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ABSTRACT 

Bridge columns located in regions of high seismicity are generally designed with a large ductility 
capacity. Although this design strategy is both economical and prevents collapse, such columns 
develop high ductility demands when subjected to strong-ground motion, resulting in large 
permanent displacements. To minimize such residual displacements in reinforced concrete (RC) 
columns, a design is proposed whereby longitudinal post-tensioning strands replace some of 
usual longitudinal mild reinforcing bars. The seismic performance of such partially prestressed 
RC columns under near-field strong ground excitation is investigated through a series of 
earthquake simulation tests. 

Based on the results from a series of quasi-static and dynamic analyses conducted prior to 
the tests, a partially prestressed RC column model was designed that varied the configuration of 
the tendon, the number of the tendons and longitudinal mild reinforcement, and the prestressing 
force. 

The earthquake simulation tests demonstrated that (1) the proposed design reduced 
residual displacement significantly; (2) the proposed design did not result in an increase in the 
maximum response displacement, despite reduced energy dissipation; and (3) the proposed 
design did not affect the failure mode. To offset the advantage gained by replacing mild 
reinforcing bars with unbonded tendons to mitigate residual displacements post-event, the tests 
also revealed the vulnerability of the proposed design to aftershocks. 
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1 Introduction 

1.1 RESEARCH BACKGROUND 

The poor performance of reinforced concrete (RC) bridge columns during the 1971 San 
Fernando, California, earthquake prompted a significant amount of research on the ductility 
capacities of RC bridge columns. As a result of this research, the ductility capacities of columns 
have been improved, and total collapse of bridges, as seen in the 1971 earthquake, is now 
preventable with current seismic engineering technology. Unfortunately, bridge columns 
designed to produce high ductility demands are likely to retain large permanent deformations 
following extreme ground shaking, resulting in the long-term closure of highways and significant 
repair costs. Thus, mitigation of such permanent deformations of bridge columns following 
seismic events has resulted in a major research effort. 

A recent analytical study conducted by the authors [Sakai and Mahin 2004] proposed a 
new method to reduce such residual displacements by incorporating an unbonded prestressing 
strand at the center of a lightly reinforced cross section of a column. The study demonstrated the 
following: (1) incorporating an unbonded prestressing strand at the center of a lightly reinforced 
concrete cross section can achieve restoring force characteristics similar to a conventional RC 
column on loading but with substantially less residual displacement upon unloading; and (2) 
columns with unbonded center strands perform very well under uni-directional dynamic 
excitation with a relatively larger post-yield stiffness; the response displacements are only 10% 
larger than those of conventionally designed columns, while the residual displacements can be 
reduced by about 50%. 

Although the analytical results show the effectiveness of the newly proposed design on 
reducing residual displacements, some uncertainties remain concerning the seismic performance 
of the proposed bridge columns, such as the behavior under bi-directional loading condition, the 
P-delta effects, etc.. To validate the effectiveness of this approach in improving seismic 
performance and study the dynamic behavior of the columns, earthquake simulation tests were 
conducted. 

1.2 PREVIOUS RESEARCH 

1.2.1 Studies on the Performance of Partially Prestressed Reinforced Concrete 
Columns 

In the last decade, analytical and experimental research has been conducted to developed design 
strategies to reduce the residual displacements of RC bridge columns subjected to strong ground 



2 

shaking and improve the seismic performance of partially prestressed RC columns. One such 
study can be found in a report by Sakai and Mahin [2004]. 

Several experimental studies on partially prestressed columns or columns with unbonded 
high-strength steel bars have been conducted under uni-directional quasi-static or pseudo- 
dynamic loading conditions. Ikeda [1998] and Zatar and Mutsuyoshi [2000], respectively, 
conducted a series of static and pseudo-dynamic tests for partially prestressed concrete bridge 
columns. Iemura et al. [2002] proposed using unbonded high-strength bars in RC bridge columns 
and investigated the effectiveness of the proposed design through quasi-static loading tests. 
Hewes and Priestley [2001] investigated the seismic performance of an unbonded post-tensioned 
precast concrete segmental bridge column through quasi-static loading tests. 

These studies validated the seismic performance of partially prestressed concrete columns 
or similar columns under quasi-static uni-directional loading. To date, however, no earthquake 
simulation tests or tests under bi-directional conditions have been performed. 

1.2.2 Earthquake Simulation Tests for Circular Reinforced Concrete Columns 

A number of earthquake simulation tests have been performed on circular spirally RC columns. 
Most of these tests were tested under uni-directional loading conditions but with relatively small 
sections [i.e., 200 mm (7.9 in.) in diameter] because of the limited capacity of test facilities. Few 
studies on the dynamic behavior of columns under bi-directional loading are available. More 
detailed information of previous research on earthquake simulation tests can be found in Hachem 
et al. [2003]. 

Dodd and Cook [1992] and Kowalsky et al. [1997] tested 200-mm circular columns 
under uni-directional loading, respectively. Laplace et al. [2001], Yen et al. [2003], and Park et 
al. [2003] conducted shaking table tests on relatively larger specimens, but they were loaded uni-
directionally. Hachem et al. [2003] conducted a series of earthquake simulation tests for circular 
RC columns designed according to a relatively new design code. The effects of multi-directional 
loading were investigated for a 406-mm- (16 in.-) diameter column, demonstrating that the bi-
directionally loaded columns behaved similarly to the uni-directionally loaded columns under a 
design-level earthquake excitation. 

1.3 RESEARCH SCOPE AND ORGANIZATION 

The research presented herein describes earthquake simulation tests to determine the seismic 
performance of partially prestressed RC bridge columns under near-field strong-ground 
excitation. Chapter 2 details the design of RC bridge column models tested, construction of the 
models, material properties, and ground motions selected. Test set-up, instrumentation, and data 
acquisition are described in Chapter 3. Chapter 4 summarizes the dynamic behavior of a 
conventional RC column and a partially prestressed RC column under earthquake excitation. An 
analytical simulation of the dynamic behavior of the columns is presented in Chapter 5. 
Conclusions and recommendations are presented in Chapter 6. 
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The prototype column was reinforced longitudinally with 48 No. 9 [29-mm- (1.1-in.-) 
diameter] deformed bars, providing a longitudinal reinforcement ratio, l , of 1.18%. No. 5 [16-
mm- (0.6-in.-) diameter) spirals were used to confine the concrete core; these were spaced at 76-
mm (3-in.) pitch, resulting in a volumetric ratio s , of 0.61%. Reinforcing bars with a nominal 
yield strength of 420 MPa (Grade 60) were used for both the longitudinal and spiral 
reinforcement. 

For a lateral load applied at the center-of-gravity of the superstructure, the static pushover 
analysis procedures recommended by the SDC resulted in an ultimate lateral load capacity of 
1.29 MN, and a yield and ultimate displacement of 0.11 m (4.33 in.) and 0.58 m (22.83 in.), 
respectively, as shown in Figure 2.2. Thus, the column has a displacement ductility capacity of 
5.2. The effective natural period of column was determined to be 1.26 sec. 

 
Figure 2.3 Ductility and flexural capacity of prototype column. 

2.2 DESIGN OF SPECIMENS 

2.2.1 Dimensional Analysis 

Based on the capacity of the earthquake simulator at the University of California, Berkeley, and 
the configurations of specimens previously tested on the simulator, the diameter of the specimens 
was set at 406 mm (16 in.), resulting in a scale factor in length to the prototype column of 4.5. 

Dimensional analyses [Krawinkler and Moncarz 1982] were conducted to determine 
appropriate scaling factors of other physical quantities and dimensions of the specimens. 
Dimensional similitude requirements for dynamic tests were determined with the following 
conditions: (1) the above scale factor in length was used; (2) the acceleration of gravity was 
maintained; and (3) modulus of elasticity of materials was identical. These conditions are 
expressed as follows: 
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According to the analyses, the three basic dimensions, mass, M, length, L, and time, T, 
were determined to be 20.25, 4.5, and 2.12, respectively. Table 2.1 summarizes the dimensions 
of physical quantities and target scaling factors. Weight density of concrete, inertia mass, and 
rotational moment of inertia was scaled by a factor of 0.22, 20.25, and 410.1, respectively. Strain 
and stress were identical as the same materials were used for both the prototype column and the 
specimen. 

Table 2.1 Dimension of physical quantities and target scaling factors. 

Physical quantity Dimension Target scale factor 

Length L  S  4.5 

Acceleration 2LT   1 1 

Modulus of elasticity 1 2ML T   1 1 

Time T  S  2.12 

Frequency 
1T   1 S  0.471 

Velocity 1LT   S  2.12 

Displacement L  S  4.5 

Area 2L  2S  20.25 

Mass M  2S  20.25 

Rotational mass 2ML  4S  410.06 

Force 2MLT   2S  20.25 

Stiffness 2MT   S  4.5 

Moment 2 2ML T   3S   91.13 

Energy 2 2ML T   3S   91.13 

Weight density 2 2ML T   1 S  0.222 

Strain 1 1 1 

Stress 1 2ML T   1 1 

2.2.2 Conventionally Reinforced Concrete Column Specimen 

The conventional specimen was designed following the target scale factors listed in Table 2.1 
and will subsequently be referred to as the RC specimen. Figure 2.3 shows the effective height of 
the specimen with weighted blocks, which represent superstructure of the prototype bridge; 
Figure 2.4 shows the cross section and reinforcement details of the specimen. Figure 2.5 shows 
the assembled reinforcement of the column before the concrete was cast. 

As mentioned above, the column was 0.41 m (16 in.) in diameter, and the height from the 
bottom of the column to the center-of-gravity of the assembly of the top slab and weighted 
blocks was 2.44 m (8 ft). The column was reinforced with 12 No. 4 [13-mm- (0.51-in.-) 
diameter] deformed bars longitudinally, and with W3.5 5.4-mm- (0.21in.-) diameter round wire 
at 32 mm (1.25 in.)-pitch as spiral reinforcement. The longitudinal reinforcement ratio, l , and 
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Table 2.2 compares the scale factors used in design of the specimen with the target scale 
factors. The RC specimen was designed based on the results from the dimensional analyses with 
the following exceptions: the specimen had a relatively large volumetric ratio of spiral 
reinforcement to avoid undesirable shear failure; this resulted in 50%-larger ductility capacity 
than the prototype column. The weight density was much smaller because normal density 
concrete was used instead of high-density concrete (which is not commonly used in bridge 
construction). In addition, the rotational mass of the test specimen was more than three times 
larger because of the large concrete blocks on the top of the specimen. 

 

Table 2.2 Target scale factors and scale factors used. 

Physical quantities Target Prototype Specimen S.F. used 

Diameter (m) 4.5 1.83 0.406 4.5 

Effective height (m) 4.5 10.97 2.438 4.5 

Aspect ratio 1 6 6 1 

Thickness of cover concrete (mm) 4.5 50.8 12.7 4 

Diameter of longitudinal bar (mm) 4.5 28.7 (No. 9) 12.7 (No. 4) 2.26 

No. of bars 1 48 12 4 

Total area of longitudinal bar (mm2) 20.25 0.03096 0.00155 20 

Longitudinal rebar ratio (%) 1 1.18% 1.19% 0.99 

Diameter of spiral (mm) 4.5 15.9 (No. 6) 5.4 (W3.5) 2.94 

Spacing (mm) 4.5 76.2 31.75 2.4 

Spiral ratio (%) 1 0.61% 0.76% 0.81 

Design strength of concrete (MPa) 1 34.5 34.5 1 

Yield strength of longitudinal bar (MPa) 1 475 475 1 

Top mass (kg) 20.25 4.62105 2.9104 15.85 

Rotational mass (kg m2) 410 3.2106 2.6104 124 

Axial force at bottom of column (kN) 20.25 4500 290 15.52 

Axial force ratio (%) 1 5% 6.5% 0.77 

Weight density of concrete (kN/m3) 0.22 24 24 1 

Effective natural period (sec) 2.12 1.26 0.72 1.74 

Yield displacement (m) 4.5 0.112 0.0263 4.25 

Ultimate displacement (m) 4.5 0.58 0.21 2.76 

Ductility 1 5.18 7.97 0.65 

Flexural strength (kN) 20.25 1290 67.6 19.07 
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Figure 2.6 Ductility and flexural capacity of RC specimen. 

2.2.3 Partially Prestressed Reinforced Concrete Column Specimen 

Based on the findings from the analytical study by Sakai and Mahin [2004], a partially 
prestressed RC column was designed as a lightly-reinforced concrete column with a prestressing 
tendon arranged at the center of cross section that was debonded from concrete. This specimen 
will now be referred to as the PRC specimen. The longitudinal reinforcement ratio was fixed at 
about 0.6%, which is half of that of the RC specimen, and the prestressing tendon was unbonded 
from the bottom of the footing to the top of the top slab. Sakai and Mahin [2004] demonstrated 
that partially prestressed columns require additional confinement of concrete to prevent 
premature crushing of the core concrete. In this case, however, the same spiral arrangement as 
that used in the RC specimen was incorporated because the RC specimen already had higher 
confinement than standard and additional confinement would not be realistic. To select other 
design variables, such as size of tendon and magnitude of prestressing force, a series of quasi-
static analyses was conducted. 

Figure 2.7 shows the dimensions, cross section, and analytical model of the PRC 
specimen, and Figure 2.8 shows the assembled reinforcement of the specimen before the casting 
of the concrete. Twelve No. 3 [10-mm- (0.39-in.-) diameter] deformed bars were used as 
longitudinal reinforcement, resulting in a longitudinal reinforcement ratio of 0.66%. W3.5 round 
wire [5.4-mm- (0.21 in.-) diameter] at 32-mm (1.25-in.) pitch is used as spiral reinforcement. An 
aluminum duct, 76 mm (3 in.) in diameter, was incorporated at the center of the cross section 
from the bottom of the footing to the top slab to install the post-tensioning tendon. 
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The plastic hinge length was assumed to be 0.328 m (12.92 in.), and a three-dimensional 
fiber element was employed to represent flexural hysteretic behavior. Rigid bars were used to 
idealize the footing and the region from the top of the column to the center-of-gravity of the 
superstructure. Linear beam elements with cracked stiffness properties were used for the 
remainder of the column. An unbonded prestressing tendon was represented by a spring element 
spanning between assumed anchorage points. 

The confinement effect of concrete was evaluated based on the model developed by 
Mander et al. [1988]. Unloading and reloading paths were represented by a model proposed by 
Sakai and Kawashima [2000 and 2006]. The envelope curves of longitudinal reinforcing bars and 
tendons were idealized as a bilinear model, with a strain-hardening ratio equal to 2%. A modified 
Menegotto–Pinto model proposed by Sakai and Kawashima [2003] was used to represent the 
hysteretic behavior of rebar and tendons taking into account the Bauschinger effect. More 
detailed information on the analytical model, including the material models, can be found in the 
report by Sakai and Mahin [2004]. P- effects due to the dead load of the top slab and weighted 
blocks were included in the analyses; those due to the prestressing force of the tendon were 
disregarded. 

Table 2.3 summarizes design variables considered. The diameter of the tendons varied 
from 26 mm (1 in.) to 45 mm (1.77 in.), and the prestressing force increased from 157 kN to 604 
kN (35 to 136 kip), resulting in total axial force ratio between 10% to 20%, which is defined 
below as 

total
ps

co g

P P

f A






 (2.4) 

where Pps is the prestressing force. To determine the design variables, three required 
performance criteria were used based on the findings by Sakai and Mahin [2004]. 

1. The flexural strength of the PRC specimen should be similar to that of the RC 
specimen (a margin of error of 5% is allowed for the maximum forces); 

2. The post-yield stiffness should be similar to the RC specimen; and 

3. The quasi-static residual displacement should be smaller than 20% of that of the 
RC specimen. 

Table 2.4 summarizes the quasi-static performance of partially prestressed concrete 
column specimens. Hysteresis of all the columns considered in this study can be found in 
Appendix A. Each column is identified by two design parameters: the first portion denotes the 
size of the tendon, and the second portion denotes the total axial force ratio. For instance: 32-
15% represents the column with a 32-mm (1.26 in.) diameter tendon, and its total axial force 
ratio is 15%. 
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Table 2.3 Variables considered. 

Variables Values 

Diameter of tendon (mm) 

(Prestressing steel ratio ps ) 
26 (1 in.), 32 (1-1/4 in.), 36 (1-3/8 in.), and 45 (1-3/4 in.) 

(0.42%, 0.62%, 0.79%, and 1.29%) 

Total axial force ratio total  

(Prestressing force) 

10%, 12.5%, 15%, 17.5%, and 20% 
(157 kN, 268 kN, 380 kN, 492 kN, and 604 kN) (35, 60, 85, 

110, and 136 kip) 

 

Table 2.4 Quasi-static performance of partially prestressed columns. 

ID No. 
Tendon 

size total    r stad   
(mm) 

Fmax 
(kN) 

Fu (kN) 
K1 

(kN/m) 
py  

(%) 

ED 
(kNm) 

RC ----- 6.5% 8.9 0.120 59.1 51.0 2460 -1.8 29.5 

26-10%  10% 7.7 0.068 51.3 45.9 2218 -1.6 18.6 

26-12.5%  12.5% 7.2 0.034 56.4 49.1 2377 -2.0 18.7 

26-15% 26 mm 15% 6.5 0.023 60.9 51.4 2390 -2.7 18.9 

26-17.5%  17.5% 6.0 0.021 64.9 52.2 2385 -3.8 19.2 

26-20%  20% 5.8 0.018 68.5 54.3 2495 -4.2 19.3 

32-10%  10% 7.4 0.058 52.1 49.3 2222 -0.8 18.6 

32-12.5%  12.5% 7.0 0.034 56.9 52.5 2379 -1.1 18.7 

32-15% 32 mm 15% 6.3 0.022 61.4 55.6 2392 -1.5 18.9 

32-17.5%  17.5% 5.6 0.020 65.5 58.2 2389 -2.3 19.2 

32-20%  20% 5.4 0.031 69.3 60.6 2497 -2.8 20.5 

36-10%  10% 7.2 0.054 53.3 51.7 2226 -0.2 18.6 

36-12.5%  12.5% 6.8 0.034 57.4 54.8 2381 -0.5 18.8 

36-15% 36 mm 15% 6.2 0.025 61.8 57.6 2394 -1.0 19.0 

36-17.5%  17.5% 5.5 0.032 65.9 60.3 2390 -1.7 20.4 

36-20%  20% 5.3 0.033 69.6 62.7 2498 -2.2 20.7 

45-10%  10% 6.7 0.057 59.2 57.4 2235 1.3 18.9 

45-12.5%  12.5% 6.3 0.048 61.7 58.6 2385 0.2 19.6 

45-15% 45 mm 15% 5.8 0.049 64.5 61.5 2398 -0.2 20.4 

45-17.5%  17.5% 5.3 0.040 67.2 63.8 2395 -0.8 20.7 

45-20%  20% 5.1 0.041 70.2 66.1 2500 -1.3 21.1 
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The quasi-static residual displacement, r stad  , was determined as the residual displacement 
on the loading path from the peak displacement in the third cycle where most of the partially 
prestressed columns reached the ultimate state. The initial stiffness, K1, the post-yield tangential 
stiffness, K2, and the post-yield stiffness ratio, py , are defined here as: 

0
1

0

y

y

F
K

d
  (2.5) 

1
2

1

u

u

F F
K

d d





 (2.6) 

2

1
py

K

K
   (2.7) 

where 0yF  and 0yd  are the force and displacement when the longitudinal bar at the tensile edge 

yields, 1F  and 1d  are the force and displacement at the maximum displacement in the first cycle, 

and uF  and ud  are the force and displacement when the core concrete at the compressive edge 
reaches the ultimate strain. The capacity of energy dissipation, ED, is evaluated based on energy 
dissipated up to the third cycle. The column ductility, , is defined as the ratio of the ultimate 
displacement to the yield displacement of each column. 

u

y

d

d
   (2.8) 

Table 2.4 suggests that only five of twenty columns, (26-15%, 32-15%, 36-15%, 
45-10%, and 45-12.5%) satisfied criteria No. 1. Figure 2.9 compares quasi-static hysteresis 
of the first three columns with that of the RC specimen; 45-10%, and 45-12.5% columns 
were not included in this comparison because they obviously had skeleton curves different from 
that of the RC specimen as they had positive post-yield tangential stiffness. 

The conventional specimen reached the ultimate state, where core concrete strain 
exceeded the ultimate strain, in the fifth cycle while the PRC specimens reached the ultimate 
state in the third or fourth cycle. The hysteresis after columns reached the ultimate state are 
shown in the dotted line in Figure 2.9 and Appendix A. Figure 2.9 suggests that 26-15% and 
32-15% columns had similar skeleton curves to that of the RC specimen; however, 26-15% 
column had a larger negative post-yield stiffness than the RC specimen, while 32-15% column 
had a smaller post-yield stiffness. Because a column with a smaller negative post-yield stiffness 
performs better under dynamic excitation, the column with the 32-mm (1.26-in.) tendon and a 
total axial force ratio of 15% was selected. The prestressing force necessary to achieve 15% total 
axial force ratio was 380 kN (85 kip). The column also satisfies the third criteria, wherein the 
quasi-static residual displacement of the column in the third cycle was 0.022 m (0.87 in.), which 
is 18% of that of the RC specimen. 
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(a) 

 
(b) 

 
(c) 

Figure 2.9 Quasi-static behaviors of specimens with unbonded post-tensioning 
tendons: (a) 26-15% specimen; (b) 32-15% specimen; and (c) 36-15% 
specimen. 
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The tendon was 3.05 m (10 ft) long and 32 mm (1.25 in.) in diameter. Grade 150 KSI 
(1035 MPa) bar from Williams Form Engineering Corp. was used as a post-tensioning tendon. 
The ultimate strength of the tendon was 834 kN (188 kip). 

2.2.4 Footing and Top Slab 

A footing and a top slab were designed to fix the column to the earthquake simulator platform 
and to support the weighted blocks. Designed to remain elastic during the test, design forces to 
the footing were evaluated for the plastic moment capacity of the column when the plastic hinge 
was fully developed, while the top slab was checked for bending and shear due to the supported 
load of the weighted blocks. 

The footing was 1.52-m (5-ft) square and 0.46-m (18-in) thick. Shown in Figure 2.10, it 
was reinforced longitudinally with No. 6 [19-mm- (0.75-in.) diameter] deformed bars and 
transversally with No. 3 [10-mm- (0.4-in.) diameter] stirrup ties. Figure 2.11 shows the top slab 
that is 2.44-m (8-ft) square and 0.41-m (16-in.) thick. No. 5 [16-mm- (0.24-in.-) diameter] 
reinforcing bars and No. 3 [10-mm- (0.4-in.-) diameter] stirrups were provided. The stirrup ties 
for both the footing and top slab had a 90 hook at one end and a 135 hook at the other end. The 
longitudinal reinforcing bars of the column were extended into the footing and the top slab, and 
fixed to the bottom longitudinal reinforcement of the footing and the upper longitudinal 
reinforcement of the top slab with a 90 hook, so that the anchorage length requirement by the 
SDC [Caltrans 2001] was satisfied. The weight of the footing and the top slab were 24.5 kN and 
55.7 kN (6 and 13 kip), respectively. The total weight of one specimen was approximately 85 kN 
(19.11 kip), including the weight of the column. 
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2.3 CONSTRUCTION OF THE SPECIMENS 

The construction of the specimens had eleven phases: 

  Construction of the platform began in early October, 2002; see Figure 
2.13 

 Construction of forms for the footings; see Figure 2.14 

  Gauging on longitudinal reinforcing bars; see Figure 2.15 

  Assembly of steel cages; see Figure 2.16 

  Casting footing concrete took place on November 27th, 2002 ; see Figure 
2.17 

 Gauging on spirals; see Figure 2.18 

 Removal of the forms of footing 

 Construction of forms for the columns and top slabs; see Figures 2.19 and 
2.20 

 Casting column and top slab concrete took place on January 31, 2003; see 
Figure 2.21) 

 Removal of the forms was completed in finished in mid-February, 2003; 
see Figure 2.22 

 Specimens were moved into the earthquake simulation laboratory on June 
2, 2003; see Figure 2.23 

Fifteen concrete cylinders, 305-mm (12-in.) long and 152 mm (6 in.) in diameter, were 
constructed for the material tests at the time the concrete was cast. Before casting of the column 
concrete, 13-mm (0.5 in.) threaded rods were inserted transversely through the column forms to 
provide a means for measuring the curvature distribution along the height of the columns. Slump 
of concrete [specified to be 127 mm (5 in.)] was 89 mm (3.5 in.) and 127 mm (5 in.) for the 
footing concrete and concrete for the columns and top slabs. The concrete was cured for about 
ten days before the forms were removed. 
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2.4 MEASURED MATERIAL PROPERTIES 

2.4.1 Mechanical Properties of Concrete 

To represent the actual properties of concrete used in RC bridges, the concrete of the columns 
was specified as normal weight, with a 28-day design strength of no less than 27.6 MPa (4 ksi) 
and no more than 38 MPa (5.5 ksi). Details of the concrete mix design are shown in Table 2.5. 

Table 2.5 Concrete mix design. 

Mix specifications 

Portland cement ASTM C-150 TYPE II 

Fly ash ASTM C-618 CLASS F, 15% 

Admixture (water reducer) ASTM C-494 TYPE A 

Minimum 28-day strength 3850 psi (26.6 MPa) 

Maximum 28-day strength 4350 psi (30.0 MPa) 

Cementitious sacks 5.60 

Maximum size aggregate 9.5 mm (0.37in.) 

Slump 127 mm (5 in.) 

Water/cement ratio 0.603 

 

Mix design and quantities 

Material Specific gravity Absolute volume SSD weight 

3/8”#8 gravel 2.68 5.98 ft3 (0.167 m3) 1000 lbs (453 kg) 

Regular top sand 2.67 9.02 ft3 (0.253 m3) 1503 lbs (681 kg) 

SR blend sand 2.60 3.69 ft3 (0.103 m3) 599 lbs (271 kg) 

Cement Type II (3.15) 2.27 ft3 (0.064 m3) 447 lbs (202 kg) 

Fly ash (2~2.4) 0.55 ft3 (0.015 m3) 79 lbs (36 kg) 

Water 1.00 5.08 ft3 (0.142 m3) 317 lbs (144 kg) 

Water reducer ----- 0.41 ft3 (0.011 m3) 26.3 fl. oz. (778 ml) 

Total ----- 27 ft3 (0.756 m3) 3945 lbs (1787 kg) 

 

As shown in Figure 2.24, compressive strength tests were performed at 8 and 29 days 
after the casting of the footing concrete, and at 7, 14, 21, and 28 days after the casting the 
columns and top slab concrete. Additional cylinders were tested about 100 days after completing 
the earthquake simulation tests. Ideally, cylinder tests should have been conducted concurrently 
with the earthquake simulation tests; however, cylinder tests were not conducted because the 
compressive testing equipment was not available. Because the concrete was old enough to keep 
its strength constant, the concrete strength on the test day is adequately represented by that 
obtained 100 days later. Figure 2.25 shows concrete strength development with time for moist-
cured concrete introduced by the ACI Committee 209 and the CEB-FIP Model Code [Mehta and 
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(a) (b) 

Figure 2.25 Compressive strength development of concrete: (a) early age and (b) 
around test day. 

 

 

 
Figure 2.26 Stress–strain curves of concrete cylinders. 
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Table 2.6 Compressive strength of concrete. 

Concrete for footings 

Day No. 1 (MPa) No. 2 (MPa) No. 3 (MPa) Average (MPa) 

8 29.1 28.9 28.8 28.9 

29 45.1 43.5 41.0 43.2 

Concrete for columns and top slabs 

Day No. 1 (MPa) No. 2 (MPa) No. 3 (MPa) Average (MPa) 

7 22.2 22.9 22.2 22.5 

14 29.2 27.6 27.1 28.0 

21 33.7 30.1 33.3 32.3 

28 32.5 28.9 32.9 31.4 

595 40.6 43.9 40.7 41.7 

 

Table 2.7 Mechanical properties of concrete from cylinder tests. 

 Strength (MPa) 

Modulus of elasticity (GPa) 

Tangent modulus 

c tanE   

Secant modulus 

c secE   

No. 1 40.6 21.4 19.7 

No. 2 43.9 22.5 20.8 

No. 3 40.7 21.2 19.5 

Average 41.7 (6.0 ksi) 21.7 (3145 ksi) 20.0 (2899 ksi) 

 

2.4.2 Mechanical Properties of Steel Reinforcement 

The column longitudinal steel was specified as ASTM A706 Grade 60 steel. Table 2.8 shows 
mechanical properties described on a certified mill test report. To obtain the mechanical 
properties of the reinforcing bars, tensile tests for steel coupons were conducted; see Figure 2.27. 
Three tensile tests were performed on the No. 4 reinforcing bars, which were used for the RC 
specimen, while two coupons were tested for the No. 3 bars used for the PRC specimen. Test 
results are summarized in Table 2.9 and Figure 2.28. The modulus of elasticity, yield strength, 
and ultimate strength of the No. 4 bars were 216 GPa, 490 MPa, and 728 MPa, respectively. The 
No. 3 bar had a similar yield strength to the No. 4 bars, although the ultimate strength was 9% 
greater and the modulus of elasticity was 9% smaller than the No. 4 bars. 

The spiral reinforcement was specified as ASTM A82 Grade 80. No tensile tests were 
performed due to absence of coupons for the spirals, and a certified mill test report was available. 
The modulus of elasticity and yield strength was estimated to be 200 GPa and 607 MPa, 
respectively. 
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Table 2.8 Mechanical properties of steel from certified mill test report. 

No. 4 (13 mm-diameter) reinforcing bar (ASTM A706) 

 Yield strength Tensile strength Elongation in 203 mm (8 in.) 

No.1 517 MPa (75.0 ksi) 658 MPa (95.5 ksi) 14.1% 

No.2 455 MPa (66.0 ksi) 662 MPa (96.0 ksi) 15.6% 

No.3 465 MPa (67.5 ksi) 662 MPa (96.0 ksi) 14.1% 

Average 479 MPa (69.4 ksi) 661 MPa (95.7 ksi) 14.6% 

No. 3 (10 mm-diameter) reinforcing bar (ASTM A706) 

 Yield strength Tensile strength Elongation in 200 mm (7.9 in.) 

No.1 424 MPa (61.5 ksi) 585 MPa (84.5 ksi) 20% 

W3.5 wire for spiral (ASTM 82) 

 Yield strength Tensile strength Elongation in 200 mm (7.9 in.) 

No.1 ----- ----- ----- 

32 mm-diameter tendon (ASTM A722) 

 Yield strength Tensile strength Elongation in 668 mm (26.3 in.) 

No.1  974.3 MPa (141.2 ksi) 1145 MPa (166 ksi) 8.8% 

No.2 1026.0 MPa (148.7 ksi) 1083 MPa (157 ksi) 6.5% 

Average 1000.2 MPa (145.0 ksi) 1114 MPa (162 ksi) 7.7% 
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(a) (b) 

Figure 2.28 Stress–strain curves of reinforcing bars: (a) No. 4 bars and (b) No. 3 bars. 

2.4.3 Mechanical Properties of Tendon 

For the post-tensioning tendon, an ASTM A722 Grade 150 KSI (1035 MPa) bar from Williams 
Form Engineering Corp. was used. The size of tendon was determined to be 32-mm (1.26 in.) 
diameter, according to the analytical results described in Section 2.2.3. Table 2.8(d) shows 
mechanical properties described on a certified mill test report. 

After the sequence of earthquake simulation tests, a 0.61 mm (24 in.) coupon was cut out 
of the 3.05 m (10 ft) tendon installed in the PRC specimen; see Figure 2.29. Thus, the coupon 
might have endured plastic deformation during the tests, although it came from the top portion 
where no plastic deformation was observed. The middle portion of the coupon was machined 
down to 19 mm (0.75 in.) in diameter to ensure that the ultimate strength did not exceed the 
capacity of a testing equipment used; a tensile test was then conducted. 

Figure 2.30 shows the stress–strain curve obtained from the test. The modulus of 
elasticity, yield strength, and ultimate strength of the tendon were 203 GPa, 1024 MPa, and 1169 
MPa, respectively. Thus, the yield and ultimate strengths in force were estimated to be 826 kN 
(186 kip), and 943 kN (212 kip), respectively. 
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2.5 SELECTION OF GROUND MOTIONS 

Input ground motions used in the earthquake simulation tests were selected based on dynamic 
analyses for the conventionally designed RC specimen. A ground motion that produces large 
maximum and residual displacements was deemed appropriate because the test was aimed at 
investigating: (1) the mechanism behind how a conventionally designed column produces large 
residual displacement; (2) how the proposed design mitigates such a large residual displacement; 
and (3) how both the conventionally designed and proposed specimens behave when they 
experience a very large nonlinear response. 

Table 2.10 shows ground motions used for the dynamic analyses. Ten pairs of near-field 
strong-ground motions from the SAC Steel Project [Somerville et al. 1997] were considered. 
Used in previous investigations by the Sakai and Mahin [2004], these ground motions were 
modified from the originally recorded ground acceleration to represent ground motions in the 
fault-normal and fault-parallel directions. Additionally, four pairs of original records from the 
1989 Loma Prieta, California, earthquake, 1994 Northridge, California, earthquake, and 1995 
Hyogo-Ken Nanbu, Japan, earthquake [PEER 2000] were considered. Response spectra of the 
ground motions that took into account the scaling factors can be found in Appendix B. The fault-
normal and fault-parallel components were used for X- and Y-directions, respectively, for the 
SAC ground motions, while 000 or 360 and 090 components were used for X- and Y-directions 
for the original records. 

The same analytical model as that used for the quasi-static analyses was implemented 
with an exception: a 28 day-concrete strength ( cof  = 32 MPa) and yield strength of steel from the 

mill certified report ( syf = 455 MPa) were used. 

Based on an eigenvalue analysis of a two-dimensional model assuming cracked stiffness 
properties for the model, the specimen had natural periods of 0.77, 0.09, and 0.02 sec for first, 
second, and third modes. Rayleigh damping was used to represent viscous damping. Based on 
the findings by Hachem et al. [2003], a damping ratio of 5% of critical damping was assumed for 
the first and third modes. 

Figure 2.31 shows the maximum and residual displacements of the RC specimen 
obtained from dynamic analyses. Response displacement time histories, orbits of response 
displacements, and lateral force versus lateral displacement hysteresis of the specimen can be 
found in Appendix C. When the column was subjected to the modified Los Gatos records, the 
maximum response and residual displacement both show the largest value, 0.19 m (7.5 in.) and 
0.027 m (1.06 in.), respectively, and the modified Los Gatos records were selected as the input 
ground motion for the earthquake simulation tests. 

Figure 2.32 compares the response of the RC specimen and the PRC specimen subjected 
to the modified Los Gatos records. The maximum response of the RC specimen in X- and Y-
directions was 0.16 m (6.3 in.) and 0.1 m (3.9 in.), respectively; the maximum response of the 
PRC specimen was 0.17 m (6.7 in.) and 0.11 m (4.3 in.), respectively. The residual 
displacements were similar for both specimens. These results do not correspond to the quasi-
static behavior, and the analytical models may have to be refined based on these results. 

The response mainly occurred in 45 rotated axis, as shown in Figure 2.32(a); the 
response in X- and Y-directions have almost simultaneous peaks; see Figure 2.32(b). Thus, the 
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displacement time histories and lateral force versus displacement hysteresis were computed for a 
45 rotated coordinate system to determine how the specimens responded to a very large 
nonlinear response. Figure 2.33 suggests that both the specimens have similar peaks and similar 
residual displacements, while the hysteresis of the PRC specimen shows an origin-oriented 
hysteresis as expected. 

 

Table 2.10 Near-field earthquake ground motion records. 

Ground motions from the SAC steel project 

Record ID Record Earthquake 
PGA (m/sec2)  

Normal Parallel 

NF01, 02 Tabas Tabas, Iran, 1978 8.83 9.59 

NF03, 04 Los Gatos Loma Prieta, USA, 1989 7.04 4.49 

NF05, 06 Lexington Dam Loma Prieta, USA, 1989 6.73 3.63 

NF07, 08 Petrolia Cape Mendocino, USA, 1992 6.26 6.42 

NF09, 10 Erzincan Erzincan, Turkey, 1992 4.24 4.48 

NF11, 12 Landers Landers, USA, 1992 7.00 7.84 

NF13, 14 Rinaldi Northridge, USA, 1994 8.73 3.81 

NF15, 16 Olive View Northridge, USA, 1994  .18 5.84 

NF17, 18 JMA Kobe Hyogo-ken Nanbu, Japan, 1995 10.67 5.64 

NF19, 20 Takatori Hyogo-ken Nanbu, Japan, 1995 7.71 4.16 

Ground motions from PEER database 

Record ID Station Earthquake 
PGA (m/sec2)  

000 or 360 090 

LGP000, 090 LGPC Loma Prieta, USA, 1989 5.52 5.94 

SYL360, 090 Olive View Northridge, USA, 1994 8.27 5.93 

KJM000, 090 JMA Kobe Hyogo-ken Nanbu, Japan, 1995 8.05 5.88 

TAK000, 090 Takatori Hyogo-ken Nanbu, Japan, 1995 5.99 6.04 
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(a) 

 
(b) 

Figure 2.31 Response displacement of RC specimens: (a) maximum displacement 
and (b) residual displacement. 
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(a) 

  
(b) 

  
(c) 

X-direction Y-direction 

Figure 2.32 Response of specimens subjected to modified Los Gatos record in the X 
and Y-directions: (a) orbit of lateral displacements; (b) response 
displacement at center-of-gravity of weighted blocks; and (c) lateral 
force–lateral displacement hysteresis. 
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(a) 

  
(b) 

Rotated X-direction Rotated Y-direction 

Figure 2.33 Response in 45 rotated coordinate in the X- and Y-directions: (a) 
response displacement at weighted blocks; and (b) lateral force–lateral 
displacement hysteresis. 
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3 Experimental Set-Up, Instrumentation, and 
Test Program 

3.1 EARTHQUAKE SIMULATOR 

A series of earthquake simulation tests were conducted with an earthquake simulator at the 
Richmond Field Station Earthquake Simulation Laboratory of the University of California, 
Berkeley; see Figure 3.1. The simulator was installed in the late 1960s as a two-dimensional 
(vertical and one horizontal) earthquake simulator, which was upgraded to a three-dimensional 
(vertical and two horizontal) simulator in 1994. The simulator has a 6.1-m (20-ft) square shaking 
table, which is heavily reinforced with both ordinary reinforcement and post-tensioning tendons 
so that it is stiff enough to have a natural frequency greater than 20 Hz; thus, it behaves 
essentially as a rigid body in the operating range of 0–10 Hz. The table itself weighs 445 kN 
(100,000 lbs). The table has prestressing holes that forms a 77 square grid, with spacings every 
0.91 m (3 ft). 

The shaking table is driven horizontally by eight 334-kN (75,000-lb) hydraulic actuators 
and vertically by four 334-kN (75,000-lb) actuators, which located in the pit; see Figures 3.2 and 
3.3. An MTS model 469 controller controls the shaking table; see Figure 3.4. In operation, the air 
in the pit beneath the table is pressurized so that the total weight of the table and the structure 
being tested is balanced by the difference in air pressure in the pit and ambient air pressure. 
Table 3.1 summarizes the capacity of the earthquake simulator. Unloaded, the table can 
accelerate up to approximately 30 m/sec2 (3g) and 0.76 m/sec (30 kips) in velocity. The table can 
subject structures weighing up to 445 kN (100,000 lbs) to horizontal accelerations of 14.8 m/sec2 
(1.5g). The data acquisition system has 192 channels. 

Table 3.1 Earthquake simulator characteristics. 

Table dimensions 6.1 m (20 ft)6.1 m (20 ft), 445 kN (100 kips) 

Maximum specimen height 12.2 m (40 ft) to ceiling, 9.75 m (32 ft) to crane hook 

Component of motion Six DOF, X, Y, and Z plus rotational components, pitch, roll and yaw. 

Displacement limits X and Y limits are  127 mm (5 in.), Z limit is  51 mm (2 in.) 

Velocity limits 762 mm/sec (30 in./sec) in all axis with an unloaded table 

Acceleration limits Approximately 30 m/sec2 (3g) in all axis with an unloaded table 

Data acquisition system 192 channels at 200 Hz 
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3.2 TEST SET-UP 

3.2.1 Conventional Reinforced Concrete Column Specimen 

Figure 3.5 shows the specimen set-up. To arrange the specimen on the center of shaking table, 
steel plates with threaded holes for bolts to fix the tri-axial load cells were placed on the table. 
The plates were fixed to the shaking table with 19 prestressed tendons. The load cells (with four 
holes each to match the locations of holes for post-tensioning tendons of the specimen footing) 
were fixed to the steel plates with four 22-mm (7/8-in.) diameter high-strength bolts. Then, the 
RC specimen was carried by a 98 kN (22,000 lb) bridge crane and placed onto the load cells; see 
Figure 3.6. The specimen was fixed onto the load cells with a total of sixteen 22-mm (7/8-in.) 
diameter post-tensioning tendons. To provide a uniform contact surface, a layer of hydrostone 
was placed between the base steel plates and table, the plates and load cells, and the load cells 
and the bottom of the footing. 

Weighted blocks were then placed on the top slab of the specimen; see Figure 3.7. The 
block with a center hole was placed directly onto the top slab of specimen to ensure the same 
dead load and inertia mass to that for the PRC specimen. Hydrostone was also used between the 
slab and the block, and between the blocks for the same reason described above. Eight 25-mm- 
(1-in.-) diameter post-tensioning tendons were used to tie the top slab and three weighed blocks 
together. 

To prevent catastrophic collapse of the specimen during the tests, two 26-mm- (1-in.-) 
diameter steel cables were connected to each corner of the top slab; see Figure 3.8. Each of the 
cables had an allowable strength of 96 kN (21.6 kip). The breaking strength was estimated to be 
about 380 kN (86 kip) with a safety factor of 4, which was strong enough to catch the weight of 
top slab-weight blocks assembly by a single cable. The cables were designed to accommodate a 
displacement of at least 0.25 m (10 in.), which corresponded to a displacement ductility of about 
10. The safety cables were designed to affect the damping properties of the specimen when the 
response was sufficiently large that the cables were pulled and vibrated. 

The test set-up was completed in late July of 2003, but the earthquake simulation tests 
were conducted on May 27, 2004, because of problems with the hydraulic system and data 
acquisition system. 
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3.2.2 Partially Prestressed Reinforced Concrete Column Specimen 

Figure 3.9 shows the specimen set-up on the shaking table. A 32-mm (1-1/4-in.) diameter post-
tensioning tendon was installed into the PRC specimen prior to bringing the specimen onto the 
table. Steel plates [229-mm (9-in.) square and 41-mm (1-5/8-in.) thick] were used at the both 
ends of the tendon. The steel plate placed at the bottom end had a groove for threading 
instrumentation cables out from the center duct. A layer of hydrostone was placed between the 
plates and the specimen surface. A load cell with a center hole was placed underneath the 
specimen to monitor the prestressing force induced in the column. 

The prestressing force was then applied to the tendon with a hydraulic jack; see Figure 
3.10. Based on the analyses described in Section 2.2.3, a target prestressing force was 
determined to be 380 kN (85 kip), and the prestressing force applied was 394 kN (89 kip). After 
three days, the prestressing force in the specimen decreased down to 381 kN (86 kip) due to 
creep. Thus, the prestressing tendon was re-tied with a hydraulic jack before placement of the top 
blocks. The prestressing force was set at 399 kN (90 kip), taking into consideration the decrease 
due the weighted blocks and creep. As expected, the force decreased to 387 kN (87 kip) when 
the weight blocks were placed onto the specimen. Figure 3.11 shows the variation of the 
prestressing force with time. The force on the test day was 379 kN (85 kip), which was seven 
days after the blocks were placed. The total axial force ratio based on the design concrete 
strength ( cof  = 34.5 MPa) was 14.8%, and that for the concrete strength from cylinder tests (41.2 
MPa) was 12.4%. 

The specimen and weighted blocks were fixed in the same manner to the RC specimen. 
Safety cables were also provided, but the triggering displacement for the PRC specimen was set 
at 305 mm (12 in.). 
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Figure 3.11 Variation of prestressing force due to creep. 

3.3 COORDINATE SYSTEM 

Figure 3.12 shows the global coordinate system of a specimen on the shaking table. In this study, 
the north–south direction was assigned to the X-direction, and the east–west direction was 
assigned to the Y-direction. The vertical direction is thus the Z-direction. The origin of the XY-
plane of the coordinate system was taken at the center of the column. The origin of the Z-axis 
was assumed to be at the top of the footing of the specimen; see Figure 3.12(b). 
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3.4.2 PRC Specimen 

A total of 138 channels were used in the tests for the PRC specimen. The channels were 
distributed as follows: 

 16 channels for monitoring accelerations and displacements of the shaking 
table 

 20 channels for tri-axial load cells monitoring restoring force of the 
specimen 

 17 channels for accelerometers 

 32 channels for linear potentiometers monitoring global displacement 

 24 channels for displacement transducers monitoring column local 
deformation 

 20 channels for strain gauges of reinforcement: 12 for longitudinal 
reinforcing bars, and 8 for spirals 

 1 channel for load cell and 8 channels for strain gauges monitoring tendon 
behavior 

3.4.3 Shaking Table Instrumentation 

Table 3.2 and Figure 3.13 show the channels and locations of the shaking table instrumentation, 
respectively. Horizontal accelerations and displacements were monitored through four 
accelerometers placed beams of the table and four displacement transducers acting along the 
outer horizontal actuators. Vertical accelerations and displacements were monitored through four 
accelerometers and four displacement transducers placed near the four corners of the table. 
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Table 3.2 Channels for shaking table instrumentation. 

Channel 
ID 

Transducer Orientation 
Coordinate (m) 

Note 
X Y Z 

H1O LVDT N-S (X) 0  1.22 ----- SE Actuator 

H2O LVDT E-W (Y) -1.36 0 ----- NE Actuator 

H3O LVDT N-S (X) 0 -1.22 ----- NW Actuator 

H4O LVDT E-W (Y)  1.36 0 ----- SW Actuator 

V1O LVDT Vertical (Z)  2.59  2.59 ----- SE Actuator 

V2O LVDT Vertical (Z) -2.59  2.59 ----- NE Actuator 

V3O LVDT Vertical (Z) -2.59 -2.59 ----- NW Actuator 

V4O LVDT Vertical (Z)  2.59 -2.59 ----- SW Actuator 

H1-2 Accelerometer N-S (X) -0.15  2.44 ----- East side 

H3-4 Accelerometer N-S (X) -0.15 -2.44 ----- West side 

H4-1 Accelerometer E-W (Y)  2.44 -0.15 ----- South side 

H2-3 Accelerometer E-W (Y) -2.44 -0.15 ----- North side 

V1ACC Accelerometer Vertical (Z)  2.59  2.59 ----- SE Actuator 

V2ACC Accelerometer Vertical (Z) -2.59  2.59 ----- NE Actuator 

V3ACC Accelerometer Vertical (Z) -2.59 -2.59 ----- NW Actuator 

V4ACC Accelerometer Vertical (Z)  2.59 -2.59 ----- SW Actuator 

Note: Coordinates in Z-axis are not available. 
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in the X- and Y-directions, and bending moments about X and Y axes. The recorded axial loads 
were used to compute bending moment capacity of the columns, and the shear forces were used 
to estimate shear force applied to the columns. Although bending moments monitored by the 
load cells do not produce any useful information, they were recorded during the tests. 
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Table 3.3 Channels for tri-axial load cells monitoring restoring force of 
columns. 

Channel 
ID 

Transducer Orientation 
Coordinate (m) 

Note 
X Y Z 

lc1p Load cell (Axial) Vertical (Z) -0.46 -0.46 -0.46 LC4, NW corner 

lc1mx Load cell (Moment) About N-S (X) -0.46 -0.46 -0.46 LC4, NW corner 

lc1my Load cell (Moment) About E-W (Y) -0.46 -0.46 -0.46 LC4, NW corner 

lc1vx Load cell (Shear) N-S (X) -0.46 -0.46 -0.46 LC4, NW corner 

lc1vy Load cell (Shear) E-W (Y) -0.46 -0.46 -0.46 LC4, NW corner 

lc2p Load cell (Axial) Vertical (Z) -0.46  0.46 -0.46 LC6, NE corner 

lc2mx Load cell (Moment) About N-S (X) -0.46  0.46 -0.46 LC6, NE corner 

lc2my Load cell (Moment) About E-W (Y) -0.46  0.46 -0.46 LC6, NE corner 

lc2vx Load cell (Shear) N-S (X) -0.46  0.46 -0.46 LC6, NE corner 

lc2vy Load cell (Shear) E-W (Y) -0.46  0.46 -0.46 LC6, NE corner 

lc3p Load cell (Axial) Vertical (Z)  0.46  0.46 -0.46 LC5, SE corner 

lc3mx Load cell (Moment) About N-S (X)  0.46  0.46 -0.46 LC5, SE corner 

lc3my Load cell (Moment) About E-W (Y)  0.46  0.46 -0.46 LC5, SE corner 

lc3vx Load cell (Shear) N-S (X)  0.46  0.46 -0.46 LC5, SE corner 

lc3vy Load cell (Shear) E-W (Y)  0.46  0.46 -0.46 LC5, SE corner 

lc4p Load cell (Axial) Vertical (Z)  0.46 -0.46 -0.46 LC2, SW corner 

lc4mx Load cell (Moment) About N-S (X)  0.46 -0.46 -0.46 LC2, SW corner 

lc4my Load cell (Moment) About E-W (Y)  0.46 -0.46 -0.46 LC2, SW corner 

lc4vx Load cell (Shear) N-S (X)  0.46 -0.46 -0.46 LC2, SW corner 

lc4vy Load cell (Shear) E-W (Y)  0.46 -0.46 -0.46 LC2, SW corner 
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Table 3.4 Channels for accelerometers. 

Channel 
ID 

Transducer Orientation 
Coordinate (m) 

Note 
X Y Z 

accel1 Accelerometer N-S (X) 0 -0.76 -0.23 Footing, west 

accel2 Accelerometer E-W (Y) 0 -0.76 -0.23 Footing, west 

accel3 Accelerometer Vertical (Z) 0 -0.76 -0.23 Footing, west 

accel4 Accelerometer N-S (X)  0.76 0 -0.23 Footing, south 

accel5 Accelerometer E-W (Y)  0.76 0 -0.23 Footing, south 

accel6 Accelerometer Vertical (Z)  0.76 0 -0.23 Footing, south 

accel7 Accelerometer N-S (X) 0 -1.52  2.44 C.G., west 

accel8 Accelerometer E-W (Y) 0 -1.52  2.44 C.G., west 

accel9 Accelerometer Vertical (Z) 0 -1.52  2.44 C.G., west 

accel10 Accelerometer N-S (X)  1.52 0  2.44 C.G., south 

accel11 Accelerometer E-W (Y)  1.52 0  2.44 C.G., south 

accel12 Accelerometer Vertical (Z)  1.52 0  2.44 C.G., south 

accel13 Accelerometer N-S (X) 0 0  3.10 Top 

accel14 Accelerometer E-W (Y) 0 0  3.10 Top 

accel15 Accelerometer Vertical (Z) 0 0  3.10 Top 

accel16 Accelerometer N-S (X)  0.20 0  0.81 Column, south 

accel17 Accelerometer E-W (Y) 0 -0.20  0.81 Column, west 

Note: C.G.: Center-of-gravity of top slab-weighted blocks assembly; Top: top of weighted blocks; and Column: mid-height 
of column. 
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Table 3.5 Channels for linear potentiometers (wire pods). 

Channel 
ID 

Transducer Orientation 
Coordinate (m) 

Note 
X Y Z 

WP1 Linear potentiometer N-S (X) 0.76 -0.61 -0.23 Footing, south (W) 

WP2 Linear potentiometer N-S (X) 0.76 0 -0.23 Footing, south 

WP3 Linear potentiometer N-S (X) 0.76  0.61 -0.23 Footing, south (E) 

WP4 Linear potentiometer E-W (Y) -0.61 -0.76 -0.23 Footing, west (N) 

WP5 Linear potentiometer E-W (Y) 0 -0.76 -0.23 Footing, West 

WP6 Linear potentiometer E-W (Y) 0.61 -0.76 -0.23 Footing, West (S) 

WP7 Linear potentiometer N-S (X) 1.22 -1.07 1.83 Top slab, South (W) 

WP8 Linear potentiometer N-S (X) 1.22  1.07 1.83 Top slab, South (E) 

WP9 Linear potentiometer E-W (Y) -1.07 -1.22 1.83 Top slab, West (N) 

WP10 Linear potentiometer E-W (Y) 1.07 -1.22 1.83 Top slab, West (S) 

WP13 Linear potentiometer N-S (X) 1.52 0 2.44 C.G., South 

WP12 Linear potentiometer E-W (Y) 0 -1.52 2.44 C.G., West 

WP11 Linear potentiometer N-S (X) 1.52 -1.07 3.07 Top, South (W) 

WP14 Linear potentiometer N-S (X) 1.52  1.07 3.07 Top, South (E) 

WP15 Linear potentiometer E-W (Y) -1.07 -1.52 3.07 Top, West (N) 

WP16 Linear potentiometer E-W (Y) 1.07 -1.52 3.07 Top, West (S) 

WP17 Linear potentiometer N-S (X) 0.20 0 0.15 Column 6 in., South 

WP18 Linear potentiometer N-S (X) 0.20 0 0.30 Column 12 in., South 

WP19 Linear potentiometer N-S (X) 0.20 0 0.61 Column 24 in., South 

WP20 Linear potentiometer N-S (X) 0.20 0 1.02 Column 40 in., South 

WP21 Linear potentiometer N-S (X) 0.20 0 1.32 Column 52 in., South 

WP22 Linear potentiometer N-S (X) 0.20 0 1.47 Column 58 in., South 

WP23 Linear potentiometer E-W (Y) 0 -0.20 0.15 Column 6 in., West 

WP24 Linear potentiometer E-W (Y) 0 -0.20 0.30 Column 12 in., West 

WP25 Linear potentiometer E-W (Y) 0 -0.20 0.61 Column 24 in., West 

WP26 Linear potentiometer E-W (Y) 0 -0.20 1.02 Column 40 in., West 

WP27 Linear potentiometer E-W (Y) 0 -0.20 1.32 Column 52 in., West 

WP28 Linear potentiometer E-W (Y) 0 -0.20 1.47 Column 58 in., West 

WP29 Linear potentiometer Vertical (Z) 0.61 -0.61 0 Top of footing, SW 

WP30 Linear potentiometer Vertical (Z) 0.61 0.61 0 Top of footing, SE 

WP31 Linear potentiometer Vertical (Z) -0.61 -0.61 0 Top of footing, NW 

WP32 Linear potentiometer Vertical (Z) -0.61  0.61 0 Top of footing, NE 

Note: C.G.: Center-of-gravity of top slab-weight blocks assembly; and Top: Near top of weight blocks. 
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Table 3.6(a) Channels for direct current displacement transducer: RC specimen. 

Channel 
ID 

Transducer Vertical distance 
Horizontal distance from 

column surface 
Note 

dcdt1 DCDT 179 mm (7-1/16 in.) 101 mm (3-31/32) Pullout, North 

dcdt2 DCDT 146 mm (5-3/4 in.) 92 mm (3-5/8 in.) Pullout, East 

dcdt3 DCDT 152 mm (6 in.) 76 mm (3 in.) Pullout, South 

dcdt4 DCDT 143 mm (5-5/8 in.) 95 mm (3-3/4 in.) Pullout, West 

dcdt5 DCDT 148 mm (5-13/16 in.) 102 mm (4-1/32 in.) Column 12, North 

dcdt6 DCDT 152 mm (6 in.) 85 mm (3-11/32 in.) Column 12, East 

dcdt7 DCDT 166 mm (6-17/32 in.)  76 mm (3 in.) Column 12, South 

dcdt8 DCDT 159 mm (6-1/4 in.) 92 mm (3-5/8 in.) Column 12, West 

dcdt9 DCDT 314 mm (12-3/8 in.) 102 mm (4 in.) Column 24, North 

dcdt10 DCDT 310 mm (12-3/16 in.) 87 mm (3-7/16 in.) Column 24, East 

dcdt11 DCDT 264 mm (10-3/8 in.) 76 mm (3 in.) Column 24, South 

dcdt12 DCDT 308 mm (12-1/8 in.) 84 mm (3-5/16 in.) Column 24, West 

dcdt13 DCDT 321 mm (12-5/8 in.) 80 mm (3-5/32 in.) Column 40, North 

dcdt14 DCDT 305 mm (12 in.) 87 mm (3-7/16 in.) Column 40, East 

dcdt15 DCDT 268 mm (10-9/16 in.) 73 mm (2-7/8 in.) Column 40, South 

dcdt16 DCDT 313 mm (12-5/16 in.) 76 mm (3 in.) Column 40, West 

dcdt17 DCDT 152 mm (6 in.) 75 mm (2-31/32 in.) Column 52, North 

dcdt18 DCDT 162 mm (6-3/8 in.) 90 mm (3-9/16 in.) Column 52, East 

dcdt19 DCDT 151 mm (5-15/16 in.) 84 mm (3-5/16 in.) Column 52, South 

dcdt20 DCDT 144 mm (5-11/16 in.) 75 mm (2-31/32 in.) Column 52, West 

dcdt21 DCDT 164 mm (6-7/16 in.) 81 mm (3-3/16 in.) Column 58, North 

dcdt22 DCDT 156 mm (6-1/8 in.) 95 mm (3-3/4 in.) Column 58, East 

dcdt23 DCDT 175 mm (6-7/8 in.) 89 mm (3-1/2 in.) Column 58, South 

dcdt24 DCDT 156 mm (6-1/8 in.) 88 mm (3-15/32 in.) Column 58, West 

dcdt25 DCDT 135 mm (5-5/16 in.) 73 mm (2-7/8 in.) Column 6, North 

dcdt26 DCDT 124 mm (4-7/8 in.) 66 mm (2-19/32 in.) Column 6, East 

dcdt27 DCDT 124 mm (4-7/8 in.) 57 mm (2-1/4 in.) Column 6, South 

dcdt28 DCDT 114 mm (4-1/2 in.) 73 mm (2-7/8 in.) Column 6, West 
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Table 3.6(b) Channels for direct current displacement transducer: PRC 
specimen. 

Channel 
ID 

Transducer Vertical distance 
Horizontal distance from 

column surface 
Note 

dcdt1 DCDT 124 mm (4-7/8 in.) 89 mm (3-1/2 in.) Pullout, North 

dcdt2 DCDT 159 mm (6-1/4 in.) 79 mm (3-1/8 in.) Pullout, East 

dcdt3 DCDT 124 mm (4-7/8 in.) 92 mm (3-5/8 in.) Pullout, South 

dcdt4 DCDT 159 mm (6-1/4 in.) 95 mm (3-3/4 in.) Pullout, West 

dcdt5 DCDT 146 mm (5-3/4 in.) 84 mm (3-5/16 in.) Column 12, North 

dcdt6 DCDT 159 mm (6-1/4 in.) 76 mm (3 in.) Column 12, East 

dcdt7 DCDT 165 mm (6-1/2 in.) 92 mm (3-5/8 in.) Column 12, South 

dcdt8 DCDT 146 mm (5-3/4 in.) 86 mm (3-3/8 in.) Column 12, West 

dcdt9 DCDT 318 mm (12-1/2 in.) 83 mm (3-1/4 in.) Column 24, North 

dcdt10 DCDT 302 mm (11-7/8 in.) 83 mm (3-1/4 in.) Column 24, East 

dcdt11 DCDT 305 mm (12 in.) 92 mm (3-5/8 in.) Column 24, South 

dcdt12 DCDT 302 mm (11-7/8 in.) 89 mm (3-1/2 in.) Column 24, West 

dcdt17 DCDT 157 mm (6-3/16 in.)  95 mm (3-3/4 in.) Column 52, North 

dcdt18 DCDT 149 mm (5-7/8 in.) 95 mm (3-3/4 in.) Column 52, East 

dcdt19 DCDT 159 mm (6-1/4 in.) 94 mm (3-11/16 in.) Column 52, South 

dcdt20 DCDT 146 mm (5-3/4 in.) 102 mm (4 in.) Column 52, West 

dcdt21 DCDT 130 mm (5-1/8 in.) 105 mm (4-1/8 in.) Column 58, North 

dcdt22 DCDT 159 mm (6-1/4 in.) 98 mm (3-7/8 in.) Column 58, East 

dcdt23 DCDT 121 mm (4-3/4 in.) 95 mm (3-3/4 in.) Column 58, South 

dcdt24 DCDT 159 mm (6 1/4 in.) 86 mm (3-3/8 in.) Column 58, West 

dcdt25 DCDT 105 mm (4 1/8 in.) 64 mm (2-1/2 in.) Column 6, North 

dcdt26 DCDT 108 mm (4 1/4 in.) 64 mm (2-1/2 in.) Column 6, East 

dcdt27 DCDT 111 mm (4 3/8 in.) 83 mm (3-1/4 in.) Column 6, South 

dcdt28 DCDT 108 mm (4 1/4 in.) 83 mm (3-1/4 in.) Column 6, West 
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Table 3.7(a) Channels for strain gauges: RC specimen. 

(a) RC specimen 

Channel ID Transducer Reinforcement 
Coordinate (mm) 

Note 
X Y Z 

sg1 Strain gauge Longitudinal -184 0 13 Bottom 1, North 

sg2 Strain gauge Longitudinal 0  184 13 Bottom 1, East 

sg3 Strain gauge Longitudinal  184 0 13 Bottom 1, South 

sg4 Strain gauge Longitudinal 0 -184 13 Bottom 1, West 

sg5 Strain gauge Spiral -188 0 13 Bottom 1, North 

sg6 Strain gauge Spiral 0  188 13 Bottom 1, East 

sg7 Strain gauge Spiral 188 0 13 Bottom 1, South 

sg8 Strain gauge Spiral 0 -188 13 Bottom 1, West 

sg9 Strain gauge Longitudinal -184 0 108 Bottom 2, North 

sg10 Strain gauge Longitudinal 0  184 108 Bottom 2, East 

sg11 Strain gauge Longitudinal 184 0 108 Bottom 2, South 

sg12 Strain gauge Longitudinal 0 -184 108 Bottom 2, West 

sg13 Strain gauge Spiral -188 0 108 Bottom 2, North 

sg14 Strain gauge Spiral 0  188  108 Bottom 2, East, DEAD 

sg15 Strain gauge Spiral 188 0 108 Bottom 2, South 

sg16 Strain gauge Spiral 0 -188 108 Bottom 2, West 

sg17 Strain gauge Longitudinal -184 0 1613 Top, North 

sg18 Strain gauge Longitudinal 0  184 1613 Top, East, DEAD 

sg19 Strain gauge Longitudinal 184 0 1613 Top, South 

sg20 Strain gauge Longitudinal 0 -184 1613 Top, West 

sg21 Strain gauge Spiral -188 0 1613 Top, North 

sg22 Strain gauge Spiral 0 188 1613 Top, East 

sg23 Strain gauge Spiral 188 0 1613 Top, South 

sg24 Strain gauge Spiral 0 -188 1613 Top, West 
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Table 3.7(b) Channels for strain gauges: PRC specimen. 

(b) PRC specimen 

Channel ID Transducer Reinforcement 
Coordinate (mm) 

Note 
X Y Z 

sg1 Strain gauge Longitudinal -184 0 13 Bottom 1, North 

sg2 Strain gauge Longitudinal 0 184 13 Bottom 1, East 

sg3 Strain gauge Longitudinal 184 0 13 Bottom 1, South 

sg4 Strain gauge Longitudinal 0 -184 13 Bottom 1, West 

sg5 Strain gauge Longitudinal -184 0 108 Bottom 2, North 

sg6 Strain gauge Longitudinal 0 184 108 Bottom 2, East 

sg7 Strain gauge Longitudinal 184 0 108 Bottom 2, South 

sg8 Strain gauge Longitudinal 0 -184 108 Bottom 2, West 

sg9 Strain gauge Longitudinal -184 0 1613 Top, North 

sg10 Strain gauge Longitudinal 0 184 1613 Top, East 

sg11 Strain gauge Longitudinal  184 0 1613 Top, South, DEAD 

sg12 Strain gauge Longitudinal 0 -184 1613 Top, West, DEAD 

sg13 Strain gauge Spiral -188 0 13 Bottom 1, North  

sg14 Strain gauge Spiral 0  188 13 Bottom 1, East 

sg15 Strain gauge Spiral 188 0 13 Bottom 1, South 

sg16 Strain gauge Spiral 0 -188 13 Bottom 1, West 

sg17 Strain gauge Spiral -188 0 108 Bottom 2, North 

sg18 Strain gauge Spiral 0 188 108 Bottom 2, East 

sg19 Strain gauge Spiral 188 0 108 Bottom 2, South 

sg20 Strain gauge Spiral 0 -188 108 Bottom 2, West 

Note: Spiral gauges could not be specified due to missing of labels. 
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are also shown in the figure for comparison. Each record has 2500 data points, for a duration of 
11.8 sec. The peak ground acceleration, velocity, and displacement of the stronger component 
were 7.1 m/sec2 (0.72g), 0.82 m/sec (32.1 in./sec) and 0.14 m (5.5 in.), respectively. A shown in 
Table 3.1, the displacement capacity of the simulator is 0.13 m (5 in.); therefore, preprocessing 
was performed for the records. 

The first step in processing of the data was to eliminate the first 150 data and last 100 
data to reduce the data size obtained from the tests, thereby decreasing the number of data and 
duration of the records to 2250 and 10.6 sec, respectively. The records were then band-pass 
filtered to reduce the peak ground displacement. The filter was characterized using two cutoff 
frequencies and two corner frequencies. Using a trial-and-error procedure, they were determined 
as 0.4 and 0.5 Hz for the lower frequency and 12 and 15 Hz for the higher frequency. 

As input signals for the earthquake simulator, the displacements at the beginning and the 
end are required to be zero. Thus, the filtered displacement time histories were then processed 
with a time window as follows: 

 
   
 
   

input

sin 0 5 0 1

1 1

sin 0 5 1

d t . t t

d t d t t dt N

d t . t dt N dt N t dt N





    


    
          

 (3.1) 

where  inputd t  is the input signal for the earthquake simulator,  d t  is the filtered ground 

displacement, dt is the time increment of the data taking account of a scaling factor, and N is the 
number of data. 

The peak ground acceleration increased by 3%, while the peak velocity and displacement 
decreased; see Figure 3.22. The response spectra is compared in Figure 3.23. The response of the 
structures that has a fundamental natural period of 0.67 sec is similar, even after the records were 
filtered. 

The ground motion with the stronger intensity, which is the fault-normal component, was 
used for the X-direction (north–south); the motion with the weaker intensity (the fault-parallel 
component) was used for Y-direction (east–west). 
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(a) Fourier spectra 

  
(b) ground acceleration 

  
(c) ground velocity 

  
(d) ground displacement (input signals) 

X-direction  Y-direction 

Figure 3.22 Filtered ground motion in the fault-normal (X) and fault-parallel (Y) 
directions: (a) Fourier spectra; (b) ground acceleration; (c) ground 
velocity; and (d) ground displacement (input signals). 
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(a) acceleration response spectra 

  
(b) velocity response spectra 

  
(c) displacement response spectra 

(1)  (2) 

Figure 3.23 Response spectra (5% damping) in the fault-normal (X) and fault-parallel 
(Y) directions: (a) acceleration response spectra; (b) velocity response 
spectra; and (c) displacement response spectra. 
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3.7 TEST SEQUENCE 

In the earthquake simulation test program, the ground-motion intensity was subjected to four 
levels of testing. The first test level will be referred to as the elastic-level test, which was 
intended to check the instrumentation and the data acquisition system, and the specimen was to 
remain elastic. The second test level will be referred to as the yield-level test, which was used to 
check the dynamic initial stiffness of the specimens; yielding of some of the longitudinal bars 
was expected. The third and fourth levels of the tests were the actual tests to investigate 
nonlinear dynamic response of the specimens. The third test level will be referred to as the 
design-level test where the specimens were expected to experience a response ductility of 4. The 
fourth and final test level will be referred to as final level was the maximum-level test where the 
specimens were expected to endure a response ductility of 8. 

To determine the scaling factors of amplitude for each level of test, another series of 
nonlinear dynamic analyses was conducted for the RC specimen. The same model and conditions 
described in Section 2.5 were used for the analyses. Based on a trial-and-error procedure, the 
scaling factors were determined to be 7%, 10%, 70%, and 100% for the elastic-, yield-, design-, 
and maximum-level tests, respectively. Figure 3.24(a) and (b) shows input signals and predicted 
response of the specimen. For the analyses, signals for each run were combined together, and 
zeros for about 10 sec were added between the signals to allow response damping out after each 
run. 

Table 3.9 shows test sequences. Several free-vibration tests were conducted to investigate 
dynamic properties of the specimen, such as natural period and damping properties prior to a 
series of earthquake simulation tests. White-noise tests were performed prior to each test to 
investigate variation in the dynamic properties of the columns due to accumulated damage. 

Several free-vibration tests and white-noise tests were conducted in late July and early 
August of 2003; however, tests were terminated before earthquake simulation tests were 
performed because it was determined that the data acquisition system did not work properly 
during the white-noise test conducted on July 29th, 2003. Free-vibration tests were again 
performed in early August of 2003 to check the status of the data acquisition system. 

Another series of free-vibration tests and white-noise tests were conducted in mid-
November 2003. After it was confirmed that the data acquisition system was working properly, 
the earthquake simulation tests were conducted. Unfortunately, it was then discovered that the 
actuators in the Y-direction did not work properly as the response of the table was about half of 
the command. The tests were terminated to repair the hydraulic system of the simulator. 

The tests for the RC specimen were conducted on May 27, 2004. After the free-vibration 
tests, white-noise tests and an elastic-level test, the bolts that tied the load cells to the base plates 
were found to be loose. The bolts were re-tied firmly and the actual tests were then conducted.  

The tests for the RC specimen were terminated after the maximum-level test due to large 
residual displacement (see Chapter 4). Additional tests were conducted for the PRC specimen as 
this specimen did not exhibit a large residual displacement or any critical local damage after the 
maximum-level run. The PRC specimen totally collapsed during the second design-level test. 
Damage to the earthquake simulator was prevented as one of the safety cables caught the 
specimen. 



84 

 
 
 
 
 

Table 3.9 Input signals. 

 

Original Filtered Original Filtered 

NF03             
(Fault normal) 

Signal in X (N-S) 
component 

NF04          
(Fault parallel) 

Signal in Y       
(E-W) component 

Acceleration 
7.04 m/sec2 

(0.72g) 
7.30 m/sec2 

(0.74g) 
4.49 m/sec2 

(0.46g) 
4.46 m/sec2 

(0.45g) 

Velocity 
0.815 m/sec 
(32.1 kips) 

0.739 m/sec 
(29.1 kips) 

0.429 m/sec 
(16.9 kips) 

0.422 m/sec 
(16.6k kips) 

Displacement 
0.144 m 
(5.7 in.) 

0.122 m 
(4.8 in.) 

0.082 m 
(3.2 in.) 

0.067 m 
(2.6 in.) 
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(a) input signal 

 
(b) response displacement at center-of-gravity of top slab–weighted blocks assembly 

Figure 3.24(a) Input signals and predicted response of RC specimens: (a) input signals and (b) response displacement at 
center-of-gravity of top slab–weighted blocks assembly.
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(a) elastic-level run (b) yield-level run 

  
(c) design-level run (d) maximum-level run 

(3) Lateral force–lateral displacement hysteresis 

Figure 3.24(b) Lateral force–lateral displacement hysteresis; (a) elastic-level run; (b) 
yield-level run; (c) design-level run; and (d) maximum-level run. 
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4 Dynamic Behavior of Bridge Columns 

4.1 DYNAMIC PROPERTIES OF SPECIMENS PRIOR TO TESTING 

4.1.1 Natural Period 

Prior to the earthquake simulation tests, free-vibration tests and white-noise tests were performed 
to investigate the dynamic properties of the specimens. Because of problems with the hydraulic 
and data acquisition systems, the conventional RC column specimen remained anchored on the 
table for ten months. Given that the specimen was subjected to a number of free-vibration tests, 
white-noise tests, and even a yield-level test prior to the actual tests conducted on May 27, 2004 
(see Section 3.7), the specimen might have had different dynamic properties from those of the 
partially prestressed RC column specimen (PRC specimen). Thus, it was necessary to clarify the 
dynamic properties of the specimens prior to the testing sequence based on the results from the 
free-vibration tests and white-noise tests. 

Figure 4.1 shows the set-up of the free-vibration test. A cable was connected from the 
anchor on the floor to the top slab of the specimen. The cable had a load cell and a come-along 
winch at the anchor end, and a machined bolt at the other end. A force of 5.3 kN (1.2 kips) was 
applied to the top slab with the come-along winch, and then the machined bolt was cut with a 
bolt cutter to initiate a free vibration. The shaking table was fixed with wood blocks to minimize 
the effects of table movements during vibration. Free-vibration tests were performed only in the 
Y-direction. 

Figure 4.2 shows acceleration time histories of the RC specimen measured at the center-
of-gravity of the top slab-weighted block assembly (the top blocks) during a free-vibration test 
and a white-noise test performed on the actual test day. Two accelerometers measured at the 
south face are shown; see “accel11” in Table 3.4. For the free-vibration tests, portions where 
acceleration amplitude was smaller than about 0.1 m/sec2 (0.01g) were used to investigate 
dynamic properties of the specimen. Fourier spectra computed for the measured acceleration are 
also shown. To compare Fourier spectra between free-vibration tests and white-noise tests 
(which had different durations), the Fourier amplitude obtained from the free-vibration tests were 
amplified ten times. Based on the Fourier analyses, the RC specimen had a fundamental 
frequency of 1.56 Hz (a natural period of 0.64 sec) in the Y-direction at the beginning of the test 
series. 
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(a) 

 
(b) 

  
entire range close up 

(c) 

Figure 4.2 Free vibration and white-noise tests: (a) free-vibration test; (b) white-
noise test; and (c) Fourier spectra.
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X-direction (NS) 

(a) (b) 

  
Y-direction (NS) 

(a) (b) 

Figure 4.3 Natural periods of specimens: (a) prior to earthquake simulation tests; and (b) during earthquake simulation 
tests. 
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Similar analyses were conducted for measured acceleration from free-vibration tests and 
white-noise tests conducted in August and November of 2003; the variation in the natural period 
of the RC specimen was also investigated; see Figure 4.3. The natural period of the PRC 
specimen on the day of testing and variation in the natural periods during earthquake simulation 
tests are also shown Figure 4.3. In August 2003, the RC specimen had a natural period of 0.51 
and 0.53 sec in the X- and Y-directions, respectively; however, the natural period increased up to 
about 0.7 sec in both directions after experiencing a number of free-vibration tests, white-noise 
tests, and a yield-level test. As described in Section 3.7, bolts tying load cells to the base plates 
were found loose after the free-vibration tests, white-noise tests, and an elastic-level test. After 
the bolts were re-tied, another series of white-noise tests were performed. Re-tightening of the 
bolts resulted in the natural period of the specimen decreasing in the Y-direction while elongating 
in the X-direction. The PRC specimen had a natural period of 0.5 sec in both directions, which is 
similar to the natural period found for the RC specimen in August 2003. 

4.1.2 Damping Properties 

Figure 4.4 compares the acceleration response during a free-vibration test between the RC and 
PRC specimens. To investigate damping properties, the accelerations were low-pass filtered with 
a cutoff frequency of 20 Hz. As described above, the RC specimen had a longer natural period 
and a larger damping as the acceleration decayed faster. Note that loose bolts might have 
affected the damping properties of the specimen. 

To investigate damping properties, the damping ratio  was computed from the peak 
accelerations, as follows: 

2
p n 




  (4.1) 
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 (4.3) 

where 1pa   and 1na   are the positive and negative peak accelerations in the first wave, and 1p na    

and 1n na    are the positive and negative peak accelerations in the n + 1th wave. In this study, 1pa   

and 1na   are taken values near  0.1 m/sec2 (0.01g), and n  is assumed to be 5. 

Table 4.1 summarizes the damping properties along with the natural periods obtained 
from the three free-vibration tests. The damping ratios of the RC and PRC specimens were 
estimated to be 2.84% and 0.84%, respectively, before the specimens were subjected to the 
earthquake simulation tests. 
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(a) 

 
(b) 

Figure 4.4 Decay of acceleration response: (a) comparison between RC and PRC 
specimens; and (b) peaks used to compute damping properties. 
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Table 4.1 Dynamic properties of specimens. 

Beginning of tests (Y-direction) 

 RC specimen PRC specimen 

Natural period Damping ratio Natural period Damping ratio 

Free-vibration test 1 0.64 sec 2.89% 0.49 sec 0.83% 

Free-vibration test 2 0.64 sec 2.85% 0.49 sec 0.88% 

Free-vibration test 3 0.64 sec 2.79% 0.49 sec 0.81% 

Average 0.64 sec 2.84% 0.49 sec 0.84% 

After earthquake simulation tests 

R
C

 s
p

ec
im

en
 

 RC specimen PRC specimen 

Natural period Damping ratio Natural period Damping ratio 

Elastic-level test 0.79 sec 3.94% 0.79 sec 5.96% 

Yield-level test 0.82 sec 4.48% 0.85 sec 4.26% 

Design-level test 1.14 sec 4.21% 1.20 sec 3.59% 

Maximum-level test 1.14 sec 2.73% 1.08 sec 3.23% 

P
R

C
 s

p
ec

im
e

n
 

 X-direction Y-direction 

Natural period Damping ratio Natural period Damping ratio 

Elastic-level test 0.51 sec 2.56% 0.51 sec 2.03% 

Yield-level test 0.51 sec 1.61% 0.51 sec 1.46% 

Design-level test 0.76 sec 2.85% 1.02 sec 4.64% 

Maximum-level test 1.37 sec 4.24% 1.28 sec 4.35% 

 

4.1.3 Initial Stiffness 

During the tests, the specimens were pulled with the come-along winch for the free-vibration 
tests, and applied force and displacement at the center-of-gravity of the top blocks were 
measured to investigate initial stiffness of the specimens. A theoretical initial stiffness for an un-
cracked section was estimated to be about 6 kN/mm (35 kips/in.). Assuming a single degree-of-
freedom (DOF) system, the initial stiffness was estimated to be 2.8 kN/mm (16 kips/in.) and 4.5 
kN/mm (26 kips/in.) for the RC and PRC specimens, respectively, by providing a top weight of 
2.9104 kg and the natural periods described above. Table 4.2 summarizes decay of stiffness of 
the specimens. 

Figure 4.5 shows lateral force–lateral displacement hysteresis of the specimens obtained 
during pullback. The lateral force was obtained from summation of the shear force measured by 
four load cells. The applied force was 7% of the flexural strength of the specimens; the applied 
lateral displacement at the center-of-gravity of top blocks was 2 mm (0.08 in.) for the RC 
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specimen and 0.2 mm (0.008 in.) for the PRC specimen. The estimated initial stiffness was 10 
kN/mm (2.25 kips/in.) and 20 kN/mm (4.5 kips/in.) for the RC and PRC specimens, respectively, 
which is far greater than the estimated stiffness described above, and the estimated stiffness 
during the elastic- and yield-level tests shown in Table 4.2. Although the reasons behind these 
discrepancies are difficult to identify, it is assumed that the measured lateral displacement might 
be too small to be accurately captured by a linear potentiometer with a range of  1.27 m (50 in.). 
In addition, some of the longitudinal bars might have already yielded, and concrete cracks having 
already had occurred in the RC specimen at the beginning of the earthquake tests, as the 
specimen showed decay of stiffness when the applied force exceeded around 2 kN (0.45 kips). 

Table 4.2 Stiffness of specimens. 

 RC specimen PRC specimen 

X-direction Y-direction X-direction Y-direction 

Prior to tests ----- 2.8 kN/mm 
(16 kip/in.) 

----- 4.5 kN/mm 
(26 kip/in.) 

After elastic-level test 2.1 kN/mm 
(12 kip/in.) 

2.1 kN/mm 
(12 kip/in.) 

5.0 kN/mm 
(28 kip/in.) 

5.7 kN/mm 
(33 kip/in.) 

After yield-level test 2.1 kN/mm 
(12 kip/in.) 

2.2 kN/mm 
(13 kip/in.) 

4.7 kN/mm 
(27 kip/in.) 

5.5 kN/mm 
(32 kip/in.) 

After design-level test 0.9 kN/mm 
(5 kip/in.) 

1.1 kN/mm 
(6 kip/in.) 

1.6 kN/mm 
(9 kip/in.) 

1.4 kN/mm 
(8 kip/in.) 

After maximum-level test 1.0 kN/mm 
(6 kip/in.) 

1.3 kN/mm 
(7 kip/in.) 

0.8 kN/mm 
(4 kip/in.) 

0.9 kN/mm 
(5 kip/in.) 

 

 

  
(a) (b) 

Figure 4.5 Initial stiffness obtained during pullback tests: (a) comparison with 
analytical curve; and (b) comparison between specimens. 
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4.2 PERFORMANCE OF EARTHQUAKE SIMULATOR 

To assess the performance of the PRC specimen compared with that of the RC specimen, it is 
essential to determine how accurately the simulator reproduced the input signals. All 
documentation related to the performance of the simulator is summarized in Appendix E. 

Figures 4.6 and 4.7 show time histories and Fourier spectra of the measured accelerations 
at the footing for selected tests of the RC specimen. Because the measured accelerations at the 
west and south faces have very similar characteristics, those measured at the west face are used 
to show accelerations in X-direction (“accel1” in Table 3.4), and those measured at the south face 
are used for Y-direction (“accel5” in Table 3.4). The measured accelerations contained high-
frequency noise (see the time histories), and the spectra had large amplitude at several points 
over 20 Hz, especially for the yield-level test. Thus, the measured accelerations were low-pass 
filtered with a cutoff frequency of 20 Hz to remove the high-frequency noise. As shown in 
Figure 4.6, the accelerations had similar time histories even after being filtered. 

Figure 4.8 shows displacement and acceleration time histories measured at the footing 
and response spectra for the design- and maximum-level tests. The response spectra were 
generated for the original non-filtered accelerations. The footing displacements (shown in Figure 
4.8) were obtained as an average of the measurements of two linear potentiometers, which were 
placed at both sides at the west and south faces. Rotational movements of the table were 
negligible; see Appendix D, Figure D.4. 

The figure shows that the simulator reproduced the signals with sufficient accuracy. 
Although the response spectra show that the simulator had difficulty in reproducing the high-
frequency components, the simulator was able to reproduce natural periods over 0.5 sec, which 
was estimated to be the fundamental period of the specimens. More significantly, the simulator 
reproduced almost the same accelerations and displacements for tests of the RC specimen and 
the PRC specimen, which allowed for comparison of the performance between the two 
specimens. 
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(a) 

(b) 

(c) 
X-direction Y-direction 

Figure 4.6 Measured acceleration at footing: (a) yield-level test; (b) design-level test; 
and (c) maximum-level test. 
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(a) 

  
(b) 

  
(c) 

X-direction Y-direction 

Figure 4.7 Fourier spectra of footing accelerations: (a) yield-level test; (b) design-
level test; and (c) maximum-level test. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

X-direction (NS) Y-direction (EW) 

Figure 4.8(a) Performance of the earthquake simulator during the design-level test: (a) 
displacement measured at footing; (b) acceleration measured at footing; 
(c) acceleration response spectra; and (d) displacement response 
spectra. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

X-direction (NS) Y-direction (EW) 

Figure 4.8(b) Performance of the earthquake simulator during the maximum-level test: 
(a) displacement measured at footing; (b) acceleration measured at 
footing; (c) acceleration response spectra; and (d) displacement response 
spectra. 
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4.3 LOW-LEVEL TESTS 

4.3.1 Global Response 

Before performing the actual earthquake simulation tests, two low-level tests were conducted to 
investigate the dynamic response properties of the specimens in the elastic range. The first test is 
referred to as an “elastic-level test”: input signals were 7% of the filtered Los Gatos records. The 
amplitude increased up to 10% of the filtered Los Gatos records for the yield-level test (the 
second test). No visible damage including cracks was observed for either the RC or the PRC 
specimens during the tests. 

Figure 4.9(a) and (b) shows acceleration and displacement response and lateral force–
lateral displacement hysteresis at the center-of-gravity of the top blocks; Tables 4.3 and 4.4 
summarize the maximum response. The measured accelerations were low-pass filtered with a 
cutoff frequency of 20 Hz. The displacements are shown as relative displacement to the footing, 
and no filtering was performed. 

Larger response accelerations and displacements were observed in the X-direction (north–
south) direction for both specimens during the stronger component of the signals. Although the 
maximum response accelerations during the yield-level tests were similar for both specimens, 
1.12 m/sec2 (0.11g) and 0.96 m/sec2 (0.10g) for the RC and PRC specimens, respectively, the 
response displacement of the RC specimen was more than double that compared to the PRC 
specimen. The maximum displacements in the X-direction during the yield-level test were 0.02 
m (0.79 in.) and 0.008 m (0.31 in.) for the RC and PC specimens, respectively. The difference of 
the initial natural periods of the specimens could have resulted in the difference found for the 
maximum response. 

According to the lateral force–lateral displacement hysteresis, no significant nonlinear 
response was observed for either specimen during the low-level tests. The initial stiffness was 
approximately 2 kN/mm (11 kips/in.) and 5 kN/mm (29 kips/in.) for the RC and PRC specimens, 
respectively, which was similar to the stiffness estimated from the initial natural periods of the 
specimens; see Table 4.2. 

The natural periods and damping properties of the specimens were investigated using a 
free-vibration portion of acceleration response. After the yield-level test, the natural periods were 
measured at 0.82 sec and 0.51 sec, and the damping ratios were 4.4% and 1.5 % for the RC and 
PRC specimens, respectively; see Table 4.1 and Figure 4.3. 
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Table 4.3 Maximum response accelerations. 

 RC specimen PRC specimen 

X-direction Y-direction X-direction Y-direction 

Elastic-level test 
0.86 m/sec2 

(0.09g) 
0.35 m/sec2 

(0.04g) 
0.68 m/sec2 

(0.07g) 
0.46 m/sec2 

(0.05g) 

Yield-level test 
1.12 m/sec2 

(0.11g) 
0.58 m/sec2 

(0.06g) 
0.96 m/sec2 

(0.10g) 
0.69 m/sec2 

(0.07g) 

Design-level test 
2.89 m/sec2 

(0.29g) 
1.93 m/sec2 

(0.20g) 
3.14 m/sec2 

(0.32g) 
2.35 m/sec2 

(0.24g) 

Maximum-level test 
2.96 m/sec2 

(0.30g) 
2.03 m/sec2 

(0.21g) 
2.66 m/sec2 

(0.27g) 
2.76 m/sec2 

(0.28g) 

 

 

Table 4.4 Maximum response displacements. 

 RC specimen PRC specimen 

X-direction Y-direction X-direction Y-direction 

Elastic-level test 
0.014 m 
(0.54 in.) 

0.006 m 
(0.22 in.) 

0.005 m 
(0.20 in.) 

0.003 m 
(0.10 in.) 

Yield-level test 
0.020 m 
(0.79 in.) 

0.009 m 
(0.34 in.) 

0.008 m 
(0.31 in.) 

0.005 m 
(0.18 in.) 

Design-level test 
0.155 m 
(6.11 in.) 

0.111 m 
(4.39 in.) 

0.147 m 
(5.80 in.) 

0.131 m 
(5.16 in.) 

Maximum-level test 
0.323 m 

(12.70 in.) 
0.176 m 
(6.95 in.) 

0.256 m 
(10.08 in.) 

0.222 m 
(8.75 in.) 
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(a) 

  
(b) 

  
(c) 

  
(d) 

X-direction Y-direction 

Figure 4.9(a) Global response of specimens during elastic-level tests: (a) displacement 
measured at footing; (b) acceleration measured at footing; (c) 
acceleration response spectral; and (d) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

X-direction Y-direction 

Figure 4.9(b) Global response of specimens during yield-level tests: (a) displacement 
measured at footing; (b) acceleration measured at footing; (c) 
acceleration response spectral and (d) displacement response spectra. 
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4.3.2 Local Response 

Figure 4.10 shows strain time histories of the longitudinal reinforcing bars. No processing was 
performed for the measured strains. Because only one gauge was placed at the rebar surface 
facing outside at each location (see Section 3.4), measurements included both the axial strain and 
the flexural strain; thus, the measured strain can be larger than the pure axial strain. Note: the 
actual strain in the rebar must have been smaller in tension because the initial compressive 
strains induced in the rebar due to dead load of the weighted blocks were disregarded, and the 
strains were initialized to zero at the beginning of series of the tests. During the yield-level test of 
the RC specimen, strain that exceeded 0.005 was observed at the rebar located at the north and 
east sides around the bottom of the column; the maximum strain observed for the PC specimen 
was 0.0034. 

The behavior of the tendon in the PRC specimen during the low-level tests is shown in 
Figure 4.11. The prestressing force and strains of the tendon at the beginning of the tests were set 
to the initial prestressing force and strain of the tendon measured prior to the tests. The initial 
prestressing force and strain were 379 kN (85 kips) and 0.0023, respectively. The initial stress is 
estimated to be 470 MPa (68 ksi), which is 40% of the ultimate strength of the tendon. During 
the yield-level test, the prestressing force as increased up to 382 kN (86 kips) as the specimen 
deformed, and decreased by 4 kN (1 kip) during the test. 
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(a) 

(b) 
elastic-level test yield-level test 

Figure 4.11 Behavior of tendon during elastic-level and yield-level tests: (a) strain and 
(b) prestressing force. 

4.4 DESIGN-LEVEL TEST 

4.4.1 Global Response 

4.4.1.1 Damage Observations 

Figure 4.12 shows the specimens after the design-level test. Note that the RC specimen is tilted 
to the northwest side, while the PRC specimen remained almost perpendicular. The tilt angle of 
the RC specimen is about 0.7 (1.3% in drift), and that of the PRC specimen is 0.2 (0.3% in 
drift). The large residual deformation experienced by the RC specimen most likely would render 
it non-functional and most likely demolished if this behavior had actually occurred in the field 
[Kawashima 2000]. 

Figure 4.13 shows damage experienced by the columns. Most of the cracks were 
concentrated below the mid-height, and the spalling of the cover concrete occurred largely below 
305 mm (12 in.), as measured from the base of the column. The PRC specimen sustained slightly 
more damage than the RC specimen mainly because of larger compressive force due to the 
prestressing force. Note: evidence of spalling of the concrete cover at the northwest surface and 
southeast surface of the RC and PRC specimens, respectively. As shown in Figure 4.14, the local 
damage around the plastic regions for both specimens was similar. 
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4.4.1.2 Acceleration Response 

Figure 4.15 shows input signals and global response of the specimens during the design-level 
test. As mentioned in Section 4.2, the shaking table reproduced the input signals at a sufficiently 
accurate level for both specimens. The acceleration was low-pass filtered with a cutoff frequency 
of 20 Hz. 

Although the specimens had different fundamental natural periods prior to the tests (0.82 
sec and 0.51 sec for the RC and PRC specimens, respectively), the acceleration response shows a 
similar response during main pulse up to about 5 sec. The RC specimen had its maximum 
response acceleration at the center-of-gravity of the top blocks in the positive direction at 3 sec 
during the first strong pulse of the signals. The PRC specimen had its maximum acceleration at 
3.8 sec during the first strong pulse in the negative direction. The maximum accelerations 
occurred in the X-directions for both specimens at 2.89 m/sec2 (0.29g) and 3.14 m/sec2 (0.32g) 
for the RC and PRC specimens, respectively. The maximum acceleration in the Y-direction 
occurred at 5 sec for both specimens. The response accelerations of the RC specimen had 
residual values during later part of the response because the specimen tilted during the test, thus, 
the accelerometers picked up the acceleration of gravity. 

The damping properties and natural periods of the specimens were determined using the 
free-vibration portion of the acceleration response. The natural period of the RC specimen 
elongated from 0.82 sec to 1.14 sec in the X-direction during the design-level test, and the 
damping ratio was determined to be 4.2% at the end of the test (see Table 4.1 and Figure 4.3). 
The natural period of the PRC specimen also elongated by 50%, to 0.76 sec at the end of the test. 
The damping ratio of the PRC specimen was determined to be 2.9% and 4.6% for the X- and Y-
directions, respectively. 

4.4.1.3 Displacement Response 

As shown in Figure 4.15(c), the RC specimen responded for a displacement -0.155 m (-6.1 in.) in 
the X-direction at 3.3 sec just after the first strong pulse was inputted. The response of the PRC 
specimen was 50% smaller compared to the RC specimen for the same time period. As described 
above, the RC specimen had a natural period of 0.82 sec, while the PRC specimen had a natural 
period of 0.51 sec prior to the test. The discrepancy in the natural periods is mostly likely the 
result of different responses of the specimens in the early stages of testing. A similar trend can be 
seen in the Y-direction as well. 
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(a) 

(b) 

(c) 
X-direction Y-direction 

Figure 4.15 Global response of specimens during design-level test: (a) input signals 
(acceleration recorded at footing); (b) acceleration response at center-of-
gravity of top blocks; and (c) displacement response at center-of-gravity 
of top blocks. 
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The response of the PRC specimen exceeded 0.1 m (4 in.) in the positive direction. The 
RC specimen had a positive peak at almost the same time, but the peak displacement was only 
0.07 m (2.6 in.), which is 40% smaller than that of the PRC specimen. A comparison of the two 
specimens shows that the amplitudes of the response from the first negative peak to the first 
positive peak were similar: 0.22 m (8.7 in.) for the RC specimen and 0.19 (7.5 in.) for the PRC 
specimen, respectively. 

Both specimens had similar peak displacements in the negative response in the X-
direction at around 4.8 sec. The PRC specimen nearly returned to its original position and 
vibrated around this value for the rest of the response, including the free-vibration portion of the 
test; however, the RC specimen did not go back to its original position and a residual 
displacement remained, and the specimen vibrated around the value of the residual displacement. 

The residual displacements in the X-direction were 0.025 m (0.97 in.) and 0.002 m (0.07 
in.) for the RC and PRC specimens, respectively. In the Y-direction, the PRC specimen had a 
slightly larger peak [0.13 m (5.2 in.)]; at 5 sec the peak response of the RC specimen was 0.11 m 
(4.4 in.). After the main pulses, the PRC specimen had a final residual displacement of 0.008 m 
(0.3 in.), while the RC specimen had a final residual displacement of 0.019 m (0.76 in.); see 
Table 4.5. 

Figure 4.16 shows magnitude and orbits of response displacements at the center-of-
gravity of the top blocks. The specimens responded for the most part in the northwest–southeast 
direction. The maximum magnitudes of displacements were 0.187 m (7.4 in.) and 0.189 m (7.4 
in.) for the RC and PRC specimens, respectively. The response ductility and drift were computed 
to be 7.2 and 7.7% for both specimens. The drift is defined as the ratio of lateral displacement to 
the specimen height [equal to 2.44 m (96.1 in.]. Magnitudes of the residual displacements were 
0.031 m (1.2 in.) to the northwest direction for the RC specimen, and 0.008 m (0.3 in.) in the 
west–northwest direction for the PRC specimen. The ductility and drifts of residual 
displacements are 1.2 and 1.3%, and 0.3 and 0.3% for the RC and PRC specimens, respectively. 

 

Table 4.5 Residual displacements. 

 RC specimen PRC specimen 

X-direction Y-direction X-direction Y-direction 

Elastic-level test 0 m 
(0 in.) 

0 m 
(0 in.) 

0 m 
(0 in.) 

0 m 
(0 in.) 

Yield-level test 0 m 
(0 in.) 

0 m 
(0 in.) 

0 m 
(0 in.) 

0 m 
(0 in.) 

Design-level test 0.025 m 
(0.97 in.) 

0.019 m 
(0.76 in.) 

0.002 m 
(0.07 in.) 

0.008 m 
(0.30 in.) 

Maximum-level test 0.252 m 
(9.91 in.) 

0.134 m 
(5.26 in.) 

0.053 m 
(2.07 in.) 

0.068 m 
(2.67 in.) 
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(a) 

 
(b) 

X-direction Y-direction 

Figure 4.16 Response displacement for design-level test: (a) orbit and (b) magnitude. 

4.4.1.4 Lateral Force–Lateral Displacement Hysteresis 

Figure 4.17 shows lateral force versus lateral displacement hysteresis at the center-of-gravity of 
the top blocks. As expected, (see Figure 2.32), both specimens exhibited similar skeleton curves 
as they moved away from their point of origin in the X-direction. Note, however, they had 
similar unloading curves as well. This is not the hysteresis expected according to the analyses, 
which show origin-oriented hysteresis for columns with unbonded prestressing tendons. In the Y-
direction, the PRC specimen retained the origin-oriented hysteresis, although the hysteresis was 
smaller compared to the X-direction. The flexural strengths of the specimens were about 70 kN 
(16 kips). 

Figure 4.18 shows inertia force versus lateral displacement hysteresis. The lateral forces 
computed from the load-cell measurements are shown in Figure 4.17. As shown in Figure 
4.15(b), when the acceleration responses that were low-pass filtered were used, the hysteresis 
showed several sudden changes of tangential stiffness and forces; these hysteresis loops barely 
resemble those of standard RC members. If smaller cut-off frequencies are used, such as 2 Hz or 
5 Hz, such sudden change of tangential stiffness can be eliminated, and the inertia force-lateral 
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displacement hysteresis have better agreement with the lateral force–lateral displacement 
hysteresis. 

 

 

  
X-direction Y-direction 

Figure 4.17 Lateral force–lateral displacement for the design-level test. 

  

-100

0

100

-0.2 0 0.2

-6 -3 0 3 6

L
at

er
al

 F
or

ce
 (

kN
)

-0.1 0.1

-50

50

Lateral Displacement  (m)

Lateral Displacement  (in.)

RC Specimen
PRC Specimen

-0.2 0 0.2

-6 -3 0 3 6

-20

-10

0

10

20

-0.1 0.1

L
at

er
al

 F
or

ce
  (

ki
p)

Lateral Displacement  (m)

Lateral Displacement  (in.)



116 

  

  
X-direction 

  

  
Y-direction 

RC specimen PRC specimen 

Figure 4.18 Inertia force–lateral displacement hysteresis for the design-level test. 
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4.4.1.5 Global Response during Main Pulses 

As shown in Figure 4.17, the PRC specimen did not show an origin-oriented hysteresis as 
expected, prompting an investigation into the response during the main pulses. Figure 4.19 
shows response displacement time histories, orbits at the center-of-gravity of the top blocks, and 
force versus displacement hysteresis from 2.5 to 6 sec during the main pulses. Eight points are 
marked in the figures: at Point A, the specimens reached the first peak in the positive X-
direction; then, the lateral forces of the X-direction decreased to zero at Point B. Point C shows 
the positive peak in the following response, and then the forces returned to zero at Point D. Point 
E shows that when the response displacements reached the second peak in the positive direction, 
the forces went back to zero at Point F. Point G shows the positive peaks in the Y-direction in the 
subsequent response, and then again the forces went back to zero at Point H. 

The hysteresis of the PRC specimen showed an origin-oriented tendency in the Y-
direction during response between the Points A and B. Thus, the orbit of the PRC specimen 
shows that the response is directed to zero in both directions; however, during the response 
between Points C and D, in which the hysteresis shows no origin-oriented tendency, the response 
displacement increased in the Y-direction, although it decreased in the X-direction. 

Between 4.4 and 6 sec, the same trend is observed. When the force decreased from Point 
E to F, in which the PRC specimen had a similar unloading path of the RC specimen and showed 
no origin-oriented tendency, the vector of displacement was not directed to the point of origin; 
however, in the response between Points G and H, the hysteresis of the PRC specimen had an 
origin-oriented hysteresis in the Y-direction, as the displacement vector was directed to the origin 
point. 

These results suggest that when the displacement vector is not directed to the origin point, 
the PRC specimen will not show an origin-oriented hysteresis; when the displacement vector is 
directed to the origin point or near the origin point, the PRC specimen will show such hysteresis. 
While the response damped out in both directions after the specimen experienced the main pulses, 
the displacement vector of the PRC specimen is likely to be directed to the point of origin, and, 
therefore, the residual displacement tends to decrease. Thus, even though the hysteresis shown in 
Figure 4.17 does not show origin-oriented hysteresis, the PRC specimen had a smaller residual 
displacement than the RC specimen after being subjected to the earthquake excitation. 

4.4.1.6 Global Response in 45-Rotated Coordinate System 

As shown in Figure 4.16, the specimens responded mostly in the northwest–southeast direction. 
Thus, the behaviors of the specimens were also investigated in a 45 rotated coordinate system; 
see Figure 4.20. The maximum displacements were 0.184 m (7.2 in.) and 0.188 m (7.4 in.) in the 
northwest direction for the RC and PRC specimens, respectively. The flexural strengths were 76 
kN (17 kips) and 81 kN (18 kips), which were about 10% larger than those in the original 
coordinate system. 

Figure 4.21 details the response of the specimens during the main pulses in this 
coordinate system. The tendency of the PRC specimen toward an origin-oriented hysteresis when 
the displacement vector is directed to the origin point or near the origin point can be also seen 
here. Furthermore, the hysteresis from Points C and E, which show no origin-oriented tendency 
in the original coordinate system, shows a slight origin-oriented tendency after the hysteresis 
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passes Points D or F. From the orbits, the displacement vector is directed to the origin point or 
near the origin point after these points. 

 

 
X-direction 

 
Y-direction 

 
magnitude 

Figure 4.19(a) Response of specimens during main pulses for the design-level test: 
response displacement. 

-0.2

0

0.2

2.5 3 3.5 4 4.5 5 5.5 6

-6

-3

0

3

6

D
is

pl
ac

em
en

t (
in

.)0.1

-0.1

A

B

C

D

E F

G

RC Specimen
PRC Specimen

A
B

C

D

E

F

G

D
is

pl
ac

em
en

t (
m

)

H

H

Time (sec)

-0.2

0

0.2

2.5 3 3.5 4 4.5 5 5.5 6

-6

-3

0

3

6

Time (sec)

D
is

pl
ac

em
en

t (
in

.)0.1

-0.1
A

B

C

D

E
F

GA
B

C

D

E F

G

D
is

pl
ac

em
en

t (
m

)

H

H

0

0.2

2.5 3 3.5 4 4.5 5 5.5 6
0

3

6

Time (sec)

M
ag

ni
tu

de
 o

f 
 D

is
pl

ac
em

en
t (

in
.)

0.1

A

B

C

D

E F

G

A

B

C

D

E

F

G

M
ag

ni
tu

de
 o

f 
 D

is
pl

ac
em

en
t (

m
)

H

H



119 

  

Figure 4.19(b) Response of specimens during main pulses for the design-level test: orbit 
of response displacement. 
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2.5–4.4 sec 4.4–6 sec 

Figure 4.19(c) Response of specimens during main pulses for the design-level test: 
lateral force-lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

NW–SW direction NW–SE direction 

Figure 4.20 Response in 45 rotated coordinate system for the design-level test: (a) 
orbit of response displacement: (b) displacement response at center-of-
gravity; and (c) lateral force–lateral displacement hysteresis. 
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NE–SW direction 

 
NE–SE direction 

Figure 4.21(a) Response during main pulses in rotated coordinate system for the 
design-level test: response displacement. 
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2.5–4.4 sec 4.4–6 sec 

Figure 4.21(b) Response during main pulses in rotated coordinate system for the 
design-level test: orbit of response displacement. 
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NE–SW direction 

  
NE–SE direction 

2.5–4.4 sec 4.4–6 sec 

Figure 4.21(c) Response during main pulses in rotated coordinate system for the 
design-level test: lateral force–lateral displacement. 
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column. As expected, the axial strain obtained from the north and south gauges and the east and 
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measurements obtained from the top strain gauges show strain beyond the gauge capacity at 
some points during the main pulses, the axial strain time histories are very similar to that 
obtained at the bottom gauges, demonstrating that the tendon behaved uniformly. No localized 
damage was observed in the tendon. The strain reached a maximum strain of 0.0037 at 4.8 sec. 

The prestressing force increased up to 613 kN (138 kips) as the specimen deformed and 
then decreased by 39 kN (9 kips) during the test. As shown in Figure 4.22, the tendon force 
increased when the deformation of the specimen increased and decreased when the specimen 
returned to near the origin point. The maximum force occurred at 4.8 sec (Point E) when the 
column deformation reached the maximum, as shown in the orbit in Figure 4.21. 

Figure 4.23 compares the stress–strain hysteresis of the tendon during the design-level 
test with the hysteresis obtained from the material test described in Section 2.4.3. The tendon 
remained in the elastic range during the test. The maximum stress was 65% of the ultimate 
strength of the tendon. Figure 4.24 shows the flexural strain of the tendon. The amplitude of 
flexural strain was about 0.0003, which is 10% smaller than the axial strain shown in Figure 4.22. 
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gauges at top of column gauges at bottom of column 

 
(b) 

 
(c) 

Figure 4.22 Behavior of tendon during the design-level test: (a) axial strain; (b) 
prestressing force; and (c) variation of prestressing force during main 
pulses. 
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Figure 4.23 Stress–strain hysteresis of tendon during design-level test. 

 
Figure 4.24 Flexural strain of tendon during the design-level test. 

 

4.4.2.2 Strain of Reinforcement 

Figure 4.25 shows strain time histories of the longitudinal reinforcing bars. During the main 
pulses, the longitudinal reinforcement around the bottom of the column yielded and exceeded the 
capacity of the gauges. Because almost all the gauges placed at the bottom of the columns were 
damaged, the strain of the reinforcement after the main pulses was not measured. 

Figure 4.26 shows strain time histories of the spirals. Unfortunately, there is no legend 
available because the labels of the gauges placed on the spirals of the PRC specimen were lost 
during testing; however, the channel IDs are provided in the figure. The spirals experienced 
strains that exceed 0.01 during the main pulses. 
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4.4.2.3 Curvature of Columns 

Figure 4.27 shows curvature time histories computed from measurements of the DCDTs, and 
Figure 4.28 shows moment versus curvature hysteresis of the columns. Figure 4.29 shows 
curvature distributions along the column at several peaks and at the end of the test. 
Measurements including the effect of strain penetration of reinforcement from the footing are not 
shown in the figures and will be discussed later. Nonlinear deformation occurred mainly at the 
bottom portion of the column between heights of 51 mm (2 in.) and 305 mm (12 in.) for both 
specimens. This correlates to the location of visible damage, such as cracks in the concrete 
cracks and spalling of the concrete cover. This portion is assumed to be a plastic-hinge region. 

The specimens had almost the same negative peak in the X-direction at 4.8 sec with very 
similar curvature distributions, as shown in Figure 4.29. Therefore, reducing the amount of 
longitudinal reinforcement and applying an additional compressive force as prestressing force 
did not significantly affect formation of a plastic-hinge region, plastic-hinge length, or the 
magnitude of nonlinear curvature. As shown in Figure 4.29, the RC column had residual 
curvature of 0.4 m (16 in.) from the bottom of the column, while the PRC specimen had residual 
curvature only in 0.2 m (8 in.) from the bottom. The RC specimen had much larger residual 
curvature than the PRC specimen: 0.034 /m (8.610-4 /in.) and 0.012 /m (3.010-4 /in.) in the X-
direction for the RC and PRC specimens, respectively.  

Figure 4.30 shows curvature time histories obtained from the DCDTs placed around the 
bottom of the columns. Measurements by a pair of DCDTs placed between heights of 0 and 0.15 
m (6 in.) potentially include the effect of strain penetration of reinforcement from the footing, as 
well as nonlinear deformation of the columns in the plastic-hinge region. The maximum 
curvatures due to strain penetration were evaluated to be about 0.06/m and 0.1/m for the RC and 
PRC specimens, respectively. 

Figure 4.31 shows accuracy of curvature measurements and the contribution of strain 
penetration of the reinforcement to the lateral displacement at the top. The displacements at the 
center-of-gravity computed by integration of measured curvature along the column height were 
compared with the displacements directly measured by the linear potentiometers at the top. The 
integration of curvature measurements provided good agreement with the directly measured 
displacement responses. Contribution of the strain penetration to the response displacement at 
the top was estimated to be 10–20% for the RC specimen and 20–30% for the PRC specimen. 
This result bears some further study. Because the PRC specimen has smaller reinforcing bars, it 
was assumed that it would have smaller strain penetration, and, thus, smaller response 
displacement due to strain penetration. 
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Figure 4.27 Curvature of columns for the design-level tests. 
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Figure 4.28 Moment curvature hysteresis for the design-level test for both the RC and 
PRC specimens. 
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X-direction Y-direction 

Figure 4.29(a) Curvature distribution along columns for the design-level test: first peaks. 

 

  
X-direction Y-direction 

Figure 4.29(b) Curvature distribution along columns for the design-level test: second 
peaks. 
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X-direction Y-direction 

Figure 4.29(c) Curvature distribution along columns for the design-level test: residual 
curvature. 
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Figure 4.30 Curvature due to strain penetration of reinforcement for the design-level 
tests. 
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X-direction 

Y-direction 
RC specimen PRC specimen 

Figure 4.31 Displacement computed with curvature measurements for the design-
level tests. 

4.4.2.4 Deformation of Columns 

Figure 4.32 shows displacement time histories measured at several heights along the columns, 
and Figure 4.33 shows deformation of the columns at several peaks and residual deformation; 
Figure 3.16 shows the locations of linear potentiometers. As expected, the response increased as 
the location of measurement goes up to the top of the column. The RC and PRC specimens had a 
similar deformation diagram and almost the same negative peaks at 4.8 sec, which again 
demonstrates incorporation of the prestressed tendon had no significant effect on the plastic-
hinge region. The deformation diagrams for the residual deformation shows that the PRC 
specimen obviously had a smaller residual displacement than the RC specimen. 
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(a) 

  
(b) 

  
(c) 

RC specimen PRC specimen 

Figure 4.32(a) Response of displacement specimens for the design-level tests in the X-
direction: (a) top blocks; (b) top portion of column; and (c) bottom portion 
of column. 
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(a) 

  
(b) 

  
(c) 

RC specimen PRC specimen 

Figure 4.32(b) Response of displacement specimens for the design-level tests in the Y-
direction: (a) top blocks; (b) top portion of column; and (c) bottom portion 
of column. 
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(a) 

 

 
(b) 

Figure 4.33(a) Column deformations for the design-level test: (a) first peaks and (b) 
second peaks; and (c) residual deformation. 
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Figure 4.33(b) Column deformations for the design-level test (continued): (c) residual 
deformation. 

4.5 MAXIMUM-LEVEL TEST 

4.5.1 Global Response 

4.5.1.1 Damage Observation 

Figure 4.34 shows the specimens after the maximum-level test. The RC specimen tilted 
significantly in the northwest direction. The tilt angle of the specimen increased from 0.7 to 
6.6, which is 11.7% in drift after the maximum-level test. Even though the RC column did not 
collapse, it obviously lost its functionality as a bridge column. In comparison, even after being 
subjected to severe ground excitation the PRC specimen tilted just slightly to the west for a tilt 
angle of 2, which corresponds to 3.5% drift. 

Figures 4.35 and 4.36 show post-test damage to the columns. The RC specimen had 
cracks all over the column height on the south and east sides. Note the width of the cracks from 
the bottom through the mid-height because the specimen tilted severely to the northwest 
direction. A region where the spalling of cover concrete occurred extended to a height of 406 
mm (16 in.). No major damage such as buckling or fracture of reinforcement or crushing of core 
concrete was observed even though the specimen was subjected to extreme ground excitation 
that resulted in large residual displacement. 

A comparison of the observed damage of the PRC specimen versus the RC specimen 
shows that the PRC specimen had fewer cracks, which were limited to below the mid-height of 
the column. Spalling of the cover concrete occurred at the northwest surface; the region where 
the spalling occurred was similar in both specimens. No major damage such as buckling or 
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fracture of reinforcement or crushing of core concrete was visible. According to the estimated 
natural period determined later, it is assumed that a few of longitudinal reinforcing bars fractured 
during the maximum-level test. The fracture could be the result of using smaller reinforcing bars. 
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4.5.1.2 Acceleration Response 

Figure 4.37 shows the input signals and global response of the specimens during the maximum-
level test. As mentioned in Section 4.2, during the tests the shaking table reproduced the input 
signals at a sufficient level of accuracy for both specimens. 

Before the test, the specimens had different fundamental natural periods: 1.14 sec and 
0.76 sec for the RC and PRC specimens, respectively. Despite this factor, the acceleration 
response of the specimens was similar during main pulse up to about 5 sec. The response 
accelerations of the specimens were evidence of the offsets, and the accelerometers showed 
acceleration of gravity due to tilting of the specimens. 

Both specimens exhibited the maximum response acceleration at the center-of-gravity of 
the top blocks in the positive direction at 3 sec during the first strong pulse of the signals. The 
maximum accelerations occurred in the X-directions for both specimens: 2.96 m/sec2 (0.3g) and 
2.66 m/sec2 (0.27 g) for the RC and PRC specimens, respectively. The maximum accelerations in 
the Y-direction occurred at 3.6 sec for both specimens. 

The damping properties and natural periods of the specimens were investigated using the 
free-vibration portion of the acceleration response. The natural period of the RC specimen did 
not change from 1.14 sec in the X-direction during the test, and the damping ratio was 2.7% at 
the end of the test (see Table 4.1 and Figure 4.3). The natural period and the damping ratio 
decreased slightly in the Y-direction. Based on these observations, it is assumed that the RC 
specimen did not suffer any severe damage inside the column. 

Despite no visible damage, it is assumed a few of the longitudinal reinforcing bars in the 
PRC specimen fractured as a result of the test because the natural period of the specimen was 
significantly elongated from 0.76 to 1.37 sec and 1.02 to 1.28 sec in the X- and Y-directions, 
respectively. The damping ratios of the PRC specimen were evaluated to be about 4.3% for both 
directions. 
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(a) 

(b) 

(c) 
X-direction Y-direction 

Figure 4.37 Global response of specimens for the maximum-level test: (a) input 
signals (acceleration recorded at footing; (b) acceleration response at 
center-of-gravity of top blocks; and (c) displacement response at center-
of-gravity of top blocks. 
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4.5.1.3 Displacement Response 

Both specimens had a similar peak response of about -0.25 m (-10 in.) at 3.4 sec [as shown in 
Figure 4.37(c)], even though the RC specimen had an offset of -0.025 m (-0.97 in.) and the PRC 
specimen exhibited no offset; this was the maximum response displacement of the PRC 
specimen. In the Y-direction, the PRC specimen had 30% larger response at 3.8 sec. 

The response displacement in the X-direction of the PRC specimen decreased down to -
0.029 m (-1.1 in.), while that of the RC specimen decreased to only -0.086 m (-3.4 in.). The RC 
specimen had a maximum response of -0.32 m (-12 in.) at 4.8 sec. The significant discrepancy in 
response between these two specimens resulted in the RC specimen showing a large offset, while 
the PRC specimen had a relatively small offset. The residual displacements in the X-direction are 
-0.252 m (-9.9 in.) and -0.053 m (-2.1 in.) for the RC and PRC specimens, respectively. 

Figure 4.38 shows magnitude and orbits of response displacements at the center-of-
gravity of the top blocks. The specimens responded mostly in the northwest-southeast direction. 
Magnitudes of the maximum displacements were 0.349 m (13.7 in.) and 0.323 m (12.7 in.) for 
the RC and PRC specimens, respectively. The response ductility and drift were computed to be 
13.4 and 14.3% for the RC specimen and 12.4 and 13.2% for the PRC specimen. Magnitudes of 
the residual displacements were 0.285 m (11.2 in.) and 0.107 m (4.2 in.) for the RC and PRC 
specimens, respectively. The ductility and drift of the residual displacements were 10.9 and 
11.7%, and 4.1 and 4.4% for the RC and PRC specimens, respectively. 

 
(a) 

 
(b) 

Figure 4.38 Response displacement for the maximum-level test: (a) orbit and (b) 
magnitude. 
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4.5.1.4 Lateral Force-Lateral Displacement Hysteresis 

Figure 4.39 shows lateral force versus lateral displacement hysteresis at the center-of-gravity of 
the top blocks, and Figure 4.40 shows inertia force versus lateral displacement hysteresis. As 
seen in the responses during the design-level tests, both specimens had similar unloading curves 
and skeleton curves. The hysteresis computed from inertia force show similar trends to that seen 
during the design-level tests. 

 

  
(a) 

X-direction Y-direction 

Figure 4.39 Lateral force–lateral displacement hysteresis for the maximum-level test. 
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X-direction 

  

  
Y-direction 

RC specimen PRC specimen 

Figure 4.40 Inertia force–lateral displacement hysteresis for the maximum-level tests. 
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4.5.1.5 Global Response during Main Pulses 

Figure 4.41 shows the response displacement time histories and orbits at the center-of-gravity of 
the top blocks and force versus displacement hysteresis from 2.5 to 6 sec during the main pulses. 
Eight points are marked in the figures; at Point A, the specimens reached the first peaks in the 
positive X-direction. Point B shows the negative peaks during the first pulse; the forces 
decreased to zero at Point C. Point D shows the response displacements at the smallest 
displacement in the subsequent response. The displacements reached the second peaks at Point 
E; the forces decreased to zero at Point F. The displacements reached zero for the PRC specimen 
and a peak for the RC specimen at Point G. 

Both specimens showed similar response from Points A to C in the X-direction, including 
the unloading curves. Although the loading curves from Points A to B are similar in the Y-
direction, the PRC specimen had smaller tangential stiffness in the unloading curve from Point C, 
thus showing the effect of incorporating the unbonded prestressing tendon. Even though the PRC 
specimen had a slightly larger response displacement at Point C, the force reached zero at almost 
the same displacement on the unloading path. The orbit of the PRC specimen shows an origin-
oriented path from Point C, proving that the specimen had an origin-oriented hysteresis when the 
displacement vector directs to the origin. Because the displacement vector of the PRC specimen 
does not show origin-oriented loop, the PRC specimen does not show origin-oriented tendency 
between 4.4 and 6 sec. 
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(a) 

 
(b) 

 
(c) 

Figure 4.41(a) Response displacement of specimens during the main pulses for the 
maximum-level test: (a) X-direction; (b) Y-direction; and (c) magnitude. 
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Figure 4.41(b) Orbit of response displacement of specimens during the main pulses for 
the maximum-level test. 

  
(a) 

 
 

(b) 
2.5–4.4 sec 4.4–6 sec 

Figure 4.41(c) Lateral force–lateral displacements of specimens during the main pulses 
for the maximum-level test. 
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4.5.1.6 Global Response in 45-Rotated Coordinate System 

Figure 4.42 shows response of the specimens in a 45 rotated coordinate system. The maximum 
displacements were 0.325 m (12.8 in.) and 0.321 m (12.6 in.) in the northwest direction for the 
RC and PRC specimens, respectively. Figure 4.43 shows details of the response during the main 
pulses in this coordinate system. Again, the PRC specimen shows an origin-oriented hysteresis 
when the displacement vector is directed to the origin or near the origin point. 
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(a) 

  
(b) 

  
(c) 

NE–SW direction NW–SE direction 

Figure 4.42 Response in 45 rotated coordinate system for the maximum-level test: 
(a) orbit of response displacement; (b) displacement response at center-
of-gravity; (c) lateral force–lateral displacement hysteresis. 
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(a) 

 
(b) 

Figure 4.43(a) Response displacement during main pulses in rotated coordinate system 
for the maximum-level test: (a) NE–SW direction and (b) NE–SE direction. 
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Figure 4.43(b) Orbit of response displacement during main pulses in rotated coordinate 
system for the maximum-level test. 
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(a) 

  
(b) 

2.5–4.4 sec 4.4–6 sec 

Figure 4.43(c) Lateral force–lateral displacement hysteresis for the maximum-level test: 
(a) NE–SW direction and (b) NE–SE direction. 
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force reached the maximum during the first pulse and decreased when the specimen returned to 
near its origin point. Figure 4.45 shows the stress–strain hysteresis of the tendon during the 
maximum-level test compared with the hysteresis obtained from the material test described in 
Section 2.4.3. The tendon remained in the elastic range during the test. The maximum stress was 
72% of the ultimate strength of the tendon. Figure 4.46 shows the flexural strain of the tendon. 
The amplitude of flexural strain increased up to 0.00066, but was still smaller than 20% of the 
axial strain described above. 
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(a) 

 
(b) 

 
(c) 

Figure 4.44 Behavior of tendon during the maximum-level test: (a) axial strain 
(gauges at bottom of column); (b) prestressing force; and (c) variation of 
prestressing force during main pulses. 
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Figure 4.45 Stress–strain hysteresis of tendon during the maximum-level test. 

 
Figure 4.46 Flexural strain of tendon during the maximum-level test. 

4.5.2.2 Strain of Reinforcement 

No data was obtained during the maximum-level tests because almost all the gauges were 
damaged. 

4.5.2.3 Curvature of Column 

Figure 4.47 shows curvature time histories computed from measurements of the DCDTs, and 
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curvature distributions along the column at several peaks and at the end of the test. The effect of 
pullout of reinforcement from the footing is not shown in the figures and will be discussed later. 
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areas where the damage is most visible. 

Residual curvature mostly occurred below a height of 457 mm (18 in.) for both 
specimens. Note, however, that the RC specimen had about a 9 times larger residual curvature at 
the bottom of the specimen. 
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Figure 4.50 shows curvature time histories obtained from the DCDTs placed around the 
bottom of the columns. Measurements by a pair of DCDTs measuring vertical deformation of the 
columns between heights of 0 and 0.15 m (6 in.) included the effect of strain penetration of 
reinforcement from the footing, as well as nonlinear deformation of the columns in the plastic 
hinge region. The curvatures due to strain penetration were evaluated to be about 0.1/m for both 
specimens. 

Figure 4.51 shows accuracy of curvature measurements and the contribution of strain 
penetration of reinforcement to the lateral displacement at the top. The displacements at the 
center-of-gravity computed by integration of measured curvature along column height were 
compared with the displacements directly measured by the linear potentiometers at the same 
location. The integration of curvature measurements provided good agreements with the directly 
measured displacement responses, especially in the X-direction for the RC specimen and in the 
Y-direction for the PRC specimen. As a whole, the curvature measurement was relatively 
accurate during the maximum-level test. Contribution of the strain penetration to the response 
displacement was estimated to be about 15% for the RC specimen and 25% for the PRC 
specimen. 
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(a) 

  

  
(b) 

RC specimen PRC specimen 

Figure 4.47 Curvature of columns for the maximum-level test: (a) X-direction and (b) 
Y-direction. 
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(a) 

  

  
(b) 

RC specimen PRC specimen 

Figure 4.48 Moment curvature hysteresis for the maximum-level test: : (a) X-direction 
and (b) Y-direction. 
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(a)  

  
(b) 

  
(c) 

X-direction Y-direction 

Figure 4.49(a) Curvature distribution along columns for maximum-level test: (a) first 
peaks and (b) second peaks. 
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(c) 

X-direction Y-direction 

Figure 4.49(b) Curvature distribution along columns for maximum-level test: (c) residual 
curvature. 

  
(a) 

  
(b) 

RC specimen PRC specimen 

Figure 4.50 Curvature due to strain penetration of reinforcement for the maximum-
level test: (a) X-direction and (b) Y-direction. 
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(a) 

(b) 
RC specimen PRC specimen 

 

Figure 4.51 Displacement computer with measured curvature for the maximum-level 
test: (a) X-direction and (b) Y-direction 

4.5.2.4 Deformation of Column 

Figure 4.52 shows displacement time histories measured at several heights along the columns, 
and Figure 4.53 shows deformation of the columns at several peaks and residual deformation. 
The RC and PRC specimens had a similar deformation diagram with almost the same negative 
peaks at 3.3 sec. Again, the PRC specimen shows no significant effect on the plastic-hinge 
region. Comparing the deformation diagrams for the residual deformation shows that the PRC 
specimen obviously had a smaller residual displacement than the RC specimen. 
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(a) 

  
(b) 

  
(c) 

RC specimen PRC specimen 

Figure 4.52(a) Response of displacement of RC and PRC specimens for the maximum-
level test in the X-direction: (a) top blocks; (b) top portion of column; and 
(c) bottom portion of column. 
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(a) 

  
(b) 

  
(c) 

RC specimen PRC specimen 

Figure 4.52(b) Response of displacement of RC and PRC specimens for the maximum-
level test in the Y-direction: (a) top blocks; (b) top portion of column; and 
(c) bottom portion of column. 
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(a) 

  
(b) 

  
(c) 

X-direction Y-direction 

Figure 4.53 Column deformation for the maximum-level test): (a) first peaks; (b) 
second peaks; and (c) residual deformation. 
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4.6 EFFECT OF AFTERSHOCKS 

4.6.1 Ground Motion Intensity for Tests for Aftershocks 

As described above, the PRC specimen did not show severe damage or large residual 
deformation after the maximum-level tests. Thus, two more tests were performed on the PRC 
specimen to investigate the effect of aftershocks and final failure mode. No more tests were 
performed for the RC specimens because of safety concerns. First a low-level test was 
conducted, which was followed by a high-level test. Seven percent of the modified Los Gatos 
record was inputted for the low-level test, and then the intensity of the ground motion was 
increased to 70% of the modified Los Gatos record for the high-level test. 

4.6.2 Second Elastic-Level Test 

Figure 4.54 shows the response of the PRC specimen during the second elastic-level test. The 
response during the first elastic-level test is also shown in the figure for comparison. The 
specimen vibrated around the residual displacement resulting from the previous test, and the 
residual displacement did not change during the test. As the natural period of the specimen 
increased from 0.51 sec to 1.37 sec (see Table 4.1 and Figure 4.3), the PRC specimen shows 
larger tangential stiffness during the second elastic-level test, and, thus, larger response 
displacement. 
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(a) 

  
(b) 

  
(c) 

X-direction Y-direction 

Figure 4.54 Response during second elastic-level test: (a) input signals (acceleration 
recorded at footing); (b) displacement response at center-of-gravity of top 
blocks; and (c) lateral force–lateral displacement hysteresis. 
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4.6.3 Second Design-Level Test 

Figure 4.55 shows the final failure mode of the PRC specimen after the second design-level test. 
Because of P-delta effects to the northwest side, the specimen collapsed during the second main 
pulse at around 7 sec. Figure 4.56 shows local damage of the specimen. Note fracture of 6 of 12 
longitudinal reinforcing bars on the southeast side, which could have resulted in a significant loss 
of flexural capacity of the column. The core concrete was crushed, and several spirals were 
fractured at the northwest side. 

Figures 4.57 and 4.58 show response displacement and force-displacement hysteresis 
recorded during the test. During the first pulse, the displacement of the specimen was 0.252 m 
(9.9 in.), which is similar to the experienced maximum displacement of the specimen; the 
response displacement then decreased. During the second pulse, however, the response increased 
again to the northwest direction, and the specimen become unstable due to the P-delta effects. It 
is at this point that the safety cables stopped the specimen from collapsing. 

It is assumed that the main cause of this total collapse was the fracture of some of the 
longitudinal bars. The smaller bars that were used in the PRC specimen to reduce the amount of 
mild reinforcement could have resulted in premature fractures. Thus, unbonding of mild 
reinforcement could be implemented to reduce the risk of total failure; however, total collapse 
might have been prevented if a smaller number of larger size bars had been used. The failure 
mode of this specimen should be studied to that other specimen models are designed and 
constructed to avoid unexpected or undesirable failure mode. 
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(a) 
X-direction Y-direction 

 
(b) 

Figure 4.57 Response displacement for the second design-level test: (a) displacement 
response at center-of-gravity of top blocks; and (b) displacement 
response orbit. 
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X-direction Y-direction 

Figure 4.58 Lateral force–lateral displacement hysteresis for the second design-level 
test. 
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5 Analytical Simulation of the Dynamic 
Behavior of the Columns 

5.1 ANALYTICAL MODELS AND INPUT GROUND MOTIONS 

5.1.1 Analytical Models 

To further understand the dynamic behavior of the specimens during the earthquake simulation 
tests, a series of nonlinear dynamic analyses was performed. The analytical model shown in 
Figure 2.7(b) was used to analyze the PRC specimen. The same model was used for the RC 
specimen without incorporating the spring element representing an unbonded tendon. Actual 
material properties detailed in Section 2.4 were incorporated, and the Mander model and the 
Sakai-Kawashima models were used for stress–strain hysteresis of concrete and reinforcing bars. 
P-Delta effects due to the dead load of the top slab and weighted blocks were included; P-delta 
effects due to the prestressing force of the tendon were disregarded. 

5.1.2 Damping Assumptions 

Damping properties of the analytical models were idealized using Rayleigh damping. Measured 
natural periods and damping ratios were used for determining damping properties of the models. 
Natural periods of 0.8 and 0.5 sec for the RC and PRC specimens, respectively, which were 
measured prior to the series of earthquake simulation tests as shown in Table 4.1, were used for 
the natural period of the first mode when determining Rayleigh damping. 

To determine Rayleigh damping, two sets of natural period and damping ratios are 
required; however, there is no appropriate way to determine the second natural period for 
Rayleigh damping. Based on an Eigenvalue analysis of a model assuming cracked stiffness 
properties for the reference RC column, the first, second, and third modes were determined to 
have periods of 0.74, 0.09, and 0.02 sec, respectively, suggesting that the second natural period 
can be taken an order of 1% to 10% of that of the first mode. Thus, 10%, 5%, and 1% were 
assumed for the first mode, and the effects of damping assumption were explored for the RC 
specimen. As described later, the effect on the analytical response was minor, so 5% of the 
natural period of the first mode was used to analyze the PRC specimen. 

As shown in Table 4.1, the damping ratio varied from 2.7% to 6% for the RC specimen, 
presenting difficulties in determining the damping properties for the analyses. Thus, three 
damping ratios (4% prior to the test in X-direction, 6% prior to the test in Y-direction, and 2.7%, 
which is the smallest value), were assumed, and the results were compared to the observed 
response during the tests. For the PRC specimen, the damping ratio varied from 1.5% to 4.4%. 
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As described later, the smaller damping ratio provided larger response and better prediction of 
the test results. Thus, a damping ratio of 2% was assumed for the dynamic analysis of PRC 
specimen. The same damping ratios were assumed for both the first and the other modes. 

Figure 5.1 shows the damping ratio versus natural period relation based on Rayleigh 
damping. If a smaller second natural period is assumed, the damping ratio in shorter natural 
period range decreases, while damping ratios in longer natural period range have a similar 
damping ratio. Smaller damping ratio assumed for the first and second natural periods resulted in 
a smaller damping ratio for entire natural period range. 

 

  
(a) (b) 

Figure 5.1 Rayleigh damping: (a) effect of assumption of second natural period; and 
(b) effect of damping ratio. 

 

5.1.3 Input Motions Used 

Figure 5.2 shows ground motions used for the analyses. The recorded accelerations at the footing 
were input. The accelerations recorded at the west surface are used for the X-direction while 
those recorded at the south surface are used for the Y-direction. The accelerations were low-pass 
filtered with a cutoff frequency of 20 Hz. Zeros for about fifteen sec were added after the records 
to provide enough intervals between the tests to ensure that the response damped out before 
another record was input, and combined records from four levels of the tests together to form one 
120-sec long input acceleration record were used in the analyses. 
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X-direction 

 
Y-direction 

Figure 5.2 Input acceleration for dynamic analyses. 

5.2 ANALYTICAL SIMULATION OF DYNAMIC BEHAVIOR OF RC SPECIMEN 

Table 5.1 and Figure 5.3 show the effect of damping assumption on the analytical response 
displacement of the columns; in addition, the test results are compared. The analyses predict 
20%–50% smaller maximum response no matter how the damping assumptions are determined. 
The analytical residual displacements were only about 5%–20% of the observed response. 

Varying the second natural period had minor effects, although the smaller second natural 
period resulted in a smaller damping ratio in the shorter natural period range, resulting in a larger 
response. Changing the magnitude of damping ratio for the first and second natural periods 
proved to be a little more sensitive. When a smaller damping ratio was assumed, the analytical 
maximum and residual displacement increased. 
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Table 5.1 Analytical response displacement of RC specimen; damping 
assumed to be 4%. 
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Test         

T2 = 0.08 sec 0.014 0.006 0.020 0.009 0.155 0.111 0.323 0.176 
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(74%) 

0.005 
(79%) 

0.015 
(77%) 

0.007 
(83%) 

0.085 
(55%) 

0.074 
(66%) 

0.173 
(54%) 

0.122 
(69%) 

T2 = 0.008 sec 
0.010 
(74%) 

0.005 
(79%) 

0.015 
(77%) 

0.007 
(83%) 

0.093 
(60%) 

0.081 
(73%) 

0.186 
(58%) 

0.130 
(74%) 

Residual displacement 

 Design level Maximum level 

maxxdr  (m) maxydr  (m) maxxdr  (m) maxydr  (m) 

Test 0.025 0.019 0.252 0.134 
T2 = 0.08 sec 0.0024 (9%) 0.0033 (17%) 0.0095 (4%) 0.0083 (6%) 
T2 = 0.04 sec 0.0031 (12%) 0.0037 (19%) 0.0113 (4%) 0.0093 (7%) 

T2 = 0.008 sec 0.0019 (7%) 0.0025 (13%) 0.0154 (6%) 0.0119 (9%) 

 

Maximum displacement 

T
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 Elastic level Yield level Design level Maximum level 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

Test 0.014 0.006 0.020 0.009 0.155 0.111 0.323 0.176 

h = 6% 
0.009 
(64%) 

0.004 
(69%) 

0.013 
(66%) 

0.007 
(74%) 

0.079 
(51%) 

0.066 
(60%) 

0.162 
(50%) 

0.113 
(64%) 

h = 4% 
0.010 
(74%) 

0.005 
(79%) 

0.015 
(77%) 

0.007 
(83%) 

0.093 
(60%) 

0.081 
(73%) 

0.186 
(58%) 

0.130 
(74%) 

h = 2.7% 
0.012 
(83%) 

0.005 
(88%) 

0.017 
(86%) 

0.008 
(92%) 

0.106 
(68%) 

0.094 
(84%) 

0.204 
(63%) 

0.144 
(82%) 

Residual displacement 

 Design level Maximum level 

maxxdr  (m) maxydr  (m) maxxdr  (m) maxydr  (m) 

Test 0.025 0.019 0.252 0.134 

h = 6% 0.0023 (9%) 0.0028 (15%) 0.0083 (3%) 0.0071 (5%) 

h = 4% 0.0031 (12%) 0.0037 (19%) 0.0113 (4%) 0.0093 (7%) 

h = 2.7% 0.0033 (13%) 0.0041 (21%) 0.0196 (8%) 0.0145 (11%) 

Note: ratio of analytical values to experimental values are shown in parentheses. 

maxxd maxyd maxxd maxyd maxxd maxyd maxxd maxyd

maxxd maxyd maxxd maxyd maxxd maxyd maxxd maxyd
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X-direction 

 
Y-direction 

(a) 

Figure 5.3(a) Analytical response displacement at center-of-gravity of top blocks of RC specimen: effect of assumption of 
second natural period. 

Analysis ( h = 4%)
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X-direction 

 
Y-direction 

(b) 

Figure 5.3(b) Analytical response displacement at center-of-gravity of top blocks of RC specimen (continued): effect of 
damping ratio.
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An assumed damping ratio of 2.7% and a second natural period of 0.04 sec ( 2T =0.05 1T ) 
provided the best agreement with the test results among the conditions considered here. Huge 
discrepancies still exist between the analytical maximum displacements of the test results in the 
X- and Y-directions during the maximum-level test (63% and 82%, respectively), and those of the 
residual displacements were only about 10% after the maximum-level test. 

Figure 5.4 compares lateral force versus lateral displacement hysteresis between the 
actual test results and analysis. The results for a damping ratio of 2.7%, and a second natural 
period of 0.04 sec are shown here. The initial stiffness results from low-level tests are in good 
agreement between the tests and analysis. For the high-level tests, the analysis fails to predict 
both flexural strength and the hysteresis. The flexural strength obtained from the analysis is 55 
kN (12 kip), which is 75% of that observed during the test. This might be because the analytical 
hysteresis clearly shows negative post-yield stiffness due to P-delta effects and bi-lateral loading 
effects, while the test results do not show such a trend. In general, a larger post-yield stiffness 
tends to decrease the maximum and residual response, and these results show a totally opposite 
trend. Additional analysis should be conducted to accurately predict the dynamic behavior of the 
column. 
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(a) 

  
(b) 

X-direction Y-direction 

Figure 5.4(a) Analytical lateral force–lateral displacement hysteresis of the RC 
specimen: (a) elastic-level test and (b) yield-level test. 
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(c) 

  
(d) 

X-direction Y-direction 

Figure 5.4(b) Analytical lateral force–lateral displacement hysteresis of the RC 
specimen (continued): (c) design-level test and (d) maximum-level test. 

 

5.3 ANALYTICAL SIMULATION OF DYNAMIC BEHAVIOR OF PRC SPECIMEN 

Table 5.2 and Figure 5.5 compare the response displacement at the center-of-gravity of the top of 
the specimen. The analysis provided much better prediction than for the RC specimen; the 
analytical maximum displacements were 80% and 100% of the test in the X- and Y-directions, 
respectively, during the design-level test. The residual displacements were also predicted with 
sufficient accuracy. During the maximum-level test, the analysis predicted adequately the 
response up to the second big pulse; however, the response did not return to the point of origin 
and displacements twice as large as what occurred during the test results were predicted. 
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Figure 5.6 shows lateral force versus lateral displacement hysteresis. For the low-level 
tests, the analysis provided larger initial stiffness than the test results, which resulted in a larger 
restoring force and response displacement. 

Even though the analysis provides a good agreement in terms of response displacement 
for high-level tests, the predicted flexural strength was 30% smaller than that of the test results, 
and again negative post-yield stiffness was shown, similar to the analysis for the RC specimen. 
The analysis cannot predict internal hysteresis loops and residual displacement. A refined model 
should be developed to accurately predict the response of the PRC column. 

Figure 5.7 shows fluctuation of the prestressing force during the tests and its prediction 
by the analysis. The analysis provides very good agreement with the test results, suggesting that 
using spring element would be appropriate to represent an unbonded prestressing tendon in the 
column. 

 

Table 5.2 Analytical response displacement of PRC specimen. 

 

Elastic level Yield level Design level Maximum level 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

 
(m) 

Test 0.005 0.003 0.008 0.005 0.147 0.131 0.256 0.222 

Analysis 
(ratio) 

0.011 
(230%) 

0.005 
(181%) 

0.017 
(218%) 

0.009 
(188%) 

0.114 
(78%) 

0.129 
(98%) 

0.206 
(80%) 

0.199 
(90%) 

Residual displacement 

 
Design level Maximum level 

maxxdr  (m) maxydr  (m) maxxdr  (m) maxydr  (m) 

Test 0.002 0.008 0.053 0.068 

Analysis 
(ratio) 

0.0032 (158%) 0.0072 (90%) 0.119 (224%) 0.143 (210%) 

 

 

maxxd maxyd
maxxd maxyd

maxxd maxyd
maxxd maxyd
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X-direction 

 
Y-direction 

Figure 5.5 Analytical response displacement at center-of-gravity of top blocks of PRC specimen.
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(a) 

  
X-direction Y-direction 

(b) 

Figure 5.6(a) Analytical lateral force–lateral displacement hysteresis of PRC specimen: 
(a) elastic-level test and (b) yield-level test. 
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(c) 

  
(d) 

X-direction Y-direction 

Figure 5.6(b) Analytical lateral force–lateral displacement hysteresis of PRC specimen 
(continued): (c) design-level test and (d) maximum-level test. 
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Figure 5.7 Fluctuation of prestressing force obtained by dynamic analyses. 
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6 Conclusions 

A large ductility capacity is generally required of bridge columns located in regions of high 
seismicity to ensure economical designs that provide adequate protection against collapse. 
However, conventionally designed bridge columns that develop high ductility demands tend to 
retain large permanent displacements after an extreme earthquake. To minimize such residual 
displacements in RC columns, a design was proposed whereby longitudinal post-tensioning 
strands replaced some of usual longitudinal mild reinforcing bars. A series of earthquake 
simulation tests were conducted to validate the effectiveness of providing unbonded prestressing 
strands in lightly reinforced concrete columns to reduce residual displacements under near-field 
strong ground motion. 

Two column specimens were designed and constructed; one represented a conventionally 
designed RC column, referred to as the RC specimen, and the other represented a lightly 
reinforced concrete column with unbonded prestressed tendon, referred to as the PRC specimen. 
Both specimens had a diameter of 0.406 m (16 in.) and an aspect ratio of 6. For the PRC 
specimen, about a half of the longitudinal reinforcement of the RC specimen was replaced with a 
32 mm (1 1/4 in.)-diameter tendon, and 380 kN (85 kip) of a prestressing force was induced in 
the column. These design parameters were determined based on a series of analyses conducted 
prior to the tests. 

The specimens were tested under two horizontal ground excitations; modified Los Gatos 
records from the 1989 Loma Prieta, California, earthquake were used as input ground motions. 
The ground motion intensity was increased in four steps: an elastic- (7% as a scaling factor), a 
yield- (10%), a design- (70%) and a maximum- (100%) level tests. 

A series of nonlinear dynamic analyses was also conducted. Fiber elements and a 
nonlinear spring element were used to represent hysteretic behavior of the RC and unbonded 
tendon. 

The conclusions determined from the earthquake simulation tests are as follows: 

1. In response to the design-level tests, both specimens had similar maximum 
response displacements of about 0.15 m (6 in.) for a ductility of 6 in the direction 
of the stronger component of the ground motion. During the maximum-level tests, 
the maximum response displacements increased up to about 12 and 10 in ductility 
for the RC and PRC specimens, respectively. Although providing an unbonded 
prestressed tendon reduced the capacity for energy dissipation, this did not have a 
significant effect the on maximum response displacement under near-field ground 
motions. 
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2. Residual displacements after the tests were 0.025 m (1 in.) and 0.008 m (0.3 in.) 
for the RC and PRC specimens, respectively. After the design-level test, there was 
an increase up to 0.25 m (10 in.) and 0.07 m (2.7 in.) at the end of the maximum-
level test, demonstrating that the unbonded prestressed tendon effectively reduced 
the residual displacement after strong ground excitation. 

3. Both specimens showed similar lateral force versus lateral displacement 
hysteresis. The PRC specimen, however, did not show an expected origin-
oriented hysteresis. The PRC specimen showed origin-oriented hysteresis only 
when a displacement vector was directed to the origin or near the origin. 

4. Observed local damage of the specimens after the design-level tests were similar. 
After experiencing a response ductility of 6, no core concrete crushing, buckling 
of longitudinal reinforcement, or fracture of longitudinal and spiral reinforcement 
were observed. The new configuration did not affect the formation of plastic 
hinges or a plastic-hinge region; however, after the maximum-level tests, some of 
longitudinal rebar of the PRC specimen was presumed fractured even though the 
RC specimen did incur such damage. 

5. The tendon remained elastic during the tests while the specimen experienced a 
response ductility of 10. The prestressing force increased up to 613 kN (138 kip) 
as the specimen deformed and decreased by 39 kN (9 kip) at the end of the 
design-level test. During the maximum-level test, the prestressing force increased 
up to 675 kN (152 kip). 

6. During the aftershocks, the PRC specimen totally collapsed. The main cause of 
this total collapse was fracture of some of the longitudinal bars. 

Below are the conclusions determined from the nonlinear dynamic analyses: 

1. The analyses predicted 20–50% smaller maximum response of the RC specimen. 
The predicted residual displacements were only 10% of the test results. 

2. The analyses provide better prediction of the PRC specimen. However, larger 
residual displacements were predicted. 

3. The analyses predicted the tendon behavior with sufficient accuracy. Using a 
spring element was determined to be appropriate in idealizing an unbonded 
prestressing tendon in the PRC column. 

Further research in the following areas is necessary: 

1. The effects of unbonding of mild longitudinal reinforcement should be 
investigated. This can prevent the localization of strain and thus premature 
fracture of the reinforcement, which is presumed to the main cause of the total 
collapse of the PRC specimen. 

2. A refined model should be developed that can predict dynamic behavior of RC 
columns, especially the residual displacement.  
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Appendix A Quasi-Static Behavior of the PRC 
Specimens 

This appendix shows the quasi-static behavior of partially prestressed reinforced concrete (PRC) 
specimens with various tendon sizes and prestressing force described in Section 2.2.3. Variables 
considered are shown in Table 2.3, and the seismic performances of the specimens are 
summarized in Table 2.4. The hysteresis after the columns reached the ultimate state are shown 
by the dotted line. 
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Figure A.1(a) Hysteretic behaviors of PRC specimens: total axial force ratio = 10%’ and 

total axial force ratio = 12.5% 
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Figure A.1(b) Hysteretic behaviors of PRC specimens: total axial force ratio = 15% and 

total axial force ratio = 17.5%. 
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Figure A.1(c) Hysteretic behaviors of PRC specimens: total axial force ratio = 20%. 
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Appendix B Response Spectra of Strong-
Ground Motions 

This appendix shows the response acceleration, velocity, and displacement spectra of strong 
ground motions considered in Section 2.5. The scale factor for the specimen is taken into account 
when computing the spectra, with an assumed damping ratio of 5%. The lists of ground motions 
are summarized in Table 2.10. The fundamental natural period of the specimen (= 0.67 sec.) is 
shown in the figures. 
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(a) 

  
(b) 

  
(c) 

Modified Tabas records Modified Los Gatos records 

Figure B.1 Response spectra (5% damping) for the modified Tabas records and the 
modified Los Gators records: (a) acceleration response spectra; (b) 
velocity response spectra; and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

Modified Lexington Dam records Modified Petrolia records 

Figure B.2 Response spectra (5% damping) for the modified Lexington Dam records 
and the modified Petrolia records: (a) acceleration response spectra; (b) 
velocity response spectra; and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

Modified Erzincan records Modified Landers records 

Figure B.3 Response spectra (5% damping) for the modified Erzincan records and 
the modified Landers records: (a) acceleration response spectra; (b) 
velocity response spectra; and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

Modified Rinaldi records Modified Olive View records 

Figure B.4 Response spectra (5% damping) for the modified Rinaldi records and the 
modified Olive View records: (a) acceleration response spectra; (b) 
velocity response spectra; and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

Modified JMA Kobe records Modified Takatori records 

Figure B.5 Response spectra (5% damping) for the modified JMA Kobe records and 
the modified Takatori records: (a) acceleration response spectra; (b) 
velocity response spectra; and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

LGPC records Olive View records 

Figure B.6 Response spectra (5% damping) for the LGPC records and the Olive View 
records: (a) acceleration response spectra; (b) velocity response spectra; 
and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

JMA Kobe records Takatori records 

Figure B.7 Response spectra (5% damping) for the JMA Kobe records and the 
Takatori records: (a) acceleration response spectra; (b) velocity response 
spectra; and (c) displacement response spectra. 
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Appendix C Analytical Dynamic Response of 
RC Specimen 

This appendix shows response displacement time histories, orbits of response displacements, and 
lateral force versus lateral displacement hysteresis of the conventionally designed reinforced 
concrete (RC) specimen obtained from a series of dynamic response analyses described in 
Section 2.5. Based on the analytical results, the modified Los Gatos records were selected for the 
earthquake simulation tests. 
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(a) 

  
(b) 

  
(c) 

Modified Tabas records Modified Los Gatos records 

Figure C.1 Analytical dynamic response of RC specimen: (a) orbit of lateral 
displacements; (b) response displacement at center-of-gravity of 
weighted blocks; and (c) lateral force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

Modified Lexington Dam records Modified Petrolia records 

Figure C.2 Analytical dynamic response of RC specimen: (a) orbit of lateral 
displacements; (b) response displacement at center-of-gravity of 
weighted blocks; and (c) lateral force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

Modified Tabas records Modified Los Gatos records 

Figure C.2 Analytical dynamic response of RC specimen: (a) orbit of lateral 
displacements; (b) response displacement at center-of-gravity of 
weighted blocks; and (c) lateral force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

Modified Erzincan records Modified Landers records 

Figure C.3 Analytical dynamic response of RC specimen for the modified Erzincan 
records and the modified Landers records: (a) orbit of lateral 
displacements; (b) response displacement at center-of-gravity of 
weighted blocks; and (c) lateral force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

Modified Rinaldi records Modified Olive View records 

Figure C.4 Analytical dynamic response of RC specimen for the modified Rinaldi 
records and the modified Olive View Records: (a) orbit of lateral 
displacements; (b) response displacement at center-of-gravity of 
weighted blocks; and (c) lateral force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

Modified JMA Kobe records Modified Takatori records 

Figure C.5 Analytical dynamic response of RC specimen for modified JMA Kobe 
records and the modified Takatori records: (a) orbit of lateral 
displacements; (b) response displacement at center-of-gravity of 
weighted blocks; and (c) lateral force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

LGPC records Olive View records 

Figure C.6 Analytical dynamic response of RC specimen for the LGPC records and 
the Olive View records: (a) orbit of lateral displacements; (b) response 
displacement at center-of-gravity of weighted blocks; and (c) lateral 
force–lateral displacement hysteresis. 
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(a) 

  
(b) 

  
(c) 

JMA Kobe records Takatori records 

Figure C.7 Analytical dynamic response of RC specimen for the JMA Kobe records 
and the Takatori records: (a) orbit of lateral displacements; (b) response 
displacement at center-of-gravity of weighted blocks; and (c) lateral 
force–lateral displacement hysteresis. 
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Appendix D: Effect of Bi-Directional Movement 
of Specimens on Measured 
Lateral Displacement Response 

This appendix shows the effects of bi-directional movement of specimens on measured 
lateral displacement response. The displacements measured by the instruments do not exactly 
represent an actual movement in each direction under bi-directional excitation. As shown in 
Figure D.1, the measured lateral displacements include the effects of movement in the other 
direction. 

The actual and measured lateral displacements have the following geometric relation: 

   2 22
x m x y r x r xD L D D L       (D.1) 

   2 22
y m y x r y r yD L D D L       (D.2) 

where x rD   and y rD   are the actual lateral displacements in the X- and Y-directions, respectively; 

x mD   and y mD   are the measured lateral displacements in the X- and Y-directions; and xL  and yL  

are the initial length of the wires of the linear potentiometers. Here xL  and yL  are 2.18 m (86 

in.) and 4.42 m (174 in.), respectively, in the test setup used in this study. 

Based on these relation, the actual lateral displacements, x rD   and y rD   can be obtained 

from the following equations; 

x r y rD a D b    (D.3) 

      2 2 2 2

2

1 2
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y y y m y y m

y r

ab L a L a b D L D
D

a

 



       



 (D.4) 

where 

y xa L L  (D.5) 

 2 22 2

2

x m x x m y m y y m

x

D L D D L D
b

L

     
  (D.6) 

  (D.6) 
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X-direction X-direction 

  
Y-direction Y-direction 

(a) (b) 

Figure D.2 Actual and measured response displacement for (a) the design-level test and (b) the maximum-level test. 
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Appendix E: Performance of Earthquake 
Simulator 

This appendix shows the performance of earthquake simulator. Fourier spectra, acceleration time 
histories, and response spectra were generated from accelerations measured at the footing to 
show how the simulator re-produced the input signals. Comparisons between the footing 
displacements and input signals show not only the re-product ability of the simulator, but also 
how large undesirable rotational movements of the simulator developed. 

Figure E.1 shows the locations of instruments of the footing. Accelerations measured at 
the west face are used to show accelerations in X-direction (accel1 in Table 3.4), and ones 
measured at the south face are used for Y-direction (accel5 in Table 3.4). The measured 
accelerations at the west and south faces have very similar characteristics. 

As described in Section 4.1, the measured accelerations were low-pass filtered with a 
cutoff frequency of 20 Hz to remove high-frequency noise; the measured displacements were not 
filtered. Footing displacements are obtained as an average of measurements of two of three linear 
potentiometers that were placed at both sides at each face because the center one did not work 
properly in some of the tests. 
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(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(a) Fourier spectra and acceleration time histories for the elastic-level test for 
conventional reinforced concrete column specimen (B-3-14); (a) Fourier 
spectra for entire range; (b) Fourier spectra under 20 Hz; and (c) 
acceleration measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03 Y-direction (NF04) 

Figure E.2(b) Fourier spectra and acceleration time histories for the yield-level test for 
conventional reinforced concrete column specimen (B-3-15); (a) Fourier 
spectra for entire range; (b) Fourier spectra under 20 Hz; and (c) 
acceleration measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(c) Fourier spectra and acceleration time histories for the design-level test 
for conventional reinforced concrete column specimen (B-3-19); (a) 
Fourier spectra for entire range; (b) Fourier spectra under 20 Hz; and (c) 
acceleration measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03 Y-direction (NF04) 

Figure E.2(d) Fourier spectra and acceleration time histories for the maximum-level test 
for conventional reinforced concrete column specimen (B-3-23); (a) 
Fourier spectra for entire range; (b) Fourier spectra under 20 Hz; and (c) 
acceleration measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(e) Fourier spectra and acceleration time histories for the elastic-level test for 
the prestressed concrete column specimen (C-10); (a) Fourier spectra for 
entire range; (b) Fourier spectra under 20 Hz; and (c) acceleration 
measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03 Y-direction (NF04) 

Figure E.2(f) Fourier spectra and acceleration time histories for the yield-level test for 
the partially prestressed concrete column (C-11); (a) Fourier spectra for 
entire range; (b) Fourier spectra under 20 Hz; and (c) acceleration 
measured at footing. 

0

200

400

600

0 20 40 60 80 100

Fo
ur

ie
r 

A
m

pl
it

ud
e 

(m
/s

ec
)

Frequency (Hz)

Input
Recorded

0 20 40 60 80 100
0

10

20

Frequency (Hz)

(   103)

Fo
ur

ie
r 

A
m

pl
it

ud
e 

(i
n.

/s
ec

)

Input
Recorded

0

200

400

600

0 5 10 15 20

Fo
ur

ie
r 

A
m

pl
it

ud
e 

(m
/s

ec
)

Frequency (Hz)

Input
Recorded

0 5 10 15 20
0

10

20

Frequency (Hz)

(   103)

Fo
ur

ie
r 

A
m

pl
it

ud
e 

(i
n.

/s
ec

)

Input
Recorded

-1

0

1

0 5 10

0.5

-0.5

Time (sec)

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Input
Recorded

0 5 10
-0.1

0

0.1

A
cc

el
er

at
io

n 
(g

)

Input
Recorded

Time (sec)



232 

 

(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(g) Fourier spectra and acceleration time histories for the design-level test 
for the partially prestressed concrete column (C-15); (a) Fourier spectra 
for entire range; (b) Fourier spectra under 20 Hz; and (c) acceleration 
measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(h) Fourier spectra and acceleration time histories for the maximum-level 
level test for the partially prestressed concrete column (C-19); (a) Fourier 
spectra for entire range; (b) Fourier spectra under 20 Hz; and (c) 
acceleration measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(i) Second elastic-level test for conventional reinforced concrete specimen 
(C-23); (a) Fourier spectra for entire range; (b) Fourier spectra under 20 
Hz; and (c) acceleration measured at footing. 
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(a) 

(b) 

(c) 
X-direction (NF03) Y-direction (NF04) 

Figure E.2(j) Second design-level test for the conventional reinforced concrete 
specimen (C-24); (a) Fourier spectra for entire range; (b) Fourier spectra 
under 20 Hz; and (c) acceleration measured at footing. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(a) Elastic-level test for the conventional reinforced concrete specimen (B-3-
14); (a) acceleration response spectra; (b) velocity response spectra; and 
(c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(b) Yield-level test for the conventional reinforced concrete specimen (B-3-
15); (a) acceleration response spectra; (b) velocity response spectra; and 
(c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(c) Design-level test for the conventional reinforced concrete specimen (B-3-
19); (a) acceleration response spectra; (b) velocity response spectra; and 
(c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(d) Maximum-level test for the conventional reinforced concrete specimen (B-
3-23); (a) acceleration response spectra; (b) velocity response spectra; 
and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(e) Elastic-level test for the partially prestressed concrete column specimen 
(C-10); (a) acceleration response spectra; (b) velocity response spectra; 
and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(f) Yield-level test for the partially prestressed concrete column specimen 
(C-11); (a) acceleration response spectra; (b) velocity response spectra; 
and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(g) Design-level test for partially prestressed concrete column specimen (C-
15); (a) acceleration response spectra; (b) velocity response spectra; and 
(c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(h) Maximum-level test for partially prestressed concrete column specimen 
(C-19); (a) acceleration response spectra; (b) velocity response spectra; 
and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(i) Second elastic-level test for the conventional reinforced concrete 
specimen (C-23); (a) acceleration response spectra; (b) velocity response 
spectra; and (c) displacement response spectra. 
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(a) 

  
(b) 

  
(c) 

X-direction (NF03) Y-direction (NF04) 

Figure E.3(j) Second elastic-level test for the conventional reinforced concrete 
specimen (C-24); (a) acceleration response spectra; (b) velocity response 
spectra; and (c) displacement response spectra. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(a) Elastic-level test for the conventional reinforced concrete specimen (B-3-
14); (a) displacements measured at footing; and (b) re-produceability of 
simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(b) Yield-level test for the conventional reinforced concrete specimen (B-3-
15); (a) displacements measured at footing; and (b) re-produceability of 
simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(c) Design-level test for the conventional reinforced concrete specimen (B-3-
19); (a) displacements measured at footing; and (b) re-produceability of 
simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(d) Maximum-level test for the conventional reinforced concrete specimen (B-
3-23); (a) displacements measured at footing; and (b) re-produceability of 
simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(e) Elastic-level test for the partially prestressed concrete column specimen 
(C-10); (a) displacements measured at footing; and (b) re-produceability 
of simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(f) Design-level test for the partially prestressed concrete column specimen 
(C-15); (a) displacements measured at footing; and (b) re-produceability 
of simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(g) Maximum-level test for the partially prestressed concrete column 
specimen (C-19); (a) displacements measured at footing; and (b) re-
produceability of simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(h) Second elastic-level test for conventional reinforced concrete specimen 
(C-23); (a) displacements measured at footing; and (b) re-produceability 
of simulator in terms of displacements. 
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(a) 

(b) 
X-direction (NF03) Y-direction (NF04) 

Figure E.4(i) Second design-level test for conventional reinforced concrete specimen 
(C-24); (a) displacements measured at footing; and (b) re-produceability 
of simulator in terms of displacements 
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