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ABSTRACT 

The performance-based earthquake engineering (PBEE) approach, developed at the Pacific 

Earthquake Engineering Research Center (PEER), aims to robustly decompose the performance 

assessment and design process into four logical stages that can be studied and resolved in a 

systematic and consistent manner. However, the PBEE approach faces two key challenges: (1) an 

accurate seismic structural analysis and (2) the selection and modification of ground motions 

(GMs). This report addresses these two challenges with application to reinforced concrete (RC) 

bridge systems. 

In nonlinear structural dynamics, the most accurate analytical simulation method is the 

nonlinear time history analysis (NTHA). It involves the use of different types of direct integration 

algorithms and nonlinear equation solvers where their stability performance and convergence 

behaviors are of great significance. Lyapunov stability theory, the most complete framework for 

stability analysis of dynamical systems, is introduced in this study. Based on this theory, a new 

nonlinear equation solver is developed and its convergence performance theoretically formulated 

and verified by several examples. Stability is one of the most important properties of direct 

integration algorithms to consider for efficient and reliable NTHA simulations. Two Lyapunov-

based approaches are proposed to perform stability analysis for nonlinear structural systems. The 

first approach transforms the stability analysis to a problem of existence, which can be solved via 

convex optimization. The second approach is specifically applicable to explicit algorithms for 

nonlinear single-degree-of-freedom and multi-degree-of-freedom systems considering strictly 

positive real lemma. In this approach, the stability analysis of the formulated nonlinear system is 

transformed to investigating the strictly positive realness of its corresponding transfer function 

matrix. 

Ground motion selection and modification (GMSM) procedures determine the necessary 

input excitations to the NTHA simulations of structures. Therefore, proper selection of the GMSM 

procedures is an important prerequisite for accurate and robust NTHA simulation, and thus for the 

entire PBEE approach. Although many GMSM procedures are available, there is no consensus 

regarding a single accurate method, and many studies have focused on evaluating these procedures. 

This report develops a framework for probabilistic evaluation of the GMSM procedures in the 

context of a selected large earthquake scenario with bidirectional GM excitations. 

In urban societies, RC highway bridges are key components of transportation infrastructure 

systems and play a significant role in transporting goods and people around natural terrains. 

Therefore, they are expected to sustain minor damage and maintain their functionality in the 

aftermath of major earthquakes, a common occurrence in California due to its many active faults. 

Accurate seismic structural analysis of existing and newly designed RC highway bridges is 

fundamental to estimate their seismic demands. As important lifeline structures, RC highway 

bridge systems are investigated as an application of the previously discussed theoretical 

developments proposed in this report to address the two key challenges in the PEER PBEE 

approach. 
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1 INTRODUCTION 

1.1 MOTIVATION AND OBJECTIVE 

The response of a structure to earthquake excitation and the consequences of this response involve 

various uncertainties at different stages, including the definition of hazard, structural response, 

damage, and the corresponding loss determination. The performance-based earthquake 

engineering (PBEE) approach, developed at the Pacific Earthquake Engineering Research Center 

(PEER), aims to robustly divide the performance assessment and design process into logical stages 

that can be studied and resolved in a systematic and consistent manner [Moehle and Deierlein 

2004]. Thus, uncertainties in these stages can be explicitly taken into account to enable 

comprehensive understanding of the structural performance in a probabilistic manner to determine 

the most efficient decision regarding the seismic risk mitigation actions [Günay and Mosalam 

2013], requiring considerable numbers of structural simulations. Due to physical, economical, and 

time constraints, experimental testing is not feasible as the sole structural simulator in PBEE. 

Alternatively, analytical simulations, where the analytical models are calibrated using the results 

of the experimental tests, fit reasonably well within the PBEE framework. 

One of the key challenges involved in the PBEE approach is accurate and robust seismic 

structural analysis. In nonlinear structural dynamics, nonlinear time history analysis (NTHA) is 

considered the most accurate analytical simulation method. Using this approach, direct integration 

algorithms in conjunction with nonlinear equation solvers are used to solve the temporally 

discretized equations of motion that govern the structural responses under dynamic loading. 

Therefore, the selection of direct integration and nonlinear solution algorithms is essential to 

ensure accurate and robust NTHA. The used integration algorithms are fundamentally categorized 

into either implicit or explicit. Explicit algorithms do not require iterations by adopting certain 

approximations related to the kinematics of the structural system. In contrast, implicit algorithms 

involve iterations and must be complemented by nonlinear equation solvers when applied to 

nonlinear structural systems. The most standard nonlinear equation solver is the regular Newton-

Raphson (NR) algorithm. Although major drawbacks exist, a new nonlinear equation solver is 

developed in this report based on Lyapunov stability theory. 

Stability is one of the most important properties of direct integration algorithms that must 

be considered for efficient and reliable simulations using NTHA. For linear structures, the stability 

analysis of direct integration algorithms is conducted using the amplification operator and its 

associated spectral radius. Such analysis provides useful insight for the selection of the suitable 

integration algorithm with the proper time step size to solve a dynamic problem. Integration 

algorithms, however, are usually applied to multi-degree-of-freedom (MDOF) nonlinear dynamic 
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problems. Therefore, the stability analysis of direct integration algorithms involving nonlinear 

dynamics is necessary and should be extended to MDOF structural systems. Two Lyapunov-based 

approaches are proposed to conduct the stability analysis of direct integration algorithms for 

nonlinear structural systems. 

Another key challenge in PBEE analyses is the selection and modification of ground 

motions (GMs) to serve as input excitations to simulate the NTHA of structures. The intricate 

nonlinear response of structures is highly sensitive to the ground motion selection and modification 

(GMSM) of the input records. Therefore, the GMSM of the input records are vital prerequisites 

for accurate seismic analysis. Numerous research efforts have focused on developing different 

GMSM procedures and fall into two categories: (1) amplitude scaling and (2) spectrum shape 

matching procedures. 

The first approach selects and modifies the GM records based on scalar intensity measures 

(IMs). The second approach takes the spectrum shape into account to select and scale a suite of 

GM records that closely match a target spectrum. Although many GMSM procedures are available, 

there is a lack of consensus regarding a single accurate method. The existing evaluation studies in 

the literature are primarily for building structures and consider unidirectional input ground motion. 

In general, bidirectional GM studies should be conducted, especially for the structures with very 

different behaviors in two directions, e.g., bridge structures. To fill in this knowledge gap, a 

framework based on the PBEE approach is proposed to evaluate different GMSM procedures to 

conduct NTHA simulations under bidirectional GM excitations. 

In urban societies, reinforced concrete (RC) highway bridges are key components of 

infrastructure systems and play a significant role in transportation of goods and people. Therefore, 

they are expected to sustain minor damage and maintain their functionality in the aftermath of 

earthquakes, a common occurrence in California due to its many active faults. In the last two 

decades, bridges designed according to modern design codes performed poorly performance or 

even collapsed during earthquakes [Benzoti et al. 1996]. Thus, accurate seismic structural analysis 

of existing and newly designed RC highway bridges is fundamental to estimate their seismic 

response. As such important lifeline structures, RC highway bridge systems are investigated as an 

application of the previously discussed theoretical developments proposed in this report to address 

the two key challenges in the PBEE approach. 

The objective of this study is to enhance the PBEE approach in terms of accurate and robust 

NTHA simulations and probabilistic evaluation of GMSM procedures. In light of this objective, 

the major contributions of this study can be summarized as follows: 

1. Development of a nonlinear equation solver that attempts to overcome the drawbacks 

of NR algorithms. 

2. Development of a Lyapunov-based approach that enables performing the stability 

analysis numerically. 

3. Development of a Lyapunov-based approach to investigate the stability of explicit 

direct integration algorithms for nonlinear MDOF systems by means of the strictly 

positive real lemma. 

4. Recommendations of accurate and robust NTHA simulations for RC highway bridge 

systems. 
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5. Development of a framework to probabilistically evaluate GMSM procedures with 

application to RC highway bridge systems. 

1.2 ORGANIZATION OF THE REPORT 

This report is organized into ten chapters as schematically illustrated in Figure 1.1. After this 

introductory chapter, Chapter 2 reviews the direct integration algorithms and nonlinear equation 

solvers investigated herein. The theoretical developments are presented in Chapters 3 through 6. 

Chapter 3 introduces the concept of continuous-time and discrete-time systems and the definitions 

of stability, and then introduces the Lyapunov stability theory for these two systems. Next, a new 

nonlinear equation solver is developed to overcome the drawbacks of the NR algorithms, and its 

convergence performance is demonstrated by several numerical examples. Chapters 4 and 5 utilize 

the Lyapunov stability theory for discrete-time systems to investigate the stability of direct 

integration algorithms for nonlinear structural systems. Chapter 4 proposes a numerical approach 

to transform the problem of seeking a Lyapunov function to a convex optimization problem, i.e., 

an approach that enables performing the stability analysis numerically. In addition, the accuracy 

of the integration algorithms is examined using a geometrically nonlinear problem, which has a 

closed-form exact solution. Chapter 5 proposes another Lyapunov-based approach to investigate 

the stability of explicit direct integration algorithms for nonlinear MDOF systems by means of the 

strictly positive real lemma. This approach transforms the stability analysis to pursuing the strictly 

positive realness of the transfer function matrix for the formulated MDOF system. Several 

examples, including a bridge structure and a generic multi-story shear building, are presented in 

this chapter to demonstrate the validity of this approach. Chapter 6 introduces the well-known 

PEER PBEE approach and presents a framework for probabilistic evaluation of GMSM 

procedures. 

The application of the theoretical developments in Chapters 3 through 6 is presented in 

Chapters 7, 8, and 9. Chapter 7 provides a brief introduction of RC highway–bridge structures 

selected in this study and reviews the computational models of these bridges. Chapter 8 

investigates solutions to the numerical problems of convergence experienced in the NTHA 

simulations of these RC highway bridge systems. Recommendations are given in Chapters 8 for 

the accurate and robust NTHA simulations. Chapter 9 probabilistically evaluates several GMSM 

procedures considering the distinct structural behaviors in the longitudinal and transverse 

directions of RC highway bridges under bidirectional GM excitations. A brief summary, the main 

conclusions and future extension based on this study are presented in Chapter 10. This report also 

includes six appendices. Appendices A to E provide the derivations and details used for the 

proposed two Lyapunov-based approaches of stability analysis. Appendices E and F document all 

GMs utilized in this report. 
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Figure 1.1 Classification of report chapters. 
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2 DIRECT INTEGRATION ALGORITHMS AND 
NONLINEAR SOLVERS 

2.1 INTRODUCTION 

The response of a structure to earthquake excitation and the consequences of this response involve 

various uncertainties at different stages, including the definition of hazard, structural response, 

damage, and the corresponding loss determination. The performance-based earthquake 

engineering (PBEE) approach considers all these uncertainties to determine the most efficient 

methodology to mitigate the seismic risk [Günay and Mosalam 2013], requiring a considerable 

number of structural analytical simulations. Because of the continued advances in computing 

power [Mosalam et al. 2013], nonlinear time history analysis (NTHA) method has emerged as the 

most suitable approach for analyzing large and complex structures. 

The structural response under dynamic loading is governed by the differential equations of 

motion. In structural dynamics, direct integration algorithms are commonly used to solve these 

equations of motion after they are temporally time-discretized. Various implicit and explicit direct 

integration methods have been developed. Some examples of well-known methods are the 

Newmark family of algorithms [Newmark 1959], Hilber-Hughes-Taylor (HHT) algorithm [Hilber 

et al. 1977], the Operator-Splitting (OS) algorithms [Hughes et al. 1979], the generalized-

algorithm [Chung and Hulbert 1993], and the TRBDF2 algorithm [Bathe 2007], among many 

others. 

Direct integration algorithms for solving a structural dynamics problem are fundamentally 

categorized into either implicit or explicit. An integration algorithm is explicit when the responses 

of the next time step depend on the responses of previous and current time steps only. In contrast, 

implicit algorithms require iterations because the responses of the next time step depend on the 

responses of previous, current, and next time steps. Explicit algorithms do not require iterations 

by adopting certain approximations related to the kinematics of the structural system. In contrast, 

implicit algorithms involve iterations and need to be complemented by nonlinear equation solvers 

when applied to nonlinear structural systems. 

The most standard nonlinear equation solver is the Newton-Raphson (NR) algorithm where 

its local rate of convergence is quadratic [Bathe 2006]. It requires computing and inverting the 

Jacobian matrix explicitly at every iteration, potentially leading to excessive computations. The 

modified NR algorithm holds the Jacobian matrix constant as the one from the first iteration over 

the time step. It has a lower computational cost per iteration than the regular NR algorithm but 

possesses only linear local rate of convergence. For both modified and regular NR algorithms, the 


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search directions can be improved by line search techniques [Crisfield 1991] when a positive 

definite Jacobian matrix is obtained. This improvement may not always be appropriate in the cases 

with degrading materials and analyses involving large displacements. Quasi-Newton methods seek 

a compromise between the modified and regular NR algorithms by modifying the Jacobian matrix 

with low-rank updates during the search for equilibrium, resulting in a superlinear rate of 

convergence. Some examples of Quasi-Newton algorithms are the Broyden algorithm [Broyden 

1965] and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [Broyden 1970; Fletcher 

1970; Goldfarb 1970; and Shanno 1970]. The Krylov-Newton algorithm also seeks a balance 

between the regular and modified NR algorithms by matrix-vector operations [Scott and Fenves 

2010]. The subsequent sections introduce the direct integration algorithms and nonlinear equation 

solvers presented herein. 

2.2  DIRECT INTEGRATION ALGORITHMS 

The equations of motion of a multi-degree-of-freedom (MDOF) system under an external dynamic 

force excitation can be defined as follows: 

pfucum    (2.1) 

where m  is the mass matrix, c  is the damping matrix, and u , u , f , and p  are the acceleration, 

velocity, restoring force, and external force vectors, respectively. The restoring force can generally 

be defined as a function of displacement. Due to several factors, such as the random variation of 

the external force with time—e.g., due to earthquake shaking—and the nonlinear variation of the 

restoring force vector with displacement, closed-form solution of Equation (2.1) is not possible 

[Chopra 2006]. Therefore, numerical integration methods are used for the sought solution. 

Differences between direct integration methods are mainly introduced by the way they 

approach Equations (2.2)–(2.4), arranged as the Newmark difference equations for displacement 

and velocity, and the discretized dynamic equilibrium equation, respectively. 

 
 

  1

2

221
2

1 


 iii

t
tii uuuuu    (2.2) 

    11 1   iiii γγt uuuu   (2.3) 

1111   iiii pfucum   (2.4) 

where the γ  and   parameters define the variation of accelerations over a time step, t . For 

example, 21γ  and 41  represent constant average acceleration over the time step, while 

21γ  and 61  define linear variation of acceleration during the time step. 

The following sub-sections describe the alternative integration methods and their 

corresponding algorithms, namely the Explicit Newmark, Operator-Splitting, and TRBDF2 

integrators and the commonly utilized Implicit Newmark integration method, and the 

corresponding algorithms. This description begins with the basic three Equations (2.2)–(2.4) and 

emphasizes departure points and differences between these methods. 
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2.2.1 Explicit Newmark Algorithm 

Explicit Newmark (EN) integration [Newmark 1959] is defined by setting 0.0 . Thus, the 

implicit nature of Equation (2.2) is eliminated, making the method an explicit one, by removal of 

the 
1iu  term. Accordingly, Equation (2.2) becomes 

 
 

ii

t
tii uuuu 

2

2

1


  (2.5) 

Substituting Equations (2.3) and (2.5) in Equation (2.4), the linear system of equations 

defined by Equations (2.6) is obtained, which can be solved to determine the acceleration. 

Subsequently, Equation (2.3) is used to determine the velocity. 

 

  

eff 1 eff

eff

eff 1 1 1

i

i i i i

t

t







 



  

       

m u p

m m c

p p f c u u

 (2.6) 

The algorithm for an integration time step of the EN method is summarized as follows: 

1.   Compute the displacement using Equation (2.2); 

2.   Obtain the restoring force, f , corresponding to the computed 

displacement from the constitutive relationships of the 

defined materials and elements using a state determination 

method [Spacone et al. 1996]; 

3.   Calculate the acceleration by solving the linear system of 

equations defined by Equations (2.6); 

4.   Determine the velocity using Equation (2.3); and 

5.   Increment i and proceed with the next integration time step. 

2.2.2 Operator-Splitting Algorithm 

Similar to the EN method, the Operator-Splitting (OS) method [Hughes et al. 1979] eliminates the 

implicit nature of the solution algorithm. Instead of the direct elimination adopted by the EN, OS 

uses a prediction-correction technique. The predicted displacement, 1
~

iu , is obtained by neglecting 

the 1iu  term in the bracketed part of Equation (2.2), i.e., 

 
 

  ii

t
tii uuuu  21

2

~
2

1 


  (2.7) 

After prediction of the displacement, the method is defined by setting the restoring force 

of the integration time step as the sum of the restoring force corresponding to the predicted 

displacement, 1

~
if , and the difference between the corrected and predicted displacements 

multiplied by the tangential stiffness matrix, Tk , i.e., 
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 1111
~~

  iiTii uukff  (2.8) 

The difference between the corrected and predicted displacements is defined as follows: 

11
~

1    iii uuu  (2.9) 

Substituting Equation (2.9) in Equation (2.8) gives, 

 111

~
  iTii ukff  (2.10) 

Subtracting Equation (2.7) from Equation (2.2) leads to the relationship between 1iu  and 1iu , 

i.e., 

  2
1

1
t

i
i




 



u
u  (2.11) 

Substituting Equation (2.11) in the Newmark difference equation for velocity, i.e., Equation (2.3), 

gives, 

  
 

 11 1  


 iiii
t

t uuuu



   (2.12) 

The linear system of Equation (2.13) is obtained by substitution of Equations (2.10), (2.11), and 

(2.12) in Equation (2.4), which can be solved to determine the displacement along with Equation 

(2.14). 

 

  

eff 1 eff

eff 2

eff 1 1

1

1

i

T

i i i i

tt

t









 

 

  


       

k u p

k m c k

p p f c u u

 (2.13) 

111
~

  iii uuu  (2.14) 

The algorithm for an integration time step of the OS method is summarized as follows: 

1.   Compute the predicted displacement using Equation (2.7); 

2.   Obtain the restoring force, f , corresponding to the predicted 

displacement from the constitutive relationships of the 

defined materials and elements using a state determination 

method [Spacone et al. 1996]; 

3.   Determine the acceleration using Equation (2.11); 

4.   Obtain the restoring force corresponding to the corrected 

displacement following the procedure outlined in step 2 

above; 

5.   Determine the velocity using Equation (2.12); and 

6.   Increment i and proceed with the next integration time step. 
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Note that some of the studies in literature use Ik  as the initial stiffness matrix instead of 

Tk . For example, Combescure and Pegon [1997] used Ik  in hybrid simulations involving 

physical and computational substructures due to the difficulties in obtaining the tangent stiffness 

matrices of the test specimens. 

2.2.3 Implicit Newmark Algorithm 

The implicit nature of the solution algorithm is eliminated in the EN and OS methods. In contrast, 

the Implicit Newmark (IN) integrator [Newmark 1959] treats the governing equations (difference 

and dynamic equilibrium equations) directly without altering their implicit nature. Rearranging the 

time-discrete equilibrium equations, i.e., Equation (2.4), one obtains 

0fucump   1111 iiii
  (2.15) 

where 1iu  and 1iu  are functions of 1iu  through Equations (2.2) and (2.3), and 1if  is a function 

of 
1iu . Therefore, Equation (2.15) represents a nonlinear system of equations in terms of 

1iu . 

The implicit nature of this equation is eliminated in the EN and OS methods as previously 

discussed, which is not the case for the IN integration algorithm [Newmark 1959] considering 

Equation (2.15). 

Using a nonlinear equation solver, Equation (2.15) can be solved for either the acceleration 

1iu  or the displacement increment, 1iu  as defined below, referred to as the acceleration and 

displacement formulations, respectively. The displacement formulation is presented herein 

because it leads to fewer convergence problems than the acceleration formulation [Schellenberg 

et al. 2009]. OpenSees [McKenna et al. 2010], the computational platform used to conduct the 

analyses presented in the following sections, uses the displacement formulation. 

In order to solve for the displacement increments, the difference Equations (2.2) and (2.3) 

are redefined such that the velocities and accelerations are expressed in terms of displacements as 

follows: 

    ii
i

i
tt

uu
u

u  















 

 1
2

1
21

1




 (2.16) 

iii uuu   11  (2.17) 

 
  iiii t

t
uuuu  



















  1

2
111













 (2.18) 

As a result of the redefined difference equations, 1iu , 1iu  and also 1if  are represented as 

functions of 1iu . The most common nonlinear equation solver that can be used to solve the 

nonlinear system of equations, defined in terms of 1iu , as shown in Equation (2.15), is the regular 

NR method, which seeks the roots of a function as follows: 

   k k kg x x g x    (2.19) 
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where g and g   represent the function and its derivative with respect to x, respectively, x is the 

root of the function, k is the iteration number, and kx  is the difference between the value of x in 

the current and previous iterations. If the left-hand side of Equation (2.15) is considered as function 

g in Equation (2.19), one can write the following in terms of displacement, 

   1 1 1

k k k

i i ig g  
  u u u  (2.20) 

 1 1 1 1 1

k k k k

i i i i ig       u mu cu f p  (2.21) 

 
   1

1k

i Tg
t t



 


  
 

u m + c + k  (2.22) 

where Tk  is the tangential stiffness matrix corresponding to the displacement vector k

i 1u , which 

can be obtained as a result of a state determination method [Spacone et al. 1996]. Substitution of 

Equations (2.21) and (2.22) in Equation (2.20) leads to the linear system of Equation (2.23) in the 

same format as the other methods explained earlier. 

   

eff 1 eff

eff 2

eff 1 1 1 1

1

k
i

T

k k k
i i i i

tt









   



 


   

k u p

k m + c + k

p p mu cu f

 (2.23) 

At this point, it is beneficial to state that all three methods discussed above reduce the 

nonlinear differential equations of motion to a system of linear algebraic equations. However, 

depending on the way each method treats the three basic Equations (2.2)–(2.4), the resulting 

coefficient matrix (or the Jacobian matrix), 
effm  for EN, and 

effk  for OS and IN, and the effective 

load vector, 
effp , differ from one method to the other. Accordingly, these differences determine 

the adequacy and ease of application of each method as will be demonstrated. 

After the determination of the displacement increment for iteration k from Equation (2.23), 

the method continues by the calculation of the displacement, velocity, and acceleration for iteration 

1k   using Equations (2.24)–(2.26), respectively. 

k

i

k

i

k

i 11

1

1 



  uuu   (2.24) 

  ii
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i
k
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


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














 




 1
2

11
1

1

1











 (2.25) 
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
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
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 1
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11
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1

1


 (2.26) 

An iterative method requires an initial guess for the sought value, i.e., for 1

1





k

iu . For the 

regular NR method, displacement of the previous iteration can be used as the initial guess as 

defined in Equation (2.27). Subsequent substitution of this equation into Equations (2.2) and (2.3) 

leads to the corresponding velocity and acceleration, i.e., 1

1





k

iu  and 1

1





k

iu  vectors, as follows: 
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i
k
i uu 


1
1  (2.27) 
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
 (2.28) 
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
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 (2.29) 

The algorithm for an integration time step of the IN method is summarized as follows: 

1. Determine the initial guess, k = 1, for displacement from Equation (2.27) and the 

corresponding velocity and acceleration from Equations (2.28) and (2.29), 

respectively; 

For each iteration k =1: N, where N is the total number of iterations: 

2. Obtain the restoring force, f, corresponding to the computed displacement from the 

constitutive relationships of the defined materials and elements using a state 

determination method [Spacone et al. 1996]; 

3. Determine the displacement increment by solving the linear system of equations 

defined by Equation (2.23). 

4. Compute the displacement, velocity, and acceleration using Equations (2.24)–

(2.26); and 

5. Check convergence by comparing a calculated norm with a defined tolerance value. 

If the norm is smaller than the tolerance, set N=k, increment i, and proceed to the 

next time integration step; otherwise, increment k and go to step 2. 

Regarding the above algorithm: 

• The presence of the convergence check requires at least two iterations. Therefore, 

unless a solution is separately coded for a linear case, general nonlinear analysis 

software requires at least two iterations for the IN integration, even in the case of a 

linear problem. 

• Different norms can be used for the convergence check in step 5. Examples of these 

norms are the displacement increment, unbalanced force, and energy norms. 

2.2.4 TRBDF2 Algorithm 

The TRBDF2 method [Bank et al. 1985; Bathe and Baig 2005; and Bathe 2007] is a composite 

integration method that uses IN and three-point-backward Euler scheme alternately in consecutive 

integration time steps. The first step uses the IN method with constant average acceleration, i.e. 

with  21γ  and 41  in the difference Equations (2.2) and (2.3). The consequent step uses the 

equations of the three-point Euler backward method, i.e., Equations (2.30) and (2.31) for the 

relationship between the displacement, velocity, and acceleration instead of the Newmark 

difference Equations (2.2) and (2.3). 
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 t
iii

i



 




2

34 1
1

1 uuu
u  (2.30) 

 t
iii

i



 




2

34 1
1

1 uuu
u


  (2.31) 

Following the regular NR method as demonstrated for IN, the following linear system of 

Equation (2.32) is obtained: 

   

 
k

i
ii

k

iiiii

k

i
i

T

k

i

ttt

tt

1
111

2
11

1

2

1

2

43

2

4

4

3129

2

3

4

9


















































f
uuu

c
uuuuu

mpp

kcmk

puk

eff

eff

effeff





 (2.32) 

After the determination of the displacement increment for iteration k from Equation (2.32), 

the method continues by calculating the displacement, velocity, and acceleration for iteration 1k   

using Equations (2.33)–(2.35), respectively. 

k

i

k

i

k

i 11

1

1 



  uuu   (2.33) 

 t

k

ii-ik

i









2

34 1
111

1

uuu
u  (2.34) 

 t

k

ii-ik

i









2

34 1
111

1

uuu
u


  (2.35) 

Note that the consecutive steps are considered as the sub-steps of a one-step process in Bathe and 

Baig [2005] and Bathe [2007] rather than considering them as consecutive steps, which is exactly 

the same as the formulation presented above but with a time step 2t . Bathe and Baig [2005] 

and Bathe [2007] used this method in structural dynamics to conserve energy and momentum at 

large deformations (not necessarily involving material nonlinearity) where the IN method may fail 

to do so and become unstable. Herein, it is considered not because of its superior stability 

performance compared to IN, but because of its better convergence behavior due to the numerical 

damping provided by the Euler backward method, as discussed in the next chapter. 

2.3 NONLINEAR EQUATION SOLVERS 

Equation (2.4) can be written in a residual form as follows: 

  fucumpur    (2.36) 

The statement of equilibrium requires that the residual forces to be zeros, i.e., 

  0ur   (2.37) 
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The following sub-sections describe how each of the discussed nonlinear solvers attempt 

to satisfy Equation (2.37). Note that the subscript i representing the number of the integration time 

step is dropped to simplify the expressions in the following sub-sections. 

2.3.1 Regular Newton-Raphson Algorithm 

The regular NR algorithm is based on linear approximation of the residual vector as follows: 

      11  



 k

k
kkk u

u

ur
uruur  (2.38) 

The superscript k denotes the iteration number within one time step, and the matrix 
 
u

ur



 k

 is 

called the system Jacobian matrix, which is denoted as follows: 

 
T

k

k k
u

ur
J 




  (2.39) 

where Tk  is the tangential stiffness matrix. The algorithm starts with an initial guess and iterates 

with the following equations until a certain convergence criterion is met. 

   1 1 1

1 1

k - k - k

k T

k k k



 

   

 

u J u k u

u u u

r r
 (2.40) 

2.3.2 Broyden Algorithm 

In regular NR algorithm, the Jacobian matrix is computed at every iteration, which is a complicated 

and expensive operation. The idea behind Broyden method is to compute the whole Jacobian only 

at the first iteration and then do a rank-one update at the other iterations [Broyden 1965], i.e., 

 Tk

k

k

k-

k

k-k u
u

uJr
JJ 






2

1
1  (2.41) 

where •  indicates the discrete L2-norm1 and superscript T indicates transpose. 

1

1

k-kk

k-kk

rrr

uuu




 (2.42) 

Subsequently, the algorithm proceeds with Equation (2.40) as in the regular NR algorithm. Note 

that the modified NR is a special case where the rank-one update is ignored. 

                                                           
1




n

i
i

u
1

2
u  where n in the number of components of the vector u 
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2.3.3 Newton-Raphson with Line Search Algorithm 

The direction of u  determined by the regular NR method is often correct. However, the same is 

not always true for the step size u . Furthermore, it is computationally less expensive to compute 

the residual for several points along u  rather than forming and factorizing a new Jacobian matrix 

[Crisfield 1991]. 

In the Newton-Raphson with Line Search (NRLS) algorithm [Crisfield 1991], the regular 

NR method is used to compute u . However, only a certain portion of the calculated u  is used 

to determine the displacement in the next iteration as follows: 

   1 1 1

1 1

k - k - k

k T

k k k



 

   

  

u J r u k r u

u u u
 (2.43) 

Four types of line search algorithm are available in OpenSees [McKenna et al. 2010]: 

Bisection, Secant, RegulaFalsi, and Interpolated. The different line search algorithms embrace 

different root finding methods to determine the factor  . A root of the function  s  is defined as 

follows: 

   1 1k k ks      u r u u  (2.44) 

with the following initial guess 

 1

0

k ks  u r u  (2.45) 

2.3.4 Broyden–Fletcher–Goldfarb–Shanno Algorithm 

From an initial guess 0u  and an approximate Hessian matrix2 0B , the following steps in the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm are repeated until convergence is reached 

[Bathe and Cimento 1980]: 

1.  A direction 
ku  is obtained by solving the following equation: 

   kk

k uruB   (2.46) 

where kB  is an approximation of the Hessian matrix, which is updated at each iteration, 

and  kur  is the gradient3 of the function evaluated at 
ku . 

2. A line search is performed to find the step size k  for the kth iteration and update 

the displacement as follows: 

kkkk uuu  1  (2.47) 

3. Set the Hessian matrix, which is updated for the next iteration as follows: 

                                                           
2Hessian matrix is a square matrix of second-order partial derivatives of a function. 

3 kji
z

f

y

f

x

f
f














 , where andi, j, k  are unit vectors in the directions andx y z, , , respectively. 
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 
 

 
  k

k

Tk

k

Tkk

k

kTk

Tkk

kk

sBs

BssB

sy

yy
BB 1  (2.48) 

where 

kkk us   (2.49) 

   kkk urury  1  (2.50) 

2.3.5 Krylov-Newton Algorithm 

At each time step, instead of Equation (2.37), the Krylov-Newton algorithm seeks the solution to 

the system of the following preconditioned residual equations [Scott and Fenves 2010]: 

    0urkuR  1

0
 (2.51) 

where 
0k  is the tangential stiffness at the first iteration of the time step. The solution to Equation 

(2.51) is equivalent to that of Equation (2.37) as long as 0k  is nonsingular. Thus, Equation (2.38) 

becomes 

    0uAuRuR   11 kkk  (2.52) 

where A is the identity matrix when modified NR algorithm is used, while 
TkkA -1

0  when using 

the regular NR algorithm. Instead of the current tangent, the tangent at the initial guess is used for 

the modified NR algorithm in the iterations. 

The Krylov-Newton algorithm decomposes 
1 ku  into two components as follows: 

111   kkk qwu  (2.52) 

where 
1kw  is the acceleration component, and 1kq  is the standard modified Newton component. 

1kw  is further represented as a linear combination of the vectors from the subspace of 

displacement increments with size m, i.e., 

m

m

k cc uuw  1

1

1  (2.54) 

To satisfy Equation (2.52), the first step is to minimize the norm of vector   1 kk AwuR

which represents an over-determined system of equations for the unknown coefficients mcc ,1  in 

Equation (2.54), by least-squares analysis [Golub and Van Loan 1996]. The second step for 

satisfying Equation (2.52) is to solve the following equations: 

  0AqguR   11 k

k

k  (2.55) 

where   1 kk

k AwuRg , and A is the identity matrix using the modified NR algorithm. Thus, 

k

k gq 1  (2.56) 

The displacement increment is then calculated by summing the two components determined from 

Equations (2.54) and (2.56). 
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3 DEVELOPMENT OF LYAPUNOV-BASED 
NONLINEAR EQUATION SOLVER 

3.1 INTRODUCTION 

The regular Newton-Raphson (NR) algorithm reviewed in Chapter 2 is the most standard and 

commonly used nonlinear equation solver in nonlinear structural analysis subjected to static and/or 

dynamic loading. The major drawbacks to using this algorithm are as follows: 

1. The Jacobian matrix is required to be computed explicitly, which may be 

computationally expensive and difficult; 

2. The Jacobian matrix is required to be invertible; and 

3. The convergence of this algorithm is not guaranteed, i.e., the initial guess is 

important and needs to be within the region of attraction of the solution point. 

Lyapunov stability theory [Khalil 2002; Haddad and Chellaboina 2008], developed by the 

Russian mathematician Aleksandr Lyapunov [1892], is the most complete framework of stability 

analysis for dynamical systems. It is based on constructing a function of system-state coordinates 

(usually considered as the energy function of the system) that serves as a generalized norm of the 

solution of the dynamical system. The appeal of Lyapunov stability theory resides in the fact that 

conclusions about the stability behavior of the dynamical system can be obtained without actually 

computing the system solution trajectories. As a consequence, Lyapunov stability theory has 

become one of the most fundamental and standard tools of dynamical systems and control theory. 

This chapter proposes a nonlinear equation solver for nonlinear structural analysis for 

problems involving static and/or dynamic loads based on Lyapunov stability theory. Several recent 

works that are similar in spirit as applied to power flow problems by Milando [2009] and Xie et 

al. [2013]. The main idea is to reformulate the equations of motions into a hypothetical dynamical 

system characterized by a set of ordinary differential equations, whose equilibrium points represent 

the solutions of the nonlinear structural problems. Starting from the Lyapunov stability theory, it 

is demonstrated that this hypothetical dynamical system is characterized by a globally asymptotic 

stability, i.e., convergence, to the equilibrium points for structural dynamics [Liang and Mosalam 

2017b]. This feature overcomes the inherent limitations of the traditional iterative minimization 

algorithms and has no restriction on the selection of the initial guess for various structural nonlinear 

behaviors. Comparisons between the proposed algorithm and regular NR algorithm are presented 

using several numerical examples from structural statics and dynamics. 
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3.2 STABILITY OF NONLINEAR SYSTEMS 

The stability of two categories, continuous-time and discrete-time nonlinear systems, is presented 

in this section. 

3.2.1 Continuous-Time Systems 

Consider a continuous-time nonlinear system [Khalil 2002]: 

 xx r  (3.1) 

and assume its equilibrium point is at 0x , i.e.,   00r  . If the equilibrium of interest is 
*x  that 

is other than zero, i.e., 0*x , let 

*~ xxx   (3.2) 

and therefore 

     xxxxx ~~~~ * rrr   (3.3) 

which leads to 

  00r ~  (3.4) 

3.2.2 Discrete-Time Systems 

Similarly, consider a nonlinear discrete-time system [Khalil 2002]: 

 kk xx r1  (3.5) 

and assume that the system has an equilibrium point at the origin, i.e.,   00r  . If the equilibrium 

of interest is *x  that is other than zero, i.e., 0*x , let 

*

k k x x x  (3.6) 

and therefore 

   **

1
~~ xxxxx  kkk rr  (3.7) 

   kkk xxxxx ~~~~ **

1 rr 
 (3.8) 

which also leads to Equation (3.4). 

3.2.3 Stability Definitions 

Stability: The equilibrium 0x  is stable if for each 0 , there exists 0  such that: 

   0 0t t     x x  (3.9) 

Obviously, the equilibrium point is unstable if it is not stable. 
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Asymptotic stability: The equilibrium 0x  is asymptotically stable if it is stable and 

  0tx  for all  0x  in the neighborhood of 0x . 

Global asymptotic stability: The equilibrium 0x  is globally asymptotically stable if it is 

stable and   0tx  for all  0x . Note that   0tx  does not necessarily guarantee stability. For 

example, trajectories may converge to the origin only after a large detour that violates the stability 

definition in Equation (3.9). 

3.3 LYAPUNOV STABILITY THEORY 

3.3.1 Continuous-Time Systems 

Let v  be a continuously differentiable scalar function defined in the domain nD R  that contains 

the origin. The equilibrium point 0x  is stable if the following conditions are satisfied [Khalil 

2002]: 

     00  Dvv xx 0and0  (3.10) 

and 

        Dvv
dt

d
v

T
 xxxxx 0r  (3.11) 

Moreover, 0x  is asymptotically stable if 

   0v D    0x x  (3.12) 

If, in addition, nD R  and the Lyapunov function v  is radially unbounded, i.e., 

   xx v  (3.13) 

then x = 0 is globally asymptotically stable. 

3.3.2 Discrete-Time Systems 

Analogously to the continuous-time systems case, the discrete-time Lyapunov stability theory is 

discussed herein. let v be a continuously scalar function defined on the domain D  that contains 

the origin. The equilibrium point 0x  is stable if [Khalil 2002] Equations (3.10) and (3.14) are 

satisfied. 

    Dvvv kkk   xxx 011  (3.14) 

Moreover, 0x  is asymptotically stable if 

   1 0kv D     0x x  (3.15) 

If, in addition, nD R  and the Lyapunov function v  is radially unbounded as defined in Equation 

(3.13), then 0x  is globally asymptotically stable. 
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Continuous time systems require that the derivative of the Lyapunov function is negative 

along the trajectories. Discrete-time systems require that the difference in the Lyapunov function 

is negative along the trajectories. Note: we do not require that v  is continuously differentiable but 

only continuous. 

3.4 LYAPUNOV-BASED NONLINEAR EQUATION SOLVER 

As stated in Equation (2.37), the general formulation of nonlinear set of equations is as follows: 

  0g x  (3.16) 

Consider a hypothetical dynamical system characterized by the following first order differential 

equation 

       xxxx
x

x gΚJggΚ
T

T













  (3.17) 

where K is positive definite, i.e., TK K 0 , and the Jacobian matrix is 

   x
x

x gJ



  (3.18) 

For this system, the Lyapunov function is chosen as follows: 

     xxx gg
T

v
2

1
  (3.19) 

A sufficient condition for the system to be stable is as follows: 

         

               

       

1 1

2 2

1 1

2 2

T
T

T
T T T

T T

v
    

        

     
   

 

g g g g

J ΚJ g g g J ΚJ g

g J ΚJ g

x x x x x x x
x x

x x x x x x x x

x x x x

 (3.20) 

Considering the Jacobian matrix  xJ  is well-defined, i.e.,   0J x ,    Txx ΚJJ  is 

positive definite and therefore   0xv , where the asymptotical stability condition of the 

hypothetical dynamical system in Equation (3.17) is guaranteed. Then any differential equation 

solver can be used to solve Equation (3.17), starting from the initial condition (or guess). 

  00t  x x . To reduce the computational expense of calculating  xJ , a special case of 

Equation (3.17) is to replace  xJ  with the constant  0xJ . 
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3.4.1 Static Problems 

For static structural problems, Equations (3.16) and (3.17) become 

    0pufug   (3.21) 

           ugΚkuguΚJugug
u

Κuru T

T

T

T













  (3.22) 

and the corresponding Jacobian matrix is 

      Tkuf
u

ug
u

uJ 








  (3.23) 

where Tk  is the tangent stiffness of the structural system. The Lyapunov function corresponding 

to Equation (3.19) becomes 

     ugugu
T

v
2

1
  (3.24) 

Therefore, as proved previously, the hypothetical dynamical system in Equation (3.22) is 

asymptotically stable. Moreover, if the restoring force is radially unbounded, i.e., 

     uugu v  (3.25) 

then, the hypothetical system in Equation (3.22) is globally asymptotically stable and converges 

to the equilibrium corresponding to   0uv ; thus   0ug  . Note that the tangent stiffness matrix 

Tk  can be replaced by the constant stiffness matrix at the initial guess at 
0u . 

3.4.2 Dynamic Problems 

For a structural system subjected to dynamic loadings, e.g., earthquake excitations, the discretized 

equations of nodal equilibrium for the nonlinear dynamic response of the structural system can be 

written in the following residual form 

  0pfucumug   11111 iiiii
  (3.26) 

Using the implicit Newmark integration algorithm and reordering the Newmark difference 

equations [Equations (2.2) and (2.3)] as follows: 

 
    iii t

t
ii uuuuu  




















  1

2
111












 (3.27) 

 
 

  iiii
tt

i uuuuu  

















  1

2

1
121


 (3.28) 

Substituting Equations (3.27) and (3.28) into Equation (3.26) leads to the following 
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For the i+1 step, the responses of the previous step, i.e., i-th step, are constants. Therefore, 

Equation (3.29) can be simplified further as follows: 
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and the corresponding Jacobian matrix is as follows: 
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where 
1iT 

k  is the tangent stiffness matrix at the i+1 step. Therefore, according to Equation (3.17), 

the hypothetical dynamical system and corresponding Lyapunov function are as follows: 
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It is clear from Equation (3.30) that  1iug  is radially unbounded, which is independent of the 

radially unboundedness of  1iug . Therefore, the equilibrium point of the dynamical system in 

Equation (3.32) is globally asymptotically stable. In other words, it converges to the solution of 

Equation (3.32) for all initial values or guesses of 1iu . Moreover, similar to the formulation for 

the static problems, the tangent stiffness matrix 
1iTk  can be replaced by the constant stiffness at 

0

1iu . 

The general procedures for the proposed Lyapunov-based nonlinear solver are summarized 

as follows: 

1. Compute the Jacobian matrix using Equations (3.23) and (3.31) for static and 

dynamical systems, respectively; 
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2. Form the hypothetical dynamical system represented by Equations (3.22) and (3.32) 

for static and dynamical systems, respectively; and 

3. Solve the set of equations for the hypothetical dynamical system using numerical 

integration scheme starting from the initial condition (or guess). The hypothetical 

dynamical systems of all the numerical examples in this chapter are solved by the 

explicit Dormand–Prince method [Dormand and Prince 1980]. The procedures of 

implementation and storage need are given in [Liang and Mosalam 2017b]. 

3.5 NUMERICAL EXAMPLES 

Several numerical examples are presented in this section to compare the convergence behaviors of 

the regular NR algorithm and that of the proposed algorithm. The first example is a single-degree 

of freedom (SDOF) nonlinear static system characterized by a single parameter. The second 

example is a two-DOF static system with bilinear force-deformation relationships that is analyzed 

using the inconsistent Jacobian matrix as discussed below. The third set of examples is a two-DOF 

dynamical system used to compare the convergence behavior of the above-mentioned two 

nonlinear solution algorithms under the excitation of ground motion (GM) input. For convenience, 

all units are omitted in this section, where use of consistent units is taken into account. 

3.5.1 SDOF Nonlinear Static System 

Consider the restoring force of the nonlinear SDOF system shown in Figure. 3.1, which has the 

following form: 
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r

f u sign u u  (3.35) 

where   1usign  if 0u , otherwise   1usign . Based on the regular NR algorithm, 
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From Equation (3.36), it can be seen that the regular NR algorithm is reduced to a linear 

system where the eigenvalue is   rr 1 . Its convergence is guaranteed if    1,11  rr , i.e., 

21r . For example, if 2r , the regular NR algorithm converges to the solution, i.e., 0u , as 

shown in Figure 3.2a. However, if 21r , e.g., 31r  and 41r , the algorithm diverges as 

shown in Figures 3.2b and 3.2c, respectively. It is noted that the algorithm oscillates or flip-flops 

indefinitely between 
0u  and 

0u  if 21r  as shown in Figure 3.2d. 
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Figure 3.1 The sketch of the restoring force for the SDOF nonlinear static 
system. 

  

(a) r = 2 (b) r = 1/3 

  

(c) r = 1/4 (d) r = 1/2 

Figure 3.2 Traces of equilibrium search for the SDOF example using the 
regular NR algorithm. 
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Considering the formulation in the previous section and Equation (3.35), the first order 

ordinary differential equation for the hypothetical dynamical system and the corresponding 

Lyapunov function are as follows: 

     
2 1

T
r

u Κ f u f u K r sign u u
u

 
     

 (3.37) 

  r
uuv

2

2

1
  (3.38) 

Figure 3.3 presents the traces of equilibrium search for the same SDOF examples with different 

values of r  using the proposed nonlinear solution algorithm where the required number of 

iterations for each case is given as the last number of the x-axis. It is clear that the proposed 

algorithm is globally asymptotically stable for this example.  
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(a) r = 2 (b) r = 1/3 

  

(c) r = 1/4 (d) r = 1/2 

Figure 3.3 Traces of equilibrium search for the SDOF example using the 
proposed Lyapunov-based algorithm. 

3.5.2 Two-DOF Nonlinear Static System 

A two-story shear building is modeled as the system shown in Figure 3.4. It consists of two uniaxial 

springs with bilinear force-deformation relationships shown in Figure 3.5. A load vector of 

 T2010P  is applied to the system. Taking advantage of the compatibility matrix A, shown in 

Figure 3.4, the consistent Jacobian stiffness matrix is obtained as follows: 
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Restoring vector f , which is radially unbounded, is as follows (q’s are defined in Figure 3.5): 
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The efficiency of the regular NR algorithm relies heavily on the computation of a 

numerically consistent Jacobian matrix. For complex constitutive models, a consistent Jacobian 

matrix can be difficult to develop and implement. Utilization of an inconsistent Jacobian matrix or 

the one with approximation errors is likely to lead to the non-convergence of the regular NR 

algorithm [Scott and Fenves 2010], as demonstrated here. To mimic an error in the Jacobian 

calculations of the element state determination, an artificial coupling of the two springs is 

introduced as assumed in [Scott and Fenves 2010], leading to the following Jacobian matrix: 
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Figure 3.4 Two-DOF nonlinear system. 

 

  

(a) Spring 1 (b) Spring 2 

Figure 3.5 Force-deformation relationships of the two springs. 
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(a)  T50100
0
u  (b)  T4520

0
u  

  

(c)  T4020
0

u  (d)  T4020
0
u  

Figure 3.6 Traces of equilibrium search for the two-DOF static example using 
the regular NR algorithm. 

The equilibrium point of this system is predetermined as  T2139u . Figures 3.6 and 

3.7 show, respectively, the convergence behavior of the regular NR and that of the proposed 

Lyapunov-based algorithms with different initial guesses. Note that in Figure 3.6, the regular NR 

algorithm either diverges or oscillates around the true solution. It is noted from Figure 3.6d that 

even though the initial guess is just around the equilibrium point, the regular NR algorithm fails to 

converge to the true solution. In contrast, the proposed Lyapunov-based algorithm converges for 

all the initial guesses. This is expected as this proposed algorithm is globally asymptotically stable 

for this system with the property of radially unboundedness shown in Equation (3.40). Similar to 

the first example, the required number of iterations for each case is given as the last number of the 

x-axis in Figure 3.8. It is noted that the regular NR method converges with consistent Jacobian 

matrix. 
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(a)  T50100
0
u  (b)  T4520

0
u  

  

(c)  T4020
0

u  (d)  T4020
0
u  

Figure 3.7 Traces of equilibrium search for the two-DOF static example using 
the proposed Lyapunov-based algorithm. 

3.5.3 MDOF Nonlinear Dynamical System 

A multi-story shear building structure (Figure 3.8) with story hysteresis force-deformation 

relationship in Figure 11 is simulated under the excitation of the GM input. The two GM records, 

selected from the NGA Ground Motion Database (PEER 2011), are documented and plotted in 

Table 3.1 and Figure 3.8. 

3.5.3.1 Two-DOF Nonlinear Dynamical System 

In this section, the same 2-DOF system ( 2n  in Figure 10) as in the previous section is simulated, 

i.e.,  

2Q,1,2,2001,9Q,1,10,2501 222121121111  kkmkkm  (3.42) 
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The convergence behaviors of the regular NR and the proposed Lyapunov-based algorithms are 

demonstrated and compared after time discretizing the governing equations by the implicit 

Newmark integration with constant average acceleration. Figures 3.11 and 3.12 show the 

displacements of the two DOFs from the two algorithms for GM1 and GM2 with the scaling factor 

(SF) of 2.0 and 3.0, respectively. Such selection of the SFs enables the two-DOF system to go into 

the nonlinear range. It can be seen that the time history responses obtained from the two algorithms 

are almost on top of each other. The differences between peak displacements of DOF 1 and DOF 

2 for GM1 are %0 . These differences for GM2 are %104 6  and %0 , respectively. The perfect 

match of the time history responses along with the small values of the error measure for the peak 

response again indicate that the accuracy of the proposed Lyapunov-based and that of the regular 

NR algorithms are comparable. The execution time for this example is given is Table 3.2. Figures 

3.13 and 3.14 present the traces of equilibrium search for the two algorithms at 5.84 sec and 20.00 

sec for GM1 and GM2, respectively. The y-axis of these two figures (and also the following figures 

of traces of equilibrium search),   is defined as follows: 

eq

k

j

k qq  (3.43) 

where j

kq  is the displacement, velocity or acceleration of the jth iteration at the kth DOF and eq

kq  is 

the corresponding value of the equilibrium point. Therefore, 1  indicates convergence. 

 

Figure 3.8 General multi-story shear building structure. 
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Figure 3.9 Hysteresis relationship of the story resisting force versus the story 
drift. 

Table 3.1 Documentation of the GM used for the two-DOF nonlinear 
dynamical system. 

Property GM1 GM2 

NGA sequence # 1044 900 

Earthquake name Northridge-01 Landers 

Station Newhall – Fire Station Yermo Fire Station 

Magnitude 6.69 7.28 

t for simulation 0.08 sec 0.1 sec 

Duration 40 sec 44 sec 

 

  

a) GM1 b) GM2 

Figure 3.10 Plots of the ground accelerations for the GM used in this example. 
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Table 3.2 The execution time for the two-DOF example #1. 

GM Algorithm Execution time 

1 
regular NR 0.15 sec 

Lyapunov-based 1.32 sec 

2 
regular NR 0.14 sec 

Lyapunov-based 1.10 sec 

 

 

a) DOF 1 

 

b) DOF 2 

Figure 3.11 Time history displacements for the two-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM1 with 

0.2SF . 
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a) DOF 1 

 
b) DOF 2 

Figure 3.12 Time history displacements for the two-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM2 with 

0.3SF . 
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a) regular NR b) Lyapunov-based algorithm 

Figure 3.13 Traces of equilibrium search for the two-DOF dynamic example 

using the two nonlinear solution algorithms for GM1 with 0.2SF . 

 

  

a) regular NR b) Lyapunov-based algorithm 

Figure 3.14 Traces of equilibrium search for the 2-DOF dynamic example using 

the two nonlinear solution algorithms for GM2 with 0.3SF . 

In order to test the algorithms in situations experiencing possible problems of convergence, 

the SFs for GM1 and GM2 are set as 3.0 and 7.5, respectively. Figures 3.15 and 3.16 compare the 

obtained time history displacements from the two algorithms. It is observed that the regular NR 

algorithm fails to converge at 5.20 sec and 19.00 sec, respectively, while the proposed Lyapunov-

based algorithm is able to simulate through the whole course. Figures 3.17 and 3.18 present the 

traces of equilibrium search for the two algorithms where the regular NR ends up with oscillating 

indefinitely that fails to reach a solution while the proposed new algorithm converges to the 

solution smoothly. It is noted that the obtained time history responses from the two algorithms are 

the same up to the problematic time step. Therefore, as shown in Figures 3.17 and 3.18, the two 

algorithms start at the same initial guess, i.e., the response of the last time step, for the problematic 
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time step. The average numbers of iterations per time step of the two nonlinear solution algorithms 

for this example are documented in Table 3.3. 

Table 3.3 The average numbers of iterations per time step for the two-DOF 
example. 

GM Algorithm Example #1 Example #2 

1 
regular NR 3.2 3.4 

Lyapunov-based 20.3 21.9 

2 
regular NR 3.1 3.1 

Lyapunov-based 19.3 22.4 

 

 

a) DOF 1 

 

b) DOF 2 

Figure 3.15 Time history displacements for the 2-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM1 with 

0.3SF . 

  

a) DOF 1 b) DOF 2 

Figure 3.16 Time history displacements for the 2-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM2 with 

5.7SF . 
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a) regular NR b) Lyapunov-based algorithm 

Figure 3.17 Traces of equilibrium search for the 2-DOF dynamic example using 

the two nonlinear solution algorithms for GM1 with 0.3SF . 

  

a) regular NR b) Lyapunov-based algorithm 

Figure 3.18 Traces of equilibrium search for the 2-DOF dynamic example using 

the two nonlinear solution algorithms for GM2 with 5.7SF . 

3.5.3.2 Five-DOF Nonlinear Dynamical System 

In this and next sections, simulations are conducted using Bathe’s method (Bathe 2007) with NR 

including line search or using the proposed Lyapunov-based algorithms. The Bathe method 

interchanges the use of the implicit Newmark algorithm with constant average acceleration and 

the use of the three point Euler backward scheme. It is expected to present better stability behavior 

due to the numerical damping introduced by the Euler backward scheme. Also, the NR algorithm 

with line search technique was observed to possess better convergence behavior (Liang 2016). For 

this five-DOF example ( 5n  in Figure 3.8), the parameters in Figure 3.9 are selected as follows: 

5,,1,10Q,10,200,201 21  ikkm iiii  (3.44) 
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Figures 3.19 and 3.20 compare the obtained time history displacements of DOF 1 and DOF 4 from 

the two algorithms for GM1 and GM2, respectively. It is observed that the NR algorithm with line 

search fails to converge at 10.72 sec and 19.80 sec for GM1 and GM2, respectively, while the 

proposed Lyapunov-based algorithm is able to simulate throughout the whole time history. Figures 

3.21 and 3.22 present the traces of equilibrium search of the two DOFs for the two algorithms for 

GM1 and GM2, respectively, where the proposed new algorithm converges to the solution 

smoothly while the NR with line search fails to do so. 

 

a) DOF 1 

 

b) DOF 4 

Figure 3.19 Time history displacements for the 5-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM1 with 

5.4SF . 

 

a) DOF 1 

 

b) DOF 4 

Figure 3.20 Time history displacements for the 5-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM2 with 

5.4SF . 
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a) NR with line search b) Lyapunov-based algorithm 

Figure 3.21 Traces of equilibrium search for the 5-DOF dynamic example using 

the two nonlinear solution algorithms for GM1 with 5.4SF . 

 

a) NR with line search 

 

b) Lyapunov-based algorithm 

Figure 3.22 Traces of equilibrium search for the 5-DOF dynamic example using 

the two nonlinear solution algorithms for GM2 with 5.4SF . 

3.5.3.3 Ten-DOF Nonlinear Dynamical System 

In this ten-DOF example ( 10n  in Figure 3.8), the parameters in Figure 3.9 are selected as 

follows: 

10,,1,10Q,10,200,1001 21  ikkm iiii  (3.45) 

Figures 3.23 and 3.24 show the obtained time history displacements of four selected DOFs from 

the two nonlinear solution algorithms for GM1 and GM2 where the NR algorithm with line search 

fails to converge at 5.52 sec and 16.70 sec, respectively. Figures 3.25 and 3.26 present the traces 

of equilibrium search of the four selected DOFs for the two algorithms for GM1 and GM2, 

respectively. The average numbers of iterations per time step of the two nonlinear solution 

algorithms for the five-DOF and ten-DOF examples are documented in Table 3.4. It is noted that 
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the reported numbers of iteration for NR algorithm with line search include both pure NR iterations 

(reported separately in parenthesis) and line search iterations. From Tables 3.2 to 3.4 and also the 

comparisons in Figures 3.13 and 3.14, it is noted that the proposed Lyapunov-based algorithm 

generally takes more iterations and execution time to converge but still within the acceptable range, 

especially considering that the average numbers of iterations for the regular NR and NR with line 

search algorithms are calculated only until the problematic steps. 

 

 

a) DOF 1 b) DOF 4 

  

c) DOF 7 d) DOF 10 

Figure 3.23 Time history displacements for the ten-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM1 with 

0.2SF . 
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a) DOF 1 b) DOF 4 

  

c) DOF 7 d) DOF 10 

Figure 3.24 Time history displacements for the ten-DOF dynamic example 
obtained from the two nonlinear solution algorithms for GM2 with 

5.4SF . 

 

Table 3.4 The average numbers of iterations per time step for the five-DOF 
and ten-DOF examples. 

GM Algorithm 5-DOF example 10-DOF example 

1 
NR with line search 13.1 (2.8) 11.7 (2.6) 

Lyapunov-based 30.3 37.9 

2 
NR with line search 13.6 (2.5) 9.3 (2.4) 

Lyapunov-based 30.7 44.9 
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a) NR with line search 

 

b) Lyapunov-based algorithm 

Figure 3.25 Traces of equilibrium search for the ten-DOF dynamic example 

using the two nonlinear solution algorithms for GM1 with 0.2SF . 

 

a) NR with line search 

 

b) Lyapunov-based algorithm 

Figure 3.26 Traces of equilibrium search for the ten-DOF dynamic example 

using the two nonlinear solution algorithms for GM2 with 5.4SF . 
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4 NUMERICAL LYAPUNOV STABILITY 
ANALYSIS 

4.1 INTRODUCTION 

Stability is one of the most important properties of direct integration algorithms that must be 

considered for efficient and reliable simulations. Most of the past studies conducted the stability 

analysis of direct integration algorithms for linear elastic structures (e.g., Bathe and Wilson [1972]; 

Hilber et al. [1977]; Hughes [1987]; and Tamma et al. [2000]) using the amplification operator 

and its associated spectral radius. These research efforts provide useful insight for the selection of 

a suitable integration algorithm with the proper time step size to solve a dynamic problem. 

Integration algorithms, however, are usually applied to nonlinear dynamic problems. Studies 

involving nonlinear dynamics are therefore necessary but relatively limited in the literature. 

Hughes [1976] investigated the stability of the Newmark algorithm with constant acceleration 

applied to problems involving nonlinear dynamics. Zhong and Crisfield [1998] developed an 

energy-conserving co-rotational procedure for the dynamics of shell structures. Kuhl and Crisfield 

[1999] developed a generalized formulation of the energy-momentum method within the 

framework of the generalized- algorithm. Chen and Ricles [2008] explored the stability of several 

direct integration algorithms for nonlinear SDOF systems by utilizing discrete control theory. 

This chapter considers two general classes of nonlinear SDOF structural systems: stiffening 

and non-degrading softening systems. The idealized backbone curves (force-displacement 

relationship) of these two systems are illustrated in Figure 4.1. Systematic Lyapunov stability and 

accuracy analyses of several implicit and explicit direct integration algorithms for these two 

nonlinear structural systems are presented in Liang and Mosalam [2015; 2016a]. Unlike linear 

systems, the stability analysis of nonlinear systems is complicated and challenging because of the 

specific properties possessed by nonlinear systems. For example, the stability of nonlinear systems 

is dependent on initial conditions and the principle of superposition does not hold in general. 

The Lyapunov stability theory introduced in Chapter 3 is used herein to study the stability 

of nonlinear systems. Generally speaking, constructing the previously mentioned energy function 

for the nonlinear system—the basis of Lyapunov stability theory—is not readily available. 

Therefore, to solve the problem in a simpler and clearer way, this chapter proposes a numerical 

approach to transform the problem of seeking a Lyapunov function to a convex optimization 

problem. Because this proposed approach may involve extensive computations, this chapter 

proposes an approach that performs the stability analysis numerically. Convex optimization 

considers the problem of minimizing convex functions over convex sets where a wide range of 
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problems can be formulated in this way. In this optimization, any local minimum must be a global 

minimum, which is an important property leading to reliable and efficient solutions using, e.g. 

interior-point methods, which are suitable for computer-aided design or analysis tools [Boyd and 

Vandenberge 2004]. 

It is shown that the proposed approach is generally applicable to direct integration 

algorithms for various nonlinear behaviors. Moreover, based on Lyapunov stability theory, some 

arguments of stability regarding these direct integration algorithms from past studies are found to 

be groundless and these findings are discussed herein. The chapter also investigates the OS 

algorithm that uses tangent stiffness in the formulation, which has not been previously studied. It 

is shown that this algorithm possesses similar stability properties to those of the implicit Newmark 

integration. Finally, the accuracy of the integration methods is examined using a geometrically 

nonlinear problem, which has a closed-form exact solution. 

 

Figure 4.1 Definition of stiffening and softening systems. 

4.2 DIRECT INTEGRATION ALGORITHMS 

The discretized equation of motion of a SDOF system under an external dynamic force excitation 

is expressed as: 

1111   iiii pfucum   (4.1) 

where m and c are the mass and viscous damping, and 1iu  , 1iu  , 1if  , and 1ip   are the acceleration, 

velocity, restoring force, and external force at the time step i + 1, respectively. The restoring force, 

 uf , is generally defined as a function of displacement, u. 

Usually, single-step direct integration algorithms are defined by the following difference 

equations: 

     
2 2

1 0 1 2 1 3i i i i iu u t u t u t u             (4.2) 

   1 4 5 6 1 7i i i iu u t u t u           (4.3) 

In general, Equations (4.1)–(4.3) require an iterative solution, which forms the basis of 

implicit algorithms. On the other hand, these algorithms become explicit when 2 0  . 

Coefficients of the Newmark integration family [Newmark 1959] and the explicit OS algorithms 

[Hughes et al. 1979] are summarized in Table 4.1, where  2
1( ) ( ) im t c t k           ; 1ik  

is defined below. 
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Table 4.1 Coefficients for the Newmark and the OS Integration Algorithms. 

Coefficient Newmark OS 

0  1   tc  1  

1    221         tc   1221  

2    0 

3  0   11

~
  ii fp  

4  1   tc  1  

5  1      tc   11  

6    0 

7  0     tfp ii    11

~
 

4.3 LYAPUNOV STABILITY ANALYSIS 

For each direct integration algorithm, the relationship between the kinematic quantities at time 

steps 1i  and i  can be established as follows: 

1i i i i  A Lx x  (4.4) 

where    
2

T

i i i it u t u u   
 

x , and iA  and iL  are the approximation operator and the loading 

vector at the time step i , respectively. The loading vector, L, is generally independent of the vector 

of kinematic quantities, x . Equation (4.4) can be further extended as: 

1 11

1 1

11

li

i j k l i

lj k i





 

    
      

   
 A A L Lx x  (4.5) 

where  121

1
AAAAA 

 iiij j . In order to investigate the stability of the system in Equation 

(4.4), a Lyapunov artificial energy function 1iv  [Franklin et al. 2015] at the time step 1i , can be 

chosen as: 

111   i

T

iiv xx M  (4.6) 

where M is positive definite, i.e., TM M 0 , and 0 is the null matrix of the same dimension as 

M. The system in Equation (4.4) is stable if the Lyapunov function in Equation (4.6) is bounded 

for  i . Substituting Equation (4.5) into Equation (4.6) with some manipulations leads to the 

following: 
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 (4.7) 

Because the loading vector, L, is generally a function of external force p, it is bounded; therefore, 

based on Equation (4.7), the boundedness of the Lyapunov function 
1iv  for i  leads to the 

boundedness of  

1

ij jA  for i . For linear behavior of structures, the approximation operator, 

A, remains constant; thus  

1

ij jA  becomes Ai, which can be decomposed as follows: 

1-ii VVDA   (4.8) 

where D and V are matrices of eigenvalues and eigenvectors of A, respectively. The boundedness 

of Ai for i  leads to the well-known stability criterion for linear systems, namely, the spectral 

radius of the approximation operator (A) must be less than or equal to 1.0. 

For nonlinear structures,  

1

ij jA  is more involved due to the continuous variation of 

approximation operator Ai. Therefore, the stability of a nonlinear system cannot be solely 

determined using the spectral radius of its approximation operator 
 
Ai. However, the investigation 

of the eigen properties of Ai is still necessary in nonlinear problems. For small values of t , e.g., 

t  required for accuracy as discussed later in the section “Accuracy Analysis,” the increment of 

restoring force can be approximated [Chopra 2006] as: 

 iiTii uukff
i

  

*

1

**

1 1
 (4.9) 

where    11

*

1

**

1 ,,,,
11  

 iTiiTi ukfukf
ii

 for the Newmark family of algorithms and 

   11

*

1

**

1
~,

~
,

~
,,

11  
 iTiiTi ukfukf

ii

 for the OS algorithms. Note that 
1iTk  is the tangent stiffness at the 

time step 1i , and other parameters are as defined before. The tangent stiffness is generally a 

function of the displacement; thus Equation (4.4) represents a nonlinear system of equations. With 

the approximation in Equation (4.9), the approximation operator Ai for the Newmark and the OS 

algorithms is derived as follows: 
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where 2(2 ),n n Ic m k m    . Coefficients  0  and 1  for the Newmark integration family 

and the OS algorithms are listed in Table 4.2. Here, 
1 1 1 1

2 2
/ , /

i i i iT T T Tk m k m 
   
 

 
. It is obvious that 

one of the eigenvalues of Ai in Equation (4.10) is 1. For the Newmark and OS algorithms with 

   21,41,  , the other two eigenvalues are obtained as: 

  

(4.11) 

On the other hand, for the explicit Newmark algorithm, i.e.,    21,0,  , 
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ttt
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λ

224
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12222

2
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21

111
 (4.12) 

Different from the integration algorithms above, the TRBDF2 is a multi-step algorithm 

with numerical damping introduced by the Euler backward scheme. Its approximation operator in 

Equation (4.14) is obtained for the case of zero viscous damping ( 0 ) by similar linearization 

approximation for the tangent stiffness as before and given as follows: 

       iiiiiiiiT uuffuuffk
i

  5.05.05.015.011
    (4.13) 
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where     ]1][9[
22

16

122

11



ttB

ii TT  . Thus, besides the one obvious eigenvalue of 1, the 

other two are as follows: 
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It can be shown that for 0
1


iTk , magnitudes of the eigenvalues in Equation (4.15) are always less 

than 1 because of introduced numerical damping. 

The conditions for ( ) 1i  A  are summarized in Table 4.3 for the case of zero viscous 

damping  0  , which is the most critical case for the stability analysis of direct integration 

algorithms. In Table 4.3, 
111

22



iii TTT kmT   and    21,41,    are used for implicit 

Newmark, OSinitial and OStangent and thereafter in this chapter. Note: the approximation operator of 

the explicit OStangent algorithm is the same as that of the implicit Newmark algorithm with 
1iT  

replaced by 
1

~
iT ; see Table 4.2. This indicates that they possess similar stability properties, as 

indicated in Table 4.3. 
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Table 4.2 Coefficients of approximation operators for the Newmark and the 
OS Integration Algorithms. 

Coefficient Newmark OSinitial OStangent 

0  
1iT  

1

~
iT

 

1

~
iT

 

1  
1iT  

n  
1

~
iT  

Table 4.3 Conditions for   1i A . 

Integration Algorithms Limits 

Implicit Newmark  0
1


iTk  

Explicit Newmark 1
1


iTTt  

OSinitial 
1

0
iT Ik k


   

OStangent 0
~

1


iTk  

TRBDF2 0
1


iTk  

 

The conditions in Table 4.3 are not stability criteria of the listed direct integration 

algorithms used in nonlinear systems. They are only the conditions for   1i A . Some past 

studies have determined the stability of direct integration algorithms based solely on the spectral 

radius. Combescure and Pegon (1997) claimed that the OSinitial algorithm is unconditionally stable 

as long as the tangent stiffness is smaller than or equal to the initial stiffness; otherwise, the 

algorithm is unstable. They directly applied the stability criterion that only works for linear 

structures, i.e.,   1iA , to nonlinear ones. As previously discussed, the boundedness  

1

ij jA  

for i  is the stability criterion for both linear and nonlinear structures. For a nonlinear 

structure, with the continuous variation of the approximation operator, it is obvious that the 

boundedness of  

1

ij jA  for i  cannot be guaranteed by   1iA . Moreover, the 

unboundedness of  

1

ij jA  for i  cannot be simply equivalent to   1iA . 

The example below is presented to illustrate that the system can still become unstable with 

  1iA  for every time step, i.e., the stability cannot be strictly guaranteed by   1iA   only. 

The implicit Newmark method with constant average acceleration is used in this example 

considering the following numerical conditions where all units are assumed consistent and omitted 

for convenience: 

0.01 0.01 0.01(2 ) 100 1n n It T k m         (4.16) 

The response of the ith time step, ix , with the loading vector L = 0, is as follows: 
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     0

1
2

xx 












 

ij

j

T

iiii uutut A  (4.17) 

The total number of simulated time steps is 10,000 with initial conditions 

      T
T

uutut 001000

2

0  x . In this example, 10,000 values of tangent stiffness are 

selected randomly under the condition that all of them are larger than the value of initial stiffness 

100Ik , i.e., 
IT kk

i
 , 000,101: i , i.e. assuming a stiffening behavior. Therefore, according to 

Table 4.3,   1iA , 000,101: i . 

Figure 4.2 shows the time history plot of displacement 
iu , 000,101: i ; clearly the 

algorithm is unstable even with   1iA , 000,101: i . Moreover, the numerical example used 

in the section “Accuracy Analysis” also shows that the stability criterion based on investigating 

the conditions of the spectral radius fails to identify the stability of the OSinitial algorithm. Using 

discrete control theory, Chen and Ricles [2008] demonstrated that the Newmark method with 

constant average acceleration and explicit Newmark method are unconditionally stable if the 

stability limits listed in Table 4.3 are satisfied; otherwise, these methods are unstable. However, 

the root locus method presented in Chen and Ricles [2008] is a frequency domain equivalence of 

investigating the conditions of the spectral radius for the approximation operator. This root locus 

method is only applicable to linear time-invariant systems [Franklin et al. 2015], i.e., linear 

structures; that is the reason why the obtained results and stability limits are the same as those 

expressed by Equations (4.11) and (4.12) and listed in Table 4.3. Accordingly, these published 

arguments of stability, i.e., those by Combescure and Pegon [1997] and Chen and Ricles [2008], 

are incorrect and theoretically groundless and are not generally applicable to nonlinear problems. 

 

Figure 4.2 Time history plot of the displacement of an unstable example with 

  1iA . 
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4.4 NUMERICAL LYAPUNOV ANALYSIS 

This section presents a numerical approach that investigates the stability analysis discussed in the 

previous sections. This approach is based on transforming the stability analysis to a problem of 

convex optimization, which is applicable to direct integration algorithms applied to nonlinear 

problems. 

As previously discussed, a system is stable if its  

1

ij jA  is bounded for i . This is 

equivalent to investigating the system in Equation (4.5) with the loading vector L = 0, i.e., 

iii xx A1
 (4.18) 

iA  can be rewritten non-dimensionally, e.g., in the implicit Newmark algorithm: 
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where InnnnTi kmTTt
i

 22,,
11 
 . Therefore, 

iA  is a function of 1i  . 

Similar to Equation (4.6), the Lyapunov function 1iv  at the time step 1i  can be selected as:  

1111   ii

T

iiv xx M  (4.20) 

where the positive definite matrix T

ii 11  MM
 
 is a function of 1i  . A sufficient condition for the 

system and thus the direct integration algorithm to be stable is as follows: 
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where 10  tr  controls the rate of convergence, i.e., the smaller the rt, the faster the convergence. 

Equation (4.21) leads to the negative semi-definiteness of 1iP , i.e. 0P  1i . For a direct 

integration algorithm, Mi+1 can be expressed as: 




 
N

j

jiji

1

11 )( ΦM  (4.22) 

where 
j  and 

jiδ )( 1Φ  are the j–th constant coefficient and base function, respectively, and N  

is the total number of base functions. One example set of base functions is given in the Appendix 

A. The set of base functions of only 1Φ  to 6Φ  represent constant 1iM . 7Φ  to 12Φ  constitute the 
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set of base functions that treats 
1iM  as a linear function of 

1i . Nonlinear relationship between 

1iM  and 
1i  can be considered by additional base functions 

13Φ  to 
18Φ . 

With the range of 
i  and 

1i  given, e.g.,  baii ,, 1 , points can be sampled within this 

range (Figure 4.3), e.g., sampling 1n  points in  ,a b  with interval   nab  . This yields 

 21n  possible pairs of  1, ii  . Accordingly, the stability analysis becomes a problem of 

convex optimization that seeks the determination of the coefficients 
j  by minimizing their norm 

for the selected base functions 
jiδ )( 1Φ  where Nj 1: , subjected to the following conditions on 

the  21n  possible pairs of  1, ii  : 
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 (4.23) 

Moreover, with prior knowledge about the variation of 
1i , the range of 

ii  1
 can be 

specified, e.g.,   ii 1
, where   is an optional parameter that is not necessarily small. For 

example, suppose we are interested in investigating the stability of a certain algorithm in the range 

of  2,1, 1ii  , and 5.1i  at ith time step. If prior knowledge is known such that 0.3  , i.e., 

 8.1,2.11i , fewer possible pairs of  1, ii   that require less computational effort can be 

considered. 

The problem of convex optimization can be solved numerically using CVX, a software 

package for specifying and solving convex programs [CVX Research Inc. 2011]. Two examples, 

the softening and the stiffening cases, for the implicit Newmark algorithm are considered based 

on the following conditions: 

  0.105.020205.005.0  trn   (4.24) 

The set of base functions 1Φ  to 12Φ  in the Appendix A is used. 
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Figure 4.3 Schematic illustration of discretization process. 

4.4.1 Softening Example 

Suppose we are interested in investigating the stability of the implicit Newmark algorithm in the 

range of  0.1,9.0, 1 ii  , therefore   005.0 nab . The coefficients 
j , 121: j , 

obtained by minimizing the two-norm of  , i.e. )(min
12

1

2

 j j , are as follows: 
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













 (4.25) 

The existence of such set of j  implies the existence of 1iM  in Equation (4.22) that satisfies the 

inequality in Equation (4.21), which indicates that the implicit Newmark algorithm is stable for 

the conditions in Equation (4.24) in the range of  0.1,9.0, 1ii  . 

4.4.2 Stiffening Example 

Following a similar procedure used in the previous softening example, in the stiffening case with 

range of interest,  1.1,0.1, 1ii  , the obtained coefficients 
j , 121: j , are as follows: 
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 (4.26) 

The set of 
j  in Equations (4.25) and (26) from many determined sets has the minimum 

two-norm explaining the listed small values of 
j . The existence of such set of 

j  implies that 

the implicit Newmark algorithm is stable for the conditions in Equation (4.24) in the range of 

 1.1,0.1, 1ii  . The accuracy of the proposed numerical stability analysis approach depends on 

the selection of the interval  . Similar to the time step t  used in nonlinear time history 

analysis, smaller  , that requires higher computational effort, leads to more accurate and 
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reliable stability analysis. For example, if n + 1 = 41 points (denoted as set A) are sampled (

0.0025  ) for the softening example, 412 –212 = 1240 additional pairs of  1, ii  , which 

require more computational effort, need to be considered than that for the case with n + 1 = 21 

sampled points (denoted as set B). The stability analysis based on set A is closer to that of the 

continuous interval of [0.9, 1.0] than that based on set B. Furthermore, the set of coefficients  

that satisfies the inequality of Equation (4.21) for set A, also fulfils the same inequality for set B 

because the set of the possible pairs of  1, ii   for set B is a subset of that for set A. Therefore, 

the stability of the set of larger number of sampled points implies the stability of smaller number 

of sampled points. Note: Equation (4.21) is a sufficient condition for the direct integration 

algorithm to be stable. Therefore, the existence of the coefficients corresponding to the selected 

base functions obtained by the numerical approach proposed here that satisfies Equation (4.21) 

implies that the range of interest for 
1i  is a sufficient range for the direct integration algorithm 

to be stable. However, inexistence of such coefficients does not indicate the instability of the direct 

integration algorithm within the range of interest for 1i . 

The approach presented above can be applied to investigating the stability of other direct 

integration algorithms, including the other four methods considered in this chapter. Also, various 

nonlinear problems, including stiffening ( 11 i ) and softening ( 11 i ) behaviors in Figure 4.1, 

can be taken into account. Accordingly, the proposed approach is generally applicable to direct 

integration algorithms as long as they can be expressed as given by Equation (4.18). Moreover, 

this approach can potentially be extended to MDOF systems. For m -DOF systems, the 3 3m m  
approximation operator is a function of j

i 1 , where mj 1:  denotes the j-th DOF; thus 

  21 9 3 / 2m m m   selected base functions and corresponding coefficients are needed if 1iM  

is expressed as an affine function of j

i 1 , mj 1: . For example, for each possible pair of 

 m

i

m

iii 1

1

1

1 ,,,,    , the computational effort for 10-DOF systems is 

     2 210 1 9 10 3 10 / 2 / 1 1 9 1 3 1 / 2 426.25           
   

 times that for SDOF systems. 

Therefore, the proposed approach may involve extensive computations for MDOF systems. 

4.5 ACCURACY ANALYSIS 

The accuracy of the numerical integration algorithms depends on several factors, e.g., the loading, 

the time-step size, and the physical parameters of the system. In order to develop an understanding 

of this accuracy, a nonlinear test problem with an available closed-form exact solution is analyzed 

next. 

Consider a simple pendulum (Figure 4.4) of length l , forming a time-dependent angle 

)(t  with the vertical axis and undergoing time-dependent angular acceleration )(t . The 

governing equation, initial conditions, exact solution, and period of vibration are summarized in 

Table 4.4, where g is the gravitational acceleration,   trKn 0
~  , lg0 ,  rK  is the 

complete elliptical integral of the first kind, and  rnsn ;  is the Jacobi elliptic function 

[Abramowitz and Stegun 1972]. 
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Table 4.4 Nonlinear pendulum. 

Property  Expression 

Governing equation    0sin   lg  

Initial conditions  0)0(,)0( 0  θθθ   

Exact solution (Beléndez 

et al. 2007) 

 
        2sin,;~2sinarcsin2 0

2
0   rrnsnt  

Period    04 rKT   

Figures 4.5 and 4.6 present the period elongation and the amplitude decay of the 

investigated integration algorithms for π.θ 1000   and π.θ 5000  , respectively. The period is 

shortened using explicit Newmark algorithm [Chopra 2006], and elongated by the other 

algorithms; the OStangent and implicit Newmark present similar period elongations. Although the 

TRBDF2 has the smallest period change, it is about twice computationally expensive compared to 

the other algorithms. Considering roughly the same computational efforts, e.g., 08.0 Tt  for 

TRBDF2 and 04.0 Tt  for the others, the accuracy becomes comparable. Moreover, the 

accuracy of all algorithms is indifferent for the integration time steps required for accuracy, i.e., 

01.0 Tt  [Bathe 2006]. All algorithms do not result in any significant amplitude decay except 

in the case of TRBDF2, which presents some amplitude decay due to introduced numerical 

damping. Up to 1.0 Tt , period elongation (< ±3%) and amplitude decay (< 1%) are 

acceptable. 

The nonlinear pendulum problem is also used to demonstrate the incorrectness of the 

stability criterion of the OSinitial algorithm from past studies and the suitability of the proposed 

numerical stability analysis approach presented herein. The tangent stiffness of this nonlinear 

pendulum is obtained as: 

  coslgkT   (4.27) 

This tangent stiffness Tk  is always positive if  2,2   . The OSinitial algorithm with initial 

condition π.θ 1000   results in all values of tangent stiffness that are larger than that of the initial 

stiffness, which is    10.0coslg . Recall that the stability criterion by Combescure and Pegon 

[1997], refer to Table 4.3, implies that the OSinitial algorithm should be unstable for π.θ 1000  . 

The numerical problem is analyzed using the proposed numerical stability analysis approach for 

the following conditions: 

  0.120205.00  trn  (4.28) 

The set of base functions 1Φ  to 6Φ  as in Appendix A is used, which represents constant 1iM . 

The same procedure as in Section 4.4 is performed for π.θ 1000   in this example. Therefore, for 
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the range of interest  01 cos1,0.1,  ii
, the coefficients 

j , 61: j  obtained by minimizing 

the two-norm of , i.e. )(min
6

1

2

 j j : 
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8
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1

1058.1,1035.3,1096.5

,1060.1,1059.2,1091.7
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


 (4.29) 

The existence of such set of 
j , 61: j  implies that the OSinitial algorithm is stable for 

π.θ 1000  . The results by the proposed approach is consistent with the fact that the OSinitial 

algorithm is stable as reflected in Figure 4.5, which confirms that stability criterion presented by 

Combescure and Pegon [1997] is not correct. 

 

 

Figure 4.4 Schematic illustration of the nonlinear pendulum in a general 
deformed state. 

 



56 

 
(a) Period elongation 

 
(b) Amplitude decay 

Figure 4.5 Period elongation and amplitude decay for the pendulum problem 

with π.θ 100
0
 . 

 

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-4

-2

0

2

4

6

8

t / T 

P
e
rc

e
n
ta

g
e
 p

e
ri
o
d
 e

lo
n
g
a
ti
o
n

 

 

OS
initial

OS
tangent

Explicit Newmark

Implicit Newmark

TRBDF2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-4

-2

0

2

4

6

8

t / T 

P
e
rc

e
n
ta

g
e
 a

m
p
lit

u
d
e
 d

e
c
a
y

 

 

OS
initial

OS
tangent

Explicit Newmark

Implicit Newmark

TRBDF2



57 

 
(a) Period elongation 

 
(b) Amplitude decay 

Figure 4.6 Period elongation and amplitude decay for the pendulum problem 

with π.θ 500
0
 . 
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5 LYAPUNOV STABILITY CONSIDERING 
STRICTLY POSITIVE REAL LEMMA 

5.1 INTRODUCTION 

Chapter 4 proposed a numerical approach using the Lyapunov stability analysis of various implicit 

and explicit direct integration algorithms for SDOF nonlinear systems. Implicit algorithms may 

encounter numerical convergence problems when applied to nonlinear structural systems, 

especially those with large number of degrees of freedom (DOFs) or complex sources of 

nonlinearity. Explicit algorithms do not require iterations by adopting certain approximations 

related to the kinematics of the structural system, making them appealing for use in solving 

nonlinear dynamic problems. Various explicit direct integration algorithms have been developed, 

including the explicit Newmark algorithm [Newmark 1959], the Operator-Splitting algorithm 

[Hughes et al. 1979] and the generalized- predictor-corrector explicit (PCE) algorithm [Chung 

and Hulbert 1993; Hulbert and Chung 1996]. Liang et al. [2014b, 2016b] investigated the 

suitability of the latter for efficient nonlinear seismic response of multi-degree of freedom (MDOF) 

reinforced concrete highway bridge systems and promising results in terms of accuracy and 

numerical stability were obtained. 

This chapter proposed another Lyapunov-based approach to investigate Lyapunov stability 

of explicit direct integration algorithms for MDOF nonlinear systems [Liang and Mosalam 2015, 

2016b-d]. Two general classes of MDOF nonlinear responses of structural systems are considered: 

stiffening systems, e.g., in situations where gaps between components of the system are closed, 

and softening systems, e.g., due to initiation and propagation of damage, which is common in 

modeling RC structures when subjected to extreme loads. The idealized backbone curves (force–

displacement relationships) of these two systems are discussed later in the chapter. 

In this study, the explicit algorithm is formulated for a generic MDOF nonlinear system 

with its response governed by nonlinear functions of the restoring forces. Based on this 

formulation, a systematic approach is proposed to investigate the Lyapunov stability of explicit 

algorithms for MDOF nonlinear systems by means of the strictly positive real lemma [Cains 1989]. 

This approach transforms the stability analysis to pursuing the strictly positive realness of the 

transfer function matrix for the formulated MDOF system. Furthermore, this is equivalent to a 

problem of convex optimization that can be solved graphically for SDOF systems, e.g., by a 

Nyquist plot [Franklin et al. 2015], or numerically for MDOF systems, e.g., by CVX [CVX 

Research Inc. 2011]. Using the proposed approach, a sufficient condition in terms of bounds for 

each basic resisting force in this study, where the explicit algorithm is stable in the sense of 
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Lyapunov, can be obtained. Specifically, the maximum and minimum bounds for each basic 

resisting force for stable (in the sense of Lyapunov) MDOF stiffening and softening systems, 

respectively, are determined. To study the stability performance of two types of commonly used 

explicit direct integration algorithms, this proposed Lyapunov stability analysis is applied to a 

SDOF system, a bridge structure, and a generic multi-story shear building with nonlinear stiffening 

or softening behavior  

5.2 MATHEMATICAL PRELIMINARIES 

In this section, definitions, notations, the generalized strictly positive real lemma and the 

corresponding corollary are introduced. Here,  T•  and  *•  denote transpose and complex 

conjugate transpose, respectively;   0•  and   0•  denote positive and negative definiteness, 

respectively. Denote 

  








DC

BA
G ~z  (5.1) 

as a state-space realization [Cains 1989] of a transfer function matrix  zG  expressed as follows: 

    BAICDG
1

 zz  (5.2) 

where 
jez   is a complex variable with 1j  and   2,0 , A , B , C  and D  are real 

constant matrices and I  is the identity matrix with proper dimensions.  

A square transfer function matrix  zG  is called strictly positive real [Kapila and Haddad 

1996] if: (i)  zG  is asymptotically stable, which is stronger than Lyapunov stability as it 

guarantees convergence to a specific value as “time” approaches infinity; and (ii)     jj ee *GG   

is positive definite ∀   2,0 . Condition (i) can be guaranteed by the condition that the spectral 

radius of A  must be less than 1.0, i.e.,   0.1A . Let Z be the corresponding controllability 

matrix defined as follows: 

][ 12 BABABABZ  n  (5.3) 

where n  is the dimension of the square matrix A . 

With controllability of  BA, , i.e.,   nZrank  and   0.1A , based on the generalized 

discrete-time strictly positive real lemma [Kunimatsu et al. 2008; Xiao and Hill 1999], if  zG  is 

strictly positive real, then there exist matrices TM = M 0 , L , and W , where the following 

conditions are satisfied: 

LLAMAM TT   (5.4a) 

LWCAMB0 TT   (5.4b) 

T T T
   0 D D B MB W W  (5.4c) 
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Moreover, based on a corollary [Kottenstette and Antsaklis 2010; Lee and Chen 2003], the 

square transfer function matrix  zG  in Equation (5.2) is strictly positive real, and matrix A  is 

asymptotically stable if and only if there exists a matrix TP = P 0   such that Equation (5.5) is 

satisfied. 

   
0

BPBDDCBPA

CBPAPAPA













TTTTT

TTT

 (5.5) 

5.3 EXPLICIT INTEGRATION ALGORITHMS 

The discretized equations of motion of a MDOF system under an external dynamic force excitation 

is expressed as follows: 

1111   iiii pfucum   (5.6) 

where m and c are the mass and viscous damping matrices, and 1iu , 1iu , 1if  and 1ip  are the 

vectors of acceleration, velocity, restoring force, and external force at the time step 1i , 

respectively. Due to several factors, such as the random variation of the external force with time, 

e.g., earthquake shaking, and the nonlinear variation of the restoring force vector with deformation 

due to material and/or geometrical nonlinearities, closed form solution of Equation (5.6) is not 

always possible [Chopra 2006]; therefore, direct integration algorithms are used for the sought 

solution. Two categories of explicit integration algorithms are considered herein: standard single-

step and predictor-corrector explicit algorithms. 

5.3.1 Standard Single-Step Explicit Algorithms 

Standard single-step explicit (SSE) direct integration algorithms considered here are defined by 

the following difference equations: 

   
2

0 11 i ii i η t t     u u u u  (5.7a) 

   2 3 11 i ii i η t t      u u u u  (5.7b) 

For example,    21212113210  η  leads to the explicit Newmark algorithm 

[Newmark 1959]. Substituting Equation (5.7b) in Equation (5.6), the following linear system of 

equations is readily obtained. 

effieff pum 1
  (5.8a) 

  cmm teff  3  (5.8b) 

  iiiieff t uucfpp    211   (5.8c) 

The acceleration can be determined by solving Equation (5.8) and then substituting in Equation 

(5.7b) to determine the velocity.  
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5.3.2 Predictor-Corrector Explicit Algorithms 

The generalized- predictor-corrector explicit (PCE) algorithm [Chung and Hulbert 1993; Hulbert 

and Chung 1996] is considered. The predicted displacement and velocity are: 

      iiii tt uuuu  2

1 5.01~    (5.9a) 

   iii t uuu   1~
1

 (5.9b) 

where parameters   and   are defined in Equation (5.12). The balance equation of this method 

is: 

fffm iiii    1111

~~ pfucum   (5.10) 

where 
fi 1

~
f  is the restoring force vector corresponding to 

fi 1
~u , and 

fi 1p  is the external 

force vector at time step 
fi 1  with other parameters defined as follows: 

  imimi m
uuu     11 1  (5.11a) 

  ififi f
uuu     11

~1~
 (5.11b) 

  ififi f
uuu    11

~1~  (5.11c) 

  ififi ttt
f

   11 1  (5.11d) 

The algorithmic parameters are given by 
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where   is the desired high-frequency dissipation. The acceleration at time step 1i , 1iu , can 

be calculated using Equations (5.10) and (5.11a). Subsequently, the displacement and velocity at 

time step 1i  can be determined by the following correctors: 

  1

2

11
~

  iii t uuu   (5.13a) 

  111
~

  iii t uuu    (5.13b) 

5.4 MDOF NONLINEAR SYSTEMS 

For a MDOF system with n  DOFs, the j-th term of the restoring force vector,  njf j ,1,  , can 

be expressed as a linear combination of N basic resisting forces of the system,  Nlql ,1,  , i.e., 

qα j
N

l

lj

l

j qf 
1

  (5.14) 
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where  NT qqq ,,, 21 q  and  j

N

jjj  ,,, 21 α . Therefore, 

  αqf 
Tnfff ,,, 21   (5.15) 

where  Tnαααα ,,, 21   is a n × N matrix. In general, N is the summation of the number of the 

basic resisting forces from each element that contribute to the n DOFs of the system. For the special 

case of a shear building, nN   because of its assumed shear mode behavior. The lth basic 

resisting force, q1, is defined here as a function of lu , which is in itself a linear combination of the 

displacement of each DOF,  nju j ,1,  , i.e., 

uβl
n

j

jl

j

l uu 
1

  (5.16) 

where ],,,[ 21 nuuu u  and ],,,[ 21

l

n

lll  β . Therefore, 

  βuu 
TNuuu ,,, 21   (5.17) 

where  TNββββ ,,, 21   is a N × n matrix. Detailed explanation of N  defining the number of 

columns and rows of the matrices α  and β , respectively, for the bridge and shear building 

examples are discussed in Appendices B and C, respectively. Moreover, the lth basic resisting 

force, q1, is restricted to the following range (to be determined in this chapter according to the 

outcome of the conducted Lyapunov stability analysis): 

   22 ll

Max

llll

Min ukuquk   (5.18) 

where 
l

Mink  and 
l

Maxk  are the minimum and maximum bounds of lq , respectively. Therefore, 

summing up all basic resisting forces from 1 to N gives 

       



N

l

ll

Max

N

l

ll
N

l

ll

Min ukuquk
1

2

11

2
 (5.19) 

Equation (5.19) is equivalent to the following: 

ukuquuku Max

TT

Min

T   (5.20) 

where 

1 2
Min Min Min Mindiag , , Nk k k   k  (5.21a) 

1 2
Max Max Max Maxdiag , , Nk k k   k  (5.21b) 

Defining l

Ik  as the initial bound of lq , Figure 5.1 shows the schematic illustrations of the lth 

resisting force bounded in the sector between  ll

Min uk  and  ll

Max uk  for stiffening (Figure 5.1a) and 

softening (Figure 5.1b) systems. As mentioned before, the maximum, l

Maxk  and minimum, l

Mink , 

bounds of lq , where Nl 1: , for stable (in the sense of Lyapunov) stiffening and softening 

MDOF systems, respectively, are to be determined herein. Next, the explicit integration algorithms 
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introduced in the previous section are formulated for MDOF ( n  DOFs) nonlinear systems with 

stiffening and softening behavior; see Figure 5.1. 

  

(a) Stiffening system (b) Softening system 

Figure 5.1 Schematic illustrations of two nonlinear systems with sector-
bounded basic resisting forces. 

5.4.1 MDOF Stiffening Systems 

For the two categories of explicit direct integration algorithms, the relationship between the 

kinematic quantities at time steps 1i  and i  can be established as follows: 

1 1 1 1 1 1 1i i i i i i i         A B f Dp A B q Dpx x x   (5.22) 

where     TT

i

T

i

T

ii tt uuu  
2

x . For the SSE algorithms, A , 1B  and D  are as follows with 

11   ii ff , 11   ii pp  and 11   ii qq  are as follows: 
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 (5.23a) 

    Teffeff tt 0mmDB 12

3

12

1

    (5.23b) 

where 0 and I are n × n  null and identity matrices, respectively. The external force vector, p, is 

generally independent of the kinematic quantities, x, and does not affect the Lyapunov stability of 

the direct integration algorithms [Liang and Mosalam 2015; 2016a]. Therefore, 1ip  in Equation 

(5.22) is set to zero in the subsequent parts of this chapter. For the PCE algorithms, A is listed in 

Table 5.1 and considering 
fii   11

~
ff , 1 1 fi i   p p  and 1 1 fi i   q q , we have: 
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DB  (5.24) 
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Table 5.1 Elements of A matrix for PCE algorithms. 

Element Expression Element Expression 

11
A     

mmf
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12
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)()5.0( AI t   

2313
AA   0  

12
A   

m
t   1)(1cm  

33
A  I  

 

It is obvious that n of the eigenvalues of A  are 1.0’s, leading to failure thus validating the 

first condition (i) of the strictly positive realness of the transfer function matrix. Therefore, 

Equation (5.22) (after setting 1i p 0 ) is further manipulated as follows: 
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 (5.25) 

where 

CβC
~

  (5.26a) 

 
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 (5.26b) 

ii xCu 1  (5.26c) 

CkαBAA Mine 11   (5.26d) 

111   iMinie ukqq  (5.26e) 

5.4.2 MDOF Softening Systems 

Similar to Equation (5.22), for softening systems with 2 1 B B   and 0p 1i , as mentioned 

above, we obtain: 
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where 

CkαBAA Maxe 22   (5.28a) 

112   iiMaxe qukq  (5.28b) 

Accordingly, both stiffening and softening systems can be expressed in Equation (5.29) with 

coefficients 
ee BA ,  and 

eq  summarized in Table 5.2. 

eeiei qBA  xx 1
 (5.29) 

Table 5.2 Coefficients of MDOF stiffening and softening systems. 

Matrix Stiffening Systems Softening Systems 

e
A  CkαBAA

Mine 11
  CkαBAA

Maxe 22
  

e
B  αB

1
 αB

2
 

e
q  

iMinie
xCkqq 

11
 

12 


iiMaxe
qCkq x  

 

5.5 LYAPUNOV STABILITY ANALYSIS AS A PROBLEM OF CONVEX 
OPTIMIZATION 

Based on Equation (5.18) and Table 5.2, the lth effective basic resisting force, l
eq , expressed as a 

function of 
l

i 1u  , has the following range: 

 211 uu0 l

i

ll

i

l

e kq    (5.30) 

where l

Min

l

Max

l kkk  . Summing up all effective basic resisting forces from 1 to N gives 
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 
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l
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e kq
1

2

1

1

1 uu0  (5.31) 

Therefore, eq , expressed as a function of u , has the following range: 

1110   i

T

ie

T

i ukuqu  (5.32) 

where 

1 2diag , , , N
Max Min k k k     k k k  (5.33) 

For the system in Equation (5.29), based on the Lyapunov stability theory introduced in 

Chapter 3, a Lyapunov artificial energy function candidate 1iv   [Franklin et al. 2015] at the time 

step 1i  can be chosen as follows: 

111   i

T

iiv xx M  (5.34) 
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where 0MM T . A sufficient condition for the system, and thus the explicit direct integration 

algorithm, to be stable in the sense of Lyapunov, is as follows: 
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 (5.35) 

Defining the weight coefficient of the constraint in Equation (5.30) as 0l  with 
 

1
1

 

N

l l , multiplying Equation (5.30) by 0u,u 11 

l

i

l

i

l

el q , which is always positive. By 

rearranging, one obtains: 
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i
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l

el ukqq  (5.36) 

Summing up all effective basic resisting forces from 1 to N gives the following: 
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where the coefficient matrix  ],,,diag[ 21 N λ . Defining 1 iv  as an upper bound of 1 iv  

that incorporates the constraints in Equation (5.37), Equation (5.35) becomes 
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where 1iv   can be further transformed as follows: 
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where L is a nn 33   matrix. A sufficient condition for  1 0iv    and thus 1iv   is as follows: 

T T

e e M A MA L L  (5.40a) 

T T

e e  0 B MA λkC W L  (5.40b) 

T T T

e e   0 λ λ B MB W W  (5.40c) 

where W is a Nn3  matrix. With Equation (5.40), Equation (5.35) becomes 
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 (5.41) 

Therefore, the Lyapunov stability of the explicit integration algorithm depends solely on the 

existence of M, L, and W such that Equation (5.40) is satisfied. Recall the generalized discrete-

time strictly positive real lemma presented before, i.e., Equation (5.4), the comparison between 

Equations (5.4) and (5.40) gives 
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 W WL  LMMλDCkλCBBAA  ,,,,,, ee  (5.42) 

Accordingly, the stability analysis reduces to seeking k  such that the transfer function matrix 

( )zG  in Equation (5.43) is strictly positive real. 

    eezz BAΙCkλλG
1

  (5.43) 

For SDOF systems, the matrices  ,  , and λ  become 1; thus Equation (5.43) reduces to 

    eezkzG BAΙC
1

1


  (5.44) 

The strictly positive realness of ( )G z  can be guaranteed by the asymptotical stability of eA  and 

 Re ( ) 0G z   (5.45) 

which leads to 

 Re ( ) 1H z k   (5.46) 

where 

 
1

( ) e eH z z


 C I A B  (5.47) 

A Nyquist plot [Franklin et al. 2015] can be used to plot    0, 2jH e     . From this plot, 

the minimum value of   zHRe  that corresponds to the k1  can be obtained. 

For MDOF systems, recall the corollary in Equation (5.5), the strictly positive realness of 

( )G z  in Equation (5.43) becomes equivalent to Equation (5.48) with TP P 0 : 
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Equation (5.48) is a linear matrix inequality (LMI) over variables P  and k  [Boyd et al. 1994]. 

Accordingly, the stability analysis becomes a problem of convex optimization, which addresses 

the problem of minimizing convex functions over convex sets by which a wide range of problems 

can be formulated. In convex optimization, any local minimum must be a global minimum. This 

important property leads to reliable and efficient solutions, e.g., interior-point methods, which are 

suitable for computer-aided design or analysis tools [Boyd and Vandenberge 2004]. This problem 

of convex optimization in Equation (5.48), which seeks k  and the corresponding P  by 

minimizing certain convex cost function, e.g.,   

N

l

lk
1

min , subjected to the constraints of 

TP P 0  and k 0 , can be solved numerically by CVX, a package for specifying and solving 

convex problems [CVX Research Inc. 2011]. Note that a poorly chosen cost function or coefficient 

matrix may lead to reduced sufficient condition, i.e., the difference between the upper and lower 

bounds of the basic resisting force of the system ( k ). In general, a smaller value of the weight 

coefficient for the constraint l  leads to a larger value of lk . For example, in a two-DOF system, 

 2min k  and 1.02   ( 9.01 21   ) may not be a good cost function and weight coefficient 

if the basic force q1 is of primary interest since this cost function may result in small 1k . In this 
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case,  1min k  and 1.01   would be an appropriate selection. Therefore, the selection of the 

cost function and coefficient matrix is important and should take all the basic resisting forces of 

interest into account. 

Note: if q in Equation (5.20) is strictly within the following range: 

ukuquuku Max

TT

Min

T   (5.49) 

Equations (5.32), (5.37), and (5.41) become 
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011   ii vv  (5.50c) 

Accordingly, the explicit direct integration algorithm is asymptotically stable in this case, i.e., 

 ,T T T
Min Maxu q u k u u k u . It should be emphasized that Equation (5.41) is a sufficient condition 

for the direct explicit integration algorithm to be stable. Therefore, the matrix k  obtained by the 

approach proposed herein that satisfies Equation (5.48) implies that ,T T T
Min Max  u q u k u u k u , 

where kkk  MinMax
, is a sufficient range for the direct explicit integration algorithm to be 

stable. However, having some basic resisting force vector q that may fall outside this range does 

not indicate the instability of the direct explicit integration algorithm. 

5.6 NUMERICAL EXAMPLES FOR SDOF SYSTEMS 

In this section, the two categories of explicit direct integration algorithms previously discussed are 

used to demonstrate the approach proposed in the previous sections based on the following 

numerical conditions: 

    01.0,05.02,2,1,1  nnInnI TtmcmkTkm    (5.51) 

For convenience, all units in this and subsequent sections are omitted. 

Based on Equation (5.51), eA , C, and  e A  for the explicit Newmark algorithm, i.e., 

 2121211η , are as follows: 
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 0000.10000.15000.0C  (5.52b) 

  9969.0eA  (5.52c) 
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  1e A  implies that eA  is asymptotically stable; thus the first condition of the strictly positive 

realness of ( )G z  in Equation (5.44) is satisfied. 

5.6.1 Stiffening Systems 

For stiffening systems, 1e B B  is as follows: 

 Te 00020.00039.0B  (5.53) 

The row ranks of the Kalman’s controllability matrix: 

][ 2

eeeee BABABZ   (5.54) 

is equal to 3, i.e.,   3rank Z . Therefore,  ee BA ,  is controllable. 

A Nyquist plot of  zH  in Equation (5.46) corresponding to 
eA , C  and 

eB  in Equations 

(5.52) and (5.53) is shown in Figure 5.2, where   min Re ( ) 4.7642H z    is obtained. Based on 

Equation (5.45), one obtains: 

  1 min Re ( )k H z   (5.55a) 

  1 min Re ( ) 0.2099k H z    (5.55b) 

Accordingly, for stiffening systems, the explicit Newmark algorithm is stable—in the sense of 

Lyapunov—in the range that  , 1,1.2099, 0I If u k k k u        for the numerical conditions 

in Equation (5.51). 

 

 

Figure 5.2 Nyquist plot of H(z) for a stiffening system of the explicit Newmark 
algorithm. 
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5.6.2 Softening Systems 

For softening systems, 
2BB e

 is as follows: 

 0.0039 0.0020 0
T

e  B  (5.56) 

Figure 5.3 shows the Nyquist plot of H(z) in Equation (5.45) corresponding to 
eA , C  and 

eB  in 

Equations (5.52) and (5.56). Similar to Equation (5.40), with   min Re ( ) 5.2586H z    obtained 

from Figure 5.3, one obtains: 

  1 min Re ( ) 0.1902k H z    (5.57) 

Therefore, for softening systems, the explicit Newmark algorithm is stable—in the sense of 

Lyapunov—in the range that  , 0.80981, 0I If u k k k u        for the numerical conditions in 

Equation (5.51). 

 

Figure 5.3 Nyquist plot of H(z) for a softening system of the explicit Newmark 
algorithm. 

 

Table 5.3 The k  values of different SSE algorithms for stiffening and 

softening systems. 

η   
e

A  Stiffening Systems Softening Systems 

 4341211  0.9964 0.3333 0.2853 

 4143211  0.9974 0.1387 0.1308 

 2121411  0.9974 0.1727 0.1639 
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Table 5.4 The k  values of different generalized-α  PCE algorithms for 

stiffening and softening systems. 


   

e
A  Stiffening systems Softening systems 

0.1 0.9969 0.2096 0.1901 

0.3 0.9969 0.2101 0.1904 

0.5 0.9969 0.2103 0.1905 

0.7 0.9969 0.2103 0.1905 

0.9 0.9969 0.2103 0.1905 

 

The proposed approach can be applied to investigate the stability of other explicit direct 

integration algorithms. The results of other SSE algorithms defined by the vector η  and the 

generalized-  PCE algorithms defined by   are listed in Tables 5.3 and 5.4, respectively. 

5.7 NUMERICAL EXAMPLES FOR MDOF SYSTEMS 

5.7.1 MDOF Bridge Structures 

The MDOF bridge structure investigated in this section is shown in Figure 5.4 with mass per unit 

length and the flexural rigidity (EI) given for each member. This bridge structure has the six DOFs 

shown where axial deformation neglected in all members. 

The derivation of the N basic resisting forces (q in terms of u ) and the corresponding 

matrices  and  for this bridge structure is given in Appendix B. The row rank of the 

controllability matrix: 

][ 172

eeeeeee BABABABZ   (5.58) 

is such that rank (Z) = 18. Therefore,  ee BA ,  is controllable and   19999.0 eA . 

 

Figure 5.4 A MDOF bridge structure. 
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In this section, the generalized- PCE algorithm with 6.0  is used to demonstrate the 

approach for MDOF structural systems with nonlinear stiffening or softening behavior. The 

Lyapunov stability analysis is conducted for the bridge shown in Figure 5.4 assuming the following 

numerical values:  

8100.1,5,,2,1,0.100,0.1  ccbbicb IEIEiLmm   (5.59a) 

  01.0,
1

 


n

N

l

l Ttllλ   (5.59b) 

where lλ  is the weight coefficient of the lth constraint, refer to Equation (5.36), Nl 1: , 
nT  is 

the period of the n-th mode of vibration, which is sec 19.06 TTn
 for the analyzed bridge. 

Rayleigh damping is assigned to the bridge [Chopra 2006], i.e., 

kmc 10 aa   (5.60) 

where m, c, and k are the mass, viscous damping, and linear elastic stiffness matrices, respectively. 

The constants 0a  and 1a  are determined from specified damping ratio i  and j  for the ith and jth 

modes, respectively. With both modes are assumed to possess the same damping ratio, i.e., 

0.05  , the constants 0a  and 1a  are determined as follows [Chopra 2006]: 

jiji

ji
aa















2
,

2
10  (5.61) 

where i  and j  are the natural frequencies of the ith and jth modes. Therefore, the damping ratio 

for the kth mode is [Chopra 2006]: 

22

10 k

k

k

aa 


   (5.62) 

In this example, i = 1 and j = 4 are selected such that the mean value of the damping ratio 

of all modes, i.e.,  1 2 6mean ,   , has the closest value to the assigned damping ratio 0.05 

. The determination of the damping matrices for the other examples in this chapter follows the 

same procedure presented above. 

Under earthquake excitation, nonlinearity usually occurs in the columns of a bridge 

structure only, whereas the bridge deck can be modeled using linear elastic elements. Therefore, 

the basic resisting forces associated with the column are of primary interest. Based on Appendix 

B, only the first two basic resisting forces are associated with the horizontal translation DOF of 

the column, . Hence, the weight coefficients in Equation (5.59b) are chosen such that the two 

smallest weight coefficients are assigned to the constraints corresponding to the first two basic 

resisting forces. Moreover, the cost function for this bridge structure is selected as 

 1 2min ,k k 
 

 which is equivalent to maximizing . Accordingly, we perform convex 

optimization over all possible  that has the largest value of  and the obtained result is 

the  for all the basic resisting forces. In this cost function, , and  

1u

 21 kk 

k  21 kk 

k 111

MinMax kkk  222

MinMax kkk 
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are the differences of the upper and lower bounds of the basic resisting forces  and  

associated with the column element. With the initial bounds and corresponding matrix  

presented in Appendix B, the difference of the upper and lower bounds, , of each 

resisting force are listed in Table 5.5 for both stiffening,  ,T T T
I I   u q u k u u k k u , and 

softening systems,   ,T T T
I I   u q u k k u u k u . Note: the obtained  depends on the selection of 

the coefficient matrix  and the cost function. For example, different coefficient matrix , e.g., 

, or alternative cost function chosen to be minimized, e.g. , will yield different 

, as shown in Table 5.6. 

Table 5.5 The k  of each basic resisting force for the bridge structure. 

Resisting force Number Stiffening systems Softening systems 

1 11234.1 10084.7 

2 3470.2 3478.0 

3 836.4 707.1 

4 725.9 612.7 

5 769.1 723.8 

6 1132.8 1015.1 

7 691.7 644.9 

8 437.6 413.0 

9 908.3 857.2 

10 550.0 528.6 

11 372.8 353.9 

12 527.7 494.7 

 

Table 5.6 The k  of each basic resisting force for the bridge structure for 

different λ  and cost function. 

Resisting force Number Stiffening systems Softening systems 

1 5791.6 5680.6 

2 430.0 419.8 

3 897.9 890.5 

4 897.9 890.5 

5 802.7 753.3 

6 1144.5 1086.5 

7 834.4 824.0 

8 575.9 564.0 

9 1144.5 1086.5 

10 802.7 753.3 

11 575.9 564.0 

12 834.4 824.0 

1q 2q

Ik

MinMax kkk 

k

λ λ

Nl 1  1min k

k
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5.7.2 Multi-Story Shear Building Structures 

The structures investigated in this section are multi-story shear buildings with stiffening or 

softening structural behavior. A general multi-story shear building structure is depicted in Figure 

5.5. The detailed derivation of q and u   as well as corresponding matrices  and   for this shear 

building is given in Appendix C. Accordingly, the maximum, j

Maxk , and minimum, j

Mink , stiffness 

values of the jth story, where nj 1: , for stable (in the sense of Lyapunov) stiffening and 

softening multi-story shear building systems, respectively, are to be determined for the explicit 

Newmark algorithm, i.e.  1 1 2 1 2 1 2η . 

The Lyapunov stability analysis is conducted for the following numerical values: 

01000,05.0,5.0 .km j

Ij    (5.63a) 

2

2

1

2 ( )
, , 0.01

j
j jn

j n
j

n

t

T T

 
  





   
 
 
 


 (5.63b) 

where nj 1: , jT  is the period of the jth mode of vibration of the analyzed structure, and nT  is 

the period of the nth mode of vibration, which depends on the number of stories, n, of the analyzed 

shear building. As in the previous example, the initial bound matrix 1 2diag , , , n
I I Ik k k   k . 

 

 

Figure 5.5 General multi-story shear building structure. 
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5.7.2.1 A Two-Story Shear Building 

The Lyapunov stability analysis of the explicit Newmark integrator applied to a two-story (Figure 

5.5 with 2n ) shear building is conducted. The two periods of this building are sec 23.01 T  and 

sec 09.02 T . Based on Equations (5.63a) and (5.63b), 
eA  and C  are given in Appendix D, and

  19988.0 eA . 

5.7.2.1.1 Stiffening Systems 

For stiffening systems, 
IMin kk  , αBB 1e

 is given in Appendix D. The row rank of the 

controllability matrix: 

][ 52

eeeeeee BABABABZ   (5.64) 

is such that   6rank Z . Therefore,  ee BA ,  is controllable and the following 
IMax kkk  : 











1740

0205
k  (5.65) 

is obtained numerically using CVX [CVX Research Inc. 2011] as follows: 

 1 2

,

Minimize k k 
P k

 (5.66) 

subjected to 

( )
, ,

( ) (

t t T
e e e e

T
T

t T T T
e e e e


  
 
      

A PA P A PB kC
0 P P 0 k 0

A PB kC I I) + B PB
  (5.67) 

where P, given in Appendix D, is a 66  matrix. Accordingly, for the two-story shear building 

with stiffening behavior, the explicit Newmark algorithm is stable—in the sense of Lyapunov—

for the numerical values in Equation (5.63) in the following range: 

ukuquuku Max

TT

Min

T   (5.68) 

where 











10000

01000
IMin kk  (5.69a) 











11740

01205
kkk MinMax  (5.69b) 

5.7.2.1.2 Softening Systems 

For softening systems, Max Ik k , 2 1e   B B α B α  as given in Appendix D, and the following 

MinI kkk  : 
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









1590

0184
k  (5.70) 

is obtained using similar procedure to Equations (5.66) and (5.67). The corresponding P is also 

given in Appendix D. Therefore, for the two-story shear building with softening behavior, the 

explicit Newmark algorithm is stable in the sense of Lyapunov for the numerical values in 

Equation (5.63) in the range of Equation (5.68) with 











10000

01000
IMax kk  (5.71a) 











8410

0816
kkk MaxMin  (5.71b) 

5.7.2.2 A 20-Story Shear Building 

A 20-story (Figure 5.5 with 20n ) shear building is used to investigate the Lyapunov stability 

analysis of the explicit Newmark algorithm. The fundamental and 20th periods of this building are 

1 1.83secT   and 20 0.07secT  , which are within the practical range for the 20-story shear building. 

Same Lyapunov stability analysis as in previous sections is conducted for the analyzed 20-story 

shear building with stiffening or softening behavior. The cost function for this bridge structure is 

selected as   


20

1
min

j

jk , which is equivalent to maximizing  

20

1j

jk . In this cost function, 

j

Min

j

Max

j kkk   is the difference of the upper and lower bounds of the basic resisting force 
jq  

associated with the j-th story, where nj 1: . Table 5.7 shows that the difference of the upper 

and lower bounds, MinMax kkk  , of each resisting force for the explicit Newmark algorithm to 

be stable—in the sense of Lyapunov)—for both stiffening,  ,T T T
I I   u q u k u u k k u , and 

softening,   ,T T T
I I  u q u k - k u u k u , systems. 

Table 5.7 The k  of each basic resisting force for the 20-story shear building. 

Story 

number 

Stiffening 

systems 

Softening 

systems 

Story 

number 

Stiffening 

systems 

Softening 

systems 

1 716.1 203.7 11 31.3 35.9 

2 125.1 149.6 12 25.3 30.8 

3 98.8 150.4 13 21.8 28.5 

4 133.0 166.5 14 19.6 26.7 

5 163.4 140.0 15 17.3 24.0 

6 119.7 97.7 16 15.0 21.2 

7 76.9 74.8 17 14.2 20.4 

8 56.5 64.1 18 16.9 23.7 

9 46.7 55.3 19 29.6 37.3 

10 39.0 44.8 20 116.1 106.7 
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Note in Table 5.7 that the largest difference of upper and lower bounds is obtained for the 

first story for both stiffening and softening systems. Define 
j  as the difference between the upper 

and lower bounds of the stiffness of the jth story normalized by the corresponding initial stiffness, 

i.e., 

j

I

jj kk  (5.72) 

For shear buildings, the first story is usually the most critical where high levels of 

nonlinearity may occur. Figure 5.6 presents the effects of the total number of stories and damping 

values (2%, 5%, and 10%) on 
1  for stiffening (Figure 5.6a) and softening (Figure 5.6b) systems. 

The number of stories is investigated up to 25, i.e. :1 25n  . Note that in Figure 5.6, 
1  increases 

with increasing damping values. For the stiffening system (Figure 5.6a), 
1  also increases in 

general with the increase of the number of stories; however, for the softening system (see Figure 

5.6b), 
1  increases or decreases with the increase of the number of stories for low (2%) or high 

(10%) damping ratios, respectively, while no change is observed for moderate (5%) damping ratio. 

5.8 DISCUSSION OF BROADER SCOPE 

The proposed approach can be applied to investigate the stability of other explicit direct integration 

algorithms defined by the vector η  or   for any MDOF nonlinear system defined by the 

matrices α  and β . Moreover, it is also noted that neither l

Mink  nor l

Maxk   is necessarily equal to l

Ik

, where Nl 1: , for the stiffening or the softening systems, respectively. These bounds values 

can take any other value along the loading path. Furthermore, besides strictly stiffening and 

softening systems as in Figure 5.1, other nonlinear problems can be treated using the proposed 

stability analysis approach. This is true as long as Equation (5.18) is satisfied; thus the nonlinear 

force is sector-bounded, e.g., those shown in Figure 5.7 with both stiffening and softening behavior 

including occasionally tangent negative stiffness values. Thus, the proposed approach is generally 

applicable to explicit direct integration algorithms for various MDOF nonlinear systems. 
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(a) Stiffening systems 

 

(b) Softening systems 

Figure 5.6 1
δ  of different number of stories and damping values. 
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(a) Stiffening system (b) Softening system 

Figure 5.7 Schematic illustrations of sector-bounded basic resisting forces not 
strictly stiffening or softening. 
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6 DEVELOPMENT OF THE BENCHMARK 
PROBABILITY DISTRIBUTION OF SEISMIC 
DEMANDS 

6.1 INTRODUCTION 

Another key challenge in the PBEE approach is the selection and modification of ground motions 

(GMs) to serve as input excitations for nonlinear time history analysis (NTHA) simulations of 

structures. The intricate nonlinear response of structures is highly sensitive to the ground motion 

selection and modification (GMSM) of the input records. Therefore, the GMSM of the input 

records is a vital prerequisite for accurate seismic analysis. 

The GMSM procedures determine the necessary input GM records for the simulations of 

structures using NTHA. Numerous research efforts focused on developing different GMSM 

procedures, which are generally categorized into two approaches: (1) amplitude scaling and (2) 

spectrum shape matching procedures. The first approach selects and modifies the GM records 

based on scalar intensity measures (IMs). Some example choices of these scalar IMs include the 

spectral acceleration at a specific (e.g., fundamental) period of the structure [Shome et al. 1998; 

Watson-Lamprey and Abrahamson 2006] and certain peak response of inelastic single-degree of 

freedom (DOF) systems [Luco and Cornell 2007; Tothong and Luco 2007; and Kalkan and Chopra 

2011] to account for nonlinear effects. The second approach takes the spectrum shape into account 

selects and scales a suite of GM records that has close matching to a target spectrum [Naeim et al. 

2004; Kottke and Rathje 2008; and Baker 2011]. A comprehensive review of various GMSM 

procedures is given in Haselton et al. [2009] and Katsanos et al. [2010]. In addition, many 

simulated GM procedures were developed [e.g., Rezaeian and Der Kiureghian 2011] that are 

especially useful for design scenarios corresponding to scarce recorded GMs in existing databases. 

In this study, the two approaches of GMSM based on real GM records are of interest. 

Although many GMSM procedures are available, there is no consensus regarding a single 

accurate method, and many studies have focused on evaluating these procedures. Hancock et al. 

[2008], Haselton et al. [2008], and Heo et al. [2010] compared different GMSM procedures in 

predicting median responses of seismic demands against developed reference benchmarks. 

Recently, Kwong et al. [2015] developed a framework for the evaluation of GMSM procedures by 

determining a benchmark seismic demand hazard curve. Later, Kwong and Chopra [2016] applied 

this framework to evaluate two GMSM procedures: (1) exact conditional spectrum [Lin et al. 

2013a] and (2) generalized conditional intensity measures [Bradley 2010]. These evaluation 

studies were primarily focused on building structures and considered unidirectional input ground 
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motion. In general, bridge structures exhibit distinct behaviors in the longitudinal and transverse 

directions. Hence, bidirectional GM studies focused on highway bridges are needed. 

In order to effectively evaluate the GMSM procedures, a reference benchmark the 

probability distribution of the seismic demands (PDSD) should be established. A framework of 

performance-based earthquake engineering (PBEE) was developed at the Pacific Earthquake 

Engineering Research Center(PEER) that explicitly takes into account uncertainties in earthquake 

hazard, structural response, damage, and loss estimation [Günay and Mosalam 2013]. The PEER 

PBEE methodology enables comprehensive understanding of the structural performance in a 

probabilistic manner. This study takes advantage of the PEER PBEE to develop the reference 

benchmark PDSD for structures. 

6.2 BENCHMARK PROBABILITY DISTRIBUTION OF SEISMIC DEMANDS 

The PEER PBEE methodology aims to divide the performance assessment and design process into 

logical stages that can be studied and resolved in a systematic and consistent manner [Moehle and 

Deierlein 2004]. These stages of the process contain the definition, description, and quantification 

of earthquake intensity measure, structural response, damage, and loss. Accordingly, uncertainties 

in these stages can be explicitly taken into account [Günay and Mosalam 2013] to enable 

comprehensive understanding of the structural performance in a probabilistic manner. The well-

known PEER PBEE formula originally presented in Cornell and Krawinkler [2000] is restated as 

follows 

         imdimedpdGedpdmdGdmdvGdv
dm edp im

 |||    (6.1) 

where im, edp, dm, and dv are the intensity measure, engineering demand parameter, damage 

measure, and decision variable, respectively,  x  is the mean annual rate of events exceeding a 

given level for a given variable x,  G x  is the complementary cumulative distribution function 

(CCDF) for random variable X, i.e.,    PrG x X x  , and the corresponding conditional CCDF 

is    PrG x y X x Y y   . Moreover, the variables im, edp, and dm can be expressed in a 

vector form (e.g., Bradley [2012]), i.e., multiple folds are implied in the integrals. 

In this study, a reference benchmark PDSD is developed based on the PEER PBEE 

framework considering the first two sources of uncertainties, i.e., the earthquake intensity measure 

and the structural response. In addition, this study is extended to account for structural collapse of 

a certain damage group corresponding to a group of structural components affected by the same 

EDP (e.g., Baker and Cornell [2005]; and Lin et al. [2013b]). This study makes use of Equation 

(6.2), which presents the general formula for the PDSD. 

       
im

IM dimimfimedpGedpEDPedpG |Pr  (6.2) 

where im  is the value of the intensity measure represented as a random variable ,IM

   imIMedpEDPimedpG  |Pr|  is the conditional probability of EDP exceeding the 

demand level edp given the intensity measure im , and  imf IM  is the probability density function 
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(PDF) of the intensity measure, i.e., IM , which can be obtained through ground motion 

attenuation models. 

When developing the PDSD of the investigated structures, it is necessary to account for 

the possibility that some GM records, whose IM  are at high levels, may cause collapse of the 

structure. From Equation (6.2), the conditional probability of exceedance  edp|imG  is computed 

by the summation of probabilities of such occurrences conditioned on the two mutually exclusive 

categories of the bridge collapse (C) and non-collapse (NC), i.e., 

         |imedp|im,G|imedp|im,Gedp|imG NCPrNCCPrC   (6.3) 

Intuitively, we can set   0.1C, edp|imG . Thus, Equation (6.3) leads to the following: 

        imimedpGimimedpG |CPr1NC,||CPr|   (6.4) 

The conditional probability of collapse, i.e.,  im|CPr , is evaluated as follows: 

  imim levelintensityat
recordsselectedof#total

collapsecausingrecordsof#
|CrP̂   (6.5) 

In Equation (6.4), the only term that has not been determined is the probability of EDP exceeding 

the demand level edp given the intensity measures for the non-collapse scenario, i.e., 

 NC,| imedpG . In this study, the distribution of EDPs conditioned on the intensity measures is 

evaluated using a non-parametric statistical inference, kernel density estimation [Härdle et al. 

2004], as follows: 

  









 


n

i

i
IMEDP

h

IMEDPimedp
Κ

nh
imedpf

1

|

||1
|ˆ  (6.6) 

where h is the bandwidth for IMEDP | , K is a kernel function, and IMEDPi |  is the ith 

observation of the random variable IMEDP | . The symbol “^” in Equation (6.6) denotes the 

estimation, i.e., ˆ( )g x  is an estimate of ( )g x .  

Combination of the intensity measure and the structural responses, including C and NC 

cases, i.e., substituting Equation (6.4) and required estimates of its different terms, as discussed 

above, into Equation (6.2), leads to the following: 

          
im

IM dimimfimimedpGimedpG ]|CrP̂1[NC,|ˆ|CrP̂ˆ  (6.7) 

The procedure of the benchmark PDSD development is readily extended to the case of multiple 

earthquake scenarios as follows: 

          
lim

IM

N

l

lm dimimfimimedpGimedpG
eqs

 


]|CrP̂1[NC,|ˆ|CrP̂ˆ

1

  (6.8) 

where  edpGm
ˆ  is the PDSD for multiple earthquake scenarios with number 

eqsN  and l  [Bradley 

2013] the activity rate for the lth earthquake scenario. 
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6.3 EVALUATION OF THE GMSM PROCEDURES 

Similar to the development of the reference benchmark PDSD, the PDSD estimates by the GM 

records selected from each GMSM procedure are developed. Analogous to Equations (6.3) and 

(6.4),  edpG  is divided into two mutually exclusive categories of C and NC, i.e., 

         
      CPr1NC|CPr

NCPrNC|CPrC|





edpG

edpGedpGedpG
 (6.9) 

where it is assumed that  | C 1.0G edp   and  CPr  is the probability of collapse estimated as 

follows: 

 
recordsof#total

collapsecausingrecordsof#
CrP̂   (6.10) 

The probability of exceedance for the NC cases, i.e.,  NC|edpG , can be estimated by a non-

parametric inference using the following empirical CCDF [Baker 2007; Vamvatsikos and Cornell 

2004] 

   



m

l

l edpEDPI
m

edpG
1

1
NC|ˆ  (6.11) 

where m  is the number of GM records that produce NC, lEDP  is the value of EDP for the lth 

record, and  I  represents the indicator function, i.e.,   0.1 edpEDPI l
 if edpEDPl  ; 

otherwise,   0.0 edpEDPI l . Accordingly, the PDSD estimate, i.e.,  Ĝ edp , is obtained as 

follows: 

       ]CrP̂1[NC|ˆCrP̂ˆ  edpGedpG  (6.12) 
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7 COMPUTATIONAL BRIDGE STRUCTURE 
MODELS 

7.1 INTRODUCTION 

In any urban transportation system, ordinary standard reinforced concrete (RC) highway bridges 

are essential lifeline structures for transporting goods and people around natural terrains. In 

California, for example, where numerous active faults exist and earthquakes occur fairly 

frequently, bridges should sustain minimal damage and remain operational in the aftermath of an 

earthquake. This requirement is essential for recovery and emergency management purposes. RC 

highway bridges were observed to have substandard performance during earthquakes due to the 

inherent lack of high redundancy of the structural system [Benzoti et al. 1996]. This is not a 

problem restricted to the West Coast of the U.S. Bridges designed according to modern codes were 

severely damaged or collapsed in different parts of the world during recent earthquakes. 

Accordingly, determination of the seismic response of existing and newly designed RC highway 

bridges, using techniques of structural analysis, is essential to ensure their seismic safety. 

For a California bridge to be considered as an ordinary standard bridge, it should satisfy 

the following conditions [Caltrans SDC 2010]: (1) the span length should be less than 300 ft; (2) 

the bridge should be constructed with normal-weight concrete; (3) foundations must be supported 

on spread footings, pile caps with piles, or pile shafts; (4) the soil is not susceptible to liquefaction, 

lateral spreading or scour; and (5) the fundamental period of the transverse and longitudinal 

directions of the bridge should be greater than or equal to 0.7 sec. This chapter provides a brief 

description of selected ordinary standard RC highway bridge structures and reviews the related 

OpenSees [McKenna et al. 2010] computational bridge structure models by Kaviani et al. [2014]. 

7.2 BRIDGE STRUCTURES 

Three representative RC highway bridge structures were selected for this study. The selected 

bridges, designed after 2000, reflect common bridge engineering practice in California. The first 

selected bridge is the Jack Tone Road Overcrossing (Bridge A), with two spans supported on a 

single column. The second bridge is the La Veta Avenue Overcrossing (Bridge B), with two spans 

supported on a two-column bridge bent. The third bridge is the Jack Tone Road Overhead (Bridge 

C), with three spans and two three-column bridge bents. The characteristics and configurations of 

the selected bridges are summarized in Table 7.1 and Figure 7.1. 
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Table 7.1 Characteristics of the selected bridges. 

Bridge A B C 

Name Jack Tone Road Overcrossing La Veta Avenue Overcrossing Jack Tone Road Overhead 

No of spans 2 2 3 

Column bent Single-column Two-column Three-column 

Column radius 33.1 in. 33.5 in. 33.1 in. 

Column height 22.0 ft 22.0 ft 24.6 ft 

Abutment Seat type Seat type Seat type 

Seat length 33.85 in. 33.85 in. 33.85 in. 

Superstructure concrete 
'

5ksi, 4030.5 ksic cf E   
'

5 ksi, 4030.5 ksic cf E   
'

5 ksi, 4030.5 ksic cf E   

Column bent concrete and 

reinforcing materials 

Concrete: 5 ksi  

Steel: ASTM A706 

Concrete: 5 ksi  

Steel: ASTM A706 

Concrete: 5 ksi  

Steel: ASTM A706 

Reinforcement details of 

column bent cross-section 

Long.: 44#11 (bundles of 2) 

%00.2l  

Trans.: Spiral, #6 @ 3.34 in. 

Long.: 44#11 (bundles of 2) 

%95.1l  

Trans.: Spiral, #4 @ 6.00 in. 

Long.: 44#11 (bundles of 2) 

%20.2l  

Trans.: Spiral, #6 @ 3.34 in. 

 

 

(a) Bridge A 

  

(b) Bridge B (c) Bridge C 

Figure 7.1 Configurations of the selected bridges. 
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7.3 COMPUTATIONAL MODELS 

Extensive analytical simulations were conducted on these three bridges [Kaviani et al. 2012] using 

OpenSees [McKenna et al. 2010]; the modeling assumptions adopted were partly based on Aviram 

et al. [2008]. OpenSees has a sufficient element and material response library and empowers 

scripted execution of repetitive nonlinear time history analyses (NTHA) through which the model 

parameters and input ground motions can be systematically varied. A representative bridge model 

(Bridge B) used in the simulations is depicted in Figure 7.2. Seat-type abutments, shear keys, 

expansion joints, column-bents, and the superstructure were included in the model. A more 

detailed explanation of the modeling assumptions can be found in Kaviani et al. [2014]. 

 

Figure 7.2 Modeling of Bridge B [Kaviani et al. 2014]. 

7.3.1 Material Properties 

Material properties assigned to the models were based on the Caltrans SDC [2010]. The model 

developed by Mander et al. [1988] was used for the RC column of the selected bridges. It is 

recommended by Caltrans SDC [2010] that confined as well as unconfined concrete should be 

taken into account to determine the local capacity of ductile concrete members. 

In this study, the compressive strain for the unconfined concrete at the maximum 

compressive stress, ksifce 5'  , and the ultimate compression (spalling) strain were chosen as 



88 

0028.00 c  and 005.0cp , respectively. For the confined concrete, the compressive strain at 

the maximum compressive stress, ksifcc 6.6'  , and the ultimate compression strain were 

008.0cc  and 025.0cu , respectively. The modulus of elasticity specified by Caltrans SDC 

[2010] is  

 psifwE cc

'5.133   (7.1) 

where 3lb/ft96143.w  and ksifc 5'   are the unit weight of concrete and the compressive 

strength of the unconfined concrete, respectively. Reinforcing steel A706/A706M (Grade 

60/Grade 400) was used with the steel modulus of elasticity and the expected yield strength were 

chosen as ksiEs 000,29  and ksif ye 68  in accordance with Caltrans SDC [2010]. 

7.3.2 Superstructure Modeling 

The Caltrans SDC [2010] requires that the superstructure of a bridge to be capacity protected and 

remain elastic. Considering that the bridge is designed according to the code regulations, the bridge 

deck and the cap-beam that form the bridge superstructure are modeled with elastic beam–column 

elements using uncracked section properties, which is typical for prestressed concrete). The three-

dimensional spine-line models for the bridge superstructures, with a series of elastic beam–column 

line elements located at the centroids of the cross sections following the bridge alignment, were 

used to strike a good balance between computational efficiency and accuracy. The width of the 

deck was incorporated in the model at the two extreme nodes of the spine model, which included 

a transverse rigid bar whose lengths was the same as the width of the deck. 

This approach allows accounting for the passive resistance of backfill soil distributed along 

the width of the deck. The orientation of the rigid bars and their widths were selected according to 

the abutment skew angle. Zero-length elements with uniaxial behavior were distributed along the 

width of the rigid boundary elements to model the passive backfill reaction normal to the back-

wall as well as the transverse reactions by the shear-keys. At each abutment, the deck is resting on 

several elastomeric (polytetrafluoroethylene) bearings through which the vertical loads from the 

superstructure are transferred to the stem wall. The two-phase (compressible and incompressible) 

vertical response of the bearing pads and the stem wall is represented with a bilinear force-

deformation backbone curve [Kaviani et. al. 2012]. Horizontal resistance due to sliding friction 

between deck and bearing pads has been neglected, considering the relatively small value of the 

friction coefficient between the pads and their mating surface [Caltrans SDC 2010]. The integral 

cap beam is modeled with elastic beam-column elements—with very large torsional and bending 

(out-of-plane of bent) rigidities—and is rigidly connected at its central node to the deck spine 

model. 

Each bridge span was divided into ten segments in the OpenSees model to achieve an 

accurate distribution of mass along the length of the superstructure. Also, the assignment of 

rotational mass (mass moment of inertia) was considered to achieve greater accuracy in the 

predicted dynamic responses and fundamental modes of the bridge, particularly for those modes 

associated with the torsional and transverse motions. The rotational moment of inertia of a segment 

of superstructure was calculated as follows: 
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 
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M   (7.2) 

where XXM   is the rotational mass of the superstructure, m  is the total mass of the superstructure, 

M  is the total mass of the superstructure segment, tributary to the node, 
tribL  is the tributary 

length, 
wd  is the superstructure width, and L  is the length of the superstructure. The rotational 

mass, ZZM , of the column was calculated as follows 

 
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22
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c

tribcccolc
ZZ

DLLmRM
M   (7.3) 

where 
cm  is the total mass of the column, Mc  is the total mass of the column segment, tributary 

to the node, c

trib
L  is the tributary length, colR  and colD  are the radius and diameter of the column, 

and Lc  is the height of the column. 

7.3.3 Column-Bent Modeling 

To model the columns, nonlinear force-based beam–column elements were utilized with fiber-

discretized sections considering 10 integration points along the height; see Figure 7.3. This is 

usually deemed to control the numerical integration errors and provide adequate accuracy [Kaviani 

et al. 2012] by considering the progression of column yielding and damage expected under strong 

ground motions. 

Three different constitutive rules are used simultaneously within a fiber-discretized cross-

section: (i) confined concrete for the core concrete, (ii) unconfined concrete for the cover concrete, 

and (iii) steel rebar for the reinforcing bars (Figure 7.3). OpenSees Concrete01 constitutive model 

is a uniaxial Kent-Scott-Park concrete material object with degraded linear unloading/reloading 

stiffness according to the work of Karsan-Jirsa and no tensile strength [OpenSees Wiki 2010]. It 

was used for both the cover and concrete core. The steel rebar is modeled by Steel02 material, a 

uniaxial Giuffre-Menegotto-Pinto steel material object with isotropic strain hardening [OpenSees 

Wiki 2010]. A rigid element is attached to the top of the nonlinear beam-column element to model 

the portion of the column-bent embedded in the superstructure. The boundary condition of the 

column base proves to introduce significant impact on the seismic responses obtained from NLTA 

[Kaviani et al. 2012]. Herein, the single-column bridge (Bridge A) is modeled with a fixed base 

connection, while both pinned and fixed base connection is assigned to the multi-column bridge 

(Bridge B and C). 

 

Figure 7.3 Column modeling scheme for Bridge B [Kaviani et al. 2014]. 
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7.3.4 Abutment Modeling 

The study focused on seat-type abutment modeling. A representative seat-type abutment is 

illustrated in Figure 7.4. Two modeling approaches, namely Type I and Type II, were considered 

for the abutment; see Figure 7.5. In both approaches, the longitudinal responses of the backfill and 

the expansion joint, the transverse responses of the shear keys, and the vertical responses of the 

bearing pads and the stem-wall were all explicitly considered. In the Type I modeling approach 

(Figure 7.5a), two nonlinear springs, one at each end, and connected in series to gap elements, 

were used to model the passive backfill response and the expansion joint [Aviram et al. 2008], 

respectively. The shear-key response was modeled using an elastic-perfectly-plastic backbone 

relationship. The vertical response of the bearing pads and stem-wall was modeled by two parallel 

springs, one at each end (note that only one side is labeled in Figure 7.5), to represent the stiffness 

values. The backfill passive pressure was produced by the abutment back-wall. The strength and 

initial stiffness of the soil springs were determined according to the Caltrans SDC [2010]. In the 

Type II modeling approach, the number of nonlinear springs connected in series to the gap 

elements was increased to five, as shown in Figure 7.5b, and the shear-key response was modeled 

using a nonlinear spring with a tri-linear backbone relationship; Figure 7.6. 

 

 

Figure 7.4 Configuration of a typical seat-type abutment [Kaviani et al. 2014]. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 7.5 Abutment modeling with springs and gap elements. 
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Figure 7.6 Shear key force-deformation backbone curves [Kaviani et al. 2014]. 
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8 APPLICATION OF ROBUST INTEGRATION 
AND SOLUTION ALGORITHMS SELECTION 

8.1 INTRODUCTION 

The most suitable analysis method for determining the seismic response of existing and new 

designed reinforced concrete (RC) highway bridges is nonlinear time history analysis (NTHA). 

However, one challenge in conducting a NTHA is the problem of convergence for three reasons: 

(1) various forms of nonlinear modeling required for accurate representation of the major bridge 

components (e.g., distributed plasticity models with discretized fiber sections for columns, 

stiffening gap elements used for the abutments, and combination of various nonlinear springs 

required for modeling shear keys); (2) complexity introduced by the interaction of the responses 

in longitudinal, transverse, and sometimes vertical directions; and (3) dynamic complexity due to 

the mass distribution along the deck. 

This chapter investigates solutions to the numerical problems of convergence through the 

use of efficient direct integration algorithms. Two of the explicit integration algorithms are the 

Explicit Newmark (EN) and the Operator-Splitting (OS) algorithms, which do not require 

iterations or convergence checks. The TRBDF2 is an implicit integration algorithm developed to 

rectify potential stability problems of the Implicit Newmark (IN) for problems involving large 

deformations. The formulations of these algorithms are already introduced in Chapter 2. 

Applicability of these integration algorithms to NTHA of RC highway bridges is explored herein 

by using three representative RC highway bridges described in Chapter 7, where modeling of these 

three bridges addresses the issue of convergence. 

The considered three integration algorithms can be used individually during the complete 

course of NTHA or selectively during the time steps where the commonly used IN fails to 

converge. Applicability of such adaptive switching of the considered integration algorithms is 

demonstrated in this chapter. Methods of convergence improvement are also investigated for the 

IN integrator. Finally, the efficacy of the proposed solutions is presented for a challenging subject 

in the context of PBEE [Günay and Mosalam 2013] that requires a significant number of NTHA. 

This subject is the identification of predominantly first-mode engineering demand parameters 

(EDPs) under earthquake excitation by making use of different ground motion selection and 

modification methods. 
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8.2 APPLICABILITY OF INTEGRATION ALGORITHMS 

The applicability of the discussed explicit and implicit integration algorithms introduced in 

Chapter 2 for NTHA is discussed below, which focuses on the three described RC highway 

bridges. Table 8.1 presents coefficients for the Newmark and the OS integration algorithms, i.e., 

the MDOF version of Table 4.1, where      tt i   ckmη 1

2
. 

 

Table 8.1 MDOF eoefficients for the Newmark and the OS integration 
algorithms. 
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8.2.1 Explicit Newmark (EN) Algorithm 

By providing a straightforward and computationally efficient application, the EN integration 

algorithm is conditionally stable with the following stability limit for linear structures 



1




nT

t
 (8.1) 

where nT  is the period of the highest mode of vibration of the analyzed structure. Equation (8.1) 

restricts the use of the EN method for structures with massless DOF since the presence of such 

DOF results in a singular mass matrix that yields zero-period modes. Accordingly, the EN method 

is not applicable to building and bridge structures that are modeled with massless rotational DOF, 

unless these DOFs are condensed out. Future objectives of this study include implementing a 

condensation algorithm in OpenSees [McKenna et al. 2010] to facilitate broader use of the EN 

algorithm. Therefore, the EN algorithm of the investigated bridge systems is not pursued further. 

8.2.2 Operator-Splitting (OS) Algorithm 

As mentioned in Chapter 4, the version of the OS algorithm considered herein possesses similar 

stability properties and accuracies to those of the IN integration [Liang and Mosalam 2015, 2016a]. 
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The TRBDF2 algorithm is considered because of its superior stability and better convergence 

behavior due to numerical damping. 

 

Figure 8.1 Superstructure and the column bent of Bridge B. 

The NTHA was conducted for both abutment modeling approaches I and II of Bridges A, 

B, and C using the IN, OS, and TRBDF2 algorithms under 40 pulse-like three-component ground 

motions described in Jayaram et al. [2011] and documented in Appendix E. Because the pulse-like 

ground motions tend to introduce highly nonlinear responses, they were selected here to assess the 

validity of the discussed integration algorithms for NTHA of bridges. The results from the IN 

algorithm are considered as the reference results. Note that the use of a numerical solution as the 

reference is attributed to the lack of an available closed-form exact solution or reliable 

experimental data for the analyzed bridges under the selected earthquake excitations. 

To compare the results, three EDPs were selected, namely, the peak response value of 

abutment unseating displacement, column drift ratio, and column base shear. As identified in 

Figure 8.1 for Bridge B, these three EDPs correspond to the longitudinal displacement of Node 

100, column drift ratio of Node 12, and column base shear of Node 11. Similar nodes were used 

for Bridges A and C to investigate the NTHA results. The comparison was conducted 

quantitatively by using the error measure Maxerror, defined as follows: 

ref

refalt

error
Max

MaxMax
Max


  (8.2) 
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Where 
refMax  and 

altMax  are the maximum absolute response of the considered EDPs provided 

by the IN and by the other algorithms, respectively. The NTHA was conducted for all three bridges; 

detailed results are presented for Bridge B and brief results given for Bridges A and C. Figure 8.2 

and 8.4 show the 
errorMax  of the OS and TRBDF2 algorithms for the three selected EDPs of 

Bridge B, which were analyzed with both abutment modeling approaches I and II (Figure 7.5), for 

all 40 ground motions. 

Note that all obtained errors are insignificant (< 0.2%). The abutment unseating 

displacement from IN and OS with Type I modeling is plotted in Figure 8.3a for GM #21 

(Earthquake: Northridge – 01; Station: Sylmar – Olive View Med FF), which yielded the largest 

errorMax ; see Figure 8.2a. Figure 8.3b represents the corresponding moment-curvature plot (

M ) from the IN to reflect the obtained high level of nonlinearity in this case. 

The good match of the time-history responses for the highly nonlinear case shown in Figure 

8.3a and the small values of the error measure in Figure 8.2 indicate that the explicit OS algorithm 

not only successfully overcomes the problems of convergence in the NTHA of RC highway 

bridges, but also maintains the accuracy of the results provided by the IN method. Similarly, good 

match and small error levels were obtained for Bridges A and C as discussed in Section 8.4. 

8.2.3 TRBDF2 Algorithm 

Figure 8.4 shows the 
errorMax  of the TRBDF2 algorithm for the three selected EDPs of Bridge B, 

analyzed with both abutment modeling approaches I and II (Figure 7.5), for all 40 GMs. Analogous 

to the OS results shown in Figure 8.2, small errors in Figure 8.4 imply that the accuracy of the 

implicit TRBDF2 and IN algorithms are comparable. Furthermore, the TRBDF2 algorithm 

exhibited superior convergence features; see Section 8.4. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 8.2 Maxerror of the OS algorithm for the three selected EDPs of Bridge B. 
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(a) Abutment unseating displacement 

 

(b) Moment-curvature response 

Figure 8.3 Comparison of the IN and OS algorithm results for NTHA of Bridge 
B with Type I abutment modeling (Ground motion #21 as an 
example). 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 8.4 Maxerror of the OS algorithm for the three selected EDPs of Bridge B. 
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8.3 PARAMETRIC STUDY TO ASSESS CONVERGENCE PROPERTIES OF IN 
ALGORITHM 

As demonstrated earlier, the explicit algorithms are suitable alternatives of the IN method to avoid 

convergence problems. However, there are some conditions where these explicit algorithms are 

not applicable, e.g., in the case of significant stiffening response due to closing of the gap elements 

in the above-mentioned bridge models. Moreover, aside from the chosen integration method, 

formulation of some of the elements, e.g., the force-based beam–column elements or the materials, 

e.g., Bouc-Wen type in OpenSees [McKenna et al. 2010] are iterative. Accordingly, the implicit 

algorithm, such as IN method, may be the only option for NTHA of models containing such 

elements and materials if the convergence problems at the element and material levels cannot be 

eliminated while using the alternative integrators. 

The following sections investigate the effect of different parameters to improve the 

convergence properties of the IN method while preserving its accuracy for the bridge models 

described herein. Note that this investigation is based on the displacement formulation of the 

method, which is observed to result in an improved convergence performance compared to the 

acceleration formulation. The considered parameters are categorized in five groups: 

1. Type and sequence of nonlinear equation solvers 

2. Convergence test type 

3. Convergence tolerance 

4. Integration time step 

5. Adaptive switching of integration algorithms 

8.3.1 Type and Sequence of Nonlinear Equation Solvers 

In order to achieve convergence, OpenSees [McKenna et al. 2010] lets the use try various nonlinear 

solvers consecutively for any iteration of an integration time step. Therefore, one potential avenue 

to consider is the type and sequence of the nonlinear equation solvers. This investigation is further 

divided into two sub-groups, namely, (a) determination of the most suitable initial solver; and (b) 

sequence of other solvers after the initial one. Nonlinear equation solvers considered are the regular 

Newton Raphson (NR), Broyden, Newton-Raphson with line search (NRLS), Broyden–Fletcher–

Goldfarb–Shanno (BFGS), and Krylov-Newton algorithms. 

Based on the results obtained in simulations with several relatively strong GMs (GM1, 

GM11, GM18, GM19, GM28, and GM31) with scale factors ranging from 1.0 to 2.0, the NRLS 

proves to be the most suitable initial solver. Table 8.2 shows the convergence condition for 

different scales of GM31 for Bridge A with Type II abutment modeling as an example. Note that 

all the simulations that used the NRLS solver as the initial solver are completed, whereas the 

simulations with other initial solvers fail to converge for some of the scales. 

Using the NRLS as the initial solver, investigation of different subsequent orders of other 

solvers (NR, Broyden, BFGS, and Krylov-Newton) found no difference. Thus, once a suitable 

initial solver is determined, the order of subsequent other solvers have little impact on the 

convergence. Note that this finding may be specific to the investigated structure since this 
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investigation has not been repeated for other structures. However, it is still a useful conclusion for 

two reasons: (1) this finding sets the NLS to be a suitable initial solver as the first simulation trial 

of future nonlinear models; and (2) it demonstrates to the analyst the importance of proper selection 

of the initial solver compared to trying a variety of solver combinations afterwards. The same 

observations were found for the two other Bridges B and C. 

Table 8.2 The convergence failure time [sec] of simulations for different initial 
nonlinear solvers under GM31 for Bridge A with Type II abutment 
modeling. 

Scale Factor NR Krylov-Newton Broyden NRLS BFGS 

1.0 Completed 21.820 Completed Completed Completed 

1.1 35.645 21.820 35.660 Completed 35.820 

1.2 35.650 21.820 Completed Completed 41.010 

1.3 35.655 6.115 35.655 Completed Completed 

1.4 Completed 6.115 35.260 Completed 27.985 

1.5 Completed 6.115 77.505 Completed Completed 

1.6 Completed 6.115 Completed Completed 42.600 

1.7 Completed 6.115 Completed Completed 36.155 

1.8 35.710 6.115 Completed Completed 37.270 

1.9 Completed 6.115 35.265 Completed 35.915 

2.0 35.730 6.115 52.540 Completed 24.675 

 

8.3.2 Convergence Test Type 

The following five convergence tests—Energy Increment, Norm Displacement Increment, 

Relative Norm Displacement Increment, Total Relative Displacement Increment, and Relative 

Energy Increment—were compared for four ground motions (GM18, GM19, GM28 and GM31) 

with scale factors ranging from 1.0 to 2.0. The comparisons are based on counting the total number 

of iterations for each simulation, see Table 8.3 for Bridge A with Type II abutment modeling. Note 

that the Energy Increment test led to significantly fewer number of iterations compared to the other 

tests. In addition, very small response differences were obtained from the simulations with 

different convergence tests, as indicated by Maxerror for the longitudinal direction displacements 

of node 100 of the abutment; see Table 8.4 and Figure 8.1. Here, Maxerror is calculated for the 

simulations with different convergence tests considering the simulations with the Energy 

Increment test as the reference. 

The same tolerance value of 10-8 was used for all the convergence tests, which is the main 

reason why the Energy Increment test has the fewest number of iterations. Multiplication of the 

displacement increment with the unbalanced force, both less than 1.0, results in a norm value 

smaller than the other norms. Regardless, given that simulations with the less stringent Energy 

Increment test leads to practically the same results with significantly fewer iterations compared to 

the other tests, it is concluded that the Energy Increment test is the most suitable convergence test 
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for the analyzed model. Again, a note of caution: this finding may be specific to the investigated 

model. However, it is still useful in that it provides an initial trial suggestion for other models and 

simulations. 

 

Table 8.3 Total number of iterations for simulations with different 
convergence tests under GM31 for Bridge A with Type II abutment 
modeling. 

Scale 

Factor 
EnergyIncr NormDisIncr 

RelativeNorm 

DispIncr 

RelativeTotal 

NormDisIncr 

Relative 

EnergyIncr 

1.0 31227 48225 55821 55817 40949 

1.1 31510 48514 56481 56472 41726 

1.2 31671 48983 56656 56664 42324 

1.3 32021 49340 56734 56733 42505 

1.4 31979 49567 57093 57075 42605 

1.5 32272 49844 57187 57187 42715 

1.6 32580 50035 57023 57023 42522 

1.7 32573 50074 57015 57011 42162 

1.8 33077 50683 57291 57219 42077 

1.9 33397 51537 57381 57372 42439 

2.0 33780 Failed 61986 57876 42664 

 

Table 8.4 Maxerror in longitudinal deformation of node 100 for GM31 (different 
convergence tests) for Bridge A with Type II abutment modeling. 

Scale 

Factor 
NormDisIncr 

RelativeNorm 

DispIncr 

RelativeTotal 

NormDisIncr 

Relative 

EnergyIncr 

1.0 1.82×10-6 1.82×10-6 1.82×10-6 1.82×10-6 

1.1 0.0 0.0 0.0 0.0 

1.2 1.30×10-4 0.0 0.0 0.0 

1.3 7.67×10-6 7.67×10-6 7.67×10-6 0.0 

1.4 0.0 0.0 0.0 0.0 

1.5 0.0 0.0 0.0 0.0 

1.6 0.0 0.0 0.0 0.0 

1.7 0.0 0.0 0.0 0.0 

1.8 0.0 0.0 0.0 2.21×10-6 

1.9 0.0 0.0 0.0 0.0 

2.0 Failed 1.91×10-4 2.38×10-3 2.70×10-6 

8.3.3 Convergence Tolerance 

For Bridge B with Type II abutment modeling, the effect of different tolerances of 1.0, 0.1, 10-3, 

and 10-5 on the convergence and accuracy of the obtained results was investigated using the Energy 
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Increment test. Analyses were conducted for all 40 GMs with five different tolerances, including 

the ones with 10-8, with scaling factors presented in Figure 8.5, i.e., the maximum scaling factors 

without convergence issues. For comparison, the longitudinal direction deformation of one of the 

nodes of the abutment, corresponding to node 100 (see Figure 8.1), and the longitudinal 

displacement of a column node, node12, were selected. Figure 8.6 presents the largest 
errorMax  

of 40 GMs of these selected two nodes for the simulations with four different tolerances. In 

calculating these error quantities, simulations with the tolerance of 810  were considered as the 

reference. 

Selected tolerances may have considerable effect on the nonlinear response. A large 

tolerance may result in a premature convergence and corresponding deviation from the true 

response. The small errors between the simulations with tolerances of 510  and 810  under the 

effect of the considered GM, which resulted in highly nonlinear response, indicate that the increase 

of the tolerance can be used as a reasonable option to overcome convergence issues while still 

preserving accuracy. Note that the above tolerance values were used for all integration time steps 

of a particular simulation. Considering that a common application is the increase of the 

convergence tolerance only at the integration time steps with convergence problems, the errors in 

the obtained results in such cases of selective adoption of tolerance values will be even less than 

the errors plotted in Figure 8.6. 

 

 

Figure 8.5 The maximum scaling factors for 40 GMs. 
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Figure 8.6 Maxerror of each tolerance for node 100 and node 12 (longitudinal 
displacement). 

8.3.4 Integration Time Step 

Use of a smaller integration time step during the simulation does not necessarily improve the 

convergence behavior. Table 8.5 compares the convergence condition for simulations with 

different scales of GM31 using Newton-Raphson as the initial solver for Bridge A with Type II 

abutment modeling. Based on the results of simulations conducted with the seed Bridges A, B, and 

C, reducing the integration time step is useful in overcoming the convergence problems. However, 

this requires preventing completion of the simulation before the duration of the external excitation, 

whereby the integration time step should be reset to its original value after completion of all of the 

reduced time steps that represent the original step size, e.g., using automatic adaptive time 

increments [DIANA 2005]. 
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Table 8.5 The convergence failure time [sec] of simulations for different 
integration time steps under GM31 for Bridge A with abutment 
modeling. 

Scale 

Factor 
t  = 0.01 t  = 0.005 t  = 0.0025 t  = 0.001 

1.0 Completed Completed Completed Completed 

1.1 35.6500 35.6450 35.6375 35.6360 

1.2 35.6600 35.6500 35.6450 35.6430 

1.3 35.6700 35.6550 35.6525 35.6510 

1.4 Completed Completed Completed Completed 

1.5 Completed Completed Completed Completed 

1.6 Completed Completed Completed Completed 

1.7 Completed Completed Completed Completed 

1.8 35.7200 35.7100 35.7050 35.7040 

1.9 Completed Completed 41.7225 62.6450 

2.0 35.7400 35.7300 36.3475 36.3460 

8.3.5 Adaptive Switching of Integration Algorithms 

As demonstrated earlier, the explicit OS integration algorithm is a suitable alternative of the IN to 

avoid the problem of convergence; however, there are some conditions fo which this algorithm is 

not applicable. For example, aside from the chosen integration method, formulations of some of 

the elements and materials are iterative, such as the force-based beam–column elements or the 

Bouc-Wen material in OpenSees [McKenna et al. 2010]. Accordingly, the implicit algorithms may 

be the only option for NLTA of models containing such elements and materials if problems of 

convergence at the element and material levels cannot be eliminated while using the explicit OS 

integrator. This does not prevent taking advantage of the explicit algorithms in certain time steps 

where the implicit algorithm fails to converge. In OpenSees (2010), the adaptive switching of 

integration algorithms, i.e., from IN to OS, is triggered when IN fails to converge, say at time step 

1i  . Then, the simulation automatically returns to the previously converged time step, i.e. time 

step i , and is rerun from time step i  to 1i  using the OS algorithm. Subsequently, the integration 

algorithm is switched back to IN. Therefore, IN is reused for the simulation starting from time step 

1i   until another convergence difficulty is encountered. As demonstrated earlier, the OS 

algorithm possesses similar stability and accuracy properties to those of the IN integration. 

Therefore, adaptive switching from IN to OS at problematic time steps, where convergence issues 

are bypassed, does not affect the stability and accuracy of simulations [Liang and Mosalam 2015, 

2016a].  

Table 8.6 shows the results of the NTHA for selected examples from simulations for the 

seismic response of bridges investigated in more detail in the next section. As shown in Table 8.6, 

the IN algorithm fails to converge at the indicated times in the fourth column where the responses 

are at high levels of nonlinearity; GMs in this table are identified by its sequence number in the 
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PEER NGA database [2011]. That said, the simulations with the same GMs are completed using 

adaptive switching between integration algorithms, i.e., from IN to OS, at the time steps when IN 

fails to converge. Therefore, the adaptive switching of algorithms is considered to be a viable and 

readily available option, e.g., in OpenSees [2010], to overcome the problems of convergence. 

Moreover, this statement is supported by the previously conducted theoretical investigation [Liang 

and Mosalam 2015, 2016a] and successful completion of the simulations discussed in the next 

chapter. 

Note that simulations that experienced problems of convergence are all completed with the 

use of TRBDF2. This superior convergence performance of TRBDF2 is attributed to the numerical 

damping introduced by the three point backward Euler scheme. Several simulations in Table 8.6 

failed to converge at as early as 0.495 sec when IN was used. Early stage convergence issues can 

be attributed to several possible reasons, such as near-fault GMs that cause nonlinear responses 

very early or the abrupt stiffness change due to the opening and closing of the gap elements used 

in the modeling of abutments. 

Table 8.6 The convergence failure time [sec] of simulations for different 
implicit integration methods. 

NGA 

Sequence 

Number 

Bridge 
Scale 

factor 

Implicit 

Newmark 

Switching Integration 

algorithms 
TRBDF2  

182 A 2.80 6.160 Completed Completed 

1271 A 1.08 13.720 Completed Completed 

964 A 1.47 2.690 Completed Completed 

1263 B 3.00 17.420 Completed Completed 

1011 B 2.10 1.310 Completed Completed 

1541 C 1.00 31.120 Completed Completed 

755 C 1.70 0.495 Completed Completed 

1542 C 1.37 25.040 Completed Completed 

8.4 SEISMIC RESPONSE OF BRIDGES 

Solutions developed for efficient NTHA were applied to investigation of the seismic response of 

the three RC highway bridges A, B, and C. The nonlinear structural response of the bridge systems, 

similar to other complex structures, is intricate and often highly sensitive to the selection and 

modification of the input GMs [Liang et al. 2014a, 2016a]. This section makes use of different 

GM selection and modification methods to identify predominantly first-mode EDPs under 

earthquake excitation. An important stage of PBEE [Günay and Mosalam 2013] is structural 

analysis, which may require an extensive number of NTHA. The results of computationally 

expensive NTHA can be predicted by computationally less demanding nonlinear static analysis 

procedures, such as pushover analysis, for structures with first-mode dominant response. In this 

regard, the identification of predominantly first-mode EDPs is beneficial for efficient, practical, 

and routine application of PBEE. 
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The maximum column drift ratio, column base shear, and deck total acceleration were 

selected as the investigated EDPs. With reference to Figure 8.1, these three EDPs correspond to 

the column drift ratio of Node 12, column base shear of Node 11, and deck total acceleration of 

Node 110 in Bridge B. Two groups of GMs were selected from the NGA database [PEER 2011] 

for the purpose of this investigation. The first group, expected to result primarily in first-mode 

response, was selected using the conditional mean spectrum, namely the CMS method [Baker 

2011], which is a response spectrum associated with a target value of the spectral acceleration aS  

at a single period. The second group, which serves as the reference for comparison, is selected to 

match a chosen scenario response spectrum, the shape of which allows higher mode response. 

Therefore, the GMs in the second group are associated with higher mode effects. Both sets of GMs 

were selected using a method that seeks to match the mean and variance of the target spectrum 

[Jayaram et al. 2011]. 

For each bridge, three earthquake scenarios were considered, namely those with 2%, 10%, 

and 50% probability of exceedance (POE) in 50 years. The attenuation model by Campbell and 

Bozorgnia [2008] was used to generate these three hazard levels. The CMS [Baker 2011] is the 

target spectrum for the first group of GMs. In this study, this single period is the fundamental 

period of the bridge. The second “reference” group was selected to match the spectrum predicted 

by the attenuation model of Campbell and Bozorgnia [2008]. 

Figure 8.7a shows the response spectrum by the Campbell and Bozorgnia attenuation 

model [2008] at hazard level of 10% POE in 50 years for Bridge B site, i.e., the target spectrum 

for the second “reference” group. Also shown in Figure 8.7a is the CMS [Baker 2011] anchored at 

the Bridge B fundamental period of 1.1 sec, which is the target spectrum for the first group. As 

mentioned before, both groups of GMs are selected using a method proposed by Jayaram et al. 

[2011] that seeks to match the mean and variance of the target spectrum (Figure 8.7b). A detailed 

explanation of this method can be found in Jayaram et al. [2011]. 
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(a) Median 

 

(b) Median and variance 

Figure 8.7 Campbell and Bozorgnia (CB) 2008 spectrum and CMS for 10% POE 
in 50 years for Bridge B site. 
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As shown in Figure 7.5, two approaches for abutment modeling, namely Type I and Type 

II, were considered. For each abutment modeling (2) of each scenario (3), 40 GM records were 

selected for each GM group (2). These GM records are documented in Appendix E. Therefore, 40 

× 2 × 3 × 2 × 3 = 1440 NTHA simulations in total were conducted for the three considered bridge 

systems. A large number of problems related to convergence, e.g., those indicated in Table 8.6, 

were encountered; see Table 8.6. Most of these problems were overcome by the proposed 

solutions, i.e., OS, TRBDF2, and approaches to improve convergence properties of IN; see Section 

8.3. The NTHA simulations that still fail to converge were primarily due to the large GMs, e.g., 

several ones in the “reference” group at a hazard level of 2% POE in 50 years, which led to 

significantly large nonlinear responses in the range of collapse limit state and probably 

corresponded to physical partial or complete bridge collapse. 

Figures 8.8–8.10 present the ratios of the median EDPs obtained from the GMs of the first 

group (CMS), i.e., first-mode dominant, to those obtained from the GMs of the second “reference” 

group, i.e., higher-mode response. Therefore, the smaller the ratio, the more the considered EDP 

is affected by the higher modes. Note that the ratio for the column base shear is close to 1.0 and 

almost invariant for both modeling cases and all three scenarios. On the other hand, the ratios for 

the column drift and deck acceleration were always less than 1.0 and generally reduce as the hazard 

level and the corresponding nonlinearity level increased. Accordingly, higher-mode effects are 

clearly more pronounced on column displacements and deck accelerations than on column shear 

forces. Moreover, the effects of higher modes on the column drift and deck acceleration increased 

with increasing hazard level and nonlinearity. The column base shear is likely to be a first-mode 

dominant EDP, irrespective of the hazard level. Accordingly, an investigation that uses the base 

shear as the EDP of interest may make use of computationally less demanding single-mode 

nonlinear static analyses in PBEE computations; however, NTHA must be used if the column drift 

and deck acceleration are considered the key EDPs. 

Figures 8.8–8.10 agree with the research results presented by Kappos et al. [2013] agree 

that the higher modes affect the response of bridges to a greater extent than that of buildings in. 

To evaluate the accuracy of the two methods of EM selection, an estimate of the true response can 

be obtained using the concept of high-end prediction (HEP) [Haselton et al. 2009], which is 

discussed next. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 8.8 Ratios of median EDPs for the two abutment modeling cases of 
Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 8.9 Ratios of median EDPs for the two abutment modeling cases of 
Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 8.10 Ratios of median EDPs for the two abutment modeling cases of 
Bridge C. 
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9 PROBABILISTIC EVALUATION OF GROUND-
MOTION SELECTION AND MODIFICATION 
PROCEDURES 

9.1 INTRODUCTION 

The objective of this chapter is to evaluate several popular GMSM procedures in predicting the 

PDSD of RC highway bridges with nonlinear response due to large earthquakes [Liang 2016; 

Liang and Mosalam 2017a, 2017c]. In engineering practice, the common approach is to base the 

seismic design on the basis of a prescribed earthquake scenario. Therefore, all conducted analyses 

in this chapter are based on a selected large earthquake scenario. Taking advantage of the 

framework proposed in Chapter 6, a reference benchmark PDSD for the investigated bridge 

structures considering different intercept angles of the input GMs is developed. The intercept angle 

is defined herein as the angle between the fault-normal direction (i.e., strike-normal GM 

component) and the longitudinal direction of the bridge structure [Kaviani et al. 2014]; see Figure 

9.1. The accuracy and reliability of all PDSD estimates from the investigated GMSM procedures 

are then evaluated against this reference benchmark PDSD. Such evaluations are conducted on 

several selected EDPs for the three selected RC highway bridges; see Chapter 7. 

 

Figure 9.1 Ground-motion intercept angle scheme for the strike-normal 
component. 
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9.2 EARTHQUAKE SCENARIO 

The evaluation of the PDSD estimates from the investigated GMSM procedures against the 

reference benchmark PDSD in this study is based on a selected large earthquake scenario defined 

as follows: 

M7 Scenario: A magnitude (M) 7.0 earthquake event occurring on a strike-slip fault, 

at a site that is at a distance (R) 10 km from the fault rupture on a soil with 
30sV  (shear 

wave velocity for the top 30 m of the soil profile) based on the bridge soil profile from 

[Omrani et al. 2015]. The target spectrum for this scenario is selected as the one with 

1.5 standard deviation above (i.e., 5.1 ) the median spectrum using the attenuation 

model in [Campbell and Bozorgnia 2008]. 

This scenario is selected to be consistent with a typical level of far-field GM used for the evaluation 

of a Caltrans bridge [Caltrans SDC 2013]. Figure 9.2 shows the median and 1.5  spectra in 

terms of spectral acceleration, Sa, associated with this scenario from the selected attenuation model 

[Campbell and Bozorgnia 2008]. Also shown in Figure 9.2 is the conditional mean spectrum 

(CMS) [Baker 2011] anchored at the fundamental period of Bridge B, i.e., 1.1T  sec. 

 

Figure 9.2 Response spectra for the selected earthquake scenario of Bridge B 
site. 

9.3 BENCHMARK PROBABILITY DISTRIBUTION OF SEISMIC DEMANDS 

The reference benchmark PDSD, i.e., the one that is consistent with the earthquake scenario 

selected in the previous section, was developed by performing a large amount of NTHA 

simulations. The GM records for these simulations were selected based on the following 

procedure: 

1. Select bidirectional GM records from an expanded range of the given earthquake 

scenario. In this study, the selection criteria were as follows: 
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a.  5.75.6  M ; 

b. kmRkm 0.200.0  ; 

c.  smVs /18330  ; 

d. Lowest usable frequency = 0.25 Hz; 

e.  Faulting: Not constrained. 

Thus, 99 pairs of bidirectional horizontal GM records (documented in Appendix F) are 

selected from the PEER NGA Project GM database [PEER 2011]. 

2. The research devoted to intensity measures is extensive; Bradley [2013] is one example. 

Various studies have shown that PGV provides a good correlation with the global 

nonlinear seismic demands and can be considered as a reasonable GM intensity 

measure that correlates well with the peak nonlinear oscillator response, e.g., Kurama 

and Farrow [2003], Akkar and Özen [2005], Riddell [2007], Küçükdoğan [2007], and 

Akkar and Küçükdoğan [2008]. Therefore, in this study, PGV is selected as the 

intensity measure. Scale the selected 99 pairs of GM records based on the distribution 

of PGV from [Campbell and Bozorgnia 2008]. In this study, 25 values of PGV are 

selected to represent this distribution. 

For evaluating the PDSD estimates from different GMSM procedures, four EDPs were 

selected, namely, the peak abutment unseating displacement, the column drift ratio, and the column 

base shear. In addition, different intercept angles, varying from 0o to 150o with an increment of 

30o, were investigated. Therefore, considering the three selected RC highway bridges, two 

abutment analytical modeling types I and II, and the above-mentioned six intercept angles for all 

600 scaled GMs, 99×25×3×2×6=89,100 NTHA simulations were performed in total for 

determining the reference benchmark PDSD. 

In this study, two failure criteria were defined, assuming that whatever mechanisms takes 

place first will induce collapse: (1) deck unseating and (2) column excessive rotation. Deck 

unseating is assumed to occur when the relative displacement between the bridge deck and the 

abutment is larger than the length of the abutment seat, which is taken as 33.85 in.; see Table 6.1. 

The limit state corresponding to column excessive rotation is defined as exceeding certain 

threshold value of the column drift ratio, DR . Hutchinson et al. [2004] demonstrated that if the 

maximum drift ratios are less than about 8%, the residual drift ratios are generally less than 1%, 

which is the allowable residual drift ratio suggested by MacRae and Kawashima [1997]. The 

bridge models used in this study are considered to be representative up to but not including bridge 

collapse. Thus, the maximum values for the column drift ratio and the abutment unseating 

displacement are set to be 8% and 34 in., respectively. 

Following the procedures in Chapter 6, Eq. (6.7) gives the combination of the intensity 

measures and the structural responses, including C and NC cases (estimated from kernel density 

estimation). In general, it is impossible to determine the exact solution of the integrations in 

Equation (6.7). Instead, in practice,  edpĜ  in Equation (6.7) is computed from the following 

discretized form: 

           
j

jjjj imimimedpGimedpG rP̂]|CrP̂1[NC,|ˆ|CrP̂ˆ  (9.1) 
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where  jimrP̂  are estimated from: 

      


25

1
rP̂

j jIMjIMj imfimfim  (9.2) 

Thus, as expected,   0.1rP̂
25

1
 j jim . Comparing Equation (6.7) with Equation (9.1), the 

integrals, the PDF and the joint PDF are replaced with the summations, the probability mass 

function (PMF) and the joint PMF, respectively. In Equation (9.1), the symbol “ ” signifies the 

approximation due to the discretization of the continuous integral of the seismic hazard and 

structural demand. 

9.4 GMSM PROCEDURES 

Three GMSM procedures from the two categories previously mentioned in Chapter 6 are 

investigated. The first is an amplitude scaling procedure using the conventional first-mode spectral 

acceleration, i.e.,  1TSa , selection and scaling method. The other two, namely the conditional 

mean spectrum (CMS) and the unconditional selection (US) methods, are spectrum shape-

matching procedures. These three methods and their selection procedures, as considered in this 

study, are discussed in detail below. 

9.4.1  1TSa
 Selection and Scaling Method 

This method selects GM records from earthquakes with magnitude M and type of faulting F, 

recorded at sites with distance R and soil classification S as close as possible to those of the 

earthquake scenario of interest. After applying the selection criteria, the GMs are selected 

randomly from the candidate set of motions if the number of eligible ground motions is larger than 

the target number; otherwise, the selection criteria would need to be relaxed. 

Once the GMs are selected, each of them is scaled in amplitude such that its  1TSa  is equal 

to the target  1TSa  of the earthquake scenario. This procedure to select and scale GMs does not 

take into account the shape or the variability of the target response spectrum, as it considers only 

the target  1TSa . The selection procedure of  1TSa  scaling method is summarized below: 

1. Select the GM based on an M-R-S-F (magnitude, source-to-site distance, site 

classification, and type of faulting) bin that is consistent with the given earthquake 

scenario. The criteria utilized in this GMSM procedure are: 

a. 4.76.6  M ; 

b. kmRkm 0.150.5  ; 

c. smVs /18330  ; 

d. Lowest usable frequency = 0.25 Hz; 

e. Faulting: Not constrained. 
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It is noted that the selection criteria for the GMs used for the benchmark PDSD results 

in 60 GM records, which is more than the target 40 records. Therefore, the selection 

criteria used in this method is somewhat restricted. 

2. Scale each component of record to the target GM level based on their geometric mean 

as given by Equation (9.3). The target  1TSa
 is the median 5.1  predicted by the 

attenuation model from Campbell and Bozorgnia [2008] for the given M, R, S, and F 

scenario. 

       ia

i

aai TSTSTSSF
2111Target1   (9.3) 

where 
iSF  is the scaling factor of the ith GM pair of components with subscripts 1 and 

2 and having the same scaling factor. 

3. Select desired number of records from the bin. In this study, 40 records were selected, 

which were determined using the following two algorithms: 

a. Based on the equation for the proportion of pulse-like records [Hayden et al. 

2012], 

 
 



230.1188.0891.0exp1

230.1188.0891.0exp
motionspulseofProportion






R

R
  (9.4) 

substitution of R = 10 km and 5.1  in Equation (9.4) results in the value of 

proportion = 0.7. Thus, 28 of the 40 motions should be pulse-type. Select 28 records 

from the pulse-type bin and 12 records from the no pulse-type bin with smallest scaling 

factors from step 2. This procedure is denoted as  
pa TS 1
 method in this report. 

4. Another algorithm selected 40 records solely based on the scaling factors. Thus, 40 

records with smallest scaling factors were selected from the bin with both pulse-type 

and no pulse-type GMs. This procedure is called  1TSa  method in this report. 

9.4.2 Conditional Mean Spectrum (CMS) Method 

This method selects GMs such that their response spectra match the mean and variance of the CMS 

in the period range of interest. The method consists of: (1) determining the CMS and (2) application 

of the GM selection algorithm to match a target response spectrum mean and variance proposed 

by Jayaram et al. [2011]. The CMS is a response spectrum associated with a target aS  value at a 

single period, i.e.,  1TSa  in this study. The steps for computing this response spectrum [Baker 

2011] are: 

1. Determine the target aS  at a given period of interest 1T ,  1TSa , for the associated M, 

R and  . Similar to the previous GMSM method, the target  1TSa  is computed as the 

median 1.5  predicted by the Campbell and Bozorgnia attenuation model [2008]. The 

M, R, and   are those of the previously defined target GM scenario, i.e., M = 7.0, R = 

10 km, and 1.5  . Given an arbitrary period, T,   is defined as the number of standard 
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deviations by which the natural logarithm of  1TSa
, i.e.,   ln

a
S T , differs from the 

predicted mean of   ln
a

S T  for a given M and R.   is defined as follows: 

            ln ln
ln , , , ,

a a
a S S

T S T M R T M R T    
 

       (9.5) 

where   TRM
aS ,,ln  and   TRM

aS ,,ln  are the predicted mean and standard 

deviation of   ln
a

S T , respectively, computed from Campbell and Bozorgnia [2008]. 

From Equation (9.5), the target   ln
a

S T  can be expressed as follows: 

           1 1 1 1ln lnln , , , ,
a aa S SS T T M R T M R T             (9.6) 

2. Compute the mean and standard deviation of the response spectrum at other periods, 

given M and R. They are the quantities in Step 1, i.e.,   TRM
aS ,,ln  and 

  TRM
aS ,,ln , respectively. In this step, these values are computed at periods 

included in the range of interest. Existing GM models, such as the Campbell and 

Bozorgnia attenuation model [2008] used in this study, can be used to compute these 

terms.  

3. Compute   at other periods, given  1T . This step consists of computing conditional 

mean  -values,    1| TTi  , for the other periods 
iT , which can be calculated as the 

product of  1T  and the correlation coefficient between the  -values at the two 

periods  1,TTi , i.e., 

       11| ,
1

TTTiTTi
     (9.7) 

The following simple predictive equation, valid for periods between 0.05 and 5.0 sec. 

can be used to obtain  1,TTi  [Baker 2011]: 

    

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



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


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


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


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










 

min

maxmin
189.0maxmin ln

189.0
ln163.0359.0

2
cos1,

min T

TT
ITT T


  (9.8) 

where  189.0minTI  is an indicator function that equals 1.0 if  sec189.0min T  and 0.0 

otherwise, and m inT  and maxT  are respectively smaller and larger periods of interest. 

4. Compute CMS. At each period of interest, iT , the corresponding spectral accelerations 

that define the CMS can be computed by substituting Equation (9.7) in place of  1T  

in Equation (9.6) after replacing 1T  with iT  of both sides, i.e., 

                iSiiSTSTS TRMTTTTRM
aaaia

,,,,, ln11ln|lnln 1
   (9.9) 
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where   iS TRM
a

,,ln  and   iS TRM
a

,,ln  are derived from Campbell and Bozorgnia 

[2008],  1,TTi  is computed from Equation (9.8), and values of M, R, and  1T  are 

those indicated in Step 1. 

As mentioned earlier, once the CMS associated with a period of interest is determined, the 

GM selection algorithm proposed by Jayaram et al. [2011] is used to select and modify sets of 

records that match the target CMS and its variance. With a target distribution, a Monte Carlo 

simulation is used to probabilistically generate multiple realizations of response spectra, and then 

GM records whose response spectra individually match the simulated response spectra are 

selected. Furthermore, a greedy optimization is applied to improve the match between the target 

and the sample means and variances. This is performed by replacing one previously selected GM 

record at a time with a record from the database that generates the best improvement in the match. 

A detailed explanation of this method can be found in Jayaram et al. [2011]. Similar to the  1TSa  

scaling method, 40 records are considered herein. 

9.4.3 Unconditional Selection (US) Method 

This method uses exactly the same algorithm for matching both the mean and variance of the target 

spectrum mentioned in the previous section. However, instead of the CMS, the median 5.1  

spectrum associated with the selected earthquake scenario defined with the Campbell and 

Bozorgnia attenuation model [2008] is used as the target spectrum. Similar to the first two 

methods, 40 GM records were selected herein. All the GMs selected from these investigated 

GMSM procedures for the three selected bridges are documented in Appendix F. 

9.5 EVALUATION OF THE GMSM PROCEDURES 

For each bridge with each abutment modeling, 40 GM records are selected for each investigated 

GMSM procedure, including two versions of  1TSa  scaling and selection method, i.e. a total of 

four GMSM procedures. Similar to the development of the reference benchmark PDSD, these 

GMs are applied to each bridge with six different intercept angles. Thus, besides the 89,100 NTHA 

simulations for the development of the benchmark PDSD, 40×4×3×2×6=5760 more NTHA 

analyses are performed for all the four GMSM procedures. 

Figures 9.3–9.26 present the comparison of the PDSD estimates from the four investigated 

GMSM procedures and the benchmark PDSD. Such comparisons are given for all three selected 

EDPs of the six different intercept angles on Bridges A and B with both Types I and II abutment 

modeling. Figures 9.27–9.30 show the PDSD estimates of the peak column drift ratio from the 

four GMSM procedures on Bridge C with Types I and II abutment modeling. Similar small 

differences of the PDSD estimates from the six intercept angles are observed in Figures 9.3–9.30. 

As shown in Figures 9.3–9.8, the PDSD estimates from the  1TSa  and  
pa TS 1
 procedures 

generally underestimated the seismic demands from the benchmark PDSD for Bridge A with both 

abutment modeling. However, the  
pa TS 1
 method gives reasonably accurate PDSD estimates of 

the three EDPs, i.e., peak column-shear force (Figure 9.6a), drift ratio (Figure 9.7a), and abutment 

unseating displacement (Figure 9.8a), for Bridge A with Type I abutment modeling. Such 
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observations are attributed to the fact that more pulse motions that result in large responses were 

selected in the  
pa TS 1
 procedure. Based on comparisons of Figures 9.15–9.17 and 9.18–9.20, the 

PDSD estimates from the  
pa TS 1
 and  1TSa

 procedures are comparable. 

From Figures 9.9–9.11 and 9.21–9.23, the PDSD estimates from the CMS method almost 

always underestimated the seismic demands of all three EDPs, especially for the large values of 

EDPs (the tail of the PDSD curve) for Bridges A and B with both abutment modeling. In contrast, 

as shown in Figures 9.12–9.14 and 9.24–9.26, the PDSD estimates by the US method are almost 

always on the conservative side with approximately 10–20% overestimation of the probability of 

exceedance over the benchmark PDSD. For bridge C, all four GMSM procedures overestimated 

the seismic demands of all three investigated EDPs (only the peak column drift ratio is shown in 

Figures 9.27–9.30 for brevity) for both Type I (Figures 9.27 and 9.28) and Type II (Figures 9.29 

and 9.30) abutment modeling. It is noted that the first mode GMSM procedures, i.e., CMS,  1TSa  

and  
pa TS 1
 methods, provide reasonably well estimates on the median seismic demands, i.e., the 

value corresponding to 50% probability of exceedance. This is consistent with the findings in 

[Haselton et al. 2009] for buildings in which only the median inter-story drift demand was pursued. 

However, it is observed from Figures 9.3–9.11 and 9.15-9.23 that the PDSD estimates by these 

three GMSM procedures generally underestimated the benchmark PDSD for Bridges A and B on 

the tail of the PDSD curve. Such observations indicate that the consideration of only the median 

seismic demands, without taking into account the variability, is not sufficient and sometimes can 

lead to incorrect decisions in design and assessment. All investigated GMSM procedures 

overestimate the benchmark PDSD for bridges C and the overestimations of PDSD by US method 

for Bridges A, B and C are about 10%, 20% and 30%, respectively. Among these three investigated 

RC highway bridges, it can be concluded that the effects of higher modes were most pronounced 

on Bridge A, a bridge with two spans supported on a single-column bent, and are the least 

pronounced on Bridge C, a bridge with three spans and two three-column bents. 

Based on the simulation results, the estimates by the US procedure were almost always on 

the conservative side and were usually the most conservative of all GMSM procedures considered 

for all three bridges. Such conservative estimates are expected as the target spectrum used in the 

US procedure implies that large-amplitude spectral values take place at all periods. As discussed 

previously, RC highway bridges play a crucial role in transportation and thus require limited 

downtime after severe earthquakes from an emergency response standpoint and, more generally, 

from community resiliency point of view. Therefore, considering that the  1TSa ,  
pa TS 1
, and 

CMS procedures all tend to underestimate the responses, e.g., in Bridges A and B, among these 

four investigated GMSM procedures, it is suggested using the US method for the selection and 

modification of GMs. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.3 PDSD estimates of column shear force of different intercept angles 

from  
1

TS
a

 procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.4 PDSD estimates of column drift ratio of different intercept angles 

from  
1

TS
a

 procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.5 PDSD estimates of abutment unseating displacement of different 

intercept angles from  
1

TS
a

 procedure of for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.6 PDSD estimates of column shear force of different intercept angles 

from  
pa

TS
1

 procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.7 PDSD estimates of column drift ratio of different intercept angles 

from  
pa

TS
1

 procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.8 PDSD estimates of abutment unseating displacement of different 

intercept angles from  
pa

TS
1

 procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.9 PDSD estimates of column shear force of different intercept angles 
from CMS procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.10 PDSD estimates of column drift ratio of different intercept angles 
from CMS procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.11 PDSD estimates of abutment unseating displacement of different 
intercept angles from CMS procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.12 PDSD estimates of column shear force of different intercept angles 
from US procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.13 PDSD estimates of column drift ratio of different intercept angles 
from US procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.14 PDSD estimates of abutment unseating displacement of different 
intercept angles from US procedure for Bridge A. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.15 PDSD estimates of column shear force of different intercept angles 

from  
1

TS
a

 procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.16 PDSD estimates of column drift ratio of different intercept angles 

from  
1

TS
a

 procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.17 PDSD estimates of abutment unseating displacement of different 

intercept angles from  
1

TS
a

 procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.18 PDSD estimates of column shear force of different intercept angles 

from  
pa

TS
1

 procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.19 PDSD estimates of column drift ratio of different intercept angles 

from  
pa

TS
1

 procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.20 PDSD estimates of abutment unseating displacement of different 

intercept angles from  
pa

TS
1

 procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.21 PDSD estimates of column shear force of different intercept angles 
from CMS procedure for Bridge B. 

 

 

 



140 

 

(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.22 PDSD estimates of column drift ratio of different intercept angles 
from CMS procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.23 PDSD estimates of abutment unseating displacement of different 
intercept angles from CMS procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(c) Type II abutment modeling 

Figure 9.24 PDSD estimates of column shear force of different intercept angles 
from US procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.25 PDSD estimates of column drift ratio of different intercept angles 
from US procedure for Bridge B. 
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(a) Type I abutment modeling 

 

(b) Type II abutment modeling 

Figure 9.26 PDSD estimates of abutment unseating displacement of different 
intercept angles from US procedure for Bridge B. 
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(a)  
1

TS
a

 

 

(b)  
pa

TS
1

 

Figure 9.27 PDSD estimates of column drift ratio of different intercept angles 

from  
1

TS
a

 and  
pa

TS
1

 procedures for Bridge C with Type I 

abutment modeling. 
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(a)  
1

TS
a

 

 

(b)  
pa

TS
1

 

Figure 9.28 PDSD estimates of column drift ratio of different intercept angles 

from  
1

TS
a

 and  
pa

TS
1

 procedures for Bridge C with Type II 

abutment modeling. 
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(a) CMS 

 

(b) US 

Figure 9.29 PDSD estimates of column drift ratio of different intercept angles 
from CMS and US procedures for Bridge C with Type I abutment 
modeling. 
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(a) CMS 

 

(b) US 

Figure 9.30 PDSD estimates of column drift ratio of different intercept angles 
from CMS and US procedures for Bridge C with Type II abutment 
modeling.  
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10 SUMMARY, CONCLUSIONS, AND FUTURE 
EXTENSIONS 

10.1 SUMMARY 

The study completed in this report investigated two key challenges related to the application of the 

performance-based earthquake engineering (PBEE) methodology developed by the Pacific 

Earthquake Engineering Research Center (PEER). Accurate and robust nonlinear time history 

analysis (NTHA) that is fundamental to estimate the seismic demands of structures was the first 

challenge investigated in this study. To ensure accurate and robust NTHA simulations, especially 

for nonlinear multi-degree of freedom (MDOF) structural systems, different types of direct 

integration algorithms and nonlinear equation solvers were used, where their stability performance 

and convergence behavior are of great significance. Lyapunov stability theory, the most complete 

framework for stability analysis of dynamical systems, was introduced. Based on this theory, a 

new nonlinear equation solver was developed, and its convergence performance was theoretically 

formulated and verified by several examples. In addition, two Lyapunov-based approaches were 

proposed to perform stability analysis of nonlinear structural systems. The first approach 

transformed the stability analysis to a problem of existence that can be solved via convex 

optimization over the discretized domain of interest of the restoring force. The second approach 

was specifically applicable to explicit algorithms for nonlinear single-degree of freedom (SDOF) 

and MDOF systems considering strictly positive real lemma. In this approach, a generic explicit 

algorithm was formulated for a system governed by a nonlinear function of the basic force without 

adopting any approximations. Starting from this formulation and based on the Lyapunov stability 

theory, the stability analysis of the formulated nonlinear system was transformed to an 

investigation the strictly positive realness of its corresponding transfer function matrix. The 

efficacy of the two Lyapunov-based approaches of stability analysis were demonstrated by several 

SDOF and MDOF numerical examples. 

The second challenge to address when using PBEE methodology is which ground motion 

selection and modification (GMSM) procedure is most appropriate for the NTHA simulations. 

Therefore, proper selection of GMSM approach is vital and represents an important prerequisite 

for accurate and robust NTHA simulations. In this report, a framework for probabilistic evaluation 

of GMSM procedures was developed in the context of a specific large earthquake scenario with 

bidirectional GM excitations. 

The aforementioned theoretical developments were investigated for reinforced concrete 

(RC) highway bridge systems, which are key components of the infrastructure in urban cities. 



150 

Solutions for overcoming the problem of convergence encountered in NTHA of RC highway 

bridges were presented and recommendations given. In addition, this report evaluated several 

GMSM procedures in predicting the probability distribution of the seismic demands (PDSD) of 

RC highway bridges subjected to large earthquakes that result in highly nonlinear response. The 

accuracy and reliability of all PDSD estimates from the investigated GMSM procedures were 

evaluated against the reference benchmark PDSD developed by the PEER PBEE framework. Such 

evaluations were conducted considering four selected engineering demand parameters (EDPs) of 

three representative RC highway bridges in California that accounted for two types of abutment 

modeling. In total, 94,860 NTHA simulations, where 89,100 ones for the development of the 

benchmark PDSD and 5760 ones for the PDSD estimates by the GMSM procedures, were 

performed. 

10.2 CONCLUSIONS 

The major developments and findings of this study are summarized as follows: 

• A new nonlinear equation solver was developed based on reformulation of the 

equations of motion into a hypothetical dynamical system characterized by a set of 

ordinary differential equations. The equilibrium points of this hypothetical system are 

the solutions of the nonlinear structural problems. Starting from Lyapunov stability 

theory, it was demonstrated that this hypothetical dynamical system is characterized by 

a globally asymptotic stability, i.e., convergence, to equilibrium points for structural 

dynamics. This feature overcomes the inherent limitations of the traditional iterative 

minimization algorithms and has no restriction on the selection of the initial guess for 

various structural nonlinear behaviors. 

• As shown in the several numerical examples, another important feature of the proposed 

Lyapunov-based nonlinear equation solvers its ability to solve the equilibrium 

equations for models where a numerically consistent tangent may be difficult to 

determine.  

• An integration algorithm is stable if its Lyapunov artificial energy function is bounded. 

The general condition that the boundedness of 121

1
AAAAA 

 iiij j  for i  is 

derived from the boundedness of the Lyapunov function. For linear structures, the 

stability criterion requires that the spectral radius of the approximation operator is less 

than or equal to 1.0 (which is applied to nonlinear structures by some researchers). It 

should be emphasized that the stability limit for linear structures does not automatically 

hold for nonlinear structures. Therefore, basic methodologies used in some well-known 

stability limits of direct integration algorithms, e.g., the Operator-Splitting (OS) 

algorithm with initial stiffness (OSinitial), are not applicable to nonlinear problems. 

• The study also investigates the OS algorithm that uses tangent stiffness in the 

formulation (OStagent), which has not been previously studied. It was demonstrated that 

this explicit algorithm possesses similar stability properties to those of the implicit 

Newmark (IN) integration. 
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• An approach was proposed to perform the stability analysis numerically. This approach 

transformed the stability analysis to the solution of a convex optimization problem over 

the discretized domain of interest of the restoring force. The proposed approach is 

shown to be generally applicable to direct integration algorithms for nonlinear 

problems and can potentially be extended to MDOF systems 

• A geometrically nonlinear pendulum problem with a closed-form exact solution was 

used to investigate the accuracy of the investigated integration algorithms. The period 

was shortened by explicit Newmark and elongated by the other algorithms. The 

OStangent and IN algorithms presented similar period elongations. The more 

computationally expensive TRBDF2 had the smallest period change. None of the 

algorithms except the TRBDF2 method experienced amplitude decay, which was due 

to the introduced numerical damping. Observed period elongation (< ±3%) and 

amplitude decay (< 1%) values were acceptable. The incorrectness of the stability 

criterion of the OSinitial algorithm from past studies and the suitability of the proposed 

numerical stability analysis approach herein were demonstrated using the same 

nonlinear pendulum example. 

• The systematic approach to investigate the Lyapunov stability of explicit direct 

integration algorithms for MDOF systems considering strictly positive real lemma was 

presented. The stability analysis of two types of MDOF nonlinear systems (stiffening 

and softening) was presented using the proposed approach. The explicit algorithm was 

formulated for a generic nonlinear MDOF system represented by a general nonlinear 

restoring force vector. In this study, the lth basic resisting force of the system was a 

nonlinear function bounded in the sector between ll

Mink u  and ll

Maxk u , where l

Mink  and 
l

Maxk  were the lower and upper bounds for the lth basic resisting force of the system 

and lu  was a linear combination of the DOFs. Based on this formulation, the approach 

transformed the stability analysis to an investigation the strictly positive realness of the 

transfer function matrix for the formulated system. Furthermore, this is equivalent to a 

problem of convex optimization that can be solved numerically. A sufficient condition, 

in terms of the difference between the upper and lower bounds of each basic resisting 

force of the system, is where the explicit algorithm is stable in the sense of Lyapunov 

and can be obtained numerically. Moreover, the explicit algorithm is asymptotically 

stable if the basic resisting force vector is strictly within a specific range defined in 

Equation (5.49). 

• The proposed approach to investigate the Lyapunov stability of the explicit Newmark 

and the generalized- predictor-corrector explicit algorithms is demonstrated by 

several numerical examples of nonlinear SDOF and MDOF systems with stiffening or 

softening structural behavior. The structural systems investigated in these numerical 

examples include a bridge system and multi-story (number of stories ranging from 1 to 

25) shear building systems. Detailed results from these examples have been presented. 

A detailed Lyapunov stability analysis has been demonstrated by an example of a 

nonlinear two-story shear building. For the multi-story shear building, the difference 

between the upper and lower bounds of the stiffness of the first story ( 1 ), where high 

levels of nonlinearity may occur, was observed to increase with the increase of the 

damping values. It was also observed that 1  increased with the increase of the number 
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of stories for the stiffening system or softening system with low damping. On the other 

hand, 1  decreased with the increase of the number of stories for the softening system 

with high damping. It was noted that the matrix k , which represented the difference 

between the upper and lower bounds of the basic resisting force of the system, 
depended on the selection of the coefficient matrix and the cost function. In conclusion, 

the proposed approach is shown to be applicable for investigating the Lyapunov 

stability of explicit direct integration algorithms used to determine the dynamic 

response of nonlinear MDOF structural systems. 

• Solutions for overcoming the problem of convergence associated with the NTHA of 

RC highway bridges was presented in terms of efficient direct integration algorithms. 

For this purpose, the applicability of the explicit OS and implicit TRBDF2 was 

investigated for three RC highway bridges located in California. Simulations of these 

bridges demonstrated that the OS and TRBDF2 algorithms provided very close results 

compared to those of the IN algorithm. Moreover, the TRBDF2 algorithm showed 

improved convergence performance compared to the IN algorithm. Accordingly, the 

OS and TRBDF2 are suitable alternatives to the IN for NTHA of RC highway bridges. 

• For the implicit integration methods, the Newton-Raphson with Line Search was 

observed to be the most suitable initial nonlinear solver in terms of convergence. 

Accordingly, an analyst can start with this method as the initial solver in the first 

simulation trial of an analytical model. 

• The sequence of the nonlinear solvers after a proper selection of the initial solver was 

determined to be insignificant. Accordingly, an analyst should pay more attention to 

the determination of the initial solver than the determination of the sequence of the 

subsequent solvers in the NTHA. 

• Simulations with the convergence test based on the Energy Increment led to the same 

solution with significantly fewer numbers of iterations compared to other convergence 

tests. Accordingly, an analyst can consider the Energy Increment test in the first 

simulation trial of an analytical model subjected to NTHA. 

• Simulations conducted with tolerances of 10-5 and 10-8 selected for the Energy 

Increment test for all the integration time steps (of the simulation) were observed to 

result in very similar response calculations. Accordingly, the increase of the 

convergence tolerance for the integration time steps with convergence problems is a 

valid option to achieve convergence improvement. 

• Using of a smaller integration time step during the simulation did not necessarily 

improve the convergence behavior. However, selective reduction of the integration 

time step was useful to overcome the convergence problem as long as the integration 

time step was reset to its original value after completion of the reduced time steps that 

represented the original size of a time step. This resetting process was essential to 

preventing completion of the simulation before the duration of the GM input was 

finished. 

• Adaptive switching of integration algorithms showed improved convergence 

performance compared to using the IN algorithm only. Therefore, use of explicit 
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integrators, e.g., OS algorithm, only at the numerically problematic steps is a viable 

and effective option to overcome the problem of convergence. 

• The efficacy of the proposed solutions was challenging, given that PBEE required 

conducting a significant number of NTHAs. First, the identification of predominantly 

first-mode EDPs under earthquake excitation by making use of different GMSM 

methods was performed: 1440 NTHA were conducted where a significant number of 

problems related to convergence were encountered and overcome using the proposed 

solutions. The results obtained from these NTHAs indicated that the higher mode 

effects are more pronounced on column displacements and deck accelerations than on 

column shear forces. Therefore, the column base shear is likely to be a first-mode 

dominant EDP, irrespective of the hazard level. Moreover, the effect of higher modes 

was observed to increase with increasing the hazard level and the nonlinearity. 

• Taking advantage of the PBEE approach, a framework for probabilistic evaluation of 

the GMSM procedures is developed in the context of a selected large earthquake 

scenario with bidirectional GM excitations. 

• A non-parametric inference, kernel density estimation, instead of lognormality 

assumption, was utilized to estimate the conditional distribution of seismic demands. 

The structural collapse scenario was considered and incorporated into the PDSD 

estimate. 

• The reference benchmark PDSD is developed for each intercept angle. Small 

differences of PDSD estimates from the six intercept angles indicated that intercept 

angle has only minor impact on estimating the PDSD. 

• The procedures of the benchmark PDSD development in the context of a given large 

earthquake scenario can be readily extended to the case of multiple earthquake 

scenarios. Future investigation will focus on simulations considering such multiple 

scenarios. 

• The PDSD estimates from the amplitude-scaling procedure using the spectral 

acceleration at the fundamental period (T1) with special attention to the pulse-like GMs, 

 
pa TS 1

, are larger and more accurate than the ones estimated from the  1TSa  

procedure without special consideration of the pulse-like GMs for certain cases. In 

general, the PDSD estimates from the  1TSa  and  
pa TS 1
 procedures are comparable. 

The two procedures as well as the conditional mean spectrum (CMS) procedures 

underestimated the seismic response for some bridges. 

• The PDSD estimates obtained by using the spectrum shape-matching procedure using 

the unconditional selection (US) were almost always on the conservative side and 

compared to the other GMSM procedures, the most conservative of all. The RC 

highway bridges are essential lifelines of the transportation infrastructure and thus long 

downtimes after severe earthquakes is not acceptable in terms of either emergency 

response and/or community resiliency. Thus, among all four investigated GMSM 

procedures, it is recommended to use the US for selection and modification of GMs. 
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10.3 FUTURE EXTENSIONS 

Several research topics considered appropriate for future investigations are listed below: 

1. Implementation of the proposed Lyapunov-based nonlinear equation solver in some 

software framework, e.g., OpenSees, and apply it to more complex structural systems, 

e.g., RC highway bridge systems utilized in this report. 

2. Development of a new parameterized direct integration algorithm on the basis of 

Lyapunov stability theory and consider its applicability for nonlinear problems to 

investigate the stability performance. 

3. The conditional distribution of seismic demands using kernel density estimation can be 

revisited considering, e.g., the Kernel Density Maximum Entropy Method (KDMEM), 

refer to [Alibrandi and Mosalam 2016], which is a method that determines the least 

biased distribution of a random variable from a sample data. This method is very useful 

for obtaining good approximations of the tails (corresponding to low probability as in 

collapse) of the distribution. 

4. Including the stochastic GM simulated procedure in the evaluation process. 

5. Extending the GMSM selection and evaluation to the case of multiple earthquake 

scenarios. 
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APPENDIX A BASE FUNCTIONS USED FOR 
NUMERICAL STABILITY 
ANALYSIS 

This Appendix gives an example set of base functions used for numerical stability analysis 

presented in Chapter 4. This example set includes constant ( 1Φ  to 
6Φ ), linear (

7Φ  to 12Φ ) and 

nonlinear ( 13Φ  to 18Φ ) base functions. 
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APPENDIX B DERIVATION OF α  AND β  FOR 

THE BRIDGE STRUCTURE 

This appendix presents the derivation of α  and β  for the MDOF bridge structure depicted in 

Figure 5.4 to illustrate the Lyapunov-based approach of stability analysis proposed in Chapter 5. 

In the linear range of the investigated bridge structure, shown in Figure B.1 with identified DOFs 

and circled element numbers, the restoring forces are as follows: 
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Figure B.1 A MDOF bridge with identified DOFs and element numbers. 

Table B.1 List of elements contributing to the restoring force associated with 
each DOF. 

DOF Number Number of Elements  Associated Elements 

1 1 1 

2 3 1, 3, 4 

3 2 2, 3 

4 2 2, 3 

5 2 4, 5 

6 2 4, 5 

 

Table B.1 shows the list of basic resisting forces that contribute to the restoring force associated 

with each DOF. For example, only one basic resisting force, which is from the column element 

(element 1), contributes to the restoring force associated with 1u . Therefore, the total number of 

the basic resisting forces is N=1+3+2+2+2+2=12. Based on the restoring forces in the linear range, 

redefine the DOFs ],,,[ 621 uuuT u  using linear transformation to ],,,[ 1221 uuuT u , i.e. 

βuu  , as follows: 
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Accordingly, the 12×6 matrix β  can be written as follows: 
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Defining the lth basic resisting force lq  as a function of  Nlu l ,1,  , the restoring forces in the 

nonlinear range, i.e. αqf  , can be written as follows: 

121161095874653432211 ,,,,, qqfqqfqqfqqfqqqfqf   

Accordingly, the 6×12 matrix α  can be written as follows: 
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The initial bounds, i.e., lower and upper bounds for stiffening and softening systems, respectively, 

for the basic resisting forces based on the numerical values in Equation (5.59a), are as follows: 
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Therefore, the initial bound matrix 
Ik  is defined as ],,,diag[ 1221

IIII kkk k . 
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APPENDIX C DERIVATION OF α  AND β  FOR 

THE MULTI-STORY SHEAR 
BUILDING 

This appendix presents the derivation of α  and β  for the MDOF shear building depicted in Figure 

5.5. Due to its assumed shear mode behavior, the number of the basic resisting forces, N, is equal 

to the number of DOFs, n. In the linear range of this shear building, the jth restoring force is as 

follows: 
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where nlj  1:  with 01 n

Ik , 00 u  and j

Ik  is the initial stiffness of the jth story. For such a 

building, the elements of the nn  ( nN  ) matrices α  and β  are as follows: 
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Thus, the elements of the row vectors jα  and lβ , based on Eqs. (10) and (12), are as follows: 
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Based on Equations (5.14) and (5.16), we have 

1 lljj qqf qα  

jjjll uuu  1u uβ  

where nlj  1:  with 01 nq , 00 u  and jq  is the resisting force of the  jth story. Therefore, 

the resisting force of the jth story, jq , is a function of the relative displacement of the jth story, 
ju . 
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APPENDIX D NUMERICAL RESULTS FOR THE 
TWO-STORY SHEAR BUILDING 

This appendix documents all the numerical results for the two-story shear building (Figure 5.5 

with n = 2) with stiffening and softening systems using the Lyapunov-based approach of stability 

analysis proposed in Chapter 5. 
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Softening Systems 
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APPENDIX E DOCUMENTATION OF THE 
UTILIZED GROUND MOTIONS IN 
CHAPTER 8 

This appendix documents all the 40 pulse-like GMs utilized to demonstrate the applicability of 

investigated integration algorithms and nonlinear solvers. Moreover, the GMs utilized for the 

identification of predominantly first-mode EDPs under earthquake excitation are documented in 

this appendix. 
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Table E.1 Documentation of 40 pulse-like GMs. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

1 170 Imperial Valley-06 EC County Center FF 6.53 

2 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 

3 179 Imperial Valley-06 El Centro Array #4 6.53 

4 180 Imperial Valley-06 El Centro Array #5 6.53 

5 181 Imperial Valley-06 El Centro Array #6 6.53 

6 182 Imperial Valley-06 El Centro Array #7 6.53 

7 183 Imperial Valley-06 El Centro Array #8 6.53 

8 184 Imperial Valley-06 El Centro Differential Array 6.53 

9 451 Morgan Hill Coyote Lake Dam (SW Abut) 6.19 

10 763 Loma Prieta Gilroy-Gavilan Coll. 6.93 

11 779 Loma Prieta LGPC 6.93 

12 879 Landers Lucerne 7.28 

13 900 Landers Yermo Fire Station 7.28 

14 982 Northridge-01 Jensen Filter Plant 6.69 

15 983 Northridge-01 Jensen Filter Plant Generator 6.69 

16 1044 Northridge-01 Newhall-Fire Sta 6.69 

17 1045 Northridge-01 
Newhall - W Pico Canyon 

Rd. 
6.69 

18 1063 Northridge-01 Rinaldi Receiving Sta 6.69 

19 1084 Northridge-01 Sylmar-Converter Sta 6.69 

20 1085 Northridge-01 Sylmar-Converter Sta East 6.69 

21 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 

22 1106 Kobe, Japan KJMA 6.90 

23 1119 Kobe, Japan Takarazuka 6.90 

24 1161 Kocaeli, Turkey Gebze 7.51 

25 1197 Chi-Chi, Taiwan CHY028 7.62 

26 1244 Chi-Chi, Taiwan CHY101 7.62 

27 1489 Chi-Chi, Taiwan TCU049 7.62 

28 1492 Chi-Chi, Taiwan TCU052 7.62 

29 1493 Chi-Chi, Taiwan TCU053 7.62 

30 1494 Chi-Chi, Taiwan TCU054 7.62 

31 1505 Chi-Chi, Taiwan TCU068 7.62 

32 1510 Chi-Chi, Taiwan TCU075 7.62 

33 1511 Chi-Chi, Taiwan TCU076 7.62 

34 1515 Chi-Chi, Taiwan TCU082 7.62 

35 1519 Chi-Chi, Taiwan TCU087 7.62 

36 1528 Chi-Chi, Taiwan TCU101 7.62 

37 1529 Chi-Chi, Taiwan TCU102 7.62 

38 1530 Chi-Chi, Taiwan TCU103 7.62 

39 1546 Chi-Chi, Taiwan TCU122 7.62 

40 1595 Chi-Chi, Taiwan WGK 7.62 
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Table E.2 Documentation of 40 GMs of CMS group of Bridge A with Type I 
abutment modeling for 50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 974 Northridge-01 Glendale-Las Palmas 6.69 1.65 

2 1454 Chi-Chi, Taiwan TAP090 7.62 0.73 

3 2116 Denali, Alaska TAPS Pump Station #12 7.90 2.03 

4 1427 Chi-Chi, Taiwan TAP035 7.62 1.20 

5 323 Coalinga-01 Parkfield-Cholame 12W 6.36 2.27 

6 1211 Chi-Chi, Taiwan CHY052 7.62 1.23 

7 756 Loma Prieta Dublin-Fire Station 6.93 1.48 

8 464 Morgan Hill Hollister Diff Array #3 6.19 1.67 

9 1293 Chi-Chi, Taiwan HWA046 7.62 1.68 

10 1275 Chi-Chi, Taiwan HWA026 7.62 1.60 

11 1797 Hector Mine LA-City Terrace 7.13 2.67 

12 1206 Chi-Chi, Taiwan CHY042 7.62 1.36 

13 2472 Chi-Chi, Taiwan-03 CHY046 6.20 2.30 

14 184 Imperial Valley-06 El Centro Differential Array 6.53 0.37 

15 1256 Chi-Chi, Taiwan HWA002 7.62 2.29 

16 993 Northridge-01 LA-Fletcher Dr 6.69 0.71 

17 1574 Chi-Chi, Taiwan TTN022 7.62 1.46 

18 1277 Chi-Chi, Taiwan HWA028 7.62 0.92 

19 881 Landers Morongo Valley 7.28 0.56 

20 1094 Northridge-01 West Covina-S Orange Ave 7.62 2.23 

21 1541 Chi-Chi, Taiwan TCU116 7.62 0.68 

22 1349 Chi-Chi, Taiwan ILA066 7.62 1.19 

23 1318 Chi-Chi, Taiwan ILA014 7.62 1.47 

24 779 Loma Prieta LGPC 6.93 0.17 

25 1068 Northridge-01 San Bernardino-Co Service  6.69 2.94 

26 1247 Chi-Chi, Taiwan HWA025 7.62 1.18 

27 1795 Hector Mine 
Joshua Tree N.M.-Keys 

View 
7.62 2.53 

28 760 Loma Prieta Foster City-Menhaden Court 6.93 0.71 

29 2743 Chi-Chi, Taiwan-04 CHY087 6.20 2.24 

30 1433 Chi-Chi, Taiwan TAP047 7.62 2.03 

31 3342 Chi-Chi, Taiwan-06 HWA029 6.30 2.27 

32 1547 Chi-Chi, Taiwan TCU123 7.62 0.75 

33 1452 Chi-Chi, Taiwan TAP086 7.62 2.55 

34 1295 Chi-Chi, Taiwan HWA049 7.62 1.25 

35 126 Gazli, USSR Karakyr 6.80 0.30 

36 266 Victoria, Mexico Chihuahua 6.33 0.98 

37 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 0.92 

38 749 Loma Prieta Berkeley-Strawberry Canyon 6.93 2.58 

39 1019 Northridge-01 Lake Hughes #1 6.69 1.11 

40 1789 Hector Mine Hesperia-4th & Palm 7.13 2.09 
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Table E.3 Documentation of 40 GMs of CMS group of Bridge A with Type II 
abutment modeling for 50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 974 Northridge-01 Glendale-Las Palmas 6.69 1.24 

2 1221 Chi-Chi, Taiwan CHY052 7.62 0.63 

3 860 Landers Hemet Fire Station 7.28 2.68 

4 2490 Chi-Chi, Taiwan-03 CHY074 6.20 1.40 

5 1242 Chi-Chi, Taiwan CHY099 7.62 1.64 

6 1427 Chi-Chi, Taiwan TAP035 7.62 1.43 

7 1587 Chi-Chi, Taiwan TTN042 7.62 2.10 

8 1271 Chi-Chi, Taiwan HWA022 7.62 1.08 

9 1256 Chi-Chi, Taiwan HWA002 7.62 1.89 

10 1155 Kocaeli, Turkey Bursa Tofas 7.51 0.91 

11 2699 Chi-Chi, Taiwan-04 CHY024 6.20 2.06 

12 2694 Chi-Chi, Taiwan-04 CHY015 6.20 1.16 

13 1291 Chi-Chi, Taiwan HWA044 7.62 1.69 

14 851 Landers Downey-Co Maint Bldg 7.28 2.81 

15 1177 Kocaeli, Turkey Zeytinburnu 7.51 0.98 

16 753 Loma Prieta Corralitos 6.93 0.23 

17 3313 Chi-Chi, Taiwan-06 CHY094 6.30 1.90 

18 1452 Chi-Chi, Taiwan TAP086 7.62 2.41 

19 1791 Hector Mine Indio-Coachella Canal 7.13 1.29 

20 1120 Kobe, Japan Takatori 6.90 0.21 

21 1211 Chi-Chi, Taiwan CHY052 7.62 0.96 

22 734 Loma Prieta APEEL 3E Hayward CSUH 6.93 2.07 

23 990 Northridge-01 LA-City Terrace 6.69 0.96 

24 1318 Chi-Chi, Taiwan ILA014 7.62 1.41 

25 1019 Northridge-01 Lake Hughes #1 6.69 1.24 

26 1541 Chi-Chi, Taiwan TCU116 7.62 0.69 

27 1775 Hector Mine Castaic-Old Ridge Route 7.13 2.57 

28 3503 Chi-Chi, Taiwan-06 TCU122 6.30 1.42 

29 1426 Chi-Chi, Taiwan TAP034 7.62 2.13 

30 1279 Chi-Chi, Taiwan HWA030 7.62 1.61 

31 796 Loma Prieta SF-Presidio 6.93 0.96 

32 964 Northridge-01 Compton-Castlegate St 6.69 1.47 

33 1198 Chi-Chi, Taiwan CHY029 7.62 0.36 

34 850 Landers Desert Hot Springs 7.28 1.02 

35 1445 Chi-Chi, Taiwan TAP075 7.62 1.72 

36 993 Northridge-01 LA-Fletcher Dr 6.69 0.56 

37 1210 Chi-Chi, Taiwan CHY050 7.62 1.91 

38 2465 Chi-Chi, Taiwan-03 CHY034 6.20 1.56 

39 1345 Chi-Chi, Taiwan ILA061 7.62 2.22 

40 1528 Chi-Chi, Taiwan TCU101 7.62 0.53 
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Table E.4 Documentation of 40 GMs of CMS group of Bridge A with Type I 
abutment modeling for 10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1238 Chi-Chi, Taiwan CHY092 7.62 2.43 

2 1350 Chi-Chi, Taiwan ILA067 7.62 1.48 

3 547 Chalfant Valley-01 Zack Brothers Ranch 5.77 1.81 

4 1176 Kocaeli, Turkey Yarimca 7.51 0.80 

5 838 Landers Barstow 7.28 1.97 

6 900 Landers Yermo Fire Station 7.28 1.29 

7 778 Loma Prieta Hollister Diff. Array 6.93 0.68 

8 1243 Chi-Chi, Taiwan CHY100 7.62 2.61 

9 773 Loma Prieta Hayward-BART Sta 6.93 2.74 

10 1317 Chi-Chi, Taiwan ILA013 7.62 1.03 

11 1329 Chi-Chi, Taiwan ILA037 7.62 2.45 

12 1605 Duzce, Turkey Duzce 7.14 0.45 

13 162 Imperial Valley-06 Calexico Fire Station 6.53 1.70 

14 1268 Chi-Chi, Taiwan HWA017 7.62 2.48 

15 756 Loma Prieta Dublin-Fire Station 6.93 2.90 

16 762 Loma Prieta Fremont-Mission San Jose 6.93 2.34 

17 779 Loma Prieta LGPC 6.93 0.33 

18 1206 Chi-Chi, Taiwan CHY042 7.62 2.66 

19 139 Tabas, Iran Dayhook 7.35 1.40 

20 3271 Chi-Chi, Taiwan-06 CHY032 6.30 2.46 

21 1303 Chi-Chi, Taiwan HWA058 7.62 2.18 

22 1234 Chi-Chi, Taiwan CHY086 7.62 1.25 

23 1349 Chi-Chi, Taiwan ILA066 7.62 2.34 

24 170 Imperial Valley-06 EC County Center FF 6.53 0.98 

25 467 Morgan Hill Hollister Diff. Array 6.19 2.51 

26 1784 Hector Mine Frink 7.13 2.77 

27 1490 Chi-Chi, Taiwan TCU050 7.62 1.37 

28 1263 Chi-Chi, Taiwan HWA012 7.62 2.53 

29 761 Loma Prieta Fremont-Emerson Court 6.93 1.80 

30 772 Loma Prieta Halls Valley 6.93 1.63 

31 1149 Kocaeli, Turkey Atakoy 7.51 2.84 

32 1810 Hector Mine Mecca-CVWD Yard 7.13 1.98 

33 2715 Chi-Chi, Taiwan-04 CHY047 6.20 2.67 

34 3276 Chi-Chi, Taiwan-06 CHY037 6.30 1.79 

35 1187 Chi-Chi, Taiwan CHY015 7.62 1.36 

36 2714 Chi-Chi, Taiwan-04 CHY046 6.20 2.64 

37 1489 Chi-Chi, Taiwan TCU049 7.62 1.08 

38 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 0.73 

39 850 Landers Desert Hot Springs 7.28 1.71 

40 1536 Chi-Chi, Taiwan TCU110 7.62 1.00 
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Table E.5 Documentation of 40 GMs of CMS group of Bridge A with Type II 
abutment modeling for 10% POE in 50 years. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1336 Chi-Chi, Taiwan ILA048 7.62 1.90 

2 3312 Chi-Chi, Taiwan-06 CHY093 6.30 2.92 

3 2110 Chi-Chi, Taiwan-02 CHY111 5.90 2.52 

4 1332 Chi-Chi, Taiwan ILA042 7.62 2.03 

5 1481 Chi-Chi, Taiwan TCU038 7.62 1.38 

6 1350 Chi-Chi, Taiwan ILA067 7.62 1.36 

7 183 Imperial Valley-06 El Centro Array #8 6.53 0.73 

8 1528 Chi-Chi, Taiwan TCU101 7.62 1.03 

9 1810 Hector Mine Mecca-CVWD Yard 7.13 1.79 

10 126 Gazli, USSR Karakyr 6.80 0.52 

11 1211 Chi-Chi, Taiwan CHY052 7.62 1.88 

12 1074 Northridge-01 Sandberg - Bald Mtn 6.69 2.71 

13 1508 Chi-Chi, Taiwan TCU072 7.62 0.51 

14 1293 Chi-Chi, Taiwan HWA046 7.62 2.60 

15 1187 Chi-Chi, Taiwan CHY015 7.62 1.42 

16 3503 Chi-Chi, Taiwan-06 TCU122 6.30 2.78 

17 1478 Chi-Chi, Taiwan TCU033 7.62 1.69 

18 1206 Chi-Chi, Taiwan CHY042 7.62 2.89 

19 3473 Chi-Chi, Taiwan-06 TCU078 6.30 1.05 

20 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 1.08 

21 3271 Chi-Chi, Taiwan-06 CHY032 6.30 2.08 

22 1555 Chi-Chi, Taiwan TCU147 7.62 2.13 

23 465 Morgan Hill Hollister Diff Array #4 6.19 2.96 

24 2461 Chi-Chi, Taiwan-03 CHY028 6.20 1.68 

25 2458 Chi-Chi, Taiwan-03 CHY025 6.20 2.43 

26 3510 Chi-Chi, Taiwan-06 TCU139 6.30 2.14 

27 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.58 

28 1295 Chi-Chi, Taiwan HWA049 7.62 2.54 

29 1509 Chi-Chi, Taiwan TCU074 7.62 0.46 

30 754 Loma Prieta Coyote Lake Dam (Downst) 6.93 1.83 

31 1049 Northridge-01 Pacific Palisades-Sunset 6.69 1.41 

32 300 Irpinia, Italy-02 Calitri 6.20 1.34 

33 1177 Kocaeli, Turkey Zeytinburnu 7.51 1.92 

34 2715 Chi-Chi, Taiwan-04 CHY047 6.20 2.50 

35 1791 Hector Mine Indio-Coachella Canal 7.13 2.53 

36 1263 Chi-Chi, Taiwan HWA012 7.62 2.70 

37 1427 Chi-Chi, Taiwan TAP035 7.62 2.80 

38 832 Landers Amboy 7.28 2.36 

39 1087 Northridge-01 Tarzana-Cedar Hill A 6.69 0.22 

40 1546 Chi-Chi, Taiwan TCU122 7.62 1.13 
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Table E.6 Documentation of 40 GMs of CMS group of Bridge A with Type I 
abutment modeling for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1520 Chi-Chi, Taiwan TCU088 7.62 2.39 

2 1186 Chi-Chi, Taiwan CHY014 7.62 1.03 

3 182 Imperial Valley-06 El Centro Array #7 6.53 0.81 

4 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.36 

5 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.43 

6 1234 Chi-Chi, Taiwan CHY086 7.62 2.08 

7 1794 Hector Mine Joshua Tree 7.13 2.87 

8 1282 Chi-Chi, Taiwan HWA033 7.62 2.41 

9 2632 Chi-Chi, Taiwan-03 TCU084 6.20 2.59 

10 776 Loma Prieta Hollister-South & Pine 6.93 1.32 

11 779 Loma Prieta LGPC 6.93 0.54 

12 821 Erzican, Turkey Erzincan 6.69 0.95 

13 900 Landers Yermo Fire Station 7.28 2.15 

14 1489 Chi-Chi, Taiwan TCU049 7.62 1.79 

15 1454 Chi-Chi, Taiwan TAP090 7.62 2.38 

16 1297 Chi-Chi, Taiwan HWA051 7.62 2.87 

17 1204 Chi-Chi, Taiwan CHY039 7.62 2.81 

18 1120 Kobe, Japan Takatori 6.90 0.66 

19 1509 Chi-Chi, Taiwan TCU074 7.62 0.52 

20 1493 Chi-Chi, Taiwan TCU053 7.62 1.94 

21 1495 Chi-Chi, Taiwan TCU055 7.62 1.82 

22 761 Loma Prieta Fremont-Emerson Court 6.93 2.98 

23 1158 Kocaeli, Turkey Duzce 7.51 1.38 

24 723 Superstition Hills-02 Parachute Test Site 6.54 1.06 

25 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.47 

26 1198 Chi-Chi, Taiwan CHY029 7.62 1.16 

27 1201 Chi-Chi, Taiwan CHY034 7.62 1.09 

28 316 Westmorland Parachute Test Site 5.90 1.99 

29 1521 Chi-Chi, Taiwan TCU089 7.62 1.92 

30 1044 Northridge-01 Newhall-Fire Sta 6.69 0.62 

31 772 Loma Prieta Halls Valley 6.93 2.71 

32 1187 Chi-Chi, Taiwan CHY015 7.62 2.26 

33 881 Landers Morongo Valley 7.28 1.84 

34 796 Loma Prieta SF-Presidio 6.93 2.26 

35 558 Chalfant Valley-02 Zack Brothers Ranch 6.19 0.84 

36 1300 Chi-Chi, Taiwan HWA055 7.62 2.84 

37 1529 Chi-Chi, Taiwan TCU102 7.62 1.26 

38 1481 Chi-Chi, Taiwan TCU038 7.62 2.43 

39 1490 Chi-Chi, Taiwan TCU050 7.62 2.28 

40 755 Loma Prieta 
Coyote Lake Dam (SW 

Abut) 
6.93 1.67 

 

  



179 

Table E.7 Documentation of 40 GMs of CMS group of Bridge A with Type II 
abutment modeling for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1205 Chi-Chi, Taiwan CHY041 7.62 0.79 

2 1088 Northridge-01 Terminal Island-S Seaside 6.69 2.57 

3 412 Coalinga-05 Pleasant Valley P.P.-yard 5.77 1.91 

4 1350 Chi-Chi, Taiwan ILA067 7.62 2.22 

5 1201 Chi-Chi, Taiwan CHY034 7.62 0.92 

6 1116 Kobe, Japan Shin-Osaka 6.90 1.36 

7 1481 Chi-Chi, Taiwan TCU038 7.62 2.25 

8 184 Imperial Valley-06 El Centro Differential Array 6.53 1.26 

9 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 1.48 

10 1509 Chi-Chi, Taiwan TCU074 7.62 0.76 

11 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 1.77 

12 779 Loma Prieta LGPC 6.93 0.61 

13 1456 Chi-Chi, Taiwan TAP095 7.62 2.08 

14 900 Landers Yermo Fire Station 7.28 2.67 

15 1434 Chi-Chi, Taiwan TAP049 7.62 2.92 

16 1810 Hector Mine Mecca-CVWD Yard 7.13 2.93 

17 730 Spitak, Armenia Gukasian 6.77 2.99 

18 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.93 

19 1317 Chi-Chi, Taiwan ILA013 7.62 1.48 

20 1234 Chi-Chi, Taiwan CHY086 7.62 2.10 

21 1165 Kocaeli, Turkey Izmit 7.51 1.96 

22 986 Northridge-01 LA-Brentwood VA Hospital 6.69 2.00 

23 1519 Chi-Chi, Taiwan TCU087 7.62 2.42 

24 1292 Chi-Chi, Taiwan HWA045 7.62 2.79 

25 1508 Chi-Chi, Taiwan TCU072 7.62 0.83 

26 1009 Northridge-01 LA-Wadsworth VA Hospital  6.69 2.2 

27 1529 Chi-Chi, Taiwan TCU102 7.62 1.52 

28 1187 Chi-Chi, Taiwan CHY015 7.62 2.33 

29 1493 Chi-Chi, Taiwan TCU053 7.62 2.10 

30 2461 Chi-Chi, Taiwan-03 CHY028 6.20 2.75 

31 1282 Chi-Chi, Taiwan HWA033 7.62 2.55 

32 1495 Chi-Chi, Taiwan TCU055 7.62 1.76 

33 731 Loma Prieta APEEL 10-Skyline 6.93 2.85 

34 776 Loma Prieta Hollister-South & Pine 6.93 1.38 

35 778 Loma Prieta Hollister Diff. Array 6.93 1.27 

36 1158 Kocaeli, Turkey Duzce 7.51 1.27 

37 1515 Chi-Chi, Taiwan TCU082 7.62 1.70 

38 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.08 

39 1227 Chi-Chi, Taiwan CHY074 7.62 1.86 

40 2467 Chi-Chi, Taiwan-03 CHY036 6.20 2.94 
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Table E.8 Documentation of 40 GMs of reference group of Bridge A for 50% 
POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2650 Chi-Chi, Taiwan-03 TCU116 6.20 3.00 

2 2899 Chi-Chi, Taiwan-04 TCU141 6.20 1.60 

3 1177 Kocaeli, Turkey Zeytinburnu 7.51 2.70 

4 900 Landers Yermo Fire Station 7.28 0.80 

5 1164 Kocaeli, Turkey Istanbul 7.51 2.90 

6 1315 Chi-Chi, Taiwan ILA010 7.62 3.00 

7 1799 Hector Mine LA-Obregon Park 7.13 2.80 

8 1531 Chi-Chi, Taiwan TCU104 7.62 0.50 

9 1148 Kocaeli, Turkey Arcelik 7.51 1.20 

10 2756 Chi-Chi, Taiwan-04 CHY114 6.20 2.80 

11 2695 Chi-Chi, Taiwan-04 CHY016 6.20 2.60 

12 1350 Chi-Chi, Taiwan ILA067 7.62 1.10 

13 761 Loma Prieta Fremont-Emerson Court 6.93 2.20 

14 439 Borah Peak, ID-01 TAN-719 6.88 2.80 

15 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.60 

16 2655 Chi-Chi, Taiwan-03 TCU122 6.20 1.50 

17 1577 Chi-Chi, Taiwan TTN025 7.62 2.70 

18 833 Landers Anaheim-W Ball Rd 7.28 2.30 

19 776 Loma Prieta Hollister-South & Pine 6.93 0.70 

20 946 Northridge-01 Antelope Buttes 6.69 2.00 

21 1049 Northridge-01 Pacific Palisades-Sunset 6.69 1.20 

22 1783 Hector Mine Fort Irwin 7.13 1.10 

23 2706 Chi-Chi, Taiwan-04 CHY032 6.20 2.60 

24 1762 Hector Mine Amboy 7.13 1.00 

25 780 Loma Prieta Larkspur Ferry Terminal (FF) 6.93 2.30 

26 1358 Chi-Chi, Taiwan KAU012 7.62 1.90 

27 751 Loma Prieta Calaveras Reservoir 6.93 1.30 

28 1206 Chi-Chi, Taiwan CHY042 7.62 1.90 

29 1400 Chi-Chi, Taiwan NCU 7.62 1.70 

30 28 Parkfield Cholame-Shandon Array #12 6.19 1.40 

31 333 Coalinga-01 Parkfield-Cholame 8W 6.36 2.90 

32 2994 Chi-Chi, Taiwan-05 CHY116 6.20 2.80 

33 1503 Chi-Chi, Taiwan TCU065 7.62 0.70 

34 2646 Chi-Chi, Taiwan-03 TCU109 6.20 2.10 

35 792 Loma Prieta SF-1295 Shafter 6.93 1.20 

36 247 Mammoth Lakes-06 Bishop-Paradise Lodge 5.94 2.10 

37 2639 Chi-Chi, Taiwan-03 TCU100 6.20 2.40 

38 855 Landers Fort Irwin 7.28 1.50 

39 1551 Chi-Chi, Taiwan TCU138 7.62 0.60 

40 1434 Chi-Chi, Taiwan TAP049 7.62 1.40 

 

  



181 

Table E.9 Documentation of 40 GMs of reference group of Bridge A for 10% 
POE in 50 years. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake Name Station Magnitude 
Scaling 

Factor 

1 1310 Chi-Chi, Taiwan ILA004 7.62 2.60  

2 1201 Chi-Chi, Taiwan CHY034 7.62 3.00  

3 1472 Chi-Chi, Taiwan TCU017 7.62 2.30  

4 1488 Chi-Chi, Taiwan TCU048 7.62 1.10  

5 1147 Kocaeli, Turkey Ambarli 7.51 1.50  

6 1244 Chi-Chi, Taiwan CHY101 7.62 0.60  

7 1476 Chi-Chi, Taiwan TCU029 7.62 1.10  

8 1794 Hector Mine Joshua Tree 7.13 3.00  

9 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.70  

10 1234 Chi-Chi, Taiwan CHY086 7.62 2.20  

11 143 Tabas, Iran Tabas 7.35 0.30  

12 1350 Chi-Chi, Taiwan ILA067 7.62 0.80  

13 888 Landers San Bernardino-E Hospitality 7.28 2.30  

14 1614 Duzce, Turkey Lamont 1061 7.14 2.90  

15 126 Gazli, USSR Karakyr 6.80 0.50  

16 880 Landers Mission Creek Fault 7.28 2.70  

17 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 1.60  

18 3509 Chi-Chi, Taiwan-06 TCU138 6.30 2.40  

19 1193 Chi-Chi, Taiwan CHY024 7.62 1.20  

20 825 Cape Mendocino Cape Mendocino 7.01 0.60  

21 767 Loma Prieta Gilroy Array #3 6.93 0.60  

22 1493 Chi-Chi, Taiwan TCU053 7.62 2.30  

23 3266 Chi-Chi, Taiwan-06 CHY026 6.30 1.90  

24 2458 Chi-Chi, Taiwan-03 CHY025 6.20 1.10  

25 184 Imperial Valley-06 El Centro Differential Array 6.53 0.80  

26 1148 Kocaeli, Turkey Arcelik 7.51 1.70  

27 1116 Kobe, Japan Shin-Osaka 6.90 1.90  

28 1507 Chi-Chi, Taiwan TCU071 7.62 1.10  

29 730 Spitak, Armenia Gukasian 6.77 1.60  

30 900 Landers Yermo Fire Station 7.28 2.00  

31 2655 Chi-Chi, Taiwan-03 TCU122 6.20 0.70  

32 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 2.60  

33 1547 Chi-Chi, Taiwan TCU123 7.62 2.60  

34 185 Imperial Valley-06 Holtville Post Office 6.53 1.40  

35 879 Landers Lucerne 7.28 1.20  

36 1503 Chi-Chi, Taiwan TCU065 7.62 0.50  

37 1521 Chi-Chi, Taiwan TCU089 7.62 0.70  

38 2473 Chi-Chi, Taiwan-03 CHY047 6.20 2.70  

39 1495 Chi-Chi, Taiwan TCU055 7.62 2.00  

40 1491 Chi-Chi, Taiwan TCU051 7.62 1.40  
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Table E.10 Documentation of 40 GMs of reference group of Bridge A for 2% 
POE in 50 years. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 190 Imperial Valley-06 Superstition Mtn Camera 6.53 1.90 

2 1476 Chi-Chi, Taiwan TCU029 7.62 1.90 

3 1486 Chi-Chi, Taiwan TCU046 7.62 2.00 

4 900 Landers Yermo Fire Station 7.28 2.00 

5 1505 Chi-Chi, Taiwan TCU068 7.62 0.80 

6 1147 Kocaeli, Turkey Ambarli 7.51 3.00 

7 1521 Chi-Chi, Taiwan TCU089 7.62 2.40 

8 1503 Chi-Chi, Taiwan TCU065 7.62 0.50 

9 1478 Chi-Chi, Taiwan TCU033 7.62 2.70 

10 1176 Kocaeli, Turkey Yarimca 7.51 2.40 

11 170 Imperial Valley-06 EC County Center FF 6.53 2.30 

12 1511 Chi-Chi, Taiwan TCU076 7.62 2.30 

13 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.80 

14 1541 Chi-Chi, Taiwan TCU116 7.62 2.60 

15 1488 Chi-Chi, Taiwan TCU048 7.62 1.70 

16 1244 Chi-Chi, Taiwan CHY101 7.62 0.90 

17 723 Superstition Hills-02 Parachute Test Site 6.54 2.30 

18 879 Landers Lucerne 7.28 1.60 

19 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.50 

20 182 Imperial Valley-06 El Centro Array #7 6.53 2.80 

21 779 Loma Prieta LGPC 6.93 1.00 

22 1149 Kocaeli, Turkey Atakoy 7.51 2.80 

23 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.20 

24 1529 Chi-Chi, Taiwan TCU102 7.62 1.90 

25 1525 Chi-Chi, Taiwan TCU096 7.62 3.00 

26 126 Gazli, USSR Karakyr 6.80 0.70 

27 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.80 

28 184 Imperial Valley-06 El Centro Differential Array 6.53 3.00 

29 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.30 

30 1534 Chi-Chi, Taiwan TCU107 7.62 2.60 

31 1762 Hector Mine Amboy 7.13 2.80 

32 1297 Chi-Chi, Taiwan HWA051 7.62 2.40 

33 175 Imperial Valley-06 El Centro Array #12 6.53 2.30 

34 1158 Kocaeli, Turkey Duzce 7.51 2.70 

35 1198 Chi-Chi, Taiwan CHY029 7.62 2.20 

36 1546 Chi-Chi, Taiwan TCU122 7.62 2.40 

37 1111 Kobe, Japan Nishi-Akashi 6.90 1.90 

38 3472 Chi-Chi, Taiwan-06 TCU076 6.30 2.40 

39 1527 Chi-Chi, Taiwan TCU100 7.62 2.10 

40 776 Loma Prieta Hollister-South & Pine 6.93 1.60 
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Table E.11 Documentation of 40 GMs of CMS group of Bridge B for 50% POE in 
50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2709 Chi-Chi, Taiwan-04 CHY035 6.20 1.05 
2 354 Coalinga-01 Parkfield-Gold Hill 5W 6.36 2.13 
3 900 Landers Yermo Fire Station 7.28 0.73 
4 12 Kern County LA-Hollywood Stor FF 7.36 2.95 
5 1551 Chi-Chi, Taiwan TCU138 7.62 0.77 

6 1267 Chi-Chi, Taiwan HWA016 7.62 2.12 
7 838 Landers Barstow 7.28 1.52 
8 126 Gazli, USSR Karakyr 6.80 0.46 

9 1297 Chi-Chi, Taiwan HWA051 7.62 1.22 
10 993 Northridge-01 LA-Fletcher Dr 6.69 1.68 
11 1092 Northridge-01 Ventura-Harbor & California 6.69 1.77 
12 2490 Chi-Chi, Taiwan-03 CHY074 6.20 2.98 
13 762 Loma Prieta Fremont-Mission San Jose 6.93 2.52 

14 1262 Chi-Chi, Taiwan HWA011 7.62 1.15 
15 885 Landers Pomona-4th & Locust FF 7.28 2.29 
16 1791 Hector Mine Indio-Coachella Canal 7.13 1.36 
17 1177 Kocaeli, Turkey Zeytinburnu 7.51 2.05 
18 892 Landers Sun Valley-Roscoe Blvd 7.28 2.95 

19 1206 Chi-Chi, Taiwan CHY042 7.62 1.62 
20 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 0.78 
21 1817 Hector Mine North Shore - Durmid 7.13 2.39 

22 266 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 1.56 
23 882 Landers North Palm Springs 7.28 1.65 
24 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.41 
25 1349 Chi-Chi, Taiwan ILA066 7.62 2.35 
26 1155 Kocaeli, Turkey Bursa Tofas 7.51 1.17 

27 1511 Chi-Chi, Taiwan TCU076 7.62 0.58 
28 1459 Chi-Chi, Taiwan TAP100 7.62 1.36 
29 2459 Chi-Chi, Taiwan-03 CHY026 6.20 2.79 
30 1275 Chi-Chi, Taiwan HWA026 7.62 2.33 
31 759 Loma Prieta Foster City-APEEL 1 6.93 0.49 

32 1243 Chi-Chi, Taiwan CHY100 7.62 2.14 
33 1337 Chi-Chi, Taiwan ILA049 7.62 1.22 
34 1454 Chi-Chi, Taiwan TAP090 7.62 0.94 

35 1489 Chi-Chi, Taiwan TCU049 7.62 0.75 
36 730 Spitak, Armenia Gukasian 6.77 1.21 
37 2467 Chi-Chi, Taiwan-03 CHY036 6.20 2.00 
38 1334 Chi-Chi, Taiwan ILA044 7.62 0.95 
39 1476 Chi-Chi, Taiwan TCU029 7.62 1.34 

40 2461 Chi-Chi, Taiwan-03 CHY028 6.20 0.91 
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Table E.12 Documentation of 40 GMs of CMS group of Bridge B for 10% POE in 
50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 1.04 
2 1297 Chi-Chi, Taiwan HWA051 7.62 2.64 
3 1113 Kobe, Japan OSAJ 6.90 2.55 
4 900 Landers Yermo Fire Station 7.28 1.58 
5 827 Cape Mendocino Fortuna-Fortuna Blvd 7.01 2.95 

6 1550 Chi-Chi, Taiwan TCU136 7.62 1.38 
7 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.52 
8 1317 Chi-Chi, Taiwan ILA013 7.62 2.14 

9 1492 Chi-Chi, Taiwan TCU052 7.62 0.53 
10 1530 Chi-Chi, Taiwan TCU103 7.62 2.08 
11 1529 Chi-Chi, Taiwan TCU102 7.62 0.91 
12 1534 Chi-Chi, Taiwan TCU107 7.62 1.73 
13 1472 Chi-Chi, Taiwan TCU017 7.62 2.37 

14 182 Imperial Valley-06 El Centro Array #7 6.53 0.93 
15 1414 Chi-Chi, Taiwan TAP008 7.62 2.62 
16 1204 Chi-Chi, Taiwan CHY039 7.62 2.96 
17 856 Landers Fountain Valley-Euclid 7.28 2.97 
18 776 Loma Prieta Hollister-South & Pine 6.93 0.91 

19 1295 Chi-Chi, Taiwan HWA049 7.62 2.58 
20 1149 Kocaeli, Turkey Atakoy 7.51 2.42 
21 1264 Chi-Chi, Taiwan HWA013 7.62 1.78 

22 1787 Hector Mine Hector 7.13 1.23 
23 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.89 
24 1459 Chi-Chi, Taiwan TAP100 7.62 2.93 
25 126 Gazli, USSR Karakyr 6.80 1.00 
26 1044 Northridge-01 Newhall-Fire Sta 6.69 0.63 

27 1489 Chi-Chi, Taiwan TCU049 7.62 1.63 
28 170 Imperial Valley-06 EC County Center FF 6.53 1.59 
29 1329 Chi-Chi, Taiwan ILA037 7.62 2.96 
30 3265 Chi-Chi, Taiwan-06 CHY025 6.30 2.59 
31 864 Landers Joshua Tree 7.28 1.04 

32 1262 Chi-Chi, Taiwan HWA011 7.62 2.49 
33 1234 Chi-Chi, Taiwan CHY086 7.62 2.32 
34 1536 Chi-Chi, Taiwan TCU110 7.62 1.34 

35 1147 Kocaeli, Turkey Ambarli 7.51 1.29 
36 1509 Chi-Chi, Taiwan TCU074 7.62 0.61 
37 1039 Northridge-01 Moorpark-Fire Sta 6.69 2.31 
38 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.06 
39 1541 Chi-Chi, Taiwan TCU116 7.62 1.49 

40 1334 Chi-Chi, Taiwan ILA044 7.62 2.06 
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Table E.13 Documentation of 40 GMs of CMS group of Bridge B for 2% POE in 
50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1419 Chi-Chi, Taiwan TAP017 7.62 2.35 

2 732 Loma Prieta APEEL 2-Redwood City 6.93 1.07 
3 1264 Chi-Chi, Taiwan HWA013 7.62 2.79 
4 1410 Chi-Chi, Taiwan TAP003 7.62 2.48 

5 1492 Chi-Chi, Taiwan TCU052 7.62 0.83 
6 776 Loma Prieta Hollister-South & Pine 6.93 1.43 
7 1044 Northridge-01 Newhall-Fire Sta 6.69 0.99 
8 1201 Chi-Chi, Taiwan CHY034 7.62 1.78 
9 341 Coalinga-01 Parkfield-Fault Zone 2 6.36 2.85 

10 1084 Northridge-01 Sylmar - Converter Sta 6.69 0.58 
11 759 Loma Prieta Foster City-APEEL 1 6.93 1.66 
12 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.34 
13 300 Irpinia, Italy-02 Calitri 6.20 2.17 
14 1411 Chi-Chi, Taiwan TAP005 7.62 2.23 
15 1504 Chi-Chi, Taiwan TCU067 7.62 1.22 
16 780 Loma Prieta Larkspur Ferry Terminal (FF) 6.93 2.42 
17 1547 Chi-Chi, Taiwan TCU123 7.62 2.19 

18 744 Loma Prieta Bear Valley #12 6.93 1.81 
19 1517 Chi-Chi, Taiwan TCU084 7.62 0.69 
20 1529 Chi-Chi, Taiwan TCU102 7.62 1.43 
21 1147 Kocaeli, Turkey Ambarli 7.51 2.02 
22 1182 Chi-Chi, Taiwan CHY006 7.62 1.53 

23 1509 Chi-Chi, Taiwan TCU074 7.62 0.96 
24 1116 Kobe, Japan Shin-Osaka 6.90 2.75 
25 900 Landers Yermo Fire Station 7.28 2.48 

26 1498 Chi-Chi, Taiwan TCU059 7.62 1.88 
27 182 Imperial Valley-06 El Centro Array #7 6.53 1.46 
28 771 Loma Prieta Golden Gate Bridge 6.93 2.68 
29 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.40 
30 126 Gazli, USSR Karakyr 6.80 1.57 

31 1536 Chi-Chi, Taiwan TCU110 7.62 2.11 
32 864 Landers Joshua Tree 7.28 1.63 
33 1292 Chi-Chi, Taiwan HWA045 7.62 2.35 
34 527 N. Palm Springs Morongo Valley 6.06 2.32 
35 1550 Chi-Chi, Taiwan TCU136 7.62 2.16 

36 1457 Chi-Chi, Taiwan TAP097 7.62 2.85 
37 1120 Kobe, Japan Takatori 6.90 0.51 
38 1503 Chi-Chi, Taiwan TCU065 7.62 0.78 

39 723 Superstition Hills-02 Parachute Test Site 6.54 1.24 
40 1541 Chi-Chi, Taiwan TCU116 7.62 2.34 
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Table E.14 Documentation of 40 GMs of reference group of Bridge B for 50% 
POE in 50 years. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2497 Chi-Chi, Taiwan-03 CHY082 6.20 1.40 

2 1536 Chi-Chi, Taiwan TCU110 7.62 1.60 

3 900 Landers Yermo Fire Station 7.28 1.20 

4 1397 Chi-Chi, Taiwan KAU086 7.28 3.00 

5 186 Imperial Valley-06 Niland Fire Station 6.53 2.00 

6 2700 Chi-Chi, Taiwan-04 CHY025 6.20 2.10 

7 879 Landers Lucerne 7.28 0.40 

8 880 Landers Mission Creek Fault 7.28 0.60 

9 1011 Northridge-01 LA-Wonderland Ave 6.69 2.10 

10 1147 Kocaeli, Turkey Ambarli 7.51 1.00 

11 1553 Chi-Chi, Taiwan TCU141 7.28 1.10 

12 1505 Chi-Chi, Taiwan TCU068 7.28 0.40 

13 126 Gazli, USSR Karakyr 6.80 0.50 

14 728 Superstition Hills-02 Westmorland Fire Sta 6.54 1.30 

15 1791 Hector Mine Indio-Coachella Canal 7.13 2.30 

16 762 Loma Prieta Fremont-Mission San Jose 6.93 0.80 

17 1148 Kocaeli, Turkey Arcelik 7.51 1.50 

18 1267 Chi-Chi, Taiwan HWA016 7.28 1.90 

19 2893 Chi-Chi, Taiwan-04 TCU122 6.20 2.00 

20 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 1.40 

21 862 Landers Indio-Coachella Canal 7.28 2.60 

22 2115 Denali, Alaska TAPS Pump Station #11 7.90 2.40 

23 1057 Northridge-01 Playa Del Rey-Saran 6.69 1.50 

24 
739 

Loma Prieta 
Anderson Dam 

(Downstream) 
6.93 

1.40 

25 293 Irpinia, Italy-01 Torre Del Greco 6.90 3.00 

26 767 Loma Prieta Gilroy Array #3 6.93 0.60 

27 1193 Chi-Chi, Taiwan CHY024 7.28 1.00 

28 1297 Chi-Chi, Taiwan HWA051 7.28 1.80 

29 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.10 

30 1074 Northridge-01 Sandberg - Bald Mtn 6.69 2.50 

31 778 Loma Prieta Hollister Diff. Array 6.93 2.00 

32 2715 Chi-Chi, Taiwan-04 CHY047 6.20 2.30 

33 1762 Hector Mine Amboy 7.13 1.70 

34 1113 Kobe, Japan OSAJ 6.90 3.00 

35 1324 Chi-Chi, Taiwan ILA030 7.28 1.90 

36 1158 Kocaeli, Turkey Duzce 7.51 0.60 

37 1552 Chi-Chi, Taiwan TCU140 7.28 2.90 

38 1287 Chi-Chi, Taiwan HWA038 7.28 2.50 

39 1776 Hector Mine Desert Hot Springs 7.13 2.20 

40 761 Loma Prieta Fremont-Emerson Court 6.93 2.60 
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Table E.15 Documentation of 40 GMs of reference group of Bridge B for 10% 
POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 587 New Zealand-02 Matahina Dam 5.99 3.00 

2 
755 

Loma Prieta 
Coyote Lake Dam (SW 

Abut) 
6.93 

3.00 
3 1528 Chi-Chi, Taiwan TCU101 7.62 2.50 
4 1762 Hector Mine Amboy 7.13 2.50 
5 161 Imperial Valley-06 Brawley Airport 6.53 2.10 

6 1488 Chi-Chi, Taiwan TCU048 7.62 1.40 
7 183 Imperial Valley-06 El Centro Array #8 6.53 1.20 
8 2115 Denali, Alaska TAPS Pump Station #11 7.90 3.00 

9 1481 Chi-Chi, Taiwan TCU038 7.62 1.70 
10 1147 Kocaeli, Turkey Ambarli 7.51 1.70 
11 143 Tabas, Iran Tabas 7.35 0.60 
12 1492 Chi-Chi, Taiwan TCU052 7.62 2.40 
13 1509 Chi-Chi, Taiwan TCU074 7.62 1.30 

14 2752 Chi-Chi, Taiwan-04 CHY101 6.20 3.00 
15 900 Landers Yermo Fire Station 7.28 2.40 
16 1531 Chi-Chi, Taiwan TCU104 7.62 2.70 
17 985 Northridge-01 LA-Baldwin Hills 6.69 2.20 
18 1505 Chi-Chi, Taiwan TCU068 7.62 0.70 

19 1483 Chi-Chi, Taiwan TCU040 7.62 3.00 
20 1547 Chi-Chi, Taiwan TCU123 7.62 3.00 
21 827 Cape Mendocino Fortuna-Fortuna Blvd 7.01 2.30 

22 855 Landers Fort Irwin 7.28 2.30 
23 1501 Chi-Chi, Taiwan TCU063 7.62 2.30 
24 1201 Chi-Chi, Taiwan CHY034 7.62 1.30 
25 1198 Chi-Chi, Taiwan CHY029 7.62 3.00 
26 1503 Chi-Chi, Taiwan TCU065 7.62 1.00 

27 1263 Chi-Chi, Taiwan HWA012 7.62 3.00 
28 723 Superstition Hills-02 Parachute Test Site 6.54 2.40 
29 1471 Chi-Chi, Taiwan TCU015 7.62 1.00 
30 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.60 
31 179 Imperial Valley-06 El Centro Array #4 6.53 2.10 

32 1553 Chi-Chi, Taiwan TCU141 7.62 2.20 
33 266 Victoria, Mexico Chihuahua 6.33 2.10 
34 730 Spitak, Armenia Gukasian 6.77 2.60 

35 719 Superstition Hills-02 Brawley Airport 6.54 1.70 
36 1545 Chi-Chi, Taiwan TCU120 7.62 1.30 
37 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.50 
38 1476 Chi-Chi, Taiwan TCU029 7.62 2.80 
39 2710 Chi-Chi, Taiwan-04 CHY036 6.20 3.00 

40 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 2.20 

 

  



188 

Table E.16 Documentation of 40 GMs of reference group of Bridge B for 2% 
POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1468 Chi-Chi, Taiwan TCU010 7.62 2.90 
2 1477 Chi-Chi, Taiwan TCU031 7.62 3.00 
3 900 Landers Yermo Fire Station 7.28 3.00 
4 1550 Chi-Chi, Taiwan TCU136 7.62 3.00 
5 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.50 

6 1488 Chi-Chi, Taiwan TCU048 7.62 2.70 
7 776 Loma Prieta Hollister-South & Pine 6.93 3.00 
8 1503 Chi-Chi, Taiwan TCU065 7.62 2.70 

9 1148 Kocaeli, Turkey Arcelik 7.51 3.00 
10 1491 Chi-Chi, Taiwan TCU051 7.62 3.00 
11 1198 Chi-Chi, Taiwan CHY029 7.62 3.00 
12 1476 Chi-Chi, Taiwan TCU029 7.62 2.00 
13 1149 Kocaeli, Turkey Atakoy 7.51 2.10 

14 1528 Chi-Chi, Taiwan TCU101 7.62 2.40 
15 1492 Chi-Chi, Taiwan TCU052 7.62 2.40 
16 143 Tabas, Iran Tabas 7.35 1.00 
17 1084 Northridge-01 Sylmar-Converter Sta 6.69 3.00 
18 1505 Chi-Chi, Taiwan TCU068 7.62 1.60 

19 1509 Chi-Chi, Taiwan TCU074 7.62 2.00 
20 1078 Northridge-01 Santa Susana Ground 6.69 2.90 
21 719 Superstition Hills-02 Brawley Airport 6.54 2.00 

22 1787 Hector Mine Hector 7.13 2.50 
23 1548 Chi-Chi, Taiwan TCU128 7.62 2.80 
24 1478 Chi-Chi, Taiwan TCU033 7.62 2.90 
25 1106 Kobe, Japan KJMA 6.90 2.50 
26 803 Loma Prieta Saratoga-W Valley Coll. 6.93 2.90 

27 1486 Chi-Chi, Taiwan TCU046 7.62 2.70 
28 1529 Chi-Chi, Taiwan TCU102 7.62 2.80 
29 1176 Kocaeli, Turkey Yarimca 7.51 3.00 
30 184 Imperial Valley-06 El Centro Differential Array 6.53 2.20 
31 723 Superstition Hills-02 Parachute Test Site 6.54 2.20 

32 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.80 
33 1498 Chi-Chi, Taiwan TCU059 7.62 3.00 
34 1244 Chi-Chi, Taiwan CHY101 7.62 1.60 

35 1510 Chi-Chi, Taiwan TCU075 7.62 2.80 
36 1542 Chi-Chi, Taiwan TCU117 7.62 3.00 
37 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.20 
38 170 Imperial Valley-06 EC County Center FF 6.53 2.10 
39 779 Loma Prieta LGPC 6.93 1.70 

40 1501 Chi-Chi, Taiwan TCU063 7.62 2.80 
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Table E.17 Documentation of 40 GMs of CMS group of Bridge C for 50% POE in 
50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2463 Chi-Chi, Taiwan-03 CHY032 6.20 1.67 
2 1538 Chi-Chi, Taiwan TCU112 7.62 0.69 
3 1234 Chi-Chi, Taiwan CHY086 7.62 1.18 
4 1817 Hector Mine North Shore-Durmid 7.13 1.76 
5 1304 Chi-Chi, Taiwan HWA059 7.62 1.59 

6 3297 Chi-Chi, Taiwan-06 CHY069 6.30 1.95 
7 900 Landers Yermo Fire Station 7.28 0.46 
8 784 Loma Prieta Oakland-Title & Trust 6.93 0.59 

9 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.25 
10 1154 Kocaeli, Turkey Bursa Sivil 7.51 1.34 
11 1783 Hector Mine Fort Irwin 7.13 2.36 
12 2598 Chi-Chi, Taiwan-03 TCU039 6.20 2.74 
13 1359 Chi-Chi, Taiwan KAU015 7.62 1.81 

14 1491 Chi-Chi, Taiwan TCU051 7.62 0.54 
15 464 Morgan Hill Hollister Diff Array #3 6.19 1.81 
16 1383 Chi-Chi, Taiwan KAU062 7.62 2.41 
17 1791 Hector Mine Indio-Coachella Canal 7.13 1.30 
18 1259 Chi-Chi, Taiwan HWA006 7.62 2.57 

19 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.34 
20 1426 Chi-Chi, Taiwan TAP034 7.62 2.54 
21 1587 Chi-Chi, Taiwan TTN042 7.62 2.34 

22 1834 Hector Mine Sylmar-County Hospital 7.13 2.92 
23 1185 Chi-Chi, Taiwan CHY012 7.62 1.51 
24 1232 Chi-Chi, Taiwan CHY081 7.62 1.32 
25 1504 Chi-Chi, Taiwan TCU067 7.62 0.22 
26 981 Northridge-01 Inglewood-Union Oil 6.69 1.73 

27 1574 Chi-Chi, Taiwan TTN022 7.62 1.31 
28 1314 Chi-Chi, Taiwan ILA008 7.62 0.83 
29 176 Imperial Valley-06 El Centro Array #13 6.53 1.32 
30 1495 Chi-Chi, Taiwan TCU055 7.62 0.49 
31 800 Loma Prieta Salinas-John & Work 6.93 1.64 

32 1794 Hector Mine Joshua Tree 7.13 0.99 
33 1611 Duzce, Turkey Lamont 1058 7.14 1.22 
34 1503 Chi-Chi, Taiwan TCU065 7.62 0.17 

35 1521 Chi-Chi, Taiwan TCU089 7.62 0.59 
36 1287 Chi-Chi, Taiwan HWA038 7.62 2.16 
37 785 Loma Prieta Olema-Point Reyes Station 6.93 1.01 
38 1317 Chi-Chi, Taiwan ILA013 7.62 0.59 
39 2654 Chi-Chi, Taiwan-03 TCU120 6.20 1.05 

40 2711 Chi-Chi, Taiwan-04 CHY039 6.20 1.83 
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Table E.18 Documentation of 40 GMs of CMS group of Bridge C for 10% POE in 
50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2459 Chi-Chi, Taiwan-03 CHY026 6.20 2.37 
2 1361 Chi-Chi, Taiwan KAU020 7.62 1.63 
3 1542 Chi-Chi, Taiwan TCU117 7.62 0.84 
4 2649 Chi-Chi, Taiwan-03 TCU115 6.20 2.84 
5 2718 Chi-Chi, Taiwan-04 CHY054 6.20 2.74 

6 883 Landers Northridge-17645 Saticoy St 7.28 2.93 
7 1295 Chi-Chi, Taiwan HWA049 7.62 1.41 
8 740 Loma Prieta Anderson Dam (L Abut) 6.93 2.00 

9 1418 Chi-Chi, Taiwan TAP014 7.62 1.53 
10 1457 Chi-Chi, Taiwan TAP097 7.62 2.45 
11 1232 Chi-Chi, Taiwan CHY081 7.62 2.80 
12 1574 Chi-Chi, Taiwan TTN022 7.62 2.79 
13 1509 Chi-Chi, Taiwan TCU074 7.62 0.41 

14 2650 Chi-Chi, Taiwan-03 TCU116 6.20 1.23 
15 1412 Chi-Chi, Taiwan TAP006 7.62 2.69 
16 1494 Chi-Chi, Taiwan TCU054 7.62 0.97 
17 1541 Chi-Chi, Taiwan TCU116 7.62 1.00 
18 1787 Hector Mine Hector 7.13 0.99 

19 1297 Chi-Chi, Taiwan HWA051 7.62 2.26 
20 1791 Hector Mine Indio-Coachella Canal 7.13 2.78 
21 2744 Chi-Chi, Taiwan-04 CHY088 6.20 2.64 

22 1263 Chi-Chi, Taiwan HWA012 7.62 1.81 
23 1147 Kocaeli, Turkey Ambarli 7.51 1.17 
24 169 Imperial Valley-06 Delta 6.53 0.79 
25 1536 Chi-Chi, Taiwan TCU110 7.62 0.54 
26 900 Landers Yermo Fire Station 7.28 0.97 

27 1165 Kocaeli, Turkey Izmit 7.51 1.19 
28 1508 Chi-Chi, Taiwan TCU072 7.62 0.69 
29 1193 Chi-Chi, Taiwan CHY024 7.62 0.91 
30 2458 Chi-Chi, Taiwan-03 CHY025 6.20 1.48 
31 1317 Chi-Chi, Taiwan ILA013 7.62 1.26 

32 
755 

Loma Prieta 
Coyote Lake Dam (SW 

Abut) 
6.93 

1.70 
33 2710 Chi-Chi, Taiwan-04 CHY036 6.20 2.72 
34 326 Coalinga-01 Parkfield-Cholame 2WA 6.36 2.66 

35 1158 Kocaeli, Turkey Duzce 7.51 0.80 
36 3265 Chi-Chi, Taiwan-06 CHY025 6.30 1.70 
37 2708 Chi-Chi, Taiwan-04 CHY034 6.20 2.68 
38 319 Westmorland Westmorland Fire Sta 5.90 0.99 
39 756 Loma Prieta Dublin-Fire Station 6.93 2.59 

40 836 Landers Baker Fire Station 7.28 2.47 
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Table E.19 Documentation of 40 GMs of CMS group of Bridge C for 2% POE in 
50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 341 Coalinga-01 Parkfield-Fault Zone 2 6.36 1.66 

2 1575 Chi-Chi, Taiwan TTN023 7.62 2.42 
3 732 Loma Prieta APEEL 2-Redwood City 6.93 1.73 
4 1316 Chi-Chi, Taiwan ILA012 7.62 2.20 

5 2509 Chi-Chi, Taiwan-03 CHY104 6.20 1.83 
6 1295 Chi-Chi, Taiwan HWA049 7.62 2.28 
7 1418 Chi-Chi, Taiwan TAP014 7.62 2.48 
8 1509 Chi-Chi, Taiwan TCU074 7.62 0.67 
9 1527 Chi-Chi, Taiwan TCU100 7.62 1.98 

10 885 Landers Fort Irwin 7.28 2.91 
11 1328 Chi-Chi, Taiwan ILA036 7.62 2.83 
12 2650 Chi-Chi, Taiwan-03 TCU116 6.20 1.99 
13 1492 Chi-Chi, Taiwan TCU052 7.62 0.48 
14 1320 Chi-Chi, Taiwan ILA016 7.62 2.83 
15 1263 Chi-Chi, Taiwan HWA012 7.62 2.93 
16 1494 Chi-Chi, Taiwan TCU054 7.62 1.58 
17 1044 Northridge-01 Newhall-Fire Sta 6.69 0.83 

18 1455 Chi-Chi, Taiwan TAP094 7.62 2.61 
19 1311 Chi-Chi, Taiwan ILA005 7.62 2.87 
20 1292 Chi-Chi, Taiwan HWA045 7.62 2.64 
21 1204 Chi-Chi, Taiwan CHY039 7.62 2.35 
22 2507 Chi-Chi, Taiwan-03 CHY101 6.20 1.98 

23 1194 Chi-Chi, Taiwan CHY025 7.62 1.45 
24 2458 Chi-Chi, Taiwan-03 CHY025 6.20 2.40 
25 2752 Chi-Chi, Taiwan-04 CHY101 6.20 2.43 

26 1534 Chi-Chi, Taiwan TCU107 7.62 1.59 
27 776 Loma Prieta Hollister-South & Pine 6.93 1.47 
28 2663 Chi-Chi, Taiwan-03 TCU141 6.20 2.80 

29 77 San Fernando 
Pacoima Dam (upper left 

abut) 
6.61 0.84 

30 1187 Chi-Chi, Taiwan CHY015 7.62 2.02 

31 864 Landers Joshua Tree 7.28 1.63 
32 1536 Chi-Chi, Taiwan TCU110 7.62 0.87 
33 1116 Kobe, Japan Shin-Osaka 6.90 2.26 
34 1262 Chi-Chi, Taiwan HWA011 7.62 2.22 
35 900 Landers Yermo Fire Station 7.28 1.58 

36 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.18 
37 1542 Chi-Chi, Taiwan TCU117 7.62 1.37 
38 1317 Chi-Chi, Taiwan ILA013 7.62 2.04 

39 1361 Chi-Chi, Taiwan KAU020 7.62 2.65 
40 170 Imperial Valley-06 EC County Center FF 6.53 1.41 

 

  



192 

Table E.20 Documentation of 40 GMs of reference group of Bridge C for 50% 
POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1498 Chi-Chi, Taiwan TCU059 7.62 1.90  
2 1424 Chi-Chi, Taiwan TAP028 7.62 2.20  
3 1117 Kobe, Japan TOT 6.90 1.20  
4 1476 Chi-Chi, Taiwan TCU029 7.62 1.00  
5 2893 Chi-Chi, Taiwan-04 TCU122 6.20 2.40  

6 1377 Chi-Chi, Taiwan KAU050 7.62 1.30  
7 2714 Chi-Chi, Taiwan-04 CHY046 6.20 0.90  
8 2756 Chi-Chi, Taiwan-04 CHY114 6.20 3.00  

9 1618 Duzce, Turkey Lamont 531 7.14 1.20  
10 1817 Hector Mine North Shore-Durmid 7.13 2.90  
11 1223 Chi-Chi, Taiwan CHY067 7.62 0.90  
12 265 Victoria, Mexico Cerro Prieto 6.33 1.30  
13 1301 Chi-Chi, Taiwan HWA056 7.62 1.60  

14 2115 Denali, Alaska TAPS Pump Station #11 7.90 1.20  
15 1214 Chi-Chi, Taiwan CHY057 7.62 2.10  
16 1308 Chi-Chi, Taiwan ILA002 7.62 3.00  
17 1190 Chi-Chi, Taiwan CHY019 7.62 2.20  
18 1450 Chi-Chi, Taiwan TAP083 7.62 1.90  

19 1148 Kocaeli, Turkey Arcelik 7.51 0.90  
20 1182 Chi-Chi, Taiwan CHY006 7.62 1.00  
21 891 Landers Silent Valley-Poppet Flat 7.28 2.70  

22 1489 Chi-Chi, Taiwan TCU049 7.62 1.00  
23 266 Victoria, Mexico Chihuahua 6.33 1.30  
24 1261 Chi-Chi, Taiwan HWA009 7.62 0.70  
25 1465 Chi-Chi, Taiwan TCU007 7.62 1.70  
26 1512 Chi-Chi, Taiwan TCU078 7.62 0.60  

27 326 Coalinga-01 Parkfield-Cholame 2WA 6.36 2.10  
28 1149 Kocaeli, Turkey Atakoy 7.51 2.10  
29 1164 Kocaeli, Turkey Istanbul 7.51 1.80  
30 2948 Chi-Chi, Taiwan-05 CHY032 6.20 2.20  
31 1475 Chi-Chi, Taiwan TCU026 7.62 1.80  

32 178 Imperial Valley-06 El Centro Array #3 6.53 0.50  
33 3267 Chi-Chi, Taiwan-06 CHY027 6.30 2.90  
34 68 San Fernando LA-Hollywood Stor FF 6.61 1.00  

35 862 Landers Indio-Coachella Canal 7.28 2.00  
36 180 Imperial Valley-06 El Centro Array #5 6.53 0.20  
37 2951 Chi-Chi, Taiwan-05 CHY039 6.20 1.70  
38 808 Loma Prieta Treasure Island 6.93 1.20  
39 838 Landers Barstow 7.28 1.20  

40 2711 Chi-Chi, Taiwan-04 CHY039 6.20 2.70  
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Table E.21 Documentation of 40 GMs of reference group of Bridge C for 10% 
POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2492 Chi-Chi, Taiwan-03 CHY076 6.20 1.50  
2 1410 Chi-Chi, Taiwan TAP003 7.62 3.00  
3 1147 Kocaeli, Turkey Ambarli 7.51 1.70  

4 1611 Duzce, Turkey Lamont 1058 7.14 2.50  
5 900 Landers Yermo Fire Station 7.28 1.40  
6 2115 Denali, Alaska TAPS Pump Station #11 7.90 2.90  

7 744 Loma Prieta Bear Valley #12 6.93 2.70  
8 1184 Chi-Chi, Taiwan CHY010 7.62 2.80  
9 762 Loma Prieta Fremont-Mission San Jose 6.93 3.00  

10 1489 Chi-Chi, Taiwan TCU049 7.62 1.20  
11 1762 Hector Mine Amboy 7.13 1.40  

12 1541 Chi-Chi, Taiwan TCU116 7.62 1.60  
13 1615 Duzce, Turkey Lamont 1062 7.14 2.40  
14 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 1.90  
15 1223 Chi-Chi, Taiwan CHY067 7.62 3.00  
16 730 Spitak, Armenia Gukasian 6.77 1.20  

17 1476 Chi-Chi, Taiwan TCU029 7.62 1.20  
18 1553 Chi-Chi, Taiwan TCU141 7.62 3.00  
19 1013 Northridge-01 LA Dam 6.69 1.50  

20 1149 Kocaeli, Turkey Atakoy 7.51 2.90  
21 1498 Chi-Chi, Taiwan TCU059 7.62 3.00  
22 1554 Chi-Chi, Taiwan TCU145 7.62 2.10  
23 1198 Chi-Chi, Taiwan CHY029 7.62 2.20  
24 2700 Chi-Chi, Taiwan-04 CHY025 6.20 2.00  

25 779 Loma Prieta LGPC 6.93 0.70  
26 1350 Chi-Chi, Taiwan ILA067 7.62 0.80  
27 2457 Chi-Chi, Taiwan-03 CHY024 6.20 2.70  
28 1492 Chi-Chi, Taiwan TCU052 7.62 0.70  
29 880 Landers Mission Creek Fault 7.28 1.50  
30 1318 Chi-Chi, Taiwan ILA014 7.62 3.00  
31 879 Landers Lucerne 7.28 0.70  
32 2893 Chi-Chi, Taiwan-04 TCU122 6.20 2.50  

33 169 Imperial Valley-06 Delta 6.53 0.90  
34 1513 Chi-Chi, Taiwan TCU079 7.62 0.70  
35 796 Loma Prieta SF-Presidio 6.93 3.00  

36 184 Imperial Valley-06 
El Centro Differential 

Array 
6.53 1.50  

37 143 Tabas, Iran Tabas 7.35 0.50  

38 838 Landers Barstow 7.28 2.40  
39 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 1.70  
40 767 Loma Prieta Gilroy Array #3 6.93 1.30  
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Table E.22 Documentation of 40 GMs of reference group of Bridge C for 2% 
POE in 50 years. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1605 Duzce, Turkey Duzce 7.14 2.60 

2 1176 Kocaeli, Turkey Yarimca 7.51 2.90 
3 1492 Chi-Chi, Taiwan TCU052 7.62 2.40 
4 1509 Chi-Chi, Taiwan TCU074 7.62 1.40 
5 825 Cape Mendocino Cape Mendocino 7.01 0.30 
6 1147 Kocaeli, Turkey Ambarli 7.51 2.40 

7 1149 Kocaeli, Turkey Atakoy 7.51 3.00 
8 2115 Denali, Alaska TAPS Pump Station #11 7.90 3.00 
9 1234 Chi-Chi, Taiwan CHY086 7.62 3.00 

10 169 Imperial Valley-06 Delta 6.53 1.10 
11 900 Landers Yermo Fire Station 7.28 1.50 

12 1528 Chi-Chi, Taiwan TCU101 7.62 1.50 
13 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.20 
14 779 Loma Prieta LGPC 6.93 0.70 

15 744 Loma Prieta Bear Valley #12 6.93 3.00 
16 1201 Chi-Chi, Taiwan CHY034 7.62 1.80 
17 1505 Chi-Chi, Taiwan TCU068 7.62 1.40 

18 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 1.70 

19 143 Tabas, Iran Tabas 7.35 0.30 

20 1148 Kocaeli, Turkey Arcelik 7.51 3.00 
21 1472 Chi-Chi, Taiwan TCU017 7.62 2.90 
22 1158 Kocaeli, Turkey Duzce 7.51 1.20 

23 175 Imperial Valley-06 El Centro Array #12 6.53 2.30 
24 776 Loma Prieta Hollister-South & Pine 6.93 1.80 

25 1792 Hector Mine 
Indio-Riverside Co Fair 

Grnds 
7.13 2.30 

26 1042 Northridge-01 
N Hollywood-Coldwater 

Cyn 
6.69 2.40 

27 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 2.30 

28 767 Loma Prieta Gilroy Array #3 6.93 2.80 
29 183 Imperial Valley-06 El Centro Array #8 6.53 1.30 
30 879 Landers Lucerne 7.28 1.20 

31 186 Imperial Valley-06 Niland Fire Station 6.53 2.80 
32 1491 Chi-Chi, Taiwan TCU051 7.62 2.70 
33 1510 Chi-Chi, Taiwan TCU075 7.62 1.90 
34 1497 Chi-Chi, Taiwan TCU057 7.62 2.40 

35 729 
Superstition Hills-

02 
Wildlife Liquef. Array 6.54 3.00 

36 184 Imperial Valley-06 El Centro Differential Array 6.53 2.60 
37 1488 Chi-Chi, Taiwan TCU048 7.62 1.90 
38 1504 Chi-Chi, Taiwan TCU067 7.62 2.10 
39 1533 Chi-Chi, Taiwan TCU106 7.62 2.00 
40 1476 Chi-Chi, Taiwan TCU029 7.62 3.00 
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APPENDIX F: DOCUMENTATION OF THE 
UTILIZED GROUND MOTIONS IN 
CHAPTER 9 

This appendix documents all the GMs utilized to develop reference benchmark PDSD for the 

investigated RC highway bridge systems. The GMs selected by the investigated four GMSM 

procedures are also documented in this appendix. 
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Table F.1 Documentation of 60 GMs used for the development of benchmark 
PDSD. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

1 125 Friuli, Italy-01 Tolmezzo 6.50 

2 126 Gazli, USSR Karakyr 6.80 

3 143 Tabas, Iran Tabas 7.35 

4 158 Imperial Valley-06 Aeropuerto Mexicali 6.53 

5 159 Imperial Valley-06 Agrarias 6.53 

6 161 Imperial Valley-06 Brawley Airport 6.53 

7 165 Imperial Valley-06 Chihuahua 6.53 

8 170 Imperial Valley-06 EC County Center FF 6.53 

9 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 

10 173 Imperial Valley-06 El Centro Array #10 6.53 

11 174 Imperial Valley-06 El Centro Array #11 6.53 

12 179 Imperial Valley-06 El Centro Array #4 6.53 

13 180 Imperial Valley-06 El Centro Array #5 6.53 

14 181 Imperial Valley-06 El Centro Array #6 6.53 

15 182 Imperial Valley-06 El Centro Array #7 6.53 

16 183 Imperial Valley-06 El Centro Array #8 6.53 

17 184 Imperial Valley-06 El Centro Differential Array 6.53 

18 185 Imperial Valley-06 Holtville Post Office 6.53 

19 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 

20 292 Irpinia, Italy-01 Sturno 6.90 

21 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 

22 722 Superstition Hills-02 Kornbloom Road (temp) 6.54 

23 723 Superstition Hills-02 Parachute Test Site 6.54 

24 725 Superstition Hills-02 Poe Road (temp) 6.54 

25 728 Superstition Hills-02 Westmorland Fire Sta 6.54 

26 741 Loma Prieta BRAN 6.93 

27 753 Loma Prieta Corralitos 6.93 

28 764 Loma Prieta Gilroy-Historic Bldg. 6.93 

29 766 Loma Prieta Gilroy Array #2 6.93 

30 768 Loma Prieta Gilroy Array #4 6.93 

31 779 Loma Prieta LGPC 6.93 

32 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 

33 802 Loma Prieta Saratoga-Aloha Ave 6.93 

34 803 Loma Prieta Saratoga-W Valley Coll. 6.93 

35 821 Erzican, Turkey Erzincan 6.69 

36 827 Cape Mendocino Fortuna-Fortuna Blvd 7.01 

37 828 Cape Mendocino Petrolia 7.01 

38 829 Cape Mendocino Rio Dell Overpass-FF 7.01 

39 864 Landers Joshua Tree 7.28 

40 879 Landers Lucerne 7.28 

41 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 

42 953 Northridge-01 Beverly Hills-14145 Mulhol 6.69 

43 959 Northridge-01 Canoga Park-Topanga Can 6.69 

44 960 Northridge-01 
Canyon Country-W Lost 

Cany 
6.69 

45 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 

46 1013 Northridge-01 LA Dam 6.69 

47 1042 Northridge-01 N Hollywood-Coldwater Can 6.69 

48 1044 Northridge-01 Newhall-Fire Sta 6.69 
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Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

49 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 

50 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 

51 1050 Northridge-01 Pacoima Dam (downstr) 6.69 

52 1052 Northridge-01 Pacoima Kagel Canyon 6.69 

53 1063 Northridge-01 Rinaldi Receiving Sta 6.69 

54 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 

55 1106 Kobe, Japan KJMA 6.90 

56 1111 Kobe, Japan Nishi-Akashi 6.90 

57 1116 Kobe, Japan Shin-Osaka 6.90 

58 1602 Duzce, Turkey Bolu 7.14 

59 1605 Duzce, Turkey Duzce 7.14 

60 1787 Hector Mine Hector 7.13 

61 139 Tabas, Iran Dayhook 7.35 

62 160 Imperial Valley-06 Bonds Corner 6.53 

63 162 Imperial Valley-06 Calexico Fire Station 6.53 

64 164 Imperial Valley-06 Cerro Prieto 6.53 

65 167 Imperial Valley-06 Compuertas 6.53 

66 175 Imperial Valley-06 El Centro Array #12 6.53 

67 187 Imperial Valley-06 Parachute Test Site 6.53 

68 189 Imperial Valley-06 SAHOP Casa Flores 6.53 

69 192 Imperial Valley-06 Westmorland Fire Sta 6.53 

70 284 Irpinia, Italy-01 Auletta 6.90 

71 289 Irpinia, Italy-01 Calitri 6.90 

72 495 Nahanni, Canada Site 1 6.76 

73 496 Nahanni, Canada Site 2 6.76 

74 497 Nahanni, Canada Site 3 6.76 

75 719 Superstition Hills-02 Brawley Airport 6.54 

76 752 Loma Prieta Capitola 6.93 

77 763 Loma Prieta Gilroy - Gavilan Coll. 6.93 

78 765 Loma Prieta Gilroy Array #1 6.93 

79 767 Loma Prieta Gilroy Array #3 6.93 

80 769 Loma Prieta Gilroy Array #6 6.93 

81 809 Loma Prieta UCSC 6.93 

82 810 Loma Prieta UCSC Lick Observatory 6.93 

83 811 Loma Prieta WAHO 6.93 

84 825 Cape Mendocino Cape Mendocino 7.01 

85 881 Landers Morongo Valley 7.28 

86 952 Northridge-01 Beverly Hills - 12520 Mulhol 6.69 

87 957 Northridge-01 Burbank - Howard Rd. 6.69 

88 983 Northridge-01 Jensen Filter Plant Generator 6.69 

89 1051 Northridge-01 Pacoima Dam (upper left) 6.69 

90 1078 Northridge-01 Santa Susana Ground 6.69 

91 1082 Northridge-01 Sun Valley - Roscoe Blvd 6.69 

92 1083 Northridge-01 Sunland - Mt Gleason Ave 6.69 

93 1087 Northridge-01 Tarzana - Cedar Hill A 6.69 

94 1611 Duzce, Turkey Lamont 1058 7.14 

95 1612 Duzce, Turkey Lamont 1059 7.14 

96 1614 Duzce, Turkey Lamont 1061 7.14 

97 1615 Duzce, Turkey Lamont 1062 7.14 

98 1617 Duzce, Turkey Lamont 375 7.14 

99 1618 Duzce, Turkey Lamont 531 7.14 
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Table F.2 Documentation of 40 GMs of  
1

TS
a

 procedure for Bridge A with 

Type I abutment modeling. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 179 Imperial Valley-06 El Centro Array #4 6.53 1.94 

2 292 Irpinia, Italy-01 Sturno 6.90 2.41 

3 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.52 

4 189 Imperial Valley-06 SAHOP Casa Flores 6.53 2.12 

5 495 Nahanni, Canada Site 1 6.76 1.65 

6 725 
Superstition Hills-

02 
Poe Road (temp) 6.54 2.34 

7 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 1.54 

8 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.45 

9 170 Imperial Valley-06 EC County Center FF 6.53 1.94 

10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.43 

11 766 Loma Prieta Gilroy Array #2 6.93 1.64 

12 767 Loma Prieta Gilroy Array #3 6.93 2.13 

13 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.28 

14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.75 

15 825 Cape Mendocino Cape Mendocino 7.01 1.75 

16 828 Cape Mendocino Petrolia 7.01 0.61 

17 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.89 

18 1013 Northridge-01 LA Dam 6.69 1.42 

19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.74 

20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.62 

21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.99 

22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.67 

23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.71 

24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.78 

25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.00 

26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.96 

27 1602 Duzce, Turkey Bolu 7.14 0.96 

28 1605 Duzce, Turkey Duzce 7.14 0.89 

29 126 Gazli, USSR Karakyr 6.80 1.15 

30 165 Imperial Valley-06 Chihuahua 6.53 1.31 

31 727 
Superstition Hills-

02 
Superstition Mtn Camera 6.54 1.02 

32 741 Loma Prieta BRAN 6.93 0.91 

33 864 Landers Joshua Tree 7.28 1.21 

34 959 Northridge-01 Canoga Park-Topanga Can 6.69 1.39 

35 960 Northridge-01 
Canyon Country-W Lost 

Cyn 
6.69 0.99 

36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.68 

37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.45 

38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.19 

39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.90 

40 1111 Kobe, Japan Nishi-Akashi 6.90 1.02 
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Table F.3 Documentation of 40 GMs of  
Pa

TS
1

 procedure for Bridge A with 

Type I abutment modeling. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 173 Imperial Valley-06 El Centro Array #10 6.53 4.42 

2 174 Imperial Valley-06 El Centro Array #11 6.53 2.50 

3 179 Imperial Valley-06 El Centro Array #4 6.53 1.94 

4 185 Imperial Valley-06 Holtville Post Office 6.53 2.72 

5 292 Irpinia, Italy-01 Sturno 6.90 2.41 

6 763 Loma Prieta Gilroy - Gavilan Coll. 6.93 3.30 

7 764 Loma Prieta Gilroy - Historic Bldg. 6.93 3.59 

8 765 Loma Prieta Gilroy Array #1 6.93 3.31 

9 170 Imperial Valley-06 EC County Center FF 6.53 1.94 

10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.43 

11 766 Loma Prieta Gilroy Array #2 6.93 1.64 

12 767 Loma Prieta Gilroy Array #3 6.93 2.13 

13 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.28 

14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.75 

15 825 Cape Mendocino Cape Mendocino 7.01 1.75 

16 828 Cape Mendocino Petrolia 7.01 0.61 

17 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.89 

18 1013 Northridge-01 LA Dam 6.69 1.42 

19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.74 

20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.62 

21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.99 

22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.67 

23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.71 

24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.78 

25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.00 

26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.96 

27 1602 Duzce, Turkey Bolu 7.14 0.96 

28 1605 Duzce, Turkey Duzce 7.14 0.89 

29 126 Gazli, USSR Karakyr 6.80 1.15 

30 165 Imperial Valley-06 Chihuahua 6.53 1.31 

31 727 
Superstition Hills-

02 
Superstition Mtn Camera 6.54 1.02 

32 741 Loma Prieta BRAN 6.93 0.91 

33 864 Landers Joshua Tree 7.28 1.21 

34 959 Northridge-01 Canoga Park-Topanga Cyn 6.69 1.39 

35 960 Northridge-01 
Canyon Country-W Lost 

Cyn 
6.69 0.99 

36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.68 

37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.45 

38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.19 

39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.90 

40 1111 Kobe, Japan Nishi-Akashi 6.90 1.02 
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Table F.4 Documentation of 40 GMs of  
1

TS
a

 procedure for Bridge A with 

Type II abutment modeling. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 139 Tabas, Iran Dayhook 7.35 2.02 

2 768 Loma Prieta Gilroy Array #4 6.93 1.75 

3 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.10 

4 189 Imperial Valley-06 SAHOP Casa Flores 6.53 2.01 

5 495 Nahanni, Canada Site 1 6.76 1.63 

6 725 
Superstition Hills-

02 
Poe Road (temp) 6.54 1.90 

7 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 1.61 

8 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.48 

9 170 Imperial Valley-06 EC County Center FF 6.53 1.70 

10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.47 

11 766 Loma Prieta Gilroy Array #2 6.93 1.84 

12 767 Loma Prieta Gilroy Array #3 6.93 1.73 

13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.93 

14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.96 

15 825 Cape Mendocino Cape Mendocino 7.01 1.55 

16 828 Cape Mendocino Petrolia 7.01 0.64 

17 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.11 

18 1013 Northridge-01 LA Dam 6.69 1.58 

19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.66 

20 1045 Northridge-01 
Newhall-W Pico Canyon 

Rd. 
6.69 1.58 

21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.56 

22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.57 

23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.78 

24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.69 

25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.09 

26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.80 

27 1602 Duzce, Turkey Bolu 7.14 0.79 

28 1605 Duzce, Turkey Duzce 7.14 1.12 

29 126 Gazli, USSR Karakyr 6.80 0.98 

30 165 Imperial Valley-06 Chihuahua 6.53 1.42 

31 727 
Superstition Hills-

02 
Superstition Mtn Camera 6.54 1.00 

32 741 Loma Prieta BRAN 6.93 0.86 

33 864 Landers Joshua Tree 7.28 1.77 

34 959 Northridge-01 Canoga Park-Topanga Cyn 6.69 0.85 

35 960 Northridge-01 
Canyon Country-W Lost 

Cyn 
6.69 0.88 

36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.74 

37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.26 

38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.13 

39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.72 

40 1111 Kobe, Japan Nishi-Akashi 6.90 1.31 
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Table F.5 Documentation of 40 GMs of  
Pa

TS
1

 procedure for Bridge A with 

Type II abutment modeling. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 173 Imperial Valley-06 El Centro Array #10 6.53 3.51 

2 174 Imperial Valley-06 El Centro Array #11 6.53 2.07 

3 179 Imperial Valley-06 El Centro Array #4 6.53 2.04 

4 185 Imperial Valley-06 Holtville Post Office 6.53 2.90 

5 292 Irpinia, Italy-01 Sturno 6.90 2.25 

6 763 Loma Prieta Gilroy-Gavilan Coll. 6.93 2.53 

7 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.56 

8 765 Loma Prieta Gilroy Array #1 6.93 2.41 

9 170 Imperial Valley-06 EC County Center FF 6.53 1.70 

10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.47 

11 766 Loma Prieta Gilroy Array #2 6.93 1.84 

12 767 Loma Prieta Gilroy Array #3 6.93 1.73 

13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.93 

14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.96 

15 825 Cape Mendocino Cape Mendocino 7.01 1.55 

16 828 Cape Mendocino Petrolia 7.01 0.64 

17 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.11 

18 1013 Northridge-01 LA Dam 6.69 1.58 

19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.66 

20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.58 

21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.56 

22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.57 

23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.78 

24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.69 

25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.09 

26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.80 

27 1602 Duzce, Turkey Bolu 7.14 0.79 

28 1605 Duzce, Turkey Duzce 7.14 1.12 

29 126 Gazli, USSR Karakyr 6.80 0.98 

30 165 Imperial Valley-06 Chihuahua 6.53 1.42 

31 727 
Superstition Hills-

02 
Superstition Mtn Camera 6.54 1.00 

32 741 Loma Prieta BRAN 6.93 0.86 

33 864 Landers Joshua Tree 7.28 1.10 

34 959 Northridge-01 Canoga Park-Topanga Cyn 6.69 0.85 

35 960 Northridge-01 
Canyon Country-W Lost 

Cyn 
6.69 0.88 

36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.74 

37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.26 

38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.13 

39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.72 

40 1111 Kobe, Japan Nishi-Akashi 6.90 1.31 
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Table F.6 Documentation of 40 GMs of CMS procedure for Bridge A with Type 
I abutment modeling. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1111 Kobe, Japan Nishi-Akashi 6.90 1.02 

2 1350 Chi-Chi, Taiwan ILA067 7.62 2.94 

3 1425 Chi-Chi, Taiwan TAP032 7.62 2.16 

4 739 Loma Prieta 
Anderson Dam 

(Downstream) 
6.93 2.01 

5 1317 Chi-Chi, Taiwan ILA013 7.62 2.06 

6 757 Loma Prieta Dumbarton Bridge West End  6.93 2.60 

7 776 Loma Prieta Hollister-South & Pine 6.93 1.58 

8 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.53 

9 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 2.45 

10 900 Landers Yermo Fire Station 7.28 2.58 

11 881 Landers Morongo Valley 7.28 2.20 

12 169 Imperial Valley-06 Delta 6.53 1.72 

13 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.78 

14 1508 Chi-Chi, Taiwan TCU072 7.62 0.78 

15 778 Loma Prieta Hollister Diff. Array 6.93 1.35 

16 527 N. Palm Springs Morongo Valley 6.06 1.94 

17 1490 Chi-Chi, Taiwan TCU050 7.62 2.73 

18 1521 Chi-Chi, Taiwan TCU089 7.62 2.31 

19 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.92 

20 1202 Chi-Chi, Taiwan CHY035 7.62 1.53 

21 1504 Chi-Chi, Taiwan TCU067 7.62 1.25 

22 1529 Chi-Chi, Taiwan TCU102 7.62 1.51 

23 1234 Chi-Chi, Taiwan CHY086 7.62 2.49 

24 1187 Chi-Chi, Taiwan CHY015 7.62 2.71 

25 1198 Chi-Chi, Taiwan CHY029 7.62 1.40 

26 1506 Chi-Chi, Taiwan TCU070 7.62 1.55 

27 1493 Chi-Chi, Taiwan TCU053 7.62 2.33 

28 343 Coalinga-01 Parkfield-Fault Zone 4 6.36 2.94 

29 1227 Chi-Chi, Taiwan CHY074 7.62 2.64 

30 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.49 

31 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.90 

32 729 
Superstition Hills-

02 
Wildlife Liquef. Array 6.54 2.70 

33 808 Loma Prieta Treasure Island 6.93 2.40 

34 1550 Chi-Chi, Taiwan TCU136 7.62 2.68 

35 1203 Chi-Chi, Taiwan CHY036 7.62 1.22 

36 1045 Northridge-01 
Newhall-W Pico Canyon 

Rd. 
6.69 1.64 

37 170 Imperial Valley-06 EC County Center FF 6.53 1.95 

38 1500 Chi-Chi, Taiwan TCU061 7.62 2.83 

39 159 Imperial Valley-06 Agrarias 6.53 2.29 

40 1456 Chi-Chi, Taiwan TAP095 7.62 2.24 
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Table F.7 Documentation of 40 GMs of CMS procedure for Bridge A with Type 
II abutment modeling. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 337 Coalinga-01 Parkfield-Fault Zone 12 6.36 2.88 

2 1087 Northridge-01 Tarzana-Cedar Hill A 6.69 0.43 

3 1184 Chi-Chi, Taiwan CHY010 7.62 2.52 

4 1317 Chi-Chi, Taiwan ILA013 7.62 1.76 

5 1221 Chi-Chi, Taiwan CHY065 7.62 2.40 

6 1234 Chi-Chi, Taiwan CHY086 7.62 2.50 

7 864 Landers Joshua Tree 7.28 1.82 

8 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 2.26 

9 808 Loma Prieta Treasure Island 6.93 2.24 

10 776 Loma Prieta Hollister-South & Pine 6.93 1.65 

11 1787 Hector Mine Hector 7.13 2.21 

12 778 Loma Prieta Hollister Diff. Array 6.93 1.51 

13 184 Imperial Valley-06 El Centro Differential Array 6.53 1.50 

14 1227 Chi-Chi, Taiwan CHY074 7.62 2.21 

15 1456 Chi-Chi, Taiwan TAP095 7.62 2.48 

16 342 Coalinga-01 Parkfield-Fault Zone 3 6.36 2.50 

17 1515 Chi-Chi, Taiwan TCU082 7.62 2.02 

18 1509 Chi-Chi, Taiwan TCU074 7.62 0.90 

19 1160 Kocaeli, Turkey Fatih 7.51 1.96 

20 316 Westmorland Parachute Test Site 5.90 2.33 

21 1493 Chi-Chi, Taiwan TCU053 7.62 2.50 

22 779 Loma Prieta LGPC 6.93 0.73 

23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.79 

24 1519 Chi-Chi, Taiwan TCU087 7.62 2.88 

25 1158 Kocaeli, Turkey Duzce 7.51 1.51 

26 1491 Chi-Chi, Taiwan TCU051 7.62 2.73 

27 1506 Chi-Chi, Taiwan TCU070 7.62 1.14 

28 1187 Chi-Chi, Taiwan CHY015 7.62 2.77 

29 1536 Chi-Chi, Taiwan TCU110 7.62 2.18 

30 1198 Chi-Chi, Taiwan CHY029 7.62 1.38 

31 1202 Chi-Chi, Taiwan CHY035 7.62 1.16 

32 1504 Chi-Chi, Taiwan TCU067 7.62 1.31 

33 169 Imperial Valley-06 Delta 6.53 1.69 

34 1770 Hector Mine Big Bear Lake-Fire Station 7.13 2.68 

35 1508 Chi-Chi, Taiwan TCU072 7.62 0.99 

36 183 Imperial Valley-06 El Centro Array #8 6.53 1.42 

37 527 N. Palm Springs Morongo Valley 6.06 2.30 

38 1484 Chi-Chi, Taiwan TCU042 7.62 2.27 

39 170 Imperial Valley-06 EC County Center FF 6.53 1.74 

40 1541 Chi-Chi, Taiwan TCU116 7.62 2.65 
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Table F.8 Documentation of 40 GMs of US procedure for Bridge A. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1518 Chi-Chi, Taiwan TCU085 7.62 2.00 

2 1515 Chi-Chi, Taiwan TCU082 7.62 2.60 

3 1491 Chi-Chi, Taiwan TCU051 7.62 2.80 

4 1537 Chi-Chi, Taiwan TCU111 7.62 3.00 

5 1502 Chi-Chi, Taiwan TCU064 7.62 3.00 

6 1529 Chi-Chi, Taiwan TCU102 7.62 3.00 

7 187 Imperial Valley-06 Parachute Test Site 6.53 1.80 

8 1494 Chi-Chi, Taiwan TCU054 7.62 3.00 

9 1476 Chi-Chi, Taiwan TCU029 7.62 3.00 

10 180 Imperial Valley-06 El Centro Array #5 6.53 2.00 

11 1496 Chi-Chi, Taiwan TCU056 7.62 3.00 

12 1492 Chi-Chi, Taiwan TCU052 7.62 1.70 

13 1086 Northridge-01 
Sylmar-Olive View Med 

FF 
6.69 2.90 

14 1148 Kocaeli, Turkey Arcelik 7.51 3.00 

15 1508 Chi-Chi, Taiwan TCU072 7.62 2.10 

16 1493 Chi-Chi, Taiwan TCU053 7.62 2.80 

17 1489 Chi-Chi, Taiwan TCU049 7.62 2.60 

18 169 Imperial Valley-06 Delta 6.53 3.00 

19 1488 Chi-Chi, Taiwan TCU048 7.62 3.00 

20 729 
Superstition Hills-

02 
Wildlife Liquef. Array 6.54 3.00 

21 1504 Chi-Chi, Taiwan TCU067 7.62 2.80 

22 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 2.00 

23 1490 Chi-Chi, Taiwan TCU050 7.62 2.90 

24 1787 Hector Mine Hector 7.13 2.90 

25 728 
Superstition Hills-

02 
Westmorland Fire Sta 6.54 2.90 

26 172 Imperial Valley-06 El Centro Array #1 6.53 2.80 

27 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 3.00 

28 900 Landers Yermo Fire Station 7.28 3.00 

29 1505 Chi-Chi, Taiwan TCU068 7.62 1.30 

30 1472 Chi-Chi, Taiwan TCU017 7.62 3.00 

31 1526 Chi-Chi, Taiwan TCU098 7.62 2.60 

32 1546 Chi-Chi, Taiwan TCU122 7.62 2.00 

33 1527 Chi-Chi, Taiwan TCU100 7.62 3.00 

34 182 Imperial Valley-06 El Centro Array #7 6.53 2.40 

35 832 Landers Amboy 7.28 3.00 

36 1528 Chi-Chi, Taiwan TCU101 7.62 2.40 

37 179 Imperial Valley-06 El Centro Array #4 6.53 1.70 

38 1202 Chi-Chi, Taiwan CHY035 7.62 2.90 

39 1231 Chi-Chi, Taiwan CHY080 7.62 1.00 

40 1521 Chi-Chi, Taiwan TCU089 7.62 2.00 
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Table F.9 Documentation of 40 GMs of  
1

TS
a

 procedure for Bridge B. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.53 

2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.73 

3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.86 

4 1044 Northridge-01 Newhall-Fire Sta 6.69 0.89 

5 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.07 

6 1602 Duzce, Turkey Bolu 7.14 1.11 

7 1051 Northridge-01 Pacoima Dam (upper left) 6.69 1.11 

8 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.20 

9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.26 

10 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.28 

11 828 Cape Mendocino Petrolia 7.01 1.28 

12 1013 Northridge-01 LA Dam 6.69 1.35 

13 179 Imperial Valley-06 El Centro Array #4 6.53 1.60 

14 1605 Duzce, Turkey Duzce 7.14 1.78 

15 825 Cape Mendocino Cape Mendocino 7.01 1.80 

16 766 Loma Prieta Gilroy Array #2 6.93 2.04 

17 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.12 

18 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.16 

19 184 Imperial Valley-06 El Centro Differential Array 6.53 2.23 

20 170 Imperial Valley-06 EC County Center FF 6.53 2.25 

21 185 Imperial Valley-06 Holtville Post Office 6.53 2.46 

22 292 Irpinia, Italy-01 Sturno 6.90 2.51 

23 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.11 

24 126 Gazli, USSR Karakyr 6.80 1.41 

25 864 Landers Joshua Tree 7.28 1.46 

26 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 1.47 

27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.58 

28 1787 Hector Mine Hector 7.13 1.74 

29 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.74 

30 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.80 

31 741 Loma Prieta BRAN 6.93 1.87 

32 727 
Superstition Hills-

02 
Superstition Mtn Camera 6.54 1.91 

33 960 Northridge-01 Canyon Country-W Lost Cyn 6.69 2.09 

34 728 
Superstition Hills-

02 
Westmorland Fire Sta 6.54 2.27 

35 1052 Northridge-01 Pacoima Kagel Cyn 6.69 2.31 

36 725 
Superstition Hills-

02 
Poe Road (temp) 6.54 2.36 

37 768 Loma Prieta Gilroy Array #4 6.93 2.37 

38 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 2.47 

39 1042 Northridge-01 N Hollywood-Coldwater Can 6.69 2.47 

40 495 Nahanni, Canada Site 1 6.76 2.59 
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Table F.10 Documentation of 40 GMs of  
pa

TS
1

 procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.53 

2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.73 

3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.86 

4 1044 Northridge-01 Newhall-Fire Sta 6.69 0.89 

5 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.07 

6 1602 Duzce, Turkey Bolu 7.14 1.11 

7 1051 Northridge-01 Pacoima Dam (upper left) 6.69 1.11 

8 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.20 

9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.26 

10 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.28 

11 828 Cape Mendocino Petrolia 7.01 1.28 

12 1013 Northridge-01 LA Dam 6.69 1.35 

13 179 Imperial Valley-06 El Centro Array #4 6.53 1.60 

14 1605 Duzce, Turkey Duzce 7.14 1.78 

15 825 Cape Mendocino Cape Mendocino 7.01 1.80 

16 766 Loma Prieta Gilroy Array #2 6.93 2.04 

17 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.12 

18 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.16 

19 184 Imperial Valley-06 El Centro Differential Array 6.53 2.23 

20 170 Imperial Valley-06 EC County Center FF 6.53 2.25 

21 185 Imperial Valley-06 Holtville Post Office 6.53 2.46 

22 292 Irpinia, Italy-01 Sturno 6.90 2.51 

23 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.11 

24 126 Gazli, USSR Karakyr 6.80 1.41 

25 864 Landers Joshua Tree 7.28 1.46 

26 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 1.47 

27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.58 

28 1787 Hector Mine Hector 7.13 1.74 

29 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.74 

30 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.80 

31 741 Loma Prieta BRAN 6.93 1.87 

32 727 
Superstition Hills-

02 
Superstition Mtn Camera 6.54 1.91 

33 960 Northridge-01 
Canyon Country-W Lost 

Cyn 
6.69 2.09 

34 728 
Superstition Hills-

02 
Westmorland Fire Sta 6.54 2.27 

35 173 Imperial Valley-06 El Centro Array #10 6.53 2.94 

36 767 Loma Prieta Gilroy Array #3 6.93 2.96 

37 1050 Northridge-01 Pacoima Dam (downstr) 6.69 3.06 

38 174 Imperial Valley-06 El Centro Array #11 6.53 3.08 

39 161 Imperial Valley-06 Brawley Airport 6.53 3.35 

40 765 Loma Prieta Gilroy Array #1 6.93 4.87 
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Table F.11 Documentation of 40 GMs of CMS procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 959 Northridge-01 Canoga Park-Topanga Can 6.69 2.61 

2 1457 Chi-Chi, Taiwan TAP097 7.62 2.57 

3 729 
Superstition Hills-

02 
Wildlife Liquef. Array 6.54 2.70 

4 1410 Chi-Chi, Taiwan TAP003 7.62 2.23 

5 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.20 

6 776 Loma Prieta Hollister-South & Pine 6.93 1.29 

7 1454 Chi-Chi, Taiwan TAP090 7.62 2.87 

8 1198 Chi-Chi, Taiwan CHY029 7.62 2.17 

9 1555 Chi-Chi, Taiwan TCU147 7.62 2.91 

10 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.91 

11 1425 Chi-Chi, Taiwan TAP032 7.62 2.82 

12 1334 Chi-Chi, Taiwan ILA044 7.62 2.91 

13 182 Imperial Valley-06 El Centro Array #7 6.53 1.31 

14 723 
Superstition Hills-

02 
Parachute Test Site 6.54 1.11 

15 1418 Chi-Chi, Taiwan TAP014 7.62 2.87 

16 771 Loma Prieta Golden Gate Bridge 6.93 2.41 

17 1515 Chi-Chi, Taiwan TCU082 7.62 2.51 

18 1530 Chi-Chi, Taiwan TCU103 7.62 2.93 

19 1286 Chi-Chi, Taiwan HWA037 7.62 2.84 

20 1541 Chi-Chi, Taiwan TCU116 7.62 2.10 

21 1494 Chi-Chi, Taiwan TCU054 7.62 2.52 

22 1504 Chi-Chi, Taiwan TCU067 7.62 1.10 

23 1264 Chi-Chi, Taiwan HWA013 7.62 2.51 

24 1529 Chi-Chi, Taiwan TCU102 7.62 1.29 

25 1503 Chi-Chi, Taiwan TCU065 7.62 0.70 

26 1537 Chi-Chi, Taiwan TCU111 7.62 2.97 

27 1547 Chi-Chi, Taiwan TCU123 7.62 1.97 

28 1492 Chi-Chi, Taiwan TCU052 7.62 0.75 

29 1536 Chi-Chi, Taiwan TCU110 7.62 1.90 

30 1147 Kocaeli, Turkey Ambarli 7.51 1.82 

31 527 N. Palm Springs Morongo Valley 6.06 2.09 

32 900 Landers Yermo Fire Station 7.28 2.23 

33 1550 Chi-Chi, Taiwan TCU136 7.62 1.94 

34 864 Landers Joshua Tree 7.28 1.46 

35 1456 Chi-Chi, Taiwan TAP095 7.62 2.86 

36 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 2.38 

37 2461 Chi-Chi, Taiwan-03 CHY028 6.20 2.77 

38 1551 Chi-Chi, Taiwan TCU138 7.62 2.34 

39 1534 Chi-Chi, Taiwan TCU107 7.62 2.45 

40 1265 Chi-Chi, Taiwan HWA014 7.62 2.98 
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Table F.12 Documentation of 40 GMs of US procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2492 Chi-Chi, Taiwan-03 CHY076 6.20 2.90 

2 1534 Chi-Chi, Taiwan TCU107 7.62 3.00 

3 1498 Chi-Chi, Taiwan TCU059 7.62 3.00 

4 1537 Chi-Chi, Taiwan TCU111 7.62 3.00 

5 1506 Chi-Chi, Taiwan TCU070 7.62 3.00 

6 1515 Chi-Chi, Taiwan TCU082 7.62 3.00 

7 1538 Chi-Chi, Taiwan TCU112 7.62 3.00 

8 1491 Chi-Chi, Taiwan TCU051 7.62 2.10 

9 1492 Chi-Chi, Taiwan TCU052 7.62 3.00 

10 1475 Chi-Chi, Taiwan TCU026 7.62 3.00 

11 1504 Chi-Chi, Taiwan TCU067 7.62 2.60 

12 1496 Chi-Chi, Taiwan TCU056 7.62 3.00 

13 1489 Chi-Chi, Taiwan TCU049 7.62 1.80 

14 1529 Chi-Chi, Taiwan TCU102 7.62 3.00 

15 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 2.90 

16 1490 Chi-Chi, Taiwan TCU050 7.62 3.00 

17 1546 Chi-Chi, Taiwan TCU122 7.62 2.10 

18 729 
Superstition Hills-

02 
Wildlife Liquef. Array 6.54 2.70 

19 1494 Chi-Chi, Taiwan TCU054 7.62 2.70 

20 1527 Chi-Chi, Taiwan TCU100 7.62 3.00 

21 832 Landers Amboy 7.28 2.90 

22 1158 Kocaeli, Turkey Duzce 7.51 3.00 

23 1202 Chi-Chi, Taiwan CHY035 7.62 2.30 

24 1508 Chi-Chi, Taiwan TCU072 7.62 1.40 

25 1501 Chi-Chi, Taiwan TCU063 7.62 2.80 

26 1493 Chi-Chi, Taiwan TCU053 7.62 2.70 

27 1482 Chi-Chi, Taiwan TCU039 7.62 2.60 

28 1505 Chi-Chi, Taiwan TCU068 7.62 1.20 

29 169 Imperial Valley-06 Delta 6.53 1.40 

30 1528 Chi-Chi, Taiwan TCU101 7.62 3.00 

31 1176 Kocaeli, Turkey Yarimca 7.51 3.00 

32 1148 Kocaeli, Turkey Arcelik 7.51 2.40 

33 1084 Northridge-01 Sylmar-Converter Sta 6.69 2.20 

34 179 Imperial Valley-06 El Centro Array #4 6.53 2.10 

35 1555 Chi-Chi, Taiwan TCU147 7.62 2.90 

36 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.20 

37 1436 Chi-Chi, Taiwan TAP052 7.62 3.00 

38 811 Loma Prieta WAHO 6.93 2.00 

39 1536 Chi-Chi, Taiwan TCU110 7.62 2.70 

40 1488 Chi-Chi, Taiwan TCU048 7.62 2.80 
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Table F.13 Documentation of 40 GMs of  
1

TS
a

 procedure for Bridge C. 

Record 

Number 

NGA Record 

Sequence 

Number 

Earthquake Name Station Magnitude 
Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.70 

2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.89 

3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.94 

4 1045 Northridge-01 
Newhall-W Pico Canyon 

Rd. 
6.69 0.95 

5 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.03 

6 1044 Northridge-01 Newhall-Fire Sta 6.69 1.13 

7 983 Northridge-01 
Jensen Filter Plant 

Generator 
6.69 1.16 

8 1605 Duzce, Turkey Duzce 7.14 1.53 

9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.59 

10 1013 Northridge-01 LA Dam 6.69 1.60 

11 766 Loma Prieta Gilroy Array #2 6.93 1.65 

12 179 Imperial Valley-06 El Centro Array #4 6.53 1.73 

13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.82 

14 170 Imperial Valley-06 EC County Center FF 6.53 1.90 

15 825 Cape Mendocino Cape Mendocino 7.01 1.91 

16 184 Imperial Valley-06 El Centro Differential Array 6.53 1.94 

17 828 Cape Mendocino Petrolia 7.01 1.96 

18 1602 Duzce, Turkey Bolu 7.14 1.98 

19 292 Irpinia, Italy-01 Sturno 6.90 2.04 

20 1051 Northridge-01 Pacoima Dam (upper left) 6.69 2.09 

21 173 Imperial Valley-06 EC Meloland Overpass FF 6.53 2.13 

22 767 Loma Prieta Gilroy Array #3 6.93 2.55 

23 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.62 

24 174 Imperial Valley-06 El Centro Array #11 6.53 2.69 

25 161 Imperial Valley-06 Brawley Airport 6.53 3.02 

26 126 Gazli, USSR Karakyr 6.80 1.19 

27 1048 Northridge-01 
Northridge-17645 Saticoy 

St 
6.69 1.71 

28 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.90 

29 960 Northridge-01 
Canyon Country-W Lost 

Cyn 
6.69 2.06 

30 768 Loma Prieta Gilroy Array #4 6.93 2.15 

31 1787 Hector Mine Hector 7.13 2.16 

32 959 Northridge-01 Canoga Park-Topanga Can 6.69 2.20 

33 864 Landers Joshua Tree 7.28 2.20 

34 1111 Kobe, Japan Nishi-Akashi 6.90 2.58 

35 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 2.64 

36 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.68 

37 1052 Northridge-01 Pacoima Kagel Canyon 6.69 2.78 

38 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.87 

39 829 Cape Mendocino Rio Dell Overpass-FF 7.01 2.88 

40 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 2.89 
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Table F.14 Documentation of 40 GMs of  
pa

TS
1

 procedure for Bridge C. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake Name Station Magnitude 
Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.70 

2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.89 

3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.94 

4 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 0.95 

5 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.03 

6 1044 Northridge-01 Newhall-Fire Sta 6.69 1.13 

7 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.16 

8 1605 Duzce, Turkey Duzce 7.14 1.53 

9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.59 

10 1013 Northridge-01 LA Dam 6.69 1.60 

11 766 Loma Prieta Gilroy Array #2 6.93 1.65 

12 179 Imperial Valley-06 El Centro Array #4 6.53 1.73 

13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.82 

14 170 Imperial Valley-06 EC County Center FF 6.53 1.90 

15 825 Cape Mendocino Cape Mendocino 7.01 1.91 

16 184 Imperial Valley-06 El Centro Differential Array 6.53 1.94 

17 828 Cape Mendocino Petrolia 7.01 1.96 

18 1602 Duzce, Turkey Bolu 7.14 1.98 

19 292 Irpinia, Italy-01 Sturno 6.90 2.04 

20 1051 Northridge-01 Pacoima Dam (upper left) 6.69 2.09 

21 173 Imperial Valley-06 EC Meloland Overpass FF 6.53 2.13 

22 767 Loma Prieta Gilroy Array #3 6.93 2.55 

23 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.62 

24 174 Imperial Valley-06 El Centro Array #11 6.53 2.69 

25 161 Imperial Valley-06 Brawley Airport 6.53 3.02 

26 126 Gazli, USSR Karakyr 6.80 1.19 

27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.71 

28 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.90 

29 960 Northridge-01 Canyon Country-W Lost Cyn 6.69 2.06 

30 768 Loma Prieta Gilroy Array #4 6.93 2.15 

31 1787 Hector Mine Hector 7.13 2.16 

32 959 Northridge-01 Canoga Park-Topanga Cyn 6.69 2.20 

33 864 Landers Joshua Tree 7.28 2.20 

34 1111 Kobe, Japan Nishi-Akashi 6.90 2.58 

35 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 2.64 

36 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.68 

37 1052 Northridge-01 Pacoima Kagel Canyon 6.69 2.78 

38 185 Imperial Valley-06 Holtville Post Office 6.53 2.72 

39 1050 Northridge-01 Pacoima Dam (downstr) 6.69 3.98 

40 765 Loma Prieta Gilroy Array #1 6.93 4.84 
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Table F.15 Documentation of 40 GMs of CMS procedure for Bridge C. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 1537 Chi-Chi, Taiwan TCU111 7.62 2.55 

2 1547 Chi-Chi, Taiwan TCU123 7.62 1.58 

3 1147 Kocaeli, Turkey Ambarli 7.51 2.55 

4 1329 Chi-Chi, Taiwan ILA037 7.62 2.50 

5 1262 Chi-Chi, Taiwan HWA011 7.62 2.99 

6 1492 Chi-Chi, Taiwan TCU052 7.62 0.65 

7 1203 Chi-Chi, Taiwan CHY036 7.62 1.96 

8 1553 Chi-Chi, Taiwan TCU141 7.62 2.79 

9 1536 Chi-Chi, Taiwan TCU110 7.62 1.17 

10 1472 Chi-Chi, Taiwan TCU017 7.62 2.64 

11 316 Westmorland Parachute Test Site 5.90 2.72 

12 1182 Chi-Chi, Taiwan CHY006 7.62 1.80 

13 721 
Superstition Hills-

02 
El Centro Imp. Co. Cent 6.54 2.23 

14 1317 Chi-Chi, Taiwan ILA013 7.62 2.75 

15 173 Imperial Valley-06 El Centro Array #10 6.53 2.13 

16 1187 Chi-Chi, Taiwan CHY015 7.62 2.72 

17 1503 Chi-Chi, Taiwan TCU065 7.62 0.80 

18 1166 Kocaeli, Turkey Iznik 7.51 2.28 

19 1264 Chi-Chi, Taiwan HWA013 7.62 2.71 

20 2509 Chi-Chi, Taiwan-03 CHY104 6.20 2.47 

21 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.68 

22 1504 Chi-Chi, Taiwan TCU067 7.62 1.01 

23 1534 Chi-Chi, Taiwan TCU107 7.62 2.13 

24 1509 Chi-Chi, Taiwan TCU074 7.62 0.90 

25 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.70 

26 1494 Chi-Chi, Taiwan TCU054 7.62 2.13 

27 1419 Chi-Chi, Taiwan TAP017 7.62 2.76 

28 1529 Chi-Chi, Taiwan TCU102 7.62 1.34 

29 1515 Chi-Chi, Taiwan TCU082 7.62 2.20 

30 900 Landers Yermo Fire Station 7.28 2.13 

31 1045 Northridge-01 
Newhall-W Pico Canyon 

Rd. 
6.69 0.95 

32 1787 Hector Mine Hector 7.13 2.16 

33 1410 Chi-Chi, Taiwan TAP003 7.62 1.78 

34 1316 Chi-Chi, Taiwan ILA012 7.62 2.97 

35 808 Loma Prieta Treasure Island 6.93 2.43 

36 169 Imperial Valley-06 Delta 6.53 1.73 

37 289 Irpinia, Italy-01 Calitri 6.90 2.71 

38 1491 Chi-Chi, Taiwan TCU051 7.62 2.52 

39 3317 Chi-Chi, Taiwan-06 CHY101 6.30 2.78 

40 864 Landers Joshua Tree 7.28 2.20 
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Table F.16 Documentation of 40 GMs of US procedure for Bridge C. 

Record 

Number 

NGA 

Record 

Sequence 

Number 

Earthquake 

Name 
Station Magnitude 

Scaling 

Factor 

1 2115 Denali, Alaska 
TAPS Pump Station 

#11 
7.90 1.80 

2 1436 Chi-Chi, Taiwan TAP052 7.62 2.60 

3 729 
Superstition Hills-

02 
Wildlife Liquef. Array 6.54 1.40 

4 1489 Chi-Chi, Taiwan TCU049 7.62 1.50 

5 1505 Chi-Chi, Taiwan TCU068 7.62 1.00 

6 732 Loma Prieta 
APEEL 2-Redwood 

City 
6.93 3.00 

7 1491 Chi-Chi, Taiwan TCU051 7.62 2.60 

8 1490 Chi-Chi, Taiwan TCU050 7.62 2.60 

9 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.80 

10 1787 Hector Mine Hector 7.13 2.70 

11 1494 Chi-Chi, Taiwan TCU054 7.62 2.40 

12 1492 Chi-Chi, Taiwan TCU052 7.62 2.30 

13 1504 Chi-Chi, Taiwan TCU067 7.62 2.60 

14 1527 Chi-Chi, Taiwan TCU100 7.62 3.00 

15 1526 Chi-Chi, Taiwan TCU098 7.62 2.80 

16 1488 Chi-Chi, Taiwan TCU048 7.62 3.00 

17 1048 Northridge-01 
Northridge-17645 

Saticoy St 
6.69 2.80 

18 801 Loma Prieta 
San Jose-Santa Teresa 

Hills 
6.93 3.00 

19 1475 Chi-Chi, Taiwan TCU026 7.62 3.00 

20 1478 Chi-Chi, Taiwan TCU033 7.62 2.80 

21 1496 Chi-Chi, Taiwan TCU056 7.62 2.80 

22 832 Landers Amboy 7.28 3.00 

23 1472 Chi-Chi, Taiwan TCU017 7.62 3.00 

24 1515 Chi-Chi, Taiwan TCU082 7.62 2.20 

25 1503 Chi-Chi, Taiwan TCU065 7.62 2.00 

26 169 Imperial Valley-06 Delta 6.53 1.90 

27 1546 Chi-Chi, Taiwan TCU122 7.62 3.00 

28 1482 Chi-Chi, Taiwan TCU039 7.62 2.90 

29 1529 Chi-Chi, Taiwan TCU102 7.62 3.00 

30 1045 Northridge-01 
Newhall-W Pico Cyn 

Rd. 
6.69 3.00 

31 1176 Kocaeli, Turkey Yarimca 7.51 3.00 

32 1508 Chi-Chi, Taiwan TCU072 7.62 2.50 

33 1493 Chi-Chi, Taiwan TCU053 7.62 3.00 

34 1476 Chi-Chi, Taiwan TCU029 7.62 2.80 

35 1528 Chi-Chi, Taiwan TCU101 7.62 1.90 

36 180 Imperial Valley-06 El Centro Array #5 6.53 2.00 

37 829 Cape Mendocino Rio Dell Overpass-FF 7.01 2.10 

38 1499 Chi-Chi, Taiwan TCU060 7.62 2.80 

39 179 Imperial Valley-06 El Centro Array #4 6.53 2.70 

40 139 Tabas, Iran Dayhook 7.35 1.80 
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