The value of sensing for performance-based earthquake engineering assessment of natural gas pipelines and facility systems

UNIVERSITY OF CAL

Kenichi Soga, James Wang, Peter Hubbard, Tianchen Xu, Yong Liang, Sumeet Sinha UC Berkeley

12th National Conference on Earthquake Engineering Salt Lake City, Utah 27 June - 1 July 2022

Background

- Recent advances in sensor & communication technologies improve the monitoring methods for infrastructure assessment
- Advanced risk models are being developed
- However, Infrastructure owners slow at adopting these new technologies due to
 - Up-front costs
 - Change to the original operations
 - Uncertainty of the parameters for simulation tools

Purpose

- Selected emerging sensing & monitoring technologies review
 - Continuous monitoring distributed fiber optic sensor (DFOS) & wireless sensor network (WSN)
 - Remote sensing LiDAR, InSAR & structure from motion (SfM)
 - Leakage detections flow & gas sensing
 - In-line inspection (ILI) method smart PIG
- Reduce the uncertainty in the simulation tools
 - Update the inputs and verify the intermediate and final outputs
- Enhance confidence of using the selected technologies
 - Demonstrations of using emerging sensing technologies

Example Technology Evaluation and Testing Distributed Fiber Optic Strain Sensing

Three Phases:

- 1. State-of-the-art review
- 2. Laboratory testing
- 3. Field testing (requires utility cooperation)

Phase 1: State-of-the-art Review

Distributed Fiber Optic Sensing (DFOS)

- Light signal propagation & back-scattering mechanism
- Back-scatter modes & detection techniques
 - Distributed Strain & Temperature Sensing (DSTS)
 - Distributed Temperature Sensing (DTS)
 - Distributed Acoustic Sensing (DAS)
- Strain transfer mechanism

Cladding

Distributed Fiber Optic Sensing Commercial Review

• Selected commercial analyzers & cables specification

Distributed Strain & Temperature Sensing Analyzers

Distributed Acoustic Sensing Analyzers

TYPES∉	BRAND &	MAX.↓	MIN. READ-	MIN. SPATIAL		MIN. SAMPLE \downarrow	TYPES	BRAND & MODEL	MAX.↓ DISTANCE⊲	READ-OUT↩	MIN. SPATIAL RESOLUTION	FREQUENCY	
	MODEL∉	DISTANCE	OUT↩			FREQUENCY						RANGE ←	MAX. SAMPLE
otdr↓ otda⊲	<u>Neubrex</u> ↓ NBX-7031↩	27km↩	10mm	20mm⊱ [⊐]	20nɛ/↓ 0.001°C⊲	0.2Hz<⊐	φ-↓ OTDR⊱⊐	<u>Optasense</u> ↓ ODH-4←	10km⊲	-<-7	1.3m↩	_ _ ~_	200kHz ^{∠⊐}
ofdr⊲	Luna↓ <u>ODiSI</u> ⁼6100↩	50m≪⊐	0.65mm	-€⊐	<±1με/↓ -∉∃	10Hz€ [□]	φ-↓ OTDR∈⊐	<u>Silixa</u> ↓ iDAS	40km↩	>25cm ^{∠⊐}	1m↩	0.01Hz⁼↓ ~⁼50kHz⊄	100kHz⊲
ofdr⊲	<u>Semicon</u> ↓ OSI-S↩	100m↩	1mm⊱	1mm€⊐	±1με/↓ ±0.1℃<□	4Hz≮⊐	OFDR₽	<u>Neubrex</u> ↓ NBX-S4000↩	50km⇔	20cm<⊐	2.8m←	1Hz⁼↓ ~*2.5kHzሩ⊐	5kHz⇔

Distributed Temperature Sensing Analyzers

BRAND ⁻ & [•] MODEL⊲	MAX.↓ DISTANCE↩	MIN. READ- OUT	MIN. SPATIAL RESOLUTION	ACCURACY	MIN. SAMPLE↓ RATE⊲
<u>Sensornet</u> ↓ HALO-DTS←	4km⊱⊐	2m↩	-⇔-	0.45°C↩	15sec
NKT [•] Photonics↓ LIOS [•] <u>EN.SURE</u> •OTS4⊲	80km√⊐	0.25m⊲	1m↩ [□]	2°C⊲	60sec< [_]
Sensornet↓ Sentinel DTS-XR SM	30km√⊐	1m↩	1m←⊐	-~7	10sec< [□]
OZ [•] Optics↓ ForeSight-BDTS<⊐	10km↩	-<7	1m<⊐	0.3°C↩	24sec⊱⊐

Sensors

	NanZee [™] Sensing	<u>Smartec</u> ⇔	<u>Solifos</u> ↩	<u>Smartec</u>
MODEL⊲	NZS-DSS-C02€ [□]	Hydro '& 'Geo⊲	3_50_1_001↩	SMARTProfile ⁻ II
BUFFER↩	Tight↩	Tight↩	Loose '←	Hybrid↩
TARGETS↩	Strain⇔	Strain & temperature	Temperature	Strain & temperature
DIMENSION	φ5mm⇔	φ6mm	φ3.8mm⊲⊐	8mm x 4mm
DIAGRAM⋳	Steel braid Optical fiber	Arania Yam Strength Monber Centre Strength Monbel/Tarr Optical Tarr Ricerd		

Phase 2: Laboratory Testing

HDPE Pipeline Bending Test - DFOS Distributed Strain & Temperature Sensing (DSTS)

64

Injection site

HDPE Pipeline Bending Test -Analytical Comparison

Pressurized Steel Pipeline Bending Test - DFOS Distributed Strain & Temperature Sensing (DSTS)

Pressurized Steel Pipeline Bending Test - Analytical Comparison

Gas Well Tubing Pressure Test - DFOS Distributed Strain & Temperature Sensing (DSTS) 2022

Phase 3: Field Testing

Field Deployments of DFOS

- 1500' of critical HDPE water pipeline owned by EBMUD
 - Crosses the Hayward fault in Oakland, CA
 - Instrumented using DFOS strain sensing
 - Sensing technology, installation specs and data analysis performed by Soga Research Group

HDPE Pipe Pressurization

Strain can be used to verify when HDPE expansion has stopped

North from crown

16

Strain Monitoring in Natural Gas Wells

• DFOS deployment in natural gas wells

Strain Monitoring in Natural Gas Wells

Next Step: Risk Model Updating

Adopting Measurement to Simulation Tools

Berkeley UNIVERSITY OF CALIFORNIA

THANK YOU!

Any Questions?