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ABSTRACT 

The objective of this study is to improve the understanding of behavior patterns and the 

quantification of seismic demands for nondeteriorating regular frames subjected to ordinary 

ground motions. In this study, the term ordinary refers to ground motions that are recorded at 

distances greater than 13 km from the fault rupture, that do not exhibit pulse-type characteristics, 

and that are recorded on stiff soil sites. Engineering demand parameters (EDPs) of interest 

include roof and story drifts, local deformations, absolute floor accelerations and velocities, story 

shears and overturning moments, and energy terms, which are obtained by means of nonlinear 

time history analyses. Since nondeteriorating frames are used, the EDPs of primary interest are 

those that correlate best with structural, nonstructural, and contents damage at performance 

levels related to dollar losses and downtime. A relational database management system is used to 

perform statistical evaluation of EDPs and to establish relationships between structural and 

ground motion parameters. The primary intensity measure used, IM, is the spectral acceleration 

at the first mode of the structure, Sa(T1).   

 

The emphasis of this study is on quantification of EDPs for performance evaluation but includes 

a discussion of issues related to the design of components that need to be protected to avoid 

brittle failure in the response, e.g., columns in a moment-resisting frame. An exploration of 

probabilistic evaluation of EDPs is summarized, in which EDP hazard curves are developed and 

based on numerical integration procedures and closed-form solutions. The use of global collapse 

fragility functions (for a frame in which P-delta causes dynamic instability in the response) along 

with an IM hazard curve to estimate the mean annual frequency of collapse is explored and 

illustrated in an example. 

 

This study has provided much insight into the inelastic dynamic response characteristics of 

moment-resisting frames and the statistical properties of important engineering demand 

parameters. The data from the extensive nonlinear analyses of various frames with variations in 

their properties are stored in a database management system and can be exploited to obtain 

comprehensive statistical information on other EDPs of interest in the performance evaluation of 

frame structures. 
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1 Introduction 

1.1 MOTIVATION FOR THIS STUDY 

Recent earthquake events in the U.S. have shown that the vast majority of structural systems 

designed according to current code-compliant seismic design measures have been able to fulfill 

the two basic performance targets addressed in codes: life safety and collapse prevention. 

However, design and evaluation methodologies in codes and guidelines rely mostly on limited 

historical data, empirical knowledge, and past experience, and are not transparent or explicit 

enough to allow engineers to make a reliable assessment of the seismic performance of a system. 

On the other hand, there is a huge stock of existing buildings that are designed according to 

outdated seismic design guidelines. These buildings need reliable performance evaluation 

procedures that allow the implementation of effective and economical retrofit strategies to 

improve their seismic performance.   

 

In the past, emphasis in design and evaluation has been placed on structural components.  

However, damage to nonstructural components and contents constitutes a significant portion of 

the associated dollar losses of buildings after a seismic event. This last statement implies that 

performance targets other than life safety and collapse prevention, such as direct dollar losses 

and downtime (business interruption), deserve much consideration. Therefore, there is a need to 

improve seismic design and evaluation methods in order to achieve a more efficient use of 

resources and provide enhanced seismic protection of property and lives.   

 

At this time it seems to be widely accepted in the earthquake engineering community that 

performance-based earthquake engineering (PBEE) can be used to establish measures of 

acceptable performance and to develop design and evaluation procedures that take into account 

different performance objectives. Targets for performance objectives include collapse 

prevention, life safety, direct dollar losses, and downtime. This implies a socio-economic 
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assessment to decide whether the seismic performance is cost effective and suitable to the 

owner(s) and society. However, the implementation of PBEE poses a spectrum of challenges. 

For instance, there is a need for interdisciplinary research in which structural engineers work 

together with the industry and researchers in other fields (e.g., earth and social sciences) to 

formulate a methodology that can be translated into terms that the decision makers are able to 

understand and adopt. Additional challenges include the evaluation of nonstructural and contents 

damage, the incorporation of all the relevant uncertainties that are inherit in the design and 

evaluation process, and the education of the engineering community. 

 

Research efforts developed by the Pacific Earthquake Engineering Research (PEER) Center have 

formalized a performance assessment methodology that includes the aleatory and epistemic 

uncertainties inherent in the process (Krawinkler, 2002). The general framework can be 

summarized in the following equation, in which a Decision Variable (DV) is related to a ground 

motion Intensity Measure (IM), an Engineering Demand Parameter (EDP) and a Damage 

Measure (DM): 

               ( ) ( ) ( ) )(|||)( IMdIMEDPdGEDPDMdGDMDVGDV λν ∫∫∫=         (1.1) 

This equation is obtained based on the total probability theorem where ν(DV) is the mean annual 

frequency of exceedance of a specific value of DV. In this context, DV relates to collapse, loss of 

lives, direct dollar losses, and business interruption. G(DV|DM) is the probability of exceeding a 

certain value of DV conditioned on DM (fragility function of DV given DM). The DMs 

correspond to damage states associated with repairs to structural, nonstructural components, or 

contents. dG(DM/EDP) is the derivate of the conditional probability of a damage state being 

exceeded given a value of the EDP.  EDPs of interest are story drifts, story ductilities, floor 

acceleration, etc. The term dG(EDP/IM) is the derivative of the conditional probability of 

exceeding a value of an EDP given the IM. IM is a ground motion intensity measure, such as 

peak ground acceleration, spectral acceleration at the first-mode period, and others. Finally, the 

expression dλ(IM) corresponds to the derivate of the seismic hazard curve based on IM. 

 

In order to fully implement the aforementioned performance assessment methodology, there is 

the need to carry out probabilistic evaluation of EDPs that can be related to DVs on which 

quantitative seismic performance assessment can be based. This process of probabilistic seismic 
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demand analysis requires careful selection of sets of ground motions that represent the intensity, 

frequency, and duration characteristics of interest at the various hazard levels at which 

performance is to be evaluated. In the context of this performance assessment framework, it is 

important to note that the choice of EDPs depends on the performance target and that the 

emphasis should be on the complete structural, nonstructural, and content system and not on a 

component.   

1.2 OBJECTIVES AND OUTLINE 

The global objective of this study is to understand and quantify, with statistical measures, the 

force, deformation, and energy demands imposed by ground motions of general characteristics, 

magnitudes, and distances on regular frames with different configurations and structural 

properties. The specific objectives summarized as follows are: 

• To develop a database management system for seismic demand evaluation; 

• To evaluate demand patterns as a function of the properties of moment-resisting frames and 

ground motions 

• To identify relevant ground motion and structural response parameters and to establish 

relationships between these parameters that take into account the aleatory uncertainty in the 

results; 

• To evaluate the sensitivity of demands to variations in structural properties, analysis models 

and methods; and 

• To quantify central values and dispersion of EDPs (given an IM) of particular concern for 

nonstructural and content systems, e.g., floor accelerations, story drifts. 

This study focuses on the development of IM-EDP relationships based on simulations by means 

of nonlinear time history analyses of two-dimensional, nondeteriorating regular moment-

resisting frame structures subjected to ordinary ground motions. Generic frames are used and the 

EDPs of interest are those that correlate best with DVs corresponding to direct dollar losses and 

downtime.   

 

The issues identified here are elaborated in the following chapters. Chapter 2 presents a global 

perspective on seismic demand evaluation issues and the implementation of a database 

management system to identify behavior patterns and quantify IM-EDP relationships for 
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moment-resisting frames. Discussions on different models, variations in structural properties, 

relevant EDPs, analysis tools, and statistical methods are also included. This chapter contains an 

example on the flexibility and versatility of the database to quantify the efficiency of different 

IMs.   

 

Chapter 3 discusses the use of the spectral acceleration at the fundamental period as the basic IM 

in this study. A description of the properties of the set of ordinary ground motions used in this 

study and the evaluation of the dependence of elastic and inelastic single-degree-of-freedom 

(SDOF) demands on magnitude and distance is investigated. A limited evaluation of the 

magnitude and distance dependence of the response of multi-degree-of-freedom (MDOF) 

systems on spectral shape is also presented. 

 

Chapter 4 presents a comprehensive evaluation of story drifts, story ductilities, beam plastic 

rotations, absolute floor accelerations, and velocities for various levels of inelastic behavior. 

Quantification of central values of EDPs and their associated aleatory uncertainties as well as the 

identification of behavior patterns are carried out for a family of generic regular frames with 

different number of stories and fundamental period.  Beam-hinge models with peak-oriented 

(modified Clough) hysteretic behavior at plastic hinge locations are utilized. The study of the 

distribution of EDPs over the height as a function of the structural system and the level of 

inelastic behavior is also included in order to provide information on the distribution of damage 

in the structure. Simplified equations to predict median MDOF deformation demands based on 

baseline SDOF elastic spectral information are presented.   

 

Chapter 5 deals with the statistical evaluation of energy demands for the family of generic 

frames used in Chapter 4. Energy demands include total dissipated energy (input energy at the 

end of the response), hysteretic energy dissipated, and the normalized hysteretic energy at plastic 

hinge locations. A definition of strong motion duration that identifies the interval of the response 

that is most relevant for demand evaluation and damage assessment is discussed as well as the 

evaluation of the distribution of energy demands over the height. Comparisons are made with the 

energy demands experienced by SDOF systems. Relationships between strong ground motion 

duration, relative intensity, and structural systems are investigated. 
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Chapter 6 summarizes seismic demand evaluation of strength parameters relevant for the design 

of columns that form part of a moment-resisting frame. Demand evaluation is carried out for the 

base case regular frames used in Chapters 4 and 5. Global demands such as story shear strength 

and story overturning moments are evaluated. This chapter includes statistical information on the 

column strength required to avoid plastic hinging in columns, which is another important issue 

relevant for design. A discussion on the factors that contribute to large column moment demands 

is addressed. Moments at the midheight of columns are evaluated, since they become important 

quantities to assess the demands imposed on column-splice locations in steel structures. For 

reinforced concrete structures, moments at the midheight of columns are important when precast 

concrete columns are used and also at rebar splice locations in conventional reinforced concrete 

columns. A comparison of strength demands from dynamic results with demands obtained from 

the pushover analysis technique is carried out. Since plastic hinging is expected at the bottom of 

the first-story columns, this chapter also provides statistical information related to the maximum 

plastic rotation demands at the base of the first-story columns. 

 

Chapter 7 summarizes a sensitivity study on seismic demands for variations in structural 

properties. The following variations are investigated: hysteretic behavior (peak-oriented, 

pinching and bilinear), strain hardening in the moment-rotation relationship at the component 

level (0% and 3%), structure P-delta effects (where the use of the pushover analysis for the 

assessment of potential instability problems in frames due to P-delta is illustrated), additional 

strength and stiffness provided by elements that do not form part of the moment-resisting frame, 

story shear strength distribution based on different design load patterns (parabolic, triangular, 

and uniform, including random overstrength), beam moments due to gravity loads, and different 

“failure” mechanisms (beam-hinge and column-hinge models).     

 

In Chapter 8 the utilization of a one-bay generic frame for seismic demand evaluation is assessed 

by correlating its response with that of a “real” structure (represented by the SAC LA9-M1 

model, Gupta and Krawinkler, 1999). This correlation is performed based on deformation EDPs 

such as the maximum roof and story drift angles. 

 

Chapter 9 deals with illustrations of probabilistic evaluation of EDPs by developing hazard 

curves for the maximum roof and the maximum story drift angle over the height. A brief 
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discussion on the use of closed-form solutions and numerical integration to develop EDP hazard 

curves is presented. The evaluation of the mean annual frequency of collapse for a P-delta 

sensitive frame is illustrated by means of developing a global collapse fragility curve (probability 

of global collapse given the IM). 

 

Chapter 10 summarizes the main conclusions drawn in this study and identifies future research 

directions. Two appendices are included. Appendix A presents a summary of the main properties 

and static behavior of the base case generic frame models used in this study. A brief discussion 

on modeling issues to avoid spurious damping forces and moments is included. This issue is 

relevant when performing nonlinear time history analyses because when spurious damping 

forces (or moments) are present, static equilibrium is not satisfied at all times during the analysis. 

Appendix B presents a comprehensive list of EDPs that are stored in the relational database and 

are relevant for seismic demand evaluation of frame models.   

 



 

 

2 Seismic Demand Evaluation Using a Database 
Management System 

2.1 VARIABLES IN SEISMIC DEMAND EVALUATION 

Seismic demand evaluation of structural systems is a broad subject that involves the study of 

relationships between ground motion parameters, base-line SDOF information and MDOF 

response. This process involves a wide variety of variables ranging from ground motion to 

structural response parameters, and it has to incorporate many factors such as local site 

conditions, local seismicity, structural configuration, structural properties, hazard level of 

interest, modeling assumptions and others. This study focuses on the seismic demand evaluation 

of multi-story frames based on simulations by means of nonlinear time history analyses using 

recorded ground motions. Therefore, variations in ground motion characteristics as well as 

structural properties become critical aspects of this problem.    

 

Figure 2.1 depicts an overview of some of the most important variables involved in a general 

seismic demand evaluation study. The problem is complex, and although several studies have 

been carried out to understand and quantify seismic demands and their associated uncertainties 

(Shome and Cornell, 1999; Krawinkler and Gupta, 1998), much more research needs to be 

devoted to this subject. The purpose of this work is to provide an in-depth understanding of 

several important variables and of their effect on the structural response of regular frame 

systems. The variables considered are shaded in Figure 2.1 and include: 

• Different hysteretic behavior at the component level (bilinear, peak-oriented, pinching); 

• Strain-hardening effects; 

• Stiffness distribution over the height; 

• Strength distribution over the height (including random overstrength); 

• Failure mechanism; and 

• Contribution of “secondary” systems to the lateral strength and stiffness 
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• Structure P-delta effects; and 

• Gravity load effects 

 

The relationships between ground motions and structural response parameters are evaluated for 

the aforementioned variables in Chapters 4 to 7. 

2.2 THE NEED FOR A DATABASE MANAGEMENT SYSTEM 

As discussed in the previous section, the seismic demand evaluation process involves the study 

of relationships between ground motion parameters, baseline SDOF information and MDOF 

response. Owing to the large number of variables involved in this process, a relational database 

management system is a viable and effective way to accomplish the aforementioned objectives. 

It allows both versatility and flexibility in data manipulation, which permits the fulfillment of 

different data needs according to the goal of interest. For example, a relational database can be 

used to analyze the following aspects of the seismic demand evaluation problem: 

• The sufficiency and efficiency of different intensity measures (IMs). In this context, an 

efficient IM is defined as one that results in a relatively small dispersion of EDP given IM, 

while a sufficient IM is defined as one for which the EDP given IM is conditionally 

independent of ground motion parameters such as magnitude and distance; 

• The relationship between demand parameters and IMs in different formats, for instance, 

constant R (strength-reduction factor) and constant ductility approaches; 

• The effect of different structural configurations and types; and 

• The relationships between the response of SDOF and MDOF systems. 

 

A relational database is utilized in this project to carry out the different demand evaluation 

studies. A general description of the database is provided in Section 2.9. 

2.3 GROUND MOTION PARAMETERS 

As it is shown in Figure 2.1, the focus of this study is on the dynamic response of regular frames 

subjected to ordinary ground motions (the set of ordinary ground motions used in this project is 

described in Chapter 3). The relational database utilized in this study includes information on 

relevant ground motion parameters necessary to relate ground motion characteristics, such as 
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intensity and frequency content, to structural response. Ground motion parameters and 

characteristics stored in the database include: 

• Moment magnitude 

• Closest distance to the fault rupture zone 

• Site class 

• Peak values (PGA, PGV, and PGD) 

• Record duration 

• Strong ground motion duration 

• Cut-off frequencies 

• Fault mechanism 

 

Spectral response quantities, i.e., spectral acceleration, velocity and displacement for a SDOF 

system with 5% mass proportional damping are also stored in the database. 

2.4 STRUCTURAL SYSTEMS 

This study focuses on the seismic demand evaluation of nondeteriorating regular-moment-

resisting-frame systems. Nonlinear behavior at the component level is modeled by using 

rotational springs to represent the global cyclic response under the action of earthquake loads. 

Three different hysteretic models are used: peak-oriented, bilinear, and pinching.  Figure 2.2 

presents a description of the hysteretic rules of these models. Although engineering demand 

parameters for these three types of hysteretic models are stored in the database, the emphasis of 

this work is placed on the peak-oriented hysteretic model, which has stiffness-degrading 

properties that resemble those exhibited by many reinforced concrete components. The 

sensitivity of demands to different types of hysteretic models is discussed in Chapter 7.   

 

In reality, structures are complex three-dimensional systems that are subjected to complex 

seismic excitations in different planes. Although it would be ideal to perform seismic demand 

studies by considering three-dimensional effects in the ground motion excitation and the 

structural system, improved models and a better understanding of structural behavior are 

required to accomplish this objective. In addition, three-dimensional models become a critical 

issue for structural systems with severe irregularities in plan where a simplified two-dimensional 
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model would not capture the most important dynamic response characteristics of the system. 

Since this study focuses on seismic demand evaluation of regular frames, two-dimensional 

models are used. For regular structures, the properties of a complex three-dimensional system 

can be condensed into a simplified two-dimensional model that is adequate to capture the global 

response (deformation, strength, and energy demands) of the real system. As shown by 

Seneviratna and Krawinkler (1997) for regular frames, simplified procedures can be developed 

to estimate local response parameters, e.g., beam rotations, from a global parameter such as the 

roof drift angle. In the development of these procedures, special attention should be given to the 

uncertainty introduced by modeling assumptions, which can be particularly important for the 

case of local response parameters. 

 

The objective of this study is to carry out demand evaluation of relevant EDPs for damage 

assessment. Therefore, the need for generality of the results, and hence, of the conclusions 

becomes a critical issue. The structural frame models are not intended to represent a specific 

structure, for which the results from the analyses are a function of a particular system.  Instead, 

regular frames are modeled by using two-dimensional generic one-bay frames for which the 

sensitivity of results to different strength and stiffness properties can be readily evaluated. 

However, the latter statement implies that two-dimensional generic frames are able to capture the 

behavior of more complex two-dimensional configurations. In order to assess the effectiveness 

of using a one-bay generic frame to represent the behavior of a multi-bay frame, a limited study 

was performed using the SAC LA9-M1 model (Gupta and Krawinkler, 1999). The results show 

that in general one-bay generic frames are adequate to capture the global behavior of a multi-bay 

frame. This study is discussed in detail in Chapter 8. 

 

In this research study, the demand parameters of interest are those that correlate best with 

structural, nonstructural, and contents damage at performance levels related to direct dollar 

losses and downtime. At these performance levels, severe cyclic deterioration is not expected; 

thus, nondeteriorating models are deemed to be appropriate to model the cyclic load-deformation 

behavior of structural components. Cyclic deterioration issues, which are outside the scope of 

this report, are addressed in a parallel research study (Ibarra et al. 2002). 
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2.4.1 Base Case Regular Frame Models Used in This Study 

The core of the analysis and evaluation is performed by using a family of one-bay frames 

denoted as base case regular frames. These base cases consist of frames with number of stories, 

N, equal to 3, 6, 9, 12, 15, and 18, and fundamental periods, T1, of 0.1N and 0.2N, which are 

considered to be reasonable bounds for reinforced concrete and steel-moment-resisting frames, 

respectively (Figures 2.3 and 2.4). The main characteristics of this family of structures are as 

follows: 

• The frames are two dimensional; 

• The same mass is used at all floor levels;  

• One-bay frames have constant story height equal to 12′ and beam span equal to 24′; 

• Centerline dimensions are used for beam and column elements; 

• The same moment of inertia is assigned to the columns in a story and the beam above them; 

• Relative stiffnesses are tuned so that the first mode is a straight line (a spring is added at the 

bottom of the first-story columns to achieve a uniform distribution of moments of inertia over 

the height, see Appendix A); 

• Absolute stiffnesses of beams and columns are tuned such that T1 = 0.1N or 0.2N; 

• Beam-hinge models (plastification occurs at the ends of the beams and the bottom of the 

first-story columns; see Figure 2.5); 

• Frames are designed so that simultaneous yielding is attained under a parabolic (NEHRP, 

k=2) load pattern; 

• Hysteretic behavior at the component level is modeled by using a peak-oriented model with 

3% strain hardening in the moment-rotation relationship; 

• Cyclic deterioration is ignored; 

• The effect of gravity load moments on plastic hinge formation is not included; 

• Global (structure) P-delta is included (member P-delta is ignored); see Section 7.4; 

• Axial deformations and M-P-V interaction are not considered; 

• The effect of soil-foundation-structure interaction is neglected; and 

• For the nonlinear time history analyses, 5% Rayleigh damping is assigned to the first mode 

and the mode at which the cumulative mass participation exceeds 95%. 

 

Static and modal properties of this family of frames are detailed in Appendix A. 
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2.4.2 Variations to the Basic Regular Frames 

The base cases used in this report are modified to study the sensitivity of response parameters 

and patterns of behavior to structural properties. The main variations to the base cases include:  

• Different hysteretic behavior (peak-oriented, pinching and bilinear); 

• Strain hardening in the moment-rotation relationship at the component level (0% and 3%); 

• Structure P-delta effects (where the use of the pushover analysis is illustrated in order to 

assess potential stability problems in frames due to P-delta); 

• Additional strength and stiffness provided by elements that do not form part of the moment-

resisting frame; 

• Story strength distribution based on different design load patterns (parabolic, triangular, and 

uniform, including random overstrength); 

• Beam moments due to gravity loads; and 

• Various “failure” mechanisms (beam-hinge and column-hinge models). 

 

A summary of the results for these modified generic frame models is presented in Chapter 7.   

2.5 EDPS RELEVANT FOR THE PERFORMANCE ASSESSMENT OF REGULAR 
FRAMES 

The main EDPs evaluated in this report are those that correlate best with decision variables such 

as direct dollar losses and length of downtime (since cyclic deterioration is not studied in this 

project, the limit state of collapse is not of concern except for cases where structure P-delta alone 

causes dynamic instability of the response). Because regular frames are the lateral-load-resisting 

system of interest in this study, the most relevant EDPs should be those that encompass 

structural, nonstructural, and contents damage and correlate best to the performance assessment 

of this type of system. A comprehensive list of EDPs obtained from nonlinear time history 

analyses that are included in the database is presented in Appendix B. However, throughout this 

report, the discussion of seismic demand evaluation issues is limited to a small number of EDPs.  

The following EDPs are the primary ones used for seismic demand evaluation of regular frames: 

• For structural damage: roof drift, story drifts, story ductilities, plastic beam rotations, story 

shears, story overturning moments, input energy, and hysteretic and damping energy  

• For nonstructural damage: story drifts, absolute floor acceleration, and velocities 
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• For contents damage: floor accelerations and velocities 

2.6 TIME HISTORY ANALYSES AND REPRESENTATION OF RESULTS 

The basic analysis approach used in this project consists of performing nonlinear time history 

analyses for a given structure and ground motion, using the DRAIN-2DX computer program 

(DRAIN-2DX, 1993). Although DRAIN-2DX has several limitations (e.g., it does not update the 

geometric stiffness matrix in a time history analysis, it does not incorporate member P-delta, and 

it does not take into account large displacement effects), it is deemed to be an appropriate 

analytical tool for this project since the limit states of primary interest are those of direct losses 

and business interruption, where very large displacements are not of primary concern (except for 

cases in which structure P-delta effects become important and a state of dynamic instability is 

approached). A pilot study was performed with the OpenSees program (OpenSees, 2002), using 

a large displacement option, which did disclose that large displacement effects do not 

significantly affect the response even when dynamic instability is approached (Adam and 

Krawinkler, 2003). 

 

The control parameter used to “scale” the ground motion intensity for a given structure strength, 

or to “scale” the structure strength for a given ground motion intensity, is the parameter 

[Sa(T1)/g]/γ, where Sa(T1) is the 5% damped spectral acceleration at the fundamental period of 

the structure (without P-delta effects), and γ is base shear coefficient, i.e., γ = Vy/W, with Vy 

being the yield base shear (without P-delta effects).  The parameter [Sa(T1)/g]/γ represents the 

ductility-dependent strength reduction factor (often denoted as Rµ), which, in the context of 

present codes, is equal to the conventional R factor if no overstrength is present. This parameter 

identifies the intensity of the ground motion (using Sa(T1) as the ground motion intensity 

measure) relative to the structure base shear strength. Unless (1) gravity moments are a 

significant portion of the plastic moment capacity of the beams, (2) there are considerable 

changes in axial loads due to overturning moments as compared to the gravity axial loads in 

columns, (3) large displacement effects become important (the latter case has not been 

encountered in this study), the use of [Sa(T1)/g]/γ as a relative intensity measure can be viewed 

two ways: either keeping the ground motion intensity constant while decreasing the base shear 

strength of the structure (the R-factor perspective), or keeping the base shear strength constant 
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while increasing the intensity of the ground motion (the [Incremental Dynamic Analysis] IDA 

perspective, Vamvatsikos and Cornell, 2002). 

 

In the analysis process for a given structure and a given ground motion, the value of [Sa(T1)/g]/γ 

is increased (in the actual execution of analyses, Sa(T1) is kept constant and γ is decreased) in 

small increments of 0.25 until either a value of 15 is reached or dynamic instability is imminent. 

For each increment, a dynamic analysis is performed and all EDPs listed in Appendix B are 

stored in the relational database to allow flexibility of data manipulation in different formats and 

domains. The basic graphical communication scheme for a given structure and a set of 40 ground 

motions is as shown in Figure 2.6.  The relative intensity [Sa(T1)/g]/γ usually is plotted on the 

vertical axis, and the selected EDP is plotted on the horizontal axis, either without normalization 

(IDA domain, for which Sa(T1) is plotted on the vertical axis) or normalized by an appropriate 

ground motion parameter (such as spectral displacement, Sd(T1), divided by structure height, H, 

if the EDP is a drift angle). In the latter representation, a vertical line implies that the value of the 

EDP increases linearly with the ground motion intensity level Sa(T1)/g (or with the inverse of the 

base shear strength, 1/γ).   

 

A list of parameters is shown in the second line of the title of each graph to characterize the 

structural system under consideration. A description of these parameters is shown next: 

• Number of stories, N = 3, 6, 9, 12, 15, and 18. 

• Fundamental period, T1 = 0.1N and 0.2N. 

• Percent of critical damping, ξ (assigned to the first mode and the mode at which the total 

mass participation exceeds 95%). 

• Base shear strength, γ = Vy/W (when applicable, e.g., Figure 2.6(b)). 

• Hysteretic behavior: peak-oriented, bilinear, and pinching. Rotational spring elements with 

the aforementioned hysteretic rules were incorporated in DRAIN-2DX (Krawinkler et al., 

1999). 

• Elastic first-story stability coefficient, θ (θ = Pδs1 / V1h1, where P is the axial load in the first-

story columns, δs1 and V1 are the first-story drift and shear force, respectively, and h1 is the 

first-story height. P is the dead load plus a live load equal to 40% of the dead load). 

• “Failure” mechanism (BH-beam hinge and CH-column hinge). 
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• Stiffness pattern (K1-straight line first mode). 

• Strength design load pattern (S1-parabolic, S2-triangular, S3-uniform). 

• Ground motion record set. 

 

The same data as in Figure 2.6(a), but in the IDA domain, are shown in Figure 2.6(b).  

Representation in the IDA domain implies that the strength of the structure, i.e., γ, is given. For 

the example shown, γ is equal to 0.10. The EDP on the horizontal axis, in this case the maximum 

story drift angle over the height, is presented in the non-normalized domain. Such a 

representation pertains to a structure of specified base shear strength, and permits inspection of 

absolute (non-normalized) EDPs. The inherent assumption is that the ground motions, whose 

intensities are incremented as shown on the vertical axis, are representative for the full range of 

intensities (Sa(T1)) for which the data are shown. This assumption becomes very questionable for 

large Sa(T1) values (see Chapter 3). 

 

Graphs of the type presented in Figure 2.6, which include statistical measures of the type 

summarized in Section 2.7, constitute the departure point for the evaluation of demand 

parameters. IDA curves can be derived directly from graphs of the type represented in Figure 

2.6(a) by assigning a given value of γ to the structure and multiplying the normalized EDP values 

by Sd(T1)/H = Sa(T1)T1
2/(4π2H). For instance, if Sa(T1) is given by the UBC 1997 ground motion 

spectrum for site class D, seismic zone 4, for the family of generic structures used in this project 

the previous relationship becomes:   

                 Sd(T1)/H  = 
N

T 2
1748.0   for 0.12 sec ≤ T1≤ 0.58 sec                                          (2.1) 

and 

                 Sd(T1)/H  =
N
T10435.0  for T1>0.58 sec                                                            (2.2) 

Thus, the latter two equations can be used to estimate absolute values of the EDPs if the system 

is subjected to a ground motion hazard level represented by the UBC 1997 site class D ground 

motion spectrum. 



 

 16

2.7 STATISTICAL EVALUATION OF ENGINEERING DEMAND PARAMETERS 
2.7.1 Counted and Computed Statistics 

Throughout this study, unless otherwise specified, a lognormal distribution is assumed for the 

different EDPs given IM (Sa(T1) is used as the primary intensity measure). There are two basic 

approaches that can be utilized to provide central values and measures of dispersion once a 

lognormal distribution is assumed (in this report, dispersion refers to the standard deviation of 

the natural logarithm of the values). The first approach is computed statistics, for which the 

median of the EDP (the EDP is denoted as x) is estimated by computing the geometric mean of 

the data: 

 )lnexp( xx =(                                                      (2.3) 

where xln  is the mean of the natural logarithm of the data. 

 

The standard deviation of the natural log of the values is computed by: 

∑
= −

−
=

n

i

i
x n

nxlx
1

2

ln 1
)(lnσ                                                (2.4) 

The second approach is denoted as counted statistics, where values are sorted from smallest to 

largest. For a set of 40 data points, the average between the 20th and 21th sorted values becomes 

the median, the average between the 6th and 7th sorted is the 16th percentile, and the 84th 

percentile is the average between the 33th and 34th sorted values.  In this case, the standard 

deviation of the natural logarithm of the values is estimated by using either the 16th or the 84th 

percentile (see Figure 2.7, in which a statistical evaluation of the response of an N = 12, T1 = 1.2 

s system is illustrated). If the 84th percentile is used, x84, the standard deviation of the natural 

logarithm of the values is given by: 

)ln( 84
ln x

x
x (=σ                                                     (2.5) 

Figure 2.7(b) shows the standard deviation of the natural logarithm of the normalized maximum 

roof drift angle for a wide range of relative intensities. When the response is elastic (or slightly 

inelastic, [Sa(T1)/g)]/γ in the order of 1.0), a small dispersion is caused by higher modes. As the 

relative intensity increases, the dispersion also increases. For large relative intensities, the 

dispersion is larger, for it is caused by both higher modes and period-elongation effects.  It can 

be seen in Figure 2.7(b) that differences between the curve based on the 16th percentile and the 
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one based on the 84th percentile are not significant. In general, this pattern is observed for the 

complete family of structures and various EDPs, so dispersion values in this study are reported 

based upon 84th percentiles.   

 

As stated above, in this study the standard deviation of the natural logarithm of the data is used 

as the primary measure of dispersion, which is close to the coefficient of variation (C.O.V.) for 

values smaller than 0.30.   

 

Figure 2.8 illustrates the differences between computed and counted statistical values.  The 

statistical results depicted in Figure 2.8(a) are counted statistics, while the ones shown in Figure 

2.8(b) are computed statistics. The differences between counted and computed statistics 

generally are found to be small. Because counted statistics allow a more consistent and complete 

statistical evaluation of results when data points are missing (e.g., “collapse” cases due to P-delta 

effects), counted statistics are used throughout this study in the evaluation of the seismic 

response of regular frames. An example of missing data is shown in Figure 2.9, in which less 

than 50% of the responses to individual ground motion records “survive” relative intensities 

greater than  7. 

2.7.2 “Vertical” and “Horizontal” Statistics 

Statistical information necessary to understand and quantify the behavior of structural systems 

can be presented in different formats depending upon the objective. For instance, if the issue is 

damage assessment, for which it is important to evaluate the distribution, central value and/or 

dispersion of an EDP given an IM, “horizontal” statistics are computed (Figure 2.10(a)). 

However, if the issue is conceptual design where the designer desires to find the global strength 

required to limit the value of an EDP to a certain quantity, “vertical” statistics are required 

(Figure 2.10(b)). “Vertical” statistics are also used to quantify the ground motion intensity (or 

relative intensity) at which a system approaches the “collapse” limit state given a ground motion 

input. The terms “horizontal” and “vertical” are relative, so the previous information presupposes 

that EDPs are plotted on the horizontal axis and the IM (or relative intensity) on the vertical axis. 

Most of the work involved in this project is concerned with damage/loss evaluation, so the focus 

is on horizontal statistics. However, the relational database has data on IM-EDP relationships 
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stored at closely spaced points to allow the calculation of both “horizontal and vertical statistics 

by linear interpolation between data points. 

2.7.3 Number of Records Required To Provide a Specified Confidence Level in the 
Statistical Results 

Statistical results are used to characterize the sample of a given population by providing 

representative parameters such as a central value and a measure of dispersion. However, there 

are confidence levels associated with the aforementioned results. For example, in this study, the 

distribution of an EDP given an IM provides an estimate of central value for the EDP and a 

measure of dispersion, which is due to the uncertainty in the frequency content of the ground 

motions. However, there is uncertainty associated with these estimates that is indirectly 

quantified as a function of the number of data points evaluated. This quantification can be 

expressed in the form of confidence levels, for which a value such as the median of the data 

points is estimated within a given confidence band. In this study, the bulk of the seismic demand 

evaluation is performed using 40 ordinary ground motions, which provides estimates of the 

median that are within a one-sigma confidence band of 10% as long as the standard deviation of 

the natural logarithm of the EDP given IM is less than 0.1 N = 0.63, where N is the number of 

records. 

2.8 DATABASE MANAGEMENT SYSTEM FOR SEISMIC DEMAND 
EVALUATION 

As discussed in the previous sections, the number of variables involved in the seismic demand 

evaluation process requires the use of a data management system that provides both versatility 

and flexibility in the evaluation of results. For this purpose, a Microsoft Access relational 

database has been used in this study. The entity-relationship model for the database is presented 

in Figure 2.11 (an entity-relationship model constitutes a graphical representation conventionally 

used to illustrate the organization of a relational database). The different entities shown in the 

diagram correspond to physical tables in the database. The lines joining the entities describe the 

different relationships between them.  In this case, the database is organized in different tables, 

where the ground motion properties, structural properties, and EDPs described in Sections 2.3–

2.5 are stored: 
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• Ground motion properties: Tables describing ground motion properties such as moment 

magnitude, closest distance to the fault rupture plane, peak values (PGA, PGV, PGD), record 

length, strong motion duration, cut-off frequencies, fault mechanism and site class; 

• Elastic spectral values: Tables including spectral acceleration, velocity, and displacements 

for a SDOF oscillator with 5% damping; 

• Structural properties: Tables describing the different models used for seismic demand 

evaluation analyses. Each table has a set of attributes that correspond to the properties of the 

models; 

• Structural response:  Tables where response information (EDPs) is stored. Response tables 

are subdivided into: 

 Global response parameters: story deformations and ductilities, residual drifts, floor 

accelerations and velocities, story shears, story overturning moments, damping energy 

dissipated and input energy; 

 Local response parameters for spring elements: total and plastic rotations, cumulative 

plastic rotation ranges, number of inelastic excursions, residual rotations, moments, and 

hysteretic energy dissipated; and 

 Response parameters for elastic columns: moments, shears, and axial loads. 

 

Relationships across tables allow the calculation of relationships among seismic demand 

variables and the extraction of information in a format useful for the statistical evaluation of 

EDPs similar to the results presented in Figure 2.6. For most of the seismic demand evaluation 

carried out throughout this study, information is usually retrieved by performing cross-tab 

queries involving the various tables described in the previous paragraph. 

2.8.1 Versatility and Flexibility of the Database 

The relational database can be utilized to evaluate IM-EDP relationships such as the ones 

illustrated in Figure 2.6. In this figure, normalized IM and normalized EDP values are calculated 

in a format useful for statistical evaluation by using the database. The normalization values help 

in relating MDOF properties and responses to SDOF baseline information such as elastic spectral 

values.  The flexibility of the database can be further illustrated with the following example, 

which deals with the issue of testing the efficiency of two different IMs. As it is discussed in 
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Chapter 3, an improvement in the efficiency of IMs is desirable in order to decrease the 

uncertainty in the predictions and reduce the number of ground motions needed for statistical 

evaluation of results. Therefore, testing the efficiency of an IM is an important issue in the 

performance assessment methodology discussed in Chapter 1.   

 

Figure 2.12 shows IM-EDP relationships for two different types of IM. The “conventional” IM 

(Sa(T1)) and a “candidate” IM ( *)( 1TSa )(
)2(

1

1

TS
TS

a

a ) proposed in Cordova et. al., 2000. IM-EDP 

information for the conventional IM is shown in part (a), while part (b) shows the results for the 

candidate IM. Results for part (a) are readily obtained from the database because the analyses are 

carried out using the spectral acceleration at the first mode as the primary intensity measure. 

Since data are stored in the database at closely spaced points, it is not necessary to redo the 

nonlinear time history analyses to test the efficiency of the candidate IM. Instead, values for the 

conventional IM (given in “stripes”) can be rescaled using the relational database and then linear 

interpolation can be used to obtain “stripes” for the candidate IM and compute statistical values 

of EDP given IM. A comparison of the medians and dispersions for the results presented in 

Figure 2.12 is illustrated in Figure 2.13.   

 

In order to compare medians and measures of dispersion, an approximate procedure is 

implemented (a direct comparision cannot be readily made since different quantities are plotted 

in the vertical axes of Figure 2.12). In this procedure, the median  
)(
)2(

1

1

TS
TS

a

a  value, which is 

equal to 0.69 for the set of 40 ground motions, is used to scale the vertical coordinates of the 

IDAs shown in Figure 2.12(b), i.e., for a given maximum story drift value, the vertical 

coordinate becomes ⎟
⎠
⎞

⎜
⎝
⎛

69.0
1 * *)( 1TSa )(

)2(

1

1

TS
TS

a

a . The median curve for the candidate IM 

obtained from the scaled IDAs is then compared to the median curve for the conventional IM 

(Figure 2.13(a)). Figure 2.13(b) shows a plot of the dispersion corresponding to Figure 2.12(a) 

and the scaled version of Figure 2.12(b). A more rigorous procedure used to assess the efficiency 

of the candidate IM as compared to the conventional IM is presented in Cordova et. al., 2000. 
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The information presented in Figure 2.13 becomes the basis for assessing the efficiency of both 

IMs at different relative intensities. For this particular case, IM testing becomes a trivial issue if 

the database management system is used. 

2.8.2 Capabilities for Expansion 

The relational database used in this study is organized in such a way that it is relatively easy to 

include additional information. For instance, if different types of ground motions are evaluated 

(e.g., near-fault, soft soil), it is necessary to add tables similar to the existing one for ordinary 

ground motions. Their spectral values can be added to the existing table in which spectral 

quantities are stored. If a different structural system is utilized, e.g., structural walls, it is 

necessary to add tables with response parameters corresponding to the EDPs of the new models. 

The user will have the flexibility to add information in any format he/she desires as long as the 

new relationships are compatible with the ones previously established. 
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(a) Peak-Oriented Model 
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(c) Pinching Model 

 
Figure 2.2  General Load-Deformation Behavior of Various Hysteretic Models 
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GENERIC FRAMES
Number of Stories vs. First Mode Period, T1 = 0.1 N
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(a) T1  = 0.1N 

GENERIC FRAMES
Number of Stories vs. First Mode Period, T1 = 0.2 N
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(b) T1 = 0.2N 

 
Figure 2.3  Family of Generic Frames, Stiff and Flexible Frames 
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FUNDAMENTAL PERIOD AND NUMBER OF STORIES
Family of Generic Moment Resisting Frames
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Figure 2.4  Relationship between Fundamental Period and Number of Stories 

 

 
Figure 2.5  Beam-Hinge Mechanism 
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NORMALIZED MAXIMUM STORY DRIFT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) Normalized IM-EDP Relationship 

MAXIMUM STORY DRIFT OVER HEIGHT
N=9, T1=0.9, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Incremental Dynamic Analysis 

 
Figure 2.6  Statistical IM-EDP Relationships, N = 9, T1 = 0.9 sec, γ = 0.10, Normalized and Non-

Normalized Domain  
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NORMALIZED MAXIMUM ROOF DRIFT
N=12, T1=1.2, ξ=0.05, Peak-oriented model, θ=0.021, BH, K1, S1, LMSR-N
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(a) Statistical Values and Individual Responses 

DISPERSION OF MAXIMUM ROOF DRIFTS
N=12, T1=1.2, ξ=0.05, Peak-oriented model, θ=0.021, BH, K1, S1, LMSR-N
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(b) Computed Dispersion Based on the 84th and 16th Percentiles 

 
Figure 2.7  Normalized Maximum Roof Drift Angle, N = 12, T1 = 1.2 sec  
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NORMALIZED AVERAGE OF MAX. STORY DRIFTS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) Counted Statistics 

NORMALIZED AVERAGE OF MAX. STORY DRIFTS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Computed Statistics 

 
Figure 2.8  Normalized Average of the Maximum Story Drift Angles, N = 9, T1 = 0.9 sec, 

Counted and Computed Statistics 
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MAXIMUM STORY DUCTILITY OVER HEIGHT
N=12, T1=2.4, ξ=0.05, Peak-oriented model, θ=0.084, BH, K1, S1, LMSR-N
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Figure 2.9 “Collapse” (Dynamic Instability) due to Structural P-delta Effects, N = 12, T1 = 2.4 sec  
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MAXIMUM STORY DUCTILITY OVER HEIGHT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) “Horizontal” Statistics, Maximum Story Ductility Given Relative Intensity 

 

MAXIMUM STORY DUCTILITY OVER HEIGHT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Vertical Statistics, Relative Intensity Given Max. Story Ductility 

 
Figure 2.10  Statistical IM-EDP Relationships, N = 9, T1 = 0.9 sec, “Horizontal” and “Vertical” 

Statistics 
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Figure 2.11  Database Entity-Relationship Model 
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MAXIMUM STORY DRIFT OVER HEIGHT
N=9, T1=0.9, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) “Conventional” IM 

MAXIMUM STORY DRIFT OVER HEIGHT
N=9, T1=0.9, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) “Candidate” IM 

 
Figure 2.12  Testing the Efficiency of IMs Using the Relational Database; All Records,  

N =  9, T1 = 0.9 sec 
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MEDIAN MAXIMUM STORY DRIFTS
N=9, T1=0.9, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) Median EDP given IM 

DISPERSION OF MAXIMUM STORY DRIFTS
N=9, T1=0.9, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Dispersion of EDP given IM 

 
Figure 2.13 Testing the Efficiency of IMs Using the Relational Database, Median IM-EDP 
Relationships and Their Associated Dispersions, “Conventional” and “Candidate” IMs,  

N = 9, T1 = 0.9 sec 
 



 

 

3 Ground Motion Selection 

3.1 INTRODUCTION 

Ideally, assessment of demands and their uncertainties necessitates the availability of sets of 

acceleration time histories that represent the seismic hazard at different return periods, and 

describe intensity, frequency content, and duration with sufficient comprehensiveness so that 

central values and measures of dispersion of the demand parameters can be determined with 

confidence and efficiency. At this time there is no established procedure to select such sets of 

ground motions. However, rigorous demand prediction necessitates inelastic time history 

analyses, which means that records have to be selected (or generated) for the aforementioned 

purpose.  This chapter deals with issues related to ground motion selection and its effect on the 

seismic demand evaluation of elastic and inelastic systems. 

 

The accepted ground motion selection process is to perform hazard analysis on selected ground 

motion parameters and use the hazard information for record selection and uncertainty 

propagation. This process implies that the selected ground motion parameters should be capable 

of capturing all intensity, frequency content, and duration information that significantly affect the 

elastic and inelastic response of complex soil-structure systems. No single parameter is ideally 

suited for this purpose, and, unfortunately, the best choice of parameters depends, sometimes 

weakly and sometimes strongly, on the structural system and the performance level to be 

evaluated. This issue, which implies a search for better (more efficient) intensity measures 

leading to demand predictions with smaller dispersion, is one of the basic challenges of 

performance-based earthquake engineering. Several research efforts on this issue are in progress 

(Luco and Cornell, 2002; Bray et al., 2001), but at the time this study is performed, it is too early 

to advocate any of the alternatives under investigation. 
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In this research study, it is assumed that the spectral acceleration (Sa) (more specifically, the 

pseudo-spectral acceleration) is the primary ground motion parameter (Intensity Measure, IM), 

and that all other parameters that affect the seismic demands can be accounted for in the 

dispersion of the demand predictions. A distinction is made, however, between near-fault ground 

motions and ground motions recorded more than about 15 km from the fault rupture zone, for 

there is evidence that near-fault ground motions have distinctly different frequency and duration 

characteristics, particularly if they are in the forward direction of the fault rupture (Somerville, 

1997). Ground motions recorded more than about 15 km from the fault rupture zone are denoted 

in this study as ordinary ground motions, and they are of the type on which most of the present 

seismic design criteria are based.   

3.2 SPECTRAL ACCELERATION AS THE PRIMARY INTENSITY MEASURE  

As discussed in Section 3.1, spectral acceleration (Sa) is the primary intensity measure used in 

this study. Hazard information on Sa is readily available, but the commitment to a single intensity 

measure presupposes that the computed seismic demands for MDOF systems are well correlated 

with this selected measure. At present time, a good choice for Sa appears to be the spectral 

acceleration at the first-mode period of the structure (Sa(T1)), especially for systems with 

responses dominated by the first mode (Shome and Cornell, 1999). However, the use of Sa(T1) as 

the IM of interest implies that the frequency content of the ground motion cannot be considered 

explicitly and that the fundamental period of the structure is known. Since the frequency content 

depends on magnitude and distance (the extent of this dependence is the subject of the next 

section), biases in the evaluation of demands may be introduced by the record selection unless 

the records are carefully selected in narrow magnitude and distance bins that represent the 

disaggregated hazard at the return period(s) of interest. Even records in relatively narrow bins 

show a large dispersion in frequency content, as is illustrated in Figure 3.1, where 20 records 

with moment magnitudes between 6.5 and 7.0 and distances between 13km and 30km are used.  

In this example, the 20 records have an identical spectral acceleration at the period of 0.5 sec. As 

the figure shows, the dispersion in spectral accelerations is large for all other periods, even those 

very close to 0.5 sec. The consequence is that response predictions for all structures, except for 

an elastic SDOF system with a period of 0.5 sec, will exhibit significant scatter. The amount of 

scatter depends on the importance of higher mode effects (scatter for T < 0.5 sec) and on the 

extent of inelasticity, which leads to “period elongation” (scatter for T > 0.5 sec). This 
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compounds the problem of ground motion selection and the assessment of uncertainties based on 

a single scalar intensity measure such as Sa.   

3.3 ORDINARY GROUND MOTIONS 

The issue of magnitude and distance dependence (or lack thereof) of ground motion 

characteristics (in addition to that captured by a conventional hazard analysis on spectral 

accelerations) is important in the context of demand assessment based on a single intensity 

measure, in particular for the now widely used Incremental Dynamic Analysis (IDA) 

(Vamvatsikos and Cornell, 2002) in which it is assumed that the same ground motions can be 

used to evaluate seismic demands over a wide range of hazard levels.  This assumption is 

inherent in the process of incrementing the intensity of the same ground motion to obtain 

relationships between an intensity measure (e.g., first-mode spectral acceleration) and a demand 

parameter (e.g., story drift).  When IDAs are used for specific site assessment purposes, this 

process can be justified if the ground motion frequency content (described by the shape of the 

spectrum) is not sensitive to magnitude and distance or if the structural response is not sensitive 

to the frequency content of the ground motions. If cumulative damage is of concern, then 

duration enters and insensitivity of this parameter to magnitude and distance has to be assumed 

as well (unless duration becomes part of the intensity measure).    

 

In order to assess the sensitivity of ground motion characteristics (i.e., frequency content 

[spectral shape]) of ordinary ground motions to magnitude and distance, 80 recorded ground 

motions from Californian earthquakes of moment magnitude between 5.8 and 6.9 and closest 

distance to the fault rupture between 13km and 60km are studied. These ground motions were 

recorded on NEHRP site class D (FEMA368, 2000). Qualitatively, conclusions drawn from the 

seismic demand evaluation using this set of ground motions are expected to hold true also for 

stiffer soils and rock (soft-soil effects are not addressed in this seismic demand evaluation study). 

The records are selected from the PEER Center Ground Motion Database 

(http://peer.berkeley.edu/smcat/) and are classified into four magnitude-distance bins for the 

purpose of performing statistical evaluation within the four bins and regression analysis 

incorporating all records.  The record bins are designated as follows: 

• Large Magnitude-Short Distance Bin, LMSR, (6.5 < Mw < 7.0, 13 km < R < 30 km),  

• Large Magnitude-Long Distance Bin, LMLR, (6.5 < Mw <7.0, 30 km ≤ R ≤ 60 km),  
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• Small Magnitude-Short Distance Bin, SMSR, (5.8 < Mw ≤ 6.5, 13 km < R < 30 km), and  

• Small Magnitude-Long Distance Bin, SMLR, (5.8 < Mw ≤ 6.5, 30 km ≤ R ≤ 60 km). 

 

Additional criteria used in the selection of this set of 80 ordinary ground motions are 

summarized below: 

• High-pass frequency, fHP ≤ 0.20 Hz 

• Fault mechanism included: strike-slip, reverse-slip, and reverse-oblique 

• For each station, a horizontal component of the record is randomly selected to avoid  

biases in the selection process 

• No aftershocks are included 

 

Figure 3.2 shows the magnitude-distance distribution of the aforementioned set of 80 ordinary 

ground motions, and Tables 3.1 to 3.4 list the most important properties for each one of the 

selected records. 

 

The set of 80 ordinary ground motion records has strong motion duration characteristics that are 

not sensitive to magnitude and distance, as shown in Figure 3.3. In this context, strong motion 

duration is defined as the time it takes for the cumulative energy of the ground motion record to 

grow from 5% to 95% of its value at the end of the history (Trifunac and Brady, 1975). 

Therefore, ground motion frequency content (spectral shape) becomes the most relevant ground 

motion characteristic of interest when investigating the sensitivity of ground motion properties to 

magnitude and distance when Sa is used as the intensity measure. The dependence of a 

cumulative damage parameter such as normalized hysteretic energy, which is understood to be 

correlated to an “effective” strong motion duration, on magnitude and distance is studied in 

Section 3.3.2.  

 

A statistical evaluation of the bins of records shows that bin-to-bin variations in spectral shapes 

are noticeable but not very strong. This is illustrated with the data plotted in Figures 3.4–3.6, 

which are obtained by scaling all ground motions to a common spectral acceleration at 

preselected periods (T1 = 0.3s, 0.9s and 1.8s) and computing statistical measures for each of the 

four bins.  In this chapter, a log-normal distribution is assumed for all response parameters of 

interest. The term median refers to the geometric mean of the data points (the exponential of the 
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average of the natural log of the data points) and the term dispersion denotes the standard 

deviation of the natural log of the values (which is close to the COV for values smaller than 

0.30), unless it is otherwise specified. The median spectral shapes for the four bins are 

comparable (Figures 3.4(a)–3.6(a)), and so are the measures of dispersion (Figures 3.4(b)–

3.6(b)). For the latter purpose, the standard deviation of the natural log of Sa(T)/Sa(T1) is plotted 

against T/T1.  It is noted that the dispersion is rather insensitive to the magnitude-distance 

combination (bin) but is large at all periods T ≠ T1. It may be concluded that the effect of 

frequency content on the prediction of demands is dominated by the dispersion of spectral values 

rather than the median shape of the spectrum. The conclusion is that within the range of 

magnitude and distance covered by the four bins used in this study, the magnitude-distance 

dependence of the spectral shapes does not have a dominating effect. 

 

This is not to say that a magnitude and distance dependence of spectral shapes does not exist in 

the range of these magnitude-distance bins. The dependence of median (or mean) spectra on 

magnitude and distance has been established through regression analysis in many studies. For 

instance, one can take the well-known Abrahamson-Silva (A-S) attenuation relationships 

(Abrahamson and Silva, 1997), develop scenario spectra for specific magnitude and distance 

combinations, define (within a preselected period range) the spectral shape by the relationship Sa 

= CTb, and compute the exponent b (which is a measure of the rate of decay of the spectrum) by 

regressing ln(Sa) = C0 + b*ln(T) within the selected period range. Results obtained from this 

process are shown in Table 3.5 for Geometrix site class A-B and C-D (denoted as A-S (A-B) and 

A-S (C-D), respectively), using period ranges of 0.4 to 3.0 sec for soil types (A-B) and 0.6 to 3.0 

sec for soil types (C-D). These period ranges are selected as representative for the “constant 

velocity range,” which ideally should have an exponent of b = 1.0. The results are presented for 

two distances (R = 20 km and 35 km) and magnitudes ranging from 5.5 to 7.0.  For this range, 

the magnitude dependence of b (i.e., of the spectral shape) is much stronger than the distance 

dependence. The same observation (magnitude dependence much stronger than distance 

dependence) applies when a larger distance range (15 km ≤ R≤  60 km) is used. 

 

Compatible results are obtained when the 80 records of the four magnitude-distance bins are 

combined. Spectral values for a given period are regressed using the attenuation relationship 

ln(Sa) = C0 + C1M + C2ln(R), and the exponent b is subsequently regressed from ln(Sa) = C + 
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b*ln(T). The least-squares method is used for the regression analyses.  The corresponding values 

for b are also shown in Table 3.5 in the column denoted O.G.M. (Ordinary Ground Motions). 

Ideally, the values of b should be identical to those for Abrahamson-Silva, but they clearly are 

not because of the differences in the data sets used in the two cases. The differences are 

noticeable but are outweighed by the similarities in patterns. As for the case of the Abrahamson-

Silva results, for the given magnitude-distance ranges, the magnitude dependence of b (i.e., of 

spectral shape) is much stronger than the distance dependence. This latter point is illustrated in 

Figure 3.7.  Figure 3.7(a) shows the magnitude dependence of spectral shape for the set of 80 

ordinary ground motions, where regressed spectra for R = 20 km are scaled to the same spectral 

acceleration at 1.0 sec.  Figure 3.7(b) illustrates the distance dependence of spectral shape for the 

set of ordinary ground motions, where regressed spectra for Mw = 6.7 are scaled to the same 

spectral acceleration at 1.0 sec. The following alternative form of the regression equation was 

also used with the set of 80 ordinary ground motions:  ln(Sa) = C0 + C1M + C2M2 + C3ln(R). 

However, the regressed spectral values (with their corresponding errors and residuals) were not 

sensitive to the type of regression equation utilized. The results are encouraging insofar that the 

selection of independent data sets (Abrahamson-Silva and O.G.M.) has led to compatible and 

consistent patterns. 

 

The similarity of spectral shapes (and absolute spectral values) from different data sets can be 

evaluated also from the graph presented in Figure 3.8, which compares a scenario spectrum 

obtained from the Abrahamson-Silva attenuation relationship with the corresponding scenario 

spectrum obtained from regression analysis of the 80 records.  Clearly, the spectra are not 

identical, but they are comparable and are expected to lead to qualitatively and quantitatively 

compatible conclusions on seismic demands.  For inelastic SDOF systems, this is illustrated in 

the following section. 

3.3.1 Effect of Magnitude and Distance Dependence of the Spectral Shape in the 
Demand Evaluation of SDOF Systems 

3.1.1.1 Normalized displacement demands 

Magnitude and distance dependence of spectral shapes is a moot issue unless it is reflected in the 

demand evaluation. In the SDOF domain the effects can be evaluated by considering inelastic 

systems, which exhibit period elongation and hence incorporate the effects of spectral shape and 
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its dispersion at periods greater than the period associated with the intensity measure Sa. A 

widely used measure of inelastic SDOF response is the ratio of displacements of the inelastic and 

elastic systems, δin/δel, which is also equal to µ/R (in this case, R = Fe/Fy =  mSa/Fy). This 

measure is relevant for evaluating the dependence of demands on spectral shapes because δel 

depends only on the intensity measure Sa. For the four magnitude-distance bins, plots of median 

values and measures of dispersion of the ratio δin/δel versus period are presented in Figure 3.9 

and Figure 3.10 for a bilinear model with 3% strain-hardening and strength reduction factors of 

R = 4 and 8, respectively. Except for very short-period systems (T = 0.3 sec), the median values 

for the four bins are similar and show no clear pattern among bins. The dispersion is large, 

particularly for short-period systems, and its effect on demands is judged to be as important as 

the relatively small differences in the median. The same observations are valid for the case of a 

pinching hysteretic model.  Figures 3.11 and  3.12 show the median and dispersion of the ratio 

δin/δel versus period for the four magnitude-distance bins using a pinching hysteretic model with 

3% strain-hardening, κf = κd = 0.25, and strength reduction factors of R = 4 and 8, respectively. 

The hysteretic properties and rules of the pinching model are illustrated in Figure 2.2(c). 

 

A simplified approach to quantify differences in the ratio δin/δel among bins is to normalize the 

median δin/δel values for a magnitude-distance bin by the median δin/δel values for the full set of 

80 ordinary ground motions. In this way, it is possible to evaluate how large the median of one 

magnitude-distance bin is as compared to the median of the set of 80 records, and hence, 

quantify differences among bins. This normalization is shown in Figures 3.13 and 3.14 for the 

bilinear models used in Figure 3.11. From the graphs, it can be noted that the median δin/δel 

values for a given magnitude-distance range (bin) are generally within 10% of the median values 

for the complete set of 80 records for R = 4 and 8, respectively (except in the short-period range, 

T = 0.3 sec, where the large magnitude bins LMSR and LMLR provide higher δin/δel values).   

 

The results presented in the previous paragraphs were obtained for constant strength reduction 

factors (R). Magnitude and distance dependence of spectral shape can also be evaluated in the 

constant-ductility domain. In order to do so, conventional R-µ-T relationships (for constant 

ductility ratio, µ = δmax/δy) are developed for each of the four magnitude-distance bins. R-µ-T 

relationships are suitable for the aforementioned purpose because both R and µ are normalized 
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quantities (independent of the intensity of the ground motion), so the effect of spectral shape 

(frequency content) on the response of inelastic SDOF systems can be directly assessed. Median 

R-µ-T relationships for µ = 4 and 8, and their corresponding dispersions, are shown in Figures 

3.15 and 3.16 for a bilinear model with strain hardening equal to 3%. It can be seen from the 

graphs that there are no clear differences among medians (or dispersions), except for the case of 

µ = 8 (Figure 3.16 (a)), where medium-long-period systems subjected to the LMSR record set 

exhibit median R-values that are slightly smaller than the ones corresponding to the other three 

magnitude-distance ranges. The conclusion appears to be that in the constant-ductility domain, 

the four magnitude-distance bins selected in this study possess similar frequency content 

characteristics, which translates into consistent statistical evaluation (median and dispersions) of 

SDOF strength reduction factors required to achieve a target ductility ratio, given a structural 

period, T. 

 

Perhaps a better evaluation of magnitude and distance dependence can be obtained by carrying 

out regressions of a demand parameter, such as ductility ratio µ, against magnitude and distance. 

Regression analyses with the full set of 80 records are considered to be relevant since they are 

not based on arbitrary decisions regarding the limits for the different magnitude-distance bins. 

Two regression methods were utilized: the least-squares method and the maximum-likelihood 

method. Both methods yielded similar results, so the least-squares method is used next for 

illustration.   

 

For this record set, magnitude dependence has been shown to have a stronger effect than distance 

dependence; thus, examples of magnitude dependence of µ, using the 80 records of the four bins, 

are presented in Figures 3.17 and 3.18 (three different forms of regression equations are used and 

are listed in the legend of the plots). The results are for a bilinear system with strain hardening 

equal to 3%, periods equal to 0.9 sec and 3.6 sec, and a strength reduction factor of R = 8. In 

these plots, a dependence of µ on magnitude is noted, but the dependence is sensitive to the type 

of regression equation used, particularly if the relationships are extrapolated beyond the range of 

data points. An inspection shows clearly that the residuals of the data points are large, and that 

the patterns are not as evident as the slopes of the regressed lines seem to indicate. 
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3.3.1.2 Normalized maximum absolute acceleration demands 

The dependence of normalized maximum absolute acceleration demands on magnitude and 

distance is also investigated. Maximum absolute acceleration normalized by the intensity 

measure Sa is deemed to be a relevant demand parameter to evaluate the sensitivity of ground 

motion frequency content to magnitude and distance, because it is able to capture the effects of 

spectral shape and its dispersion on the inelastic response of SDOF systems. For a slightly 

damped inelastic SDOF system with a strain-hardening ratio α and a maximum restoring force 

Fmax, maximum absolute accelerations are expected to be close to (Fmax/W)g, which is equal to 

(Sa/R)[(1+(µ−1)α], or approximately equal to (Sa/R)[(1+(R-1)α] (for medium-long-period 

systems). The above relationships suggest that maximum absolute acceleration demands are not 

expected to be sensitive to the choice of magnitude-distance ranges (bins) since for a given R 

factor, the maximum absolute acceleration is a function of the ductility demand, which for this 

record set has been shown to be insentitive to magnitude and distance (Section 3.3.1). The latter 

statement is illustrated in Figures 3.19–3.21, where median normalized maximum absolute 

accelerations (and their corresponding dispersions) are plotted for a given R factor and periods of 

0.3 sec, 0.9 sec, and 1.8 sec.  Results are presented for a bilinear hysteretic model with 3% strain 

hardening (consistent results are obtained when using a pinching hysteretic model with κf = κd = 

0.25 [not shown]).  Differences in the median are small among sets of records and their 

corresponding dispersions are also relatively small (differences are still minor, but more 

noticeable in the short-period range). Therefore, for this record set, SDOF normalized absolute 

acceleration demands are slightly dependent on magnitude and distance, which is important for 

MDOF demand evaluation since absolute floor acceleration demands are considered relevant 

demand parameters for nonstructural and content damage (Section 4.4). 

3.3.2 Magnitude and Distance Dependence of Cumulative Damage Parameters in the 
Demand Evaluation of SDOF Systems 

The dependence of cumulative damage parameters on magnitude and distance is relevant for 

ground motion selection especially when assessment of structural damage is of concern. Damage 

is caused mainly by inelastic (plastic) excursions and its accumulation as the number of 

excursions increases. The longer the strong motion duration, the more cumulative damage is 

inflicted on the system. As discussed in Section 3.3, for the set of 80 ordinary ground motions 
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used in this study, strong motion duration (defined as the time it takes for the cumulative energy 

of the ground motion record to grow from 5% to 95% of its value at the end of the history) is 

only weakly dependent on magnitude and distance. However, since cumulative damage is 

understood to be correlated to strong motion duration, it is necessary to investigate whether the 

mild dependence of strong motion duration on magnitude and distance is indeed reflected in a 

cumulative demand parameter such as the normalized hysteretic energy (NHE = Hysteretic 

Energy Dissipated/[Fyδy]). NHE is considered to be a suitable parameter for cumulative damage 

evaluation since it is a function of both the structural system and the ground motion duration and 

has been used traditionally as an “index” for cumulative damage assessment. 

 

In order to investigate the dependence of SDOF NHE demands on magnitude and distance for 

the set of 80 ordinary ground motions used in this study, NHE values are calculated for different 

periods (T = 0.3 sec, 0.9 sec, and 1.8 sec) as a function of the strength reduction factor R. A 

bilinear hysteretic model with 3% strain hardening is used (similar patterns are observed when 

using a pinching hysteretic model with κf = κd = 0.25 [not shown]). Figures 3.22–3.24 show the 

relationship between NHE and R for the four different bins and the aforementioned hysteretic 

models. Differences in the median values of NHE for a given R are noticeable, especially for T = 

0.3 sec.  In addition, the values of dispersion are rather large (0.45 to 0.75). Thus, the effects of 

magnitude and distance on the normalized hysteretic energy demands for SDOF systems are 

notable in the medians, but are expected to be dominated by the dispersions rather than the 

differences in the medians. 

 

Since the total duration of the record is used for the time history analyses utilizing the set of 80 

ordinary ground motions, it is fair to argue that NHE demands are only relevant for a bilinear 

hysteretic model, where NHE is directly related to the number of plastic excursions (cumulative 

damage). For a stiffness-degrading hysteretic model, e.g., pinching model, NHE demands are 

sensitive to the total duration of the record; thus, NHE is not necessarily a representative 

cumulative damage parameter unless it is computed for an “effective” strong motion duration of 

the record, which depends on both the ground motion and the structural system (Section 5.4).   

 

An alternative way of assessing the magnitude and distance dependence of NHE demands for 

SDOF systems is through regression analyses. NHE demands are regressed as a function of 
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magnitude and distance for different periods. As in the case of the ductility demands, both the 

least-squares and the maximum-likelihood methods are used for the regression analyses. Both 

methods yield similar results, and regressed lines obtained using the least-squares method are 

shown for illustration.   

 

Examples of magnitude dependence of ΝΗΕ, using the 80 records of the four bins, are presented 

in Figures 3.25 and 3.26 (the different regression equations used to fit the data are shown in the 

legend of the plots). The results are for a bilinear system with strain hardening equal to 3%, 

periods equal to 0.9 sec and 3.6 sec, and a strength reduction factor of R = 8. In these plots, a 

dependence of ΝΗΕ on magnitude is noted, but the dependence is sensitive to the type of 

regression equation used, especially when the relationships are extrapolated beyond the range of 

data points. The residuals of the data points are large, and the patterns are not as evident as the 

slopes of the regressed lines seem to indicate.  An example of distance dependence of NHE is 

shown in Figure 3.27 for the bilinear model used in Figures 3.25 and 3.26.  From Figure 3.27, it 

can be seen that there is a mild dependence of NHE demands on distance; however, as in the 

case of the magnitude dependence of NHE demands, the residuals of the data points are large 

and the pattern is not as clear as the slope of the regressed lines shows. 

3.3.3 Magnitude and Distance Dependence of Normalized Displacements in the Demand 
Evaluation of MDOF Systems 

Magnitude and distance dependence of seismic demand parameters should be reflected not only 

in the response of SDOF models but also in the response of MDOF models. In addition, inelastic 

SDOF systems allow us to study the effect of period elongation but not the effect of higher 

modes in the seismic response. Therefore, MDOF systems provide us with the means to assess 

the sensitivity of ground motion spectral shape to magnitude and distance both to the “right” (T > 

T1) and to the “left” (T < T1) of the fundamental period (T1) when Sa(T1) is used as the intensity 

measure of interest.   

 

A pilot study was performed to evaluate the sensitivity of maximum story ductility demands over 

the height to magnitude and distance for a two-dimensional MDOF frame model subjected to 

ordinary ground motions. The model used for this purpose is an 18-story beam-hinge model with 

a fundamental period of 1.8 sec. An 18-story model was chosen because its response exhibits 
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significant higher mode effects. Plastification is limited to the beam ends and the bottom of the 

first-story columns. The hysteretic behavior at plastic hinge locations corresponds to a bilinear 

hysteretic model with 3% strain hardening. This frame is subjected to the set of 80 ordinary 

ground motions, and statistics for each magnitude-distance bin are computed for a given strength 

reduction factor R. In this context, maximum story ductility over the height is defined as the 

maximum ratio of story drift normalized by a story yield drift computed from a pushover 

analysis. The strength reduction factor R is defined as [Sa(T1)/g]/γ, where Sa(T1) is the 5% 

damped spectral acceleration at the fundamental period of the structure, and γ is the base shear 

coefficient, i.e., γ = Vy/W, with Vy being the yield base shear strength. Figure 3.28 shows median 

R-µ relationships for the 18-story frame subjected to the four magnitude-distance bins and the 

dispersion of maximum story ductility values associated with a given R-factor.  R-µ relationships 

such as the ones illustrated in Figure 3.28(a) are equivalent to an Incremental Dynamic Analysis 

in which the intensity of the ground motion (Sa(T1)) is increased (increase in R-factor) and the 

value of the demand parameter of interest is recorded (maximum story ductility over the height) 

for a given ground motion intensity level. Computing statistics for a given R-factor is equivalent 

to computing statistics for cases in which all records are scaled to the same Sa(T1). 

 

Figure 3.28(a) shows that the median maximum story ductility demands of the 18-story frame 

subjected to the four magnitude-distance bins exhibit differences that vary with the R-factors. 

For this case of a MDOF system, the assumption of magnitude and distance independence of the 

response becomes questionable, particularly for highly inelastic systems. For large R-values the 

median maximum ductility demands are highest for the LMSR set of ground motions while the 

dispersions of maximum ductility demands are comparable for all bins (except the SMLR set of 

ground motions which exhibits larger dispersions).A comparison with SDOF system responses 

indicates that both period-elongation effects and higher mode effects take on a larger importance 

for the LMSR record bin than for the other three bins. These results, and others not shown, 

provide evidence that for the range of ordinary ground motions evaluated in this study (5.8 ≤ Mw 

≤ 6.9 and 13 km < R ≤ 60 km), the records in the LMSR bin (Table 3.1) impose somewhat 

higher demands than the records in the other three bins if spectral accelerations of the first-mode 

period (Sa(T1)) are used as the IM, i.e., all records are scaled to a common Sa(T1). Thus, there 

are good reasons to place emphasis on the LMSR record set. 
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3.3.4 Conclusions on the Magnitude and Distance Dependence of the SDOF and MDOF 
Responses to Ordinary Ground Motions 

Based on the observations discussed in Sections 3.3.1, 3.3.2, and 3.3.3, and in view of the many 

large uncertainties in demand evaluation, there appears to be justification to de-emphasize 

magnitude and distance dependence of seismic demand parameters given Sa.  This argument has 

its limitations. Foremost, it applies only to ground motions outside the near-fault and soft-soil 

regions. It also applies only to the limited magnitude and distance range used in the selection of 

the 80 ground motion record set. There are very few data points available for magnitude > 7, and 

an extrapolation to this range is not intended.  

 

Considering that in the western U.S. most of the damage of relevance to seismic performance 

assessment is caused by larger earthquakes (particularly if R > 10 km [non-near-fault range]), 

there appear to be good reasons to de-emphasize records of the type contained in three (LMLR, 

SMSR, and SMLR) of the four bins discussed previously and to focus on LMSR records. This 

also is an argument for the validity of IDAs (Incremental Dynamic Analyses), in which the same 

ground motion is incremented in intensity to predict the intensity dependence of demand 

parameters — except in ranges in which the hazard is dominated by near-fault ground motions. 

The latter is likely to be the case for long return-period hazards, especially for sites located in the 

proximity of major faults. 

3.3.5 LMSR vs. LMSR-N Record Sets 

Because of the mild dependence of spectral shape on magnitude and distance and the need for a 

larger set of records (20 records were found to be insufficient in some cases to develop consistent 

statistical information), the boundaries of the LMSR bin are expanded to cover the range of 6.5 ≤ 

Mw < 7 and 13km < R < 40km. This new set, denoted as LMSR-N, contains 40 records and is the 

record set used to carry out the seismic demand evaluation summarized in this dissertation. The 

magnitude-distance pairs for this set of records are shown boxed in Figure 3.29, and their 

corresponding properties are summarized in Table 3.6 (the gray dots in Figure 3.29 represent two 

ground motion records that are not part of the original set of 80, NR94lv6 and NR94stn). Figure 

3.30(a) shows the median acceleration spectra for both the LMSR and LMSR-N bins, when the 

Sa values are normalized by the spectral acceleration at a period of one second. From the figure it 

can be seen that both record sets have comparable spectral shape characteristics.  Their 
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dispersions (in terms of the standard deviation of the natural log of Sa(T)/Sa(1.0s)) are also 

comparable as can be observed in Figure 3.30(b). A slight increase in dispersion is noted by the 

addition of 20 records to the LMSR bin for periods greater than one second. In some cases, an 

increase in dispersion is expected since the LMSR-N bin covers larger magnitude and distance 

ranges than the LMSR bin. However, the conclusion is that expanding the boundaries of the 

LMSR bin (to obtain the LMSR-N bin) does not cause a significant variation in the frequency 

content of the ground motions as compared to the original record set. This statement implies that 

statistical seismic demand evaluation based on the LMSR-N record set should yield patterns of 

behavior similar to the ones obtained by using the LMSR records, with the additional advantage 

that more consistent statistical information can be derived by increasing the number of records 

from 20 to 40. 

 

As stated in the preceding paragraph, similarities in spectral shapes between the LMSR and the 

LMSR-N bin are expected to yield consistent patterns of behavior. As an example, Figure 

3.31(a) shows median R-µ-T relationships for a SDOF system with bilinear hysteretic behavior 

and strain hardening equal to 3%. Median strength reduction factors, R, are shown for µ = 4. No 

clear differences between bins are observed, which is consistent with the fact that the frequency 

content characteristics of both record sets are comparable. The dispersions in R-factors exhibit 

consistent values, as seen in Figure 3.34(b).   

 

Similarities in spectral shape between the LMSR and the LMSR-N bins are also reflected in the 

statistical seismic demand evaluation of MDOF systems. The seismic demand evaluation of two-

dimensional, MDOF frame systems subjected to both record sets is discussed in Section 4.2.   

 

Therefore, in this research study, the LMSR-N record set is used to carry out the seismic demand 

evaluation of systems subjected to ordinary ground motions. 
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Table 3.1  LMSR Ground Motion Records 
Record ID Event Year Mw Station R (km) NEHRP Site Mechanism fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s) PGD (cm) D (s) Rec. Length (s)

LP89agw Loma Prieta 1989 6.9 Agnews State Hospital 28.2 D reverse-oblique 0.20 30.0 0.172 26.0 12.6 18.4 40.0
LP89cap Loma Prieta 1989 6.9 Capitola 14.5 D reverse-oblique 0.20 40.0 0.443 29.3 5.5 13.2 40.0
LP89g03 Loma Prieta 1989 6.9 Gilroy Array #3 14.4 D reverse-oblique 0.10 40.0 0.367 44.7 19.3 11.4 39.9
LP89g04 Loma Prieta 1989 6.9 Gilroy Array #4 16.1 D reverse-oblique 0.20 30.0 0.212 37.9 10.1 14.8 40.0
LP89gmr Loma Prieta 1989 6.9 Gilroy Array #7 24.2 D reverse-oblique 0.20 40.0 0.226 16.4 2.5 11.5 40.0
LP89hch Loma Prieta 1989 6.9 Hollister City Hall 28.2 D reverse-oblique 0.10 29.0 0.247 38.5 17.8 17.4 39.1
LP89hda Loma Prieta 1989 6.9 Hollister Differential Array 25.8 D reverse-oblique 0.10 33.0 0.279 35.6 13.1 13.2 39.6
LP89svl Loma Prieta 1989 6.9 Sunnyvale - Colton Ave. 28.8 D reverse-oblique 0.10 40.0 0.207 37.3 19.1 21.2 39.3
NR94cnp Northridge 1994 6.7 Canoga Park - Topanga Can. 15.8 D reverse-slip 0.05 30.0 0.420 60.8 20.2 10.4 25.0
NR94far Northridge 1994 6.7 LA - N Faring Rd. 23.9 D reverse-slip 0.13 30.0 0.273 15.8 3.3 8.8 30.0
NR94fle Northridge 1994 6.7 LA - Fletcher Dr. 29.5 D reverse-slip 0.15 30.0 0.240 26.2 3.6 11.8 30.0
NR94glp Northridge 1994 6.7 Glendale - Las Palmas 25.4 D reverse-slip 0.10 30.0 0.206 7.4 1.8 11.5 30.0
NR94hol Northridge 1994 6.7 LA - Holywood Stor FF 25.5 D reverse-slip 0.20 23.0 0.231 18.3 4.8 12.0 40.0
NR94nya Northridge 1994 6.7 La Crescenta-New York 22.3 D reverse-slip 0.10 0.3 0.159 11.3 3.0 11.0 30.0
NR94stc Northridge 1994 6.7 Northridge - 17645 Saticoy St. 13.3 D reverse-slip 0.10 30.0 0.368 28.9 8.4 15.7 30.0
SF71pel San Fernando 1971 6.6 LA - Hollywood Stor Lot 21.2 D reverse-slip 0.20 35.0 0.174 14.9 6.3 11.2 28.0
SH87bra Superstition Hills 1987 6.7 Brawley 18.2 D strike-slip 0.10 23.0 0.156 13.9 5.4 13.5 22.1
SH87icc Superstition Hills 1987 6.7 El Centro Imp. Co. Cent 13.9 D strike-slip 0.10 40.0 0.358 46.4 17.5 16.1 40.0
SH87pls Superstition Hills 1987 6.7 Plaster City 21.0 D strike-slip 0.20 18.0 0.186 20.6 5.4 11.3 22.2
SH87wsm Superstition Hills 1987 6.7 Westmorland Fire Station 13.3 D strike-slip 0.10 35.0 0.172 23.5 13.0 19.6 40.0  

  
Table 3.2  LMLR Ground Motion Records 

Record ID Event Year Mw Station R (km) NEHRP Site Mechanism fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s) PGD (cm) D (s) Rec. Length (s)
BM68elc Borrego Mountain 1968 6.8 El Centro Array #9 46.0 D strike-slip 0.20 12.8 0.057 13.2 10.0 28.7 40.0
LP89a2e Loma Prieta 1989 6.9 APEEL 2E Hayward Muir Sch 57.4 D reverse-oblique 0.20 30.0 0.171 13.7 3.9 12.8 40.0
LP89fms Loma Prieta 1989 6.9 Fremont - Emerson Court 43.4 D reverse-oblique 0.10 32.0 0.141 12.9 8.4 17.9 39.7
LP89hvr Loma Prieta 1989 6.9 Halls Valley 31.6 D reverse-oblique 0.20 22.0 0.134 15.4 3.3 16.2 40.0
LP89sjw Loma Prieta 1989 6.9 Salinas - John & Work 32.6 D reverse-oblique 0.10 28.0 0.112 15.7 7.9 20.3 40.0
LP89slc Loma Prieta 1989 6.9 Palo Alto - SLAC Lab. 36.3 D reverse-oblique 0.20 33.0 0.194 37.5 10.0 12.5 39.6
NR94bad Northridge 1994 6.7 Covina - W. Badillo 56.1 D reverse-slip 0.20 30.0 0.100 5.8 1.2 17.4 35.0
NR94cas Northridge 1994 6.7 Compton - Castlegate St. 49.6 D reverse-slip 0.20 30.0 0.136 7.1 2.2 23.4 39.8
NR94cen Northridge 1994 6.7 LA - Centinela St. 30.9 D reverse-slip 0.20 30.0 0.322 22.9 5.5 12.4 30.0
NR94del Northridge 1994 6.7 Lakewood - Del Amo Blvd. 59.3 D reverse-slip 0.13 30.0 0.137 11.2 2.0 20.8 35.4
NR94dwn Northridge 1994 6.7 Downey - Co. Maint. Bldg. 47.6 D reverse-slip 0.20 23.0 0.158 13.8 2.3 17.3 40.0
NR94jab Northridge 1994 6.7 Bell Gardens - Jaboneria 46.6 D reverse-slip 0.13 30.0 0.068 7.6 2.5 20.1 35.0
NR94lh1 Northridge 1994 6.7 Lake Hughes #1 36.3 D reverse-slip 0.12 23.0 0.087 9.4 3.7 13.9 32.0
NR94loa Northridge 1994 6.7 Lawndale - Osage Ave. 42.4 D reverse-slip 0.13 30.0 0.152 8.0 2.6 23.3 40.0
NR94lv2 Northridge 1994 6.7 Leona Valley #2 37.7 D reverse-slip 0.20 23.0 0.063 7.2 1.6 12.5 32.0
NR94php Northridge 1994 6.7 Palmdale - Hwy 14 & Palmdale 43.6 D reverse-slip 0.20 46.0 0.067 16.9 8.0 18.2 60.0
NR94pic Northridge 1994 6.7 LA - Pico & Sentous 32.7 D reverse-slip 0.20 46.0 0.186 14.3 2.4 14.8 40.0
NR94sor Northridge 1994 6.7 West Covina - S. Orange Ave. 54.1 D reverse-slip 0.20 30.0 0.063 5.9 1.3 19.3 36.5
NR94sse Northridge 1994 6.7 Terminal Island - S. Seaside 60.0 D reverse-slip 0.13 30.0 0.194 12.1 2.3 13.4 35.0
NR94ver Northridge 1994 6.7 LA - E Vernon Ave. 39.3 D reverse-slip 0.10 30.0 0.153 10.1 1.8 15.9 30.0  

 
Table 3.3  SMSR Ground Motion Records 

Record ID Event Year Mw Station R (km) NEHRP Site Mechanism fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s) PGD (cm) D (s) Rec. Length (s)
IV79cal Imperial Valley 1979 6.5 Calipatria Fire Station 23.8 D strike-slip 0.10 40.0 0.078 13.3 6.2 23.3 39.5
IV79chi Imperial Valley 1979 6.5 Chihuahua 28.7 D strike-slip 0.05 0.270 24.9 9.1 20.1 40.0
IV79e01 Imperial Valley 1979 6.5 El Centro Array #1 15.5 D strike-slip 0.10 40.0 0.139 16.0 10.0 8.9 39.5
IV79e12 Imperial Valley 1979 6.5 El Centro Array #12 18.2 D strike-slip 0.10 40.0 0.116 21.8 12.1 19.4 39.0
IV79e13 Imperial Valley 1979 6.5 El Centro Array #13 21.9 D strike-slip 0.20 40.0 0.139 13.0 5.8 21.2 39.5
IV79qkp Imperial Valley 1979 6.5 Cucapah 23.6 D strike-slip 0.05 0.309 36.3 10.4 15.7 40.0
IV79wsm Imperial Valley 1979 6.5 Westmorland Fire Station 15.1 D strike-slip 0.10 40.0 0.110 21.9 10.0 25.2 40.0
LV80kod Livermore 1980 5.8 San Ramon - Eastman Kodak 17.6 D strike-slip 0.20 20.0 0.076 6.1 1.7 27.3 40.0
LV80srm Livermore 1980 5.8 San Ramon Fire Station 21.7 D strike-slip 0.20 15.0 0.040 4.0 1.2 14.2 21.0
MH84agw Morgan Hill 1984 6.2 Agnews State Hospital 29.4 D strike-slip 0.20 13.0 0.032 5.5 2.1 40.3 59.9
MH84g02 Morgan Hill 1984 6.2 Gilroy Array #2 15.1 D strike-slip 0.20 31.0 0.162 5.1 1.4 16.4 30.0
MH84g03 Morgan Hill 1984 6.2 Gilroy Array #3 14.6 D strike-slip 0.10 37.0 0.194 11.2 2.4 16.0 40.0
MH84gmr Morgan Hill 1984 6.2 Gilroy Array #7 14.0 D strike-slip 0.10 30.0 0.113 6.0 1.8 10.7 30.0
PM73phn Point Mugu 1973 5.8 Port Hueneme 25.0* D reverse-slip 0.20 25.0 0.112 14.8 2.6 10.8 23.2
PS86psa N. Palm Springs 1986 6.0 Palm Springs Airport 16.6 D strike-slip 0.20 60.0 0.187 12.2 2.1 15.6 30.0
WN87cas Whittier Narrows 1987 6.0 Compton - Castlegate St. 16.9 D reverse 0.09 25.0 0.332 27.1 5.0 8.0 31.2
WN87cat Whittier Narrows 1987 6.0 Carson - Catskill Ave. 28.1 D reverse 0.18 25.0 0.042 3.8 0.8 20.6 32.9
WN87flo Whittier Narrows 1987 6.0 Brea - S Flower Ave. 17.9 D reverse 0.16 25.0 0.115 7.1 1.2 9.4 27.6
WN87w70 Whittier Narrows 1987 6.0 LA - W 70th St. 16.3 D reverse 0.20 25.0 0.151 8.7 1.5 11.2 31.9
WN87wat Whittier Narrows 1987 6.0 Carson - Water St. 24.5 D reverse 0.20 25.0 0.104 9.0 1.9 15.2 29.7
* Hypocentral distance  
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Table 3.4  SMLR Ground Motion Records 

Record ID Event Year Mw Station R (km) NEHRP Site Mechanism fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s) PGD (cm) D (s) Rec. Length (s)
BO42elc Borrego 1942 6.5 El Centro Array #9 49.0* D 0.10 15.0 0.068 3.9 1.4 29.5 40.0
CO83c05 Coalinga 1983 6.4 Parkfield - Cholame 5W 47.3 D reverse-oblique 0.20 22.0 0.131 10.0 1.3 14.6 40.0
CO83c08 Coalinga 1983 6.4 Parkfield - Cholame 8W 50.7 D reverse-oblique 0.20 23.0 0.098 8.6 1.5 15.0 32.0
IV79cc4 Imperial Valley 1979 6.5 Coachella Canal #4 49.3 D strike-slip 0.20 40.0 0.128 15.6 3.0 10.0 28.5
IV79cmp Imperial Valley 1979 6.5 Compuertas 32.6 D strike-slip 0.20 0.186 13.9 2.9 21.7 36.0
IV79dlt Imperial Valley 1979 6.5 Delta 43.6 D strike-slip 0.05 0.238 26.0 12.1 51.1 99.9
IV79nil Imperial Valley 1979 6.5 Niland Fire Station 35.9 D strike-slip 0.10 30.0 0.109 11.9 6.9 21.7 40.0
IV79pls Imperial Valley 1979 6.5 Plaster City 31.7 D strike-slip 0.10 40.0 0.057 5.4 1.9 10.7 18.7
IV79vct Imperial Valley 1979 6.5 Victoria 54.1 D strike-slip 0.20 0.167 8.3 1.1 17.1 40.0
LV80stp Livermore 1980 5.8 Tracy - Sewage Treatment Plan 37.3 D strike-slip 0.08 15.0 0.073 7.6 1.8 20.2 33.0
MH84cap Morgan Hill 1984 6.2 Capitola 38.1 D strike-slip 0.20 30.0 0.099 4.9 0.6 17.2 36.0
MH84hch Morgan Hill 1984 6.2 Hollister City Hall 32.5 D strike-slip 0.20 19.0 0.071 7.4 1.6 21.4 28.3
MH84sjb Morgan Hill 1984 6.2 San Juan Bautista 30.3 C strike-slip 0.10 21.0 0.036 4.4 1.5 19.0 28.0
PS86h06 N. Palm Springs 1986 6.0 San Jacinto Valley Cemetery 39.6 D strike-slip 0.20 31.0 0.063 4.4 1.2 17.0 40.0
PS86ino N. Palm Springs 1986 6.0 Indio 39.6 D strike-slip 0.10 35.0 0.064 6.6 2.2 18.6 30.0
WN87bir Whittier Narrows 1987 6.0 Downey - Birchdale 56.8 D reverse 0.15 25.0 0.299 37.8 5.0 3.8 28.6
WN87cts Whittier Narrows 1987 6.0 LA - Century City CC South 31.3 D reverse 0.20 25.0 0.051 3.5 0.6 20.2 40.0
WN87har Whittier Narrows 1987 6.0 LB - Harbor Admin FF 34.2 D reverse 0.25 25.0 0.071 7.3 0.9 24.9 40.0
WN87sse Whittier Narrows 1987 6.0 Terminal Island - S. Seaside 35.7 D reverse 0.20 25.0 0.042 3.9 1.0 16.3 22.9
WN87stc Whittier Narrows 1987 6.0 Northridge - Saticoy St. 39.8 D reverse 0.20 25.0 0.118 5.1 0.8 19.8 40.0
* Hypocentral distance  

 
Table 3.5  Exponent b in Expression Sa = CTb for Regressed Spectral Shapes 
(A-S = Abrahamson-Silva, O.G.M. = Set of 80 Ordinary Ground Motions) 

0.4s-3.0s 0.6s- 3.0s
A-S (A-B) A-S (C-D) O.G.M.

R=20 km Mw=5.5 1.51 1.48 1.64
Mw=6.0 1.35 1.30 1.46
Mw=6.2 1.29 1.24 1.38
Mw=6.5 1.22 1.16 1.27
Mw=6.7 1.18 1.11 1.20
Mw=6.8 1.16 1.08 1.16
Mw=7.0 1.12 1.04 1.09

R=35 km Mw=5.5 1.43 1.45 1.77
Mw=6.0 1.27 1.27 1.59
Mw=6.2 1.22 1.21 1.51
Mw=6.5 1.14 1.13 1.40
Mw=6.7 1.10 1.07 1.33
Mw=6.8 1.08 1.05 1.29
Mw=7.0 1.04 1.00 1.21  
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Table 3.6  LMSR-N Ground Motion Records 

Record ID Event Year Mw Station R (km) NEHRP Site Mechanism fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s) PGD (cm) D (s) Rec. Length (s)
IV79cal Imperial Valley 1979 6.5 Calipatria Fire Station 23.8 D strike-slip 0.10 40 0.078 13.3 6.2 23.3 39.5
IV79chi Imperial Valley 1979 6.5 Chihuahua 28.7 D strike-slip 0.05 0.270 24.9 9.1 20.1 40.0
IV79cmp Imperial Valley 1979 6.5 Compuertas 32.6 D strike-slip 0.20 0.186 13.9 2.9 21.7 36.0
IV79e01 Imperial Valley 1979 6.5 El Centro Array #1 15.5 D strike-slip 0.10 40.0 0.139 16.0 10.0 8.9 39.5
IV79e12 Imperial Valley 1979 6.5 El Centro Array #12 18.2 D strike-slip 0.10 40.0 0.116 21.8 12.1 19.4 39.0
IV79e13 Imperial Valley 1979 6.5 El Centro Array #13 21.9 D strike-slip 0.20 40.0 0.139 13.0 5.8 21.2 39.5
IV79nil Imperial Valley 1979 6.5 Niland Fire Station 35.9 D strike-slip 0.10 30.0 0.109 11.9 6.9 21.7 40.0
IV79pls Imperial Valley 1979 6.5 Plaster City 31.7 D strike-slip 0.10 40.0 0.057 5.4 1.9 10.7 18.7
IV79qkp Imperial Valley 1979 6.5 Cucapah 23.6 D strike-slip 0.05 0.309 36.3 10.4 15.7 40.0
IV79wsm Imperial Valley 1979 6.5 Westmorland Fire Station 15.1 D strike-slip 0.10 40.0 0.110 21.9 10.0 25.2 40.0
LP89agw Loma Prieta 1989 6.9 Agnews State Hospital 28.2 D reverse-oblique 0.20 30.0 0.172 26.0 12.6 18.4 40.0
LP89cap Loma Prieta 1989 6.9 Capitola 14.5 D reverse-oblique 0.20 40.0 0.443 29.3 5.5 13.2 40.0
LP89g03 Loma Prieta 1989 6.9 Gilroy Array #3 14.4 D reverse-oblique 0.10 40.0 0.367 44.7 19.3 11.4 39.9
LP89g04 Loma Prieta 1989 6.9 Gilroy Array #4 16.1 D reverse-oblique 0.20 30.0 0.212 37.9 10.1 14.8 39.9
LP89gmr Loma Prieta 1989 6.9 Gilroy Array #7 24.2 D reverse-oblique 0.20 40.0 0.226 16.4 2.5 11.5 39.9
LP89hch Loma Prieta 1989 6.9 Hollister City Hall 28.2 D reverse-oblique 0.10 29.0 0.247 38.5 17.8 17.4 39.1
LP89hda Loma Prieta 1989 6.9 Hollister Differential Array 25.8 D reverse-oblique 0.10 33.0 0.279 35.6 13.1 13.2 39.6
LP89hvr Loma Prieta 1989 6.9 Halls Valley 31.6 D reverse-oblique 0.20 22.0 0.134 15.4 3.3 16.2 39.9
LP89sjw Loma Prieta 1989 6.9 Salinas - John & Work 32.6 D reverse-oblique 0.10 28.0 0.112 15.7 7.9 20.3 39.9
LP89slc Loma Prieta 1989 6.9 Palo Alto - SLAC Lab. 36.3 D reverse-oblique 0.20 33.0 0.194 37.5 10.0 12.5 39.6
LP89svl Loma Prieta 1989 6.9 Sunnyvale - Colton Ave. 28.8 D reverse-oblique 0.10 40.0 0.207 37.3 19.1 21.2 39.2
NR94cen Northridge 1994 6.7 LA - Centinela St. 30.9 D reverse-slip 0.20 30.0 0.322 22.9 5.5 12.4 30.0
NR94cnp Northridge 1994 6.7 Canoga Park - Topanga Can. 15.8 D reverse-slip 0.05 30.0 0.420 60.8 20.2 10.4 25.0
NR94far Northridge 1994 6.7 LA - N Faring Rd. 23.9 D reverse-slip 0.13 30.0 0.273 15.8 3.3 8.8 30.0
NR94fle Northridge 1994 6.7 LA - Fletcher Dr. 29.5 D reverse-slip 0.15 30.0 0.240 26.2 3.6 11.8 30.0
NR94glp Northridge 1994 6.7 Glendale - Las Palmas 25.4 D reverse-slip 0.10 30.0 0.206 7.4 1.8 11.5 30.0
NR94hol Northridge 1994 6.7 LA - Holywood Stor FF 25.5 D reverse-slip 0.20 23.0 0.231 18.3 4.8 12.0 40.0
NR94lh1 Northridge 1994 6.7 Lake Hughes #1 # 36.3 D reverse-slip 0.12 23.0 0.087 9.4 3.7 13.9 32.0
NR94lv2 Northridge 1994 6.7 Leona Valley #2 # 37.7 D reverse-slip 0.20 23.0 0.063 7.2 1.6 12.5 32.0
NR94lv6 Northridge 1994 6.7 Leona Valley #6 38.5 D reverse-slip 0.20 23.0 0.178 14.4 2.1 10.4 32.0
NR94nya Northridge 1994 6.7 La Crescenta-New York 22.3 D reverse-slip 0.10 0.3 0.159 11.3 3.0 11.0 30.0
NR94pic Northridge 1994 6.7 LA - Pico & Sentous 32.7 D reverse-slip 0.20 46.0 0.186 14.3 2.4 14.8 40.0
NR94stc Northridge 1994 6.7 Northridge - 17645 Saticoy St. 13.3 D reverse-slip 0.10 30.0 0.368 28.9 8.4 15.7 30.0
NR94stn Northridge 1994 6.7 LA - Saturn St 30.0 D reverse-slip 0.10 30.0 0.474 34.6 6.6 11.6 31.6
NR94ver Northridge 1994 6.7 LA - E Vernon Ave 39.3 D reverse-slip 0.10 30.0 0.153 10.1 1.8 15.9 30.0
SF71pel San Fernando 1971 6.6 LA - Hollywood Stor Lot 21.2 D reverse-slip 0.20 35.0 0.174 14.9 6.3 11.2 28.0
SH87bra Superstition Hills 1987 6.7 Brawley 18.2 D strike-slip 0.10 23.0 0.156 13.9 5.4 13.5 22.1
SH87icc Superstition Hills 1987 6.7 El Centro Imp. Co. Cent 13.9 D strike-slip 0.10 40.0 0.358 46.4 17.5 16.1 40.0
SH87pls Superstition Hills 1987 6.7 Plaster City 21.0 D strike-slip 0.20 18.0 0.186 20.6 5.4 11.3 22.2
SH87wsm Superstition Hills 1987 6.7 Westmorland Fire Station 13.3 D strike-slip 0.10 35.0 0.172 23.5 13.0 19.6 40.0  
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ELASTIC STRENGTH DEMAND SPECTRA
Scaled Records (T=0.5 s), LMSR, ξ = 0.05
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Figure 3.1  Spectra of Ordinary Ground Motions Scaled to the Same Spectral Acceleration at  

T = 0.5 sec 
 

MOMENT MAGNITUDE-CLOSEST DISTANCE
NEHRP Site Class D (80 Ordinary Records)
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Figure 3.2  Magnitude-Distance Distribution of Set of 80 Ordinary Ground Motions 
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STRONG MOTION DURATION AS A FUNCTION OF Mw

Set of 80 ordinary ground motions
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(a) Strong Motion Duration as a Function of Magnitude 

 

STRONG MOTION DURATION AS A FUNCTION OF R
Set of 80 ordinary ground motions
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(b) Strong Motion Duration as a Function of Distance 

 
Figure 3.3  Strong Motion Duration as a Function of Magnitude and Distance  

(O.G.M. Record Set) 
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[Sa/Sa(T1)]median vs. T
T1=0.3s, ξ = 0.05 
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(a) Median of Scaled Spectra 

DISPERSION OF  Sa(T)/Sa(T1) VALUES
T1=0.3 s, ξ = 0.05 
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(b) Dispersion of Sa(T)/Sa(T1) Values 

 
Figure 3.4  Statistical Evaluation of Spectral Shape for Four M-R Bins  

(Normalized at T1 = 0.3 sec) 
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[Sa/Sa(T1)]median vs. T

T1=0.9s, ξ = 0.05 
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(a)  Median of Scaled Spectra 

DISPERSION OF  Sa(T)/Sa(T1) VALUES
T1=0.9 s, ξ = 0.05 

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3
T/T1 

St
.D

ev
. o

f l
n 

of
 S

a/S
a(

T
1)

SMSR
SMLR
LMSR
LMLR

 
(b)  Dispersion of Sa(T)/Sa(T1) Values 

 
Figure 3.5  Statistical Evaluation of Spectral Shape for Four M-R Bins  

(Normalized at T1 = 0.9 sec) 
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[Sa/Sa(T1)]median vs. T
T1=1.8s, ξ = 0.05 
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(a)  Median of Scaled Spectra 

VARIABILITY IN  Sa(T)/Sa(T1) VALUES
T1=1.8 s, ξ = 0.05 
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(b) Dispersion of Sa(T)/Sa(T1) Values 

 
Figure 3.6  Statistical Evaluation of  Spectral Shape for Four M-R Bins  

(Normalized at T1 = 1.8 sec) 
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ELASTIC STRENGTH DEMAND SPECTRA
Regressed values, O.G.M., R=20 km, ξ=0.05, Scaled to Sa(T1)=0.4 g
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(a)  Magnitude Dependence of Spectral Shape for a Given R = 20 km 

ELASTIC STRENGTH DEMAND SPECTRA
Regressed values, O.G.M., Mw=6.7, ξ=0.05, Scaled to Sa(T1)=0.4 g
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(b) Distance Dependence of Spectral Shape for a Given Mw = 6.7 

 
Figure 3.7  Regression Analysis, M and R Dependence of Spectral Shape  

(O.G.M. Record Set) 
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ELASTIC STRENGTH DEMAND SPECTRA
Mw=6.9, R=20 km, ξ = 0.05

0

0.25

0.5

0.75

0 1 2 3 4 5
T (s)

F y
/W

Regressed O.G.M. (80 records)

A-S Model (reverse-slip)

 
Figure 3.8  Regressed Spectra for Mw = 6.9 and R = 20 km (Abrahamson-Silva and  

O.G.M. Record Set) 
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RATIO OF INELASTIC TO ELASTIC DISPLACEMENT
R=4, Median values, Bilinear model, α=0.03
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(a)  Median of Ratio δin/δel  

 

DISPERSION OF δinel./δel.

R=4, Bilinear model, α=0.03
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(b) Dispersion of Ratio δin/δel 

 
Figure 3.9  Ratio of Inelastic to Elastic Displacement, Four M-R Bins, R = 4, Bilinear Model 
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RATIO OF INELASTIC TO ELASTIC DISPLACEMENT
R=8, Median values, Bilinear model, α=0.03
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(a) Median of Ratio δin/δel  

DISPERSION OF δinel./δel.

R=8, Bilinear model, α=0.03
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(b) Dispersion of Ratio δin/δel 

 
Figure 3.10  Ratio of Inelastic to Elastic Displacement, Four M-R Bins, R = 8,  

Bilinear Model 
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RATIO OF INELASTIC TO ELASTIC DISPLACEMENT
R=4, Median values, Pinching model, α=0.03, κf=κd=0.25
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(a)  Median of Ratio δin/δel  

DISPERSION OF δinel./δel.

R=4, Pinching model, α=0.03, κf=κd=0.25
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(b) Dispersion of Ratio δin/δel 

 
Figure 3.11  Ratio of Inelastic to Elastic Displacement, Four M-R Bins, R = 4,  

Pinching Model 
 



 

 62

RATIO OF INELASTIC TO ELASTIC DISPLACEMENT
R=8, Median values, Pinching model, α=0.03, κf=κd=0.25
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(a)  Median of Ratio δin/δel  

DISPERSION OF δinel./δel.

R=8, Pinching model, α=0.03, κf=κd=0.25
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(b) Dispersion of Ratio δin/δel 

 
Figure 3.12  Ratio of Inelastic to Elastic Displacement, Four M-R Bins, R = 8,  

Pinching Model 
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NORMALIZED MEDIAN (δin/δel)
R=4, Bilinear Model, α=0.03
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Figure 3.13  Normalized Median of the Ratio δin/δel , Four M-R Bins, R = 4, Bilinear Model  

 

NORMALIZED MEDIAN (δin/δel)
R=8, Bilinear Model, α=0.03
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Figure 3.14  Normalized Median of the Ratio δin/δel , Four M-R Bins, R = 8, Bilinear Model 
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MEDIAN STRENGTH REDUCTION FACTOR
µ=4, Ordinary Ground Motions, ξ = 0.05, Bilinear Model, α=0.03
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(a) Median R-µ-T Relationships 

 
 

DISPERSION OF STRENGTH REDUCTION FACTORS
µ=4, Ordinary Ground Motions, ξ = 0.05, Bilinear Model, α=0.03
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(b) Dispersion of R-Factors 

 
Figure 3.15  Statistics on R-µ-T Relationships, Four M-R Bins, µ = 4, Bilinear Model 
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MEDIAN STRENGTH REDUCTION FACTOR
µ=8, Ordinary Ground Motions, ξ = 0.05, Bilinear Model, α=0.03
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(a) Median R-µ-T Relationships 

 

DISPERSION OF STRENGTH REDUCTION FACTORS
µ=8, Ordinary Ground Motions, ξ = 0.05, Bilinear Model, α=0.03
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(b) Dispersion of R-Factors 

 
Figure 3.16  Statistics on R-µ-T Relationships, Four M-R Bins, µ = 8, Bilinear Model   
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REGRESSED DUCTILITY DEMANDS
Distance=20 km, T=0.9 s, Bilinear model, ξ=0.05, α=0.03, R=8
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Figure 3.17 .Regressed Ductility Demands for R = 8, as a Function of Magnitude  

(O.G.M. Record Set), T = 0.9 sec 
 

REGRESSED DUCTILITY DEMANDS
Distance=20 km, T=3.6 s, Bilinear model, ξ=0.05, α=0.03, R=8
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Figure 3.18  Regressed Ductility Demands for R = 8, as a Function of Magnitude  

(O.G.M. Record Set), T = 3.6 sec 
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NORMALIZED MAX. ASOLUTE ACCELERATION
Median Values, T = 0.3 s, Bilinear Model, α=0.03
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(a) Median Normalized Maximum Absolute Acceleration Demands 

 

DISPERSION OF NORM. MAX. ASOLUTE ACCELERATION 
T = 0.3 s, Bilinear Model, α=0.03
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(b) Dispersion of Normalized Maximum Absolute Acceleration Demands 

 
Figure 3.19  Statistics on the Normalized Maximum Absolute Acceleration, Four M-R Bins,  

Bilinear Model,  T = 0.3 sec 
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NORMALIZED MAX. ASOLUTE ACCELERATION
Median Values, T = 0.9 s, Bilinear Model, α=0.03

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2
amax/Sa(0.9 s)

R
-F

ac
to

r

SMSR

SMLR

LMSR

LMLR

 
(a) Median Normalized Maximum Absolute Acceleration Demands 

 

DISPERSION OF NORM. MAX. ASOLUTE ACCELERATION 
T = 0.9 s, Bilinear Model, α=0.03
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(b)  Dispersion of Normalized Absolute Acceleration Demands 

 
Figure 3.20  Statistics on  the Normalized Maximum Absolute Acceleration, Four M-R Bins,  

Bilinear Model, T = 0.9 sec 
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NORMALIZED MAX. ASOLUTE ACCELERATION
Median Values, T = 1.8 s, Bilinear Model, α=0.03
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(a) Median Normalized Maximum Absolute Acceleration Demands 

 

DISPERSION OF NORM. MAX. ASOLUTE ACCELERATION 
T = 1.8 s, Bilinear Model, α=0.03
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(b) Dispersion of Normalized Maximum Absolute Acceleration Demands 

 
Figure 3.21  Statistics on the Normalized Maximum Absolute Acceleration, Four M-R Bins, Bilinear 

Model,   T = 1.8 sec 
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NORMALIZED HYSTERETIC ENERGY
Median Values, T = 0.3 s, Bilinear Model, α=0.03
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(a) Median Normalized Hysteretic Energy Demands 

 

DISPERSION OF NORMALIZED HYSTERETIC ENERGY 
T = 0.3 s, Bilinear Model, α=0.03
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(b) Dispersion of Normalized Hysteretic Energy Demands 

 
Figure 3.22  Statistics on the Normalized Hysteretic Energy, Four M-R Bins, Bilinear Model,  

T = 0.3 sec 
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NORMALIZED HYSTERETIC ENERGY
Median Values, T = 0.9 s, Bilinear Model, α=0.03
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(a) Median Normalized Hysteretic Energy Demands 

 

DISPERSION OF NORMALIZED HYSTERETIC ENERGY 
T = 0.9 s, Bilinear Model, α=0.03
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(b) Dispersion of Normalized Hysteretic Energy Demands 

 
Figure 3.23  Statistics on the Normalized Hysteretic Energy, Four M-R Bins, Bilinear Model,  

T = 0.9 sec 
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NORMALIZED HYSTERETIC ENERGY
Median Values, T = 1.8 s, Bilinear Model, α=0.03
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(a) Median Normalized Hysteretic Energy Demands 

 

DISPERSION OF NORMALIZED HYSTERETIC ENERGY 
T = 1.8 s, Bilinear Model, α=0.03

0

2

4

6

8

10

0 0.25 0.5 0.75 1
Standard Deviation of ln(NHE)

R
-F

ac
to

r

SMSR

SMLR

LMSR

LMLR

 
(b) Dispersion of Normalized Hysteretic Energy Demands 

 
Figure 3.24  Statistics on the Normalized Hysteretic Energy, Four M-R Bins, Bilinear Model, T = 

1.8 sec 
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REGRESSED NHE DEMANDS
Distance=20 km, T=0.9 s, Bilinear model, ξ=0.05, α=0.03, R=8
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Figure 3.25  Regressed NHE Demands as a Function of Magnitude (O.G.M. Record Set), 

T = 0.9 sec 
 

REGRESSED NHE DEMANDS
Distance=20 km, T=3.6 s, Bilinear model, ξ=0.05, α=0.03, R=8
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Figure 3.26  Regressed NHE Demands as a Function of Magnitude (O.G.M. Record Set),  

T = 3.6 sec 
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REGRESSED NHE DEMANDS
Mw=6.7, T=0.9 s, Bilinear model, ξ=0.05, α=0.03, R=8
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Figure 3.27  Regressed NHE Demands as a Function of Distance (O.G.M. Record Set),  

T = 0.9 sec 
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MEDIAN MAX. STORY DUCTILITY DEMANDS
N=18, T1=1.8 s,  ξ=0.05, Bilinear Model, α=0.03, θ=0.0, K1, S1
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(a) Median Maximum Story Ductility over the Height 

DISPERSION OF MAX. STORY DUCT. DEMANDS
N=18, T1=1.8 s,  ξ=0.05, Bilinear Model, α=0.03, θ=0.0, K1, S1
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(b) Dispersion of the Maximum Story Ductility Over the Height 

 
Figure 3.28  Statistics on the Maximum Story Ductility over the Height, Four M-R Bins, Bilinear 

Model, MDOF Case 
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MOMENT MAGNITUDE-CLOSEST DISTANCE
NEHRP Site Class D (80 Ordinary Records)
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Figure 3.29  LMSR-N Record Set (Magnitude-Distance Pairs) 
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Sa(T) NORMALIZED BY Sa(1.0 s)
Ordinary Ground Motions, ξ = 0.05
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(a) Median Sa(T)/Sa(1.0 s) Ratios 

 

DISPERSION OF  Sa(T)/Sa(1.0 s) VALUES
Ordinary Ground Motions, ξ = 0.05 
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(b) Dispersion of Sa(T)/Sa(1.0 s) Ratios 

 
Figure 3.30  Statistics on Normalized Elastic Spectral Acceleration Demands  

(LMSR vs. LMSR-N Bin) 
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MEDIAN STRENGTH REDUCTION FACTOR
µ=4, Ordinary Ground Motions, ξ = 0.05, Bilinear Model, α=0.03
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(a) Median R-µ-T Relationships 

 

DISPERSION OF STRENGTH REDUCTION FACTORS
µ=4, Ordinary Ground Motions, ξ = 0.05, Bilinear Model, α=0.03
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(b) Dispersion of R-factors 

 
Figure 3.31  Statistics on R-µ-T Relationships, LMSR vs. LMSR-N Bin, µ = 4,  

Bilinear Model 
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4 Evaluation of EDPs for Regular Frames:  
Deformation, Acceleration, and  
Velocity Demands 

4.1 INTRODUCTION 

In a performance evaluation context, quantification of demand parameters implies the statistical 

evaluation of EDPs as a function of IMs and the study of the sensitivity of these relationships to 

different structural characteristics and ground motion intensity, frequency content and duration. 

The purpose of this chapter is to evaluate deformation, acceleration and velocity demands for 

nondeteriorating regular frames subjected to ordinary ground motions. The dependence of the 

aforementioned demands on fundamental period, number of stories, and ground motion intensity 

level is studied as well as the variation of their associated uncertainties with the level of inelastic 

behavior.  

 

The main EDPs evaluated in this study are those that correlate best with decision variables 

related to direct dollar losses and downtime. Therefore, hysteretic models that do not include 

cyclic deterioration are considered to be useful for the aforementioned purpose.  If the limit state 

of collapse is of concern, cyclic deterioration must be included in the analyses. Moreover, 

ordinary ground motions are used to represent the ground motion hazard corresponding to the 

limit states of direct losses and downtime (not “long” return-period hazards that are expected to 

cause deterioration in structural response).  Ground motions in the near-field region are expected 

to dominate the hazard corresponding to the limit state of collapse (“long” return-period hazard). 

Relationships between EDPs and IMs are established, with the primary IM of interest being the 

spectral acceleration at the first mode of the structure Sa(T1). As discussed in Chapter 3, although 

Sa(T1) is not considered to be the “ideal” IM (the most efficient and sufficient one for most 

applications), it was shown to be an adequate IM for ordinary ground motions.  
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Since regular frames are the lateral-load-resisting system of interest in this study, the most 

relevant EDPs should be those that correlate best with the performance assessment of this type of 

system. Roof drift, story drifts, plastic hinge rotations, absolute floor accelerations, and absolute 

floor velocities are investigated. The statistical evaluation of the aforementioned EDPs and their 

relationships to Sa(T1) are presented in the following sections as well as the variation of their 

associated uncertainties with the relative intensity level. The regular frames used are generic one-

bay beam-hinge models with concentrated plasticity modeled by using peak-oriented hysteretic 

rules with 3% strain hardening. The story shear strength pattern is tuned so that simultaneous 

yielding is attained under a parabolic load pattern (NEHRP, k =2). These frames form the base 

case family of structures described in Chapter 2.  Seismic demands for variations in structural 

properties are the focus of Chapter 7. 

4.2 DEMAND EVALUATION USING THE LMSR-N GROUND MOTION SET 

In Chapter 3 it was stated that within certain limitations, there are reasons to de-emphasize 

records from the LMLR, SMLR, and SMSR magnitude-distance bins and carry out the seismic 

demand evaluation of response parameters (given Sa(T1)) using records from the LMSR bin. 

However, as discussed in Section 3.3.5, for SDOF systems, the expansion in the boundaries of 

the LMSR bin to the LMSR-N (to include 20 more records) does not introduce any significant 

modification in the frequency content (spectral shape) of the ground motion set, while allowing a 

more consistent statistical evaluation of the results. A limited study was performed with various 

EDPs to assess whether this conclusion is reflected in the seismic demand evaluation of MDOF 

systems.  Representative results are shown in Figure 4.1, where the relationship between the 

normalized average of maximum story drift angles and the normalized spectral acceleration at 

the first mode is illustrated for a nine-story frame with T1 = 0.9 sec. Figure 4.1(a) shows the 

statistical evaluation for the LMSR data set and Figure 4.1(b) for the LMSR-N set. Within the 

range of primary interest (approximately [Sa(T1)/g]/γ < 8) there is no significant difference 

between the two analyses (medians, 16th and 84th percentiles).  This observation is in agreement 

with the conclusion obtained in Section 3.3.5. The LMSR-N data set (with 40 records) is thus 

used for the seismic demand evaluation of MDOF frames, for it provides more reliable statistical 

information than the LMSR bin. 
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4.3 EVALUATION OF DEFORMATION DEMANDS RELEVANT FOR 
PERFORMANCE ASSESSMENT 

Several research efforts have focused on the evaluation of deformation demands for both SDOF 

and MDOF systems in which displacement demands from nonlinear time history analyses have 

been quantified as a function of a normalized strength or ground motion intensity level 

(Seneviratna and Krawinkler, 1997; Gupta and Krawinkler, 1999; Miranda, 1999; Fajfar, 2000). 

The objective of this work is to achieve a better understanding of the global seismic behavior of 

regular frames while providing statistical data useful for a probabilistic evaluation of relevant 

EDPs as a function of a ground motion IM (in this study, the IM of interest is the spectral 

acceleration at the first mode of the system). For a given system, this information can be further 

utilized in conjunction with (1) IM hazard information to quantify the EDP hazard and (2) 

fragility functions that quantify the relationship between EDPs and different levels of damage to 

make a probabilistic assessment of a specific damage state (Krawinkler, 2002). An illustration of 

this process is presented in Section 9.2.  

 

Since the performance targets of interest are those related to direct losses and downtime, it is 

necessary to focus on deformation parameters that relate to both structural and nonstructural 

damage for relatively “small” ductility levels where cyclic deterioration effects are not critical.  

In this context, the primary EDPs of interest are:  

Maximum roof drifts, 

Average of the maximum story drift angles, 

Maximum story drift angle over the height, 

Average of the maximum story ductilities (story ductility is defined as the story drift normalized 

by the story yield drift obtained from a pushover analysis), 

Maximum story ductility over the height,  

Residual drifts, and  

Maximum beam plastic rotations   

 

The maximum roof drift is a global deformation measure that relates to both structural and 

nonstructural damage. It has been used to relate MDOF to SDOF elastic spectral information 

(Seneviratna and Krawinkler, 1997; Miranda, 1998). The maximum story drift (or ductility) over 

the height is relevant for structural damage (if damage is dominated by the maximum story 
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deformation over the height). It is also a measure of damage to nonstructural components, e.g., 

partitions, which are sensitive to relative deformations between floors. The average of the 

maximum drifts (or ductilities) over the height is a good measure of structural damage if damage 

is about linearly proportional to drift (or ductility). Residual story drifts are also important for 

performance assessment; in particular, after a seismic event when the structural stability of the 

system is judged by the residual floor deformations. Maximum beam plastic rotations are also 

studied to provide information related to damage to structural components of a system.   

4.3.1 Maximum Roof Drift Demands 

As stated earlier in Section 4.3, the maximum roof drift angle, θr,max, from a nonlinear time 

history analysis is as a global parameter that can be used to relate MDOF response to SDOF 

elastic spectral information. Simplified procedures have been suggested to estimate local demand 

parameters, e.g., beam plastic rotations, based on elastic SDOF displacements (Gupta and 

Krawinkler, 1999). The process involves the use of empirical factors obtained from the statistical 

evaluation of demands to relate: SDOF elastic displacements to elastic roof displacements, 

elastic roof displacements to inelastic roof displacements, inelastic roof drift angles to story drift 

angles, story drift angles to plastic story drift angles, and plastic story drift angles to beam plastic 

rotations. Gupta and Krawinkler (1999) illustrate this process for the family of steel frames 

analyzed in the SAC Joint Venture project. In the context of performance evaluation, θr,max has 

also been used as the target displacement for nonlinear static (pushover) analyses (FEMA 356, 

2000). 

 

In order to quantify relationships between the maximum roof drift angle and ground motion 

intensity, nonlinear time history analyses are performed with the base case family of generic 

frames described in Section 2.4.1 subjected to the LMSR-N set of ground motions. The objective 

is to relate Sa(T1)/g to θr,max (IM-EDP relationships) and study the sensitivity of these 

relationships to strength, fundamental period, and number of stories.  Representative results for 

this specific IM-EDP relationship are shown in Figures 4.2(a) and 4.2(b). Since nondeteriorating 

systems are used, results for large [Sa(T1)/g]/γ values (causing large story ductility ratios) are of 

academic value. Although [Sa(T1)/g]/γ represents the conventional R-factor (strength reduction 

factor) when overstrength is not present, a better measure of the level of inelastic behavior is 
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given by the maximum story ductility ratios. Information regarding the maximum story ductility 

ratios for the base case family of generic structures is provided in Section 4.3.9.   

 

Figure 4.2 shows that for small relative intensities ([Sa(T1)/g]/γ  in the order of 1.0), the median 

normalized elastic roof drift angle is approximately equal to the first-mode participation factor, 

PF1. In this case, PF1 is defined as the first-mode participation factor obtained when the first-

mode shape is normalized to be equal to one at the roof. Thus, the median elastic roof drift angle 

is dominated by the first mode, and its dispersion (given Sa(T1)/g) is caused mainly by higher 

mode effects. As the relative intensity increases, the normalized θr,max remains approximately 

constant implying a linear increase in θr,max with Sa(T1)/g. For the flexible frame (T1 = 1.8 sec) 

and large relative intensities, a small increase in relative intensity causes a large increase in the 

normalized θr,max. This behavior is attributed to the structure P-delta effect, which causes the 

response to approach dynamic instability at large relative intensities. In both Figures 4.2(a) and 

4.2(b) the dispersion in the results is significant, especially at large relative intensity levels, 

which shows the limitations of using a simple IM such as Sa(T1)/g.   

 

The fact that in the range of interest the median normalized maximum roof drift is approximately 

equal to the first-mode participation factor, indicates that PF1*Sd(T1) often provides an estimate 

of the median maximum roof displacement. However, Figure 4.2(b) demonstrates that this 

estimate is not applicable to relative large relative intensity levels for which P-delta effects 

compromise the dynamic stability of flexible systems. In the following paragraphs it will be seen 

that estimating the median maximum roof displacement based on PF1*Sd(T1) does not apply to 

inelastic short-period regular frames either.   

 

Figure 4.3 illustrates the median normalized θr,max demands (θr,max/[Sd(T1)/H]), given 

[Sa(T1)/g]/γ, for the base case family of generic frames. Results are presented for the stiff (T1 = 

0.1N) and flexible (T1 = 0.2N) frames. Median values are reported because they provide general 

patterns of behavior. θr,max/[Sd(T1)/H] (which for elastic behavior is close to the first-mode 

participation factor) decreases up to a relative intensity of approximately [Sa(T1)/g]/γ = 4, which 

implies that in this range, as the relative intensity increases, the inelastic roof displacement is less 

than the elastic one. This behavior is not observed for the T1 = 0.3 sec frame because for 
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relatively weak short-period systems, the ratio of inelastic to elastic displacement is much greater 

than unity (see Figure 4.4). As the relative intensity increases above about 4.0, the normalized 

θr,max increases for all systems. Flexible frames for which P-delta effects cause a negative 

postyield stiffness in the response exhibit large θr,max/[Sd(T1)/H] values. A small increase in the 

relative intensity causes a large increase in the maximum roof drift demands, implying that the 

system is approaching dynamic instability. The relative intensity at which dynamic instability is 

imminent decreases with an increase in the fundamental period. A more detailed discussion on 

the effect of structure P-delta on the response of regular frames is presented in Chapter 7. 

  

The relationship between the median of the maximum roof drift, relative intensity level and 

fundamental period is presented in Figure 4.5. Figure 4.5(a) shows the variation of median 

θr,max/[Sd(T1)/H] values with period for different number of stories and [Sa(T1)/g]/γ  = 0.25, 1.0, 

and 2.0, while Figure 4.5(b) is presented for [Sa(T1)/g]/γ = 4.0, 6.0, and 8.0. In the median, 

θr,max/[Sd(T1)/H] is a well-contained quantity except for large relative intensities ([Sa(T1)/g]/γ = 

4.0, 6.0, and 8.0) when the system has a short period (T1 = 0.3 s) or is sensitive to P-delta effects 

(N = 12, T1 = 2.4 sec; N = 15, T1 = 3.0 sec; N = 18, T1 = 3.6 sec). Note that in Figure 4.5(b) some 

values are not reported for two of the frames, N = 15, T1 = 3.0 sec, and N = 18, T1 = 3.6 sec, 

because at large relative intensities the structures experience dynamic instability due to P-delta 

effects with more than 50% of the ground motion records. Given the period (T1 = 0.6 sec, 1.2 sec 

or 1.8 sec), frames with different number of stories have similar median θr,max/[Sd(T1)/H] values. 

This implies that regular frames with the same period and different number of stories experience 

similar roof displacements unless the flexible frames become P-delta sensitive.    

 

An alternative for evaluating the relationship between the normalized θr,max, the relative intensity, 

the fundamental period and the number of stories is illustrated in Figure 4.6.  Figure 4.6(a) 

presents information for the stiff frames (T1 = 0.1N) and Figure 4.6(b) for the flexible frames (T1 

= 0.2N). The first-mode participation factors are shown with individual squares. As discussed 

before, except for relatively weak short-period frames and P-delta sensitive frames, the median 

θr,max/[Sd(T1)/H] values are approximately equal to the first-mode participation factor regardless 

of the number of stories and the fundamental period. This result coincides with observations 

presented in Seneviratna and Krawinkler (1997) and suggests that for ordinary ground motions, 
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and levels of inelastic behavior for which cyclic deterioration effects are negligible, the 

maximum roof drift of regular frames is dominated by the first mode (except for P-delta- 

sensitive frames).  

 

The dispersion of θr,max/[Sd(T1)/H] values as a function of the relative intensity level is shown in 

Figure 4.7. For the range of primary interest, the dispersion tends to increase with the level of 

inelastic behavior except for the short-period frame (T1 = 0.3 sec). The large dispersion 

experienced by short-period systems for relative small [Sa(T1)/g]/γ values is due to the “erratic” 

individual spectral shapes observed in the short-period range of many of the recorded ground 

motions. This dispersion of θr,max/[Sd(T1)/H follows similar trends to the dispersion observed for 

the ratio of the inelastic to the elastic displacement in SDOF systems (Figures 3.9(b) to 3.12(b)). 

P-delta sensitive frames exhibit a large increase in dispersion for a small increase in relative 

intensity once they approach dynamic instability in the response. These observations are relevant 

within the probabilistic seismic performance assessment methodology discussed in Chapter 9, 

when closed-form solutions assuming a constant dispersion are implemented.   

4.3.2 Normalized Average of the Maximum Story Drift Angle Demands 

The average of the maximum story drift angles, θsi,ave, is equivalent to the maximum roof drift 

angle if all maximum story drift angles occur simultaneously. In order to investigate the 

relationship between Sa(T1)/g and θsi,ave, plots of the type shown in Figures 4.8 to 4.11 are 

utilized. Note the similarities in patterns of these relationships with the ones observed for the 

normalized maximum roof drift angle (Figures 4.2, 4.3, 4.5, and 4.7). These similarities imply 

that the average of the maximum story drifts and the maximum roof drift are well correlated. 

This observation is further studied in Section 4.3.4 where ratios of θsi,ave/θr,max are evaluated for 

different relative intensities, periods, and number of stories.   

 

Figure 4.9 presents median θsi,ave/[Sd(T1)/H], given [Sa(T1)/g]/γ, for the T1 = 0.1N and the T1 = 

0.2N frames. Patterns of behavior observed for θr,max/[Sd(T1)/H] (Figure 4.3) also apply in this 

case. However, median θsi,ave/[Sd(T1)/H] values are slightly larger due to the influence of higher 

modes in the response. Figure 4.10 presents a graphical representation of the dependence of 

θsi,ave/[Sd(T1)/H] on the relative intensity, fundamental period, and number of stories. For small 
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relative intensities (see Figure 4.10(a)) it can be observed that θsi,ave/[Sd(T1)/H] increases 

approximately linearly proportional to the fundamental period.  Furthermore, in cases where 

there are overlapping periods (N = 3, N = 6, and T1 = 0.6 sec; N = 6, N = 12, and T1 = 1.2 sec; N 

= 9, N = 18, and T1 = 1.8 sec), similar median θsi,ave/[Sd(T1)/H] imply that the flexible (T1 = 

0.2N) frames experience θsi,ave demands that are twice as large as those experienced by the stiff 

(T1 = 0.1N) frames. Figure 4.10(b) conveys a different message. As in the case of the normalized 

maximum roof drift, for [Sa(T1)/g]/γ = 4, 6, and 8, median θsi,ave/[Sd(T1)/H] values do not vary 

considerably as a function of the fundamental period except for frames with short periods (T1 = 

0.3 sec) and significant P-delta effects. 

 

The dispersion of θsi,ave/[Sd(T1)/H] values as a function of [Sa(T1)/g]/γ is illustrated in Figure 

4.11. It can be observed that the variation of the dispersion with the relative intensity follows 

patterns similar to the variation of the dispersion of θr,max/[Sd(T1)/H].  However, in the elastic 

range, some frames exhibit a dispersion of θsi,ave/[Sd(T1)/H] much larger than the dispersion of 

θr,max/[Sd(T1)/H] due to the influence of higher modes in the response.   

 

For specific cases, e.g., T1 = 3.0 sec, N = 15, a decrease in dispersion with respect to the 

dispersion in the elastic range is observed up to a value of [Sa(T1)/g]/γ = 2. This behavior is a 

consequence of the different frequency content of the ground motion records. Even when records 

are carefully selected to minimize the magnitude-distance dependence of spectral shapes, 

differences in frequency content (i.e., valleys or humps) to the right of the fundamental period 

cause the IM-EDP relationships to have different shapes, as shown in Figure 4.12 where IDAs 

for a system with T1 = 3.0 sec, N = 15 and γ = 01.0 are presented. Values for the standard 

deviation of the natural log of θsi,ave  (denoted as σ in the plots) are also shown for Sa(T1) = 0.025 

g, 0.30 g, and 0.40 g. The response for two individual ground motions is highlighted and their 

corresponding elastic acceleration spectra (scaled to Sa(3.0s) = 0.2 g) are shown in Figure 

4.12(b). While for the NR94cen record θsi,ave increases almost linearly proportional to Sa(T1), for 

the IV79cmp record the value of θsi,ave increases up to a value and then stabilizes to later increase 

rapidly due to structure P-delta effects. This stabilization in θsi,ave coincides with the transition of 

the maximum story drift from the top story to the bottom one (Section 4.3.7), which in the case 

of the NR94cen occurs for larger intensity values (not shown in the plot). This behavior is mostly 
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caused by the hump in the elastic acceleration spectra of the IV79cmp record to the right of 3.0 

sec. Thus, when the behavior is elastic, for most records θsi,ave increases linearly proportional to 

Sa(T1) and large dispersion values are caused by higher mode effects. As the system becomes 

inelastic, differences in spectral shapes cause some of the IDAs to stabilize causing the 

dispersion to decrease. Large dispersion values are observed for larger intensities due to the 

presence of severe P-delta effects. 

 

In general, values of dispersion are similar to those obtained for the normalized maximum roof 

drift except in the elastic range where the average of the maximum story drifts exhibits larger 

dispersions because of the influence of higher modes. 

4.3.3 Normalized Maximum Story Drift Angle Demands 

The maximum story drift angle over the height, θs,max, is a relevant EDP for damage assessment 

and collapse evaluation of frames when collapse is attained in an incremental fashion due to the 

presence of severe P-delta effects. In order to evaluate the relationship between θs,max and 

Sa(T1)/g, plots of the type shown in Figure 4.13 are developed. It can be seen that patterns are not 

as clear as the ones observed in Figures 4.2 and 4.8 for θr,max and θsi,ave, respectively. Moreover, 

the dispersion of θs,max/[Sd(T1)/H] values is greater than the one observed for θr,max/[Sd(T1)/H] 

and θsi,ave/[Sd(T1)/H]. Figure 4.13(a) shows a large dispersion for small relative intensity levels. 

This result is more evident in Figure 4.13(b) in which the effect of higher modes is more 

pronounced at small relative intensities. For the T1 = 1.8 sec frame, the decrease in 

θs,max/[Sd(T1)/H] with an increase in relative intensity (in the range 2 ≤  [Sa(T1)/g]/γ  ≤ 4) 

coincides with the transition of the maximum story drift over the height from top to bottom (see 

Section 4.3.7) as the level of inelastic behavior increases (behavior similar to the one observed in 

Figure 4.12(a) for the IV79cmp record). The rapid increase in θs,max/[Sd(T1)/H] for a relatively 

small increase in relative intensity is caused by P-delta effects. 

 

Figure 4.14 shows median θs,max/[Sd(T1)/H] values for various frames and relative intensities. For 

T1 ≥ 0.6 sec, there is an increase in median θs,max/[Sd(T1)/H] with the fundamental period. 

Moreover, median θs,max/[Sd(T1)/H] values tend to increase with the relative intensity, except for 

tall frames (N > 9), for which a rapid decrease in median θs,max/[Sd(T1)/H] values is observed for 
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2 ≤  [Sa(T1)/g]/γ  ≤ 6, which is consistent with the observations presented in the previous 

paragraph regarding Figure 4.13. 

 

Figure 4.15 shows relationships between the normalized maximum story drift angle over the 

height, fundamental period, and number of stories, for relative intensities from 0.25 to 8.0. As 

discussed before, median θs,max/[Sd(T1)/H] values increase with the level of intensity and 

fundamental period. Differences of more than a factor of 4 are observed in Figure 4.15(a) 

between normalized maximum story drift values corresponding to periods of 0.6 sec and 3.6 sec. 

Two additional observations can be made: first, for both small (Figure 4.15(a)) and large relative 

intensities (Figure 4.15(b)) and a given fundamental period (0.6 sec, 1.2 sec, and 1.8 sec), the 

stiffer frame (T1 = 0.1N) experiences median θs,max/[Sd(T1)/H] values that are 20% to 60% larger 

than those obtained for the flexible frame (T1 = 0.2N). Thus, there is a clear dependence of 

θs,max/[Sd(T1)/H] on the number of stories. A weaker dependence is observed for θr,max/[Sd(T1)/H]  

and θsi,ave/[Sd(T1)/H] (Figures 4.5 and 4.10). Differences in median θs,max/[Sd(T1)/H] for the stiff 

and flexible frames increase with the value of the fundamental period. For the same strength, T1 

and Sa(T1), even when the median maximum θr,max and θsi,ave differ approximately by a factor of 

2 between the T1 = 0.1N and 0.2N frames, the median maximum story drift angles differ by a 

factor of less than 2 and approach each other as the fundamental period of the frames increases. 

For a given relative intensity, median θs,max/[Sd(T1)/H] values tend to increase with the 

fundamental period (except in the short-period range, e.g., T1 = 0.3 sec). Therefore, it is evident 

that the maximum story drift over the height is highly influenced by higher mode and P-delta 

effects, which is also reflected in the assessment of dispersions discussed in the next paragraph. 

 

The dispersion of θs,max/[Sd(T1)/H] values as a function of [Sa(T1)/g]/γ is shown in Figure 4.16.  It 

can be observed that in both graphs the dispersion increases with period (except in the short-

period range). In some cases, values for the standard deviation of the natural log of the maximum 

story drift angle data are as high as 1.0 when the models experience small levels of inelastic 

behavior. This observation suggests that the maximum story drift over the height is quite 

sensitive to the effect of the higher modes in the response particularly at small relative 

intensities. The variation of the dispersion with the relative intensity follows patterns similar to 

the ones observed for the average of the maximum story drift angles (Figure 4.11). 
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4.3.4 Ratio of the Average of the Maximum Story Drift Angles to the Maximum Roof 
Drift Angle 

The ratio of the average of maximum story drift angles to the maximum roof drift angle, 

θsi,ave/θr,max, is considered relevant for seismic performance assessment, since it serves a dual 

purpose. First, statistical information on this ratio provides means to relate the maximum roof 

drift from nonlinear time history analyses (which in some cases can be estimated from SDOF 

baseline information, Section 4.3.1) to an EDP (θsi,ave) relevant for damage assessment if damage 

is linearly proportional to drift. Second, the ratio θsi,ave/θr,max could be used to estimate the target 

displacement currently prescribed in nonlinear static (pushover) analysis procedures (FEMA 

356, 2000).   

 

Median θsi,ave/θr,max values demonstrate that θsi,ave is close to θr,max regardless of the level of 

inelastic behavior except for P-delta sensitive frames (see Figure 4.17). For the stiff (T1 = 0.1N) 

frames, this ratio remains rather constant with the relative intensity. The flexible (T1 = 0.2N) 

frames exhibit slightly larger median θsi,ave/θr,max values and small variations with the relative 

intensity. For instance, for small relative intensities, median θsi,ave/θr,max are slightly larger 

because of the presence of higher mode effects for which the maximum story drift occurs at the 

top of the system. 

 

Figure 4.18 shows the variation in median values of θsi,ave/θr,max with fundamental period, 

number of stories and relative intensity level. The median of this ratio increases with the value of 

the fundamental period, for the contribution of higher modes to the response increases with T1. 

For the case of the 3 story frames (T1 = 0.3 sec and 0.6 sec) the ratio θsi,ave/θr,max is close to 1.0. 

This result is expected, since the response of short-period structures is dominated by the first 

mode, so the systems deflect primarily in a straight line. For a given fundamental period and 

different number of stories (T1 = 0.6 sec, 1.2 sec, 1.8 sec) differences in median θsi,ave/θr,max are 

negligible for small relative intensity levels (Figure 4.18(a)), and they are in the order of 15% for 

large relative intensity levels (Figure 4.18(b)).  

 

For the range of relative intensity levels of interest in this study, θsi,ave/θr,max is a stable parameter 

that is weakly dependent on the intensity level. Given the fundamental period, this ratio is also 
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weakly dependent on the number of stories. However, it seems to be a noticeable dependence on 

the fundamental period. A simple least-squares regression of the data corresponding to systems 

without severe P-delta effects (systems with severe P-delta effects are those for which the global 

pushover shows a negative postyield stiffness) is performed to obtain to following median 

θsi,ave/θr,max estimate (correlation coefficient, r = 0.89): 

1
max,

, 13.01 T
r

avesi +=
θ
θ

 , for  [Sa(T1)/g]/γ  ≤ 8  and 0.3 sec ≤  T1  ≤  3.6 sec       (4.1) 

The dispersion of the ratio θsi,ave/θr,max is reported in Figure 4.19. Relatively small values of 

dispersion are encountered in all cases (except for those where P-delta effects jeopardize the 

dynamic stability of the system), with an increase in the dispersion observed at small relative 

intensity levels for flexible frames. Relatively small dispersions suggest that the ratio θsi,ave/θr,max 

is not severely influenced by the frequency content of the ground motions. 

4.3.5 Ratio of the Maximum Story Drift Angle over the Height to the Maximum Roof 
Drift Angle 

Past studies have shown that the estimation of maximum story drift over the height is associated 

with large dispersions, while the estimation of maximum roof drift angles depicts smaller 

dispersions. Sources of uncertainty are found in the frequency content of the ground motion, 

structural properties, and modeling assumptions. This section addresses central values and the 

dispersion of this ratio as a function of both ground motion frequency content and structural 

properties. The ratio θs,max/θr,max also provides information related to the concentration of 

maximum story drift in a single story. This information is useful for loss estimation and 

performance levels in which global instability is of concern. 

 

Median values of θs,max/θr,max exhibit patterns that are not as uniform as the ones observed for 

θsi,ave/θr,max, which is illustrated in Figure 4.20. θs,max/θr,max values are maximum for   2 ≤ 

[Sa(T1)/g]/γ ≤ 4 and decrease with a further increase in relative intensity (except for P-delta 

sensitive frames). These patterns are similar to the ones observed for the maximum story drift 

angle (Section 4.3.3). 
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Median values of θs,max/θr,max are evaluated for various fundamental periods, number of stories 

and relative intensity levels. Figure 4.21 demonstrates that the ratio of maximum story drift angle 

over the height to the maximum roof drift angle increases with both the fundamental period and 

the number of stories. Median values are considerable larger for this ratio than for the ratio of 

θsi,ave/θr,max (Figure 4.18). Values as high as 4 are observed even for relatively small intensity 

levels. For the short-period frame (T1 = 0.3 sec), median ratios are close to 1.0, for the response 

is basically dominated by the first mode and the structures deflect in a straight line even for large 

levels of intensity. For a given fundamental period (T1 = 0.6 sec, 1.2 sec, 1.8 sec) stiffer frames 

(T1 = 0.1N) experience median θs,max/θr,max values 20% to 50% larger than those of the flexible 

frames (T1 = 0.2N). These observations are in agreement with the fact that the maximum story 

drift over the height is sensitive to higher mode effects, and suggests that, given the period,  the 

ratio θs,max/θr,max is strongly influenced by the number of stories. This dependence on the number 

of stories is illustrated in Figure 4.22. In order to quantify these effects, simple least-squares 

regressions are carried out for systems that do not experience severe P-delta effects, yielding the 

following estimates of the median θs,max/θr,max (correlation coefficient, r = 0.93 for Eq. 4.2 and 

0.94 for Eq. 4.3): 

1
max,

max, 1.167.0 T
r

s +=
θ
θ

   for  [Sa(T1)/g]/γ ≤8,  3 ≤ N ≤ 18 and T1 = 0.1N              (4.2) 

1
max,

max, 9.046.0 T
r

s +=
θ
θ

   for  [Sa(T1)/g]/γ ≤4,  3 ≤ N ≤ 18 and T1 = 0.2N              (4.3) 

The dispersion of the ratio θs,max/θr,max is depicted in Figure 4.23. Small values of dispersion (less 

than 0.25) are observed in most cases for [Sa(T1)/g]/γ > 2. However, for slight levels of inelastic 

behavior, the dispersion can be as high as 1.0. These large values of dispersion follow patterns 

similar to the ones observed for the dispersion in the maximum story drift over the height 

discussed in Section 4.3.3.  

4.3.6 Estimation of Peak Drift Parameters for Regular Frames 

Based on the information presented in Sections 4.3.1 to 4.3.5, peak story drift parameters (θsi,ave 

and θs,max) can be estimated based on elastic SDOF spectral information by using a procedure 

similar to the one developed by Seneviratna and Krawinkler (1997) and Gupta and Krawinkler 

(1999). This simple procedure is applicable to structures that are not in the short-period range (T1 
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≥ 0.6 sec) and that do not experience severe P-delta effects (i.e., drift demands in the region in 

which a negative postyield slope exists). A nonlinear static (pushover) analysis technique is 

recommended to assess whether a system is sensitive to P-delta effects (see Section 7.4). 

Furthermore, the relationships presented below are given for regular frame structures subjected 

to ordinary ground motions. Frame models with a smooth strength and stiffness distribution over 

the height in which a beam-hinge mechanism develops are utilized. For conditions similar to the 

ones specified in this section, median maximum story drift parameters can be estimated as 

follows: 

• θr,max = PF1*Sd(T1)/H, where PF1 is the first-mode participation factor and H is the total 
height of the frame; 

• θsi,ave = (1.0 + 0.13T1)*θr,max, where T1 is the fundamental period of the system; 
• θs,max = (0.67 + 1.1T1)*θr,max, for stiff frames (T1 close to 0.1N), [Sa(T1)/g]/γ  ≤ 8 ; and 
• θs,max = (0.46 + 0.9T1)*θr,max, for flexible frames (T1 close to 0.2N), [Sa(T1)/g]/γ ≤ 4. 
 

The above relationships are based on median values that are obtained from Equations 4.1, 4.2, 

and 4.3. The variability associated with θr,max, θsi,ave, and θs,max can be obtained from the 

information on dispersion values presented in previous sections of this chapter. 

4.3.7 Normalized Maximum Story Drift Profiles 

Most of the content of this chapter has focused on the evaluation of a single EDP (e.g., maximum 

roof drift angle) and ratios of EDPs (e.g., maximum story drift angle over the height normalized 

by the maximum roof drift angle) as a function of an intensity measure, with the purpose of 

understanding behavior, providing relevant statistical data on IM-EDP relationships, and relating 

these EDPs to both structural and nonstructural damage. The distribution of story drifts over the 

height provides additional information relevant for understanding and quantifying behavior. 

Moreover, rigorous seismic performance assessment is incomplete without a description of the 

distribution of damage over the height of the structure. Since maximum story drift angles are 

considered relevant EDPs for structural and nonstructural damage evaluation, information 

provided by maximum story drift angle profiles also becomes useful for performance 

assessment. 
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Basic graphical representations used to analyze the distribution of normalized maximum story 

drift angles over the height are given in Figures 4.24–4.26 for structures with 3, 9, and 18 stories. 

The three-story structures exhibit a uniform distribution of maximum story drift angles over the 

height, indicating that the structures deflect essentially in a straight-line mode. For the 9 and 18 

story frames, the distribution of story drift angles over the height is clearly influenced by the 

ground motion intensity level. For elastic behavior, the maximum story drift angles occur at the 

upper portion of the frames, which is in part a consequence of designing the structures so that 

their first mode is a straight line. For small levels of inelastic behavior, maximum story drifts 

concentrate at the top stories because the story strengths are tuned based on a predefined load 

pattern, which implies much weaker beams at the top stories. As the intensity level increases, the 

maximum story drift angle migrates from the top story to the bottom one. This migration is 

especially important for P-delta sensitive systems (N = 18, T1 = 3.6 sec) where there is no 

median value reported for [Sa(T1)/g]/γ = 4 because at this relative intensity the system exhibits 

first-story drift amplifications that cause dynamic instability with more than 50% of the records.   

 

Figures 4.27–4.30 show the distribution of normalized maximum story drift over the height for 

frames with T1 = 0.6 sec, 1.2 sec, and 1.8 sec, different number of stories, and relative intensity 

levels causing a response that varies from elastic ([Sa(T1)/g]/γ = 0.25) to highly inelastic 

([Sa(T1)/g]/γ = 8.0) behavior. It can be observed that the distribution of story drifts over the 

height is similar for systems with the same fundamental period and different number of stories, 

regardless of the level of intensity.   

 

The standard deviation of the natural log of the normalized maximum story drift angles over the 

height is shown in Figures 4.27(b)–4.30(b). In the elastic range (Figure 4.27(b)), the variability is 

largest at the top story where the maximum drift angle over the height occurs. It is important to 

highlight that for [Sa(T1)/g]/γ ≤ 4.0 the dispersion in the bottom portion of the structure is not 

very large (much smaller than 0.50).  For larger relative intensities, the dispersion is more 

uniformly distributed over the height without a clear dependence on the fundamental period or 

the number of stories, but showing a clear tendency to increase with an increase in relative 

intensity.  
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In order to obtain an estimate of absolute maximum story drift angle profiles, Equation 2.2 is 

used along with the normalized profiles shown in Figure 4.29. The resulting median maximum 

story drift angles over the height are shown in Figure 4.31. 

 

The distributions of maximum story drifts over the height observed in the results presented in 

this section are based on the base case family of generic systems for which the story shear 

strengths are tuned to a specific predefined load pattern, and the global stiffness is based on a 

straight-line first mode. The sensitivity of these distributions to the design story shear strength 

pattern and the presence of overstrength is discussed in Chapter 7. 

4.3.8 Normalized Residual Story Drift Demands 

Residual story drift demands provide an indication of potential stability problems after an 

earthquake event. Residual drifts are not necessarily reliable indicators of damage, since 

responses with larger inelastic deformations can exhibit residual values smaller than those 

observed in responses with smaller inelastic deformations. In order to address whether the 

aforementioned statement is applicable to the family of generic frames used in this study and the 

LMSR-N ground motion set, a limited evaluation of residual story drift demands is performed. 

Residual story drift demands are evaluated as a function of Sd(T1)/H to allow a direct comparison 

to previously presented results for maximum story drift angles. 

 

Figures 4.32 and 4.33 show the distribution of median normalized residual story drift angles over 

the height, θsi,res and their associated dispersions for frames with T1 = 0.6 sec, 1.2 sec, and 1.8 

sec, different number of stories, and [Sa(T1)/g]/γ = 2 and 4. It can be observed that the 

distribution of median θsi,res over the height is similar for systems with the same fundamental 

period and number of stories, for both relative intensities. As the relative intensity increases, the 

residual story drift angles also increase and their distribution over the height follows patterns 

similar to the ones observed for the distribution of maximum story drift angles. For instance, as 

the level of intensity increases, maximum story drift demands migrate from top to bottom, and 

residual story drifts do the same. 

 



 

 95

The dispersion of θsi,res over the height is large and nonuniform; thus, estimates of residual story 

drift angles are very sensitive to the frequency content of the ground motions. However, caution 

and good judgment must be used when interpreting dispersion values that involve parameters 

with central values close to zero, for small central values can produce large dispersions. 

Although there are similarities between the distribution over the height of median θsi,res and 

θsi,max demands, θsi,res cannot be considered a reliable indicator of structural damage. Damage is 

assumed to be related to the distribution of maximum story drift angles and the large dispersion 

in residual story drift angles implies that θsi,res is not very well correlated to θsi,max. This last 

statement is illustrated in Figure 4.34 where median ratios of θsi,res/θsi,max and their corresponding 

dispersions are presented for [Sa(T1)/g]/γ =  4.   

 

For the family of structures used in this project, which have hysteretic behavior represented by a 

stiffness-degrading, peak-oriented model, and the LMSR-N set of ordinary ground motions, 

residual story drift angles have not demonstrated to be reliable EDPs for damage evaluation. 

However, they can be used as indicators of potential stability problems for frames that have 

experienced severe levels of ground motion shaking. 

4.3.9 Story Ductility Demands 

Maximum story drifts are global EDPs related to damage to structural and nonstructural 

components; however, they do not quantify directly the level of inelastic behavior that a system 

experiences when subjected to seismic excitations. A relevant global EDP used to quantify this 

level of inelasticity is the story ductility demand, µs. However, the definition of ductility is based 

upon a normalization value that corresponds to an estimate of the yield deformation, which is not 

a well-defined property for the majority of materials, especially those with stiffness-degrading 

properties, e.g., reinforced concrete. In this chapter, story ductility is defined as the maximum 

story drift normalized by the story yield drift obtained from a pushover analysis. For the base 

case family of frames used in this project, simultaneous yielding is achieved under a parabolic 

load pattern (FEMA 368, 2000), so story yield drift values are well-defined quantities. As in the 

case of maximum story drift angles, the maximum story ductility over the height, µs,max and the 

average of the story ductilities over the height, µsi,ave, are considered relevant EDP for structural 

damage assessment. µsi,ave is most relevant if damage is about linearly proportional to the story 
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ductility, while µs,max is important if damage is dominated by the maximum story ductility over 

the height. In this section, story ductilities (along with their corresponding profiles) and their 

associated record-to-record variability are studied. 

 

Basic graphical representations for µsi,ave and µs,max are shown in Figure 4.35 for the N = 9, T1 = 

0.9 sec frame. These results are equivalent to incremental dynamic analyses where the strength 

of the structure is kept constant while the intensity of the ground motion is increased. This 

information can be interpreted as MDOF R-µ relationships. A summary of these MDOF R-

µ relationship plots is given in Figure 4.36 and 4.37. µs,max, given the relative intensity, tends to 

increase with period (except for T1 = 0.3 sec for which a small increase in relative intensity 

causes a large increase in ductility values because the inelastic displacement is larger than the 

elastic one), while this pattern is not as clear for µsi,ave. Given the relative intensity, the 

dependence of µsi,ave values on the fundamental period is less noticeable at small to medium 

relative intensities. However, a clear dependence is evident for short-period and P-delta sensitive 

frames. 

 

Median story ductility values as a function of the fundamental period, number of stories and 

relative intensity are shown in Figure 4.38. The average of the story ductilities is a more stable 

parameter than the maximum story ductility, since for small and medium intensities 

([Sa(T1)/g]/γ < 6), the median µsi,ave remains rather constant as the fundamental period increases. 

For larger relative intensities, µsi,ave tends to decrease with period while µs,max increases with 

period, indicating that as the period increases, the ratio of µs,max to µsi,ave also increases. Thus, the 

maximum story ductility concentrates in a few stories. For the primary relative intensity range of 

interest in this study, the median µsi,ave can be conservatively estimated by the value of 

[Sa(T1)/g]/γ. 

 

For a given relative intensity level and fundamental period, the effect of the number of stories is 

observed in the median maximum story ductility over the height, where for any given period, the 

stiffer (taller) frames experience maximum story ductility demands higher than those of the 

flexible (shorter) ones. These differences in maximum story ductility demands increase with the 

fundamental period, and are consistent with observations discussed for the normalized maximum 
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story drift angle over the height. For instance, if all records are scaled to the same spectral 

acceleration at the first-mode period, given the same period and strength, the maximum story 

drift experienced by the flexible frame is greater than that of the stiff frame. The maximum 

differences are usually less than a factor of 2 and decrease as the period and the relative intensity 

increase. At the same time, the story yield drift of the stiffer frame is one half the story yield drift 

of the flexible one, so for long periods and large relative intensities, the stiffer frame experiences 

larger story ductilities. 

 

The dispersion of the average of the story ductilities is shown in Figure 4.39. For the cases 

presented, its pattern of variation and its absolute value are similar to those of the normalized 

average of maximum story drifts (Section 4.3.7). The same observation applies for the dispersion 

of maximum story ductility demands over the height.   

 

Story ductility profiles provide information related to the distribution of structural damage over 

the height, for the story ductility is a measure of the degree of inelastic behavior experienced by 

components (in this case beams and the bottom of the first-story columns). Since the story shear 

strength of regular frames is tuned to a specified load distribution, story ductility distributions are 

expected to follow the same patterns observed for the normalized maximum story drifts for 

which the maximum value over the height migrates from top to bottom as the intensity level 

increases. This pattern of behavior is illustrated in Figures 4.40 to 4.43, in which median story 

ductility profiles for frames with T1 = 0.6 sec, 1.2 sec, and 1.8 sec, different number of stories, 

and different relative intensities are presented. The variation of story ductilities over the height 

implies that structures designed according to current design guidelines will experience a highly 

nonuniform distribution of structural damage over the height. 

4.3.10 Maximum Beam Plastic Rotations 

Local EDPs such as the maximum plastic element rotation are useful as damage measures at the 

component level. For the family of generic frames used in this project, which are designed based 

on the strong-column, weak-beam concept, the distribution of plastic rotations at the beam ends 

over the height constitutes basic information to assess the distribution of structural damage. 

Plastic rotation demands at the base of the first-story columns are also of interest because of the 

high axial load demands experienced by first-story columns due to gravity load and overturning 
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moments, which can potentially reduce the bending capacity of a column significantly. Plastic 

rotation demands at the base of the first-story columns are evaluated in Chapter 6, where issues 

regarding column strength are investigated. The objective of this section is to provide additional 

statistical information related to the distribution of maximum beam plastic rotations over the 

height of regular frames and its correlation with the distribution of maximum story drift angles 

over the height. Correlations between maximum story drift angles and maximum plastic element 

deformations have been studied by Gupta and Krawinkler (1999), who developed a procedure to 

estimate maximum plastic element deformation demands from maximum story drift demands. 

 

Another EDP conventionally used as an indicator of structural damage is the cumulative plastic 

rotation, for those cases in which cumulative plastic rotations can be related to the energy 

dissipation in a component. The dependence of energy demands on the frequency content and 

duration of the ground motions is studied in Chapter 5 where issues related to strong ground 

motion duration effects are addressed. 

 

For the family of generic frames utilized in this study, normalized maximum beam plastic 

rotation profiles follow patterns similar to those of the normalized maximum story drift angle 

profiles. However, the dispersion of maximum beam plastic rotations, θpbi,max, is larger than that 

of the maximum story drift angles, θsi,max (as in the case of the normalized maximum residual 

drift demands, caution must be exercised when interpreting large dispersion values based on 

quantities with central values near zero). These observations are illustrated in Figure 4.44 where 

normalized maximum beam plastic rotation profiles are shown for [Sa(T1)/g]/γ = 4 and systems 

with T1 = 0.6 sec, 1.2 sec, and 1.8 sec. Figure 4.44 can be studied along with Figure 4.29 to 

assess differences between θpbi,max and θsi,max profiles. 

 

The similarities in patterns between θpbi,max and θsi,max discussed in the previous paragraph 

suggest that maximum story drift angle demands are well correlated with the maximum beam 

plastic rotations. In order to investigate this correlation, the N = 9, T1 = 1.8 sec system used in 

Figure 4.44 is utilized for illustration. For this system [Sa(T1)/g]/γ = 4 and the normalized base 

shear strength, γ,  is equal to 0.09 when the spectral acceleration at the first mode is given by the 

UBC 1997 ground motion spectrum for site class D. Figure 4.45 shows the distribution over the 

height of median maximum story drift angles, the median maximum story drift angles minus 
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story yield drift angles (estimate of maximum plastic story drifts), and maximum beam plastic 

rotations. Values for story drifts are plotted at the story level, while values for the beam plastic 

rotations are plotted at the floor level. Note the good correlation between the median maximum 

beam plastic rotations and the estimate of the maximum plastic story drift. These results imply 

that maximum beam plastic rotations can be estimated from maximum story drift angles (when 

plastic column deformations are not significant) by approximating the maximum plastic story 

rotations.  Therefore, if maximum beam plastic rotations are EDPs relevant for structural damage 

evaluation of beams, maximum story drift angles can provide basic information to assess the 

structural integrity of beam elements that are part of regular moment-resisting frames. 

4.4 EVALUATION OF ABSOLUTE FLOOR ACCELERATION AND VELOCITY 
DEMANDS 

Absolute floor acceleration and velocity demands are EDPs that can be used to assess the 

performance of nonstructural components and equipment, which by virtue of their configuration 

or anchorage (or lack thereof) are sensitive to large floor accelerations and velocities. For 

instance, maximum absolute floor accelerations (and velocities) can be used to develop floor 

acceleration spectra. These floor spectra are useful to design and assess the performance of 

nonstructural and contents systems resting on or attached to floors and ceilings. The objective of 

this section is to understand and quantify acceleration and velocity demands imposed by ordinary 

ground motions on regular frames of different characteristics. Statistical information relevant for 

performance assessment is also provided. As in the case of the deformation demands evaluated 

in Section 4.3, peak values and average values as well as the distribution of maximum absolute 

floor accelerations and velocities over the height of the structures are studied.  

4.4.1 Absolute Floor Acceleration Demands 

In the context of probabilistic seismic performance evaluation, relationships between EDPs and 

IMs are established in order to combine them with fragility curves to make a probabilistic 

assessment of a damage measure and/or a decision variable. Hence, the normalized maximum 

absolute floor accelerations over the height and the normalized average of maximum absolute 

floor accelerations are EDPs of interest whose relationships with an IM, Sa(T1), are investigated.  
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In this study, the term “floor acceleration” corresponds to the horizontal component of 

acceleration. Since the results presented in this section are obtained with the objective of 

providing general patterns of behavior, normalized absolute acceleration values are used. The 

basic parameter to describe the level of intensity is [Sa(T1)/g]/γ; however, there are several 

parameters that could be used to normalize maximum absolute acceleration values. One of them 

is Sa(T1), while another option is the PGA. An advantage of using PGA as a normalization value 

is that it provides values for the amplification of floor acceleration demands with respect to the 

maximum ground acceleration (in current seismic code provisions/recommendations in the 

United States this ratio increases proportionally to the height of the structure). Furthermore, as 

Figure 4.46(a) indicates, the maximum absolute floor acceleration correlates well with the PGA 

except for the case of the elastic short-period frame (T1 = 0.3 sec). Figure 4.46 shows the 

dispersion of normalized maximum absolute accelerations for different frames with T1 = 0.1N 

and the full range of relative intensities, once they are normalized by both PGA and Sa(T1). In 

most cases, especially at medium to large relative intensities, smaller dispersions are observed 

when PGA is used as the normalization parameter, which implies that in this case PGA is a more 

efficient IM. These patterns are consistent with the ones observed for the flexible frames (T1 = 

0.2N). Elastic short-period systems (in this case, T1 = 0.3 sec) correlate better with Sa(T1) 

because their response is dominated by the first mode (see Figure 4.52); thus, the maximum 

absolute floor acceleration occurs at the top of the structure and is much larger than the PGA. For 

the reasons identified in this paragraph, in this study the PGA is used as the IM of interest to 

understand and quantify the relationships between af,max, relative intensity, number of stories and 

fundamental period.  

 

Basic information used to evaluate normalized maximum absolute floor accelerations over the 

height, af,max/PGA, and the normalized average of maximum floor accelerations, afi,ave/PGA is 

shown in Figure 4.47 for the N = 9, T1 = 0.9 sec frame. Maximum absolute floor accelerations 

are computed from the second-floor level and above. There are three distinct regions in the plot, 

which are common to all frames used in this study. The first region corresponds to the elastic 

range in which normalized af,max values remain constant regardless of the relative intensity. In the 

second region, normalized af,max values decrease rapidly with the relative intensity. The third 

region corresponds to the stabilization of the normalized maximum absolute floor acceleration 

for very large values of the relative intensity. In the third region, higher modes have a significant 
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contribution to the dynamic behavior of the system, and the first mode does not dominate the 

response. Therefore, af,max values do not decrease inversely proportional to the relative intensity 

as is the case for a slightly damped inelastic SDOF system with no strain hardening,α,; i.e., in 

this case maximum absolute accelerations are expected to be close to (Fmax/W)g (where Fmax is 

the maximum resisting force experienced by the SDOF system), which is equal to Sa/R or 

(Sa/R)[(1+(µ−1)α] when α has a nonzero value (µ represents the displacement ductility factor). 

If the SDOF has a medium-to-long period, its maximum absolute floor acceleration is 

approximately equal to (Sa/R)[(1+(R-1)α]. Patterns of behavior similar to the ones described in 

this paragraph for the N = 9, T1 = 0.9 sec frame were observed by Rodriguez et al. (2000) when 

evaluating floor accelerations for structural walls. 

 

Information of the type presented in Figure 4.47 can be summarized as shown in Figures 4.48 

and 4.49 for the complete family of generic frames. It is observed that for a given period, both 

the median of afi,ave/PGA and af,max/PGA decrease with the relative intensity; however, for large 

relative intensity values (Figures 4.48(b) and 4.49(b)) the median normalized floor accelerations 

stabilize and are only weakly dependent on the level of inelastic behavior. This observation is in 

agreement with the behavior depicted in Figure 4.47 for the N = 9, T1 = 0.9 sec frame for large 

intensity values. In the median, given the period, differences between values of af,max/PGA for 

the T1 = 0.1N and T1 = 0.2N frames are noticeable (as large as 50%) for small relative intensities 

(Figure 4.49(a)). However, the influence of the number of stories on the median maximum 

absolute floor acceleration decreases with increasing relative intensity. For any given period, 

median afi,ave/PGA demands are weakly dependent on the number of stories. Moreover, flexible 

frames experience de-amplification of median absolute floor acceleration demands with respect 

to the PGA for large relative intensity values ([Sa(T1)/g]/γ > 4) and T1 > 0.6 sec. 

 

The median normalized acceleration response spectrum of the LMSR-N ground motion set is 

plotted in both Figures 4.48 and 4.49 for R (strength-reduction factor) = 1 and 4 respectively. For 

elastic behavior (R = 1) differences between the LMSR-N median spectrum and median 

normalized absolute acceleration demands corresponding to [Sa(T1)/g]/γ= 0.25 are mainly the 

result of the influence of higher modes in the response. For a given relative intensity, higher 

mode and period-elongation effects also cause the correlation between normalized absolute floor 

acceleration demands and SDOF elastic spectral demands to diminish with increasing period. 
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The decrease in normalized absolute floor accelerations with an increase in relative intensity is 

not inversely proportional to the R factor, and hence, the level of inelastic behavior. For elastic 

responses, afi,ave/PGA exhibits better correlation with the elastic spectral demands than 

af,max/PGA. Thus, afi,ave/PGA is slightly affected by concentrations of maximum floor 

acceleration demands in a single story and provides a better global measure of floor acceleration 

demands.  

 

The dispersion associated with the values shown in Figures 4.48 and 4.49 are shown in Figures 

4.50 and 4.51 for the T1 = 0.1N and 0.2N frames as a function of the relative intensity level. The 

dispersion in the normalized absolute floor acceleration demands is small at all relative intensity 

levels and periods, which implies that for this family of generic frames, amplifications in 

maximum absolute floor accelerations with respect to the PGA are not very sensitive to the 

frequency content of ordinary ground motions. 

 

Figures 4.52 to 4.55 show median normalized maximum absolute floor acceleration profiles for 

different relative intensity levels and frames with periods T1 = 0.6 sec, 1.2 sec, and 1.8 sec. It can 

be seen that af,max migrates from the top story (for elastic and low levels of inelastic behavior) to 

the bottom stories (for highly inelastic systems). Moreover, as the system becomes more 

inelastic, the maximum absolute floor accelerations, afi,max, stabilize and remain rather constant 

over the height of the frame. This general pattern has been observed for the complete family of 

generic frames. The fact that the T1 = 0.6 sec elastic frames exhibit median floor acceleration 

amplifications greater than 2 at the top story (Figure 4.52) also explains why for stiff, elastic 

systems, Sa(T1) is a more efficient IM than PGA. For elastic behavior, a short-period system 

experiences floor acceleration amplifications nearly proportional to its height because the system 

deflects primarily in the first mode. Thus, its behavior resembles that of an elastic SDOF 

structure in which Sa(T1) becomes a relevant ground motion intensity measure. However, as the 

relative intensity increases and the system becomes more inelastic, it experiences period-

elongation effects with a dynamic response controlled by a combination of modes. Maximum 

absolute floor accelerations become smaller than the PGA, while their distribution is rather 

constant over the height of the frame due to yielding and subsequent plastification in beams. For 

this family of generic frames simultaneous yielding is very likely to occur for large relative 

intensities.  
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Given the fundamental period, the influence of the number of stories on the distribution of 

maximum absolute floor accelerations over the height decreases with an increase in the level of 

inelastic behavior. This observation is in agreement with the results presented in Figure 4.49. 

The information presented in Figures 4.52 to 4.55 has relevant implications in the design of 

acceleration-sensitive components because current seismic design guidelines in the United States 

assume amplification of floor accelerations proportional to height regardless of the level of 

inelastic behavior, fundamental period, and number of stories. 

 

A typical distribution of the dispersion of normalized maximum absolute floor accelerations is 

shown in Figure 4.56, which corresponds to the median profiles presented in Figure 4.52 

([Sa(T1)/g]/γ = 0.25) and Figure 4.55 ([Sa(T1)/g]/γ = 8). It can be seen that values of the standard 

deviation of the natural log of afi,max/PGA are generally smaller than 0.30; thus, as previously 

discussed, normalized maximum absolute floor accelerations are not very sensitive to the 

frequency content of ordinary ground motions (given PGA as the IM of interest).  

4.4.2 Absolute Floor Velocity Demands 

Similar to the evaluation of deformation and acceleration demands, maximum absolute floor 

velocities as well as the average of the maximum absolute floor velocities over the height are the 

two primary EDPs of interests. For instance, absolute floor velocities, vf,max, are important to 

evaluate the dynamic behavior of nonstructural components and equipment that have the 

potential to overturn because of strong floor shaking. The normalization parameter utilized is the 

PGV, which provides a direct measure of the absolute floor velocity amplification with respect to 

the ground velocity. PGV is a ground motion intensity measure that provides a relatively small 

dispersion (in the order of 0.3) for the elastic behavior of all frames. The dispersion of absolute 

floor acceleration values normalized by PGV decreases with an increase in the level of inelastic 

behavior. 

 

A typical graphical representation of the variation of the normalized maximum absolute floor 

velocity over the height is presented in Figure 4.57 for the N = 9, T1 = 0.9 sec frame. Patterns are 

similar to the ones observed for both afi,ave/PGA and af,max/PGA. As the level of inelastic 
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behavior increases, there is a rapid decrease in normalized maximum absolute floor velocities 

followed by a region where vfi,ave/PGA and vf,max/PGA stabilize.   

 

A comprehensive assessment of the relationships between absolute floor velocities, the relative 

intensity level, fundamental period, and number of stories is presented in Figures 4.58 and 4.59. 

These figures, which depict statistical information on vfi,ave/PGV and vf,max/PGV, demonstrate 

that patterns of behavior between these EDPs and those of afi,ave/PGA and af,max/PGA are very 

similar. It can be observed that for a given period, the medians of vfi,ave/PGV and vf,max/PGV 

decrease with the level of intensity; however, for large relative intensity values (Figures 4.58(b) 

and 4.59(b)) the median normalized floor velocities remain rather constant and independent of 

the level of inelastic behavior. This observation is in agreement with the behavior depicted in 

Figure 4.57 for the N = 9, T1 = 0.9 sec frame for large relative intensities. In the median, given 

the period, differences between values of vf,max/PGV (and vfi,ave/PGV) for the T1 = 0.1N and T1 = 

0.2N frames are within 10% indicating that for these cases maximum absolute floor velocity 

demands are controlled by the fundamental period and are not severely influenced by the number 

of stories. 

 

Figures 4.58(a) and 4.59(a) portray the median normalized elastic absolute velocity spectrum of 

the LMSR-N ground motion set along with median normalized absolute floor velocities. For 

elastic behavior differences between the LMSR-N median spectrum and median normalized 

maximum absolute velocity demands corresponding to [Sa(T1)/g]/γ = 0.25 are the result of the 

influence of higher modes in the response. It can be observed that for this relative intensity, the 

influence of higher modes increase with an increase in the fundamental period. 

 

Dispersions associated with the values shown in Figures 4.58 and 4.59 are presented in Figures 

4.60 and 4.61 for the T1 = 0.1N and 0.2N frames as a function of the relative intensity level. The 

relatively small values of dispersion suggest that for the cases studied in this section, normalized 

maximum absolute floor velocities are only weakly dependent on the frequency content of 

ordinary ground motions. 

 

Median normalized maximum absolute floor velocity profiles are shown in Figures 4.62 to 4.65 

for various relative intensity levels and systems with T1 = 0.6 sec, 1.2 sec, and 1.8 sec. In most 
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cases the maximum absolute floor velocity occurs at the top floor. For instance, even when 

Sa(T1)/g]/γ = 8.0 (Figure 4.65), maximum demands occur at both top and bottom except for the 

T1 = 1.8 sec systems (the first value in each curve corresponds to the ground floor). This pattern 

is different from the one observed for the case of maximum absolute floor accelerations, in 

which at large relative intensities the maximum absolute floor acceleration demands occur at the 

bottom of the structure. Another important observation is that in the elastic range maximum 

absolute floor velocities increase with height regardless of the fundamental period and the 

number of stories. This last statement agrees with the notion that for the range of period of 

consideration 0.6 sec to 1.8 sec, the response of the structure resembles that of an elastic SDOF 

system in the “constant velocity” region of the spectrum. The dispersion of the normalized 

maximum absolute floor velocities over the height is small (with smaller values observed at the 

bottom stories, Figure 4.66).  Thus, as it has been previously discussed, this parameter is weakly 

dependent on the frequency content of ordinary ground motions. 

4.5 SUMMARY 

The conclusions presented in this section are based on seismic demand analyses for regular, two-

dimensional frames with fundamental periods ranging from 0.3 sec to 3.6 sec and number of 

stories from 3 to 18. Frames are designed according to the strong-column, weak-beam 

philosophy and plastic hinging is modeled by using a peak-oriented model that does not include 

cyclic deterioration. 5% Rayleigh damping is used in all cases. The following conclusions are 

based on the response of the basic family of generic frames used in this study subjected to 

records with frequency content characteristics similar to those of the LMSR-N set. 

Generalization of the results for different types of structural systems and ground motion 

frequency content is not intended. A summary of the most salient conclusions and observations 

made in this chapter is presented next: 

 

• The use of a simple scalar intensity measure such as Sa(T1) can in some cases (depending 

upon the EDP of interest) yield large dispersions of the EDP given IM. 

 

Deformation demands 

• Except for inelastic short-period systems (for which the inelastic deformations are much 

larger than the elastic ones) and frames that are sensitive to P-delta effects (which cause large 
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amplifications of drift demands at medium to large relative intensities), the median 

normalized maximum roof drift angle, θr,max/Sd(T1), in which Sd(T1) is the elastic spectral 

displacement at the first-mode period, is approximately equal to the first-mode participation 

factor, PF1. This implies that both the elastic and inelastic roof displacements are dominated 

by the first-mode (PF1 is obtained using a first-mode shape which is normalized to be equal 

to one at the roof level). θr,max/Sd(T1) is a stable quantity associated with a small dispersion 

especially for the range of relative intensities of interest in this study, [Sa(T1)/g]/γ < 8. Large 

dispersions are observed for inelastic short-period systems and flexible frames with 

significant P-delta effects.   

• The normalized average of maximum story drift angles, θsi,ave/Sd(T1), shows trends similar to 

that of the maximum roof drift angle. Its dispersion is also comparable to that of the 

normalized maximum roof drift angle except at low levels of inelastic behavior ([Sa(T1)/g]/γ 

< 2) in which higher modes cause larger dispersions. The ratio θsi,ave/θr,max is a very stable 

parameter which is weakly dependent on the fundamental period. For a given fundamental 

period and relative intensity, the median θsi,ave/θr,max is not sensitive to the number of stories. 

The dispersion associated with this ratio is very small (in the order of 0.15), which implies 

that this parameter is weakly dependent on the frequency content of the ground motions. A 

simplified relationship to obtain median estimates of θsi,ave/θr,max as a function of the 

fundamental period is presented in Section 4.3.4. 

• Median normalized maximum story drift angles over the height, θs,max/Sd(T1), exceed the 

median roof drift by a percentage that increases with period, i.e., the median of the ratio 

θs,max/θr,max increases with period. For a given period and relative intensity, higher mode 

effects cause systems with larger number of stories to experience larger median θs,max/θr,max, 

and hence, a less uniform distribution of maximum story drift angles over the height. The 

dispersion of this ratio is relatively small (less than 0.25) except for [Sa(T1)/g]/γ < 2 at which 

higher mode effects cause the dispersion to increase. Simplified relationships to estimate the 

median θs,max/θr,max as a function of the fundamental period and the number of stories are 

given in Section 4.3.5. 

• Maximum story drift angle demands concentrate at the top stories for elastic behavior as well 

as relatively low levels of inelastic behavior. As the level of inelastic behavior increases, 

maximum story drift angle demands migrate toward the bottom stories. The large top-story 
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drifts at small levels of inelastic deformation are due to the fact that the beam strength at the 

top floors is tuned to the NEHRP k = 2 load pattern. For real frame structures, in which 

gravity loads tend to control beam sizes at the top floors, smaller maximum story drifts in the 

top stories are expected. P-delta sensitive systems experience large θs,max demands at high 

levels of inelastic behavior because of the concentration of maximum drifts at the bottom 

stories. For relative intensities of less than 2.0, a significant dependence of this EDP on the 

frequency content of the ground motions is reflected in the fact that the dispersion of θs,max 

given Sa(T1) is much larger than the dispersion of θr,max and θsi,ave given Sa(T1).   

• Based on the results of this study, residual story drifts are not reliable indicators of damage, 

since their quantification is associated with very large dispersions. 

• The average of the story ductilities over the height, µsi,ave, is a global indicator of the degree 

of inelastic behavior of the system and can be conservatively estimated by the value of 

[Sa(T1)/g]/γ (except for short-period structures and systems where large ductility demands are 

obtained due to the presence of severe P-delta effects). 

• Given the relative intensity, maximum story ductility demands increase with the fundamental 

period. Moreover, for a given period, stiff frames (T1 = 0.1N) experience larger maximum 

story ductility demands primarily due to the influence of higher mode effects in their 

response. 

• Maximum story drift and maximum beam plastic rotation profiles follow similar patterns as a 

function of the relative intensity. Maximum beam plastic rotations can be estimated from the 

maximum plastic story drifts.   

 

Floor acceleration and velocity demands 

• PGA and PGV are used to normalize floor acceleration and velocity demands because they 

provide a direct measure of the amplification (or de-amplification) of floor demands relative 

to the ground floor. Moreover, except for the T1 = 0.3 sec frame, absolute floor acceleration 

demands correlate better with PGA rather than Sa(T1) because of inelastic effects and the 

influence of higher modes in the response. PGV is a ground motion intensity measure that 

provides a relatively small dispersion (in the order of 0.3) for the elastic behavior of all 

frames. The dispersion of absolute floor acceleration values normalized by PGV decreases 

with an increase in the level of inelastic behavior. 
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• The amplification of floor accelerations and velocities with respect to maximum ground 

motion parameters, e.g., PGA and PGV, respectively, decreases with relative intensity until it 

becomes rather constant with increasing levels of inelastic behavior. This trend is not 

observed in the SDOF system for which the maximum acceleration demands are 

approximately inversely proportional to the strength reduction factor, i.e., relative intensity 

level. 

• Given the fundamental period and the relative intensity, for relatively low levels of inelastic 

behavior, frames with larger number of stories exhibit larger maximum absolute floor 

accelerations. As the relative intensity increases, maximum absolute floor acceleration 

demands become weakly dependent on the number of stories. On the other hand, maximum 

absolute floor velocity demands are weakly dependent on the number of stories for all 

relative intensity levels. 

• Except for short-period systems, maximum absolute floor accelerations concentrate at the top 

floors for elastic systems and systems with relative small levels of inelastic behavior. 

Maximum absolute floor acceleration demands migrate to the bottom floors with an increase 

in the relative intensity. For short-period systems, maximum absolute floor accelerations 

occur at the top floor regardless of the level of inelastic behavior. This information has 

relevant implications in the design of acceleration-sensitive components because current 

seismic design guidelines assume amplification of floor accelerations proportional to height 

regardless of the level of inelastic behavior, fundamental period, and number of stories. 

Maximum absolute floor velocity demands also tend to concentrate at the top of the 

structures regardless of the structural period and the level of inelastic behavior. 

• The amplification of absolute floor acceleration and velocity demands with respect to PGA 

and PGV, respectively, is not very sensitive to the frequency content of ordinary ground 

motions, which is demonstrated by the relatively small dispersion of the ratios af,max/PGA and 

vf,max/PGV. 
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NORMALIZED AVERAGE OF MAX. STORY DRIFTS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR
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(a) LMSR Ground Motion Bin (20 records) 

NORMALIZED AVERAGE OF MAX. STORY DRIFTS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) LMSR-N Ground Motion Bin (40 records) 

 
Figure 4.1  Normalized Average of the Maximum Story Drifts, T1 = 0.9 sec, N = 9 
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NORMALIZED MAXIMUM ROOF DRIFT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

 

NORMALIZED MAXIMUM ROOF DRIFT
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 4.2  Normalized Maximum Roof Drift Demands, N = 9 
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NORMALIZED MAXIMUM ROOF DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

NORMALIZED MAXIMUM ROOF DRIFT-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.3  Median Normalized Maximum Roof Drift, Stiff and Flexible Frames 
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MEDIAN INEL / ELASTIC DISPLACEMENT
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0,

αs=0.03, αcap=N.A., δc/δy=Inf, γs,c,k,a=Inf
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Figure 4.4  Ratio of Inelastic to Elastic Displacement, SDOF Systems, Various R-Factors 
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NORMALIZED MAXIMUM ROOF DRIFTS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) [Sa(T1)/g]/γ = 0.25, 1.0, 2.0 

NORMALIZED MAXIMUM ROOF DRIFTS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.5  Dependence of the Median Normalized Maximum Roof Drift on T1, All Frames, Various 

Relative Intensities 
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NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.6  Dependence of the Median Normalized Maximum Roof Drift on N, Stiff and 

Flexible Frames 
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DISPERSION OF NORM. MAX. ROOF DRIFTS-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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DISPERSION OF NORM. MAX. ROOF DRIFTS-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.7  Dispersion of the Normalized Maximum Roof Drifts, Stiff and Flexible Frames 
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NORMALIZED AVERAGE OF MAX. STORY DRIFTS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED AVERAGE OF MAX. STORY DRIFTS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 4.8  Normalized Average of the Maximum Story Drift Angles, N = 9 

 
 



 

 117

NORMALIZED AVE. OF MAX. STORY DRIFTS-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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NORMALIZED AVG. OF MAX. STORY DRIFTS-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.9  Median Normalized Average of the Maximum Story Drift Angles, Stiff and Flexible 

Frames 
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NORMALIZED AVE. OF MAX. STORY DRIFTS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.10  Dependence of the Median Normalized Average of the Maximum Story Drift 

Angles on T1, All Frames, Various Relative Intensities 



 

 119

DISPERSION OF NORM. AVE. OF MAX. STORY DRIFTS-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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DISPERSION OF NORM. AVE. OF MAX. STORY DRIFTS-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.11  Dispersion of the Normalized Average of the Maximum Story Drift Angles, Stiff 

and Flexible Frames 
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AVE. OF MAX. STORY DRIFT ANGLES
N=15, T1=3.0, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.108, BH, K1, S1, LMSR-N
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(a) Incremental Dynamic Analysis, N = 15, T1 = 3.0 sec 
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(b) Elastic Acceleration Spectra, NR94cen and IV79cmp records 

 
Figure 4.12  Effect of the Ground Motion Frequency Content in the Dispersion of θsi,ave Values 
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NORMALIZED MAXIMUM STORY DRIFT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM STORY DRIFT
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 4.13  Normalized Maximum Story Drift Angles over the Height, N = 9 
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NORMALIZED MAXIMUM STORY DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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NORMALIZED MAXIMUM STORY DRIFT-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.14  Median Normalized Maximum Story Drift Angle over the Height, Stiff and 

Flexible Frames 
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NORMALIZED MAXIMUM STORY DRIFTS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.15  Dependence of the Median Normalized Maximum Story Drift Angle over the 

Height on T1, All Frames, Various Relative Intensities 
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DISPERSION OF NORM. MAX. STORY DRIFTS-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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DISPERSION OF NORM. MAX. STORY DRIFTS-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.16  Dispersion of the Normalized Maximum Story Drift Angle over the Height, Stiff 

and Flexible Frames 
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AVE. OF MAX. STORY DRIFTS/MAX. ROOF DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N

0

2

4

6

8

10

12

14

0 0.25 0.5 0.75 1 1.25 1.5
Ratio of Ave. of Max. Story Drift Angles to Max. Roof Drift Angle, θsi,ave/θr,max

[S
a(

T
1)

/g
]/γ

T1=0.3, N=3

T1=0.6, N=6

T1=0.9, N=9

T1=1.2, N=12

T1=1.5, N=15

T1=1.8, N=18
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AVE. OF MAX. STORY DRIFTS/MAX. ROOF DRIFT-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2 N 

 
Figure 4.17  Median Ratio of the Average of the Maximum Story Drift Angles to the Maximum 

Roof Drift Angle, Stiff and Flexible Frames 
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AVE. OF MAX. STORY DRIFTS/MAX. ROOF DRIFT
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.18  Median Ratio of the Average of the Maximum Story Drift Angles to the Maximum 

Roof Drift Angle, All frames, Various Relative Intensities 
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DISPERSION OF RATIO θsi,ave/θr,max-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF RATIO θsi,ave/θr,max-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.19  Dispersion of the Ratio of the Average of the Maximum Story Drift Angles to the 

Maximum Roof Drift Angle, Stiff and Flexible Frames 
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MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.2N
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(b) T1 = 0.2N 

 
Figure 4.20  Median Ratio of the Maximum Story Drift Angle over Height to the Maximum 

Roof Drift Angle, Stiff and Flexible Frames 
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MAX. STORY DRIFT/MAX. ROOF DRIFT
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 4.21  Dependence of the Median Ratio of the Maximum Story Drift Angle over the 
Height to the Maximum Roof Drift Angle on T1, All Frames, Various Relative Intensities 
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MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 
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(b) T1 = 0.2N 

 
Figure 4.22  Dependence of the Median Ratio of the Maximum Story Drift Angle over Height to 

the Maximum Roof Drift Angle on N, Stiff and Flexible Frames 
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DISPERSION OF RATIO θs,max/θr,max-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF RATIO θs,max/θr,max-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2 N 

 
Figure 4.23  Dispersion of the Ratio of the Maximum Story Drift Angle over the Height to the 

Maximum Roof Drift Angle, Stiff and Flexible Frames 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=3, T1=0.3, ξ=0.05, Peak-oriented model, θ=0.004, BH, K1, S1, LMSR-N 
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(a) T1 = 0. 3 sec 
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(b) T1 = 0.6 sec 

 
Figure 4.24  Distribution over the Height of Normalized Maximum Story Drift Angles, N = 3 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N 
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(a) T1 = 0.9 sec 

 

MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(b) T1 = 1.8 sec 

 
Figure 4.25  Distribution over the Height of Normalized Maximum Story Drift Angles, N = 9 



 

 134

MAX. STORY DRIFT PROFILES-MEDIANS
N=18, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.033, BH, K1, S1, LMSR-N 
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(a) T1 = 1.8 sec 

MAX. STORY DRIFT PROFILES-MEDIANS
N=18, T1=3.6, ξ=0.05, Peak-oriented model, θ=0.130, BH, K1, S1, LMSR-N 
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(b) T1 = 3.6 sec 

 
Figure 4.26  Distribution over the Height of  Normalized Maximum Story Drift Angles,  

N = 18 
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MAX. STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 0.25, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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[Sa(T1)/g]/γ = 0.25, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) Dispersion 

 
Figure 4.27  Distribution over the Height of Normalized Maximum Story Drift Angles,  

[Sa(T1)/g]/γ = 0.25 
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MAX. STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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DISPERSION OF MAX. STORY DRIFT PROFILES
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) Dispersion 

 
Figure 4.28  Distribution over the Height of Normalized Maximum Story Drift Angles,  

[Sa(T1)/g]/γ = 2.0 
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MAX. STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) Dispersion 

 
Figure 4.29  Distribution over the Height of Normalized Maximum Story Drift Angles,  

[Sa(T1)/g]/γ = 4.0 
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MAX. STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Standard Deviation of ln[θsi,max/(Sd(T1)/H)]

St
or

y 
i/N

T1=0.6, N=3

T1=0.6, N=6

T1=1.2, N=6

T1=1.2, N=12

T1=1.8, N=9

T1=1.8, N=18

 
(b) Dispersion 

 
Figure 4.30  Distribution over the Height of Normalized Maximum Story Drift Angles,  

[Sa(T1)/g]/γ = 8.0 
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MAX. STORY DRIFT PROFILES-MEDIANS
Sa(T1)=0.64g/T1, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.31  Absolute Values for the Maximum Story Drift Angles over the Height (Based on 

UBC 1997 Ground Motion Spectrum for Site Class D) 
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RESIDUAL STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) Dispersion 

 
Figure 4.32  Distribution over the Height of Normalized Residual Story Drift Angles, 

[Sa(T1)/g]/γ = 2.0 
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RESIDUAL STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) Dispersion 

 
Figure 4.33  Distribution over the Height of Normalized Residual Story Drift Angles, 

[Sa(T1)/g]/γ = 4.0 
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RESIDUAL STORY DRIFT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 

0

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5
Normalized Residual Story Drifts, θsi,res/θsi,max

St
or

y 
i/N

T1=0.6, N=3

T1=0.6, N=6

T1=1.2, N=6

T1=1.2, N=12

T1=1.8, N=9

T1=1.8, N=18

 
(a) Median Values 
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(b) Dispersion 

 
Figure 4.34 Distribution over the Height of Residual Story Drift Angles Normalized by the 

Maximum Story Drift Angles, [Sa(T1)/g]/γ = 4.0 
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AVERAGE OF STORY DUCTILITIES
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) Average of the Story Ductility Demands 

MAXIMUM STORY DUCTILITY OVER HEIGHT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Maximum Story Ductility Demands Over the Height 

 
Figure 4.35  Variation of Story Ductility Demands with Relative Intensity, N = 9,  

T1 = 0.9 sec 
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AVERAGE OF STORY DUCTILITIES-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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AVERAGE OF STORY DUCTILITIES-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.36  Median Average of the Story Ductilities, Stiff and Flexible Frames 
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MAXIMUM STORY DUCTILITY-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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MAXIMUM STORY DUCTILITY-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.37  Median Maximum Story Ductility over Height, Stiff and Flexible Frames 
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AVERAGE OF STORY DUCTILITIES
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) Median Average of the Story Ductilities 

MAXIMUM STORY DUCTILITIES
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) Median Maximum Story Ductilities over the Height 

 
Figure 4.38  Median Story Ductility Demands, All Frames, Various Relative Intensities 

 



 

 147

DISPERSION OF THE AVERAGE OF STORY DUCTILITIES-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF THE AVERAGE OF STORY DUCTILITIES-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.39  Dispersion of the Average of the Story Ductilities, Stiff and Flexible Frames 
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STORY DUCTILITY PROFILES-MEDIANS
[Sa(T1)/g]/γ = 1.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.40  Distribution of Story Ductilities over the Height,   

[Sa(T1)/g]/γ = 1.0 
 

STORY DUCTILITY PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.41  Distribution of Story Ductilities over the Height,   

[Sa(T1)/g]/γ = 2.0 
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STORY DUCTILITY PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.42 Distribution of Story Ductilities over the Height,   

[Sa(T1)/g]/γ = 4.0 
 

STORY DUCTILITY PROFILES-MEDIANS
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.43  Distribution of Story Ductilities over the Height,   

[Sa(T1)/g]/γ = 8.0 
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MAX. BEAM PLASTIC ROTATIONS-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(a) Median Values 

DISPERSION OF MAX. BEAM PLASTIC ROT. PROFILES
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) Dispersion 

 
Figure 4.44  Distribution of Normalized Maximum Beam Plastic Rotations over the Height, 

[Sa(T1)/g]/γ = 4.0 
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ESTIMATED MAX. BEAM PLASTIC ROTATION
N=9, T1=1.8, γ=0.09, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N, Sa(T1)=0.36g 
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Figure 4.45  Estimation of Maximum Beam Plastic Rotations, N = 9, T1 = 1.8 sec 
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DISPERSION OF NORM. MAX. ABS. FLOOR ACC. T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) Maximum Absolute Floor Acceleration Normalized with Respect to PGA 

DISPERSION OF NORM. MAX. ABS. FLOOR ACC. T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) Maximum Absolute Floor Acceleration Normalized With Respect to Sa(T1) 

 
Figure 4.46  Dispersion of Normalized Maximum Absolute Floor Acceleration Demands, T1 = 

0.1N Frames 
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NORMALIZED AVE. OF MAX. ABSOLUTE FLOOR ACC.
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) Normalized Average of the Maximum Absolute Floor Accelerations 

NORMALIZED MAX. ABSOLUTE FLOOR ACC.
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Normalized Maximum Absolute Floor Acceleration over Height 

 
Figure 4.47  Variation of Maximum Absolute Floor Acceleration Demands with Relative 

Intensity, N = 9, T1 = 0.9 sec 
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NORMALIZED AVE. OF MAX. ABSOLUTE FLOOR ACC.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) [Sa(T1)/g]/γ = 0.25, 1.0, 2.0 

NORMALIZED AVE. OF MAX. ABSOLUTE FLOOR ACC.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.48  Dependence of the Median Normalized Average of the Maximum Absolute Floor 

Accelerations on T1, All Frames, Various Relative Intensities 
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NORMALIZED MAXIMUM ABSOLUTE FLOOR ACC.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) [Sa(T1)/g]/γ = 0.25, 1.0, 2.0 

NORMALIZED MAXIMUM ABSOLUTE FLOOR ACC.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.49  Dependence of the Median Normalized Maximum Absolute Floor Acceleration 

over the Height on T1, All Frames, Various Relative Intensities 
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DISPERSION OF NORM. AVE. OF MAX. ABS. FLOOR ACC. T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF NORM. AVE. OF MAX. ABS. FLOOR ACC. T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.50  Dispersion of the Normalized Average of the Maximum Absolute Floor 

Accelerations, Stiff and Flexible Frames 
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DISPERSION OF NORM. MAX. ABS. FLOOR ACC. T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF NORM. MAX. ABS. FLOOR ACC. T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.51  Dispersion of the Normalized Maximum Absolute Floor Acceleration over the 

Height, Stiff and Flexible Frames 
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MAX. ABSOLUTE FLOOR ACC. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 0.25, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.52  Distribution of Normalized Maximum Absolute Floor Accelerations over the 

Height, [Sa(T1)/g]/γ = 0.25 
 

MAX. ABSOLUTE FLOOR ACC. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.53  Distribution of Normalized Maximum Absolute Floor Accelerations over the 

Height, [Sa(T1)/g]/γ = 2.0 
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MAX. ABSOLUTE FLOOR ACC. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.54  Distribution of Normalized Maximum Absolute Floor Accelerations over the 

Height, [Sa(T1)/g]/γ = 4.0 
 

MAX. ABSOLUTE FLOOR ACC. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.55  Distribution of Normalized Maximum Absolute Floor Accelerations over the 

Height, [Sa(T1)/g]/γ = 8.0 
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DISPERSION OF MAX. ABSOLUTE FLOOR ACC.
[Sa(T1)/g]/γ = 0.25, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(a) [Sa(T1)/g]/γ = 0.25 

DISPERSION OF MAX. ABSOLUTE FLOOR ACC.
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) [Sa(T1)/g]/γ = 8.0 

 
Figure 4.56  Dispersion of Maximum Absolute Floor Accelerations over the Height 
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NORMALIZED AVE. OF MAX. ABSOLUTE FLOOR VEL.
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) Normalized Average of the Maximum Absolute Floor Velocities 

NORMALIZED MAX. ABSOLUTE FLOOR VEL.
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(b) Normalized Maximum Absolute Floor Velocity over the Height 

 
Figure 4.57  Variation of Maximum Absolute Floor Velocity Demands with Relative Intensity, 

N = 9, T1 = 0.9 sec 
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NORMALIZED AVE. OF MAX. ABSOLUTE FLOOR VEL.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) [Sa(T1)/g]/γ = 0.25, 1.0, 2.0 

NORMALIZED AVE. OF MAX. ABSOLUTE FLOOR VEL.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.58  Dependence of the Median Normalized Average of the Maximum Absolute Floor 

Velocities on T1, All Frames, Various Relative Intensities 
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NORMALIZED MAXIMUM ABSOLUTE FLOOR VEL.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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NORMALIZED MAXIMUM ABSOLUTE FLOOR VEL.
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 
Figure 4.59  Dependence of the Median Normalized Maximum Absolute Floor Velocity over the 

Height on T1, All Frames, Various Relative Intensities 
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DISPERSION OF NORM. AVE. OF MAX. ABS. FLOOR VEL. T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF NORM. AVE. OF MAX. ABS. FLOOR VEL. T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.60  Dispersion of the Normalized Average of the Maximum Absolute Floor Velocities, 

Stiff and Flexible Frames 
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DISPERSION OF NORM. MAX. ABS. FLOOR VEL. T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF NORM. MAX. ABS. FLOOR VEL. T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 4.61  Dispersion of the Normalized Maximum Absolute Floor Velocity over the Height, 

Stiff and Flexible Frames 
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MAX. ABSOLUTE FLOOR VEL. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 0.25, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.62  Distribution of Normalized Maximum Absolute Floor Velocities over the Height, 

[Sa(T1)/g]/γ = 0.25 
 

MAX. ABSOLUTE FLOOR VEL. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.63  Distribution of Normalized Maximum Absolute Floor Velocities over the Height, 

[Sa(T1)/g]/γ = 2.0 
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MAX. ABSOLUTE FLOOR VEL. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.64  Distribution of Normalized Maximum Absolute Floor Velocities over the Height, 

[Sa(T1)/g]/γ = 4.0 
 

MAX. ABSOLUTE FLOOR VEL. PROFILES-MEDIANS
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 4.65  Distribution of Normalized Maximum Absolute Floor Velocities over the Height, 

[Sa(T1)/g]/γ = 8.0 
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DISPERSION OF MAX. ABSOLUTE FLOOR VEL.
[Sa(T1)/g]/γ = 0.25, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(a) [Sa(T1)/g]/γ = 0.25 

 

DISPERSION OF MAX. ABSOLUTE FLOOR VEL.
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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(b) [Sa(T1)/g]/γ = 8.0 

 
Figure 4.66  Dispersion of Maximum Absolute Floor Velocities over the Height 
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5 Evaluation of Energy Demands for Regular 
Frames 

5.1 INTRODUCTION 

Engineering demand parameters that account for the cumulative nature of the seismic response 

of structural systems, e.g., energy demands, are considered important because they relate to 

damage to structural components. Several research studies have quantified energy demands and 

suggested design philosophies based on energy considerations (Uang and Bertero, 1988; Bertero 

and Teran, 1993; Chai and Fajfar, 2000). However, additional knowledge and an improved 

understanding of both energy demands and capacities are needed for a robust and reliable 

implementation of damage assessment and conceptual design procedures based on energy 

considerations rather than displacements or forces. The purpose of this chapter is to provide a 

better understanding of the energy demands experienced by nondeteriorating regular frame 

structures subjected to ordinary ground motions. Global (i.e., total dissipated energy, hysteretic 

energy dissipated) and local (i.e., component normalized hysteretic energy) demands are 

evaluated by means of statistical measures. A definition of strong motion duration that is a 

function of both the structural response and the ground motion record is utilized in the evaluation 

of the distribution of energy demands over the height of the structure.   

5.2 GLOBAL ENERGY DEMANDS 

In this section, two basic global energy EDPs are evaluated: the total dissipated energy (TDE) 

and the total hysteretic energy dissipated (HE). The TDE is equal to the sum of the energy 

dissipated by damping (damping energy dissipated, DE) and the HE. The TDE is approximately 

equal to the input energy at the end of the record (IEend) because at this instant of time there is 

little kinetic energy in the system. Previous research studies (Nassar and Krawinkler, 1991; 

Seneviratna and Krawinkler, 1997) have indicated that the ratio of HE to TDE is a stable 
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parameter and that estimates of the TDE per unit mass is not very sensitive to the level of 

inelastic behavior. In order to assess whether these observations are applicable to the base case 

family of generic frame structures used in this study, a statistical evaluation of the TDE per unit 

mass as well as the ratio of HE to TDE is performed. 

5.2.1 TDE Demands  

Figure 5.1 depicts the dependence on fundamental period of the median TDE per unit mass for 

the generic frames. Except for the short-period frame model (T1 = 0.3 sec) and models that are 

sensitive to P-delta effects, the median TDE per unit mass tends to decrease with an increase in 

the fundamental period. Moreover, the median TDE per unit mass is not very sensitive to the 

level of inelastic behavior. This observation is in agreement with results obtained by Nassar and 

Krawinkler (1991) for SDOF systems.  Short-period frame models exhibit larger median TDE 

per unit mass as the level of inelastic behavior increases because they are subjected to a rapid 

increase in the number of inelastic cycles. This is important for stiffness-degrading hysteretic 

models in which hysteretic energy is dissipated throughout the duration of the ground motion, 

i.e., even for relatively small cycles at the end of the record. For P-delta sensitive models, the 

TDE per unit mass tends to increase very rapidly with an increase in the relative intensity once 

dynamic instability is approached.   

5.2.2 HE Demands 

The ratio of the hysteretic energy dissipated, HE, to the total dissipated energy, TDE, provides a 

measure of the percentage of the input energy of the system that is dissipated by yielding of its 

members. The results for median ratios of HE/TDE for the base case family of generic frame 

structures used in this study are shown in Figure 5.2. It can be observed that the median of 

HE/TDE is similar for both the flexible and stiff frames. Its value increases with the relative 

intensity up to [Sa(T1)/g]/γ = 4.0 and remains rather constant (approximately equal to 0.70) for 

larger relative intensities. This result implies that for the generic frames and the LMSR-N set of 

ground motions, for relative intensities greater than 4.0, approximately 70% of the input energy 

of the system is dissipated by yielding of its members, while 30% percent of the energy is 

dissipated by damping. The distribution over the height of the normalized hysteretic energy 

dissipated by the frame structures is discussed in Section 5.3. Figure 5.3 presents the standard 
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deviation of the natural log of HE/TDE for the stiff and flexible frames. The dispersion in this 

ratio is very small except for small relative intensities for which the median ratio HE/TDE can be 

close to zero causing the dispersion to be large.   

 

The variation of median HE/TDE demands with the fundamental period of the frame systems is 

illustrated in Figure 5.4. It can be seen that for 4.0 ≤ [Sa(T1)/g]/γ ≤ 8.0, the median of HE/TDE is 

weakly dependent on the fundamental period (and hence, number of stories) as well as the 

relative intensity, except for P-delta sensitive structures (N = 12, T1 = 2.4 sec, N = 15, T1 = 3.0 

sec and N = 18, T1 = 3.6 sec) for which it tends to increase with period. For the small relative 

intensity of [Sa(T1)/g]/γ = 1.0, structures with T1 ≥ 2.4 sec experience yielding and dissipate 

approximately 20% of the input energy by hysteretic action because of the influence of higher 

modes in the response.   

 

Figure 5.5 presents median HE/TDE demands for SDOF systems with P-delta slopes equal to the 

elastic first-story stability coefficient of the generic frame structures. For instance, a SDOF 

system labeled “T1 = 0.1N, R = 4” in Figure 5.5 represents a SDOF model with a strength-

reduction factor (relative intensity) of 4 and a negative P-delta slope with an absolute value equal 

to the elastic first-story stability coefficient of the T1 = 0.1N frames (full mass participation is 

assumed). Τhe median HE/TDE ratio for SDOF systems is weakly dependent on the level of 

inelasticity for medium to large relative intensities. This behavior is consistent with the one 

observed for the case of frame structures (Figure 5.4). For SDOF systems, as the period 

increases, the median ratio HE/TDE is rather stable for all relative intensity levels even for P-

delta-sensitive systems. This behavior is not observed for inelastic frame structures (Figure 5.4) 

because higher modes of vibration increase the hysteretic energy dissipation at small relative 

intensities, and P-delta effects are more pronounced for the generic frames, i.e., the absolute 

value of the effective P-delta slope in the inelastic range is greater than that obtained based on 

the elastic first-story stability coefficient. However, in most cases, behavior patterns are 

sufficiently consistent between SDOF and MDOF systems to make an estimate of HE/TDE 

ratios for frames that are not P-delta sensitive from the HE/TDE ratios of the corresponding 

SDOF systems. This is illustrated in Figure 5.6 in which median ratios of HE/TDE for the 

generic frames normalized by the HE/TDE of the SDOF systems are presented. 
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5.3 LOCAL ENERGY DEMANDS 

Energy demands imposed on the components of a system provide information on the distribution 

of damage over the height of a structure. The normalized hysteretic energy (NHE) is one 

measure of “local” damage. It is equal to the total hysteretic energy dissipated by the component 

divided by the yield moment (or force) times the yield rotation (or displacement). Thus, the NHE 

is a multiple of twice the value of the strain energy at yield. For an elastoplastic system, the NHE 

is equal to the sum of the plastic excursions normalized by the yield rotation (or displacement). 

The sum of plastic excursions has been used as a measure of structural damage to components 

(Krawinkler and Zoheri, 1983).   

 

In Krawinkler et al. (2000), arguments are made to use only the energy dissipated in the prepeak 

segment of the response history as a measure of cumulative damage. This segment terminates 

when the later of the maximum positive and negative deformation peaks occurs. The excursions 

occurring after the prepeak segment will do little cumulative damage and they will not cause a 

further increase in maximum deformations.   

 

Figures 5.7 and 5.8 show a response history (Figure 5.7) and the corresponding hysteretic 

response of a peak-oriented model with 3% strain hardening (Figure 5.8). The time associated 

with the end of the prepeak segment can be used to define the end of the strong motion portion of 

the response. Strong motion duration, Dsm, is defined in this study as the difference between the 

time when the prepeak segment of the response ends (tpp in Figure 5.7) and the time of first 

yielding (ty in Figure 5.7). For times greater than tpp (postpeak segment), although stiffness-

degrading models can experience deformations close to the maximum deformations, the energy 

dissipation is relatively small. This is illustrated in Figure 5.8 in which the response for t > tpp is 

portrayed with thin black lines. Thus, the relevant damage is expected to occur during the 

duration of strong motion defined by Dsm. The response in the interval corresponding to Dsm is 

represented by thick black lines in Figures 5.7 and 5.8. 

 

Based on the arguments made, the normalized hysteretic energy in the prepeak segment of the 

response is used as the basic energy parameter for evaluation of the distribution of structural 

damage over the height.  NHE demands are calculated per floor based on the hysteretic energy 

dissipated at the ends of beams. At the first floor, it is based on the hysteretic energy dissipated at 
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the bottom of the first-story columns. Figure 5.9 shows median NHE demands over the height 

for the N = 9, T1 = 1.8 sec frame structure. Total NHE, NHEtotal, and NHE in the prepeak 

segment of the response, NHEpp, are presented.  Both the NHEtotal and NHEpp distributions are 

similar, with the NHEpp values being smaller by a percentage that decreases with an increase in 

relative intensity. The NHE profiles look similar in shape to the story drift profiles (Figure 

4.25(b)), but the top stories have relatively larger values because these stories experience more 

inelastic excursions due to higher mode effects. 

 

Figures 5.10–5.12 present the distribution of median NHEpp over the height for the 3-, 9-, and 

18-story frames. In all cases, there is a systematic increase in median NHEpp demands with the 

relative intensity. The largest increase is observed in Figure 5.10(a) for the T1 = 0.3 sec structure 

due to the large ductility levels (see Section 4.3.9) and the large number of cycles experienced by 

short-period structures. Both the 9- and 18-story frames exhibit the largest median NHEpp at the 

top and second floors, whereas small demands are observed in the middle stories (the 18-story 

frame with T1 = 3.6 sec does not have median values for relative intensities of 4 or greater 

because dynamic instability occurs at a relative intensity less than 4). A more uniform 

distribution of median NHEpp demands is observed for the 3-story frames.   

5.4 STRONG MOTION DURATION  

In this section the relationship between the duration of strong motion, Dsm, and the relative 

intensity is explored for the base case family of generic frame structures. As discussed in Section 

5.3, Dsm is important within the context of damage assessment because of its relationship to 

structural damage. The main assumption is that structural damage is controlled by the hysteretic 

energy dissipated in the prepeak segment of the response, which is also the hysteretic energy 

dissipated during the duration of strong motion (Figure 5.7).   

 

The definition of Dsm used in Section 5.3, which is illustrated in Figure 5.7, is applicable to the 

components of a system (more specifically, to the rotational springs used in the frame models). 

In this section, a global measure of Dsm is used. It is defined as the duration between the earliest 

time of first yielding, ty, and the longest tpp among all the components of the structure (ty and tpp 

are illustrated in Figure 5.7). 
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The variation of median Dsm with the relative intensity for the base case family of generic frames 

is shown in Figure 5.13. Median Dsm values tend to increase with the relative intensity. A more 

rapid increase is observed for the flexible frames (Figure 5.13(b)), especially structures that are 

sensitive to P-delta effects (flexible frames with N = 12, 15, and 18). P-delta effects cause the 

system to experience large deformations and approach the onset of dynamic instability with an 

increase in relative intensity. As the system experiences larger deformation demands and 

approaches dynamic instability, its response tends to drift toward one side, so tpp and hence Dsm 

increases. The dispersion associated with the median Dsm values shown in Figure 5.13 is 

presented in Figure 5.14. Except for small relative intensities, the measure of dispersion 

fluctuates around 0.5 and shows no clear pattern with relative intensity. The large values of 

dispersion observed for [Sa(T1)/g]/γ ≤ 2.0 are due to the fact that in this relative intensity range 

not all ground motion records cause yielding in the systems, while some other systems 

experience very small inelastic deformation. Thus, small median values of Dsm are likely, which 

potentially increases the estimate of dispersion.  

 

The variation of median Dsm values with fundamental period is presented in Figure 5.15.  There 

is a pronounced increase of median Dsm with period and relative intensity, particularly for P-delta 

sensitive-frames. For systems in which P-delta effects are not significant, for a given 

fundamental period, there is weak dependence of median Dsm values on the number of stories. 

Thus, except for short-period and long, flexible frames, given the relative intensity, fundamental 

period rather than stiffness controls the duration of strong motion.  

5.5 SUMMARY 

This chapter focuses on the evaluation of energy demands for the base case family of generic 

frames subjected to the set of 40 LMSR-N ordinary ground motions. Global (total dissipated and 

hysteretic energy) as well as local (normalized hysteretic energy) demands are evaluated. A 

definition of strong motion duration that accounts for the interval of the response relevant for 

damage assessment is discussed. The relationship between strong motion duration and relative 

intensity is studied. A summary of specific issues addressed in this chapter is presented below: 

 

• Except for short-period frame structures and systems that are sensitive to P-delta effects, the 

median TDE per unit mass decreases with an increase in the fundamental period and it is not 
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very sensitive to the level of inelastic behavior. As the relative intensity increases, short-

period models exhibit larger median TDE per unit mass because they are subjected to a rapid 

increase in the number of inelastic cycles. This is particularly important for stiffness-

degrading systems in which hysteretic energy is dissipated throughout the duration of the 

ground motion, i.e., even for relatively small cycles at the end of the record. 

• The ratio of hysteretic energy (HE) to total dissipated energy (TDE) for generic frame 

structures can be estimated using “equivalent” SDOF systems, except for long, flexible 

frames. For the frames used in this study the median ratio HE/TDE is associated with small 

dispersions and increases with the relative intensity up to [Sa(T1)/g]/γ = 4.0. Except for P-

delta-sensitive frames, for [Sa(T1)/g]/γ > 4.0 the median ratio HE/TDE is about 0.70, which 

implies that in this relative intensity range, most of the input energy is dissipated by inelastic 

deformations.   

• The evaluation of energy demands for damage assessment necessitates the quantification of 

engineering demand parameters such as the normalized hysteretic energy, NHE, for the 

interval of the response associated with most of the damage experienced by the elements of 

the system. This issue is particularly important for stiffness-degrading systems in which a 

large amount of energy can be dissipated in small hysteretic loops without inducing 

significant additional structural damage to the component. Thus, energy demand evaluation 

based on the total energy dissipated by a component may provide a misleading picture of its 

real damage state. 

• A definition of strong motion duration that identifies the interval of the response that is most 

relevant for damage assessment is discussed. The strong motion duration tends to increase 

with fundamental period and relative intensity with a rapid increase observed for P-delta-

sensitive frames. Except for short-period and long, flexible frames, given the relative 

intensity, fundamental period rather than stiffness controls the duration of strong motion. 

• Median NHE demands over the height are larger at the top floor and at the bottom floors 

(except for the N = 3 frames in which a more uniform distribution over the height is 

observed). As is the case with the drift demands evaluated in Chapter 4, the shape of the 

median NHE profiles are a result of the criteria utilized to design the base case family of 

generic frames. For instance, NHE demands are large at the top floor because a relatively 

weak beam is used. A “weak” beam is the result of tuning the strength of the structure so that 

simultaneous yielding is attained under a parabolic load pattern.   
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TOTAL DISSIPATED ENERGY PER UNIT MASS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) [Sa(T1)/g]/γ = 0.25, 1.0, 2.0 
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(b) [Sa(T1)/g]/γ = 4.0, 6.0, 8.0 

 

Figure 5.1  Dependence on the Fundamental Period of the Median TDE per Unit Mass, All 
Frames, Various Relative Intensities 
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RATIO OF HE/TDE FOR GENERIC FRAME SYSTEMS-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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RATIO OF HE/TDE FOR GENERIC FRAME SYSTEMS-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 5.2  Median Ratio of HE to TDE, Stiff and Flexible Frames 
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DISPERSION OF (HE/TDE)-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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DISPERSION OF (HE/TDE)-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 5.3  Dispersion of the Ratio of HE to TDE, Stiff and Flexible Frames 
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RATIO OF HE/TDE FOR GENERIC FRAME SYSTEMS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 5.4  Dependence on the Fundamental Period of the Median Ratio of HE to TDE, All 

Frames, Various Relative Intensities 
 

RATIO OF HE/TDE FOR SDOF SYSTEMS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 5.5  Dependence on Period of the Median Ratio of HE to TDE, SDOF Systems, Various 

Strength-Reduction Factors (R-Factors) 
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HE/TDE FOR GENERIC FRAMES AND SDOF SYSTEMS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 5.6  Dependence on the Fundamental Period of the Median Ratio of HE/TDE for 

Generic Frames to HE/TDE for SDOF Systems, Various Relative Intensities, Stiff and Flexible 
Frames 
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DEFINITION OF STRONG MOTION DURATION
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Figure 5.7  Definition of Strong Motion Duration and Prepeak Portion of the Response 

 

RESPONSE OF PEAK-ORIENTED MODEL
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Figure 5.8  Hysteretic Response of Peak-Oriented Model Corresponding to Figure 5.7   
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TOTAL NHE PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(a) Total Normalized Hysteretic Energy 

PRE-PEAK NHE PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(b) Normalized Hysteretic Energy in the Prepeak Segment of the Response 

 
Figure 5.9  Distribution over the Height of Median Normalized Hysteretic Energy Demands,  

N = 9, T1 = 1.8 sec 
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PRE-PEAK NHE PROFILES-MEDIANS
N=3, T1=0.3, ξ=0.05, Peak-oriented model, θ=0.004, BH, K1, S1, LMSR-N 
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(a) T1 = 0.3 sec 

PRE-PEAK NHE PROFILES-MEDIANS
N=3, T1=0.6, ξ=0.05, Peak-oriented model, θ=0.017, BH, K1, S1, LMSR-N 
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(b) T1 = 0.6 sec 

 
Figure 5.10  Distribution over the Height of the Normalized Hysteretic Energy Dissipated per 

Floor in the Prepeak Segment of the Response, Various Relative Intensities, N = 3 
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PRE-PEAK NHE PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N 
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(a) T1 = 0.9 sec 

PRE-PEAK NHE PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(b) T1 = 1.8 sec 

 
Figure 5.11  Distribution over the Height of the Normalized Hysteretic Energy Dissipated per 

Floor in the Prepeak Segment of the Response, Various Relative Intensities, N = 9 
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PRE-PEAK NHE PROFILES-MEDIANS
N=18, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.033, BH, K1, S1, LMSR-N 
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(a) T1 = 1.8 sec 

PRE-PEAK NHE PROFILES-MEDIANS
N=18, T1=3.6, ξ=0.05, Peak-oriented model, θ=0.130, BH, K1, S1, LMSR-N 
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(b) T1 = 3.6 sec 

 
Figure 5.12  Distribution over the Height of the Normalized Hysteretic Energy Dissipated per 

Floor in the Prepeak Segment of the Response, Various Relative Intensities, N = 18 
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STRONG MOTION DURATION-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

STRONG MOTION DURATION-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 5.13  Median Strong Motion Duration, Stiff and Flexible Frames 
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DISPERSION OF STRONG MOTION DURATION-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

DISPERSION OF STRONG MOTION DURATION-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N

0

2

4

6

8

10

12

14

0 0.25 0.5 0.75 1
Standard Deviation of ln(Dsm)

[S
a(

T
1)

/g
]/ γ

T1=0.6, N=3

T1=1.2, N=6

T1=1.8, N=9

T1=2.4, N=12

T1=3.0, N=15

T1=3.6, N=18

 
(b) T1 = 0.2N 

 
Figure 5.14  Dispersion of Strong Motion Duration Values, Stiff and Flexible Frames 
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STRONG MOTION DURATION
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 5.15  Dependence of Median Strong Motion Duration Values on the Fundamental 

Period, Various Relative Intensities, Stiff and Flexible Frames 
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6 Strength Demand Issues Relevant for Design 

6.1 INTRODUCTION 

Displacement-based methods of design are effective as long as the system has enough 

deformation (ductility) capacity to accommodate the demands imposed by earthquakes and 

enough strength to avoid brittle failure of components that are a critical part of the load path. 

Columns are critical elements in the gravity load path, so they have to be designed with 

sufficient strength to avoid brittle failure. Thus, the evaluation of strength demands becomes an 

important issue, for it provides information relevant for the design of critical elements, e.g., 

columns in a frame. This chapter deals with the evaluation of global and local strength demands. 

Global demands include story shear strength and story overturning moments, and local demands 

include column moments.   

 

Story shear forces are relevant (particularly for reinforced concrete elements), for they relate to 

the sum of the shear forces in individual columns. Story overturning moments are important, 

since they can be translated into column compressive and tensile axial force demands, especially 

for the exterior columns of a frame. Axial loads can significantly affect the moment (and shear) 

capacity of a column, and hence, compromise the ability of a system to withstand the demands 

imposed by earthquakes. High tensile demands in columns located at the bottom story may also 

cause potential uplift problems in the foundation.   

 

For the type of frames used in this project, which are designed according to the strong-column, 

weak-beam philosophy, columns can experience large moment demands leading to potential 

hinging in a real structure, which can lead to undesirable failure mechanisms.  Columns must 

also be designed to accommodate plastic rotations, especially columns located at the base of a 

frame, which due to their boundary conditions, shear force and moment demands experience 



 

 
 

190

changes in the moment diagram leading to plastification at the bottom. Sufficient ductility must 

be provided in these cases. 

 

This chapter focuses on the study of regular frames subjected to ordinary ground motions.  

Regular frames correspond to the basic cases described in Appendix A. The main objective is to 

provide a better understanding of the strength demands imposed by earthquakes and assess 

whether the pushover analysis technique is effective in detecting potential overload in columns. 

In order to evaluate strength demands, it is important to model damping effects properly (as 

discussed in Appendix A) to ensure that both dynamic and static equilibrium are satisfied at 

every time step in the solution. 

6.2 GLOBAL STRENGTH DEMANDS 

6.2.1 Story Shear Force Demands 

Current seismic design methods are based on an estimate of the elastic story shear demand, 

which is then decreased based on a “strength reduction factor” (which is implicitly related to the 

ductility level) to estimate design story shear strengths.  Quantification of the relationship 

between design story shear strength and the dynamic story shear demands becomes a relevant 

design issue because of the amplification of the static story shear strength due to redistribution of 

forces in the inelastic range of the response. In this context, story shear is defined as the sum of 

the shear forces experienced by columns in a story.  In a static analysis it is equivalent to the sum 

of the horizontal loads applied to the building above the story under consideration.   

 

Figure 6.1 presents information on the variation of median normalized maximum base shear 

demands with relative intensity, fundamental period, and number of stories.  Maximum dynamic 

base shear forces are normalized by the static shear forces computed from a pushover analysis. 

The static shear forces are calculated at a global (roof) drift equal to the median global drift, 

given the relative intensity, corresponding to the median maximum dynamic base shear, given 

the same relative intensity. The median ratio of the dynamic base shear demands to the static 

base shear predicted by the pushover analysis increases with the relative intensity. The one 

exception is the short-period model in which higher modes are not significant and the ratio is 

independent of the relative intensity.  For T1 ≥ 0.6 sec, given the relative intensity, the dynamic 
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amplification of static base shear forces is not dependent on the fundamental period except for 

models that are sensitive to P-delta effects. Furthermore, given the fundamental period, models 

with different number of stories experience similar dynamic base shear amplifications. 

 

In the inelastic range, differences between the dynamic story shears and the static one are due to 

the redistribution of forces that occur during a dynamic analysis. A displacement-controlled 

pushover analysis is unable to capture this redistribution, since the applied load pattern is fixed 

regardless of the level of deformation.  

6.2.2 Story Overturning Moments 

Story overturning moments (OTMs) discussed in this section correspond to the story overturning 

moments obtained from the axial force demands experienced by the columns in a given story, 

and do not include the moments in the columns. This definition of story overturning moments 

allows a direct comparison with the simplified story overturning moment capacity obtained from 

Σ2Mpi/L of the shear forces experienced by the beams times the distance between the two 

columns in the generic single-bay frames. For the base case of the family of regular single-bay 

frames used in this study, simultaneous plastic hinges occurs at the end of the beams, so Σ2Mpi/L 

is a reasonable estimate of the accumulated axial forces due to the maximum beam shear forces 

when simultaneous yielding occurs and strain-hardening and redistribution effects are ignored.   

 

An important issue relevant for design is to determine whether the simplified Σ2Mpi/L estimate 

of maximum column axial loads needs to be de-amplified or amplified.  Arguments in favor of 

de-amplification factors suggest that due to dynamic effects simultaneous yielding in all stories 

is unlikely to occur and strain-hardening effects are counteracted by the redistribution of forces, 

so there is no need for an amplification factor. However, for the basic regular frames used in this 

study, which have their story shear strengths tuned to a parabolic load pattern, time history 

analyses disclosed that simultaneous yielding is likely to occur, and story overturning moments 

are larger than the ones predicted by the Σ2Mpi/L estimate. 

 

Median story overturning moments are shown in Figure 6.2 for frames with N = 9, T1 = 0.9 sec 

and 1.8 sec along with story overturning moments computed based on the sum of plastic 
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moments in beams. Story OTM values are normalized by the design base shear strength (Vy = 

γW) multiplied by the total height of the frame, H. Thus, the normalized value at the first-story 

indicates the location of the resultant of the lateral loads corresponding to the design base shear 

strength (lever arm) that would produce the same overturning moment at the base. It can be seen 

that for the T1 = 0.9 sec frame, for [Sa(T1)/g]/γ ≥ 2, median story OTM demands are greater than 

or equal to the overturning moments based on the sum of plastic moments in beams.  For 

[Sa(T1)/g]/γ = 2 and 4,  the T1 = 1.8 sec frame exhibits story OTM amplifications with respect to 

Σ2Mpi/L that occur at the top and mid-stories whereas small de-amplifications are observed at the 

bottom stories due to the presence of significant higher modes in the response. However, for 

[Sa(T1)/g]/γ ≥ 6 an amplification of median story OTMs with respect to Σ2Mpi/L is observed over 

the full height of the structure. 

 

Figure 6.3 presents data on the OTM amplification and de-amplification with respect to Σ2Mpi/L 

at the base of the frames and its variation with the relative intensity level, period, and number of 

stories. Figure 6.3(a) depicts median results for the T1 = 0.1N frames and Figure 6.3(b) for the T1 

= 0.2N frames. The amplification of OTM at the base with respect to Σ2Mpi/L tends to increase 

with the relative intensity and decrease with an increase in the fundamental period. For instance, 

when [Sa(T1)/g]/γ is relatively small and T1 is long, the maximum OTM at the base can be less 

than the one computed based on Σ2Mpi/L. This behavior is observed because for small relative 

intensities, higher modes translates into redistribution of forces that cause floor loads to act in 

opposite directions, hence reducing the maximum story overturning moment at the base with 

respect to Σ2Mpi/L.  

 

The largest amplifications of dynamic OTM at the base with respect to Σ2Mpi/L are observed in 

the short-period range (T1 = 0.3 sec) because simultaneous yielding occurs and this type of frame 

experiences larger story ductility demands and therefore greater strain-hardening effects.   

6.3 LOCAL STRENGTH DEMANDS 

6.3.1 Moments at the Ends of Columns 

Current seismic design practice establishes that at any given connection the sum of the moment 

capacity of the columns should be greater than the sum of the moment capacity of the beams (or 
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panel zone in the case of steel, AISC Seismic Provisions, 1997). For reinforced concrete 

members framing into a joint, ΣMc > (6/5)ΣMg (ACI 318-99, Section 21.4.2.2), where ΣMc is the 

sum of the moment capacity of the columns framing into the joint and ΣMg is the sum of the 

moment capacity of the beams. 

 

The regular frames used in this study are designed so that columns are infinitely strong (except at 

the bottom of the first story), which permits a direct assessment of the required strength to avoid 

plastic hinging in columns. Figure 6.4 shows the maximum “strong column factor” (SCF) over 

the height for the N = 9 frames. The maximum SCF, (2Mc/Mp,b)s,max, is the ratio of the maximum 

moment demand of a column in a connection normalized by one half the plastic moment of the 

beam framing into the joint (a factor of one half is used to replicate the condition of an interior 

joint [except at the top floor where a factor of one is utilized]). In the range of primary interest, 

[Sa(T1)/g]/γ up to about 8, median SCFs in the order of 3 or more are obtained. Thus, for frames 

designed according to the strong-column, weak-beam philosophy, the potential for column 

plastic hinging exists even when the sum of the moment capacity of the columns framing into a 

joint is as high as 3 to 4 times the sum of the moment capacity of the beams.  

 

Figure 6.5 presents median values of the maximum SCF over the height for all frames for 

various relative intensity levels. It can be observed that there is a linear increase in the median 

maximum SCF with the intensity level, which is also observed in Figure 6.5 for the N = 9 

frames. Except for the short-period frame (T1 = 0.3 sec), for any given relative intensity, the 

median maximum SCF increases with the value of the fundamental period due to the presence of 

higher mode effects in the response (this issue will be further discussed in the following 

paragraphs). Given the period and the relative intensity level, differences in the number of stories 

do not have a significant effect on the median maximum SCF, so its value is dominated by the 

fundamental period rather than the number of stories.   

 

The distribution of the maximum SCF over the height is important, for it provides insight into 

the mechanism that causes elastic columns to experience such large moment demands. Figures 

6.6–6.9 show median maximum SCF profiles for frames with T1 = 0.6 sec, 1.2 sec, and 1.8 sec. It 

can be seen that the maximum SCF occurs near the top of the frame for small levels of inelastic 

behavior, but as the relative intensity level increases, the distribution over the height of SCFs is 
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rather uniform. It is important to note that even for [Sa(T1)/g]/γ  = 1, there are median maximum 

SCF greater than one for frames with N = 9, 12, 15 and 18.  For [Sa(T1)/g]/γ  = 2 all systems 

show median maximum SCF greater than one. For a given intensity level and a given period, 

even when the maximum SCF over the height is similar for both the stiff and the flexible frame, 

the distribution of SCFs over the height is more uniform for the flexible frame because the stiffer 

frame (more stories) experiences larger higher mode effects.  

 

In order to understand the seismic behavior that leads to large values of SCF in the family of 

regular frames used in this study, the N = 9, T1 = 1.8 sec frame subjected to the LP89agw ground 

motion is used for illustration. The intensity level of interest is [Sa(T1)/g]/γ  = 6 and the 

maximum SCF factor, which occurs at the 4th floor level is 3.24.  Figure 6.10 depicts the 

variation with time of the 4th floor SCF for this case. In several instances during the time history 

SCFs greater than 2 are observed and the maximum (3.24) occurs at approximately 15 sec.  

Figure 6.11 shows the deformed shape of the frame at 15 sec, normalized by the roof 

displacement, as well as the deformed shape from a pushover analysis (based on a parabolic load 

pattern) at the same roof drift angle.  The deformed shape from the time history analysis at 15 

sec shows global bending which is not dominated by the first mode. At this instant in time the 

response is a combination of the first and second modes. Thus, the second mode causes global 

bending that leads to redistribution of forces, and hence, the movement of the point of inflection 

in the columns causing some of them to bend in a single curvature mode as observed in Figure 

6.12. Figure 6.12 shows the maximum moments at the end of the 3rd and 4th story columns 

normalized by the plastic moment of the beam at the 4th floor at t = 15 sec. Both the 3rd and 4th 

story columns are in single curvature (moments at top and bottom have equal signs) due to the 

presence of the second mode in the response, causing large moment demands at the ends of the 

column. These observations are in agreement with results presented in Nakashima and 

Sawaizumi (2002) and Bondy (1996). 

 

Both Figure 6.11 and Figure 6.12 show the results from a pushover analysis in which the roof 

drift angle is the same as the roof drift angle the structure experiences under the LP89agw 

ground motion at 15 sec. Neither the deformed shape nor the column moment diagrams from the 

pushover analysis are able to capture the behavior of the frame at the given roof drift angle. This 

result is not surprising because the displacement-controlled pushover analysis is based on a fixed 
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load pattern, and the effect of the second mode in the response and the corresponding 

redistribution of forces are not captured.   

6.3.2 Moments at the Midheights of Columns 

Moments at the midheights of columns are important in steel structures due to the presence of 

column splices near the middle of a column. For the case of reinforced concrete structures, they 

are important when precast concrete columns are used and also at rebar splice locations in 

conventional reinforced concrete columns. Section 6.3.1 shows that the effect of the second 

mode and redistribution of forces cause the inflection point in columns to move from near the 

midheight of a column (for elastic behavior) to one of its ends, and in some cases, causes the 

column to undergo single curvature.  Therefore, potentially large moment demands are expected 

at the midheights of columns, which, combined with the high column axial force demands due to 

OTM (Section 6.2.2), can cause splices to experience large states of stress.  

 

Figures 6.13–6.16 show median profiles of the maximum moment at the center of a column, 

Mc,mid, normalized by one half the average of the plastic moments of the beams in the floors that 

bound that particular story (for the bottom story it is normalized by one half the plastic moment 

of the second floor beam). As in the case of the SCFs, the factor of one half is used to replicate 

the condition of an interior joint. For the basic family of regular frames used in this study, values 

of Mp of the beams that bound a story are similar, since the strength of the system is tuned to a 

parabolic load pattern. Results are shown for frames with T1 = 0.6 sec, 1.2 sec, and 1.8 sec. and 

different levels of inelastic behavior. Normalized Mc,mid values increase strongly with the relative 

intensity level, and their distribution over the height is similar to the one observed for the 

maximum SCFs (Figures 6.6-6.9) especially at levels where both quantities (SCF and the 

normalized Mc,mid) are maximum. This last observation is expected, since there is a correlation 

between the maximum column moment at one end (which is used to compute the SCF) and the 

maximum moment at the midheight of the column due to changes in the moment diagram, which 

in some cases exhibits a condition of single curvature (Figure 6.12). 

 

The results shown in Figures 6.13–6.16 demonstrate that for the type of regular frames used in 

this study, which are subjected to ordinary ground motions, the assumption of small column 
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moments near the center of the column is not valid once the system undergoes large levels of 

inelastic deformation. The moment diagram of a column changes as forces redistribute, forcing 

the point of inflection of some columns to move toward one end and in some cases cause the 

column to bend in single curvature.     

6.3.3 Plastic Rotations at the Bottoms of the First-Story Columns 

The objective of this section is to provide statistical information on the magnitude of column 

plastic rotation demands at the bottom of the first story and the uncertainties associated with 

them for the family of generic frames used in this study.  Basic statistical data on maximum 

plastic rotation demands at the bottoms of the first-story columns are presented in Figures 6.17 

and 6.18 for the T1 = 0.1N and T1 = 0.2N frames, respectively.  The maximum plastic rotation at 

the bottom of the columns, θpc1,max, is normalized by the column yield rotation at the base. It can 

be observed that for a given relative intensity level, median normalized θpc1,max demands increase 

with the fundamental period of the system.  For the case of P-delta-sensitive systems (T1 = 0.2N 

and N = 12, 15, and 18) a small increase in intensity causes a large increase in normalized 

θpc1,max demands because of the amplification of the first-story drift. In addition, the median 

values shown in Figures 6.17(a) and 6.18(a) suggest that the bases of the columns are expected to 

undergo severe levels of inelastic deformation, so they must be designed with sufficient ductility 

capacity. It is important to note that the dispersion associated with the normalized θpc1,max 

demands is large (greater than 0.5), especially for small relative intensity levels due to the fact 

that in this range, the first-story columns remain elastic (zero plastic rotation) or experience 

small levels of inelastic behavior when the model is subjected to some of the ground motion 

records.   

 

A comprehensive assessment of median normalized θpc1,max demands can be obtained from the 

data presented in Figure 6.19. It can be seen that for a given relative intensity level, the median 

normalized θpc1,max demands increase with the value of the fundamental period, except in the 

short-period range where larger demands are observed. The fact that the short-period frame (T1 = 

0.3 sec) experiences large demands is in agreement with observations presented in Chapter 4 that 

for a given relative intensity the short-period frame undergoes larger ductility demands. Another 

relevant observation is that given the period, taller structures experience larger median 
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normalized θpc1,max demands, which is also in agreement with results discussed in Chapter 4 

where the same behavior was observed for the maximum story ductility demands (Figure 4.38). 

In these cases, higher mode effects cause the taller structures to experience larger levels of 

inelastic behavior.   

6.4 SUMMARY 

The results presented in this section are for nondeteriorating regular moment-resisting frames, 

modeled based on centerline dimensions, whose story strengths are tuned to a parabolic load 

pattern and which are subjected to ordinary ground motions. The main emphasis is on strength 

demands that could jeopardize the integrity of the columns in frames, leading to potential brittle 

modes of failure. A summary of the main conclusion drawn from this chapter is presented next: 

• For inelastic structures, amplification of the maximum dynamic base shear force with respect 

to the static base shear strength occurs because of redistribution of loads during a dynamic 

analysis and tends to increase with the relative intensity. The one exception is the short-

period model (T1 = 0.3 sec) in which higher mode effects are not significant and the ratio of 

dynamic to static shear force is weakly dependent on the relative intensity. For T1 > 0.6 sec, 

given the relative intensity, the dynamic amplification of static base shear forces is weakly 

dependent on the fundamental period except for flexible frames sensitive to P-delta effects. 

Moreover, given the fundamental period, frames with different number of stories experience 

similar dynamic base shear amplifications. For the range of inelastic behavior of interest in 

this study, in which ductility levels are not so large that they cause significant cyclic 

deterioration in the components of the structural system, amplification of median static story 

strength demands in the order of 50% can be expected. 

• For regular frame structures with story shear strengths tuned to a code-specified load pattern, 

simultaneous yielding in all stories is likely to occur during their nonlinear dynamic 

response, and a reduction of the story overturning moments based on Σ2Mpi/L is not justified, 

especially at medium and large relative intensity levels. 

• The amplification of OTM at the base with respect to Σ2Mpi/L tends to increase with the 

relative intensity and decrease with the fundamental period. This behavior is observed 

because as the period becomes longer, higher modes translate into redistribution of forces 
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that cause floor loads to act in opposite directions, hence reducing the maximum story 

overturning moment at the base with respect to Σ2Mpi/L.  

• The largest amplifications of dynamic OTM at the base with respect to Σ2Mpi/L are observed 

in the short-period range (T1 = 0.3 sec) because simultaneous yielding occurs and this type of 

frame experiences larger story ductility demands and therefore greater strain-hardening 

effects.   

• Higher modes (particularly the second mode) and dynamic redistribution of forces cause the 

point of inflection in some columns to move from near the midheight of a column (for elastic 

behavior) to one of its ends, which in some cases produces a condition of single curvature in 

a column. This behavior is not appropriately captured by a pushover analysis based on a 

predefined load pattern since the effects of higher modes and dynamic redistribution are not 

incorporated. 

• Large moments at the end of columns translate into strong column factors (SCFs) that 

increase almost linearly with the level of inelastic behavior. Except for the short-period 

frame, T1 = 0.3 sec, which exhibits larger SCFs, SCFs increase with increasing fundamental 

period. Median strong column factors of 3 and larger are observed in the range of intensity 

levels of interest for nondeteriorating frames. Thus, the potential of plastic hinging in 

columns is high for regular frames designed according to the strong-column, weak-beam 

requirements of current code provisions, which in the United States require strong column 

factors greater than or equal to 1.0 for steel, and 1.2 for reinforced concrete frames. 

• For low levels of inelastic behavior and frames with N ≥ 6, maximum SCFs occur at the top 

stories, whereas at high levels of inelastic behavior maximum SCFs remain rather constant 

over the height. 

• The behavior pattern that leads to large SCF in the dynamic response of regular frames also 

leads to large moments at the midheights of columns. These large moments are important 

especially for steel structures where splices are located near the center of columns in a story. 

A design based on the assumption of a point of inflection near the midheight of the column is 

not appropriate once the structure experiences large levels of inelastic behavior. 

• The distribution over the height of normalized maximum moments at the midheight of a 

column follows patterns similar to those of the maximum SCFs, especially in portions of the 

structure where SCFs are the largest. 
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• Plastic rotations at the bases of the first-story columns can be very large. These large 

demands are due to the amplification of displacements experienced by short-period structures 

and the concentration of the amplification of the maximum story ductility at the bottom story 

due to structure P-delta effects for long-period structures. 

• Median normalized θpc1,max demands tend to increase linearly with the level of inelastic 

behavior except for the T1 = 0.3 sec and the P-delta-sensitive frames where they tend to 

increase at a higher rate.  For T1 ≥ 0.6 sec median θpc1,max demands increase with increasing 

period, and for a fixed period taller frames experience larger demands due to the presence of 

higher mode effects. 

• Dispersions in normalized θpc1,max are large, in the order of 0.5 or more especially for small 

intensity levels where some ordinary records do not cause the first-story columns to undergo 

inelastic deformations, and for P-delta-sensitive frames where the dispersion grows once the 

systems approach the onset of dynamic instability.  
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NORMALIZED MAXIMUM BASE SHEAR FORCE
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 6.1  Dynamic Base Shear Amplification, All Frames, Various Relative Intensities 
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MAXIMUM STORY OTM PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N 
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(a) T1 = 0.9 sec 

MAXIMUM STORY OTM PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(b) T1 = 1.8 sec 

Figure 6.2  Normalized Maximum Story Overturning Moments, N = 9, Various Relative 
Intensities 
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NORMALIZED MAXIMUM OTM AT BASE-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N

0

0.25

0.5

0.75

1

1.25

0 5 10 15 20
Number of stories, N

[O
T

M
s1

,m
ax

/( γ
W

)H
]

[Sa(T1)/g]/  =2.0 [Sa(T1)/g]/  =4.0

[Sa(T1)/g]/  =6.0 [Sa(T1)/g]/  =8.0

OTM Based on Sum 2Mp

γ γ

γ γ

 

(a) T1 = 0.1N 

NORMALIZED MAXIMUM OTM AT BASE-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

Figure 6.3  Normalized Maximum OTM at the Base, Stiff and Flexible Frames, Various Stiffnesses 



 

 
 

203

MAXIMUM STRONG COLUMN FACTOR
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

MAXIMUM STRONG COLUMN FACTOR
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

Figure 6.4  Maximum Strong  Column Factor over the Height, N = 9 
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MAXIMUM STRONG COLUMN FACTOR
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 6.5 Maximum Strong Column Factor over the Height, All Frames, Various Relative 
Intensities 
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MAX. STRONG COLUMN FACTOR PROFILES-MEDIANS
[Sa(T1)/g]/γ = 1.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.6  Distribution of Maximum Strong  Column Factors over the Height,    [Sa(T1)/g]/γ = 1.0 
 

MAX. STRONG COLUMN FACTOR PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.7  Distribution of Maximum Strong Column Factors over the Height,   [Sa(T1)/g]/γ = 2.0 
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MAX. STRONG COLUMN FACTOR PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.8  Distribution of Maximum Strong Column Factors over the Height,   [Sa(T1)/g]/γ = 4.0 

 
MAX. STRONG COLUMN FACTOR PROFILES-MEDIANS

[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.9  Distribution of Maximum Strong Column Factors over the Height,  

[Sa(T1)/g]/γ = 8.0 
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4th FLOOR SCF TIME HISTORY
N=9, T1=1.8, [Sa(T1)/g]/γ=6, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LP89agw
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Figure 6.10  4th Floor SCF Time History, N = 9, T1 = 1.8 sec, [Sa(T1)/g]/γ = 6.0, LP89agw 

NORMALIZED DISPLACEMENT PROFILE
N=9, T1=1.8, [Sa(T1)/g]/γ=6, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LP89agw
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Figure 6.11  Normalized Displacement Profile at t = 15 sec, N = 9, T1 = 1.8 sec, [Sa(T1)/g]/γ = 6.0, 
LP89agw 
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4th STORY COLUMN MOMENT DIAGRAM
N=9, T1=1.8, [Sa(T1)/g]/γ=6, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LP89agw
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(a) 4th Story Column 

3rd STORY COLUMN MOMENT DIAGRAM
N=9, T1=1.8, [Sa(T1)/g]/γ=6, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LP89agw
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(b) 3rd Story Column 

Figure 6.12  Normalized Column Moment Diagrams for a 4th and 3rd Story Column at 
 t = 15 sec, N = 9, T1 = 1.8 sec, [Sa(T1)/g]/γ = 6.0, LP89agw 
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COLUMN MOMENTS AT MIDHEIGHT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 1.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.13  Distribution over the Height of Normalized Maximum Column Moments at 
Midheight, [Sa(T1)/g]/γ = 1.0 

 

COLUMN MOMENTS AT MIDHEIGHT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 2.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.14  Distribution over the Height of Normalized Maximum Column Moments at 
Midheight, [Sa(T1)/g]/γ = 2.0 
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COLUMN MOMENTS AT MIDHEIGHT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 4.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.15  Distribution over the Height of Normalized Maximum Column Moments at 
Midheight, [Sa(T1)/g]/γ = 4.0 

COLUMN MOMENTS AT MIDHEIGHT PROFILES-MEDIANS
[Sa(T1)/g]/γ = 8.0, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N 
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Figure 6.16  Distribution over the Height of Normalized Maximum Column Moments at 
Midheight, [Sa(T1)/g]/γ = 8.0 
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NORMALIZED MAX. COLUMN PLASTIC ROTATIONS-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) Median Values 

DISPERSION OF MAX. COLUMN PLASTIC ROTATION-T1=0.1N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) Dispersion 

Figure 6.17  Normalized Maximum Column Plastic Rotation, T1 = 0.1N, Various Relative 
Intensities 
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NORMALIZED MAX. COLUMN PLASTIC ROTATIONS-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(a) Median Values 

DISPERSION OF MAX. COLUMN PLASTIC ROTATION-T1=0.2N
Based on 84th percentile, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) Dispersion 

Figure 6.18  Normalized Maximum Column Plastic Rotation, T1 = 0.2N, Various Relative 
Intensities 
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NORMALIZED MAXIUM COLUMN PLASTIC ROTATIONS
Median values, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N

0

2

4

6

8

10

12

14

16

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7
Fundamental Period, T1

θ p
c1

,m
ax

/ θ
yc

1

T1=0.1N, [Sa(T1)/g]/  =2.0

T1=0.1N, [Sa(T1)/g]/  =4.0

T1=0.1N, [Sa(T1)/g]/  =6.0

T1=0.1N, [Sa(T1)/g]/  =8.0

T1=0.2N, [Sa(T1)/g]/  =2.0

T1=0.2N, [Sa(T1)/g]/  =4.0

T1=0.2N, [Sa(T1)/g]/  =6.0

T1=0.2N, [Sa(T1)/g]/  =8.0

γ

γ

γ

γ

γ

γ

γ

γ

 
Figure 6.19  Normalized Maximum Column Plastic Rotation at the Base, All Frames, Various 

Relative Intensities 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 215

7 Seismic Demands for Variations in Structural 
Properties 

7.1 INTRODUCTION 

Previous chapters deal with the evaluation of seismic demands for the base case family of 

generic frame structures (see Section 2.4.1) subjected to the LMSR-N set of ordinary ground 

motions. The objective of this chapter is to study the sensitivity of engineering demand 

parameters and patterns of behavior to variations in structural properties, with respect to the base 

case. Emphasis is placed on the 3-, 9- and 18-story generic frames.  The structural properties 

addressed include: 

• Hysteretic behavior, e.g., peak-oriented versus pinching and bilinear; 

• Strain hardening in the moment-rotation relationship at the component level, e.g., postyield 

slope equal to 0% versus 3% of the initial slope; 

• Structure P-delta effects; 

• Additional strength and stiffness provided by elements that do not form part of the moment-

resisting frame; 

• Story strength distribution based on different design load patterns, e.g., parabolic versus 

triangular, uniform, and story shear strength including random overstrength; 

• Effects of gravity load on the formation of plastic hinges; and 

• Mechanism, e.g., beam-hinge models versus column-hinge models 

 

7.2 HYSTERETIC BEHAVIOR 

Peak-oriented hysteretic behavior is used to model the moment-rotation relationship at the beam 

ends and at the bottom of the first-story columns for the base case family of generic frame 

structures. In this section, the sensitivity of roof drift and maximum story drift angles over the 
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height is studied for two additional types of hysteretic models: pinching and bilinear. The general 

characteristics of the load-deformation behavior of the peak-oriented, pinching and bilinear 

models are illustrated in Figure 2.2. Unless otherwise specified, a pinching model with κd = κf = 

0.25 is utilized and is denoted as “pinching” in the graphs (the parameters κd and κf, which 

control the amount of stiffness degradation in the pinching model, are also defined in Figure 2.2). 

A value of 0.25 is chosen because it is representative of severe pinching in the response. Figure 

7.1 shows the response of pinching models with κd = κf = 0.25 and κd = κf = 0.50. In all three 

hysteretic models, 3% strain hardening is used. 

 

In general, models with severe pinching (κd = κf = 0.25) exhibit normalized maximum roof drift 

demands larger than those observed for the case of models with peak-oriented and bilinear 

hysteretic behavior, as illustrated in Figures 7.2–7.4. It appears that severe stiffness degradation 

causes the system to become “softer,” and hence, experience larger deformation demands. It is 

important to note that models with peak-oriented hysteretic behavior, which also has stiffness 

degradation, exhibit maximum roof drift demands comparable to (and in some cases smaller 

than) those observed for the bilinear model (except for T1 = 0.3 sec in which demands for the 

peak-oriented model are larger than those experienced by the bilinear model). These 

observations indicate that for medium to long-period structures limited stiffness degradation (i.e., 

peak-oriented case) can in some cases “improve” the seismic behavior of regular frame 

structures. However, when the amount of stiffness degradation is significant, it becomes 

detrimental to the behavior of the system.   

 

For the frame structure with N = 18 and T1 = 3.6 sec, structure P-delta effects cause the system 

with bilinear hysteretic behavior to experience dynamic instability at a relative intensity level 

smaller than that of the systems with peak-oriented and pinching hysteretic behavior (Figure 

7.4(b)). This phenomenon is attributed to the fact that the response of the system with bilinear 

hysteretic behavior spends more time on the envelope of the moment-rotation relationship of its 

components, which added to the P-delta effect produces an effective negative tangent stiffness in 

P-delta-sensitive structures.   

 

The variation of the median normalized maximum roof drift demand with the fundamental 

period of the frame is presented in Figure 7.5 for both the stiff (T1 = 0.1N) and flexible (T1 = 
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0.2N) frames and a relative intensity, [Sa(T1)/g]/γ = 4.0. The observations made in the previous 

paragraphs are applicable for the ranges of period illustrated in the plots. Models with pinching 

hysteretic behavior exhibit deformation demands larger than those observed for the peak-

oriented and bilinear models, especially in the short-period range (T1 = 0.3 sec).   

 

Figure 7.6 presents median ratios of maximum inelastic to elastic displacement for SDOF 

systems with a strength reduction factor, R, equal to 4.0, 3% strain hardening, and bilinear, peak-

oriented and pinching (κd = κf = 0.25) hysteretic behavior. For the nonlinear time history 

analyses, the effect of P-delta is modeled by adding a negative slope in parallel to the hysteretic 

load-deformation response. The absolute value of the P-delta slope is assumed to be given by the 

elastic first-story stability coefficient of the 0.1N (Figure 7.6(a)) and 0.2N (Figure 7.6(b)) frame 

structures (values for this coefficient are presented in Figure A.4). A comparison between Figure 

7.5 and 7.6 shows that except for T1 = 0.3 sec, the difference in inelastic displacement demands 

between the pinching model and the other two models are more noticeable in the MDOF domain. 

For long-period SDOF systems (T > 1.8 sec), the response of the bilinear model becomes P-delta 

sensitive while the response of the peak-oriented and pinching models is stable.  Dynamic 

instability of the bilinear SDOF model occurs at T = 3.25 sec, which is close to the period at 

which instability occurs for the N = 18, T1 = 3.6 sec frame structure (see Figure 7.5(b)). 

 

Figure 7.7 illustrates the dependence of median normalized maximum story drift angles over the 

height on the fundamental period for the stiff and flexible frames. Differences between systems 

with various types of hysteretic models follow patterns similar to the ones observed for the 

normalized maximum roof drift angles. Thus, the ratio of the maximum story drift angle over the 

height to the maximum roof drift angle is only weakly dependent on the type of hysteretic model, 

except for cases in which the response of frame structures is sensitive to P-delta effects, as can be 

seen in Figure 7.8.   

 

The results presented in this section suggest that the maximum roof and story drift responses are 

larger for systems with hysteretic behavior that exhibits severe stiffness degradation such as the 

pinching model with κd = κf = 0.25. Unless severe stiffness degradation is assumed, differences 

between the pinching and peak-oriented models diminish as shown in Figure 7.9. This figure 

shows representative results for both stiff and flexible frames with hysteretic behavior 
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represented by bilinear, peak-oriented, and pinching (κd = κf = 0.25) models as well as a 

pinching model with κd = κf = 0.50 (denoted in the graphs as “pinching (2)”). The maximum roof 

drift demands are similar between the pinching (2) (represented by the filled squares in the plot) 

and peak-oriented models.  The presented results are for a relative intensity of [Sa(T1)/g]/γ = 4.0, 

but they are representative of the results obtained for different relative intensities and frame 

structures with N = 3, 9, and 18 stories.   

7.3 STRAIN HARDENING 

The base case family of generic structures used in this study has hysteretic behavior represented 

by a peak-oriented moment-rotation relationships with 3% strain hardening.  In this section, 

results for models that have no strain hardening are compared to base case results to assess the 

sensitivity to variations in strain hardening. For this purpose, representative results for the 9-

story frames with T1 = 0.9 sec and 1.8 sec are discussed.   

 

The effect of strain hardening in the nonlinear static response of the 9-story frames is illustrated 

in Figure 7.10. Global pushover curves are presented in the normalized domain, using the yield 

values of the system without P-delta effects for normalization (yield values can be obtained from 

the information presented in Tables A.11 and A.12).  Because of P-delta, the absence of strain 

hardening in the moment-rotation relationship of components leads to a negative postyield 

stiffness which is small for the T = 0.9 sec frame (Figure 7.10(a)) and substantial for the T = 1.8 

sec frame (Figure 7.10(b)). The postyield behavior of the models presented in Figure 7.10 helps 

in understanding the nonlinear dynamic response of these systems when subjected to ordinary 

ground motions, as discussed in the following paragraph. 

 

Median normalized maximum roof drift angles are shown in Figure 7.11 for both the N = 9, T1 = 

0.9 sec, and 1.8 sec frames with and without strain hardening. The general observation is that in 

both cases the absence of strain hardening does not have a pronounced influence on the behavior 

of the systems except for highly inelastic systems ([Sa(T1)/g]/γ > 6.0). The increase in the 

absolute value of the negative slope due to the absence of strain hardening (Figure 7.10(b)) 

causes the nonlinear response of the N = 9, T1 = 1.8 sec frame to approach dynamic instability at 
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a relative intensity of [Sa(T1)/g]/γ = 9.0 as opposed to [Sa(T1)/g]/γ = 14 for the case of the system 

with strain hardening.      

7.4 STRUCTURE P-DELTA EFFECTS 

When P-delta effects cause the nonlinear static response of a system to have a negative postyield 

slope, amplification of displacements occurs and the potential for dynamic instability exists 

(Bernal, 1987; Gupta and Krawinkler, 2000). The objective of this section is to quantify the 

effect of structure P-delta on the nonlinear response of regular frames.   

 

In this study, structure P-delta effects are quantified by the elastic first-story stability coefficient, 

which is defined as the ratio of the “equivalent P-delta” shear (Pδ/h) to the first-order shear in the 

elastic portion of the response. Values for the elastic first-story stability coefficient of the base 

case frame structures are given in Figure A.4. A discussion on how these values are obtained is 

presented in Section A.3.   

 

Figures 7.12 and 7.13 show the global and first-story pushover curves of an 18 story frame with 

T1 = 1.8 sec and 3.6 sec, respectively. These systems have a first-story elastic stability coefficient 

of 0.033 and 0.130, respectively. It can be seen in Figure 7.12 that both the global (roof) and 

first-story nonlinear static responses of the T1 = 1.8 sec frame have a positive postyield stiffness 

even when structure P-delta effects are included in the analysis. It is important to note that in the 

first story (Figure 7.12(b)) the postyield slope (0.009Ki) is not equal to the slope without P-delta 

(0.038Ki) minus a slope based on the first-story stability coefficient (0.033Ki). This behavior 

occurs because of the changes in deflected shapes that the system experiences in the postyield 

portion of the response (Aydinoglu, 2001). The elastic first-story stability coefficient is based on 

a deflected shape that is close to a straight line, so it is not adequate to accurately estimate the 

stiffness in the postyield portion of the response if changes in deflected shape occur.  The same 

observation applies for the T1 = 3.6 sec frame (Figure 7.13) with the difference that in this case 

the P-delta effects are large enough to overcome the strain hardening of the components and 

cause the postyield stiffness of the pushover curves to be negative.   

 

An understanding of the change in postyield stiffness due to the presence of P-delta effects can 

be obtained by interpreting the displacement profiles shown in Figure 7.14.  For both the T1 = 
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1.8 sec and the 3.6 sec frame structures, the elastic deflected shapes are close to a straight line. 

The T1 = 1.8 sec frame (Figure 7.14(a)) exhibits changes in deflected shape with an increase in 

the roof displacement without a concentration of story drifts at any level over the height of the 

frame structure. On the other hand, for the case of the T1 = 3.6 sec frame (Figure 7.14(b)), once 

the structure yields, there is a concentration of maximum story drifts at the bottom stories due to 

the presence of P-delta effects. As the roof displacement increases, the bottom story drift values 

increase at a rapid rate until dynamic instability is approached (see curve for δr/δyr = 3.0 in 

Figure 7.14(b)). At this point the system is no longer able to sustain its own gravity loads. Thus, 

at the first-story level, the difference in slopes between the cases with and without P-delta should 

be closer to the elastic first-story stability coefficient for the T1 = 1.8 sec frame because its 

deflected shape in the postyield portion of the response is relatively close to a straight line.  

 

The effect of structure P-delta on the nonlinear dynamic response of the18-story frames is 

illustrated in Figures 7.15 and 7.16. Median values for the normalized maximum roof drift angle 

and the normalized maximum story drift angle over the height are shown for cases with and 

without structure P-delta effects. Figures 7.15(a) and 7.16(a) show that the dynamic response of 

the T1 = 1.8 sec frame is only weakly dependent on structure P-delta. However, the dynamic 

behavior of the T1 = 3.6 sec frame (Figures 7.15(b) and 7.16(b)) is greatly influenced by 

structure P-delta effects. In this case, when P-delta is included in the analysis, dynamic 

instability is approached at a relative intensity approximately equal to 4.0. The T1 = 3.6 sec 

model without P-delta effects and the T1 = 1.8 sec models do not experience dynamic instability 

because the postyield slopes from the pushover analyses are positive. It is important to note that 

cyclic deterioration effects (which are not addressed in this study) might lead systems to 

experience global “collapse” even for structures that exhibit a positive postyield slope in the 

pushover analysis. 

 

Figure 7.17 shows a comparison between the median incremental dynamic analysis curve for the 

N = 18, T1 = 3.6 sec structure with a strength of γ = 0.10 and its global pushover curve. In order 

to compare both curves, the base shear from the global pushover analysis is normalized by 70% 

of the total mass of the system. This value of mass is close to the effective modal mass 

corresponding to the first mode, which is equal to 77% of the total mass. In the elastic range the 

correlation between the normalized base shear and Sa(T1) is good but not perfect due to factors 
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such as the presence of higher modes in the response. The incremental dynamic analysis curve 

shows that in the median, the onset of dynamic instability is approached at a maximum roof drift 

angle that approximately coincides with the roof drift angle at “collapse” given by the global 

pushover curve. For this case, the global pushover curve adequately identifies the drift level at 

which dynamic instability will occur. 

7.5 ADDITIONAL STRENGTH AND STIFFNESS PROVIDED BY ELEMENTS 
THAT DO NOT FORM PART OF THE MOMENT-RESISTING FRAME 

As discussed in Section 7.4, when structure P-delta effects cause the postyield slope of the global 

pushover analysis to be negative, there is a potential for dynamic instability in the response. 

Analytical models, such as those represented by the base case family of generic frame structures 

used in this study neglect the contribution of “secondary” elements that do not form part of the 

moment-resisting frame, i.e., staircases, nonstructural components, gravity load frames, and 

others. The dynamic response of a system is influenced by the contribution of these “secondary” 

elements, especially for structures that are sensitive to structure P-delta effects. 

 

The effect of elements that are not explicitly modeled as part of the moment-resisting frames is 

approximately evaluated by adding an elastic frame in parallel with the base case frame 

structure. This additional elastic frame is assumed to have the same relative stiffness distribution 

as the base case frame in order to permit a direct quantification of the story stiffness added by the 

elastic frame. Figure 7.18 shows the global pushover curves for three cases: 

• The base case, N = 18, T1 = 3.6 sec model 

• A model with an additional elastic frame in which story stiffnesses are equal to 3% of the 

story stiffnesses of the base case frame  

• A model with an additional elastic frame in which story stiffnesses are equal to 6% of the 

story stiffnesses of the base case frame 

 

Median normalized maximum roof drift angle curves are shown in Figure 7.19. It can be seen 

that for high levels of inelastic behavior the relatively small increase in stiffness provided by the 

elastic frame (3% and 6%) improves the nonlinear behavior of the base case frame considerably. 

The relative intensity, [Sa(T1)/g]/γ, at which dynamic instability is approached is approximately 
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equal to 4.0, 5.5, and 13 for the base case model and the models with an elastic frame with 3% 

and 6% of the story stiffness of the base case, respectively. 

 

Figure 7.19 demonstrates that great benefit can be achieved in P-delta-sensitive structures if a 

flexible “back-up system” is provided.  It is arguable whether most of the elements that are not 

considered explicitly as part of the moment-resisting frame will maintain their stiffness at large 

drifts, but some benefit could be derived from their presence. The purpose of this pilot case study 

is to illustrate the potential benefit of a flexible back-up system and to encourage further 

exploration of this concept. 

7.6 STORY SHEAR STRENGTH DISTRIBUTION 

Models that form part of the base case family of generic frame structures used in this study are 

designed so that simultaneous yielding is attained under a parabolic load pattern. This section 

presents results on the sensitivity of maximum roof and story drift angle demands to various 

story shear strength distributions, including those based on triangular and uniform load patterns 

in addition to the parabolic one (see Figure 7.20).  Furthermore, models that include overstrength 

and story shear strength distributions not tuned to a prescribed load pattern are also considered. 

This is the case for most frame structures in which constructability and exogenous design 

decisions influence the distribution of story shear strength over the height.   

 

7.6.1 Story Shear Strength Distribution Based on Parabolic, Triangular, and Uniform 
Load Patterns 

Figure 7.20 shows that for a given base shear strength, the largest story shear strength over the 

height is associated with a parabolic design load pattern and the smallest story shear strength is 

associated with a uniform design load pattern. Differences in the story shear strength distribution 

over the height are reflected in the nonlinear dynamic behavior of the frames as shown in Figures 

7.21–7.23. Results for the normalized maximum roof and story drift angles as well as the ratio of 

the maximum story-angle over the height to the maximum roof drift angle are presented for 9-

story frames with T1 = 0.9 sec and 1.8 sec.   
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Median normalized maximum roof drifts for models whose story shear strengths are based on 

parabolic, triangular and uniform load patterns are presented in Figure 7.21.  The differences in 

roof drifts are small, except when P-delta effects become important in the T = 1.8 sec structure, 

which happens at much smaller relative intensities for systems designed according to a uniform 

load pattern. 

 

Differences among models designed according to the parabolic, triangular and uniform load 

patterns are more pronounced for the median normalized maximum story drift angle over the 

height (see Figure 7.22). For all relative intensities, except very small ones causing only elastic 

response, the maximum story drift is significantly larger for the structures designed according to 

the uniform load pattern. The differences are particularly large around [Sa(T1)/g]/γ = 2.  The 

reason is that the uniform design load pattern produces very weak top stories that yield early and 

cause very large story drifts. The relatively weak top stories, as compared to those in real 

structures, exist already in the base case generic models because of the tuning of story shear 

strengths to a lateral design load pattern. In Chapter 4 it is shown that the generic models start to 

yield in the top stories, which creates very large drifts in these stories before the migration of 

maximum story drifts occurs from top to bottom of the structure. This early yielding and the 

large top story drifts, which are more pronounced for long-period structures, create the “hump” 

in the maximum story drift curves observed already in Figures 4.13 and 4.14, and evident again 

around [Sa(T1)/g]/γ = 2 in Figure 7.22(b). For the structure designed according to a uniform load 

pattern, this hump becomes much larger. The same observations can be made from Figure 7.23, 

which shows the variation of the ratio of the maximum story drift angle over the height to the 

maximum roof drift angle with the relative intensity. 

 

The arguments made in the previous paragraph about large top story drifts are underscored by 

the drift profiles presented in Figures 7.24 and 7.25. In most cases, the maximum story drifts at 

the top and bottom stories are comparable for the N = 9, T1 = 0.9 sec base case structure (Figure 

7.24(a)). However, for the structure designed with the uniform load pattern the top story drifts 

are much larger than the bottom story drifts, particularly around [Sa(T1)/g]/γ = 2, which causes 

the large hump in the story drift curve of Figure 7.22(a). For the N = 9, T1 = 1.8 sec base case 

structure, the top story drifts are largest around [Sa(T1)/g]/γ = 2 (Figure 7.25(a)), which also 

causes the hump in the story drift curve denoted as “Parabolic Load Pattern” in Figure 7.22(b). 
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This hump gets much amplified for the uniform load pattern case in which the top story drifts are 

much larger at all relative intensities (Figure 7.25(c)). 

 

The preceding discussion serves to show that the inelastic response experienced at small relative 

intensities by the medium to long-period frames used in this study is dominated by weak upper 

stories. Compared to real structures, whose story shear strength in the upper stories may be 

controlled by gravity load or constructability considerations, the relatively large maximum story 

drifts associated with the humps in the relative intensity drift curves (mostly around 

[Sa(T1)/g]/γ = 2) may be exaggerated. This phenomenon is amplified when a triangular or 

uniform design load pattern is assumed. The latter two load patterns are used primarily to 

illustrate the sensitivity of the EDPs to story shear strength distributions rather than as 

representations of realistic shear strength distributions over the height of the structure. 

7.6.2 Story Shear Strength Distribution Including Overstrength 

In actual structures the story shear strengths are influenced by various decisions involved in the 

design process. In order to explore the sensitivity of maximum roof and story drifts to a 

nonuniform story shear strength distribution that includes overstrength, the N = 9, T1 = 1.8 sec 

base case frame is utilized. A model that includes overstrength is generated by assuming a mean 

overstrength of 50% in the beam moment capacity and randomly varying this capacity at each 

floor level between maximum and minimum values of 100% and 0% overstrength. The resulting 

story shear strength distribution is shown in Figure 7.26. The story shear strengths for the 

structure with overstrength are computed based on the procedure proposed in FEMA 355C 

(2000), in which the static story shear strength is estimated by summing one half of the floor 

moment “capacity” of the floors bounding the story and dividing this sum by the story height.   

  

Global pushover curves for the base case model and the model with random overstrength are 

shown in Figure 7.27. The negative postyield slope in the global pushover curve is attained at a 

normalized roof drift displacement of δr/δyr = 1 for the base case model and δr/δyr > 3 for the 

model with random overstrength. The model with random overstrength exhibits a negative 

postyield stiffness at a much larger roof displacement because simultaneous yielding does not 

occur, since member strengths are not tuned to predefined load pattern. Larger base shear 

strength and the delay in the formation of a negative postyield stiffness translate into improved 



 

 225

behavior in which dynamic instability is approached at a larger relative intensity, as shown in 

Figure 7.28. Figure 7.28(a) presents the median normalized maximum roof drift angle for the 

base case model and the model with random overstrength. For [Sa(T1)/g]/γ < 5, median roof drift 

angles are similar between the two models, but the responses tend to diverge with an increase in 

relative intensity. Median normalized maximum story drift angles over the height are plotted in 

Figure 7.28(b). The model with random overstrength exhibits a more uniform variation in this 

EDP with the relative intensity level. Except for a decrease in the hump observed for the 

response of the base case model at [Sa(T1)/g]/γ = 2, no significant improvement is obtained by 

providing overstrength, except at large levels of inelastic behavior ([Sa(T1)/g]/γ > 8) at which the 

onset of dynamic instability is approached. 

 

The drift profiles presented in Figure 7.29 also show that the effect of random overstrength is 

small for [Sa(T1)/g]/γ < 8. However, a few noticeable differences are present. For instance, the 

model with random overstrength exhibits smaller upper-story drifts at [Sa(T1)/g]/γ = 2 (which 

explains the absence of a pronounced hump at this intensity level in Figure 7.28(b)). Moreover, 

at large Sa(T1)/g]/γ values the effect of its relatively small shear strength in stories 2 and 3 (see 

Figure 7.26) leads to an increase in drift in these stories as compared to the first-story drift. 

7.7 BEAM MOMENTS DUE TO GRAVITY LOADS 

The effect of gravity loads on the formation of plastic hinges at the beam ends are not considered 

in the seismic demand evaluation carried out in this study for the base case family of generic 

frame models. In order to evaluate this effect, gravity loads are added to the beam elements such 

that the fixed-end gravity moments at the beam ends are equal to 50% of the plastic moment 

capacity of the beam at a given floor level.    

 

Figure 7.30 shows the global pushover curves for the 9-story frames with T1 = 0.9 sec and 1.8 

sec with and without gravity loads. The presence of gravity moments cause redistribution of 

moments such that simultaneous yielding is not attained and the displacement at which the 

postyield slope becomes negative is larger than that of the base case frame model. This behavior 

implies that differences in the nonlinear time history results of models with and without gravity 
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loads are expected to be more noticeable at roof displacements up to twice the roof yield 

displacement. 

 

Figures 7.31 and 7.32 show the variation of the median normalized maximum roof drift and of 

the median normalized maximum story drift over the height with the relative intensity. The 

general observation is that the models with gravity loads exhibit maximum roof and story drifts 

that are smaller than those experienced by the base case frame models, except for large relative 

intensities at which the median responses are almost identical. In particular, the maximum story 

drifts are smaller for the gravity load models in the range that is assumed to be of primary 

interest for loss evaluation ([Sa(T1)/g]/γ  between 1.0 and 4.0). In this range the story drift 

profiles corresponding to the gravity load models are slightly more uniform than those of the 

base cases, as can be seen from Figures 7.33 and 7.34.  

 

The “improved” drift response of the gravity load models for [Sa(T1)/g]/γ < 4 is attributed to the 

second slope of the trilinear global pushover curves (Figure 7.30). While the base case models 

reach the small (or negative) postyield stiffness once simultaneous yielding occurs, the models 

with gravity loads reach the same postyield stiffness at larger displacements. This delay in the 

attainment of the small postyield stiffness decreases the maximum story drifts at small to 

medium levels of inelastic behavior. 

7.8 “FAILURE” MECHANISM 

The base case family of generic structures used in this study is designed according to the strong-

column, weak-beam philosophy.  Plastic hinges develop at the end of beams and at the bottom of 

the first-story columns (beam-hinge [BH] mechanism). Although code provisions are intended to 

produce designs that develop a beam-hinge mechanism and avoid plastic hinging in columns, 

real frame structures do not always behave according to this criterion. It is well established that 

strict adherence to the strong-column, weak-beam concept is difficult to implement; thus, there is 

a potential for the formation of undesirable story mechanisms due to plastic hinging in columns. 

In order to assess the sensitivity of maximum roof and story drift demands to the type of 

mechanism, the response of 3-, 9-, and 18-story frame structures that develop a beam-hinge and a 

column-hinge mechanism are compared. 
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Frames with column-hinge (CH) mechanisms are modeled by using rigid beams and flexible 

columns. Springs are located at the ends of the flexible columns to model peak-oriented moment-

rotation hysteretic behavior. Both beam-hinge and column-hinge models are designed to have a 

straight-line first-mode shape and attain simultaneous yielding when subjected to a parabolic 

lateral load pattern.   

 

Figure 7.35 presents the median normalized maximum roof drift angle for beam-hinge and 

column-hinge frame models with N = 3, 9, and 18. Frames that develop a column-hinge 

mechanism experience maximum roof drift demands that are smaller than those experienced by 

frames that develop a beam-hinge mechanism because the global deformation of the CH models 

is dominated by the first story (see Figure 7.37). This observation regarding maximum roof drift 

demands applies to cases in which P-delta effects do not cause dynamic instability in the 

response. If the frames are sensitive to structure P-delta effects, the relative intensity, 

[Sa(T1)/g]/γ, at which the frames approach the onset of dynamic instability is much smaller for 

the column-hinge models (see Figure 7.35(b)) because of the development of story mechanisms. 

For instance, the N = 9, T1 = 1.8 sec frame structure approaches the onset of dynamic instability 

at [Sa(T1)/g]/γ >14 for the beam-hinge model and [Sa(T1)/g]/γ < 4 for the column-hinge model. 

 

The influence of the “failure” mechanism on the potential for dynamic instability is evident 

already for the N = 18, T1 = 1.8 sec model, which exhibits no P-delta-sensitive behavior for the 

beam-hinge model, but dynamic instability around [Sa(T1)/g]/γ = 7 for the column-hinge model. 

At this relative intensity, the CH model experiences P-delta collapse with more than 50% of the 

ground motions. Global and first-story pushover analyses for both cases are shown in Figure 

7.36. For the BH model, both the global and first-story pushover curves have a positive postyield 

stiffness, whereas both stiffnesses are negative for the CH model. The negative stiffnesses are 

caused by story mechanisms that are developed in the lower stories in which the negative P-delta 

stiffness overcomes the strain hardening effect at the plastic hinge locations in the columns. The 

consequence is the formation of story mechanisms that lead to large amplification of story drifts 

in the time history response (ratcheting). These large story drifts are evident in the drift profiles 

shown in Figure 7.37(b). The first-story drift is greatly amplified already at a relative intensity of 

[Sa(T1)/g]/γ = 2, and the first- and second-story drifts grow to very large values at [Sa(T1)/g]/γ = 

6. For the BH model (Figure 7.37(a)), these amplifications do not occur. 
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The concentration of story drifts in one or two stories for the CH models, and the corresponding 

large amplification of maximum story drifts, are evident also in Figure 7.38, which shows the 

maximum story drifts over the height for the models used in Figure 7.35. Even in cases with no 

evident sensitivity of the response to P-delta, the maximum story drifts corresponding to the CH 

models are much larger than those corresponding to the BH models. As discussed before, the 

opposite behavior is observed for the maximum roof drifts (Figure 7.35). The implication is that 

for the CH models the ratio of maximum story drift to maximum roof drift consistently is much 

larger than for the BH models (Figure 7.39). 

7.9 SUMMARY 

Previous chapters deal with the evaluation of seismic demands for the base case family of 

generic frame structures subjected to ordinary ground motions. Models that form part of this 

family of structures have very specific characteristics that influence patterns of behavior and the 

magnitude of seismic demands. In order to study the sensitivity of drift demands to variations in 

structural characteristics, the properties of the base case generic frames are modified and a 

statistical evaluation of drift demand parameters is carried out.  Structural properties and 

characteristics of interest include: hysteretic behavior, strain hardening, structure P-delta, 

strength and stiffness provided by elements that do not form part of the moment-resisting frames, 

story shear strength patterns, the effect of gravity load moments, and “failure” mechanisms. 

Conclusions drawn in this chapter are applicable only within the conditions identified in each 

section. The main observations and conclusions are as follows: 

• Maximum drift demands are moderately sensitive to the amount of stiffness degradation 

present at the component level. For frame models of all periods, severe stiffness degradation 

(e.g., pinching hysteretic behavior with κd = κf = 0.25) causes an amplification of drift 

demands with respect to system with nondegrading stiffness, i.e., the bilinear model. Medium 

to long-period frame models with stiffness degradation of the type present in components 

with peak-oriented hysteretic behavior experience maximum drift demands similar to, and in 

some cases smaller than, those experienced by nondegrading stiffness models.   

• Except for the short-period range, patterns of behavior identified in the previous paragraph 

for regular frames with severe stiffness degradation are not clearly identified in the SDOF 

domain. 
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• The ratio of the maximum story drift angle over the height to the maximum roof drift angle is 

essentially independent of the amount of stiffness degradation present at the component 

level.  

• Nondeteriorating regular frame structures that are sensitive to structure P-delta effects 

approach the onset of dynamic instability at smaller relative intensity values when the 

moment-rotation relationship at the component level does not experience stiffness 

degradation (bilinear model). This phenomenon is attributed to the fact that the response of 

the system with bilinear hysteretic behavior spends more time on the envelope of the 

moment-rotation relationship of its components, which added to the P-delta effect produces 

an effective negative tangent stiffness in P-delta-sensitive structures.  

• Strain hardening in the moment-rotation relationship at the component level is beneficial in 

order to decrease (and in some cases eliminate) the potential for dynamic instability in the 

response. 

• Structure P-delta effects can lead to the concentration of drift demands in a few stories, and 

hence, dynamic instability problems. The pushover analysis is a useful tool to identify the 

potential for dynamic instability. When P-delta effects cause a negative postyield stiffness in 

the pushover analysis, the potential for dynamic instability exists and increases with the 

absolute value of the postyield slope. Pushover curves can be used to roughly estimate the 

maximum drift demand at which dynamic instability is expected to occur. 

• Structural and nonstructural elements that contribute to lateral stiffness and strength, but 

customarily are not modeled as part of a moment frame structure, may be very beneficial in 

delaying the onset of dynamic instability, particularly if these elements maintain their 

stiffness far into the inelastic range. 

• Maximum story drifts as well as the distribution of maximum drifts over the height of 

moment-resisting frames are sensitive to the design story shear strength pattern. Patterns that 

are intended to account for the contribution of higher mode effects, i.e., parabolic load 

pattern, produce designs with smaller drift demands and a more uniform distribution of 

maximum story drift angles over the height than the ones obtained with other load patterns, 

e.g., triangular and uniform. 

• The inelastic response experienced at small relative intensities by the medium to long-period 

frames used in this study is dominated by weak upper stories. Compared to real structures, 

whose story shear strength in the upper stories may be controlled by gravity load or 
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constructability considerations, the relatively large maximum story drifts at small relative 

intensities (mostly around [Sa(T1)/g]/γ = 2) may be exaggerated.  

• The effect of random overstrength (in this case, with a mean of 50%) on roof and story drifts 

is relatively small, except for P-delta sensitive structures in which overstrength causes an 

increase in the relative intensity at which dynamic instability in the response is approached.   

• The effect of gravity load moments on the roof drift is negligible. For relatively small relative 

intensities, gravity load moments reduce the maximum story drifts because the system 

reaches the small postyield stiffness from the pushover analysis at a larger drift as compared 

to systems without gravity load moments. 

• Plastic hinging in columns should be avoided in order to prevent the formation of story 

mechanisms that lead to large story drift demands. Story mechanisms cause maximum story 

drift angles to concentrate in a few stories, increasing the potential for dynamic instability 

when P-delta effects are considered.  
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RESPONSE OF PINCHING MODEL
Strain hardening = 0.03, κf = κd = 0.25
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(a) κf = κd = 0.25 

RESPONSE OF PINCHING MODEL
Strain hardening = 0.03, κf = κd = 0.50
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(b) κf = κd = 0.50 

Figure 7.1  Effect of Parameter κ in the Response of the Pinching Hysteretic Model 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=3, T1=0.3, ξ=0.05, Diff. hysteretic models, θ=0.004, BH, K1, S1, LMSR-N
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(a) T1 = 0.3 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=3, T1=0.6, ξ=0.05, Diff. hysteretic models, θ=0.017, BH, K1, S1, LMSR-N
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 (b) T1 = 0.6 sec  

Figure 7.2  Effect of the Hysteretic Model on the Median Normalized Maximum Roof Drift 
Demand, N = 3 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Diff. hysteretic models, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Diff. hysteretic models, θ=0.062, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

Figure 7.3  Effect of the Hysteretic Model on the Median Normalized Maximum Roof Drift 
Demand, N = 9 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=18, T1=1.8, ξ=0.05, Diff. hysteretic models, θ=0.033, BH, K1, S1, LMSR-N
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(a) T1 = 1.8 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=18, T1=3.6, ξ=0.05, Diff. hysteretic models, θ=0.130, BH, K1, S1, LMSR-N
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(b) T1 = 3.6 sec 

Figure 7.4  Effect of the Hysteretic Model on the Median Normalized Maximum Roof Drift 
Demand, N = 18 
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NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.1N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.2N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.5  Median Normalized Maximum Roof Drifts, Effect of the Hysteretic Model on Stiff 

and Flexible Frames, [Sa(T1)/g]/γ = 4.0 
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RATIO OF INELASTIC TO ELASTIC DISP.-0.1N
R=[Sa(T1)/g]/η=4.0, Median values, ξ=0.05, Diff. hysteretic models, LMSR-N
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(a) P-delta Slope Equal to the Elastic First-Story Stability Coefficient of the 0.1N Frames 

RATIO OF INELASTIC TO ELASTIC DISP.-0.1N
R=[Sa(T1)/g]/η=4.0, Median values, ξ=0.05, Diff. hysteretic models, LMSR-N
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(b) P-delta Slope Equal to the Elastic First-Story Stability Coefficient of the 0.2N Frames 

 
Figure 7.6  Ratio of Inelastic to Elastic Displacement, Effect of the Hysteretic Model on SDOF 

Systems, R-Factor = [Sa(T1)/g]/η = 4.0 
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NORMALIZED MAX. STORY DRIFTS-T1=0.1N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

NORMALIZED MAX. STORY DRIFTS-T1=0.2N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.7  Median Normalized Maximum Story Drifts over the Height, Effect of the Hysteretic 

Model on Stiff and Flexible Frames, [Sa(T1)/g]/γ = 4.0 
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MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.1N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.2N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.8  Ratio of the Maximum Story Drift Angle over the Height to the Maximum Roof 
Drift Angle, Effect of the Hysteretic Model on Stiff and Flexible Frames, [Sa(T1)/g]/γ = 4.0 
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NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.1N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.2N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, Diff. hysteretic models, BH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.9  Median Normalized Maximum Roof Drifts, Effect of the Degree of Stiffness 
Degradation on Various Hysteretic Models, Stiff and Flexible Frames, [Sa(T1)/g]/γ = 4.0 
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GLOBAL PUSHOVER CURVES
T1 = 0.9 s., N = 9
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(a) T1 = 0.9 sec 

GLOBAL PUSHOVER CURVES
T1 = 1.8 s., N = 9
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(b) T1 = 1.8 sec 

 
Figure 7.10  Global Pushover Curves Based on a Parabolic Load Pattern, Base Case Model and 

Model without Strain Hardening, N = 9, T1 = 0.9 sec 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 7.11  Effect of Strain Hardening on the Median Normalized Maximum Roof Drift Angle, 

N = 9 
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GLOBAL PUSHOVER CURVES
T1 = 1.8 s., N = 18
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(a) Global Pushover Curves 

FIRST STORY PUSHOVER CURVES
T1 = 1.8 s., N = 18
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(b) First-Story Pushover Curves 

 
Figure 7.12  Pushover Curves Based on a Parabolic Load Pattern, Base Case Model and Model 

without P-Delta Effects, N = 18, T1 = 1.8 sec 
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GLOBAL PUSHOVER CURVES
T1 = 3.6 s., N = 18
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(a) Global Pushover Curves 

FIRST STORY PUSHOVER CURVES
T1 = 3.6 s., N = 18
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(b) First-Story Pushover Curves 

 
Figure 7.13  Pushover Curves Based on a Parabolic Load Pattern, Base Case Model and Model 

without P-Delta Effects, N = 18, T1 = 3.6 sec 
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DEFLECTED SHAPE FROM PUSHOVER ANALYSIS
T1 = 1.8 s., N = 18, Base Case Frame Model
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(a) T1 = 1.8 sec 

DEFLECTED SHAPE FROM PUSHOVER ANALYSIS
T1 = 3.6 s., N = 18, Base Case Frame Model
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(b) T1 = 3.6 sec 

 
Figure 7.14  Deflected Shapes from Pushover Analyses, Base Case Frame Models,  

N = 18 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=18, T1=1.8, ξ=0.05, Peak-oriented model, Various θ, BH, K1, S1, LMSR-N
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(a) T1 = 1.8 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=18, T1=3.6, ξ=0.05, Peak-oriented model, Various θ, BH, K1, S1, LMSR-N
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(b) T1 = 3.6 sec 

 
Figure 7.15  Effect of Structure P-delta on the Median Normalized Maximum Roof Drift Angle, 

N = 18 
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NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=18, T1=1.8, ξ=0.05, Peak-oriented model, Various θ, BH, K1, S1, LMSR-N
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(a) T1 = 1.8 sec 

NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=18, T1=3.6, ξ=0.05, Peak-oriented model, Various θ, BH, K1, S1, LMSR-N
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(b) T1 = 3.6 sec 

 
Figure 7.16  Effect of Structure P-delta on the Median Normalized Maximum Story Drift Angle 

over the Height, N = 18 
 



 

 247

INCREMENTAL DYNAMIC ANALYSIS
N=18, T1=3.6, γ = 0.10 ξ=0.05, Peak-oriented model, θ=0.130, BH, K1, S1, LMSR-N
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Figure 7.17  Median Incremental Dynamic Analysis Curve and Global Pushover Curve, N = 18, 

T1 = 3.6 sec, γ = 0.10 
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GLOBAL PUSHOVER CURVES
T1 = 3.6 s., N = 18
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Figure 7.18  Global Pushover Curves Based on a Parabolic Load Pattern, Base Case Frame 

Model and Models with Additional Strength and Stiffness, N = 18, T1 = 3.6 sec. 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
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Figure 7.19  Effect of Additional Strength and Stiffness on the Median Normalized Maximum 

Roof drift Demands, N = 18, T1 = 3.6 sec. 
 

 



 

 249

STATIC STORY SHEAR STRENGTH DISTRIBUTION
9-Story Frame Structure
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Figure 7.20  Normalized Static Story Shear Strength Distribution, Various Design Load 

Patterns, N = 18, T1 = 1.8 sec 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, Various strength dist., LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, Various strength dist., LMSR-N
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(b) T1 = 1.8 sec. 

 
Figure 7.21  Effect of Various Story Shear Strength Distributions on the Median Normalized 

Maximum Roof Drift Demand, N = 9 
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NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, Various strength dist., LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, Various strength dist., LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 7.22  Effect of Various Story Shear Strength Distributions on the Median Normalized 

Maximum Story Drift Angle over the Height, N = 9 
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MAX. STORY DRIFT/MAX. ROOF DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, Various strength dist., LMSR-N
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(a) T1 = 0.9 sec 

MAX. STORY DRIFT/MAX. ROOF DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, Various strength dist., LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 7.23  Effect of Various Story Shear Strength Distributions on the Median Ratio of the 

Maximum Story Drift Angle over the Height to the Maximum Roof Drift Angle, N = 9 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N 
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(a) Parabolic Load Pattern 

MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S2, LMSR-N 
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(b) Triangular Load Pattern 
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(c) Uniform Load Pattern 

 
Figure 7.24  Effect of Various Story Shear Strength Patterns on the Distribution over the 

Height of Median Normalized Maximum Story Drift Angles, N = 9, T1 = 0.9 sec 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(a) Parabolic Load Pattern 
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N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S2, LMSR-N 
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(b) Triangular Load Pattern 
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(c) Uniform Load Pattern 

 
Figure 7.25  Effect of Various Story Shear Strength Patterns on the Distribution over the 

Height of Median Normalized Maximum Story Drift Angles, N = 9, T1 = 1.8 sec 
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STATIC STORY SHEAR STRENGTH DISTRIBUTION
9-Story Frame Structure, Parabolic Load Pattern
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Figure 7.26  Normalized Static Story Shear Strength Distribution, Models with and without 

Random Overstrength, N = 9 
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Figure 7.27  Global Pushover Curves Based on a Parabolic Load Pattern, Base Case Frame 

Model and Model with Random Overstrength, N = 9, T1 = 1.8 sec 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(a) Median Normalized Maximum Roof Drift Angle 

NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) Median Normalized Maximum Story Drift Angle over the Height 

 
Figure 7.28  Effect of Random Overstrength on the Medians of the Maximum Roof Drift and 

the Maximum Story Drift Angle over the Height, N = 9, T1 =1.8 sec 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(a) Base Case Frame Model (No Overstrength) 
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(b) Model with Random Overstrength 

 
Figure 7.29  Effect of Random Overstrength on the Distribution over the Height of Median 

Normalized Maximum Story Drift angles, N = 9, T1 = 1.8 sec 
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GLOBAL PUSHOVER CURVES
T1 = 0.9 s., N = 9
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(a) T1 = 0.9 sec 
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(b) T1 = 1.8 sec 

Figure 7.30  Global Pushover Analyses Based on a Parabolic Load Pattern, Base Case Frame 
Models and Models with Gravity Load Moments, N = 9 
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NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

 
Figure 7.31  Effect of Gravity Load Moments on the Median Normalized Maximum Roof Drift 

Angle, N = 9 
 



 

 260

NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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(a) T1 = 0.9 sec 

NORMALIZED MAXIMUM STORY DRIFT-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(b) T1 = 1.8 sec 

Figure 7.32  Effect of Gravity Load Moments on the Median Normalized Maximum Story Drift 
Angle over the Height, N = 9 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N 
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(a) Base Case Frame Model (No Gravity Load Moments) 
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(b) Model that Includes Gravity Load Moments 

 
Figure 7.33  Effect of Gravity Load Moments on the Distribution over the Height of Median 

Normalized Maximum Story Drift Angles, N = 9, T1 = 0.9 sec 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N 
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(a) Base Case Frame Model (No Gravity Load Moments) 
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(b) Model that Includes Gravity Load Moments  

 
Figure 7.34  Effect of Gravity Load Moments on the Distribution over the Height of Median 

Normalized Maximum Story Drift Angles, N = 9, T1 = 1.8 sec 
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NORMALIZED MAXIMUM ROOF DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH and CH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

NORMALIZED MAXIMUM ROOF DRIFT-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH and CH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.35  Effect of Various Mechanisms on the Median Normalized Maximum Roof Drift 

Demand, Stiff and Flexible Frames 
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GLOBAL PUSHOVER CURVES
T1 = 1.8 s., N = 18, Parabolic Load Pattern
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(a) Global Pushover Curves 

FIRST STORY PUSHOVER CURVES
T1 = 1.8 s., N = 18, Parabolic Load Pattern
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(b) First-Story Pushover Curves 

 
Figure 7.36  Pushover Curves Based on a Parabolic Load Pattern, BH and CH Mechanisms,  

N = 18, T1 = 1.8 sec 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=18, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.033, BH, K1, S1, LMSR-N 
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(a) Beam-Hinge Model 

MAX. STORY DRIFT PROFILES-MEDIANS
N=18, T1=1.8, ξ=0.05, Peak-oriented model, θ=0.033, CH, K1, S1, LMSR-N 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 2 4 6 8 10
Normalized Maximum Story Drifts, θsi,max/[Sd(T1)/H]

St
or

y 
N

um
be

r

[Sa(T1)/g]/   =0.25

[Sa(T1)/g]/   =1.0

[Sa(T1)/g]/   =2.0

[Sa(T1)/g]/   =4.0

[Sa(T1)/g]/   =6.0

γ

γ

γ

γ

γ

 
(b) Column-Hinge Model 

 
Figure 7.37  Effect of BH and CH Mechanisms on the Distribution over the Height of 

Normalized Maximum Story Drift Angles, N = 18, T1 = 1.8 sec 
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NORMALIZED MAXIMUM STORY DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH and CH, K1, S1, LMSR-N
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(a) T1 = 0.1N 

NORMALIZED MAXIMUM STORY DRIFT-T1=0.2N
Median values, ξ=0.05, Peak-oriented model, BH and CH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.38  Effect of BH and CH Mechanisms on the Median Normalized Maximum Story 

Drift over the Height, Stiff and Flexible Frames 
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MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.1N
Median values, ξ=0.05, Peak-oriented model, BH and CH, K1, S1, LMSR-N
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(b) T1 = 0.2N 

 
Figure 7.39  Effect of BH and CH Mechanisms on the Median Ratio of the Maximum Story 

Drift Angle over the Height to the Maximum Roof Drift Angle, Stiff and Flexible Frames 
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8 Use of One-Bay Generic Frames for Seismic 
Demand Evaluation 

8.1 INTRODUCTION 

Fundamental studies on seismic demand evaluation such as the ones presented in this report have 

to be carried out on structural systems that most closely resemble actual ones and with analytical 

tools that permit “sufficiently accurate” prediction of all demand parameters of interest. The term 

“sufficiently accurate” depends on the context. This study is not concerned with a rigorous 

demand prediction for a specific structure, in which case all contributing components would have 

to be represented in the analytical model. It is concerned with an evaluation of patterns and 

sensitivities to important ground motion and structural characteristics. In this context the term 

“sufficiently accurate” takes on the meaning of being capable of representing important 

characteristics, which significantly affect the demands, in a transparent manner that permits 

interpretation of the results. For instance, for the regular frames and the performance levels of 

interest in this study (direct losses and downtime) such characteristics have to do with strength, 

stiffness, deformation capacity (ductility) and geometric nonlinearities such as structure P-delta 

effects. Thus, accurate modeling of details, even if these would greatly affect the demands for a 

specific structure, is not considered to be important in this context. The emphasis is on one-bay 

generic models of regular moment-resisting frame systems whose structural properties can be 

tuned so that the aforementioned characteristics can be simulated in patterns that facilitate a 

comprehensive evaluation of demands. It is recognized that in the process reality gets distorted 

(e.g., no structure has a constant strain hardening of 3%), but this is the compromise that has to 

be accepted in sensitivity studies. 

 

However, the use of one-bay generic frames assumes that they are able to represent the behavior 

of more complex regular multi-bay frames. The objective of this chapter is to correlate the 
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seismic response of a ninestory multi-bay steel frame with that of its “equivalent” one-bay frame 

to assess the adequacy of the one-bay frame to model the behavior of the multi-bay frame. 

8.2 SAC LA9-M1 MODEL AND ITS “EQUIVALENT” ONE-BAY FRAME 

The SAC LA9-M1 frame model (Gupta and Krawinkler, 1999) is utilized to validate the use of 

one-bay frames to represent the behavior of regular multi-bay frames. This model, from here on 

referred to as the “LA9-M1” model, corresponds to one of the steel perimeter moment-resisting 

frames located in the north-south direction of a standard office building in the Los Angeles area, 

situated on stiff soil and designed according to the UBC 1994 code. It is based on centerline 

dimensions; thus, the contribution of the panel zones to the response is neglected. The hysteretic 

behavior at plastic hinge locations is modeled by using bilinear hysteretic rules with 3% strain 

hardening. Axial load-bending moment interaction in columns is included as well as second-

order structure P-delta effects. Strength properties are based on the expected strength of the 

material and 2% Rayleigh damping is used at the first mode and at a period of 0.2 sec. Figure 8.1 

shows a plan view and elevation of this frame and Table 8.1 presents details of its main structural 

properties.   

 

A one-bay frame model based on the stiffness and strength properties of the LA9-M1 model was 

developed according to the following simplified assumptions:   

• The beam span was assumed to be 24 feet (same beam span as the generic models used in 

this study). 

• Story heights are equal to the story heights of the LA9-M1 model (including the basement). 

• Beam stiffness is calculated based upon Σ(I/L) of the beams at each floor level. 

• Column stiffness is calculated based upon Σ(I/L) of the columns at each story level. 

• Column areas at each story are estimated as the area needed to provide the same global 

bending stiffness as the LA9-M1 model, so they are computed based upon 2Σ(Aixi
2/L2), 

where Ai is the area of an individual column, xi is the distance from the center of the column 

to the centerline of the moment-resisting frame, and L is the span of the one-bay frame (24 

feet).   

• The beam strength is computed as one half of the sum of the plastic moment capacity of the 

end of the beams that form part of a moment-resisting connection at that floor level. 
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• The column strength is computed as one half of the sum of the plastic moment capacity of 

the corresponding end of the columns at that story level. P-M interaction is ignored. 

• For both beams and columns, rotational springs with 3% strain hardening are used to model 

the hysteretic behavior at plastic hinge locations.   

• P-delta loads at each floor level are computed as the sum of the P-delta loads at each floor 

level of the LA9-M1 model. 

8.2.1 Modal Properties 

Modal properties of the one-bay LA9-M1 and the LA9-M1 models are presented in Table 8.2. 

For the one-bay LA9-M1 model, the mass and stiffness proportional factors in the Rayleigh 

damping formulation are tuned to obtain 2% damping at the first mode and the mode with a 

period of 0.2 sec so that modal properties are compatible between the two models. In Table 8.2 it 

can be observed that the basic modal properties are similar. The one-bay LA9-M1 is slightly 

stiffer than the LA9-M1 model (T1 = 2.27 vs. 2.34 sec). The mode shapes are also close to 

identical (a plot with the first-mode shape for both structures is presented in Figure 8.2).   

8.2.2 Nonlinear Static Behavior 

In order to assess the adequacy of the one-bay LA9-M1 frame in representing the nonlinear 

behavior of the LA9-M1 model, a pushover analysis with a parabolic load pattern is performed. 

Figures 8.3 and 8.4 depict the global (roof) and first-story pushover analyses, respectively. It can 

be observed that the general shape of the pushover curves is similar for the two models, which 

implies that yielding patterns and sequences are similar. The one-bay LA9-M1 is approximately 

6% stiffer and 2% stronger. In view of the information provided by the pushover curves, the 

behavior of the two models in the inelastic range is expected to be compatible. Whether or not 

this expectation is met in the nonlinear time history analysis of these models is evaluated in the 

following section. 
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8.3 EVALUATION OF THE NONLINEAR DYNAMIC RESPONSE OF THE LA9-M1 
AND THE ONE-BAY LA9-M1 MODELS 

Time history analyses are performed for both models using the LMSR-N set of ordinary ground 

motions and the IDA approach, i.e., the intensity of the ground motion is varied while the 

strength of the structure is kept constant. The IM of interest is the spectral acceleration at the 

first-mode period; thus, for each analysis the records are scaled to the same Sa(T1). Similarities 

and differences in the responses are evaluated based on two EDPs: the maximum roof drift angle 

and the maximum story drifts over the height.   

8.3.1 Maximum Roof Drift Angle 

Figure 8.5 presents the statistical evaluation of the maximum roof drift angle for the LA9-M1 

and the one-bay LA9-M1 models. It can be observed that behavior of the two models is very 

similar up to [Sa(T1)/g/γ] = 4. For larger levels of inelastic behavior, the one-bay LA9-M1 

performs better with the median normalized maximum roof drift angle approaching the onset of 

dynamic instability at a value of 8.0 as opposed to 6.5 for the LA9-M1 model. Figure 8.6(a) 

isolates the median curves for both cases, and Figure 8.6(b) depicts the dispersion of the data.   

8.3.2 Maximum Story Drift Angles 

Figure 8.7 is presented in order to assess how effective the one-bay LA9-M1 model is in 

representing the response of the LA9-M1 model based on the average of the maximum story drift 

angles, θsi,ave, and the maximum story drift angle over the height, θs,max.  Similarities in patterns 

observed for the maximum normalized roof drift angle are also present in Figure 8.7. Both the 

median values of the EDPs given the IM and the dispersion in the data are very similar for both 

models up to [Sa(T1)/g/γ] = 4. Differences are noticeable at larger relative intensities. 

8.3.3 Ratio of the Average of the Maximum Story Drift Angles and the Maximum Story 
Drift Angle to the Maximum Roof Drift Angle 

Figure 8.8 presents the statistical evaluation of the ratios of the average of the maximum story 

drift angles to the maximum roof drift angle, θsi,ave/θr,max, and the maximum story drift angle over 

the height to the maximum roof drift angle, θs,max/θr,max, for the LA9-M1 and the one-bay LA9-

M1 models when subjected to records from the LMSR-N bin. As expected from the results in the 
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previous two sections, the median values for these ratios as well as their dispersions are 

comparable except in the region where structure P-delta effects take over the response of the 

systems.   

8.3.4 Distribution of Maximum Story Drifts over the Height 

Figure 8.9 shows the variation of median normalized maximum story drift angle profiles with the 

intensity level for both the one-bay LA9-M1 and the LA9-M1 models. For most relative intensity 

levels, median profiles show very consistent patterns. They have the same general shapes and 

comparable absolute values. The only important difference can be observed at [Sa(T1)/g/γ] = 6 

where the LA9-M1 model exhibits a significantly larger amplification of maximum story drift 

demands in the bottom stories, which is consistent with the observations made in Sections 8.3.1 

to 8.3.3.   

8.4 SUMMARY 

The information presented in this chapter shows that simplified one-bay frames are able to 

represent the main patterns of behavior exhibited by regular multi-bay frames at different levels 

of inelasticity.   
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Table 8.1  Beam and Column Sections for the LA9-M1 Model 

9-story Building
Story/Floor DOUBLER GIRDER BEAMS

Exterior Interior PLATES (in) Below penthouse Others
-1/1 W14x370 W14x500 0,0 W36x160 W14x211 W14x193 W21x44
1/2 W14x370 W14x500 0,0 W36x160 W14x211 W14x193 W18x35
2/3 W14x370, W14X370 W14x500, W14x455 0,0 W36x160 W14x211, W14x159 W14x193, W14x145 W18x35
3/4 W14x370 W14x455 0,0 W36x135 W14x159 W14x145 W18x35
4/5 W14x370, W14x283 W14x455, W14x370 0,0 W36x135 W14x159, W14x120 W14x145, W14x109 W18x35
5/6 W14x283 W14x370 0,0 W36x135 W14x120 W14x109 W18x35
6/7 W14x283, W14x257 W14x370, W14x283 0,0 W36x135 W14x120, W14x90 W14x109, W14x82 W18x35
7/8 W14x257 W14x283 0,0 W30x90 W14x90 W14x82 W18x35
8/9 W14x257, W14x233 W14x283, W14x257 0,0 W27x84 W14x90, W14x61 W14x82, W14x48 W18x35
9/Roof W14x233 W14x257 0,0 W24x68 W14x61 W14x48 W16x26

Notes:
1. Column line A has exterior column sections oriented about strong axis,
    Column line F has exterior column sections oriented about weak axis,
    Column lines B, C, D and E have interior column sections.

COLUMNS

PRE-NORTHRIDGE DESIGNS
NS Moment Resisting Frame NS Gravity Frames

COLUMNS

 

 
 
 
 
 

 
Table 8.2  Modal Properties, LA9-M1 and One-Bay LA9-M1 Models 

Basic Modal Properties
Mode Period P. Factor Modal Mass Modal Damp.

LA9-M1
1 2.34 1.37 0.84 0.02
2 0.88 -0.56 0.11 0.01
3 0.50 0.24 0.04 0.01

One-bay LA9-M1
1 2.27 1.37 0.84 0.02
2 0.85 -0.56 0.11 0.01
3 0.49 0.23 0.04 0.01  
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Figure 8.1 Perimeter Moment-Resisting Frame, LA9 -M1 Model 
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Figure 8.2  First-Mode Shape, LA9-M1 and One-Bay LA9-M1 Models 
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GLOBAL PUSHOVER ANALYSIS
Parabolic Load Pattern
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Figure 8.3  Global Pushover Curve, LA9-M1 and One-Bay LA9-M1 Models 
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Figure 8.4  First-Story Pushover Curve, LA9-M1 and One-Bay LA9-M1 Models 
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NORMALIZED MAXIMUM ROOF DRIFT
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(a) LA9-M1 Model 

 

NORMALIZED MAXIMUM ROOF DRIFT
One-bay LA9-M1, LMSR-N

0

2

4

6

8

0 1 2 3 4 5
Normalized Maximum Roof Drift, θr,max/[Sd(T1)/H]

[S
a(

T
1)

/g
]/ γ

Individual responses
Median
84th percentile
16th percentile
1st Mode Part. Factor

 
(b) One-Bay LA9-M1 Model 

 
Figure 8.5  Normalized Maximum Roof Drift Data, LA9-M1 and One-Bay LA9-M1 Models 
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MEDIAN NORMALIZED MAXIMUM ROOF DRIFT
LA9-M1 and One-bay LA9-M1 Models, LMSR-N
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(a) Median Values 

 

DISPERSION OF NORM. MAX. ROOF DRIFTS
Based on 84th percentile, LA9-M1 and One-bay LA9-M1 Models, LMSR-N
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(b) Dispersion 

 
Figure 8.6  Normalized Maximum Roof Drift, LA9-M1, and One-Bay LA9-M1 Models 
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MEDIAN NORMALIZED STORY DRIFTS
LA9-M1 and One-bay LA9-M1 Models, LMSR-N
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(a) Median Values 

DISPERSION OF NORMALIZED STORY DRIFTS
Based on 84th percentile, LA9-M1 and One-bay LA9-M1 Models, LMSR-N
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(b) Dispersion 

 
Figure 8.7  Normalized Story Drifts, LA9-M1, and One-Bay LA9-M1 Models 
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MEDIAN STORY DRIFT/MAX. ROOF DRIFT
LA9-M1 and One-bay LA9-M1 Models, LMSR-N
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(b) Dispersion 

 
Figure 8.8  Ratio of the Average of the Maximum Story Drift Angles to the Maximum Roof Drift 

Angle, LA9-M1, and One-Bay LA9-M1 Models 
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MAX. STORY DRIFT PROFILES-MEDIANS
LA9-M1 Model, LMSR-N 
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(a) LA9-M1 Model 

MAX. STORY DRIFT PROFILES-MEDIANS
One-bay LA9-M1 Model, LMSR-N 
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(b) One-Bay LA9-M1 Model 

 
Figure 8.9  Distribution of Median Maximum Story Drift Angles over the Height, LA9-M1, and 

One-Bay LA9-M1 Models 
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9 Probabilistic Seismic Performance Assessment 

9.1 INTRODUCTION 

Performance assessment implies that the structure is given (i.e., γ = Vy/W, T1, and other 

properties are known), and decision variables, such as losses, have to be evaluated. Part of this 

process is probabilistic seismic demand analysis that includes quantification of a response 

parameter (EDP) and its associated uncertainties to be used for probabilistic damage assessment. 

This quantification can be carried out by computing the mean annual frequency of exceedance of 

the EDP, i.e.,  

                      [ ] |)(||)( xdxIMyEDPPy IMEDP λλ ∫ =≥=                                (9.1) 

where λEDP(y)    =  mean annual frequency of EDP exceeding the value y 

            P[EDP ≥ y | IM = x] =  probability of EDP exceeding y given that IM equals x 

 λIM(x)    =  mean annual frequency of IM exceeding x (ground         

                                                    motion hazard) 

A prerequisite to the implementation of Equation (9.1) is hazard analysis for a single ground 

motion intensity measure or for a vector of intensity measures. At this time, the spectral 

acceleration at the first-mode period of the structure, Sa(T1), is most commonly used as the 

intensity measure. Similar to the IM hazard, the mean annual frequency of the EDP exceeding a 

certain value also can be represented in a hazard curve.   

 

Performance assessment also includes the evaluation of the global collapse potential of a 

structural system. Probabilistic collapse assessment can be carried out according to the following 

equation:  
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                              |)(|)( xdxF IMCf IM
λλ ∫=                                                      (9.2) 

 

where λf    =  mean annual frequency of collapse 

            FCIM (x)                =  probability of IM capacity exceeding x 

 λIM(x)     =  mean annual frequency of IM exceeding x (ground  

                                                    motion  hazard) 

However, evaluation of collapse requires the utilization of models that are able to incorporate the 

most important factors that influence the collapse of a system, e.g., component cyclic 

deterioration. Since this study is based on nondeteriorating regular frames, the only source of 

global collapse is dynamic instability due to structure P-delta effects.   

 

The work contained in this chapter focuses on an illustration of the development of maximum 

drift hazard curves that include the aleatory uncertainty inherent in the seismic phenomena and 

the calculation of the mean annual frequency of collapse due to structure P-delta effects. 

9.2 ESTIMATION OF EDP HAZARD CURVES 

Evaluation of Equation (9.1) to compute the the EDP hazard (mean annual frequency of the EDP 

exceeding y, given that Sa(T1) equals Sa) requires hazard analysis information on Sa(T1), which 

represents the term λIM(x) in Equation (9.1) as well as data on EDPs. Since this evaluation is 

performed for structures of a given strength (γ), it is convenient to represent the EDP data in the 

conventional IDA form of Sa(T1) versus EDP, given the strength γ. Representative IDA curves 

(for individual records as well as median, 16th and 84th percentile), using the maximum roof drift 

angle, θr,max, and the maximum story drift angle over the height, θs,max, as EDPs for a frame with 

N = 9, T1 = 1.8 sec, and γ = Vy/W = 0.1, are shown in Figures 9.1(a) and 9.2(a). Figures 9.1(b) 

and 9.2(b) show the standard deviation of the log of the EDP given the IM, based on the counted 

16th and 84th percentile values. 

 

One alternative for the evaluation of Equation (9.1) is numerical integration using lognormal 

distributions whose median and dispersion are computed from the EDP data for the discrete 

hazard levels at which numerical integration is performed. These curves may be viewed as 
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“accurate,” but they require numerical procedures. In order to eliminate the numerical effort and 

provide a closed-form solution, the following procedure, described by Cornell et al. (2002) may 

be implemented to develop EDP hazard curves: 

The IM hazard can be estimated by a curve of the type 

             [ ] k
oIM xkxIMPx −=≥=)(λ  

or specifically [ ] k
aoaaaTS SkSTSPS

a

−=≥= )()( 1)( 1
λ                                                (9.3) 

The exponent –k approximates the local slope of the hazard curve (in the log domain) around the 

return period of interest. The procedure requires the local (around the return period of primary 

interest) fitting of a median relationship to the EDP-IM data. The convenient form of this 

relationship is the same as for the hazard curve, i.e.,  

                                   ( )bIMaPDE =ˆ                                                (9.4) 

If the conditional distribution of the EDP for a given IM can be assumed as lognormal, i.e., 

          [ ] ( )IMEDP
baxyxIMyEDPP |ln/]/ln[1| σΦ−==≥                 (9.5) 

( Φ  is the widely tabulated "standardized" Gaussian distribution function, and the notation 

σlnEDP|IM implies that only record-to-record variability is considered), then, assuming that 

σlnEDP|IM is constant, the mean annual frequency of exceeding any specified EDP value of y can 

be calculated in closed analytical form as 

         [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=≥= 2

|ln2

2

2

1
exp)()( IMEDPyIMEDP b

kIMyEDPPy σλλ          (9.6) 

where IMy is defined as the intensity measure corresponding to PD̂E =  y (i.e., the inverse of the 

median relationship between IM and EDP, IMy = (y/a)1/b, see Equation (9.4)). In final form, the 

EDP hazard curve can be expressed as 

          [ ] ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=≥=

− 2
|ln2

2
/1

2

1
exp/)( IMEDP

kb
oEDP b

kaykyEDPPy σλ    (9.7) 

For a given IM hazard, the EDP hazard predicted from this equation depends on a and b, the 

parameters defining the median relationship between EDP and IM, and the dispersion σlnEDP|IM.   

 

For illustration, and using the data from Figures 9.1 and 9.2, EDP hazard curves are developed 

based on a Sa(T1) hazard curve estimated from the equal-hazard response spectra values 



 

 
 

 

286

calculated for Van Nuys, California, (site class NEHRP D) as part of the PEER research effort to 

develop Performance-Based Earthquake Engineering Methodologies (Somerville and Collins, 

2002). Equal-hazard response spectra values are given for the 50/50, 10/50, and 2/50 hazard 

levels and discrete periods: 0.01, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.5, and 2.0 sec. Since there are no 

values for 1.8 sec, they are estimated by linear interpolation between the values corresponding to 

1.5 and 2.0 sec as shown in Figure 9.3. Then, Equation (9.3) is used to obtain a Sa(T1) hazard 

curve from the interpolated hazard values corresponding to 1.8 sec, yielding the following 

relationship: 

                           [ ] 4.2
)8.1( 000373.0)8.1()( −=≥= aaaaS SSSPS

a
λ                                    (9.8) 

The hazard level of primary interest to develop EDP hazard curves from the data in Figures 9.1 

and 9.2 is the 10/50 level, so the exponent k in Equation (9.3) is estimated as the average of the 

two slopes joining the three discrete mean annual frequency of exceedance values (open squares) 

shown in Figure 9.3.  

 

EDP hazard curves for the maximum roof drift angle and the maximum story drift angle over the 

height are shown in Figure 9.4. Predicted drift hazard curves are superimposed on the hazard 

curves obtained from numerical integration. The curves shown in dashed lines are based on 

Equation (9.7) and a constant dispersion of σlnEDP|IM = 0.24 and 0.30 for the maximum roof drift 

angle and maximum story drift angle, respectively, which are representative of the average 

dispersion in the range of interest (0 ≤ Sa(T1) ≤ 0.6g).  Values of dispersions used for the drift 

hazard curves are based on the 16th percentile of the data (see Figures 9.1(b) and 9.2(b). Note 

that dispersions have to be calculated based on percentiles values since counted statistics are 

used, see Section 2.7). Fitted curves used to quantify EDP-IM relationships needed for the 

closed-form solutions are computed in the range corresponding to 0 ≤ Sa(T1) ≤ 0.6g because at 

Sa(T1) > 0.6g the highly inelastic response most likely will cause strength deterioration, which 

would affect the data points.   

 

The drift hazard curves shown in Figure 9.4 permit a probabilistic assessment of EDPs, in this 

case maximum roof and story drift angles, in which the uncertainty in the ground motion hazard 

and the aleatory uncertainty in the response of the system are incorporated.  The presumption is 

that the frequency content of the ground motion selected for the nonlinear time history analyses 
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is representative of the hazard levels of interest. For the cases summarized in the previous 

paragraph, the closed-form solution seems to provide a reasonable estimate of the drift hazard 

obtained from numerical integration, even though the dispersion of the EDPs, given IM, 

gradually increases as a function of the ground motion intensity level. However, different 

conclusions might be obtained if a closed-form solution is used with a constant dispersion, when 

drastic variations in the dispersion of the data as a function of the ground motion intensity are 

encountered. This issue is discussed next. 

 

Figures 9.5 and 9.6 show drift hazard curves computed using dispersions obtained based on the 

16th percentile and the 84th percentile of the data (see Figures 9.1(b) and 9.2(b)).  (The objective 

is not to discuss the differences between values of dispersion from counted statistics based on 

16th and 84th percentiles; it is to demonstrate that the accuracy of EDP hazard curves obtained by 

using a closed-form solution and assuming a constant dispersion depends upon the variation of 

the dispersion of the EDP (given the IM) with the intensity level). For the maximum roof drift 

angle, results are consistent regardless of whether the dispersion is based on the 16th or the 84th 

percentile. This result is expected, since Figure 9.1(b) shows that for the range of interest 0 ≤ 

Sa(T1) ≤ 0.6g there are no significant differences between the dispersion based on the 16th and the 

84th values. However, for the maximum story drift angle over the height, the variation of the 

dispersion (shown in Figure 9.2(b)) plays an important role in the drift hazard curves. The drift 

hazard curve from numerical integration using dispersions based on the 84th percentile provides 

higher values of drift associated with the same hazard level. This result is due to the large values 

of dispersion observed in the range Sa(T1) < 0.2g, which is also the range where the Sa(T1) 

hazard is the highest.   

 

For the maximum story drift angle, the closed-form solution with a constant dispersion that is 

based on the 84th percentile of the data (σlnEDP|IM = 0.35) is not a good representation of the 

solution obtained from numerical integration. This value corresponds to the average dispersion in 

the range of interest (0 ≤ Sa(T1) ≤ 0.6g). A single σlnEDP|IM value is not able to accurately capture 

the effect of the dispersion in the results when the scatter of the data changes radically with the 

intensity level. In this case, the variation of the dispersion with the level of intensity is attributed 

to the fact that a few dynamic responses exhibit relatively large drift values at small levels of 
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inelastic behavior. Thus, changes in the dispersion of the EDP given IM play an important role in 

the estimation of the EDP hazard. Similar conclusions have been obtained by Aslani and 

Miranda, 2002. 

9.3 PROBABILITY OF COLLAPSE 

For P-delta-sensitive structures, which have the potential for dynamic instability, relationships 

between maximum roof drift and relative intensity of the type presented in Chapter 4 can also be 

utilized to estimate the mean annual frequency of global collapse. The process is illustrated here 

for a frame with 18 stories, a period of 3.6 sec, and γ = 0.10.  Incremental dynamic analysis 

results for this frame are presented in Figure 9.7. The values of Sa(T1) at which the frame 

approaches the onset of dynamic instability (horizontal lines in Figure 9.7) correspond to the 

spectral acceleration values at collapse, which can be used to compute a global collapse fragility 

curve whose median Sa(T1) is 0.40 and whose σlnSa(T1) is 0.38, as shown in Figure 9.8. (In this 

example, the fragility curve is computed by fitting a lognormal distribution to the Sa(T1) values 

at collapse.)  This fragility function can be used in conjunction with a Sa(T1) hazard curve to 

estimate the mean annual frequency of collapse using Equation (9.2). If for instance, the Sa(T1) 

hazard curve is the one developed for Van Nuys, California, for a period of 4.0 sec, as shown in 

Figure 9.9 (Abrahamson, 2001), then Equation (9.2) can be solved numerically to obtain the 

mean annual frequency of collapse for the system, which in this case is equal to 1.86e-04. 

9.4 SUMMARY 

The information presented in this chapter relates to the probabilistic seismic assessment of 

regular frames subjected to ordinary ground motions. EDP hazard curves are developed to 

illustrate the process of performing probabilistic evaluation of EDPs. Then, a fragility curve is 

used to estimate the mean annual frequency of collapse of a long, flexible frame. The main 

observations presented in this chapter are as follows: 

• When the spectral acceleration at the first mode is used as the IM, EDP hazard curves can be 

developed using available seismic hazard information. This process gives good results 

provided the frequency content of the ground motions is not very sensitive to magnitude and 

distance. When different scalar IMs (or a vector of IMs) are needed to adequately describe 
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the seismic hazard, e.g., for the case of near-fault ground motions, the development of EDP 

hazard curves necessitates the modification of available seismic hazard information and/or 

the development of new seismic hazard information on selected IMs. 

• Closed-form solutions provide a very useful and convenient way of estimating EDP hazard 

curves. In some cases, the variation of the dispersion of the EDP (given IM) with the 

intensity level is large. Thus, good judgment must be exercised when using closed-form 

solutions (based on constant dispersion) to evaluate EDP hazard curves. 

• The potential for global collapse of a frame structure can be expressed probabilistically in 

terms of a mean annual frequency of collapse, using a collapse fragility function based on the 

IM at which dynamic instability of the structural system occurs. However, results should be 

obtained with component models that are able to represent the main factors that influence the 

global collapse of a system, e.g., cyclic deterioration in strength and stiffness. 
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MAXIMUM ROOF DRIFT
N=9, T1=1.8, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(a) Incremental Dynamic Analysis Curves 

DISPERSION OF MAXIMUM ROOF DRIFT
N=9, T1=1.8, γ=0.10, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) Dispersion 

Figure 9.1 Relationship between Sa(T1) and the Maximum Roof Drift Angle, N = 9, T1 = 1.8 sec, 
γ = 0.10 
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MAXIMUM STORY DRIFT OVER HEIGHT
N=9, T1=1.8, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.060, BH, K1, S1, LMSR-N
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(a) Incremental Dynamic Analysis Curves 

DISPERSION OF MAX. STORY DRIFT OVER HEIGHT
N=9, T1=1.8, γ=0.10, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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(b) Dispersion 

Figure 9.2  Relationship between Sa(T1) and the Maximum Story Drift Angle over Height,  
N = 9, T1 = 1.8 sec, γ = 0.10 
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SPECTRAL ACCELERATION HAZARD
Van Nuys, CA Horizontal Component, Soil
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Figure 9.3  Estimated Spectral Acceleration Hazard Curve for T = 1.8 sec.  

 

MAXIMUM DRIFT HAZARD
N=9, T1=1.8, γ=0.10, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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Figure 9.4  Drift Hazard Curves, N = 9, T1 = 1.8 sec, γ = 0.10 
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MAXIMUM ROOF DRIFT HAZARD
N=9, T1=1.8, γ=0.10, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N

1.0E-03

1.0E-02

1.0E-01

0 0.005 0.01 0.015 0.02 0.025
Maximum Roof Drift Angle, θr,max

M
ea

n 
A

nn
ua

l F
re

q.
 o

f E
xc

ee
da

nc
e,

 λ
θr

,m
ax

Numerical Integration, Dispersion Based on 16th perc.

Closed-form Solution, Dispersion Based on 16th perc.

Numerical Integration, Dispersion Based on 84th perc.

Closed-form Solution, Dispersion Based on 84th perc.

 
Figure 9.5  Maximum Roof Drift Angle Hazard Curves, N = 9, T1 = 1.8 sec, γ = 0.10 

MAXIMUM STORY DRIFT HAZARD
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Figure 9.6  Maximum Story Drift Angle Hazard Curves, N = 9, T1 = 1.8 sec, γ = 0.10 
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MAXIMUM ROOF DRIFT
N=18, T1=3.6, ξ=0.05, γ=0.10, Peak-oriented model, θ=0.130, BH, K1, S1, LMSR-N
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Figure 9.7  Incremental Dynamic Analysis, N = 18, T1 = 3.6 sec, γ = 0.10 

GLOBAL COLLAPSE FRAGILITY FUNCTION
N=18, T1=3.6, ξ=0.05, Peak-oriented model, θ=0.130, BH, K1, S1, LMSR-N
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Figure 9.8  Global Collapse Fragility Function, N = 18, T1 = 3.6 sec, γ = 0.10 
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SPECTRAL ACCELERATION HAZARD
T=4.0 s., Van Nuys, CA Horizontal Component, Soil
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Figure 9.9  Spectral Acceleration Hazard Curve for T = 4.0 sec (Abrahamson, 2001) 
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10 Summary and Conclusions 

The objective of this study is to improve the understanding of behavior patterns and the 

quantification of seismic demands for nondeteriorationg regular frames subjected to ordinary 

ground motions. In this study, the term ordinary refers to ground motions that are recorded at 

distances greater than 13 km from the fault rupture, do not exhibit pulse-type characteristics, and 

are recorded on stiff soil sites. Engineering demand parameters (EDPs) of interest include roof 

and story drifts, local deformations, absolute floor accelerations and velocities, story shears and 

overturning moments, and energy terms, which are obtained by means of nonlinear time history 

analyses. A relational database management system is used to perform a statistical evaluation of 

seismic demands and establish relationships between structural and ground motion parameters. 

In the context of the performance assessment methodology discussed in this study, the ground 

motion input is characterized by an intensity measure, IM. The primary IM used in this project is 

the spectral acceleration at the first mode of the structure, Sa(T1). This spectral acceleration is 

obtained from an elastic SDOF oscillator with 5% critical damping. Since nondeteriorating 

frames are used, the EDPs of primary interest are those that correlate best with structural, 

nonstructural and contents damage at performance levels related to direct dollar losses and 

downtime (loss of function). The emphasis of this study is on quantification of EDPs for 

performance evaluation, but includes a discussion of issues related to the design of components 

that need to be protected to avoid brittle failure in the response, e.g., columns in a moment-

resisting frame.    

 

The bulk of the analysis is performed by using a set of 40 ordinary ground motions recorded in 

California at stations corresponding to NEHRP site class D (USGS C), in earthquakes with 

moment magnitude ranging from 5.8 to 6.9 and at sites with a closest distance to the fault rupture 

from 13 km to 40 km. A family of two-dimensional, nondeteriorating generic regular frame 

models is utilized, in which nonlinear behavior is modeled by using a concentrated plasticity 
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approach utilizing nonlinear rotational springs.  The dependence of the results on variations in 

the following structural properties and characteristics is investigated: hysteretic model, strain 

hardening in the moment-rotation relationship at the component level, additional strength and 

stiffness provided by elements that do not form part of the moment-resisting frames, story shear 

strength distribution, overstrength, the effect of gravity load moments, and “failure” mechanism.  

A correlation between seismic demands obtained using one-bay generic frame models and a 

model of a “real” structure is discussed to evaluate the effectiveness of generic models in 

reproducing the global seismic behavior of a “real” moment-resisting frame structure.   

  

An exploration of the probabilistic evaluation of EDPs is summarized, in which EDP hazard 

curves are developed based on available seismic hazard information. The use of global collapse 

fragility functions (for a frame in which P-delta causes dynamic instability in the response) along 

with an IM hazard curve to estimate the mean annual frequency of collapse is also presented. 

 

The main conclusions derived in this report are summarized as follows: 

Ground motions and intensity measures 

• As part of the seismic performance assessment process, probabilistic expressions for EDPs 

given an IM need to be established. This necessitates the selection of sets of ground motions 

on which seismic demand analysis can be based, and which represent the seismic hazard 

defined by an appropriate IM. The selection of ground motions, which adequately represent 

the magnitude and distance dependence of the earthquake intensity for an appropriate range 

of return periods, is a fundamental issue of seismic performance assessment. It is found that, 

within certain limits, the frequency characteristics (spectral shapes) are statistically not very 

sensitive to magnitude and distance. The limits tested in this study cover a range of 

magnitude from 5.8 to 6.9, and a range of distances from 13 to 60 km (a set of 80 ground 

motion records is used for this purpose). For a given magnitude, the distance dependence is 

found to be small for the full range of distances investigated, and for a given distance, the 

magnitude dependence is found to be discernible but not very large for the magnitude range 

of 6.5 ≤ Mw ≤ 6.9. Thus, for these ranges it is believed that any sufficiently large (and site-

class consistent) set of records, together with a single IM, can be used to describe the seismic 
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hazard. For larger magnitudes and smaller distances, near-fault effects may significantly alter 

the frequency characteristics. Demand evaluation for these conditions is outside the scope of 

this study. 

 

• The spectral acceleration at the first-mode period of the structure, Sa(T1), (which is the IM 

utilized in this study) is one choice of an IM, but its use may result in large dispersions in 

EDPs, particularly for inelastic systems with significant higher mode or structure P-delta 

effects. The larger the dispersion, the larger is the number of records necessary to determine 

statistical measures with sufficient confidence. The alternative is to select a more complex 

(structure-specific) intensity measure, which may reduce the dispersion but will make the 

ground motion hazard analysis more complex. 

 

Unless otherwise specified, the following conclusions are drawn from a statistical study with 

generic single-bay frames with fundamental periods, T1, equal to 0.1N and 0.2N in which N is 

the number of stories. Frames with N = 3, 6, 9, 12, 15, and 18 stories are used.  The generic 

frames are designed so that the first mode is a straight line and simultaneous yielding is attained 

when subjected to a parabolic (NEHRP, k = 2) load pattern. Frames are designed according to 

the strong-column, weak-beam concept so that a beam-hinge mechanism is developed, i.e., 

plastic hinges are confined to the beam ends and the base of the first-story columns. A peak-

oriented model (Clough model) that includes 3% strain hardening is used to represent the 

hysteretic behavior at plastic hinge locations (cyclic deterioration effects are neglected). 

Rayleigh damping is implemented so that 5% damping is obtained at the first mode and at the 

mode in which the total mass participation exceeds 95%. Global P-delta effects are modeled in 

all cases. Frames are subjected to the set of 40 LMSR-N bins described in Chapter 3, and basic 

EDP-IM relationships are studied as a function of a relative intensity measure defined by 

[Sa(T1)/g]/γ, in which γ is the base shear coefficient, Vy/W. The primary range of interest in this 

study is [Sa(T1)/g]/γ < 8 (and in many cases much less than 8 because strength deterioration may 

set in at much smaller relative intensities). 
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Behavior issues (base case frame models) 

• Short-period frames (T1 = 0.3 sec) and P-delta-sensitive structures (systems in which the 

postyield tangent stiffness from a pushover analysis is negative) present patterns of behavior 

quite distinct from the rest of the systems used in this study:   

 Inelastic short-period frames experience drift demands that are much larger than the 

elastic ones, which imposes large ductility demands on its components. The dynamic 

response of short-period structures is mostly dominated by the first mode; thus, the 

distribution over the height of story drift and ductility demands is rather uniform.   

 P-delta-sensitive frame systems exhibit relative large drift demands due to the formation 

of a negative tangent stiffness in the response. Because of P-delta, the maximum story 

drifts concentrate in a few stories at the bottom of the structure, which can lead to 

dynamic instability problems. Mitigation of potential instability due to P-delta effects can 

be achieved by creating designs (for new buildings) or retrofit strategies (for existing 

buildings) in which the formation of a negative postyield slope in the response is delayed. 

This can be achieved by providing a flexible back-up system. The nonlinear pushover 

analysis technique is a useful to assess the dynamic instability potential of P-delta-

sensitive structures. 

•  Understanding the relationship between fundamental period and number of stories is 

important for design and demand evaluation procedures based on SDOF baseline information 

in which the effect of the number of stories cannot be explicitly represented. The values of 

fundamental used for this evaluation are T1 = 0.6 sec, 1.2 sec, and 1.8 sec. Given the 

fundamental period and the relative intensity, the effect of different number of stories is 

summarized as follows: 

 The effect of higher modes on the drift demands is more noticeable for taller, stiffer 

frames (T1 = 0.1N) than for shorter, flexible ones (T1 = 0.2N). The maximum story drift 

demand over the height is larger for stiffer frames and a larger number of stories 

translates into a less uniform distribution of story drifts over the height as compared to 

frame structures with smaller number of stories. The observations presented in this 

paragraph are applicable to frame structures that are not P-delta sensitive. 
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 For relatively small levels of inelastic behavior, frames with larger number of stories 

exhibit larger maximum absolute floor accelerations. As the relative intensity increases, 

maximum absolute floor acceleration demands become weakly dependent on the number 

of stories. 

 Maximum absolute floor velocity demands are weakly dependent on the number of 

stories for all relative intensity levels.  

• An evaluation of the distribution of damage over the height necessitates the quantification of 

statistical information on EDPs that correlate with damage, such as maximum story drift 

angles, maximum absolute floor accelerations and velocities, maximum plastic beam 

rotations, and normalized hysteretic energy demands. A summary of behavior patterns of the 

distribution over the height of these EDPs is as follows: 

 For the base case generic frames used in this study, and except for short-period systems, 

the maximum story drift angle demands concentrate at the top stories for elastic behavior 

and relatively low levels of inelastic behavior. As the level of inelastic behavior 

increases, maximum story drift angle demands migrate towards the bottom stories. The 

large top story drifts at small levels of inelastic deformation are due to the fact that the 

beam strength at the top floors is tuned to the NEHRP k = 2 load pattern. For real frame 

structures, in which gravity loads tend to control beam sizes at the top floors, smaller 

maximum story drifts in the top stories are expected. Thus, the design story shear strength 

distribution is critical to assess the level of damage over the height of a structure. 

 Except for short-period systems, maximum absolute floor accelerations concentrate at the 

top floors for elastic systems and systems with relative small levels of inelastic behavior. 

Maximum absolute floor acceleration demands migrate to the bottom floors with an 

increase in the relative intensity.  For short-period systems, maximum absolute floor 

accelerations occur at the top floor regardless of the level of inelastic behavior. This 

information has relevant implications in the design of acceleration-sensitive components 

because current seismic design guidelines assume amplification of floor accelerations 

proportional to height regardless of the level of inelastic behavior, fundamental period, 

and number of stories. 

 Maximum absolute floor velocity demands also tend to concentrate at the top of the 

structures regardless of the structural period and the level of inelastic behavior. 
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 The distribution of maximum beam plastic rotations and normalized hysteretic energy 

demands (defined as the hysteretic energy dissipated at plastic hinge locations normalized 

by the yield moment times the yield rotation of the component) follow patterns similar to 

those observed for the distribution of maximum story drift angles over the height.   

• Cumulative damage in structural components is believed to be proportional to the normalized 

hysteretic energy dissipated in the segment of the response preceding the excursion with the 

maximum deformation amplitude (prepeak response segment).  This issue is particularly 

important for stiffness-degrading models in which a large amount of energy can be dissipated 

in small hysteretic loops without inducing significant additional structural damage to the 

component. If this is the case, energy demand evaluation based on the total energy dissipated 

by a component may provide a misleading picture of its real damage state. In Chapter 5, a 

definition of strong motion duration that identifies the interval of the response that is most 

relevant for demand evaluation and damage assessment is discussed. This strong motion 

duration tends to increase with fundamental period and relative intensity. A rapid increase is 

observed for P-delta-sensitive frames. 

• For regular frame structures with story shear strengths tuned to a code-specified load pattern, 

simultaneous yielding in all stories is likely to occur during their nonlinear dynamic 

response. Thus, a reduction of the story overturning moments based on Σ2Mpi/L is not 

justified, especially at medium and large relative intensity levels. 

• Higher modes (particularly the second mode) and dynamic redistribution of forces cause the 

point of inflection in some columns to move from near the midheight of a column (for elastic 

behavior) to one of its ends, which in some cases produces a condition of single curvature in 

a column. This behavior is not appropriately captured by a pushover analysis based on a 

predefined load pattern, since the effects of higher modes and dynamic redistribution are not 

incorporated. These changes to the column moment diagram lead to: 

 large moments at the ends of columns, which translate into strong column factors (SCFs) 

that increase almost linearly with the level of inelastic behavior. Except for the short-

period frame, T1 = 0.3 sec, which exhibits larger SCFs, SCFs increase with increasing 

fundamental period. Median strong column factors of 3 and larger are observed in the 

range of intensity levels of interest for nondeteriorating frames. Thus, the potential of 

plastic hinging in columns is high for regular frames designed according to the strong-

column, weak beam requirements of current code provisions, which in the United States 
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require strong column factors greater than or equal to 1.0 for steel, and 1.2 for reinforced 

concrete frames. 

 large moments at the midheight of columns. Thus, a design based on the assumption of a 

point of inflection near the midheight of the column is not adequate once the structure 

experiences large levels of inelastic behavior. 

Behavior issues (variations to the base case) 

• The amount of stiffness degradation present at the component level can have a noticeable 

effect on the drift demands of a frame structure. For instance, frames that are not sensitive to 

P-delta with hysteretic behavior that exhibits “severe” stiffness degradation (significant 

pinching in the response) tend to experience larger roof and story drift demands than models 

with less stiffness degradation (peak-oriented model) and models with no stiffness 

degradation (bilinear models). The effect of severe stiffness degradation in the response of 

regular frame structures is more noticeable than in the response of SDOF systems. Frame 

structures that are sensitive to structure P-delta effects approach the onset of dynamic 

instability at smaller relative intensity values when the moment-rotation relationship at the 

component level does not experience stiffness degradation (bilinear model). This 

phenomenon is attributed to the fact that the response of the system with bilinear hysteretic 

behavior spends more time on the envelope of the moment-rotation relationship of its 

components, which added to the P-delta effect produces an effective a negative tangent 

stiffness in P-delta-sensitive structures.  

• Strain hardening in the moment-rotation relationship at the component level is beneficial in 

order to decrease (and in some cases eliminate) the potential for dynamic instability in the 

response. 

• Structural and nonstructural elements that contribute to the lateral stiffness and strength of a 

moment-frame structure, but customarily are not included in the model of the frame, may be 

very beneficial in delaying the onset of dynamic instability, particularly if these elements 

maintain their stiffness far into the inelastic range. 

• The magnitude and distribution over the height of maximum story drifts are sensitive to the 

“static” story shear strength pattern and the presence of overstrength in the response.  
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 Story shear strength patterns that are intended to account for the contribution of higher 

mode effects, i.e., parabolic load pattern, produce designs with smaller drift demands and 

a more uniform distribution of maximum story drift angles over the height than the ones 

obtained with other load patterns, e.g., triangular and uniform. Story shear strength 

patterns causing significant strength irregularities over the height may lead to the 

formation of undesirable story mechanisms and compromise the stability of the system.  

 The design of real frame structures may lead to story overstrength values that vary with 

height. Such overstrength is not always associated with a decrease in story drifts. For P-

delta-sensitive frames, the presence of overstrength is beneficial because it reduces the 

relative intensity at which dynamic instability is approached.  

• The effect of gravity load moments on the roof drift is negligible. For relatively small levels 

of intensity, gravity load moments reduce the maximum story drifts because the system 

reaches the small postyield stiffness from the pushover analysis at a larger drift as compared 

to systems without gravity load moments. 

• Plastic hinging in columns should be avoided in order to prevent the formation of story 

mechanisms that lead to large story drift demands. Story mechanisms cause maximum story 

drift angles to concentrate in a few stories, increasing the potential for dynamic instability 

when P-delta effects are considered. 

Quantification of deformation, acceleration, and velocity demands 

In this study, EDPs of interest for damage assessment include the maximum roof drift angle, 

θr,max, the average of the maximum story drift angles, θsi,ave, the maximum story drift angle over 

the height, θs,max, the maximum absolute floor acceleration over the height, af,max, and the 

maximum absolute floor velocity over the height, vf,max. The statistical evaluation of these EDPs 

is based on a counted median value (which provides a measure of the central tendency of the 

EDP given the IM) and a measure of dispersion, which is defined as the standard deviation of the 

natural log of the data and accounts for record-to-record variability. A summary of the most 

important aspects regarding the statistical evaluation of the aforementioned EDPs is presented as 

follows: 

• Except for inelastic short-period systems and P-delta-sensitive frames, the median 

normalized maximum roof drift angle, θr,max/Sd(T1), in which Sd(T1) is the elastic spectral 
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displacement at the first-mode period, is approximately equal to the first-mode participation 

factor, PF1, which implies that both the elastic and inelastic roof displacements are 

dominated by the first mode (PF1 is obtained using a first-mode shape which is normalized to 

be equal to one at the roof level). θr,max/Sd(T1) is a stable quantity associated with a small 

dispersion especially for the range of relative intensities of interest in this study, [Sa(T1)/g]/γ 

< 8. 

• The normalized average of maximum story drift angles, θsi,ave/Sd(T1), shows trends similar to 

that of the maximum roof drift angle. Its dispersion is also comparable to that of the 

normalized maximum roof drift angle except at low levels of inelastic behavior ([Sa(T1)/g]/γ 

< 2) in which higher modes cause larger dispersions. The ratio θsi,ave/θr,max is a very stable 

parameter which is weakly dependent on the fundamental period. For a given fundamental 

period, the median θsi,ave/θr,max is not sensitive to the number of stories. The dispersion 

associated with this ratio is very small (in the order of 0.15), which implies that this 

parameter is slightly dependent on the frequency content of the ground motions. A simplified 

relationship to obtain median estimates of θsi,ave/θr,max as a function of the fundamental period 

is presented in Chapter 4. This relationship is applicable to the range of relative intensities of 

interest and structures that are not sensitive to P-delta effects. 

• Median normalized maximum story drift angles over the height, θs,max/Sd(T1), exceed the 

median roof drift by a percentage that increases with period, i.e., the median of the ratio 

θs,max/θr,max increases with period. For a given period and relative intensity, higher mode 

effects cause systems with larger number of stories to experience larger median θs,max/θr,max, 

and hence, a less uniform distribution of maximum story drift angles over the height. The 

dispersion of this ratio is relatively small (less than 0.25) except for [Sa(T1)/g]/γ < 2 at which 

higher mode effects cause the dispersion to increase. Simplified relationships to estimate the 

median θs,max/θr,max as a function of the fundamental period and the number of stories are also 

given in Chapter 4. These relationships are applicable to the range of relative intensities of 

interest and structures that are not sensitive to P-delta effects. 

• PGA and PGV are used to normalize floor acceleration and velocity demands because they 

provide a direct measure of the amplification (or de-amplification) of floor demands relative 

to the ground floor. Moreover, except for the T1 = 0.3 sec frame, absolute floor acceleration 

demands correlate better with PGA rather than Sa(T1) because of inelastic effects and the 
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influence of higher modes in the response. Except for medium to long-period systems (T1 > 

1.2 sec) and large relative intensities, absolute floor velocity demands are controlled by the 

first mode; thus, Sv(T1) is a more efficient ground motion IM for elastic and moderately 

inelastic systems. 

• The amplification of floor accelerations and velocities with respect to maximum ground 

motion parameters, e.g., PGA and PGV, respectively, decreases with relative intensity until it 

becomes rather constant with increasing levels of inelastic behavior. This trend is not 

observed in the SDOF system for which the normalized maximum acceleration demands are 

approximately inversely proportional to the strength reduction factor, i.e., relative intensity 

level. 

• The amplification of absolute floor acceleration and velocity demands with respect to PGA 

and PGV, respectively, is slightly dependent on the frequency content of ordinary ground 

motions, which is demonstrated by their small dispersion as compared to the dispersion 

observed for the maximum story drift demands. 

Probabilistic assessment of EDPs 

• Results presented in Chapter 9 demonstrate that when the spectral acceleration at the first 

mode is used as the IM, EDP hazard curves can be developed using available seismic hazard 

information. This process gives good results provided the frequency content of the ground 

motions is not very sensitive to magnitude and distance. When different scalar IMs (or a 

vector of IMs) are needed to adequately describe the seismic hazard, e.g., for the case of 

near-fault ground motions, the development of EDP hazard curves necessitates the 

modification of available seismic hazard information and/or the development of new seismic 

hazard information on selected IMs. 

• Closed-form solutions provide a very useful and convenient way of describing EDP hazard 

curves. In some cases, the variation in the dispersion of the EDP (given IM) with the 

intensity level is significant. Thus, good judgment must be exercised when using closed-form 

solutions (based on constant dispersion) to evaluate EDP hazard curves.  

• The potential for global collapse of a frame structure can be expressed probabilistically in 

terms of a mean annual frequency of collapse, using a fragility function based on the value of 

the IM that causes global collapse. Rigorous collapse assessment implies that these results 
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should be obtained with component models that are able to represent the main factors that 

influence the global collapse of a system, e.g., cyclic deterioration in strength and stiffness. 

 

The conclusions and observations presented in this chapter are based on two-dimensional, 

nondeteriorating generic regular frame models subjected to ordinary ground motions.  

Interpretation of these conclusions needs to be made within this context and the conditions 

identified in each chapter for the structural models and ground motion input. 

 

This research study provides a step, but not yet a complete answer, toward a comprehensive 

quantification of EDPs. Additional information on seismic behavior and quantification of EDPs 

and their uncertainties has to be obtained by addressing issues such as: 

• Near-fault ground motions 

• Additional lateral-load-resisting systems, e.g., structural walls and dual systems 

• Axial-moment-shear (P-M-V) interaction 

• Soil-foundation-structure interaction 

• Cyclic deterioration effects 

• Asymmetric hysteretic behavior at the component level, e.g., My
+ ≠ |My

-| 

• Irregularities in plan and elevation 

• Different stiffness distribution over the height 
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Appendix A: Properties and Static Behavior of Base 
Case Generic Regular Frame Models 

A.1 PROPERTIES OF THE BASE CASE FAMILY OF GENERIC FRAME MODELS 

The general characteristics of the base case family of generic frame models used in this study are 

listed in Section 2.4.1. Modal and structural properties are summarized in more detail in Tables 

A.1 to A.18. The tables are divided into two major sections: 

 

Table of modal properties (Tables A.1 to A.6) 

1. Modal properties (first five modes only, i denotes mode number) 

• Period ratios, Ti / T1 

• Participation factors, PFi 

• Mass participation, MPi (as a fraction of the total mass) 

• Modal damping, ξi 

 

2. Mode shapes (first five modes) 

• Normalized mode shapes, φi  

 

Table of structural properties (Tables A.7 to A.18) 

1. Stiffness properties (i denotes story or floor) 

• Weight ratio, Wi / W (W = total weight) 

• Moment of inertia ratio, Ii / I1 (I is the same for columns and top beam in a story) 

• Story stiffness ratio (load pattern independent), Kai / Ka1. The story stiffness is defined here as 

the load (story shear force) required to produce a unit displacement of a subassembly 

consisting of a “story” (two columns and the beam above). The columns of the subassembly 
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are fixed at the base and all three elements (two columns and beam) have the same moment 

of inertia. 

• Floor stiffness ratio (load pattern independent), Kfi / Kf2.  Floor stiffness is defined as the 

story shear force required producing a unit displacement of a subassembly consisting of a 

floor beam and half of the length of the columns on top and below the floor level (assuming 

points of inflection occurs at the midheight of columns). This definition is used at all levels, 

except for the top floor where the subassembly is composed of the floor beam and half of the 

length of the columns below it. 

• Story stiffness ratio, Kki / Kk1, based upon triangular load pattern and Ksi / Ks1, based upon 

parabolic load pattern. Story stiffness is defined here as the load-pattern-dependent story 

shear force required to cause a unit story drift in that story. 

• Beam stiffness ratio, Kbi / Kb2 (beam stiffness, Kb = 6EI / L) 

• Spring stiffness at base, Kc = 3EI / L of the second-floor beam (see Section A.2) 

 

2. Strength and deformation parameters for a structure designed with a normalized base shear 

strength γ = Vy / W = 1.0 and a parabolic design load pattern without considering P-Delta 

effects (i denotes story or floor). 

• Story shear strength ratio, Vi / V1 

• Story overturning moment ratio, MOTi / MOT1 (overturning moment based on the axial loads 

and bending moments at the bottom of the columns in a story) 

• Story strain-hardening ratio from pushover analysis, αsi (story strain hardening is different 

from the element strain hardening, since the columns provide additional stiffness after 

yielding in the beams and at the base occurs). 

• Floor beam strength ratio, Mybi / Myb2 

• Column strength at base, Myc 

• Beam end yield rotation ratio, θybi / θyb2 

• Column yield rotation at base, θyc 

• Story drift ratio, δsi / δr, where δsi is the story drift in story i, and δr is the roof displacement 

• Story drift angle ratio, θsi / θr (θi is defined as δsi / hi and θr as δr / H, where hi is the story 

height and H the total height) 
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A.2 ROTATIONAL SPRINGS AT THE BASE 

As discussed in Section 2.4.1 the stiffness of the base case generic frames is tuned so that the 

first mode is a straight line. Relative member stiffnesses are assigned so that for any given story, 

the columns and the beam above them have the same moment of inertia.  In order to obtain a 

straight-line first mode, when assuming a fixed end condition of the columns at the base, the 

required moment of inertia of the first-story column should be smaller than the moment of inertia 

of the second-story columns (and in some cases, smaller than the moment of inertia of a few 

stories above the first-story level).   

 

A flexible spring is added at the bottom of the first-story columns to obtain a uniform 

distribution of moments of inertia over the height. The elastic stiffness of the rotational springs is 

equal to 3EI/L, where I and L are the moment of inertia and span of the second floor beam.  The 

flexible springs are also used to model plastification at the bottom of the first-story columns. For 

elastic behavior, the point of inflection is near the midheight of the first-story columns due to the 

presence of the flexible springs with stiffness 3EI/L at the base. Thus, the total elastic stiffness at 

the rotational degree of freedom at the base is given by: 

                                                               
sc

sc
T KK

KK
K

+
=                                                (A.1) 

where Kc is the rotational stiffness provided by the column (which is approximated by 

6EIcolumn/Lcolumn) and Ks is the rotational stiffness provided by the spring (3EIbeam/Lbeam = 

1.5EIcolumn/Lcolumn).  Thus,  
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6=                                                (A.2) 

Because the objective is to have a moment-rotation relationship with a post-yield stiffness KT2 = 

0.03KT (3% strain hardening) while the column element remains elastic, the post-yield stiffness 

of the spring is given by Ks2 = 0.024145Ks. With this stiffness value, 3% strain hardening at the 

base of the first-story columns is approximately obtained if there is no significant change in the 

moment gradient of the column once the rotational spring at the base has yielded. 

 

In order to assess whether the presence of flexible springs at the base has a significant effect on 

the dynamic behavior of the frame structures as compared to frame models in which 
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plastification is modeled as part of the element formulation, nonlinear time history analyses are 

performed with the 18-story frame (T1 = 3.6 s. and γ = 0.08, bilinear model with 3% strain 

hardening) subjected to the set of 20 SAC 2/50 ground motions (Somerville, 1997). For the case 

without flexible springs at the base, plastification at the bottom of the first-story columns is 

modeled by using the DRAIN-2DX beam-column element, which allows the formation of plastic 

hinges at the ends of the element (in this case plastic hinging is allowed only at one end, e.g., at 

the bottom of the first-story columns). Figure A.1 presents statistical results for the distribution 

of the maximum story drift angles over the height using models with and without flexible springs 

at the base. It can be seen that both models exhibit a similar response justifying the use of the 

frame models with flexible springs at the base.   

A.3 NONLINEAR STATIC BEHAVIOR AND STRUCTURE P-DELTA EFFECTS 

Figures A.2 and A.3 show the nonlinear pushover curves for the base case family of generic 

frame models used in this study. Global as well as first-story pushover curves are depicted. The 

curves are plotted in a normalized domain, in which normalization values are those obtained 

based on a first-order analysis (not considering P-delta effects).  When absolute values are of 

interest, the pushover curves can be “scaled” by using the yield values included in Tables A.7 to 

A.18.   

 

Some of the pushover curves exhibit a negative postyield stiffness due to structure P-delta 

effects.  In this report, structure P-delta is quantified by using the elastic first-story stability 

coefficient (FEMA 368, 2000), which is defined here as 
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where V’
1 is the equivalent shear force at the first-story level caused by structure P-delta effects, 

V1 is the base shear force,  P is the total dead + live load acting at the first-story level, δ1 is the 

first-story drift from the elastic portion of the pushover curve, and h1 is the height of the first 

story. 

 

This elastic first-story stability coefficient can also be estimated by using the following equation 

(Aydinoglu, 2001): 
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where W is the total seismic effective weight, N is the number of stories, g is the acceleration of 

gravity, and T1 is the fundamental period of the frame. Equation A.4 assumes equal story heights 

and masses as well as an elastic straight-line deflected shape, which is a reasonable assumption 

for the base case family of generic frames used in this study. 

 

Figure A.4 shows the relationship between the fundamental period, number of stories, and elastic 

first-story stability coefficient. The values of θ used in this study are based on a P/W ratio of 1.4, 

which implies that the total gravity load acting at the first-story level is computed based on the 

total dead load plus live load equal to 40% of the dead load.  A ratio P/W of 1.4 is considered to 

be conservative (a value of 1.2 is more representative of average conditions). 

A.4 MODELING OF PLASTIC HINGES TO AVOID SPURIOUS DAMPING 
MOMENTS AT THE JOINTS 

In this study, the Rayleigh damping formulation is used based on the following relationship: 

                                                   oo KMC βα +=                                                          (A.5) 

where C is the viscous damping matrix, M is the mass matrix, Ko is the initial stiffness matrix and 

α and βo are the mass and stiffness proportional factors. This formulation is implemented in the 

DRAIN-2DX computer program. 

 

An alternative viscous damping matrix is given by: 

                                                  ttt KMC βα +=                                                           (A.6) 

where Ct is the current damping matrix, Kt is the tangent (current) stiffness matrix, and βt is the 

stiffness proportional factor. Tangent stiffness proportional damping is not an option in DRAIN-

2DX. 

 

The authors of DRAIN-2DX implemented a constant damping matrix formulation (Equation 

A.5) to avoid unbalance of forces during the analysis (which is based on an event-to-event 

strategy, DRAIN-2DX, 1993). However, a constant damping matrix causes spurious damping 

moments at the joints once a change of stiffness occurs in nonlinear elements that have stiffness 
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proportional damping based on their initial stiffness (Bernal, 1994). Although dynamic 

equilibrium is satisfied, spurious damping moments cause static equilibrium to be violated at 

joints as shown in Figure A.5. This figure shows the beam, column, and spring moments at a 

joint normalized by the beam plastic moment at the top floor of a one-bay, 18-story frame 

(elasto-plastic hysteretic behavior is used). Plastification is allowed at the beam end springs and 

the spring at the bottom of the first-story columns. In this case, the columns are flexible and 

elastic, the beams are rigid, and the springs are flexible, so stiffness proportional damping based 

on the initial stiffness is assigned to the columns and springs.   

 

The presence of spurious damping moments can be understood by looking at the dynamic 

equilibrium equation. For a nonlinear system, Newmark’s equation for the average acceleration 

method is implemented in DRAIN-2DX as: 
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where {u} is the vector of nodal deformations, {Fdamp}and{Felastic}are vectors corresponding to 

the “damping” and the elastic restoring forces (or moments) computed at the element level. For 

each element, the damping force is calculated as the product of the stiffness proportional factor, 

β, the initial stiffness of the element, and the current velocity at the degree of freedom of interest. 

The left-hand side of Equation A.7 includes the damping and stiffness matrices as a function of 

the current tangent stiffness. The velocities used to calculate {Fdamp} will be “correct” if the 

damping matrix Ct is proportional to the current stiffness matrix. However, if Ct is a function of 

the initial stiffness matrix, Ko, it will not be modified when nonlinear elements change stiffness. 

Therefore, if Equation A.7 is used with the damping matrix C (which is based on the initial 

stiffness) as opposed to Ct, the calculated displacements will not be consistent with the damping 

forces and static equilibrium is not always satisfied.   

 

In order to obtain a solution that satisfies both static and dynamic equilibrium, three different 

alternatives are feasible: 

• Use mass proportional damping only. This solution enforces static equilibrium at all times, 

but it is not implemented, since higher modes will be “under-damped,”.  Moreover, a model 



 

 
 

315

that includes damping proportional to both mass and stiffness is considered to be more 

representative of “real” conditions. 

• Use Kt in the solution algorithm. This alternative provides an approximate solution, but it is 

not considered, since the use of Kt in the solution of the equation of motion may lead to 

potential unbalance of forces when an event-to-event strategy is implemented. Moreover, it is 

not clear how to implement this approach when nonlinear elements have a negative slope 

(this issue is applicable to elements that include strength deterioration, e.g., elements that 

model fracture at a connection). 

• Model plastic hinging by using nonlinear rotational springs with a rigid initial slope (rigid as 

compared to the stiffness of the beam attached to them) and flexible beam elements, while 

assigning zero stiffness proportional damping to the nonlinear springs.  This alternative 

provides an approximate solution to the problem. This is the strategy implemented in the 

models used in this study (see paragraphs below). 

 

Plastic hinging in beams is modeled by using rotational springs at the beam ends that have a 

stiffness, Kspring, which is equal to 10 times the rotational stiffness of the beam element, Kele (a 

value greater than 10 may cause numerical problems in the solution).  Thus, at each beam end, 

the total rotational stiffness, Krot is given by: 

                           
elespring

elespring
rot KK

KK
K

+
=                         (A.8) 

the modified element stiffness, Kele, is computed from Krot = 6EI/L (I is the moment of inertia at 

that floor (or story) level, L is the beam span), and Kspring = 10Kele. 

 

In order to obtain 3% strain hardening in the moment-rotation relationship at the ends of the 

beams, the post-yield rotational spring stiffness is equal to 0.002804Kspring. 

 

Because no stiffness proportional damping is assigned to the nonlinear rotational springs, the β 

(stiffness proportional) factor for the beam element needs to be multiplied by 1.1 to compensate 

for the lack of stiffness proportional damping provided by the rotational springs. A factor of 1.1 

is needed, since Kele = 1.1Krot. For the generic frames, zero stiffness proportional damping is also 

assigned to the rotational spring at the base (see Section A.2), so the β value for the first-story 
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column elements needs to be increased by a factor of 2.5, since Ks = 0.25Kc = 1.25KT and the 

spring is located only at one end of the column. 

 

The models discussed in the previous paragraph, which are the ones used in this study, satisfy 

both dynamic and static equilibrium at each joint, as it is shown in Figure A.6. In this case, 

columns and beams are elastic and flexible and the springs have an initial stiffness equal to 10 

times 6EIele/Lele of the flexible beams, so stiffness proportional damping based on the initial 

stiffness is assigned to the columns and beams only.   

 

Figure A.7 shows statistical values for the normalized maximum story drift angle over the height 

corresponding to a frame with 9 stories and a fundamental period of 0.9 sec. Results for the 

generic model used in this study (in which static equilibrium is satisfied) and a model in which 

beams are rigid and all the flexibility is concentrated in the rotational springs at the beam ends 

are presented. For the second model, in which static equilibrium is not satisfied, the 

displacements are smaller in the inelastic range. This behavior occurs because the element 

damping forces are based on their initial stiffness; thus, additional damping is present in the 

system once the rotational springs enter the nonlinear range.   
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Table A.1  Modal Properties, N = 3, T1 = 0.3 sec, and 0.6 sec 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3

1 1.000 1.286 0.857 0.050 0/1 0.000 0.000 0.000
2 0.335 -0.353 0.115 0.052 1/2 0.333 -1.000 1.000
3 0.156 0.218 0.028 0.104 2/3 0.667 -0.927 -0.844

3/4 1.000 0.951 0.229  
 

Table A.2  Modal Properties, N = 6, T1 = 0.6 sec, and 1.2 sec 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3 φ4 φ5

1 1.000 1.385 0.808 0.050 0/1 0.000 0.000 0.000 0.000 0.000
2 0.380 0.536 0.119 0.038 1/2 0.167 0.392 0.753 0.876 0.893
3 0.209 0.267 0.043 0.051 2/3 0.333 0.678 0.913 0.401 -0.401
4 0.130 0.194 0.019 0.076 3/4 0.500 0.758 0.270 -0.775 -0.697
5 0.088 0.136 0.008 0.114 4/5 0.667 0.542 -0.735 -0.591 1.000

5/6 0.833 -0.038 -1.000 1.000 -0.533
6/7 1.000 -1.000 0.758 -0.331 0.111  

 

Table A.3  Modal Properties, N = 9, T1 = 0.9 sec, and 1.8 sec 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3 φ4 φ5

1 1.000 1.421 0.789 0.050 0/1 0.000 0.000 0.000 0.000 0.000
2 0.394 0.626 0.117 0.040 1/2 0.111 0.229 -0.491 -0.624 -0.773
3 0.230 -0.298 0.045 0.050 2/3 0.222 0.431 -0.809 -0.806 -0.631
4 0.152 -0.226 0.022 0.068 3/4 0.333 0.579 -0.828 -0.386 0.295
5 0.107 -0.165 0.012 0.094 4/5 0.444 0.645 -0.506 0.362 0.875

5/6 0.556 0.606 0.072 0.851 0.262
6/7 0.667 0.437 0.686 0.558 -0.808
7/8 0.778 0.119 0.982 -0.424 -0.544
8/9 0.889 -0.361 0.533 -1.000 1.000

9/10 1.000 -1.000 -1.000 0.590 -0.334  
 

Table A.4  Modal Properties, N = 12, T1 = 1.2 sec, and 2.4 sec 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3 φ4 φ5

1 1.000 1.440 0.780 0.050 0/1 0.000 0.000 0.000 0.000 0.000
2 0.399 0.677 0.115 0.035 1/2 0.083 0.160 -0.309 -0.561 -0.568
3 0.240 -0.361 0.045 0.039 2/3 0.167 0.308 -0.557 -0.898 -0.753
4 0.163 -0.201 0.023 0.050 3/4 0.250 0.436 -0.692 -0.867 -0.417
5 0.119 -0.192 0.013 0.065 4/5 0.333 0.532 -0.679 -0.460 0.230

5/6 0.417 0.585 -0.507 0.174 0.728
6/7 0.500 0.585 -0.196 0.761 0.669
7/8 0.583 0.523 0.196 0.991 0.029
8/9 0.667 0.389 0.573 0.660 -0.691

9/10 0.750 0.175 0.799 -0.163 -0.741
10/11 0.833 -0.127 0.714 -1.000 0.162
11/12 0.917 -0.520 0.150 -0.962 1.000
12/13 1.000 -1.000 -1.000 0.933 -0.489  
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Table A.5  Modal Properties, N = 15, T1 = 1.5 sec, and 3.0 sec 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3 φ4 φ5

1 1.000 1.452 0.774 0.050 0/1 0.000 0.000 0.000 0.000 0.000
2 0.402 -0.711 0.114 0.035 1/2 0.067 -0.122 -0.220 -0.391 -0.491
3 0.245 -0.406 0.045 0.040 2/3 0.133 -0.238 -0.412 -0.684 -0.771
4 0.170 -0.234 0.024 0.050 3/4 0.200 -0.344 -0.551 -0.801 -0.715
5 0.126 -0.186 0.014 0.063 4/5 0.267 -0.435 -0.618 -0.704 -0.334

5/6 0.333 -0.504 -0.599 -0.408 0.212
6/7 0.400 -0.548 -0.489 0.018 0.674
7/8 0.467 -0.560 -0.296 0.459 0.814
8/9 0.533 -0.537 -0.040 0.777 0.522

9/10 0.600 -0.472 0.245 0.843 -0.094
10/11 0.667 -0.362 0.510 0.585 -0.699
11/12 0.733 -0.201 0.689 0.037 -0.865
12/13 0.800 0.013 0.707 -0.613 -0.335
13/14 0.867 0.285 0.478 -1.000 0.627
14/15 0.933 0.615 -0.077 -0.623 1.000
15/16 1.000 1.000 -1.000 0.980 -0.683  

 

 

Table A.6  Modal Properties, N = 18, T1 = 1.8 sec, and 3.6 sec 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3 φ4 φ5

1 1.000 1.459 0.770 0.050 0/1 0.000 0.000 0.000 0.000 0.000
2 0.404 -0.735 0.113 0.035 1/2 0.056 -0.098 -0.168 -0.291 0.463
3 0.248 -0.440 0.045 0.040 2/3 0.111 -0.193 -0.322 -0.531 0.789
4 0.174 -0.263 0.024 0.050 3/4 0.167 -0.283 -0.447 -0.678 0.880
5 0.131 0.167 0.014 0.062 4/5 0.222 -0.363 -0.532 -0.702 0.701

5/6 0.278 -0.432 -0.568 -0.595 0.299
6/7 0.333 -0.486 -0.548 -0.370 -0.211
7/8 0.389 -0.523 -0.470 -0.063 -0.666
8/9 0.444 -0.539 -0.338 0.271 -0.906

9/10 0.500 -0.532 -0.160 0.561 -0.824
10/11 0.556 -0.499 0.049 0.736 -0.417
11/12 0.611 -0.437 0.269 0.737 0.191
12/13 0.667 -0.344 0.469 0.532 0.759
13/14 0.722 -0.216 0.616 0.140 0.996
14/15 0.778 -0.052 0.667 -0.353 0.690
15/16 0.833 0.151 0.575 -0.777 -0.124
16/17 0.889 0.394 0.291 -0.884 -0.993
17/18 0.944 0.678 -0.228 -0.372 -1.000
18/19 1.000 1.000 -1.000 1.000 0.929  
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Table A.7 Structural Properties, N = 3, T1 = 0.3 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 8458858 21450 0.003
1/2 0.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.037 1.000 1.000 0.307 0.920
2/3 0.333 0.731 0.731 0.681 0.929 0.864 0.731 0.929 0.611 0.039 0.775 1.061 0.330 0.989
3/4 0.333 0.344 0.344 0.595 0.643 0.542 0.344 0.643 0.250 0.043 0.337 0.978 0.364 1.091

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
600 28002 3730 630 1364 1313 16917715 600 222171 42440 0.003 1.490 0.003  

 

 

 

Table A.8  Structural Properties, N = 3, T1 = 0.6 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 2114714 21450 0.010
1/2 0.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.035 1.000 1.000 0.307 0.920
2/3 0.333 0.731 0.731 0.681 0.929 0.864 0.731 0.929 0.611 0.037 0.775 1.061 0.330 0.989
3/4 0.333 0.344 0.344 0.595 0.643 0.542 0.344 0.643 0.250 0.041 0.337 0.978 0.364 1.091

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
600 7000 932 157 341 329 4229429 600 222171 42440 0.010 5.940 0.014  

 

 

 

Table A.9  Structural Properties, N = 6, T1 = 0.6 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 7635208 43310 0.006
1/2 0.167 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.035 1.000 1.000 0.146 0.876
2/3 0.167 0.924 0.924 0.919 0.989 0.958 0.924 0.989 0.794 0.036 0.963 1.041 0.151 0.904
3/4 0.167 0.812 0.812 0.799 0.945 0.868 0.812 0.945 0.590 0.038 0.888 1.094 0.159 0.954
4/5 0.167 0.648 0.648 0.623 0.846 0.729 0.648 0.846 0.395 0.040 0.746 1.152 0.170 1.017
5/6 0.167 0.437 0.437 0.390 0.670 0.539 0.437 0.670 0.220 0.042 0.518 1.185 0.182 1.089
6/7 0.167 0.189 0.189 0.318 0.396 0.299 0.189 0.396 0.082 0.045 0.203 1.076 0.193 1.160

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
1200 25275 3366 584 1200 1174 15270416 1200 837415 86930 0.006 7.000 0.008  

 

 

 

Table A.10  Structural Properties, N = 6, T1 = 1.2 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 1908802 43310 0.023
1/2 0.167 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.035 1.000 1.000 0.146 0.876
2/3 0.167 0.924 0.924 0.919 0.989 0.958 0.924 0.989 0.794 0.036 0.963 1.041 0.151 0.904
3/4 0.167 0.812 0.812 0.799 0.945 0.868 0.812 0.945 0.590 0.038 0.888 1.094 0.159 0.954
4/5 0.167 0.648 0.648 0.623 0.846 0.729 0.648 0.846 0.395 0.040 0.746 1.152 0.170 1.017
5/6 0.167 0.437 0.437 0.390 0.670 0.539 0.437 0.670 0.220 0.042 0.518 1.185 0.182 1.089
6/7 0.167 0.189 0.189 0.318 0.396 0.299 0.189 0.396 0.082 0.045 0.203 1.076 0.193 1.160

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
1200 6319 842 146 299 294 3817604 1200 837415 86930 0.023 28.000 0.032  
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Table A.11  Structural Properties, N = 9, T1 = 0.9 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 7316974 64920 0.009
1/2 0.111 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036 1.000 1.000 0.096 0.861
2/3 0.111 0.965 0.965 0.963 0.996 0.980 0.965 0.996 0.859 0.036 0.988 1.024 0.097 0.875
3/4 0.111 0.913 0.913 0.908 0.982 0.937 0.913 0.982 0.719 0.037 0.964 1.056 0.100 0.902
4/5 0.111 0.836 0.836 0.829 0.951 0.872 0.836 0.951 0.581 0.038 0.919 1.098 0.104 0.938
5/6 0.111 0.739 0.739 0.727 0.895 0.785 0.739 0.895 0.447 0.039 0.846 1.145 0.109 0.981
6/7 0.111 0.618 0.618 0.602 0.807 0.674 0.618 0.807 0.321 0.040 0.737 1.193 0.115 1.031
7/8 0.111 0.475 0.475 0.453 0.681 0.541 0.475 0.681 0.207 0.042 0.587 1.234 0.120 1.084
8/9 0.111 0.311 0.311 0.275 0.509 0.385 0.311 0.509 0.112 0.043 0.388 1.247 0.126 1.138
9/10 0.111 0.131 0.131 0.500 0.284 0.206 0.131 0.284 0.040 0.045 0.147 1.120 0.132 1.189

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
1800 24222 3226 562 1141 1120 14633949 1800 1841684 130200 0.009 16.800 0.013  

 

Table A.12  Structural Properties, N = 9, T1 = 1.8 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 1829244 64920 0.035
1/2 0.111 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036 1.000 1.000 0.096 0.861
2/3 0.111 0.965 0.965 0.963 0.996 0.980 0.965 0.996 0.859 0.036 0.988 1.024 0.097 0.876
3/4 0.111 0.913 0.913 0.908 0.982 0.938 0.913 0.982 0.719 0.037 0.964 1.056 0.100 0.902
4/5 0.111 0.836 0.836 0.829 0.951 0.873 0.836 0.951 0.581 0.038 0.919 1.098 0.104 0.938
5/6 0.111 0.739 0.739 0.727 0.895 0.785 0.739 0.895 0.447 0.039 0.846 1.145 0.109 0.981
6/7 0.111 0.618 0.618 0.602 0.807 0.674 0.618 0.807 0.321 0.040 0.737 1.193 0.115 1.031
7/8 0.111 0.475 0.475 0.453 0.681 0.541 0.475 0.681 0.207 0.042 0.587 1.234 0.120 1.084
8/9 0.111 0.311 0.311 0.275 0.509 0.385 0.311 0.509 0.112 0.043 0.388 1.247 0.126 1.138
9/10 0.111 0.131 0.131 0.220 0.284 0.206 0.131 0.284 0.040 0.045 0.147 1.120 0.132 1.190

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
1800 6055 807 141 284 281 3658487 1800 1841684 130200 0.036 66.900 0.052  

 

Table A.13  Structural Properties, N = 12, T1 = 1.2 sec 

Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern
Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 7150259 86520 0.012
1/2 0.083 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.037 1.000 1.000 0.071 0.854
2/3 0.083 0.980 0.980 0.979 0.998 0.988 0.980 0.998 0.894 0.038 0.994 1.014 0.072 0.864
3/4 0.083 0.950 0.950 0.948 0.992 0.963 0.950 0.992 0.789 0.038 0.984 1.036 0.073 0.880
4/5 0.083 0.906 0.906 0.902 0.978 0.925 0.906 0.978 0.684 0.038 0.964 1.064 0.075 0.903
5/6 0.083 0.849 0.849 0.844 0.954 0.874 0.849 0.954 0.580 0.039 0.931 1.096 0.078 0.932
6/7 0.083 0.780 0.780 0.773 0.915 0.811 0.780 0.915 0.480 0.040 0.884 1.133 0.080 0.964
7/8 0.083 0.698 0.698 0.689 0.860 0.735 0.698 0.860 0.383 0.041 0.818 1.173 0.083 1.000
8/9 0.083 0.603 0.603 0.591 0.785 0.646 0.603 0.785 0.292 0.041 0.731 1.213 0.086 1.038
9/10 0.083 0.495 0.495 0.481 0.785 0.622 0.495 0.785 0.209 0.042 0.619 1.251 0.090 1.078

10/11 0.083 0.374 0.374 0.356 0.562 0.428 0.374 0.562 0.126 0.043 0.479 1.280 0.093 1.120
11/12 0.083 0.241 0.241 0.212 0.408 0.299 0.241 0.408 0.067 0.045 0.309 1.281 0.097 1.163
12/13 0.083 0.101 0.101 0.168 0.222 0.157 0.101 0.222 0.023 0.046 0.115 1.143 0.100 1.203

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
2400 23670 3153 550 1108 1098 14300519 2400 3268844 173400 0.012 30.700 0.018  

 

Table A.14  Structural Properties, N = 12, T1 = 2.4 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 1787565 86520 0.048
1/2 0.083 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.037 1.000 1.000 0.071 0.854
2/3 0.083 0.980 0.980 0.979 0.998 0.988 0.980 0.998 0.894 0.038 0.994 1.014 0.072 0.863
3/4 0.083 0.950 0.950 0.948 0.992 0.963 0.950 0.992 0.789 0.038 0.984 1.036 0.073 0.880
4/5 0.083 0.906 0.906 0.902 0.978 0.925 0.906 0.978 0.684 0.038 0.964 1.064 0.075 0.903
5/6 0.083 0.849 0.849 0.844 0.954 0.875 0.849 0.954 0.580 0.039 0.931 1.096 0.078 0.931
6/7 0.083 0.780 0.780 0.773 0.915 0.811 0.780 0.915 0.480 0.040 0.884 1.133 0.080 0.964
7/8 0.083 0.698 0.698 0.689 0.860 0.735 0.698 0.860 0.383 0.041 0.818 1.173 0.083 1.000
8/9 0.083 0.603 0.603 0.591 0.785 0.646 0.603 0.785 0.292 0.041 0.731 1.213 0.086 1.038
9/10 0.083 0.495 0.495 0.481 0.785 0.621 0.495 0.785 0.209 0.042 0.619 1.251 0.090 1.079

10/11 0.083 0.374 0.374 0.356 0.562 0.428 0.374 0.562 0.126 0.043 0.479 1.280 0.093 1.121
11/12 0.083 0.241 0.241 0.212 0.408 0.299 0.241 0.408 0.067 0.045 0.309 1.281 0.097 1.164
12/13 0.083 0.101 0.101 0.168 0.222 0.157 0.101 0.222 0.023 0.046 0.115 1.143 0.100 1.203

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
2400 5917 788 138 277 275 3575129 2400 3268844 173400 0.049 122.600 0.071  
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Table A.15  Structural Properties, N = 15, T1 = 1.5 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 7048071 108100 0.015
1/2 0.067 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.038 1.000 1.000 0.057 0.850
2/3 0.067 0.987 0.987 0.986 0.999 0.992 0.987 0.999 0.914 0.038 0.997 1.010 0.057 0.856
3/4 0.067 0.967 0.967 0.965 0.996 0.976 0.967 0.996 0.828 0.038 0.992 1.025 0.058 0.867
4/5 0.067 0.939 0.939 0.936 0.989 0.952 0.939 0.989 0.742 0.038 0.981 1.045 0.059 0.883
5/6 0.067 0.902 0.902 0.898 0.976 0.918 0.902 0.976 0.657 0.040 0.964 1.068 0.060 0.903
6/7 0.067 0.857 0.857 0.853 0.956 0.877 0.857 0.956 0.573 0.040 0.939 1.096 0.062 0.926
7/8 0.067 0.804 0.804 0.798 0.927 0.827 0.804 0.927 0.491 0.039 0.905 1.126 0.063 0.952
8/9 0.067 0.742 0.742 0.735 0.887 0.769 0.742 0.887 0.411 0.040 0.859 1.157 0.065 0.981
9/10 0.067 0.672 0.672 0.664 0.835 0.702 0.672 0.835 0.334 0.040 0.800 1.191 0.067 1.012

10/11 0.067 0.593 0.593 0.584 0.770 0.627 0.593 0.770 0.263 0.041 0.727 1.225 0.070 1.043
11/12 0.067 0.507 0.507 0.496 0.690 0.544 0.507 0.690 0.196 0.042 0.638 1.259 0.072 1.076
12/13 0.067 0.412 0.412 0.399 0.592 0.453 0.412 0.592 0.137 0.042 0.531 1.289 0.074 1.111
13/14 0.067 0.308 0.308 0.292 0.476 0.353 0.308 0.476 0.086 0.043 0.404 1.310 0.076 1.146
14/15 0.067 0.197 0.197 0.173 0.340 0.244 0.197 0.340 0.045 0.045 0.256 1.302 0.079 1.181
15/16 0.067 0.082 0.082 0.136 0.181 0.127 0.082 0.181 0.016 0.045 0.094 1.156 0.081 1.213

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
3000 23332 3108 543 1092 1085 14096141 3000 5016774 216500 0.015 48.800 0.023  

 

 

 

 

Table A.16  Structural Properties, N = 15, T1 = 3.0 sec 
Story/Floor Stiffness Properties γ = V y / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 1762018 108100 0.061
1/2 0.067 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.038 1.000 1.000 0.057 0.850
2/3 0.067 0.987 0.987 0.986 0.999 0.992 0.987 0.999 0.914 0.038 0.997 1.010 0.057 0.856
3/4 0.067 0.967 0.967 0.965 0.996 0.976 0.967 0.996 0.828 0.038 0.992 1.025 0.058 0.867
4/5 0.067 0.939 0.939 0.936 0.989 0.952 0.939 0.989 0.742 0.038 0.981 1.045 0.059 0.883
5/6 0.067 0.902 0.902 0.898 0.976 0.918 0.902 0.976 0.657 0.040 0.964 1.068 0.060 0.903
6/7 0.067 0.857 0.857 0.853 0.956 0.877 0.857 0.956 0.573 0.040 0.939 1.096 0.062 0.926
7/8 0.067 0.804 0.804 0.798 0.927 0.827 0.804 0.927 0.491 0.039 0.905 1.126 0.063 0.952
8/9 0.067 0.742 0.742 0.735 0.887 0.769 0.742 0.887 0.411 0.040 0.859 1.157 0.065 0.981

9/10 0.067 0.672 0.672 0.664 0.835 0.702 0.672 0.835 0.334 0.040 0.800 1.191 0.067 1.012
10/11 0.067 0.593 0.593 0.584 0.770 0.627 0.593 0.770 0.263 0.041 0.727 1.225 0.070 1.043
11/12 0.067 0.507 0.507 0.496 0.690 0.544 0.507 0.690 0.196 0.042 0.638 1.259 0.072 1.076
12/13 0.067 0.412 0.412 0.399 0.592 0.453 0.412 0.592 0.137 0.042 0.531 1.289 0.074 1.111
13/14 0.067 0.308 0.308 0.292 0.476 0.353 0.308 0.476 0.086 0.043 0.404 1.310 0.076 1.146
14/15 0.067 0.197 0.197 0.173 0.340 0.244 0.197 0.340 0.045 0.045 0.256 1.302 0.079 1.181
15/16 0.067 0.082 0.082 0.136 0.181 0.127 0.082 0.181 0.016 0.045 0.094 1.156 0.081 1.213

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
3000 5833 777 136 273 271 3524035 3000 5016774 216500 0.061 195.200 0.090  

 

 

 

 

 

 



 

 
 

322

 

 

 

 

 

Table A.17  Structural Properties, N = 18, T1 = 1.8 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 6978823 129700 0.019
1/2 0.056 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036 1.000 1.000 0.047 0.847
2/3 0.056 0.991 0.991 0.990 1.000 0.994 0.991 1.000 0.928 0.036 0.998 1.007 0.047 0.852
3/4 0.056 0.977 0.977 0.976 0.998 0.982 0.977 0.998 0.856 0.036 0.995 1.018 0.048 0.861
4/5 0.056 0.957 0.957 0.955 0.993 0.965 0.957 0.993 0.784 0.036 0.988 1.033 0.048 0.872
5/6 0.056 0.931 0.931 0.929 0.986 0.942 0.931 0.986 0.712 0.036 0.978 1.050 0.049 0.887
6/7 0.056 0.900 0.900 0.897 0.974 0.913 0.900 0.974 0.641 0.037 0.964 1.071 0.050 0.904
7/8 0.056 0.862 0.862 0.859 0.957 0.879 0.862 0.957 0.571 0.037 0.944 1.094 0.051 0.923
8/9 0.056 0.819 0.819 0.815 0.934 0.838 0.819 0.934 0.502 0.037 0.917 1.119 0.052 0.944

9/10 0.056 0.770 0.770 0.764 0.903 0.792 0.770 0.903 0.434 0.038 0.882 1.146 0.054 0.967
10/11 0.056 0.715 0.715 0.709 0.865 0.739 0.715 0.865 0.369 0.038 0.839 1.174 0.055 0.992
11/12 0.056 0.654 0.654 0.647 0.817 0.680 0.654 0.817 0.307 0.038 0.787 1.203 0.057 1.018
12/13 0.056 0.587 0.587 0.580 0.760 0.616 0.587 0.760 0.248 0.038 0.724 1.233 0.058 1.045
13/14 0.056 0.515 0.515 0.506 0.692 0.546 0.515 0.692 0.193 0.039 0.650 1.262 0.060 1.074
14/15 0.056 0.436 0.436 0.427 0.612 0.470 0.436 0.612 0.143 0.039 0.563 1.290 0.061 1.103
15/16 0.056 0.352 0.352 0.341 0.519 0.388 0.352 0.519 0.099 0.040 0.463 1.314 0.063 1.133
16/17 0.056 0.262 0.262 0.248 0.412 0.300 0.262 0.412 0.062 0.041 0.349 1.330 0.065 1.164
17/18 0.056 0.167 0.167 0.146 0.291 0.206 0.167 0.291 0.032 0.041 0.219 1.315 0.066 1.193
18/19 0.056 0.069 0.069 0.114 0.154 0.107 0.069 0.154 0.011 0.042 0.080 1.166 0.068 1.221

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
3600 23102 3077 538 1080 1075 13957647 3600 7187546 259700 0.019 71.100 0.027  

 

 

 

Table A.18  Structural Properties, N = 18, T1 = 3.6 sec 
Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern

Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θyc δsi / δr θsi / θr

0/1 1744706 129700 0.074
1/2 0.056 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036 1.000 1.000 0.047 0.848
2/3 0.056 0.991 0.991 0.990 1.000 0.994 0.991 1.000 0.928 0.036 0.998 1.007 0.047 0.852
3/4 0.056 0.977 0.977 0.976 0.998 0.983 0.977 0.998 0.856 0.036 0.995 1.018 0.048 0.861
4/5 0.056 0.957 0.957 0.955 0.993 0.965 0.957 0.993 0.784 0.036 0.988 1.033 0.048 0.872
5/6 0.056 0.931 0.931 0.929 0.986 0.942 0.931 0.986 0.712 0.036 0.978 1.050 0.049 0.887
6/7 0.056 0.900 0.900 0.897 0.974 0.913 0.900 0.974 0.641 0.037 0.964 1.071 0.050 0.904
7/8 0.056 0.862 0.862 0.859 0.957 0.879 0.862 0.957 0.571 0.037 0.944 1.094 0.051 0.923
8/9 0.056 0.819 0.819 0.815 0.934 0.838 0.819 0.934 0.502 0.037 0.917 1.119 0.052 0.944

9/10 0.056 0.770 0.770 0.764 0.903 0.792 0.770 0.903 0.434 0.038 0.882 1.146 0.054 0.967
10/11 0.056 0.715 0.715 0.709 0.865 0.739 0.715 0.865 0.369 0.038 0.839 1.174 0.055 0.992
11/12 0.056 0.654 0.654 0.647 0.817 0.680 0.654 0.817 0.307 0.038 0.787 1.203 0.057 1.018
12/13 0.056 0.587 0.587 0.580 0.760 0.616 0.587 0.760 0.248 0.038 0.724 1.233 0.058 1.045
13/14 0.056 0.515 0.515 0.506 0.692 0.546 0.515 0.692 0.193 0.039 0.650 1.262 0.060 1.074
14/15 0.056 0.436 0.436 0.427 0.612 0.470 0.436 0.612 0.143 0.039 0.563 1.290 0.061 1.103
15/16 0.056 0.352 0.352 0.341 0.519 0.388 0.352 0.519 0.099 0.040 0.463 1.314 0.063 1.133
16/17 0.056 0.262 0.262 0.248 0.412 0.300 0.262 0.412 0.062 0.041 0.349 1.330 0.065 1.164
17/18 0.056 0.167 0.167 0.146 0.291 0.206 0.167 0.291 0.032 0.041 0.219 1.315 0.066 1.193
18/19 0.056 0.069 0.069 0.114 0.154 0.107 0.069 0.154 0.011 0.042 0.080 1.166 0.068 1.221

W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
3600 5776 769 135 270 269 3489412 3600 7187546 259700 0.074 284.400 0.110  
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MAXIMUM STORY DRIFT ANGLE OVER HEIGHT
N=18, T1=3.6, ξ=0.05 (first two modes), γ = 0.08, Bilinear model, θ=0.0, BH, K1, S1, LA 2/50 Records
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Figure A.1  Story Drift Profiles from Nonlinear Time History Analyses, N = 18, T1 = 3.6 sec, 
 γ = 0.08 (Models with and without Flexible Springs at the Base of the First-Story Columns) 
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GLOBAL PUSHOVER CURVES
T1 = 0.1N Frame Models
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(a) T1 = 0.1N 

GLOBAL PUSHOVER CURVES
T1 = 0.2N Frame Models
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(b) T1 = 0.2N 

 
Figure A.2  Global Pushover Curves, Base Case Family of Generic Frames 
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FIRST STORY PUSHOVER CURVES
T1 = 0.1N Frame Models
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(b) T1 = 0.2N 

 
Figure A.3  First-Story Pushover Curves, Base Case Family of Generic Frames 
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Figure A.4  First-Story Stability Coefficients, Base Case Family of Generic Frames 

MOMENT TIME HISTORY, [Sa(T1)/g]/γ = 2.0
N=18, T1=3.6, ξ=0.05, Elasto-plastic model, θ=0.130, BH, K1, S1, NR94cnp
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Figure A.5  Time History of Normalized Beam, Column, and Spring Moments at a Joint at the Top 

Floor, N = 18, T1 = 3.6 sec, Model That Does Not Satisfy Static Equilibrium in the Response 
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MOMENT TIME HISTORY, [Sa(T1)/g]/γ = 2.0
N=18, T1=3.6, ξ=0.05, Elasto-plastic model, θ=0.130, BH, K1, S1, NR94cnp
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Figure A.6  Time History of Normalized Beam, Column and Spring Moments at a Joint at the Top 
Floor, N = 18, T1 = 3.6 sec, Model Used in This Study 

NORMALIZED MAXIMUM STORY DRIFT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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Figure A.7  Normalized Maximum Story Drift Angle over the Height, N = 9, T1 = 0.9 sec, Model 

Used in This Study (for Which Static Equilibrium is Satisfied) and Model in Which Static 
Equilibrium Is Not Satisfied   
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Appendix B: EDPs for Regular Frame Structures 

The following EDPs are obtained from nonlinear time history analyses of generic frame 

structures and are stored in the relational database: 

 

 
Global EDPs 

 

Global Deformation Demands: 

• Maximum positive and negative floor displacements, δ+
fi,max and δ−

fi,max 

• Maximum positive and negative story drift angles, θsi
+

,max and θsi
-
,max 

• Residual floor displacements, δfi,res 

• Residual story drift angles, θsi,res 

• Positive and negative story ductilities, µsi
+ and µsi

- 

 

Global Strength Demands: 

• Maximum positive and negative story shear force demand (first-order shear force, i.e., not 

including equivalent shear force from structure P-delta effects), Vsi
+

,max and     Vsi
-
,max 

• Maximum story overturning moment demand obtained from the axial loads in columns, 

MOTi,max (column bending moments are ignored). Axial loads are computed in global 

coordinates. 

• Maximum positive and negative total story overturning moment demand, MtotalOTi
+

,max and 

MtotalOTi
-
,max (first + second-order story overturning moments). Axial loads are computed in 

global coordinates.  
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• First-order (not including P-delta effects) story overturning moment demand at the instant of 

time when the maximum demand defined in the previous bullet point occurs, M’1OTi
+

,max and 

M’1OTi
-
,max 

• Equivalent height of the resultant of the lateral floor loads (story overturning moment 

normalized by first-order story shear force) corresponding to the overturning moments shown 

in the previous two bullet points, heq1i, heq2i 

• Maximum positive and negative first-order (not including P-delta effects) story overturning 

moment demand, M1OTi
+

,max and MlOTi
-
,max.  Axial loads are computed in global coordinates. 

• Total story overturning moment demand at the instant of time when the maximum demand 

shown in the previous bullet point occurs, M’totalOTi
+

,max and M’totalOTi
-
,max 

• Equivalent height of resultant of the lateral floor loads (story overturning moment normalized 

by first-order story shear force) corresponding to the overturning moments shown in the 

previous two bullet points, heq3i, heq4i 

• Maximum positive and negative absolute floor accelerations, afi
+

,max, afi
-
,max  

• Maximum positive and negative absolute floor velocities, vfi
+

,max, vfi
-
,max  

 

Global Energy Demands: 

• Total damping energy dissipated, DE 

• Input energy at the end of record, IEend 

 

 

Local EDPs 

 

Rotational Spring Demands (for rotational springs  in both the beam-hinge and column-hinge 

models): 

• Maximum spring rotation in the positive and negative directions, θ+
spr,max and θ−

spr,max 

• Maximum spring plastic rotation in the positive and negative directions, θ+
pspr,max and 

θ−
pspr,max 
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• Cumulative spring plastic rotation ranges in the positive and negative directions, 

Σ∆θpspr
+ and Σ∆θpspr

−   

• Cumulative spring plastic rotation ranges in the positive and negative directions during the 

pre-peak interval of the response (definition of pre-peak interval of the response is presented 

in Section 5.4), Σ∆θpp,pspr
+ and Σ∆θpp,pspr

−   

• Maximum spring moments in the positive and negative directions, M+
spr,max, M

−
spr,max 

• Spring residual rotation, θspr,res 

• Number of positive and negative inelastic excursions, Nspr
+ and Nspr

- 

• Number of positive and negative inelastic excursions in the prepeak interval of the response, 

Npp,spr
+

, and Npp,spr
- 

• Time of first yielding, ty,spr (see Section 5.4) 

• Duration of prepeak interval of the response, tpp,spr (see Section 5.4) 

• Hysteretic energy dissipated in the springs (positive and negative directions), HEspr
+ and 

HEspr
- 

• Hysteretic energy dissipated in the springs during the prepeak period of the response 

(positive and negative directions), HEpp,spr
+ and HEpp,spr

- 

• Total normalized hysteretic energy dissipated in the springs, NHEspr = HEspr / (Myspr*θyspr) 

 

 

Column Element Demands: 

• Maximum positive and negative moments at the top and bottom of columns, Mct
+

,max, Mct
-
,max,  

Mcb
+

,max, Mcb
-
,max 

• Moments at the opposite end of a column at the instant of time when the maximum moment 

demand defined in the previous bullet point occurs (to obtain the moment gradient when the 

maximum moment demand occurs), M’ct
+

,max, M’ct
-
,max,  M’cb

+
,max, M’cb

-
,max 

• Maximum positive and negative moment at the column midheight, Mcm
+,max, Mcm

-,max 

• Maximum column shear force, Vc,max  (including second-order effects, i.e. P∆/L [which is the 

actual shear perpendicular to the chord of the member when P-∆ is included]). 
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• Maximum column axial force in tension and compression, Pct,max, Pcc,max (including gravity 

loads; however, the axial loads due to dynamic action can be obtained, since the gravity loads 

are constant). Axial loads are computed in global coordinates. 
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