selected

analysis setup) does not converge. The remedies discussed in Section 3.5 are now applied to solve

this problem. The effect of using alternative material models is also studied.

With a displacement threshold of 600.0mm the first trail point of the iHLRF algorithm is at a

164

distance ‖y‖ = 20.74 from the origin in the standard normal space. The expected reliability index,

on the other hand, is around 3.0. First the approach of Eq. (3.83) is employed, namely to reduce the

step size of the first few steps of the search algorithm. The following step size command is used:

stepSizeRule Armijo -maxNum 10 -base 0.5 -initial 0.5 2

The reliability analysis then successfully converges to a reliability index of β = 2.22 in 4 steps with

a total of 7 performance function evaluations. An importance sampling analysis around the design

point yields the result pf sim = 0.0209 (β = 2.04) with a coefficient of variation of 9% after 1000

simulations.

The option of using a “bounding sphere” is also tested. The following command is now used to

create a step size selection object:

stepSizeRule Armijo -maxNum 5 -base 0.5 -sphere 5.0 0.5 1.0

With this command the trial points are restricted to the inside of a sphere with radius 5.0 in the

standard normal space. If the design point is not found within the sphere, then the radius of the

sphere is increased. This is done by increasing the radius by 1.0 when two consecutive trial steps are

located within a distance of 0.5 of the surface of the sphere. This also turns out to be a successful

remedy to the problem. The reliability analysis converges to β = 2.22 in 4 trial steps. This time the

total number of performance function evaluations is 5; no trial points are rejected by performance

function evaluations in the Armijo rule.

Next, the performance of the Polak-He search algorithm (see Section 3.5.6) is tested. This algo-

rithm possesses steering parameters, which may guide the search to be performed in the safe domain.

First the parameters γ and δ are set to their default values of 1.0. The performance function is scaled

by a factor of 100 so that its value at the mean point is 4.25. The search algorithm produces the

following output to the computer display:

DONE CREATING 392 RANDOM VARIABLES

FORM Analysis is running ...

Limit-state function number: 1

Limit-state function value at start point, g=4.25027

STEP #0: check1=(1.000e+000), check2=(2.410e-001), dist=0.26080

STEP #1: Armijo starting gFun evaluation at distance 0.262565...

.......: check1=(9.903e-001), check2=(2.413e-001), dist=0.26256

STEP #2: Armijo starting gFun evaluation at distance 0.389141...

.......: check1=(9.807e-001), check2=(2.421e-001), dist=0.38914

STEP #3: Armijo starting gFun evaluation at distance 0.559386...

.......: check1=(9.641e-001), check2=(3.013e-001), dist=0.55938

STEP #4: Armijo starting gFun evaluation at distance 0.979161...

.......: check1=(8.747e-001), check2=(5.422e-001), dist=0.97916

165

STEP #5: Armijo starting gFun evaluation at distance 2.14232...

.......: check1=(1.230e-001), check2=(2.941e-001), dist=2.14232

STEP #6: Armijo starting gFun evaluation at distance 2.21184...

.......: check1=(1.798e-002), check2=(1.222e-001), dist=2.21184

STEP #7: Armijo starting gFun evaluation at distance 2.22084...

.......: check1=(1.821e-003), check2=(5.021e-002), dist=2.22084

STEP #8: Armijo starting gFun evaluation at distance 2.22137...

.......: check1=(2.025e-004), check2=(2.051e-002), dist=2.22137

STEP #9: Armijo starting gFun evaluation at distance 2.22105...

.......: check1=(2.472e-004), check2=(8.395e-003), dist=2.22105

STEP #10: Armijo starting gFun evaluation at distance 2.22083...

.......: check1=(1.312e-004), check2=(3.456e-003), dist=2.22082

STEP #11: Armijo starting gFun evaluation at distance 2.22072...

.......: check1=(5.981e-005), check2=(1.434e-003), dist=2.22071

STEP #12: Armijo starting gFun evaluation at distance 2.22067...

.......: check1=(2.595e-005), check2=(5.996e-004), dist=2.22066

Design point found!

Done analyzing limit-state function 1, beta=2.22067

FORMAnalysis completed.

It is interesting to observe that the problem of trial steps too far out in the failure domain does not

occur with the Polak-He algorithm with the default parameters. However, 12 trial steps are necessary

to obtain convergence as opposed to 4 steps for the iHLRF algorithm with the restricting sphere.

Alternative choices for γ and δ were tried. As expected, a smaller value of γ leads to a slower approach

towards the failure domain. For γ = 0.1, 108 trial steps are necessary. A search with γ = 5.0 requires

13 trial steps. The trial points quickly go out into the failure domain; however, maximum trial point

distance from the origin is only ‖y‖ = 2.99. Thereafter, the trial points approach the limit-state

surface from inside the failure domain. This trend is also observed with higher values of γ. It is

concluded that the Polak-He algorithm is an effective search algorithm for finite element reliability

applications.

We now consider a smoothed steel material model together with a 600.0mm threshold and the

original iHLRF algorithm. The value of the material parameters are provided in Table 5.1. The

search algorithm converges in 3 steps with the reliability index β = 2.19. The reliability index does

not change significantly due to the smoothing. However, an advantage in the search for the design

point has been achieved. The maximum trial point distance from the origin is ‖y‖ = 9.3, as opposed

to ‖y‖ = 20.74 with the bi-linear material. The improvement can be explained by the fact that a

larger portion of the structure experiences nonlinearity at the mean point when a smoothed material

model is used. This leads to a more reasonable estimate of the initial trial points.

Next, the Bouc-Wen material model is employed. 312 random variables are now present according

to Table 5.1. Again we employ the original iHLRF algorithm and seek the probability that the top

166

displacement in the x-direction exceeds 600.0mm. The analysis converges in 13 steps with a total

of 29 evaluations of the performance function. The reliability index β = 2.61 is obtained. The

maximum trial point distance from the origin is ‖y‖ = 9.04. These results indicate that the use of

the Bouc-Wen material model leads to the same advantageous effect regarding avoiding trial points

too far in the failure domain as the smooth material model. However, a greater number of trial

steps were necessary to converge to the design point. An explanation for this is that the Bouc-Wen

material model exhibits nonlinearity also in the initial part of the stress-strain relation. This implies

that all members of the truss exhibit some degree of nonlinear behavior at the design point. As a

consequence the performance function is more nonlinear, leading to an increased number of steps in

the search for the design point as compared to the smoothed bi-linear material model.

5.3 REINFORCED-CONCRETE FIBER-FRAME EXAMPLE

Consider the two-bay, two-story reinforced concrete structure shown in Figure 5.8. A fiber cross

section model is employed for the members of the frame. This enables the use of nonlinear uniaxial

steel and concrete material models to realistically describe the behavior of the reinforcing steel and

the confined and unconfined concrete. Particular attention is given to the importance of including

uncertainty in the nodal coordinates. Most finite element reliability analysis examples in the literature

neglect this source of uncertainty. Their inclusion in this report is made possible by the development

of and implementation of shape sensitivity results in Chapter 1.5.

All material parameters, nodal coordinates and lateral loads are characterized as uncertain. Each

member of the frame is assigned one random variable for the yield strength of its steel, for the

compressive strength of its concrete, etc. In total, 94 random variables define the reliability problem,

as listed in Table 5.3. The right-most column in the table indicates the correlation coefficient between

the random variables for pairs of members.

Three performance functions are considered:

g1 = 0.02 · (4.57 m + 3.66 m) − u9

g2 = 0.02 · (3.66 m) − (u9 − u8)

g3 = 0.02 · (4.57 m) − u8

The first defines the failure event as the exceedance of the horizontal displacement at node 9 above

2% of the height of the building. The second defines a similar threshold for the interstory drift. The

167

third defines the failure event as the exceedance of the horizontal displacement at node 8 above 2%

of the height of the first story.

Table 5.4 summarizes the reliability estimates. Importance sampling analysis is conducted for

the first performance function, to demonstrate the good accuracy of the FORM result. Based on

this observation, FORM analyses are carried out for the second and third performance functions

with enhanced confidence. It is noted that a new importance sampling analysis is required for each

performance function, since the design points differ. Furthermore, non-convergence in the finite

element analysis is frequently experienced during the sampling analysis when the simulated point is

too far in the failure domain. Provided the program does not terminate, which is usually not the case

unless, e.g., zero stiffness is encountered, this situation is recorded as a failure event in OpenSees.

The results in Table 5.4 indicate that the structure is least reliable with respect to the inter-story

drift limit.

Figure 5.9 shows the complementary CDF and the PDF of the displacement at node 9 obtained

by varying the drift threshold from 1% to 2%. Each point on the complementary CDF involves one

reliability analysis. The corresponding PDF is obtained by the available reliability sensitivity analysis

option in OpenSees. The figure shows results based on the bilinear material and the smoothed bi-

linear material model with smoothing starting at 70% of yield strength. It is clear that the smoothing

has little influence on the computed probabilities.

Table 5.5 shows the ranking of the 20 most important random variables for performance function

g1 for the importance vectors defined in Section 3.6. The value ∇g(µ)i σi, namely the product of

the gradient vector and the corresponding standard deviations, is the importance measure from a

first-order second-moment analysis which requires one finite element reliability analysis. The most

important variables are the upper and lower lateral loads, the yield stress of the reinforcing steel in

the lower middle column, followed by the horizontal coordinates of columns at the foundation level.

Several observations are made based on the results in Table 5.5. First, in this example the random

variables are dependent, which implies that the importance vector γ must be considered instead of

α. Second, it is seen that the importance measure obtained by a first-order second-moment analysis

centered at the mean has similarities with γ. This indicates that the structural behavior at the mean

point is similar to the behavior at the design point. This is not always the case. It is common that

the response at the design point is more nonlinear than at the mean point. Thirdly, four of the nodal

coordinates enter the list of the 20 most important random variables according to the importance

vector γ, even with a standard deviation as small as 10.0mm. This is an interesting finding that

corroborates observations made in other examples. It is also observed that the importance vector δ

168

exhibits the same characteristics as γ. However, the numerical values of their elements, not shown

in Table 5.5, are not identical. The vector η, on the other hand, does not rank nodal coordinates

equally high. The x-direction coordinate of node 4 ranks as number 21 in η. This indicates that

the reliability is not sensitive to changes in the standard deviation of the nodal coordinates. This

emphasizes the importance of including uncertainty in nodal coordinates, even when the standard

deviations are small.

The importance of the nodal coordinates can be explained in terms of the “P-∆” effect. Pertur-

bation of nodal coordinates leads to added bending moments due to axial force in the members. This

is particularly the case when significant gravity loads are present. Since uncertainty in the loads is

most significant, any uncertainty in the nodal coordinates leads to a significant uncertainty in the

added bending moments due to such P-∆ effects. Hence, nodal coordinates may be considered as

variables capable of inducing additional load. One may of course question the selected standard

deviation of the nodal coordinates. Nevertheless, these and other examples studied have indicated

that uncertainty in the nodal coordinates can be important and should be considered, if present.

5.4 I-880 HIGHWAY BRIDGE EXAMPLE

The Pacific Earthquake Engineering Research (PEER) Center has selected four “testbed” structures

for numerical studies and testing of developed analysis tools

(http://www.peertestbeds.net). In the present study, the I-880 highway bridge testbed is consid-

ered for reliability analysis. The finite element model of this structure is developed by Kunnath

et al. (2003). A frame consisting of four bents is modeled and both static pushover and dynamic

time-history analysis are conducted. Figure 5.10 depicts the general features of the model. Node and

element numbers are identified for the benefit of the subsequent discussion of the reliability results.

It is noted that the foundation is modeled in terms of soil spring elements. Furthermore, the columns

are modeled with distributed hinges at the element ends. The cross sections of these hinges are

fiber-discretized with realistic modeling of the confined and unconfined concrete and the reinforce-

ment steel by uniaxial material models. The structure is analyzed as a free-standing frame with no

interaction from adjacent bridge structures. The nodal coordinates of the model are presented in

Table 5.6.

In this study, all parameters describing material properties, cross-section geometry and nodal

coordinates are characterized as random. In fact, an important purpose of the reliability analysis is

169

to obtain parameter importance measures to identify which parameters are most importat. Tables

5.7, 5.8, 5.9 and 5.10 list the uncertainty characterizations used in the subsequent analyses. A total

of 320 random variables are considered.

The static analysis model is addressed, for which the probabilistic analysis has three purposes.

First, to obtain second-moment response statistics to investigate the propagation of uncertainty

through the finite element model, second, to obtain importance measures and, third, to perform

reliability analysis to estimate probabilities of achieving specified structural performance criteria.

The displacement of node 15005 in the transverse direction is selected as the response quantity of

interest. Figure 5.11 shows the pushover response at the mean-point of the random variables.

5.4.1 Performance Criteria

Four performance functions are considered for the static analysis, all involving the displacement

response at node 15005, which is denoted u. The corresponding load factor is denoted λ. The main

purpose is to demonstrate the capabilities of the reliability module in OpenSees. The first two criteria

are used to investigate the probability of reaching a certain displacement uo for a given load factor

λo, and conversely, to reach a certain load factor λo for a given displacement level uo. The expressions

for these performance functions read:

g1 = uo − u(at λo) (5.5)

g2 = λo − λ(at uo) (5.6)

It is seen that probability distributions as sketched in Figure 5.12 can be obtained by varying the

threshold uo in g1 and λo in g2.

In the finite element analysis the load-displacement curve is usually obtained by a load-control

analysis scheme. This is ideal for the evaluation of performance function g1. g2 can be evaluated

either by switching to a displacement-control analysis scheme or by solving for λ(uo) by, e.g., linear

interpolation between points on the load-displacement curve. In this work the latter approach is

used.

The next two performance criteria are meant to address the issue of structural failure. For

demonstration purposes it is assumed that loss of structural integrity can be expected when the

stiffness of the structure down-crosses a certain small level. This limiting tangent is selected to be

20% of the elastic tangent (Vamvatsikos and Cornell 2002). The stiffness is computed directly from

170

the load-displacement curve by finite difference calculations. Figure 5.13 shows the load-displacement

(λ − u) curve of Figure 5.11 together with the corresponding tangent k = dλ
du

at the mean point. It

is observed that the stiffness goes down in a nonuniform manner with the largest loss of stiffness

occurring at displacements around 0.02m and 0.1m.

The following performance criterion is used to estimate the probability of the displacement re-

sponse being less than a threshold uo when structural failure according to the above criterion occurs:

g3 = u (at 20% tangent) − uo (5.7)

Since u (at 20% tangent) can be seen as a displacement capacity of the structure, g3 represents a ductility

limit-state function. Similarly, a strength-type performance criterion is prescribed in the form:

g4 = λ (at 20% tangent) − λo (5.8)

That is, with g4 we seek the probability of reaching a certain load level before failure occurs.

5.4.2 Response Statistics

Before starting computationally intensive reliability analyses, it is useful to conduct second-moment

(FOSM) analysis. As outlined in Sections 3.4.1 and 3.6, this analysis approach renders response

statistics and useful variable importance measures.

FOSM results are obtained for all response quantities present in the performance criteria g1 to g4.

First, second-moment response statistics for u(at λo) are obtained. For this purpose, λo is varied from

0.0 to 0.22 and the mean and standard deviation of the corresponding u along the load-displacement

curve are obtained. The first-order approximation of the mean is equal to the load-displacement

curve at the mean point of the random variables. The first-order approximation of the standard

deviation involves an additional response sensitivity analysis. The results are shown in Figure 5.14.

It is observed that the uncertainty in the response due to the uncertainty in the model parameters

propagated through the finite element analysis increases along the load-displacement curve. In fact,

the standard deviation of the displacement for load factors higher than 0.22 increases by orders

of magnitude. This is due to the relatively high response sensitivity in this region of the load-

displacement curve. Of course the true standard deviation may not increase so rapidly; nevertheless,

this result shows that nonlinear response can be highly uncertain due to its higher sensitivity to

model parameter uncertainties.

171

Next, the response quantity λ(at uo) is considered. Results for the displacement threshold ranging

from 0.0 to 0.45 meters are shown in Figure 5.15. It is again observed that the standard deviation

of the load level steadily increases along the load-displacement curve.

Finally, FOSM analyses were performed for the response quantities u (at 20% tangent) and λ (at 20% tangent)

in performance criteria g3 and g4. The resulting second-moments are listed in Table 5.11.

5.4.3 Importance Ranking by FOSM Analysis

A useful by-product of FOSM analysis is the importance measures in Eq. (3.103). Ranking of the

random variables by these measures may be used to reduce the number of random variables before

proceeding to more costly FORM or importance sampling reliability analysis. However, care must be

exercised since the importance ordering at the mean point may be different from that at the design

point. Furthermore, the importance ordering may change along the load-displacement curve. For the

I-880 bridge, it has been observed that the importance measures from FOSM and FORM analyses

are consistent. This is partly due to the fact that the response regimes at both the mean and design

points are nonlinear. In situations where the response at the mean is linear, while the response at the

design point is nonlinear, the two sets of measures may not be consistent. Furthermore, for the I-880

bridge it has been observed that the importance measures change along the load-displacement curve.

This is natural since the initial response is linear, thus insensitive to such parameters as the yield

strength parameters, whereas with increasing load the response is more sensitive to parameters that

define the nonlinear behavior of the material. The trends observed when obtaining the FOSM results

in Figure 5.14 are discussed below. A selection of more detailed results is provided in Tables 5.12 to

5.15.

In the initial region of the load-displacement curve, the stiffness of the soil springs is identified as

the most important parameter. The stiffness and cross-sectional geometry of the horizontal elastic

elements close to the bent with node 15005 also rank high. Nodal coordinates in the y-direction,

in particular for the nodes of this bent, are among the top 25 most important parameters. This is

remarkable, given the fact that the standard deviation is only 1.27cm. Parameters f ′c and εc0 of the

cover concrete of the plastic hinges and the Young’s modulus of the elastic regions of elements 151

and 152 rank among the 40 most important parameters. Among the least important parameters in

this region of the load-displacement curve are all the parameters related to material yielding, such

as σy, the hardening parameters, fcu and εcu.

172

In the yielding region of the load-displacement curve (say λ values in the range λ > 0.17), the

yield strength parameters of both reinforcing steel and core/cover concrete of the columns are most

important, followed by vertical and horizontal soil spring stiffnesses. y-direction and z-direction nodal

coordinates still hold 10 of the 50 first positions in the importance ranking of all the 320 random

variables. Properties of the elastic horizontal elements seem rather unimportant, though properties

of element 153 rank as the 36th and 38th most important random variables in the model.

A transition between the two importance rankings discussed above is observed in the middle

region of the load-displacement curve, around λ = 0.15.

The observed high importance of the nodal coordinates may seem counterintuitive. However, the

explanation may again be found in the fact that perturbation of nodal coordinates leads to P − ∆

effects due to columns becoming off-vertical. In this case, significant gravity loads are present. (In

these analyses, gravity loads are applied before lateral loads are applied.) Since lateral loads generally

carry significant importance in reliability analysis, the P −∆ effect leads to the observed results.

5.4.4 Reliability Analysis

FORM analysis is conducted for performance functions g1, g2, g3 and g4. When performing such anal-

yses it is desirable to reduce the computational cost by neglecting the uncertainty in “unimportant”

random variables. For this purpose, the importance rankings discussed in the previous section are

used. For instance, for a performance function that is expected to have its design point in the yielding

region, only the most important random variables for this region according to the FOSM analysis

are characterized as uncertain. The remaining variables are set deterministically to their mean val-

ues. For this purpose the OpenSees command rvReduction is implemented. See Section 4.2. The

question as to how many random variables must be included to adequately capture the uncertainty

effects is addressed below.

We first consider performance function g1. The load factor is set to λo = 0.2 and a series of

FORM analyses are performed for varying threshold uo. Figure 5.16 shows the resulting probabilities

of failure (complementary CDF curve) and the corresponding derivative (PDF curve) obtained by

reliability sensitivity analysis in OpenSees. Results are obtained for three cases. First the 10 most

important random variables according to the FOSM analysis of u(at λo=0.2) are included. Then the

uncertainty in the 100 most important random variables is included. Finally, all 320 random variables

are included in the analysis.

173

It is observed that the results obtained by including the 100 most important random variables

are in close agreement with those obtained by including all the 320 random variables. For this

reason, in the subsequent reliability analyses only the 100 most important random variables for each

performance function are considered.

Next, a number of FORM reliability analyses are performed for limit-state function g2. The

displacement threshold is selected as uo = 0.3m. Figure 5.17 shows the resulting probability curves.

It is noted that the distributions shown in Figures 5.16 and 5.17 are particularly accurate in the tail

regions due to the asymptotic accuracy of FORM (Breitung 1989).

We now turn to the reliability analyses of performance functions g3 and g4. These are more

challenging, in part due to the need for the second-derivative of the response. This requirement is

understood by noting that the response tangent appears in the expressions for g3 and g4 and that the

gradient of these performance functions are needed in the reliability analysis procedure. The finite

difference method is used to compute these derivatives.

Initial efforts to find design points for g3 and g4 did not succeed. The reason for this may be found

by observing that the tangent curve shown in Figure 5.13 exhibits a “jagged” behavior. This is due

to many sudden changes in the stiffness due to yielding of individual material fibers. As a remedy

for this problem, smooth material models are used. The original bi-linear steel material is replaced

with the smoothed version developed in Section 2.8. The two smoothing parameters are chosen to

be γ = 0.5 and η = 4.0. This implies that the smoothing circle starts taking effect at 50% of the

yield stress. The material model is shown in Figure 5.18. The effects on the load-displacement curve

and the corresponding tangent are shown in Figure 5.19. It is clear that the overall response does

not change significantly as a result of the smoothing. In fact, with the smooth model it is possible to

obtain convergence of the finite element analysis for higher load factors. The effect of smoothing on

the tangent curve is more significant and is emphasized in Figure 5.20. As seen, the jagged behavior

is replaced by a smooth curve. This turns out to lead to successful reliability analyses. Again the

100 most important random variables from FOSM analysis are included in the FORM analyses. The

results are shown in Figure 5.21 for performance function g3 and in Figure 5.22 for performance

function g4.

In the above, the displacement has been the primary response quantity of interest. Analogous

results can be obtained for any other available response quantity, such as element forces, strains and

stresses.

174

5.4.5 Importance Ranking by FORM Analysis

A number of results and importance vectors are available from the FORM analyses performed above.

It is not regarded useful to include all this material in this report. However, it is noted that for the

analysis of the I-880 bridge the importance measures from FOSM and FORM were consistent. Only

small differences were observed. As mentioned earlier, this is most importantly because the nonlinear

response characteristics for this structure are similar at the mean and design points.

5.4.6 Verification of Results by Sampling Analysis

It is of interest to verify the reliability results obtained by the FORM approximation. In this study it

has proved useful to employ an importance sampling scheme around the design point for this purpose.

This approach has the advantage of revealing possible gross errors in the FORM approximation. This

approach is also computationally feasible as opposed to the crude Monte Carlo sampling schemes

around the mean point. For this verification, we consider the performance function

g = 0.35− u(λo = 0.2) (5.9)

The FORM analysis converges in 4 iterations with the results β = 2.26 and pf 1 = 0.01189.

An importance sampling analysis around the design point with 1000 samples leads to the estimate

pf, IS = 0.01074 with a coefficient of variation of 5.49%. This confirms the accuracy of the FORM

approximation, though it indicates a weak curvature away from the origin around the design point

of the limit-state surface in the standard normal space.

For demonstration purposes a crude Monte Carlo analysis is also executed. 2000 samples were

made. However, this brought the coefficient of variation of the probability estimate down only to

26.6%. The obtained probability estimate, namely pf, MC = 0.0070, is therefore not accurate. It is

emphasized that 2000 evaluations of the performance function, that is, 2000 finite element analyses,

are computationally costly for this model. The advantages of the FORM and importance sampling

solution methods are thus highlighted.

175

5.4.7 Dynamic Time-Variant Reliability Analysis, Mean Out-Crossing Rates

Two reliability analysis types are considered for the dynamic analysis of the I-880 highway bridge.

First, the mean out-crossing rate analysis discussed in Section 3.4.6 is employed. The results from

this analysis are presented in this section. In the following section a performance function involving

an accumulated damage measure is treated.

The filter properties and modulating functions used in defining the input process for this example

are shown in Figure 5.23. A filtered train of standard normal pulses with ∆t = 0.1 sec. is used. The

filter with period 0.1 sec. and 5% damping is modulated by the function q1(t) = 0.14 t5 e−1.9t and the

filter with period 0.3 sec. and 5% damping is modulated by the function q2(t) = 0.0035 t10 e−2.5t. The

target maximum standard deviation is selected to be 0.2 g. A corresponding sample ground motion

is shown in Figure 5.24.

The structural parameters are set equal to their mean values. When linear material models are

used for both steel and concrete, then the mean out-crossing rate shown in Figure 5.25 is obtained

for the threshold uo =0.1m at node 15005. By integration of the mean out-crossing rate over time,

the upper bound to the probability of the displacement response exceeding the threshold uo =0.1m

during the time interval 0 < t < 10 sec. is obtained. The result in this case is pf < 1.67 · 10−3.

It is of interest to study the design point realization of the ground motion excitation and the

response for the failure event at a given time. These are the most likely realizations that will give

rise to the event of interest, i.e., the displacement response exceeding the threshold uo =0.1m at

the given time. Figure 5.26 shows the response at the design point for the mean out-crossing rate

computated at t = 4.5 sec. It is observed that the response reaches the threshold uo =0.1m at t = 4.5

sec. It is also seen that the amplitude of the response increases gradually, in a manner opposite

to a free vibration response. In fact, Koo and Der Kiureghian (2003) have shown that the design

point excitation can be obtained by investigating the mirror image of the free vibration response of a

system released from a displacement equal to the performance function threshold. The corresponding

design point excitation is shown in Figure 5.27. It is observed that high-frequency content is visibly

present in the first part of the ground motion due to the selected filter properties and modulating

functions.

While the case of linear material models and the selected stochastic input leads to a linear

reliability problem, the nonlinear case is more challenging. Computation of mean out-crossing rates

of nonlinear response to stochastic input for complex multi-degree-of-freedom structures are both

costly and often require special strategies to determine the design point. Such strategies may involve

176

gradual increase of the threshold, each time using the previous design point as the start point, or

using the design point from a point close in time as the start point for the search for the design

point. Other interesting approaches, such as the above mentioned use of the mirror image of the free

vibration response, are also topics for future research. While further results will not be presented

for the I-880 highway bridge model, the subsequent Section 5.5 discusses the problem of finding the

design point for these problems in more detail.

5.4.8 Dynamic Reliability Analysis with Damage Index

In this section an alternative to the mean out-crossing rate analysis approach for dynamic problems

demonstrated above is presented. Here, the performance function is defined in terms of an accumu-

lated response quantity representing damage. Several such damage indices are found in the literature,

for instance that developed by Park and Ang (1985) for reinforce concrete. In this section, however,

a simple performance function is prescribed to demonstrate the availability of such analysis options

in OpenSees.

As an example, the case of deterministic excitation and random structural properties is con-

sidered. Due to the costliness of the dynamic finite element analysis, only the 20 most important

random variables, based on a prior FOSM analysis for the performance function presented below,

were included. The ground motion recorded at the Gilroy Historic station during the Loma Prieta

earthquake in 1989, scaled by a factor of 1.94 (Kunnath et al. 2003), is applied to the I-880 bridge

structure. Figure 5.28 shows the displacement response for the mean structure together with hys-

teresis curves for three different material fibers located in the plastic hinge section of column 152, as

indicated in Figure 5.29.

Consider the performance function

g = 22 · 106 N/m2 − Eh (5.10)

prescribed in terms of the hysteretic energy Eh of the reinforcing steel in fiber 2 in Figure 5.29. This

performance function is suitable for reliability analysis because accumulated response quantities have

continuous derivatives. This leads to good convergence behavior in the search for the design point.

In this case, a reliability index of β = 2.93 was obtained with a corresponding probability of failure

of pf = 1.67 · 10−3. While in this example a deterministic input was used, it is also possible to use a

stochastic input for such analysis.

177

5.5 MEAN OUT-CROSSING RATE ANALYSIS OF SIMPLE STRUCTURES

Mean out-crossing rate analysis for nonlinear multi-degree-of-freedom structures is computationally

costly, as mentioned in Section 5.4.7 above. To demonstrate the analysis capabilities in OpenSees and

to further emphasize the need for using smooth material models, two simple structures are considered

in this section. First, consider the single-degree-of-freedom (SDOF) structure in Figure 5.30 with

m1 = 10, 000kg and k1 = 400kN/m. In OpenSees, this structure is modeled by a single truss element

with unit length, unit cross-sectional area and a uniaxial material model. The truss is clamped at

one end and has a mass of m1 = 10, 000kg attached to the other end, which is free to displace in

the axial direction. Three material models are considered: namely, a linear model, a bi-linear model,

and a smoothed bi-linear model as developed in Section 2.8. The following material parameters are

selected: E = 400 kN/m2, σy = 20 kN/m2, b = 0.1, γ = 0.7 and η = 3.0. Structural damping is

specified as 1/5 of the initial stiffness, leading to a damping ratio of ζ =6.3%.

First, it is of interest is to employ the visualization options in OpenSees to obtain a visual

impression of the nonlinearities that appear in the performance function. For this purpose, consider

the case of a base motion applied at the clamped end and represented by two Gaussian pulses, the

first occurring at 0.0 sec. and the second occurring at 1.0 sec. Each pulse is filtered through a

unit-impulse-response function of a standard linear oscillator with period T = 1.0 sec. and damping

ratio ζ = 0.6. The maximum amplitude of each filtered pulse is scaled to 1.3g. Figure 5.31 shows

the excitation and the response at the point x1 = x2 = 1.0 for this example. For reference, the linear

response is also shown in Figure 5.31.

The performance function g = 0.3m− u1 is first considered. Figure 5.32 shows the values of the

performance function for a selected range of values of the two random variables for the case of the

bi-linear material. The zero-plane is also shown. It is observed that the performance function exhibits

kinks. The limit-state line characterized by g = 0 is the intersection between the limit-state function

and the zero plane. Figure 5.33 shows this line. Kinks in the limit-state line are clearly present.

This indicates that the gradient of the performance function has discontinuities. This violates the

assumption of continuous gradients in reliability analysis and may lead to nonconvergence in the

search for the design point. Figure 5.34 shows the result of replacing the bi-linear material with its

smoothed counterpart. It is observed that the limit-state line with the smooth material model is

smooth. The fact that the kinks in the limit-state are removed by using smooth material models

indicates that the convergence problems experienced with the use of bi-linear material models can

be overcome by use of smoothed material models.

178

Next, consider a train of Gaussian pulses with ∆t = 0.025 sec. filtered through the same filter,

applied as ground motion for the same one-degree-of-freedom structures with the smoothed material

model. A trapezoidal modulating function is applied where the four time instants defining the

trapezoid are 0.0 sec., 3.0 sec., 6.0 sec. and 9.0 sec. The target maximum standard deviation is 0.2g.

The finite element analysis is performed with ∆t = 0.01 and the quantity δt in Eq. (3.69) is selected

as δt = 0.025
20

. Figure 5.35 shows the mean up-crossing results obtained for the performance function

g = 0.2m− u1. For comparison, results obtained with the linear material model are also shown. It is

observed that the mean up-crossing rate is highest in the region between 3.0 sec. and 6.0 sec. This

is the region where the input excitation is strong. It is also seen that, as expected, the up-crossing

rate of the nonlinear structure is higher than that of the linear structure. An upper bound to the

probability of exceeding the threshold 0.2m can be obtained by integrating the mean up-crossing rate

along the time axis.

Next, consider the two-degree-of-freedom (2-DOF) structure in Figure 5.36. This structure is

modeled by two truss elements with unit area and unit length connected to form a series system.

The masses are m1 = 10, 000kg and m2 = 5, 000kg. The material parameters for the truss member

attached to the clamped end, representing the lower story, are: E = 600 kN/m2, σy = 30 kN/m2,

b = 0.1, γ = 0.7 and η = 3.0. The material parameters for the truss member attached to the free

end, representing the upper story, are: E = 300 kN/m2, σy = 12 kN/m2, b = 0.1, γ = 0.7 and

η = 3.0. Structural damping is specified as Rayleigh damping with the damping matrix being 1/5 of

the initial stiffness matrix. The same pulse train as for the SDOF model is applied and the following

two performance functions involving interstory drifts are considered:

g1 = 0.15m− u1 (5.11)

g2 = 0.15m− (u2 − u1) (5.12)

Figures 5.37 and 5.38 show the mean up-crossing rate results for g1 and g2, respectively. As for the

SDOF structure it is observed that the mean out-crossing rates are highest in the region 3.0 sec. to

6.0 sec. Also for the 2-DOF structure one can obtain upper bounds to exceeding the thresholds of

0.15m by integrating the mean up-crossing rate along the time axis.

Above it is demonstrated how the time-variant reliability problem is addressed in OpenSees by

computing mean out-crossing rates. These are, however, computationally costly analyses. This is

because, in some cases, up to 50 inelastic dynamic finite element analyses are needed to find the de-

sign point at each selected time instant. Future research may provide more efficient implementations,

179

e.g., making use of prior design points, and address the issue by developing alternative techniques

for determining the design point or better start points.

Table 5.1: Uncertain model parameters in 3-D truss model.

Parameter Distribution Mean C.o.V. Corr.
Cross-sectional area A of vertical
truss members (20 r.v.)

Lognormal 7450.0mm2 5.0% 0.0

Cross-sectional area A of all other
truss members (60 r.v.)

Lognormal 4350.0mm2 5.0% 0.0

Young’s modulus E for linear, bi-
linear and smoothed bi-linear ma-
terial (80 r.v.)

Lognormal 210, 000 N
mm2 5.0% 0.3

Yield strength σy for bi-linear and
smoothed bi-linear material (80
r.v.)

Lognormal 300.0N/mm2 10.0% 0.3

Second stiffness ratio b for bi-
linear and smoothed bi-linear ma-
terial (80 r.v.)

Lognormal 0.01 10.0% 0.3

γ for smoothed bi-linear material
(0 r.v.)

N/A 0.7 0.0 N/A

η for smoothed bi-linear material
(0 r.v.)

N/A 4.0 0.0 N/A

α of Bouc-Wen material (80 r.v.) Uniform 0.01 10.0% 0.3
ko of Bouc-Wen material (80 r.v.) Lognormal 210, 000 5.0% 0.3
n of Bouc-Wen material (0 r.v.) N/A 1.76 0.0 N/A
γ of Bouc-Wen material (0 r.v.) N/A 100.0 0.0 N/A
β of Bouc-Wen material (0 r.v.) N/A 100, 000 0.0 N/A
Ao of Bouc-Wen material (0 r.v.) N/A 1.0 0.0 N/A
η of Bouc-Wen material (0 r.v.) N/A 1.0 0.0 N/A
ν of Bouc-Wen material (0 r.v.) N/A 1.0 0.0 N/A
δA of Bouc-Wen material (0 r.v.) N/A 0.0 0.0 N/A
δν of Bouc-Wen material (0 r.v.) N/A 0.02 0.0 N/A
δη of Bouc-Wen material (0 r.v.) N/A 0.02 0.0 N/A
Nodal coordinates in x, y and z
direction (72 r.v.)

Lognormal As is σ =10mm 0.0

Total nodal load in x-direction,
applied at top nodes (0 r.v.)

N/A 120.0 kN 0.0 N/A

180

Table 5.2: 40 most important random variables at the design point for static 3-D truss structure.

Rank Importance Identification of random model parameter
1 -0.66567 σy of element 4
2 -0.38914 Cross sectional area of element 4
3 -0.27652 σy of element 20
4 -0.27018 σy of element 2
5 -0.18242 σy of element 15
6 -0.17525 σy of element 16
7 -0.1746 σy of element 8
8 -0.1689 σy of element 10
9 -0.15124 Cross sectional area of element 2
10 -0.14613 Cross sectional area of element 20
11 -0.11553 σy of element 12
12 -0.10456 Second stiffness ratio b of element 4
13 -0.10418 σy of element 6
14 -0.0953 Cross sectional area of element 15
15 -0.09335 Cross sectional area of element 8
16 -0.08993 Cross sectional area of element 10
17 -0.08985 Cross sectional area of element 16
18 -0.06072 Cross sectional area of element 12
19 -0.05568 Young’s modulus E of element 4
20 -0.05461 Cross sectional area of element 6
21 -0.03379 x-direction coordinate of node 4
22 -0.02905 Second stiffness ratio b of element 2
23 -0.02891 σy of element 18
24 -0.02377 σy of element 36
25 -0.02241 σy of element 13
26 0.01812 x-direction coordinate of node 2
27 -0.0159 Young’s modulus E of element 2
28 -0.01506 Cross sectional area of element 18
29 -0.01443 x-direction coordinate of node 12
30 -0.01443 x-direction coordinate of node 21
31 -0.01436 x-direction coordinate of node 22
32 -0.01434 x-direction coordinate of node 24
33 -0.01365 y-direction coordinate of node 21
34 -0.01356 y-direction coordinate of node 7
35 -0.0131 x-direction coordinate of node 3
36 -0.01265 x-direction coordinate of node 23
37 -0.01244 Second stiffness ratio b of element 20
38 -0.01216 y-direction coordinate of node 22
39 -0.01211 y-direction coordinate of node 23
40 -0.01206 Cross sectional area of element 36

181

Table 5.3: Uncertainty characterization of FE model parameters of reinforced concrete frame; mean
(µ), standard deviation (σ) and correlation (ρ).

Distribution µ σ ρ

Steel reinforcement material parameters:
σy Lognormal 413.3 N/mm2 16.5 N/mm2 0.3
E Lognormal 206,640 N/mm2 8,266 N/mm2 0.3

Confined concrete material parameters:
fc Lognormal -35.8 N/mm2 1.43 N/mm2 0.3
fcu Lognormal -32.37 N/mm2 1.29 N/mm2 0.3
εc Lognormal -5.0 10−3 2.0 10−4 0.3
εcu Lognormal -0.02 8.0 10−4 0.3

Unconfined concrete material parameters:
fc Lognormal -27.6 N/mm2 1.10 N/mm2 0.3
fcu N/A 0.0 N/mm2 N/A N/A
εc Lognormal -2.0 10−3 8.0 10−5 0.3
εcu Lognormal -6.0 10−3 2.4 10−4 0.3

Nodal coordinates (all):
x Normal As is 10.mm 0.0

Lateral loads:
Pi Lognormal 1,000 kN 40 kN 0.6

Table 5.4: Reliability index β and coefficient of variation for importance sampling for reinforced
concrete frame.

FORM Impt.sampl. Num.sim/C.o.v.
g1 3.4404 3.432 1000 / 6.22%
g2 3.2189 - -
g3 3.7414 - -

182

Table 5.5: Parameter importance rankings for reinforced concrete frame. Superscripts inn and out
denote inner (confined) and outer (unconfined) concrete, respectively. “El” denotes element number.
Element and node numbers are provided in Figure 5.8.

FOSM FORM

∇g(µ)i σi γ δ η
1 P1 P1 P1 P1

2 P2 P2 P2 P2

3 El.3, E El.3, E El.3, E El.3, E
4 El.3, σy El.8, E El.8, E El.8, E
5 El.8, E El.3, σy El.3, σy El.7, E
6 El.7, E El.7, E El.7, E El.3, σy

7 Node 4, x1 Node 4, x1 Node 4, x1 El.5, E
8 El.7, f out

c El.7, f out
c El.7, f out

c El.7, f out
c

9 El.8, σy El.3, f inn
c El.3, f inn

c El.1, σy

10 El.7, σy El.1, σy El.1, σy El.8, f out
c

11 El.8, f out
c El.8, f out

c El.8, f out
c El.10, E

12 Node 7, x1 El.8, σy El.8, σy El.8, σy

13 El.3, f inn
c Node 7, x1 Node 7, x1 El.7, σy

14 El.1, E El.5, E El.5, E El.9, E
15 El.5, E El.7, σy El.7, σy El.3, f inn

c

16 Node 5, x1 Node 5, x1 Node 5, x1 El.3, f out
c

17 El.3, f out
c Node 4, x2 Node 4, x2 El.4, E

18 El.10, E El.10, E El.10, E El.5, f out
c

19 Node 8, x1 El.5, f inn
c El.5, f inn

c El.5, σy

20 Node 4, x2 El.3, εinn
c El.3, f out

c El.9, f out
c

183

Table 5.6: Nodal coordinates for I-880 Testbed bridge model. Unit: meters.

Node number x-coord. y-coord. z-coord.
14998 -20.489 2.400 18.923
14999 -20.381 12.661 18.923
14001 0.0 2.184 1.753
14002 0.0 12.446 1.753
14003 0.0 2.184 18.703
14005 0.0 12.446 18.311
15001 48.463 2.184 1.676
15002 48.463 12.446 1.600
15003 48.463 2.184 17.944
15005 48.463 12.446 17.726
16001 97.231 3.150 1.219
16002 97.231 12.446 1.219
16003 97.231 3.150 16.940
16005 97.231 12.446 16.764
17001 147.520 2.184 0.991
17002 147.520 11.989 0.991
17003 147.520 2.184 15.784
17005 147.520 11.989 15.590
17998 154.230 2.184 15.494
17999 154.230 11.989 15.494

184

Table 5.7: Uncertain parameters in I-880 Testbed bridge model, part 1.

Parameter Distribution Mean C.o.V. Correlation
E of reinforcement steel of
column hinges (8 r.v.)

Lognormal 199, 948.04 N
mm2 5.0% 0.3

σy of reinforcement steel of
column hinges (8 r.v.)

Lognormal 455.05 N
mm2 10.0% 0.3

Second stiffness ratio of re-
inforcement steel of column
hinges (8 r.v.)

Lognormal 0.01 15.0% 0.3

f ′c of core concrete of col-
umn hinges (8 r.v.)

-Lognormal −46.97 N
mm2 15.0% 0.3

fcu of core concrete of col-
umn hinges (8 r.v.)

-Lognormal −35.85 N
mm2 15.0% 0.3

εc0 of core concrete of col-
umn hinges (8 r.v.)

-Lognormal -0.003 15.0% 0.3

εcu of core concrete of col-
umn hinges (8 r.v.)

-Lognormal -0.02 15.0% 0.3

f ′c of cover concrete of col-
umn hinges (8 r.v.)

-Lognormal −35.85 N
mm2 15.0% 0.3

εc0 of cover concrete of col-
umn hinges (8 r.v.)

-Lognormal -0.002 15.0% 0.3

εcu of cover concrete of col-
umn hinges (8 r.v.)

-Lognormal -0.006 15.0% 0.3

E of linear elastic region of
columns (8 r.v.)

Lognormal 28337.46 N
mm2 5.0% 0.3

A of linear elastic region of
columns (8 r.v.)

Lognormal 6.32m2 5.0% 0.3

Iz of linear elastic region of
columns (8 r.v.)

Lognormal 2.59m (2.44m)3

12
5.0% 0.3

Iy of linear elastic region of
columns (8 r.v.)

Lognormal 2.44m (2.59m)3

12
5.0% 0.3

G of linear elastic region of
columns (8 r.v.)

Lognormal 0.4 · 28337.46 N
mm2 5.0% 0.3

J of linear elastic region of
columns (8 r.v.)

Lognormal 2.93m4 5.0% 0.3

185

Table 5.8: Uncertain parameters in I-880 Testbed bridge model, part 2.

Parameter Distribution Mean C.o.V. Correlation
A of linear elastic transverse
beam elements (4 r.v.)

Lognormal 6.65 m2 5.0% 0.3

E of linear elastic transverse
beam elements (4 r.v.)

Lognormal 28337.46 N
mm2 5.0% 0.3

G of linear elastic transverse
beam elements (4 r.v.)

Lognormal 11376.35 N
mm2 5.0% 0.3

Jx of linear elastic trans-
verse beam elements (4 r.v.)

Lognormal 0.21m4 5.0% 0.3

Iy of linear elastic trans-
verse beam elements (4 r.v.)

Lognormal 2.17m4 5.0% 0.3

Iz of linear elastic trans-
verse beam elements (4 r.v.)

Lognormal 2.17m4 5.0% 0.3

A of linear elastic longitudi-
nal beam elements (10 r.v.)

Lognormal 12.22m2 5.0% 0.3

E of linear elastic longitudi-
nal beam elements (10 r.v.)

Lognormal 28337.46 N
mm2 5.0% 0.3

G of linear elastic longitudi-
nal beam elements (10 r.v.)

Lognormal 11376.35 N
mm2 5.0% 0.3

Jx of linear elastic longitudi-
nal beam elements (10 r.v.)

Lognormal 0.146m4 5.0% 0.3

Iy of linear elastic longitudi-
nal beam elements (10 r.v.)

Lognormal 7.49m4 5.0% 0.3

Iz of linear elastic longitudi-
nal beam elements (10 r.v.)

Lognormal 7.49m4 5.0% 0.3

186

Table 5.9: Uncertain parameters in I-880 Testbed bridge model, part 3.

Parameter Distribution Mean C.o.V. Correlation
Stiffness of x-direction soil
spring under elements 141
and 142 (1 r.v.)

Lognormal 1.030 · 106 kN/m 10.0% N/A

Stiffness of y-direction soil
spring under elements 141
and 142 (1 r.v.)

Lognormal 8.965 · 105 kN/m 10.0% N/A

Stiffness of z-direction soil
spring under elements 141
and 142 (1 r.v.)

Lognormal 2.1724 · 106 kN/m 10.0% N/A

Stiffness of x-rotation soil
spring under elements 141
and 142 (1 r.v.)

Lognormal 5.4692 · 107 kNm
rad

10.0% N/A

Stiffness of y-rotation soil
spring under elements 141
and 142 (1 r.v.)

Lognormal 5.6403 · 107 kNm
rad

10.0% N/A

Stiffness of z-rotation soil
spring under elements 141
and 142 (1 r.v.)

Lognormal 4.8223 · 107 kNm
rad

10.0% N/A

Stiffness of x-direction soil
spring under elements 151
and 152 (1 r.v.)

Lognormal 1.064 · 105 kN/m 10.0% N/A

Stiffness of y-direction soil
spring under elements 151
and 152 (1 r.v.)

Lognormal 1.065 · 105 kN/m 10.0% N/A

Stiffness of z-direction soil
spring under elements 151
and 152 (1 r.v.)

Lognormal 1.1623 · 105 kN/m 10.0% N/A

Stiffness of x-rotation soil
spring under elements 151
and 152 (1 r.v.)

Lognormal 1.420 · 107 kNm
rad

10.0% N/A

Stiffness of y-rotation soil
spring under elements 151
and 152 (1 r.v.)

Lognormal 1.4232 · 107 kNm
rad

10.0% N/A

Stiffness of z-rotation soil
spring under elements 151
and 152 (1 r.v.)

Lognormal 1.004 · 107 kNm
rad

10.0% N/A

187

Table 5.10: Uncertain parameters in I-880 Testbed bridge model, part 4.

Parameter Distribution Mean C.o.V. Corr.
Stiffness of x-direction soil
spring under elements 161
and 162 (1 r.v.)

Lognormal 1.065 · 105 kN/m 10.0% N/A

Stiffness of y-direction soil
spring under elements 161
and 162 (1 r.v.)

Lognormal 1.066 · 105 kN/m 10.0% N/A

Stiffness of z-direction soil
spring under elements 161
and 162 (1 r.v.)

Lognormal 1.1728 · 105 kN/m 10.0% N/A

Stiffness of x-rotation soil
spring under elements 161
and 162 (1 r.v.)

Lognormal 1.5937 · 107 kNm
rad

10.0% N/A

Stiffness of y-rotation soil
spring under elements 161
and 162 (1 r.v.)

Lognormal 1.595 · 107 kNm
rad

10.0% N/A

Stiffness of z-rotation soil
spring under elements 161
and 162 (1 r.v.)

Lognormal 5.0049 · 106 kNm
rad

10.0% N/A

Stiffness of x-direction soil
spring under elements 171
and 172 (1 r.v.)

Lognormal 1.2692 · 105 kN/m 10.0% N/A

Stiffness of y-direction soil
spring under elements 171
and 172 (1 r.v.)

Lognormal 1.2698 · 105 kN/m 10.0% N/A

Stiffness of z-direction soil
spring under elements 171
and 172 (1 r.v.)

Lognormal 1.3988 · 105 kN/m 10.0% N/A

Stiffness of x-rotation soil
spring under elements 171
and 172 (1 r.v.)

Lognormal 2.3739 · 107 kNm
rad

10.0% N/A

Stiffness of y-rotation soil
spring under elements 171
and 172 (1 r.v.)

Lognormal 2.3790 · 107 kNm
rad

10.0% N/A

Stiffness of z-rotation soil
spring under elements 171
and 172 (1 r.v.)

Lognormal 4.1651 · 106 kNm
rad

10.0% N/A

Nodal coordinates in x, y
and z direction (60 r.v.)

Normal As is Stdv=
1.27cm 0.0

188

Table 5.11: Response statistics results for performance functions g3 and g4.

Response quantity Mean Standard deviation

u (at 20% tangent) 0.2525m 0.01677m

λ (at 20% tangent) 0.2008 0.009621

189

Table 5.12: 40 most important random variables in initial region of load-displacement curve of I-880
highway bridge.

Rank Importance Identification of random model parameter
1 -0.6842 element 1502 material 153 E
2 0.5816 element 1501 material 153 E
3 -0.3098 element 1602 material 163 E
4 0.2463 element 1601 material 163 E
5 -0.0760 element 1502 material 152 E
6 -0.0722 element 1501 material 152 E
7 -0.0688 element 1504 material 154 E
8 -0.0631 element 1503 material 154 E
9 -0.0448 element 1402 material 143 E
10 -0.0386 element 1702 material 173 E
11 0.0335 element 1701 material 173 E
12 -0.0319 element 1602 material 162 E
13 0.0303 element 1401 material 143 E
14 -0.0298 element 1604 material 164 E
15 -0.0293 element 1601 material 162 E
16 -0.0282 element 43 E
17 -0.0267 element 1603 material 164 E
18 0.0218 element 152 section 150 material 2 fc
19 -0.0208 element 152 section 150 material 2 epsco
20 0.0205 node 15003 coord 2
21 -0.0199 node 15002 coord 2
22 0.0197 element 151 section 150 material 2 fc
23 -0.0188 element 151 section 150 material 2 epsco
24 -0.0183 element 143 E
25 0.0179 node 15005 coord 2
26 0.0170 element 142 section 140 material 2 fc
27 -0.0166 element 42 Iy
28 -0.0163 element 43 Iy
29 -0.0160 element 142 section 140 material 2 epsco
30 -0.0144 node 15001 coord 2
31 -0.0134 element 152 E
32 -0.0122 element 43 Iz
33 -0.0109 element 152 Iz
34 0.0106 element 162 section 160 material 2 fc
35 -0.0104 element 142 E
36 -0.0100 element 162 section 160 material 2 epsco
37 -0.0097 element 151 Iz
38 0.0097 element 42 Iz
39 -0.0095 element 143 Iz
40 0.0091 node 15005 coord 3

190

Table 5.13: 40 least important random variables in initial region of load-displacement curve of I-880
highway bridge.

Rank Importance Identification of random model parameter
281 ≈ 0.0 element 161 section 160 material 2 epscu
282 ≈ 0.0 element 152 section 150 material 2 epscu
283 ≈ 0.0 element 151 section 150 material 2 epscu
284 ≈ 0.0 element 142 section 140 material 2 epscu
285 ≈ 0.0 element 172 section 170 material 1 fcu
286 ≈ 0.0 element 171 section 170 material 1 fcu
287 ≈ 0.0 element 162 section 160 material 1 fcu
288 ≈ 0.0 element 161 section 160 material 1 fcu
289 ≈ 0.0 element 152 section 150 material 1 fcu
290 ≈ 0.0 element 151 section 150 material 1 fcu
291 ≈ 0.0 element 142 section 140 material 1 fcu
292 ≈ 0.0 element 141 section 140 material 1 fcu
293 ≈ 0.0 element 172 section 170 material 1 epscu
294 ≈ 0.0 element 171 section 170 material 1 epscu
295 ≈ 0.0 element 162 section 160 material 1 epscu
296 ≈ 0.0 element 161 section 160 material 1 epscu
297 ≈ 0.0 element 152 section 150 material 1 epscu
298 ≈ 0.0 element 151 section 150 material 1 epscu
299 ≈ 0.0 element 142 section 140 material 1 epscu
300 ≈ 0.0 element 141 section 140 material 1 epscu
301 ≈ 0.0 node 17999 coord 2
302 ≈ 0.0 node 17998 coord 2
303 ≈ 0.0 node 17998 coord 1
304 ≈ 0.0 node 14999 coord 3
305 ≈ 0.0 node 14998 coord 3
306 ≈ 0.0 node 14998 coord 2
307 ≈ 0.0 element 48 Iy
308 ≈ 0.0 element 40 Iy
309 ≈ 0.0 element 40 G
310 ≈ 0.0 element 48 A
311 ≈ 0.0 node 14999 coord 2
312 ≈ 0.0 node 14999 coord 1
313 ≈ 0.0 element 49 Iz
314 ≈ 0.0 element 41 Iy
315 ≈ 0.0 element 49 Jx
316 ≈ 0.0 element 41 Jx
317 ≈ 0.0 element 40 Jx
318 ≈ 0.0 element 41 E
319 ≈ 0.0 element 40 E
320 ≈ 0.0 element 49 A

191

Table 5.14: 40 most important random variables in yielding region of load-displacement curve of
I-880 highway bridge.

Rank Importance Identification of random model parameter
1 -0.6280 element 141 section 140 material 3 sigmaY
2 -0.5633 element 142 section 140 material 3 sigmaY
3 -0.2808 element 151 section 150 material 3 sigmaY
4 -0.2268 element 1502 material 153 E
5 0.1711 element 142 section 140 material 2 fc
6 -0.1611 element 152 section 150 material 3 sigmaY
7 0.1428 element 142 section 140 material 2 epscu
8 -0.1360 element 1602 material 163 E
9 0.1234 element 142 section 140 material 1 fc
10 -0.1188 element 161 section 160 material 3 sigmaY
11 0.0729 element 152 section 150 material 2 fc
12 -0.0656 element 162 section 160 material 3 sigmaY
13 0.0584 element 141 section 140 material 2 fc
14 -0.0541 element 1502 material 152 E
15 -0.0489 element 141 section 140 material 3 b
16 -0.0451 element 142 section 140 material 1 epsco
17 0.0414 element 142 section 140 material 2 epsco
18 0.0361 element 162 section 160 material 2 fc
19 -0.0324 element 142 section 140 material 3 b
20 0.0312 element 152 section 150 material 1 fc
21 0.0282 element 162 section 160 material 2 epscu
22 -0.0266 element 141 section 140 material 3 E
23 -0.0254 node 14002 coord 2
24 -0.0252 element 1602 material 162 E
25 0.0247 node 14005 coord 2
26 0.0246 element 152 section 150 material 2 epscu
27 0.0244 element 151 section 150 material 2 fc
28 0.0243 element 162 section 160 material 1 fc
29 -0.0204 element 142 section 140 material 3 E
30 -0.0187 element 151 section 150 material 3 b
31 -0.0182 element 152 section 150 material 1 epsco
32 -0.0160 node 15002 coord 2
33 -0.0159 element 152 section 150 material 3 E
34 -0.0142 element 151 section 150 material 3 E
35 -0.0128 element 1702 material 173 E
36 -0.0118 element 153 Iz
37 0.0106 node 15005 coord 2
38 -0.0106 element 153 E
39 -0.0106 element 171 section 170 material 3 sigmaY
40 0.0104 element 1501 material 153 E

192

Table 5.15: 40 least important random variables in yielding region of load-displacement curve of I-880
highway bridge.

Rank Importance Identification of random model parameter
281 ≈ 0.0 element 48 G
282 ≈ 0.0 node 14999 coord 3
283 ≈ 0.0 node 14998 coord 3
284 ≈ 0.0 element 40 Jx
285 ≈ 0.0 element 40 Iz
286 ≈ 0.0 element 49 Jx
287 ≈ 0.0 element 49 G
288 ≈ 0.0 node 14998 coord 1
289 ≈ 0.0 node 17998 coord 3
290 ≈ 0.0 element 48 Iz
291 ≈ 0.0 element 48 Iy
292 ≈ 0.0 element 41 Jx
293 ≈ 0.0 element 41 G
294 ≈ 0.0 node 17998 coord 2
295 ≈ 0.0 element 48 A
296 ≈ 0.0 node 14999 coord 2
297 ≈ 0.0 element 172 section 170 material 1 fcu
298 ≈ 0.0 element 171 section 170 material 1 fcu
299 ≈ 0.0 element 162 section 160 material 1 fcu
300 ≈ 0.0 element 161 section 160 material 1 fcu
301 ≈ 0.0 element 152 section 150 material 1 fcu
302 ≈ 0.0 element 151 section 150 material 1 fcu
303 ≈ 0.0 element 142 section 140 material 1 fcu
304 ≈ 0.0 element 141 section 140 material 1 fcu
305 ≈ 0.0 element 172 section 170 material 1 epscu
306 ≈ 0.0 element 171 section 170 material 1 epscu
307 ≈ 0.0 element 162 section 160 material 1 epscu
308 ≈ 0.0 element 161 section 160 material 1 epscu
309 ≈ 0.0 element 152 section 150 material 1 epscu
310 ≈ 0.0 element 151 section 150 material 1 epscu
311 ≈ 0.0 element 142 section 140 material 1 epscu
312 ≈ 0.0 element 49 A
313 ≈ 0.0 element 41 Iz
314 ≈ 0.0 element 48 Jx
315 ≈ 0.0 element 48 E
316 ≈ 0.0 element 40 A
317 ≈ 0.0 element 141 section 140 material 1 epscu
318 ≈ 0.0 element 40 G
319 ≈ 0.0 element 41 Iy
320 ≈ 0.0 node 17998 coord 1

193

0 5 10 15 20 25
5

10

15

20

25

30

35

40

45

50

55

Start value of performance function

N
um

be
r

of
 tr

ia
l p

oi
nt

s

Figure 5.1: Performance of the Polak-He algorithm for different start values of the performance
function.

y
3

y
1

y 2

y
3

y
1

y 2

y
3

y
1

y 2

y
3y

1

y 2

Figure 5.2: Limit-state surface and iHLRF trial steps for the “basic” reliability analysis example.

194

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

par
1

C
D

F

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

par
1

P
D

F

Figure 5.3: Complementary CDF and PDF from parametric reliability analysis of performance func-
tion of the basic reliability analysis example.

−6000
−4000

−2000
0

2000
4000

6000

−6000
−4000

−2000
0

2000
4000

6000

0

5000

10000

15000

x−direction
y−direction

z−
di

re
ct

io
n

1.83 m

1.83 m

4.0 m

4.0 m

15.0 m

4.0 m

3.42 m

2.14 m

2.93 m

2.51 m

Figure 5.4: 3-D truss example.

195

−0.01 −0.005 0 0.005 0.01
−400

−200

0

200

400
Elastic

S
tr

es
s

−0.01 −0.005 0 0.005 0.01
−400

−200

0

200

400
Bi−linear steel

S
tr

es
s

−0.01 −0.005 0 0.005 0.01
−400

−200

0

200

400
Smoothed bi−linear steel

S
tr

es
s

Strain
−0.01 −0.005 0 0.005 0.01

−300

−200

−100

0

100

200

300

400
Degrading Bouc−Wen

S
tr

es
s

Strain

Figure 5.5: Sample stress-strain curves for uniaxial materials employed in 3-D truss example.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Response at each performance function evaluation

x−direction displacement of node 21

Lo
ad

 fa
ct

or

Mean resonse
Rejected by Armijo rule
Rejected by Armijo rule
Rejected by Armijo rule
1st trial point
2nd trial point
Design point response

100 200 300 400 500

0.75

0.8

0.85

0.9

0.95

1

Figure 5.6: Displacement response at top of truss structure during search for the design point.

196

−6000 −4000 −2000 0 2000 4000 6000

−6000

−4000

−2000

0

2000

4000

6000

0

2000

4000

6000

8000

10000

12000

x−direction

y−direction

z−
di

re
ct

io
n

Element 4

Element 20

Element 2

Element 15

Element 8

Element 10
Element 12

Element 6

Element 18

Element 13

Node 4
Node 2

Node 12

Node 21
Node 22

Node 24

Node 7 Node 3

Node 23

Figure 5.7: Explanation of element and node numbers of 3-D truss structure.

P1

P2

7.32 m 7.32m

4.57 m

3.66 m
87

2

1

4

3

1

2

3 6

5

4 7

8

9

5

6

9 10

Figure 5.8: Reinforced concrete frame structure with node numbers and element numbers.

197

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original material
Smoothed material

Figure 5.9: CDF and PDF for roof displacement. Threshold is varied from 1% to 2%.

198

Node

40 41

43
42

143

153

151 152

141 142

45

44

47

46

4948

173

163

161 162

171 172

Element
numbers

Horizontal elements:
linear elastic

Soil-structure
interaction:

numbers

17005

16005

15005

14998 14999

15002

16002

17001
1799917998

17002

17003

16003

15003

14003

16001

15001

14001

14005

y

z

x

14002

Elastic section

Vertical elements:

Steel

Distributed
fiber hinges

Confined concrete
Unconfined concrete

Figure 5.10: Identification of element and node numbers for I-880 highway bridge model.

199

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25
Load−displacement curve for transversal displacement of node 15005

Displacement [meters]

Lo
ad

 fa
ct

or

Figure 5.11: Mean point load-displacement curve for transversal (y-direction) displacement of node
15005 due to inelastic static pushover analysis with reference load applied at each bent.

Load factor (λ)

Displacement (u)

λo

uo

Figure 5.12: Probability distributions of response based on reliability analysis.

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.05

0.1

0.15

0.2

0.25

Displacement [meters]

Lo
ad

 fa
ct

or
 (

R
ef

er
en

ce
 lo

ad
is

 1
2,

00
0

ki
ps

 a
t e

ac
h

no
de

)

Load−displacement curve and corresponding tangent for
transversal displacement of node 15005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1.0

1.5

Displacement [meters]

T
an

ge
nt

(∆

 lo
ad

 fa
ct

or
)/

(∆
 d

is
pl

ac
em

en
t)

Figure 5.13: Load-displacement curve (top) and corresponding tangent for transversal (y-direction)
displacement (bottom) of node 15005 due to inelastic static pushover analysis at the mean point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25
Mean +/− one standard deviation of transverse displacement of node 15005

Displacement [meters]

Lo
ad

 fa
ct

or

Mean displacement
Mean − std.dev
Mean + std.dev.

Figure 5.14: Second-moment load-displacement curves from first-order second-moment analysis for
response quantity in performance function 1.

201

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25
Mean +/− one standard deviation of load level at given displacement

Displacement [meters]

Lo
ad

 fa
ct

or
Mean displacement
Mean − std.dev
Mean + std.dev.

Figure 5.15: Second-moment load-displacement curves from first-order second-moment analysis for
response quantity in performance function 2.

0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

0.2

0.4

0.6

0.8

1
CDF for displacement response at load factor 0.20

C
D

F
 =

 P
[g

1 <
 0

]

Displacement threshold u
o

10 most important r.v.
100 most important r.v.
All 320 r.v.

0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

5

10

15

20

25
Corresponding PDF

C
or

re
sp

on
di

ng
 P

D
F

Displacement threshold u
o

10 most important r.v.
100 most important r.v.
All 320 r.v.

Figure 5.16: Probability distribution for displacement response at load factor 0.20; obtained by a
series of FORM reliability analyses of performance function number 1.

202

0 0.2 0.4 0.6 0.8 1
0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

CDF = P[g
2
 < 0]

Lo
ad

 fa
ct

or
 th

re
sh

ol
d

λ o

0 20 40 60
0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

Corresponding PDF

Lo
ad

 fa
ct

or
 th

re
sh

ol
d

λ o

Figure 5.17: Probability distribution for load factor level at displacement 0.3 meters; obtained by a
series of FORM reliability analyses of performance function number 2.

−8 −6 −4 −2 0 2 4 6 8 10 12

x 10
−3

−500

−400

−300

−200

−100

0

100

200

300

400

500

Strain

S
tr

es
s

[N
/m

m
2]

Bi−linear material
Smoothed material

Figure 5.18: Example stress-strain curve for bi-linear and smoothed material model used for rein-
forcing steel.

203

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25
Overall effect of using smoothed reinforcing steel material

Displacement [meters]

Lo
ad

 fa
ct

or

Bi−linear steel material
Smoothed bi−linear steel material

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

Displacement [meters]

T
an

ge
nt

Bi−linear steel material
Smoothed bi−linear steel material

Figure 5.19: Effect on response and tangent of using smoothed material for steel reinforcement.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5
Detailed effect on tangent of using smoothed reinforcing steel material

Displacement [meters]

T
an

ge
nt

Bi−linear steel material
Smoothed bi−linear steel material

0.2 0.22 0.24 0.26 0.28 0.3 0.32

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 5.20: Detailed effect on tangent of using smoothed material for steel reinforcement.

204

0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

0.2

0.4

0.6

0.8

1

C
D

F
 =

 P
[g

3 <
 0

]

Displacement threshold u
o
 [meters]

0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

5

10

15

20

25

C
or

re
sp

on
di

ng
 P

D
F

Displacement threshold u
o
 [meters]

Figure 5.21: Probability distribution for displacement at 20% of elastic tangent; obtained by a series
of FORM reliability analyses of performance function number 3.

0 0.2 0.4 0.6 0.8 1
0.17

0.18

0.19

0.2

0.21

0.22

0.23

CDF = P[g
4
 < 0]

Lo
ad

 fa
ct

or
 th

re
sh

ol
d

λ o

0 10 20 30 40 50
0.17

0.18

0.19

0.2

0.21

0.22

0.23

Corresponding PDF

Lo
ad

 fa
ct

or
 th

re
sh

ol
d

λ o

Figure 5.22: Probability distribution for load factor at 20% of elastic tangent; obtained by a series
of FORM reliability analyses of performance function number 4.

205

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time [sec.]

Filter per. 0.1 sec., 5% damp.
Filter per. 0.3 sec., 5% damp.

0.14 t5 e−1.9 t

0.0035 t10 e−2.5 t

Figure 5.23: Modulating functions and corresponding filter data.

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

Time [sec.]

G
ro

un
d

m
ot

io
n

ac
ce

le
ra

tio
n

[m
/s

2]

Figure 5.24: Sample stochastic ground motion acceleration. Target standard deviation at 4.0 seconds:
0.2g = 1.96 m/s2.

206

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

16
x 10

−4

Time [sec.]

M
ea

n
ou

t−
cr

os
si

ng
 r

at
e

Figure 5.25: Mean out-crossing rate over threshold 0.10m for linear I-880 bridge structure

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [sec.]

D
is

pl
ac

em
en

t r
es

po
ns

e
[m

et
er

s]

Figure 5.26: Design point response at 4.5 seconds for mean out-crossing rate estimation for linear
I-880 bridge.

207

0 1 2 3 4 5 6 7 8 9 10
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

Time [sec.]

G
ro

un
d

m
ot

io
n

ac
ce

le
ra

tio
n

[m
/s

2]

Figure 5.27: Design point excitation at 4.5 seconds for mean out-crossing rate estimation for linear
I-880 bridge.

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [sec.]

D
is

pl
ac

em
en

t [
m

]

−3 −2 −1 0

x 10
−4

−8

−6

−4

−2

0
x 10

6

Strain

−5 0 5 10 15

x 10
−3

−5

0

5
x 10

8

Strain

S
tr

es
s

[N
/m

2]

−2.5 −2 −1.5 −1 −0.5 0

x 10
−3

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

7

Strain

S
tr

es
s

[N
/m

2]
S

tr
es

s
[N

/m
2]

Figure 5.28: Mean point response for applied recorded ground motion. The upper left figure shows
the displacement response; the upper right figure shows the stress-strain curve of the concrete fiber 1
in Figure 5.29; lower left figure shows the stress-strain curve of the steel fiber 2 in Figure 5.29; lower
right figure shows the stress-strain curve of the concrete fiber 3 in Figure 5.29. Part of the tension
strain-history of the concrete fibers is outside the plot area.

208

Response fiber 2Reinforcing steel
Outer concrete

Response fiber 3

Response fiber 1

Confined concrete

Figure 5.29: Response sampling from fiber-discretized cross section.

k1

c1

m1
u1

Figure 5.30: One-degree-of-freedom structure.

209

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

8

10

Time [sec.]

A
cc

. [
m

/s
2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.8

−0.6

−0.4

−0.2

0

0.2

Time [sec.]

D
is

pl
. [

m
]

Nonlinear material
Linear material

Figure 5.31: Start point excitation (top) and response (bottom) for mean up-crossing analysis of
single-degree-of-freedom example.

−3
−2

−1
0

1
2

−3

−2

−1

0

1

2
−1.5

−1

−0.5

0

0.5

1

1.5

x
2

x
1

P
er

fo
rm

an
ce

 fu
nc

tio
n,

 g

Figure 5.32: Performance function and zero plane for SDOF example with bi-linear material and two
random pulses.

210

−3 −2 −1 0 1 2

−3

−2

−1

0

x
1

x 2

Figure 5.33: Limit-state line for the SDOF example with bi-linear material and two random pulses.

−0.2 −0.1 0 0.1 0.2 0.3
−2.14

−2.12

−2.1

−2.08

−2.06

−2.04

−2.02

−2

−1.98

−1.96

x
1

x 2

Figure 5.34: Effect on limit-state line of using smoothed material model instead of bi-linear material
model.

211

1 2 3 4 5 6 7 8

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−3

10
−2

10
−1

Time [sec.]

M
ea

n
up

−c
ro

ss
in

g
ra

te

Mean up−crossing rate results for SDOF structure

Non−linear structure
Linear structure

Figure 5.35: Mean up-crossing rate results for SDOF structure.

k2

c1

c2

m1

m2
u2

u1

k1

Figure 5.36: Two-degrees-of-freedom structure.

212

1 2 3 4 5 6 7 8

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−3

10
−2

10
−1

Time [sec.]

M
ea

n
up

−c
ro

ss
in

g
ra

te

Mean up−crossing rate results for 2−DOF structure, g
1

Non−linear structure
Linear structure

Figure 5.37: Mean up-crossing rate results for interstory drift of first floor of 2-DOF structure.

1 2 3 4 5 6 7 8

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−3

10
−2

10
−1

Time [sec.]

M
ea

n
up

−c
ro

ss
in

g
ra

te

Mean up−crossing rate results for 2−DOF structure, g
2

Non−linear structure
Linear structure

Figure 5.38: Mean up-crossing rate results for interstory drift of second floor of 2-DOF structure.

213

6 Conclusions

6.1 SUMMARY OF MAJOR FINDINGS

The presented work is motivated by the programmatic objective of the Pacific Earthquake Engineer-

ing Research (PEER) Center to develop tools and methodologies for performance-based earthquake

engineering. The objective in this study is to develop a modern software framework for finite el-

ement reliability analysis. This is done by extending the already existing OpenSees finite element

software. Implementations resulting from this study enable the user of OpenSees to characterize

material parameters, cross-sectional geometry, nodal coordinates and load parameters of the finite

element model as uncertain variables.

The object-oriented programming approach is utilized. This enables a transparent software archi-

tecture that facilitates maintainability and extensibility. As in the original OpenSees software, the

reliability analysis module is divided into a logical set of interacting components. The framework can

be extended by adding new methods of solving the various tasks without modifying the existing code.

This is a particularly important feature for research software, where lack of developer continuity often

leads to patchwork-type software designs.

Response sensitivity analysis is an important ingredient in finite element reliability methods. In

this study, OpenSees has been extended with sensitivity capabilities by use of the Direct Differen-

tiation Method. Unified equations are presented for response sensitivity with respect to material

parameters, nodal coordinates, cross-sectional geometry and load parameters. Proper differentiation

of kinematic equations leads to accurate response sensitivities with respect to nodal coordinates. The

presented equations represent an extension of previously published results. Practical implementation

issues, such as element assembly procedures, sensitivity history variables and use of the algorithmi-

cally consistent tangents are emphasized. Additionally, conditions are pointed out under which the

top-level sensitivity equation becomes nonlinear. Remedies are suggested. Sensitivity equations for

an array of elements and material models motivated by reliability analysis applications are presented.

The available shape sensitivity results allow the inclusion of uncertainty in nodal coordinates.

215

This is often neglected in finite element reliability applications in the literature. It is found that

this is a significant source of uncertainty, which must be considered in practical applications when

present.

The software framework is used to identify and address challenges in nonlinear finite element

reliability analysis. Nonconvergence in the search for the design point may occur due to gradient

discontinuities; “noise” in the finite element response; strong nonlinearities in the finite element

response; and non-convergence of the finite element solution for certain outcomes of the random

model parameters selected by the search algorithm. Modified material models with smooth tran-

sition between the elastic and plastic response regimes are developed, which overcome sensitivity

discontinuities. The value of these findings are further enhanced by a proof that elastic unloading

in an inelastic structure does not lead to sensitivity discontinuity. Motivated by these developments,

sensitivity equations are derived for the smooth uniaxial degrading Bouc-Wen model and for the

multi-axial generalized plasticity model. Smooth versions of the bi-linear steel material model and a

concrete model are developed and the corresponding sensitivity equations are derived.

Modification of search algorithms for finding the design point has proven to be a fruitful approach

to circumvent the problem of nonconvergence of the finite element solution when the trial point falls

too far in the failure domain. In addition to modifying well-known algorithms, the Polak-He algorithm

is introduced in reliability analysis. This algorithm possesses steering parameters that allows the user

to control the rate at which the design point is approached.

The practical usefulness of parameter importance measures obtained as by-products from relia-

bility analysis is emphasized. Such measures are used to gain physical insight and, in some cases, to

reduce the number of random variables in the problem. When the structural behavior is similar at

the mean point and the design point, then an inexpensive importance measure from a single finite

element analysis at the mean point is available.

Numerical examples are presented to demonstrate some of the available analysis features and to

emphasize the versatility of the software. A comprehensive study of the I-880 Highway Bridge, which

is part of the PEER Testbed suite, is presented. Initially, all model parameters are characterized as

uncertain. The number of random variables is then reduced by use of parameter importance measures.

Propagation of uncertainty through the finite element analysis is demonstrated. Several performance

functions are considered for reliability analysis. It is found that the use of smooth material models

is necessary for convergence in the reliability analysis. Dynamic time-variant reliability analysis

is addressed by implementation of mean out-crossing rate analysis options and discretized random

process input. Reliability results for performance functions defined in terms of accumulated response

216

quantities are also presented.

A comprehensive User’s and Developer’s Guide for reliability and sensitivity analysis in OpenSees

is developed. All source code and several examples are available at the OpenSees web site

http://opensees.berkeley.edu.

6.2 FUTURE WORK

Further work is recommended along two directions. First, the software framework may be extended

with SORM analysis options, alternative probability transformations, more elements and materi-

als enabled for reliability and sensitivity analysis. Furthermore, the trend in large-scale structural

analysis is towards network-based parallel computing. Certain types of reliability analysis, such as

sampling analysis, lends itself well to separation into parallel analysis tasks. This approach has not

been addressed in the present study and its consideration in the future is strongly recommended.

Second, challenges remain in the analysis methodology. In problems such as mean out-crossing

rate computation for nonlinear structures subjected to stochastic load it is still challenging to find the

design point. This emphasizes the need for further research on methods for time-variant reliability

analysis or for more robust methods for finding the design point. In particular, methods suggested in

Koo and Der Kiureghian (2003) for approximate solution of the design point through free vibration

analysis should be explored.

The challenge of noise in the performance function due to numerical approximations in the finite

element procedure is not addressed in this study, other than careful selection of the applicable toler-

ances and time steps. Development of optimization search algorithms which are less prone to noise

in the constraint functions is therefore of interest.

Implementation of random field options in OpenSees will improve the user’s ability to charac-

terize uncertain structural properties. This is particularly the case of continuum-type problems in

geotechnical engineering. Such work will extend the already implemented options for correlation

structures in OpenSees. Such a study should also address the issue of parameter identification in

the finite element model. The general concept of having a functional relationship characterizing,

e.g., the material properties, of a range of elements (and integration points) is an important software

architecture issue that is currently not explored in depth in OpenSees.

In this study, synthetic generation of ground motion is addressed with the implementation of

a discretized random process time series. Given the significant uncertainty inherent in the ground

217

motion, this remains an important area for future research and development. Future research may

incorporate developments in geo-hazard analysis and soil-structure interaction methodologies to refine

the ground motion modeling.

Performance-based engineering allows the engineer to optimize a design based on a target re-

liability level. This motivates the implementation of reliability-based optimization algorithms in

OpenSees. Such research will involve both software design issues, since optimization procedures may

be rather costly, and further development of existing methodologies. In any case, the availability of

response sensitivities from the present study will greatly facilitate future research in optimal design.

Model error is a source of uncertainty that is not addressed in the present study. Errors are

introduced when idealizing reality into the boundary value problem presented in Chapter 2. Another

error is introduced by the time and space discretization of the finite element method. Future re-

search must address these sources of uncertainty and error. It is believed that this will be beneficial

for acceptance of the methodology by the practicing engineering community. Furthermore, proper

account of such uncertainties and errors is essential for validation of the finite element code.

218

REFERENCES

ABAQUS, Inc. (2003). “http://www.hks.com. ABAQUS”. Pawtucket, RI.

Arora, J. S. and Haug, E. J. (1979). “Methods of design sensitivity analysis in structural optimiza-

tion.” AIAA Journal, 17(9), 970–974.

Au, S. K. and Beck, J. L. (2001). “First excursion probabilities for linear systems by very efficient

importance sampling.” Probabilistic Engineering Mechanics, 16, 193–207.

Baber, T. T. and Noori, M. N. (1985). “Random vibration of degrading, pinching systems.” Journal

of Engineering Mechanics, 111(8), 1010–1026.

Bathe, K.-J. (1996). Finite Element Procedures. Prentice Hall, Englewood Cliffs, N.J.

Bjerager, P. and Krenk, S. (1989). “Parameter sensitivity in first order reliability theory.” Journal

of Engineering Mechanics, 115(7), 1577–1582.

Bouc, R. (1971). Mathematical model for hysteresis. Report to the Centre de Recherches Physiques,

pp16-25, Marseille, France.

Breitung, K. (1989). “Asymptotic approximations for probability integrals.” Probabilistic Engineer-

ing Mechanics, 4, 187–190.

Casciati, F. (1989). “Stochastic dynamics of hysteretic media.” Structural Safety, 6, 259–269.

Choi, K. K. and Santos, J. L. T. (1987). “Design sensitivity analysis of non-linear structural systems,

part i: Theory.” International Journal of Numerical Methods in Engineering, 24, 2039–2055.

Conte, J. P. (2000). “Finite element response sensitivity analysis in earthquake engineering.” Pro-

ceedings of the Cina-U.S. Millennium symposium of Earthquake Engineering: Earthquake Engineer-

ing Frontiers in the New Millennium, Beijing, China. Eds: B. F. Spencer and Y. X. Hu.

Conte, J. P., Vijalapura, P. K., and Meghella, M. (1999). “Consistent finite element sensitivity in

seismic reliability analysis.” Proceedings of 13th ASCE Engineering Mechanics Division Conference,

Baltimore, MD. The Johns Hopkins University.

219

Cook, R. D., Malkus, D. S., and Plesha, M. E. (1989). Concepts and Applications of Finite Element

Analysis. John Wiley and Sons, New York, 3rd edition.

Crisfield, M. A. (1991). Non-linear finite element analysis of solids and structures, Vol. 1. John

Wiley and Sons, West Sussex, U.K.

Deitel, H. M. and Deitel, P. J. (1998). C++ How to program. Prentice Hall, Inc., Upper Saddle

River, NJ.

Der Kiureghian, A. (2000). “The geometry of random vibrations and solutions by form and sorm.”

Journal of Engineering Mechanics, 15(1), 81–90.

Der Kiureghian, A. (2003). “Lecture notes in CE229 - structural reliability. Department of Civil

and Environmental Engineering, University of California, Berkeley, CA.

Der Kiureghian, A. and DeStefano, M. (1991). “Efficient algorithm for second-order reliability.”

JOURNAL of Engineering Mechanics, ASCE, 117(12), 2904–2923.

Der Kiureghian, A. and Li, C.-C. (1996). “Nonlinear random vibration analysis through optimiza-

tion.” Proceedings of the 7th IFIP WG 7.5 working conference on reliability and optimization of

structural systems, Boulder, Colorado. Eds: D. Frangopol and R. Rackwitz.

Der Kiureghian, A. and Taylor, R. L. (1983). “Numerical methods in structural reliability.” Pro-

ceedings of the ICASP4, Florence, Italy.

Der Kiureghian, A. and Zhang, Y. (1999). “Space-variant finite element reliability analysis.” Com-

puter methods in applied mechanics and engineering, 168, 173–183.

Det Norske Veritas (2003). “http://www.dnv.com/software/products/sesam. PROBAN”. Hovik,

Norway.

Ditlevsen, O. (1979). “Narrow reliability bounds for structural systems.” Journal of structural

mechanics, 7(4), 453–472.

Ditlevsen, O. and Madsen, H. O. (1996). Structural Reliability Methods. Wiley, Chichester, New

York, NY.

Dunnett, C. W. and Sobel, M. (1955). “Approximations to the probability integral and certain

percentage points of a multivariate analogue of student’s t-distribution.” Biometrica, 42, 258–260.

220

Federal Emergency Management Agency (2000). Prestandard and Commentary for the Seismic

Rehabilitation of Buildings, FEMA 356. FEMA.

Frank, P. M. (1978). Introduction to system sensitivity theory. Academic Press.

Frier, C. and Sorensen, J. (2003). “Stochastic finite element analysis of non-linear structures mod-

elled by plasticity theory.” Proceedings of the Ninth International Conference on Applications of

Statistics and Probability in Civil Engineering, ICASP9, San Francisco, California. Eds: A. Der

Kiureghian and S. Madanat and J. Pestana.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns, Elements of Reusable

Object-Oriented Software. Professional Computing Series. Addison Wesley Longman, Inc., Reading,

MA.

Gu, Q. and Conte, J. (2003). “Convergence studies in nonlinear finite element response sensitiv-

ity analysis.” Proceedings of the Ninth International Conference on Applications of Statistics and

Probability in Civil Engineering, ICASP9, San Francisco, California. Eds: A. Der Kiureghian and

S. Madanat and J. Pestana.

Gurtin, M. E. (1981). An introduction to continuum mechanics, Vol. 158 of Mathematics in Science

and Engineering. Academic Press, New York, NY.

Gutierrez, M., Carmeliet, J., and de Borst, R. (1994). “Finite element reliability methods using

diana.” Diana Computational Mechanics 1994. Eds: G.M.A. Kusters and M.A.N. Hendriks.

Hagen, O. and Tvedt, L. (1991). “Vector process out-crossing as parallel system sensitivity measure.”

Journal of Engineering Mechanics, 117(10), 2201–2220.

Haldar, A. and Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis.

John Wiley and Sons, New York.

Hasofer, A. M. and Lind, N. C. (1974). “Exact and invariant second-moment code format.” Journal

of Engineering Mechanics, 100(1), 111–121.

Haukaas, T., Hahnel, A., Sudret, B., Song, J., and Franchin, P. (2003).

“http://www.ce.berkeley.edu/ haukaas/ferum/ferum.html. FERUM”. Department of Civil

and Environmental Engineering, University of California, Berkeley, CA.

221

Hohenbichler, M. and Rackwitz, R. (1986). “Sensitivity and importance measures in structural

reliability.” Civil Engineering Systems, 3, 203–209.

Hughes, T. J. R. (1987). The finite element method : linear static and dynamic finite element

analysis. Prentice Hall, Englewood Cliffs, N.J.

Hunter, D. (1976). “An upper bound for the probability of a union.” Journal of Applied Probability,

13, 597–603.

IfM (2003). “http://mechanik.uibk.ac.at/softwaredevelopment. COSSAN and ISPUD”. Innsbruck,

Austria.

Imai, K. and Frangopol, D. M. (2000). “Geometrically nonlinear finite element reliability analysis

of structural systems. i: theory ii: applications.” Computers and Structures, 77(6), 677–709.

Kleiber, M., Antunez, H., Hien, T., and Kowalczyk, P. (1997). Parameter Sensitivity in Nonlinear

Mechanics. John Wiley and Sons Ltd., West Sussex, U.K.

Koo, H. (2003). “Form, sorm and simulation techniques for nonlinear random vibrations,” PhD

thesis, University of California, Berkeley, CA.

Koo, H. and Der Kiureghian, A. (2003). FORM, SORM and simulation techniques for nonlinear

random vibrations. Report No. UCB/SEMM-2003/01, Department of Civil and Environmental

Engineering, University of California, Berkeley, CA.

Kounias, E. G. (1968). “Bounds for the probability of a union, with applications.” Annals of

Mathematical Statistics, 39(6), 2154–2158.

Kunnath, S. K., Jeremic, B., von Felten, A., and Bauer, K. (2003). “Simulation models for

performance-based evaluation of the i-880 highway bridge.” Proceedings of the ASCE Structures

Congress, Seattle, WA.

Li, C.-C. and Der Kiureghian, A. (1995). “Mean out-crossing rate of nonlinear response to stochastic

input.” Proceedings of ICASP7, 7th International Conference On Applications of Statistics and

Probability in Civil Engineering, Paris, France. Eds: M. Lemaire, J-L. Favre and A. Mbarki.

Liu, P.-L. and Der Kiureghian, A. (1986). “Multivariate distribution models with prescribed

marginals and covariances.” Probabilistic Engineering Mechanics, 1(2), 105–112.

222

Liu, P.-L. and Der Kiureghian, A. (1991a). “Finite element reliability of geometrically nonlinear

uncertain structures.” Journal of Engineering Mechanics, 17(8), 1806–1825.

Liu, P.-L. and Der Kiureghian, A. (1991b). “Optimization algorithms for structural reliability.”

Structural Safety, 9(3), 161–178.

Liu, P.-L., Lin, H.-Z., and Der Kiureghian, A. (1989). CalREL User Manual. Report No.

UCB/SEMM-89/18, Department of Civil and Environmental Engineering, University of Califor-

nia, Berkeley, CA.

Lubliner, J., Taylor, R. L., and Auricchio, F. (1993). “A new model of generalized plasticity and

its numerical implementation.” Int. J. Solid Structures, 30(22), 3171–3184.

Luenberger, D. G. (1984). Linear and Nonlinear Programming. Addison-Wesley, Reading, Mas-

sachusetts, 2nd edition.

McKenna, F. and Fenves, G. L. (2002). “http://opensees.berkeley.edu. TheOpenSees command

language primer”. Department of Civil and Environmental Engineering, University of California,

Berkeley, CA.

McKenna, F., Fenves, G. L., and Scott, M. H. (2002). “Open system for earthquake engineer-

ing simulation, http://opensees.berkeley.edu/”. Pacific Earthquake Engineering Research Center,

University of California, Berkeley, CA.

McKenna, F. T. (1997). “Object-oriented finite element programming: Frameworks for analysis,

algorithms and parallel computing,” PhD thesis, University of California, Berkeley, CA.

Melchers, R. E. (1999). Structural Reliability Analysis and Prediction. John Wiley and Sons,

Chichester, 2nd edition.

MSC Software (2003). “http://www.mscsoftware.com. MSC.NASTRAN”. Santa Ana, CA.

Park, Y. J. and Ang, A. H. S. (1985). “Mechanistic seismic damage model for reinforced concrete.”

Journal of Structural Engineeering, 111(4), 722–739.

Polak, E. (1997). Optimization. Algorithms and Consistent Approximations., Vol. 124 of Applied

Mathematical Sciences. Springer Verlag, New York, NY.

Polak, E. and He, L. (1991). “A unified steerable phase i - phase ii method of feasible directions for

semi-infinite optimization.” Journal of Optimization Theory and Applications, 69(1), 83–107.

223

PredictionProbe, Inc. (2003). “http://www.predictionprobe.com. UNIPASS”. Newport Beach, CA.

Rackwitz, R. and Fiessler, B. (1978). “Structural reliability under combined load sequences.” Com-

puters and Structures, 9, 489–494.

Ray, D., Pister, K. S., and Polak, E. (1978). “Sensitivity analysis for hysteretic dynamic systems:

theory and applications.” Computer Methods in Applied Mechanics and Engineering, 14, 179–208.

Reliability Consulting Programs (2003). “http://www.strurel.de. STRUREL : COMREL, SYSREL,

NASCOM, NASREL”. Munich, Germany.

Roth, C. and Grigoriu, M. (2001). Sensitivity Analysis of Dynamic Systems Subjected to Seismic

Loads. Report No. MCEER-01-0003, Multidisciplinary Center for Earthquake Engineering Research,

State University of New York, Buffalo, NY.

Royset, J. O. (2002). “Reliability-based design optimization of series structural systems,” PhD

thesis, University of California, Berkeley, CA.

Sandia National Laboratories (2003). “http://www.sandia.gov. DAKOTA”. Albuquerque, NM and

Livermore, CA.

Schittkowski, K. (1985). “Nlpql: A fortran subroutine solving contrained nonlinear programming

problems.” Annals of Operations Research, 5, 485–500.

Scott, B. D., Park, R., and Priestley, M. J. N. (1982). “Stress-strain behavior of concrete confined

by overlapping hoops at low and high strain rates.” ACI Journal, 79(1).

Scott, M. H., Franchin, P., Fenves, G. L., and Filippou, F. C. (2003). “Response Sensitivity for

Nonlinear Beam-Column Elements.” ASCE Journal of Structural Engineering. Submitted for pub-

lication.

Simo, J. C. and Hughes, T. J. R. (1998). Computational Inelasticity. Interdisciplinary Applied

Mathematics. Springer-Verlag, New York, NY.

Southwest Research Institute (2003). “http://www.nessus.swri.org. NESSUS”. San Antonio, TX.

Sudret, B. and Der Kiureghian, A. (2000). Stochastic finite element methods and reliability. A State-

of-the-Art report. Report No. UCB/SEMM-2000/08, DEPARTMENT of Civil and Environmental

Engineering, University of California, Berkeley.

224

Taylor, R. L. (2003). “http://www.ce.berkeley.edu/ rlt/feap. FEAP”. Department of Civil and

Environmental Engineering, University of California, Berkeley, CA.

The Mathworks, Inc. (2003). “http://www.mathworks.com. Matlab”. Natick, MA.

TNO Building and Construction Research (2003). “http://www.diana.tno.nl. DIANA”. Department

of Computational Mechanics, Delft, The Netherlands.

Tsay, J. J. and Arora, J. S. (1990). “Nonlinear structural design sensitivity analysis for path depen-

dent problems. part1: General theory.” Computer Methods in Applied Mechanics and Engineering,

81, 183–208.

Vamvatsikos, D. and Cornell, A. C. (2002). “Incremental dynamic analysis.” Earthquake Engineering

and Structural Dynamics, 31, 491–514.

Vijalapura, P. K. (1998). Analysis of nonlinear structural systems accounting for both system un-

certainty and excitation stochasticity. M.S. Thesis, Civil Engineering Department, Rice University,

Houston, TX.

Welch, B. B. (2000). Practical programming in Tcl and Tk. Prentice Hall, Upper Saddle River, New

Jersey, 3rd edition.

Wen, Y.-K. (1976). “Method for random vibration of hysteretic systems.” Journal of Engineering

Mechanics Division, 102(EM2), 249–263.

Zhang, Y. and Der Kiureghian, A. (1993). “Dynamic response sensitivity of inelastic structures.”

Computer Methods in Applied Science and Engineering, 108, 23–36.

Zhang, Y. and Der Kiureghian, A. (1994). “First-excursion probability of uncertain structures.”

Probabilistic Engineering Mechanics, 9, 135–143.

Zhang, Y. and Der Kiureghian, A. (1997). Finite Element Reliability Methods for Inelastic Struc-

tures. Report No. UCB/SEMM-97/05, Department of Civil and Environmental Engineering, Uni-

versity of California, Berkeley, CA.

Zienkiewicz, O. and Taylor, R. (2000). The finite element method. Butterworth-Heinemann, Oxford,

Boston, 5th edition.

225

Appendix A: Class Interfaces for

Implementations in OpenSees

This appendix contains the class interfaces for the implementations made in OpenSees for sensi-

tivity and reliability analyses. The information can also be found in the open-source directory at

http://opensees.berkeley.edu. Class interface specifications show how an object-oriented code is

organized. This information is not meant for the front-end user of the software. The class interface

specifications are useful for developers, who aim at maintaining and extending the software.

The reliability analysis implementations follow a domain-analysis decomposition (Gamma et al.

1995). The data, such as random variables, are contained in a domain, which is acted upon by an

analysis object. In the reliability analysis implementation several such analysis classes are available.

Furthermore, the analysis makes use of a number of analysis components or “tools.” These three

sets of classes, namely domain, analysis and analysis tools, are discussed in the following sections.

It is assumed that the reader is familiar with object-oriented programming in the C++ language.

Nevertheless, two notational issues are emphasized. First, a member function is characterized by

its name, its return type and its argument list. The following example function with the name

doSomething returns an integer and takes an integer “a,” a real number “b” with double precision

and a vector object “c” as arguments:

int doSomething(int a, double b, Vector c)

In the following sections, the member functions available in the reliability module are described.

On the other hand, the data members of each class are not provided here. Secondly, the analysis

tools and domain components that are listed below are generally base classes. This implies that

they promise only certain features. The developer must implement specific subclasses to actually

provide the computational features that are promised in the interface of the base class. A number of

alternative subclasses may be available for one base class. This feature enables an extensible analysis

framework. While the framework and the interaction between its components is completed, it is

227

still possible to implement improved algorithms to solve the various tasks without modifying the

framework itself.

In the following the terms “member function” and “method” are used interchangeably.

A.1 ANALYSIS TYPES

Eight analysis types are available in the reliability module of OpenSees. They have the member

function analyze() in common. The following is the class interface specification for these classes:

FORMAnalysis

int analyze()

SORMAnalysis

int analyze()

SamplingAnalysis

int analyze()

MVFOSMAnalysis

int analyze()

OutCrossingAnalysis

int analyze()

FragilityAnalysis

int analyze()

SystemAnalysis

int analyze()

GFunVisualizationAnalysis

int analyze()

The GFunVisualizationAnalysis class interface contains several additional member functions to set

the search direction for the limit-state surface, etc. These details are not listed here. The common

analyze() method contains the orchestrating algorithm for each analysis type. The integer being

returned from these methods is used to distinguish a successful analysis and to characterize possible

errors that may have occurred. It is noted that the analysis types do not contain methods to obtain

results upon completed analysis. This is because these objects write results to files.

A.2 FRAMEWORK OF ANALYSIS COMPONENTS

The orchestrating analysis algorithms in the previous section make calls to selected analysis “tools” to

perform certain tasks. This section describes the available tools. It is noted that this decomposition

228

of the analysis procedure is a key feature of the OpenSees software (McKenna 1997). Analysis

components are aggregated at run-time based on the user’s request. This is also the case for the

reliability analysis module. The base classes of the reliability analysis framework and the features

they promise are as follows:

Interface for tool to find the design point:

FindDesignPointAlgorithm

int findDesignPoint(Vector *startPt, ReliabilityDomain *relDom)

Vector get_x()

Vector get_u()

Vector get_alpha()

Vector get_gamma()

int getNumberOfIterations()

double getFirstGFunValue()

In addition to the above, the FindDesignPointAlgorithm class contains some methods that are used

in gradient-based SORM analysis. These details are not described in this work. See

http://opensees.berkeley.edu for more information. Currently, one specific subclass implementation

of this analysis tool is available, namely

SearchWithStepSizeAndStepDirection. It is noted that this algorithm makes use of several other

analysis tools described in this section

Interface for probability transformation tool:

ProbabilityTransformation

int set_x(Vector x)

int set_u(Vector u)

int transform_x_to_u()

int transform_u_to_x()

int transform_u_to_x_andComputeJacobian()

Vector get_x()

Vector get_u()

Matrix getJacobian_x_u()

Matrix getJacobian_u_x()

It is seen that the probability transformation class is a typical object-oriented component. It con-

tain methods to first set its data, then to perform operations on them and finally to return the

results. The resulting data is stored in the base class. It is also noted that the transforma-

tion can be done both with and without computing the associated Jacobian matrix. Currently,

NatafProbabilityTransformation is the only specific implementation of this analysis tool.

Interface for search direction tool:

SearchDirection

int computeSearchDirection(Vector u, double g, Vector gradG)

Vector getSearchDirection()

229

Currently, the following specific implementations of the search direction algorithm are available:

iHLRF, GradientProjection, PolakHe and SQP.

Interface for step size tool:

StepSizeRule

int computeStepSize(Vector u, Vector gradG, double G, Vector d)

double getStepSize()

Two specific implementations of the step size base class are currently available. Namely, Armijo and

Fixed.

Interface for tool to evaluate the value of a performance function:

GFunEvaluator

int evaluateG(Vector x)

double getG()

int runGFunAnalysis(Vector x)

int tokenizeSpecials(char *expression)

The tool to evaluate the value of the g-function (performance function) has some unique features

in the analysis framework; namely, some of the tasks are implemented in the base class itself. This

is the case with the methods evaluateG and getG. The member functions runGFunAnalysis and

tokenizeSpecials, on the other hand, must be provided by the specific subclasses. The reason for

this is as follows. When an algorithm needs to evaluate the performance function it first calls the

runGFunAnalysis method. It is, of course, the specific type of g-function that must perform this

task. For instance, an OpenSees finite element analysis may be run. Next, the evaluateG method

is called. This algorithm goes through the expression of the performance function and sets the value

of its quantities. This can be done by the base class for basic random variables and a few other

quantities, but a specific subclass may have its own quantities available for use in the performance

function (with pre-defined syntax.) For this reason the tokenizeSpecials method is called by the

evaluateG method in the base class to make sure that all parameters are set. At the end of evaluateG

the performance function is evaluated. The running Tcl interpreter is used as parser for this purpose.

Lastly, the method getG can be called to obtain the value of the performance function. A few other

member functions are available for tasks specifically needed by the mean out-crossing rate analysis

type. Currently, the user can evaluate the value of the performance function by: OpenSees, Tcl,

Matlab and Basic.

Interface for tool to compute the gradient of a performance function:

GradGEvaluator

int computeGradG(double g, Vector x)

230

int computeAllGradG(Vector g, Vector x)

Vector getGradG()

Matrix getAllGradG()

Matrix getDgDdispl()

Matrix getDgDpar()

The main promise made by the GradGEvaluator, namely to compute and return the gradient vector

of a performance function (or of several performance functions and returning a matrix), is delivered by

subclasses. The value of the performance function itself is passed so that unnecessary evaluations are

avoided for the cases where finite difference schemes are employed. The two latter methods listed for

the GradGEvaluator are used to obtain derivatives with respect to parameters that explicitly enter the

performance function. A finite difference scheme is used for this purpose. Currently, two alternatives

are available as specific implementations for computing the gradients; namely, FiniteDifference

and OpenSees. The latter makes use of the DDM implementations in OpenSees.

Interface for tool to generate random numbers:

RandomNumberGenerator

int generate_nIndependentStdNormalNumbers(int n)

Vector getGeneratedNumbers()

Currently, the only subclass that is implemented for random number generation is the

CStdLibRandGenerator based on the random number generator available in the standard library of

the C++ programming language.

Interface for tool to compute curvatures of the limit-state surface at the design point:

FindCurvatures

int computeCurvatures(ReliabilityDomain *relDomain)

Vector getCurvatures()

The specific implementation FirstPrinicipleCurvature is currently available. This makes use of

results from the last step of a prior design point search to compute the major principle curvature.

Class interface for tool to perform a merit function check:

MeritFunctionCheck

double getMeritFunctionValue(Vector u, double g, Vector gradG)

int updateMeritParameters(Vector u, double g, Vector gradG)

Currently the following merit functions are available: AdkZhang, PolakHe, CriteriaReduction, and

SQP. The former contains the merit function formulated by Zhang and Der Kiureghian (1997), while

the next two usually are used in conjunction with their corresponding search direction algorithms.

The last one is a self-explanatory simple implementation.

Class interface for tool to check design point convergence:

231

ReliabilityConvergenceCheck

int check(Vector u, double g, Vector gradG)

int getNumberOfCriteria()

double getCriteriaValue(int whichCriteria)

int setScaleValue(double scaleValue)

In the current subclass implementations, two alternatives are available for checking whether a trial

point is a design point or not: Standard and OptimalityCondition.

Class interface for tool to compute an approximation of the Hessian of a performance

function:

HessianApproximation

Matrix getHessianApproximation()

int setHessianToIdentity(int size)

int updateHessianApproximation(Vector u_old, double g_old,

Vector gradG_old, double stepSize, Vector searchDir,

double g_new, Vector gradG_new)

Currently, only the BFGS scheme is implemented (as part of the SQP algorithm to determine the

design point).

Class interface for tool to find the root of a multi-dimensional function:

RootFinding

Vector findLimitStateSurface(int space, double g,

Vector direction, Vector thePoint)

Currently, only the SecantRootFinding object is implemented to perform this task.

In addition to the analysis components listed above, a “matrix operations” tool has been added

to the reliability analysis module. The purpose of the tool is to perform Cholesky decomposition,

matrix transposition, etc.

A.3 THE DOMAIN

The domain is the part of the code that contains the model data and possibly results from a previous

analysis. The following classes are currently available in the reliability domain.

Random variable:

RandomVariable

double getPDFvalue(double rvValue)

double getCDFvalue(double rvValue)

double getInverseCDFvalue(double rvValue)

232

const char* getType()

double getMean()

double getStdv()

double getParameter1()

double getParameter2()

double getParameter3()

double getParameter4()

double getStartValue()

int setNewTag(int tag)

The last method listed is used, for instance, when the number of random variables is reduced based

on pre-computed importance measures. In that case the random variables are renumbered to remain

consecutive. The available subclasses for the randomVariable base class corresponds to the list of

distributions provided in Appendix B.9.

Correlation coefficient:

CorrelationCoefficient

int getRv1()

int getRv2()

double getCorrelationCoefficient()

In the current OpenSees implementation the correlation matrix does not exist as an entity in the

reliability domain. The matrix is established by the selected probability transformation object based

on all existing correlation coefficient objects. Commands have been made available, however, to

facilitate easy input of correlation structures and correlation groups. The correlation coefficient class

does not have subclasses but any number of its objects can exist simultaneously in the reliability

domain.

Performance function:

PerformanceFunction

char *getExpression()

char *getTokenizedExpression()

int addExpression(char *expression)

int removeAddedExpression()

The last two methods of the performance function object are particularly useful in mean out-crossing

rate analysis, where a term may be added to the original expression to obtain a second design point.

The performance function class does not have subclasses but any number of its objects can exist

simultaneously in the reliability domain.

Random variable positioner:

RandomVariablePositioner

int getRvNumber()

233

int update (double newValue)

int activate(bool active)

int setNewTag(int newTag)

int setRvNumber(int newRvNumber)

The random variable positioner class is a vital part of the mapping of random variables into a finite

element domain. The update method is used to update the finite element model with new realizations

of a random model quantity. The activate method is used in DDM sensitivity analysis. The latter

two methods are employed, e.g., when the number of random variables is reduced based on their

importance rankings.

Parameter positioner:

ParameterPositioner

int update (double newValue)

int activate(bool active)

The parameter positioner serves the same purpose as the random variable positioner. However, in

this case a random variable need not be created. This is useful, e.g., in stand-alone sensitivity analysis

and in “fragility” analysis when a deterministic parameter in the finite element model is to be varied

over a range of values.

Filter:

Filter

double getAmplitude(double time)

double getMaxAmplitude()

double getTimeOfMaxAmplitude()

Currently, only one filter is used in OpenSees; namely, the standard linear oscillator.

Modulating function:

ModulatingFunction

double getAmplitude(double time)

double getMaxAmplitude()

Filter *getFilter()

Currently, the following types of modulating functions have been implemented: Constant, Trapezoidal

and Gamma.

Spectrum:

Spectrum

double getMinFrequency()

double getMaxFrequency()

double getAmplitude(double frequency)

234

In this study the power spectral density object has not be extensively used. However, three alterna-

tives are available: Jonswap, NarrowBand and Points. The latter lets the user specify PSD functions

of arbitrary shape.

A.4 DDM SENSITIVITY INTERFACE ADDITIONS

The computation of response sensitivities by the Direct Differentiation Method is orchestrated in

OpenSees by a “sensitivity algorithm” with the following class interface:

SensitivityAlgorithm

int computeSensitivities()

In turn, the sensitivity algorithm calls a “sensitivity integrator” which has the following class

interface:

SensitivityIntegrator

int formSensitivityRHS(int gradNum)

int formIndependentSensitivityRHS()

int saveSensitivity(const Vector &v, int gradNum, int numGrads)

int commitSensitivity(int gradNum, int numGrads)

A StaticSensitivityIntegrator is available for the static case. In the dynamic case, the sensitivity

integrator subclasses are also subclasses of specific ordinary integrator classes, such as the Newmark

integrator.

Methods are also added to classes belonging to the core OpenSees finite element module. El-

ements, sections, materials, nodes, load patterns, etc., are extended to enable the assembly of the

right-hand side of the sensitivity equation and to store results and sensitivity history variables.

235

Appendix B: Algorithms for Sensitivity

Computations

B.1 INCREMENTAL RESPONSE EQUATIONS FOR UNIAXIAL SMOOTHED BI-

LINEAR STEEL MATERIAL

The algorithm referred to in Section 2.8.4 is presented here. The initial values of the radius an center

coordinates of the circle are computed as:

1. BC = 1−γ
η

√
1 + η2

2. ∆yBD = (1− γ) + BC b η√
1+(bη)2

3. ∆xBD = 1−γ
η

+ BC b η

b η
√

1+(bη)2

4. Ãx =
∆yBD+ 1

bη (
γ
η
+∆xBD)− γ

η2

(1
bη
− 1

η)

5. Ãy = − 1
η

Ãx + γ
(
1 + 1

η2

)

6. R =

√(
γ − Ãy

)2

+
(

γ
η
− Ãx

)

The corresponding x-coordinates of the start and end points of the circular segment in the tension

and compression sides are computed as:

B̃tension
x =

γ

η

D̃tension
x = B̃tension

x + ∆xBD

B̃compression
x = −B̃tension

x

D̃compression
x = −D̃tension

x (B.1)

At each step these points are shifted along with the center coordinates according to the updating

rules employed for the center coordinates (see later in this section).

The algorithm to compute the stress response for a given strain is as follows:

237

1. Compute the normalized strain: x = εi+1

σy

E
η
.

2. Establish the maximum and minimum stress limits, including the circular segment:

(a) Default minimum stress: σmin = b E εi+1 − σy (1− b)

(b) Default maximum stress: σmax = b E εi+1 + σy (1− b)

(c) Corresponding default tangent: kT = b E

(d) Correct if the strain is within the end points of the circular segment:

if (Btension
x < x < Dtension

x)

i. τ1 =
√

R2 − (x− Atension
x)2

ii. σmax = σy

(
τ1 + Atension

y

)

iii. kT = −σy

(
(x−Atension

x) E
ησy

τ1

)

(e) if (Dcompression
x < x < Bcompression

x)

i. τ2 =

√
R2 − (

x− Acompression
x

)2

ii. σmin = σy

(−τ2 + Acompression
y

)

iii. kT = σy
(x−Acompression

x) E
ησy

τ2

3. Compute the trial elastic stress: σel
i+1 = σi + E (εi+1 − εi).

4. Possibly correct stress state:

(a) if (σmax < σel
i+1)

i. σi+1 = σmax

ii. kT = kT .

iii. Determine the material state for the subsequent update of circle coordinates: if

(Btension
x < x < Dtension

x) state = 2a else state = 4a.

(b) else if (σmin > σel
i+1)

i. σi+1 = σmin

ii. kT = kT .

iii. Determine the material state for the subsequent update of circle coordinates: if

(Dcompression
x < x < Bcompression

x) state = 2b else state = 4b.

(c) else

238

i. σi+1 = σel
i+1

ii. kT = E

iii. Determine the boundaries of the elastic region (see Figure 2.14) for the purpose of

state determination:

σinelastic
min = b E εi+1 − γσy (1− b)

σinelastic
max = b E εi+1 + γσy (1− b)

iv. Determine the material state for the subsequent update of circle coordinates: if

(σi+1 > σinelastic
max) then state = 3a, else if (σi+1 < σinelastic

min) then state = 3b,

else state = 1.

5. Finally, the parameters of the circle are updated depending on the material state. As opposed

to the above items, this is done only after convergence when the material state is committed.

The initial parameters are distinguished by a tilde.

(a) εshift = E εi+1−σi+1

E (1−b)

(b) xshift =
E εshift

σy η

(c) if (state = 1)

i. Atension
x = Ãtension

x + xshift

ii. Atension
y = Ãtension

y + b η xshift

iii. Acompression
x = Ãcompression

x + xshift

iv. Acompression
y = Ãcompression

y + b η xshift

v. Btension
x = B̃tension

x + xshift

vi. Dtension
x = D̃tension

x + xshift

vii. Bcompression
x = B̃compression

x + xshift

viii. Dcompression
x = D̃compression

x + xshift

(d) else if (state = 2a)

i. Acompression
x = Ãcompression

x + xshift

ii. Acompression
y = Ãcompression

y + b η xshift

iii. Bcompression
x = B̃compression

x + xshift

iv. Dcompression
x = D̃compression

x + xshift

(e) else if (state = 2b)

239

i. Atension
x = Ãtension

x + xshift

ii. Atension
y = Ãtension

y + b η xshift

iii. Btension
x = B̃tension

x + xshift

iv. Dtension
x = D̃tension

x + xshift

(f) else if (state = 3a)

i. Acompression
x = Ãcompression

x + xshift

ii. Acompression
y = Ãcompression

y + b η xshift

iii. Bcompression
x = B̃compression

x + xshift

iv. Dcompression
x = D̃compression

x + xshift

v. x1 = E εi+1

σy η

vi. y1 = σi+1

σy

vii. x2 =
y1+

x1
b η
−(1−b)

b η+ 1
b η

viii. y2 = b η x2 + (1− b)

ix. l1,2 =
√

(x1 − x2)2 + (y1 − y2)2

x. l2,3 =
√

R2 − (l1,2 −R)2

xi. l2,3,y = b η l2,3√
1+b2η2

xii. l2,3,x = l2,3√
1+b2η2

xiii. ∆Rx = R√
1

b2η2 +1

xiv. ∆Ry =
R
b η√
1

b2η2 +1

xv. l = Dtension
x −Btension

x

xvi. Atension
x = x2 + l2,3,x + ∆Rx

xvii. Atension
y = y2 + l2,3,y −∆Ry

xviii. Dtension
x = x2 + l2,3,x

xix. Btension
x = Dtension

x − l

(g) else if (state = 3b)

i. Atension
x = Ãtension

x + xshift

ii. Atension
y = Ãtension

y + b η xshift

iii. Btension
x = B̃tension

x + xshift

iv. Dtension
x = D̃tension

x + xshift

240

v. x1 = E εi+1

σy η

vi. y1 = σi+1

σy

vii. x2 =
y1+

x1
b η

+(1−b)

b η+ 1
b η

viii. y2 = b η x2 − (1− b)

ix. l1,2 =
√

(x1 − x2)2 + (y1 − y2)2

x. l2,3 =
√

R2 − (l1,2 −R)2

xi. l2,3,y = b η l2,3√
1+b2η2

xii. l2,3,x = l2,3√
1+b2η2

xiii. ∆Rx = R√
1

b2η2 +1

xiv. ∆Ry =
R
b η√
1

b2η2 +1

xv. l = Bcompression
x −Dcompression

x

xvi. Acompression
x = x2 − l2,3,x −∆Rx

xvii. Acompression
y = y2 − l2,3,y + ∆Ry

xviii. Dcompression
x = x2 − l2,3,x

xix. Bcompression
x = Dcompression

x + l

(h) else if (state = 4a)

i. Acompression
x = Ãcompression

x + xshift

ii. Acompression
y = Ãcompression

y + b η xshift

iii. Bcompression
x = B̃compression

x + xshift

iv. Dcompression
x = D̃compression

x + xshift

(i) else if (state = 4b)

i. Atension
x = Ãtension

x + xshift

ii. Atension
y = Ãtension

y + b η xshift

iii. Btension
x = B̃tension

x + xshift

iv. Dtension
x = D̃tension

x + xshift

241

B.2 CONDITIONAL STRESS DERIVATIVE FOR UNIAXIAL SMOOTHED BI-LINEAR

STEEL MATERIAL

The algorithm referred to in Section 2.8.5 is presented below. It is assumed that the quantities from

the material state determination are available (see previous section). The sensitivity history variables

∂σi

∂h
, ∂εi

∂h
, ∂Atension

x

∂h
, ∂Acompression

x

∂h
,

∂Acompression
y

∂h
and

∂Acompression
y

∂h
are updated by the algorithm presented in

the next section.

1. Initialize sensitivity history variables (done only in the initial step):

(a) ∂BC
∂h

=
√

1 + η2−
∂γ
∂h

η−(1−γ) ∂η
∂h

η2 + 1−γ
η

η ∂η
∂h√
1+η2

(b) ∂∆yBD

∂h
= −∂γ

∂h
+

(
∂BC
∂h

bη+BC ∂b
∂h

η+BCb ∂η
∂h

)√
1+(bη)2−BCbη 1√

1+(bη)2
bη(∂b

∂h
η+b ∂η

∂h)
1+(bη)2

(c) ∂∆xBD

∂h
=

− ∂γ
∂h

η−(1−γ) ∂η
∂h

η2 +
∂BC
∂h

√
1+(bη)2−

BCbη(∂b
∂h

η+b
∂η
∂h)√

1+(bη)2

1+(bη)2

(d) τ3 =

(
∂γ
∂h

η−γ
∂η
∂h

η2 +
∂∆xBD

∂h

)
bη−(γ

η
+∆xBD)(∂b

∂h
η+b ∂η

∂h)

(bη)2

(e) τ4 =
[
∆yBD + 1

bη

(
γ
η

+ ∆xBD

)
− γ

η2

] [−(bη)−2
(

∂b
∂h

η + b ∂η
∂h

)
+ η−2 ∂η

∂h

)
]

(f) ∂Ãx

∂h
=

(
∂∆yBD

∂h
+τ3−

∂γ
∂h

η2−2 γη
∂η
∂h

η4

)
(1

bη
− 1

η)−τ4

(1
bη
− 1

η)
2

(g) ∂Ãy

∂h
= −

∂Ãx
∂h

η−Ãx
∂η
∂h

η2 + ∂γ
∂h

(
1 + 1

η2

)
− 2γη−3 ∂η

∂h

(h) ∂Atension
x

∂h
= ∂Ãx

∂h

(i) ∂Acompression
x

∂h
= −∂Ãx

∂h

(j)
∂Atension

y

∂h
= ∂Ãy

∂h

(k)
∂Acompression

y

∂h
= −∂Ãy

∂h

(l) ∂σi

∂h
= 0

(m) ∂εi

∂h
= 0

2. Compute the derivative of the radius of the circle (remains constant throughout the analysis):

∂R
∂h

= 1
R

((
γ − Ãy

)(
∂γ
∂h
− ∂Ãy

∂h

)
+

(
γ
η
− Ãx

) (∂γ
∂h

η−γ ∂η
∂h

η2 − ∂Ãx

∂h

))

3. Compute the derivative of the elastic stress:
∂σel

i+1

∂h

∣∣∣
εi+1 fixed

= ∂σi

∂h
+ ∂E

∂h
(εi+1 − εi)− E ∂εi

∂h

242

4. Compute the derivative of the default minimum stress:

∂σmin

∂h

∣∣∣
εi+1 fixed

= ∂b
∂h

E εi+1 + b ∂E
∂h

εi+1 − ∂σy

∂h
(1− b) + σy

∂b
∂h

5. Compute the derivative of the default maximum stress:

∂σmax

∂h

∣∣∣
εi+1 fixed

= ∂b
∂h

E εi+1 + b ∂E
∂h

εi+1 + ∂σy

∂h
(1− b)− σy

∂b
∂h

6. Correct the derivatives of the maximum/minimum stress if the strain is within the end points

of the circular segment:

(a) if (Btension
x < x < Dtension

x)

i. ∂x
∂h

∣∣∣
εi+1 fixed

=
εi+1

∂E
∂h

σy η−εi+1E
(

∂σy
∂h

η+σy
∂η
∂h

)

(σy η)2

ii. ∂τ1
∂h

∣∣∣
εi+1 fixed

= 1
τ1

(
R∂R

∂h
− (x− Atension

x)

(
∂x
∂h

∣∣∣
εi+1 fixed

− ∂Atension
x

∂h

))

iii. ∂σmax

∂h

∣∣∣
εi+1 fixed

= ∂σy

∂h

(
τ1 + Atension

y

)
+ σy

(
∂τ1
∂h

∣∣∣
εi+1 fixed

+
∂Atension

y

∂h

)

(b) else if (Dcompression
x < x < Bcompression

x)

i. ∂x
∂h

∣∣∣
εi+1 fixed

= as item (a) above.

ii. ∂τ2
∂h

∣∣∣
εi+1 fixed

= 1
τ2

(
R∂R

∂h
− (x− Acompression

x)

(
∂x
∂h

∣∣∣
εi+1 fixed

− ∂Acompression
x

∂h

))

iii. ∂σmin

∂h

∣∣∣
εi+1 fixed

= ∂σy

∂h

(−τ2 + Acompression
y

)
+ σy

(
−∂τ2

∂h

∣∣∣
εi+1 fixed

+
∂Acompression

y

∂h

)

7. Set the stress derivative depending on the material state:

(a) if (σmax < σel
i+1)

∂σi+1

∂h

∣∣∣
εi+1 fixed

= ∂σmax

∂h

∣∣∣
εi+1 fixed

(b) else if (σmin > σel
i+1)

∂σi+1

∂h

∣∣∣
εi+1 fixed

= ∂σmin

∂h

∣∣∣
εi+1 fixed

(c) else

∂σi+1

∂h

∣∣∣
εi+1 fixed

=
∂σel

i+1

∂h

∣∣∣
εi+1 fixed

B.3 UNCONDITIONAL SENSITIVITY HISTORY VARIABLES FOR UNIAXIAL

SMOOTHED BI-LINEAR STEEL MATERIAL

The algorithm referred to in Section 2.8.6 is presented here. From the expressions for the condi-

tional stress derivative it is clear that the following sensitivity history variables are present: ∂σi

∂h
, ∂εi

∂h
,

243

∂Atension
x

∂h
, ∂Acompression

x

∂h
,

∂Atension
y

∂h
and

∂Acompression
y

∂h
. These are updated in this “phase 2” of the sensitivity

computations. The computations are now performed without the assumption of fixed strain. The

needed quantity ∂εi+1

∂h
is passed from the element/section based on the displacement sensitivity vector

v, which is now available. It is assumed that the derivatives of the initial circle parameters R, Ãx

and Ãy are available from the computations according to the previous section.

1. Store ∂εi+1

∂h

2. Compute the derivative of the elastic stress:
∂σel

i+1

∂h
= ∂σi

∂h
+ ∂E

∂h
(εi+1 − εi) + E

(
∂εi+1

∂h
− ∂εi

∂h

)

3. Compute the derivative of the default minimum stress:

∂σmin

∂h
= ∂b

∂h
E εi+1 + b ∂E

∂h
εi+1 + bE ∂εi+1

∂h
− ∂σy

∂h
(1− b) + σy

∂b
∂h

4. Compute the derivative of the default maximum stress:

∂σmax

∂h
= ∂b

∂h
E εi+1 + b ∂E

∂h
εi+1 + bE ∂εi+1

∂h
+ ∂σy

∂h
(1− b)− σy

∂b
∂h

5. Correct the derivatives of maximum/minimum stress if the strain is within the end points of

the circular segment:

6. if (Btension
x < x < Dtension

x)

(a) ∂x
∂h

=

(
∂εi+1

∂h
E+εi+1

∂E
∂h

)
σy η−εi+1E

(
∂σy
∂h

η+σy
∂η
∂h

)

(σy η)2

(b) ∂τ1
∂h

= 1
τ1

(
R∂R

∂h
− (x− Atension

x)
(

∂x
∂h
− ∂Atension

x

∂h

))

(c) ∂σmax

∂h
= ∂σy

∂h

(
τ1 + Atension

y

)
+ σy

(
∂τ1
∂h

+
∂Atension

y

∂h

)

7. else if (Dcompression
x < x < Bcompression

x)

(a) ∂x
∂h

= as item (a) above.

(b) ∂τ2
∂h

= 1
τ2

(
R∂R

∂h
− (x− Acompression

x)
(

∂x
∂h
− ∂Acompression

x

∂h

))

(c) ∂σmin

∂h
= ∂σy

∂h

(−τ2 + Acompression
y

)
+ σy

(
−∂τ2

∂h
+

∂Acompression
y

∂h

)

8. Set stress derivative depending on material state:

(a) if (σmax < σel
i+1)

∂σi+1

∂h
= ∂σmax

∂h

244

(b) else if (σmin > σel
i+1)

∂σi+1

∂h
= ∂σmin

∂h

(c) else

∂σi+1

∂h
=

∂σel
i+1

∂h

9. The derivative of the circle coordinates are updated based on the current material state (deriva-

tives of the original center coordinates are available from the previous section):

(a)
∂εshift

∂h
=

(
∂E
∂h

εi+1+E
∂εi+1

∂h
− ∂σi+1

∂h

)
E(1−b)−(Eεi+1−σi+1)(∂E

∂h
(1−b)−E ∂b

∂h)
E2 (1−b)2

(b)
∂xshift

∂h
=

(∂E
∂h

εshift+E
εshift

∂h)σy η−E εshift

(
∂σy
∂h

η+σy
∂η
∂h

)

(σy η)2

(c) if (state = 1)

i. ∂Atension
x

∂h
= ∂Ãtension

x

∂h
+

∂xshift

∂h

ii.
∂Atension

y

∂h
=

∂Ãtension
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

iii. ∂Acompression
x

∂h
= ∂Ãcompression

x

∂h
+

∂xshift

∂h

iv.
∂Acompression

y

∂h
=

∂Ãcompression
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

(d) else if (state = 2a)

i. ∂Acompression
x

∂h
= ∂Ãcompression

x

∂h
+

∂xshift

∂h

ii.
∂Acompression

y

∂h
=

∂Ãcompression
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

(e) else if (state = 2b)

i. ∂Atension
x

∂h
= ∂Ãtension

x

∂h
+

∂xshift

∂h

ii.
∂Atension

y

∂h
=

∂Ãtension
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

(f) else if (state = 3a)

i. ∂Acompression
x

∂h
= ∂Ãcompression

x

∂h
+

∂xshift

∂h

ii.
∂Acompression

y

∂h
=

∂Ãcompression
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

iii. ∂x1

∂h
=

(
∂E
∂h

εi+1+E
∂εi+1

∂h

)
σy η−E εi+1

(
∂σy
∂h

η+σy
∂η
∂h

)

(σy η)2

iv. ∂y1

∂h
=

∂σi+1
∂h

σy−σi+1
∂σy
∂h

σ2
y

v. ∂x2

∂h
=

(∂b
∂h

η y1+b ∂η
∂h

y1+b η
∂y1
∂h

+
∂x1
∂h
− ∂b

∂h
η(1−b)−b ∂η

∂h
(1−b)+b η ∂b

∂h)((b η)2+1)
((b η)2+1)2

− (b η y1+x1−b η(1−b))(2 b η(∂b
∂h

η+b ∂η
∂h))

((b η)2+1)2

vi. ∂y2

∂h
= ∂b

∂h
η x2 + b ∂η

∂h
x2 + b η ∂x2

∂h
− ∂b

∂h

vii. ∂l1,2

∂h
= 1√

(x1−x2)2+(y1−y2)2

(
(x1 − x2)

(
∂x1

∂h
− ∂x2

∂h

)
+ (y1 − y2)

(
∂y1

∂h
− ∂y2

∂h

))

245

viii. ∂l2,3

∂h
= 1√

R2−(l1,2−R)2

(
R∂R

∂h
− (l1,2 −R)

(
∂l1,2

∂h
− ∂R

∂h

))

ix. ∂l2,3,y

∂h
=

(
∂b
∂h

η l2,3+b ∂η
∂h

l2,3+b η
∂l2,3

∂h

)√
1+b2η2−b η l2,3

1√
1+b2η2

b η(∂b
∂h

η+b ∂η
∂h)

1+b2η2

x. ∂l2,3,x

∂h
=

∂l2,3
∂h

√
1+b2η2−l2,3

1√
1+b2η2

b η(∂b
∂h

η+b ∂η
∂h)

1+b2η2

xi. ∂∆Rx

∂h
=

∂R
∂h

√
1

b2η2 +1−R 1

2
√

1
b2η2 +1

1
(b η)3

(∂b
∂h

η+b ∂η
∂h)

1
(b η)2

+1

xii. ∂∆Ry

∂h
=

∂R
∂h

b η
√

1
b2η2 +1−R


 ∂b

∂h
η
√

1
b2η2 +1+b ∂η

∂h

√
1

b2η2 +1+b η 1

2
√

1
b2η2 +1

1
(b η)3

(∂b
∂h

η+b ∂η
∂h)




(b η)2
(

1
(b η)2

+1
)

xiii. ∂Atension
x

∂h
= ∂x2

∂h
+ ∂l2,3,x

∂h
+ ∂∆Rx

∂h

xiv.
∂Atension

y

∂h
= ∂y2

∂h
+ ∂l2,3,y

∂h
− ∂∆Ry

∂h

(g) else if (state = 3b)

i. ∂Atension
x

∂h
= ∂Ãtension

x

∂h
+

∂xshift

∂h

ii.
∂Atension

y

∂h
=

∂Ãtension
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

iii. ∂x1

∂h
=

(
∂E
∂h

εi+1+E
∂εi+1

∂h

)
σy η−E εi+1

(
∂σy
∂h

η+σy
∂η
∂h

)

(σy η)2

iv. ∂y1

∂h
=

∂σi+1
∂h

σy−σi+1
∂σy
∂h

σ2
y

v. ∂x2

∂h
=

(∂b
∂h

η y1+b ∂η
∂h

y1+b η
∂y1
∂h

+
∂x1
∂h

+ ∂b
∂h

η(1−b)+b ∂η
∂h

(1−b)−b η ∂b
∂h)((b η)2+1)

((b η)2+1)2

− (b η y1+x1+b η(1−b))(2 b η(∂b
∂h

η+b ∂η
∂h))

((b η)2+1)2

vi. ∂y2

∂h
= ∂b

∂h
η x2 + b ∂η

∂h
x2 + b η ∂x2

∂h
+ ∂b

∂h

vii. ∂l1,2

∂h
= 1√

(x1−x2)2+(y1−y2)2

(
(x1 − x2)

(
∂x1

∂h
− ∂x2

∂h

)
+ (y1 − y2)

(
∂y1

∂h
− ∂y2

∂h

))

viii. ∂l2,3

∂h
= 1√

R2−(l1,2−R)2

(
R∂R

∂h
− (l1,2 −R)

(
∂l1,2

∂h
− ∂R

∂h

))

ix. ∂l2,3,y

∂h
=

(
∂b
∂h

η l2,3+b ∂η
∂h

l2,3+b η
∂l2,3

∂h

)√
1+b2η2−b η l2,3

1√
1+b2η2

b η(∂b
∂h

η+b ∂η
∂h)

1+b2η2

x. ∂l2,3,x

∂h
=

∂l2,3
∂h

√
1+b2η2−l2,3

1√
1+b2η2

b η(∂b
∂h

η+b ∂η
∂h)

1+b2η2

xi. ∂∆Rx

∂h
=

∂R
∂h

√
1

b2η2 +1−R 1

2
√

1
b2η2 +1

1
(b η)3

(∂b
∂h

η+b ∂η
∂h)

1
(b η)2

+1

xii. ∂∆Ry

∂h
=

∂R
∂h

b η
√

1
b2η2 +1+R


 ∂b

∂h
η
√

1
b2η2 +1+b ∂η

∂h

√
1

b2η2 +1+b η 1

2
√

1
b2η2 +1

1
(b η)3

(∂b
∂h

η+b ∂η
∂h)




(b η)2
(

1
(b η)2

+1
)

xiii. ∂Acompression
x

∂h
= ∂x2

∂h
− ∂l2,3,x

∂h
− ∂∆Rx

∂h

xiv.
∂Acompression

y

∂h
= ∂y2

∂h
− ∂l2,3,y

∂h
+ ∂∆Ry

∂h

(h) else if (state = 4a)

i. ∂Acompression
x

∂h
= ∂Ãcompression

x

∂h
+

∂xshift

∂h

246

ii.
∂Acompression

y

∂h
=

∂Ãcompression
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

(i) else if (state = 4b)

i. ∂Atension
x

∂h
= ∂Ãtension

x

∂h
+

∂xshift

∂h

ii.
∂Atension

y

∂h
=

∂Ãtension
y

∂h
+ ∂b

∂h
η xshift + b ∂η

∂h
xshift + b η

∂xshift

∂h

B.4 HISTORY VARIABLES FOR UNIAXIAL SMOOTHED CONCRETE MATE-

RIAL

The history variables of the smoothed concrete material are εmin, εend and ku. The following algorithm

is found in the original “Concrete01” material in OpenSees:

1. εmin = εi+1

2. if (εi+1 < epscu)

(a) ε̃ = εcu

3. else

(a) ε̃ = εi+1

4. η = ε̃
epsc0

5. if (η < 2)

(a) ratio = 0.145 η2 + 0.13 η

6. else

(a) r = 0.707 (η − 2) + 0.834

7. τ1 = εi+1 − r εc0

8. τ2 = σi+1 εc0

2 fpc

9. if (τ1 = 0)

(a) ku = 2 f ′c
εc0

247

10. else if (τ1 < τ2)

(a) εend = εi+1 − τ1

(b) ku = σi+1

τ1

11. else

(a) εend = εi+1 − τ2

(b) ku = 2 f ′c
εc0

B.5 BACKBONE CURVE FOR THE UNIAXIAL SMOOTHED CONCRETE MA-

TERIAL

The backbone curve employed in this material model is similar to the one used in the ordinary

“Concrete01” material in OpenSees. It is, however, distinguished by having a smooth transition

between the different regions of the backbone curve:

1. if (εi+1 > εc0); point on the parabola:

(a) σi+1 = f ′c

(
2 εi+1

εc0
−

(
εi+1

εc0

)2
)

(b) kT = 2 f ′c
εc0

(
1− εi+1

εc0

)

2. else if (εi+1 > εcu); point on the third-order polynomial used to smoothen the backbone curve:

(a) a = −2 f ′cu−f ′c
(εcu−εc0)3

, b = 3 f ′cu−f ′c
(εcu−εc0)2

(b) σi+1 = a (εi+1 − εc0)
3 + b (εi+1 − εc0)

2 + f ′c

(c) kT = 3 a (εi+1 − εc0)
2 + 2 b (εi+1 − εc0)

3. else; on the horizontal line:

(a) σi+1 = f ′cu

(b) kT = 0

248

B.6 SMOOTHING LINE BETWEEN TWO POINTS FOR UNIAXIAL SMOOTHED

CONCRETE MATERIAL

A general third-order interpolating polynomial between two points is established. This is used at

several material states in the incremental algorithm presented for the uniaxial smoothed concrete

material model.

1. Assume the strain, stress and tangent at points 1 and 2 are available (see Figure 2.26): ε1, σ1,

k1, ε2, σ2 and k2.

2. Polynomial coefficient: a = k1 ε2−2 σ2+k2 ε2
ε32

3. Polynomial coefficient: b = 3σ2−2k1 ε2−k2 ε2
ε22

4. Polynomial coefficient: c = k1

5. Smooth stress curve: σi+1 = a (εi+1 − ε1)
3 + b (εi+1 − ε1)

2 + c (εi+1 − ε1) + σ1

6. Corresponding tangent: kT = 3 a (εi+1 − ε1)
2 + 2 b (εi+1 − ε1) + c

B.7 DERIVATIVE OF BACKBONE CURVE FOR UNIAXIAL SMOOTHED CON-

CRETE MATERIAL

The equations to obtain ∂σi+1

∂h
when the stress state is found to be on the backbone curve are derived in

this section. Note that the quantity ∂εi+1

∂h
should be set to zero when the conditional stress derivative

is sought in “phase 1.” When computing sensitivity history variables in “phase 2,” this quantity

is available to the material object from the preceding computation of the displacement sensitivity

vector. The derivative of the stiffness is derived because it is used in the following section.

1. if (εi+1 > εc0); point on the parabola:

(a) ∂σi+1

∂h
=

2

(
∂f ′c
∂h

εi+1+f ′c
∂εi+1

∂h

)
− ∂εc0

∂h

ε2c0
− ∂f ′c

∂h

(
εi+1

εc0

)2

− 2f ′c
(

εi+1

εc0

) ∂εi+1
∂h

εc0−εi+1
∂εc0
∂h

ε2c0

(b) ∂kT

∂h
= 2

∂f ′c
∂h

εc0−f ′c
∂εc0
∂h

ε2c0

(
1− εi+1

εc0

)
− 2 f ′c

εc0

(
∂εi+1

∂h
εc0−εi+1

∂εc0
∂h

ε2c0

)

2. else if (εi+1 > εcu); point on the third-order polynomial used to smoothen the backbone curve:

(a) ∂a
∂h

= −2

(
∂f ′cu
∂h

− ∂f ′c
∂h

)
(εcu−εc0)3−3 (f ′cu−f ′c)(εcu−εc0)2(∂εcu

∂h
− ∂εc0

∂h)

(εcu−εc0)6

249

(b) ∂b
∂h

= 3

(
∂f ′cu
∂h

− ∂f ′c
∂h

)
(εcu−εc0)2−2 (f ′cu−f ′c)(εcu−εc0)(∂εcu

∂h
− ∂εc0

∂h)

(εcu−εc0)4

(c) ∂σi+1

∂h
= ∂a

∂h
(εi+1 − εc0)

3 + 3 a (εi+1 − εc0)
2
(

∂εi+1

∂h
− ∂εc0

∂h

)

+ ∂b
∂h

(εi+1 − εc0)
2 + 2 b (εi+1 − εc0)

(
∂εi+1

∂h
− ∂εc0

∂h

)
+ f ′c

(d) ∂kT

∂h
= 3 ∂a

∂h
(εi+1 − εc0)

2+6 a (εi+1 − εc0)
(

∂εi+1

∂h
− ∂εc0

∂h

)
+2 ∂b

∂h
(εi+1 − εc0)+2 b

(
∂εi+1

∂h
− ∂εc0

∂h

)

3. else; on the horizontal line:

(a) ∂σi+1

∂h
= ∂f ′cu

∂h

(b) ∂kT

∂h
= 0

B.8 DERIVATIVE OF SMOOTHING LINE BETWEEN TWO POINTS FOR UNI-

AXIAL SMOOTHED CONCRETE MATERIAL

As in the algorithm to determine the smoothing line itself, we assume that the derivatives of the

interpolation points (and the respective stiffnesses), namely ε1, σ1, k1, ε2, σ2 and k2, are available as

history variables.

1. Derivative of the polynomial coefficient:

∂a
∂h

=
(∂k1

∂h
ε2+k1

∂ε2
∂h
−2

∂σ2
∂h

+
∂k2
∂h

ε2+k2
∂ε2
∂h)ε32−3 (k1 ε2−2 σ2+k2 ε2)ε22

∂ε2
∂h

ε62

2. Derivative of the polynomial coefficient:

∂b
∂h

=
(3

∂σ2
∂h

−2
∂k1
∂h

ε2−2k1
∂ε2
∂h
− ∂k2

∂h
ε2−k2

∂ε2
∂h)ε22−2 (3σ2−2k1 ε2−k2 ε2)ε2

∂ε2
∂h

ε42

3. Derivative of the polynomial coefficient:

∂c
∂h

= ∂k1

∂h

4. Derivative of the smooth stress curve:

∂σi+1

∂h
= ∂a

∂h
(εi+1 − ε1)

3

+ 3 a (εi+1 − ε1)
2
(

∂εi+1

∂h
− ∂ε1

∂h

)
+ ∂b

∂h
(εi+1 − ε1)

2 + 2 b (εi+1 − ε1)
(

∂εi+1

∂h
− ∂ε1

∂h

)

+ ∂c
∂h

(εi+1 − ε1) + c
(

∂εi+1

∂h
− ∂ε1

∂h

)
+ ∂σ1

∂h

5. Derivative of the corresponding tangent:

∂kT

∂h
= 3 ∂a

∂h
(εi+1 − ε1)

2+6 a (εi+1 − ε1)
(

∂εi+1

∂h
− ∂ε1

∂h

)

+ 2 ∂b
∂h

(εi+1 − ε1) + 2 b
(

∂εi+1

∂h
− ∂ε1

∂h

)
+ ∂c

∂h

250

B.9 SENSITIVITY HISTORY VARIABLES FOR UNIAXIAL SMOOTHED CON-

CRETE MATERIAL

Computation of the sensitivity history variables ∂εmin

∂h
, ∂εend

∂h
and ∂ku

∂h
is as follows:

1. ∂εmin

∂h
= ∂εi+1

∂h

2. if (εi+1 < εcu)

(a) ε̃ = εcu

(b) ∂ε̃
∂h

= ∂εcu

∂h

3. else

(a) ε̃ = εi+1

(b) ∂ε̃
∂h

= ∂εi+1

∂h

4. η = ε̃
εc0

5. ∂η
∂h

=
∂ε̃
∂h

εc0−ε̃
∂εc0
∂h

ε2c0

6. if (η < 2)

(a) r = 0.145 η2 + 0.13 η

(b) ∂r
∂h

= 0.29 η ∂η
∂h

+ 0.13 ∂η
∂h

7. else

(a) r = 0.707 (η − 2) + 0.834

(b) ∂r
∂h

= 0.707 ∂η
∂h

8. τ1 = εi+1 − r εc0

9. τ2 = σi+1 εc0

2 f ′c

10. ∂τ1
∂h

= ∂εi+1

∂h
− ∂r

∂h
εc0 − r ∂εc0

∂h

11. ∂τ2
∂h

=

(
∂σi+1

∂h
εc0+σi+1

∂εc0
∂h

)
2 f ′c−2 σi+1εc0

∂f ′c
∂h

4 f
′2
c

12. if (τ1 = 0)

251

(a) ∂ku

∂h
=

2 εc0
∂f ′c
∂h
−2 f ′c

∂εc0
∂h

ε2c0

13. else if (τ1 < τ2)

(a) ∂εend

∂h
= ∂εi+1

∂h
− ∂τ1

∂h

(b) ∂ku

∂h
=

∂σi+1
∂h

τ1−σi+1
∂τ1
∂h

τ2
1

14. else

(a) ∂εend

∂h
= ∂εi+1

∂h
− ∂τ2

∂h

(b) ∂ku

∂h
=

2 εc0
∂f ′c
∂h
−2 f ′c

∂εc0
∂h

ε2c0

It is seen in the above equations that ∂σi+1

∂h
is needed. Hence, as a part of the procedure of

computing sensitivity history variables, the unconditional stress sensitivity must be computed. This

is done according to the equations outlined in the previous two sections, except that the quantity

∂εi+1

∂h
now is non-zero.

252

Appendix C: Probability Distributions

Table C.1: The normal probability distribution. The PDF for the standard normal distribution is
usually denoted ϕ(x), while the corresponding CDF is denoted Φ(x).

Normal N(µ, σ)

Probability Density Function
(PDF)

f(x) = 1
σ
√

2π
exp

[
−1

2

(
x−µ

σ

)2
]

Variable and parameter
restrictions

σ > 0

Cumulative Distribution Function
(CDF)

F (x) = Φ
(

x−µ
σ

)

Inverse CDF x(F) = µ + σ Φ(F)−1

Mean and standard deviation in Mean = µ
terms of the distribution parame-
ters

Standard deviation = σ

Table C.2: The lognormal probability distribution.

Lognormal LN(λ, ζ)

Probability Density Function
(PDF)

f(x) = 1√
2πζx

exp

[
−1

2

(
ln x−λ

ζ

)2
]

Variable and parameter
restrictions

x > 0, ζ > 0

Cumulative Distribution Function
(CDF)

F (x) = Φ
(

ln x−λ
ζ

)

Inverse CDF x(F) = exp [Φ−1(F)ζ + λ]

Mean and standard deviation in Mean = exp (λ + 0.5 ζ2)

terms of distribution parameters St.dev. = exp (λ + 0.5 ζ2)
√

exp (ζ2)− 1

253

Table C.3: The negative lognormal probability distribution.

Negative lognormal NLN(λ, ζ)

Probability Density Function
(PDF)

f(x) = 1√
2πζx

exp

[
−1

2

(
ln (|x|)−λ

ζ

)2
]

Variable and parameter
restrictions

x < 0, ζ > 0

Cumulative Distribution Function
(CDF)

F (x) = 1− Φ
(

ln (|x|)−λ
ζ

)

Inverse CDF x(F) = − exp [Φ−1(1− F)ζ + λ]

Mean and standard deviation in Mean = exp (λ + 0.5 ζ2)

terms of distribution parameters St.dev. = exp (λ + 0.5 ζ2)
√

exp (ζ2)− 1

Table C.4: The exponential probability distribution.

Exponential Exp(λ)

Probability Density Function
(PDF)

f(x) = λ exp (−λx)

Variable and parameter
restrictions

x > 0, λ > 0

Cumulative Distribution Function
(CDF)

F (x) = 1− exp (−λx)

Inverse CDF x(F) = − ln (1−F)
λ

Mean and standard deviation in Mean = 1/λ
terms of distribution parameters Standard deviation = 1/λ

Table C.5: The shifted exponential probability distribution.

Shifted Exponential Exp(λ, x0)

Probability Density Function
(PDF)

f(x) = λ exp (λ (x− x0))

Variable and parameter
restrictions

λ > 0, x > x0

Cumulative Distribution Function
(CDF)

F (x) = 1− exp (−λ (x− x0))

Inverse CDF x(F) = λx0−ln(1−F)
λ

Mean and standard deviation in Mean = x0 + 1/λ
terms of distribution parameters Standard deviation = 1/λ

254

Table C.6: The Rayleigh probability distribution.

Rayleigh Ray(u)

Probability Density Function
(PDF)

f(x) = 2x
u2 exp

[
− (

x
u

)2
]

Variable and parameter
restrictions

x > 0, u > 0

Cumulative Distribution Function
(CDF)

F (x) = 1− exp
[
− (

x
u

)2
]

Inverse CDF x(F) = u
√
− ln (1− F)

Mean and standard deviation in Mean = u
2

√
π

terms of distribution parameters Standard deviation = u
2

√
4− π

Table C.7: The shifted Rayleigh probability distribution.

Shifted Rayleigh Ray(u, x0)

Probability Density Function
(PDF)

f(x) = 2(x−x0)
u2 exp

[
−

(
(x−x0)

u

)2
]

Variable and parameter
restrictions

x > x0, u > 0

Cumulative Distribution Function
(CDF)

F (x) = 1− exp

[
−

(
(x−x0)

u

)2
]

Inverse CDF x(F) = x0 + u
√
− ln (1− F)

Mean and standard deviation in Mean = x0 + 0.5u
√

π
terms of distribution parameters Standard deviation = 0.5u

√
4− π

Table C.8: The uniform probability distribution.

Uniform U(a, b)

Probability Density Function
(PDF)

f(x) = 1
b−a

Variable and parameter
restrictions

a < x < b, a < b

Cumulative Distribution Function
(CDF)

F (x) = x−a
b−a

Inverse CDF x(F) = F b− F a + a

Mean and standard deviation in Mean = (a + b)/2

terms of distribution parameters Standard deviation =
(√

3(b− a)
)
/6

255

Table C.9: The gamma probability distribution. Γ() is the gamma function and Γ(,) is the so-called
incomplete gamma function.

Gamma Gam(k, λ)

Probability Density Function
(PDF)

f(x) = λ(λ x)k−1 exp(λ x)
Γ(k)

Variable and parameter
restrictions

x > 0, λ > 0, k > 0

Cumulative Distribution Function
(CDF)

F (x) = Γ(k, λ x)
Γ(k)

Inverse CDF x(F) = (noclosedform)

Mean and standard deviation in Mean = k/λ

terms of distribution parameters Standard deviation =
√

k/λ

Table C.10: The beta probability distribution. B(q, r) is the beta function defined as Γ(q) Γ(r)/Γ(q+
r).

Beta Bet(a, b, q, r)

Probability Density Function
(PDF)

f(x) = (x−a)q−1 (b−x)r−1

B(q,r) (b−a)q+r−1

Variable and parameter
restrictions

a < x < b, q > 0, r > 0

Cumulative Distribution Function
(CDF)

F (x) = (noclosedform)

Inverse CDF x(F) = (noclosedform)

Mean and standard deviation in Mean = (a r + b q)/(q + r)

terms of distribution parameters Standard deviation = b−a
q+r

√
q r

q+r+1

256

Table C.11: The type I largest value probability distribution (identical to the Gumbel distribution).

Type I Largest Value and Gumbel Gum(u, α)

Probability Density Function
(PDF)

f(x) = α exp [−α(x− u)− exp [−α(x− u)]]

Variable and parameter
restrictions

α > 0

Cumulative Distribution Function
(CDF)

F (x) = exp [− exp (−α(x− u))]

Inverse CDF x(F) = αu−ln(− ln(F))
α

Mean and standard deviation in Mean = u + γ/α where γ = 0.5772156649

terms of distribution parameters Standard deviation = π/
(
α
√

6
)

Table C.12: The type I smallest value probability distribution.

Type I Smallest Value TypeISmallestV alue(u, α)

Probability Density Function
(PDF)

f(x) = α exp(α(x− u)− exp(α(x− u)))

Variable and parameter
restrictions

α > 0

Cumulative Distribution Function
(CDF)

F (x) = 1− exp(− exp(α(x− u)))

Inverse CDF x(F) = αu+ln(− ln(1−F))
α

Mean and standard deviation in Mean = u− γ/α where γ = 0.5772156649

terms of distribution parameters Standard deviation = π/
(
α
√

6
)

Table C.13: The type II largest value probability distribution.

Type II Largest Value TypeIILargestV alue(u, α)

Probability Density Function
(PDF)

f(x) = k
u

(
u
x

)k+1
exp

(
− (

u
x

)k
)

Variable and parameter
restrictions

x > 0, u > 0, k > 0

Cumulative Distribution Function
(CDF)

F (x) = exp
(
− (

u
x

)k
)

Inverse CDF x(F) = u (− ln(F))−
1
k

Mean and standard deviation in Mean = uΓ (1− 1/k)

terms of distribution parameters St.dev. = u
√

Γ (1− 2/k)− Γ (1− 1/k)2

257

Table C.14: The type III smallest value probability distribution.

Type III Smallest Value TypeIIISmallestV alue(ε, u, k)

Probability Density Function
(PDF)

f(x) = k
u−ε

(
x−ε
u−ε

)k−1
exp

(
− (

x−ε
u−ε

)k
)

Variable and parameter
restrictions

x > ε, u > 0, k > 0, u 6= ε

Cumulative Distribution Function
(CDF)

F (x) = 1− exp
(
− (

x−ε
u−ε

)k
)

Inverse CDF x(F) = (u− ε)
(

ε
u−ε

+ (− ln(1− F))1/k
)

Mean and standard deviation in Mean = ε + (u− ε)Γ (1 + 1/k)

terms of distribution parameters St.dev. = (u− ε)
√

Γ (1 + 2/k)− Γ (1 + 1/k)2

Table C.15: The Weibull probability distribution.

Weibull Wbl(u, k)

Probability Density Function
(PDF)

f(x) = k
u

(
x
u

)k−1
exp

(
− (

x
u

)k
)

Variable and parameter
restrictions

x > 0, k > 0, u > 0

Cumulative Distribution Function
(CDF)

F (x) = 1− exp
(
− (

x
u

)k
)

Inverse CDF x(F) = u (− ln(1− F))1/k

Mean and standard deviation in Mean = u Γ (1 + 1/k)

terms of distribution parameters St.dev. = u
√

Γ (1 + 2/k)− Γ (1 + 1/k)2

258

