Impacts of Geo-Spatial Data Resolution on the Uncertainty of Liquefaction-Induced Displacement Estimates

Chris Bain, Jonathan Bray
with
D. Hutabarat, T. O’Rourke, S. Lindvall, N. Abrahamson, K. Soga, et al.

UC Berkeley, Cornell Univ., LCI

Funded by: CEC & PEER
Liquefaction-Induced Failures of Buried Pipelines

1994 Northridge EQ

Balboa Blvd Pipes

Granada Trunk Line
O'Rourke & Palmer 1994
Geologic Data Levels at Different Scales

Level 1 Geologic Map

CGS Digital CA Geologic Map 1:750,000
(Jennings 1977; updated by Gutierrez et al. 2010)

Level 2 Geologic Map

Bedrossian (2012) Geologic Map 1:100,000

S. Lindvall
<table>
<thead>
<tr>
<th>Lateral Spreading Model Inputs & Outputs</th>
<th>Level 1 – State-Wide</th>
<th>Level 2 - Region</th>
<th>Level 3 – Site Specific</th>
<th>Level 4 - Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Zhu et al. (2017) models combined with HAZUS to estimate lateral spread displacement (D) Inputs: PGV, inferred V_{530}, precip, d_c, d_r, d_w, modeled GWT Outputs: Liquefaction Susceptibility Class converted to D</td>
<td>A) Youd & Perkins (1978) and Witter et al. (2006) geologic based assessments used with HAZUS to estimate D Inputs: Surficial Quaternary geologic maps, PGA, M_w, GWT Outputs: Liquefaction susceptibility converted to D</td>
<td>A) Zhang et al. (2004) Inputs: CPT, PGA, M_w, GWT, topography Outputs: Estimate of D</td>
<td>Level 3 methods and advanced analyses (e.g., using FLAC, PLAXIS, OpenSees)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B) Youd et al. (2002) Inputs: Boring with $(N_{1}){60}$, W, S, $T{15}$, F_{15}, D_{5015} Outputs: Estimate of D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C) Faris et al. (2006) Inputs: CPT, PGA, M_w, GWT, topography Outputs: Estimate of D</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Spreading Data Levels

<table>
<thead>
<tr>
<th>Lateral Spreading Model Inputs & Outputs</th>
<th>Level 1 – State-Wide</th>
<th>Level 2 - Region</th>
<th>Level 3 – Site Specific</th>
<th>Level 4 - Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Zhu et al. (2017) models combined with HAZUS to estimate lateral spread displacement (D) Inputs: PGV, inferred V_{530}, precip, d_c, d_r, d_w, modeled GWT Outputs: Liquefaction Susceptibility Class converted to D</td>
<td>A) Youd & Perkins (1978) and Witter et al. (2006) geologic based assessments used with HAZUS to estimate D Inputs: Surficial Quaternary geologic maps, PGA, M_w, GWT Outputs: Liquefaction susceptibility converted to D</td>
<td>A) Zhang et al. (2004) Inputs: CPT, PGA, M_w, GWT, topography Outputs: Estimate of D</td>
<td>Level 3 methods and advanced analyses (e.g., using FLAC, PLAXIS, OpenSees)</td>
<td></td>
</tr>
</tbody>
</table>
New Regional Lateral Spread Procedure

• Extend Holzer et al. (2011) “Liquefaction Probability Curves for Surficial Geologic Units” methodology

• Collect CPTs in study area for each surficial geologic unit

• Calculate Lateral Displacement Index (LDI) for 225 combinations of PGA, Mw, GWT

• Derive equations for Probability of LDI=“0” and Distribution of non-zero LDI

• Convert LDI to Lateral Spread Displacement (D) using existing topographic relationships

• Use maps of PGA, surficial geology, GWT, and topography to estimate D at regional scale
1989 Loma Prieta EQ in SF Bay

Artificial Fill over Bay Mud

Holocene Alluvial Fan Deposits
1989 Loma Prieta EQ in SF Bay

Prob(LDI="0") Lateral Displacement Index (LDI)
1989 Loma Prieta EQ in SF Bay

Topography in Bay Area

Lateral Spread Displacement (D)
2010 Darfield & 2011 Christchurch EQs in New Zealand

Estimated Mean Displacements vs. Observed Displacements from Lidar Measurements - Christchurch EQ

Estimated Mean Displacements vs. Measured Displacements - Christchurch EQ
Conclusions

• Employ state-wide, regional, & site-specific data levels in OpenSRA to perform geo-hazard analyses

• Regional probabilistic liquefaction-induced lateral spread procedure developed as alternative to existing Level 2 Hazus method

• Back-analyses of Loma Prieta EQ in SF Bay Area and Darfield & Christchurch EQ in Canterbury region show promising results

• Ongoing work focused on reducing overestimation of spatial extent of lateral spreading, especially in areas with slightly sloping ground