
PACIFIC EARTHQUAKE ENGINEERING
RESEARCH CENTER

Infl uence of Kinematic SSI on Foundation Input 
Motions for Bridges on Deep Foundations

Benjamin J. Turner

Scott J. Brandenberg

Jonathan P. Stewart

Department of Civil and Environmental Engineering
University of California, Los Angeles

PEER Report No. 2017/08
Pacifi c Earthquake Engineering Research Center

Headquarters at the University of California, Berkeley

November 2017
PEER 2017/08

November 2017



Disclaimer

The opinions, fi ndings, and conclusions or recommendations 
expressed in this publication are those of the author(s) 
and do not necessarily refl ect the views of the study 
sponsor(s), the Pacifi c Earthquake Engineering Research 
Center, or the Regents of the University of California.



 

Influence of Kinematic SSI on Foundation Input 
Motions for Bridges on Deep Foundations 

 

 
 
 
 
 
 

Benjamin J. Turner 

Scott. J. Brandenberg 

Jonathan P. Stewart 

 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 

PEER Report No. 2017/08 
Pacific Earthquake Engineering Research Center 

Headquarters at the University of California, Berkeley 

November 2017 



ii 

  



iii 

ABSTRACT 

Seismic design of bridges and other pile-supported structures often utilizes a substructure method 
of dynamic analysis in which the foundation elements are not explicitly modeled but are replaced 
by springs and dashpots representing the foundation impedance. The ground motion appropriate 
for input to the free end of the springs, known as the “foundation input motion” (FIM), differs 
from the free-field motion (FFM) due to the difference in stiffness and deformation characteristics 
between the pile(s) and soil, which is typically overlooked in practice. Results of a parametric 
study of the influence of kinematic pile–soil interaction on FIM are presented. One-dimensional 
nonlinear ground response analyses were used to define free-field motions, which were 
subsequently imposed on a beam-on-nonlinear-dynamic-Winkler-foundation pile model. The free-
field ground surface motion and top-of-pile FIM computed from these results were then used to 
compute transfer functions and spectral ratios for use with the substructure method of seismic 
analysis. A total of 1920 parametric combinations of different pile sizes, soil profiles, and ground 
motions were analyzed. 

Results of the study show that significant reductions of the FFM occur for stiff piles in soft 
soil, which could result in a favorable reduction in design demands for short-period structures. 
Group effects considering spatially-variable (incoherent) ground motions are found to be minor 
over the footprint of a typical bridge bent, resulting in an additional reduction of FFM by 10% or 
less compared to an equivalent single pile. 

This study aims to overcome limitations of idealistic assumptions that have been employed 
in previous studies such as linear-elastic material behavior, drastically simplified stratigraphy, and 
harmonic oscillations in lieu of real ground motions. In order to capture the important influence of 
more realistic conditions such as material nonlinearity, subsurface heterogeneity, and variable 
frequency-content ground motions, a set of models for predicting transfer functions and spectral 
ratios has been developed through statistical regression of the results from this parametric study. 
These allow foundation engineers to predict kinematic pile–soil interaction effects without 
performing dynamic pile analyses. 

While previously available elastic analytical models are shown to be capable of predicting 
the average results of this study, they do not adequately reflect the amount of variability in the 
results that arises from consideration of more realistic conditions. The new model is also used to 
re-examine available case history data that could not be explained by existing models. 

  



iv 

  



v 

ACKNOWLEDGMENTS 

This work was supported by the Pacific Earthquake Engineering Research Center’s (PEER) 
Program of Applied Earthquake Engineering Research of Lifelines Systems supported by the 
California Department of Transportation (Caltrans) and the Pacific Gas and Electric Company. 
Any opinions, findings, and conclusions or recommendations expressed in this material are those 
of the authors and do not necessarily reflect those of the sponsors. 

The authors would like to acknowledge the feedback and support from Tom Shantz of 
Caltrans acting as research coordinator of the PEER Lifelines Program, as well as the input of 
Professors John Wallace, Anne Lemnitzer, George Mylonakis, and George Anoyatis.



vi 

  



vii 

CONTENTS 

ABSTRACT .................................................................................................................................. iii 

ACKNOWLEDGMENTS .............................................................................................................v 

TABLE OF CONTENTS ........................................................................................................... vii 

LIST OF TABLES ....................................................................................................................... xi 

LIST OF FIGURES ................................................................................................................... xiii 

LIST OF SYMBOLS ................................................................................................................. xix 

1  INTRODUCTION..............................................................................................................1 

1.1  Organization ...........................................................................................................2 

1.2  Fundamentals .........................................................................................................3 

1.3  Previous Studies ...................................................................................................10 

1.3.1  Winkler Analysis and p-y Curves ..............................................................10 

1.3.2  Analytical and Numerical Solutions for Pile Dynamics ............................12 

1.3.3  Normalization Schemes .............................................................................15 

1.3.4  Limitations of Elastic and Analytical Solutions ........................................19 

1.3.5  Experimental Investigations.......................................................................20 

1.3.6  Empirical Observations of Kinematic Pile–Soil Interaction ......................21 

1.4  Kinematic SSI in Building Codes .......................................................................29 

1.5  Notes on Terminology and Notation ..................................................................30 

2  ELASTIC ANALYTICAL AND NUMERICAL SOLUTIONS ..................................31 

2.1  Elastic Analytical Solution ..................................................................................31 

2.2  Elastic Numerical Solution ..................................................................................37 

2.3  Elastic Winkler Modulus .....................................................................................39 

2.3.1  Terminology and Units ..............................................................................39 

2.3.2  Previous Definitions of Ke .........................................................................40 

2.3.3  Diameter Effects ........................................................................................44 

2.4  Questions of Pile Mass and Inertia .....................................................................46 

2.5  Pile–Soil System Fundamental Frequency and Resonance ..............................47 

3  ANALYSIS .......................................................................................................................49 

3.1  Approach ..............................................................................................................49 



viii 

3.2  Parametric Study Bounds ...................................................................................50 

3.3  PySimple3—Motivation and Model Updates ....................................................50 

3.3.1  Motivation ..................................................................................................51 

3.3.2  Governing Equations and OpenSees Implementation ...............................53 

3.4  PySimple3—Parameter Values...........................................................................55 

3.4.1  Initial Elastic Stiffness Ke ..........................................................................55 

3.4.2  Ultimate Resistance ...................................................................................57 

3.4.3  Curvature Parameter and Yield Force ........................................................57 

3.4.4  Radiation Damping ....................................................................................61 

3.5  Pile Modeling ........................................................................................................65 

3.5.1  Pile Moment-Curvature Behavior ..............................................................65 

3.5.2  Pile Head Fixity Condition ........................................................................67 

3.5.3  Pile Shear Deformations ............................................................................68 

3.5.4  Pile Groups.................................................................................................69 

3.6  Soild Profiles for Analyses ...................................................................................70 

3.7  Ground Motions ...................................................................................................71 

3.7.1  Baker et al. [2011] Ground Motion Suite ..................................................71 

3.7.2  Ground Response Analyses .......................................................................75 

3.7.3  Ground Motion Incoherence ......................................................................76 

3.8  OpenSees Analysis ...............................................................................................79 

4  RESULTS .........................................................................................................................81 

4.1  Single Piles ............................................................................................................81 

4.2  Normalized Results using Dimensionless Frequency........................................93 

4.3  Controlling Parameters and Comparison to Elastic Solutions ........................97 

4.4  Generalized Models for Predicting Transfer Functions.................................103 

4.4.1  Functional Form .......................................................................................105 

4.4.2  Approach ..................................................................................................106 

4.4.3  Models for Predicting Fixed-Head Transfer Function Coefficients ........108 

4.4.4  Models for Predicting Free-Head Displacement Transfer Function 
Coefficients ..............................................................................................114 

4.4.5  Models for Predicting Free-Head Rotation Transfer Function 
Coefficients ..............................................................................................118 

4.5  Generalized Models for Predicting Spectral Ratios .......................................123 

4.5.1  Functional Form .......................................................................................123 

4.5.2  Models for Predicting Fixed-Head Spectral Ratio Coefficients ..............125 



ix 

4.5.3  Models for Predicting Free-Head Spectral Ratio Coefficients ................130 

4.6  Pile-Group Results .............................................................................................134 

5  COMBINATION OF INERTIAL AND KINEMATIC PILE–SOIL 
INTERACTION .............................................................................................................137 

5.1  Combining Inertial and Kinematic SSI ...........................................................137 

5.1.1  Linear-Elastic SDOFO-Pile–Soil System ................................................139 

5.1.2  Effects of SDOFO Properties ...................................................................146 

5.1.3  Effect of Pile-Soil Kinematic Interaction Corner Frequency versus 
SDOFO Fundamental Frequency .............................................................148 

5.1.4  Effect of Pile–Soil interaction Nonlinearity ............................................149 

6  EXAMPLE APPLICATIONS OF TRANSFER FUNCTION AND 
SPECTRAL RATIO PREDICTION MODELS .........................................................155 

6.1  Empirical Case Studies ......................................................................................155 

6.1.1  Sendai, Japan, Site after Givens et al. [2012] ..........................................155 

6.1.2  Lancaster, California, Site after Kim and Stewart [2003]. ......................159 

6.2  Example Application of Spectral Ratio Prediction Model for Pile-
Supported Bridge ...............................................................................................163 

7  CONCLUSIONS AND RECOMMENDATIONS FOR ENGINEERING 
PRACTICE .....................................................................................................................169 

7.1  Predictive Models and Limitations...................................................................171 

7.2  Reinterpretation of Empirical Case Studies ....................................................172 

7.3  Future Research Needs ......................................................................................173 

REFERENCES ...........................................................................................................................175 

APPENDIX A  SITE PROFILES FOR KINEMATIC PILE–SOIL 
INTERACTION ANALYSIS ......................................................................183 

APPENDIX B  A FRAMEWORK FOR FULL-SCALE EXPERIMENTAL 
MEASUREMENTS OF KINEMATIC PILE–SOIL 
INTERACTION ...........................................................................................197 

  



x 

  



xi 

LIST OF TABLES 

Chapter 2 

Table 2.1  Ground motions for elastic numerical analyses; numbering follows Baker 
et al. [2011]. ...........................................................................................................39 

Table 2.2  δ expressions from previous researchers derived by matching results of 
BDWF analyses to continuum analyses. ................................................................44 

Chapter 3 

Table 3.1  Parametric study bounds for single piles. ..............................................................50 

Table 3.2  Site time-averaged shear-wave velocity characteristics for Sites 1–6. ..................71 

Table 3.3  Ground-motion records used for analyses (after Baker et al. [2011]). ..................73 

Table 3.4  Intensity measures for ground-motion set. .............................................................74 

Table 3.5  Summary of ground-motion intensity measures. ...................................................75 

Table 3.6  Site fundamental frequencies. ................................................................................76 

Table 3.7  Segment duration (L) and frequency bands (b) used in the FDW routine. ............78 

Chapter 4 

Table 4.1  Fixed-head transfer function coefficient prediction model metrics. ....................110 

Table 4.2  Metrics for free-head displacement transfer function coefficient prediction 
models. .................................................................................................................115 

Table 4.3  Metrics for free-head rotation transfer function coefficient prediction 
models. .................................................................................................................119 

Table 4.4  Fixed-head spectral ratio coefficient prediction model metrics. ..........................127 

Table 4.5  Metrics for free-head spectral ratio coefficient prediction models. .....................131 

 

 
  



xii 

  



xiii 

LIST OF FIGURES 

Chapter 1 

Figure 1.1  Substructure method of analysis for bridge bent supported on a pile group. 
Note that vertical impedance is not shown but could also be considered. ...............4 

Figure 1.2  Profiles of soil and free-head pile displacement for three frequencies of 
harmonic free-field excitation. .................................................................................6 

Figure 1.3  Profiles of soil and fixed-head pile displacement for three frequencies of 
harmonic free-field excitation. .................................................................................6 

Figure 1.4  Kinematic pile–soil interaction transfer functions computed for idealized 
linear-elastic conditions. ..........................................................................................7 

Figure 1.5  Time- and frequency-domain representations of pile seismic response for 
computation of kinematic transfer function. ............................................................9 

Figure 1.6  Time-domain and response spectrum representations of pile seismic 
response for computation of kinematic spectral ratios. .........................................10 

Figure 1.7  Kinematic pile-soil transfer functions from Fan et al. [1991] study for 
single pile with length-to-diameter ratio of 20. .....................................................15 

Figure 1.8  Static kinematic pile–soil interaction transfer functions using improved 
dimensionless frequency definition from Anoyatis et al. [2013]. Applies 
for a free-tip pile with λL ≥ 5 and homogeneous elastic soil of any 
stiffness. .................................................................................................................18 

Figure 1.9  Comparison of observed versus model prediction transfer functions for a 
5-story hospital building in Lancaster, California, during the 1994 
Northridge, California, earthquake (after Kim and Stewart [2003]). ....................23 

Figure 1.10  Comparison of observed versus model prediction transfer functions for a 
4-story building at Tohoku Institute of Technology in Sendai, Japan, 
during the 2011 Tohoku, Japan, earthquake (after Givens et al. [2012]). .............23 

Figure 1.11  Influence of small changes between input and output signals on system 
transfer functions. Relative to input signal, the output signal (a) is 
identical, (b) is perfectly out-of-phase, (c) is out of phase by 0.1, and (d) 
exhibits slight baseline drift. ..................................................................................28 

Chapter 2 

Figure 2.1  Soil and pile response under imposed 10 Hz harmonic ground motion 
using elastic analytical solutions. ...........................................................................35 

Figure 2.2  Transfer function for kinematic soil–structure interaction effects for three 
diameters of 25-m long, fixed-head reinforced concrete piles in soft- and 
stiff-soil profiles. ....................................................................................................36 



xiv 

Figure 2.3  Transfer functions from Figure 2.2 plotted versus dimensionless frequency 
and compared to Anoyatis et al. [2013]. All solutions lie within the same 
narrow band. ..........................................................................................................36 

Figure 2.4  Analytical and numerical solution transfer functions for sine-sweep input 
motion. ...................................................................................................................38 

Figure 2.5  Fourier amplitude spectra for free-field and foundation-input motions (top) 
and corresponding transfer functions (bottom). .....................................................38 

Figure 2.6  (a) Normal and (b) shear stress contours around a laterally-loaded pile. 
Color key indicates change in stress from initial condition. ..................................41 

Figure 2.7  Values of Winkler coefficient δ proposed in previous pile SSI research. .............43 

Figure 2.8  Normalized elastic transfer functions computed with and without pile 
mass........................................................................................................................47 

Figure 2.9  Effect of resonance at pile–soil system fundamental frequency on 
kinematic transfer functions. ..................................................................................48 

Chapter 3 

Figure 3.1  Numerical modeling approach. ..............................................................................49 

Figure 3.2  Basic features of PySimple3 material under monotonic loading (after Choi 
et al. [2015]). ..........................................................................................................51 

Figure 3.3  Comparison of Boulanger et al. [1999] dynamic p-y material and later 
implementation in OpenSees. .................................................................................52 

Figure 3.4  PySimple3 viscoelastic-plastic material model formulation. .................................52 

Figure 3.5  Comparison of PySimple1 and PySimple3 material models. .................................53 

Figure 3.6  Effect of initial elastic stiffness Ke on PySimple3 behavior for typical soft-
clay properties. .......................................................................................................56 

Figure 3.7  Transfer functions (left) and p-y curve initial stiffness parameter versus 
depth plots (right) for free-head pile with uniform and variable values of 
Winkler coefficient  over the depth of the pile. ...................................................56 

Figure 3.8  Effect of PySimple3 curvature parameter C. ..........................................................57 

Figure 3.9  Phase2 finite element domain for plane-strain analyses of laterally loaded 
pile. The pile is displaced from left to right during the analyses. ..........................60 

Figure 3.10  Comparison of normalized y50 values using (a) existing p-y relationships 
and (b) from results of plane-strain finite element simulations of laterally-
loaded piles in Phase2 using Duncan-Chang nonlinear-elastic (D-C) and 
Mohr-Coulomb (M-C) soil constitutive models. ...................................................60 

Figure 3.11  Effect of radiation damping in PySimple3 material. ..............................................64 

Figure 3.12  Normalized dashpot coefficient for ν = 0.25 m, ρs = 1.7 Mg/m3 and Ep/Es ≈ 
690..........................................................................................................................64 



xv 

Figure 3.13  Moment curvature analyses conducted at axial load P = 0.05*Ag*f’c for (a) 
2-m- and (b) 0.5-m-diameter pile sections. ............................................................66 

Figure 3.14  Pile-group layout considered for analyses. ............................................................70 

Figure 3.15  Shear-wave velocity and reference strain (γr) profiles for Sites 1–6. ....................71 

Figure 3.16  Acceleration (top) and displacement (bottom) time series for seed motion 
(1971 San Fernando, California, earthquake, Lake Hughes #4 recording 
station) and simulated spatially-variable ground motions at locations 
corresponding to other piles in group layout shown in Figure 3.14. .....................79 

Chapter 4 

Figure 4.1  Transfer functions for Site 1 fixed-head piles. .......................................................82 

Figure 4.2  Transfer functions for Site 2 fixed-head piles. .......................................................83 

Figure 4.3  Transfer functions for Site 3 fixed-head piles. .......................................................84 

Figure 4.4  Transfer functions for Site 4 fixed-head piles. .......................................................85 

Figure 4.5  Transfer functions for Site 5 fixed-head piles. .......................................................86 

Figure 4.6  Transfer functions for Site 6 fixed-head piles. .......................................................87 

Figure 4.7  Transfer functions for Site 1 free-head piles. .........................................................88 

Figure 4.8  Transfer functions for Site 2 free-head piles. .........................................................89 

Figure 4.9  Transfer functions for Site 3 free-head piles. .........................................................90 

Figure 4.10  Transfer functions for Site 4 free-head piles. .........................................................91 

Figure 4.11  Transfer functions for Site 5 free-head piles. .........................................................92 

Figure 4.12  Transfer functions for Site 6 free-head piles. .........................................................93 

Figure 4.13  Normalized horizontal displacement transfer function results for fixed-
head piles. ..............................................................................................................95 

Figure 4.14  Normalized horizontal displacement transfer function results for free-head 
piles. .......................................................................................................................96 

Figure 4.15  Normalized rotation transfer function results for free-head piles. .........................97 

Figure 4.16  Mean fixed-head transfer function results for each pile/site combination. ............98 

Figure 4.17  Influence of changes in stiffness over pile length for B = 2.0 m, L = 30 m 
pile subjected to (a) 1971 San Fernando, California, earthquake (NGA 
record sequence number 72); (b) 1994 Northridge, California, earthquake 
(NGA record 1011); and (c) 1999 Chi-Chi, Taiwan, earthquake (NGA 
record 2661). ........................................................................................................100 

Figure 4.18  Competing effects of radiation damping and stiffness degradation due to 
pile–soil interaction. .............................................................................................100 



xvi 

Figure 4.19  Mean fixed-head transfer function results for each pile/site combination 
plotted versus dimensionless frequency: (a) shows variability in results 
due to pile stiffness, and (b) shows lack of variability in results due to pile 
slenderness ratio L/B. ...........................................................................................101 

Figure 4.20  Example of nonlinear least-squares regression to determine coefficients 
for free-head pile functional form [Equation (4.7)] using computed data 
for B = 2 m, L = 60 m pile embedded in Site 4 and subjected to 1999 
Hector Mine earthquake (NGA record sequence number 1786). ........................108 

Figure 4.21  Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for fixed-head transfer function coefficient prediction models. Lines on 
residuals plots show trend and ± one standard deviation. ....................................111 

Figure 4.22  Variability in fixed-head transfer function results for the two pile 
diameters considered in this study. ......................................................................112 

Figure 4.23  Mean fixed-head transfer function model prediction for B = 0.5 m 
compared to computed results. ............................................................................113 

Figure 4.24  Mean fixed-head transfer function model prediction for B = 2.0 m 
compared to computed results. ............................................................................114 

Figure 4.25  Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for free-head displacement transfer function coefficient prediction models. 
Lines on residuals plots show trend and ± one standard deviation. .....................116 

Figure 4.26  Mean free-head displacement transfer function model prediction for B = 
0.5 m compared to computed results. ..................................................................117 

Figure 4.27  Mean free-head displacement transfer function model prediction for B = 
2.0 m compared to computed results. ..................................................................118 

Figure 4.28  Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for free-head rotation transfer function coefficient prediction models. 
Lines on residuals plots show trend and ± one standard deviation. .....................120 

Figure 4.29  Variability in free-head rotation transfer function results for the two pile 
diameters considered in this study. ......................................................................121 

Figure 4.30  Mean free-head rotation transfer function model prediction for B = 0.5 m 
results. ..................................................................................................................122 

Figure 4.31  Mean free-head rotation transfer function model prediction for B = 2.0 m 
results. ..................................................................................................................123 

Figure 4.32  Fixed-head pile spectral ratio functional form after Di Laora and Sanctis 
[2013]. ..................................................................................................................124 

Figure 4.33  Free-head pile spectral ratio functional form. ......................................................125 

Figure 4.34  Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for fixed-head spectral ratio coefficient prediction models. Lines on 
residuals plots show trend and ± one standard deviation. ....................................128 

Figure 4.35  Fixed-head spectral ratio results. .........................................................................129 



xvii 

Figure 4.36  Fixed-head pile spectral ratio predictive model residuals....................................130 

Figure 4.37  Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for free-head spectral ratio coefficient prediction models. ..................................132 

Figure 4.38  Free-head pile spectral ratio results. ....................................................................133 

Figure 4.39  Free-head pile spectral ratio predictive model residuals. .....................................133 

Figure 4.40  Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 1, 
subjected to 1994 Northridge, California, earthquake (NGA record 
sequence number 957). ........................................................................................135 

Figure 4.41  Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 1, 
subjected to 1971 San Fernando, California, earthquake (NGA record 
sequence number 72). ..........................................................................................135 

Figure 4.42:  Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 4, 
subjected to 1971 San Fernando, California, earthquake (NGA record 
sequence number 72). ..........................................................................................136 

Chapter 5 

Figure 5.1  (a) Schematic of pile-soil kinematic interaction, which produces 
foundation-input motion (FIM) to free-field motion (FFM) transfer 
function (b), and (c) application of kinematic transfer function using 
substructure approach to represent a structure supported by a fixed-head 
pile; (d) the foundation motion (FM) transfer function differs from the 
FIM transfer function because of additional foundation displacements 
resulting from superstructure inertial forces. .......................................................138 

Figure 5.2  Idealized system used for direct analysis method. ...............................................139 

Figure 5.3  Comparison of transfer functions computed for pile–soil system and 
combined SDOF oscillator and pile–soil systems using direct and 
substructure analysis methods..............................................................................140 

Figure 5.4  Comparison of transfer functions computed with and without 
consideration of kinematic pile–soil interaction. .................................................142 

Figure 5.5  (a) Phase angle frequency-response curves for SDOFO–pile–soil system 
(inset) and (b)-(e) response history of system components at different 
frequencies of harmonic free-field excitation. .....................................................144 

Figure 5.6  Response of SDOFO-pile–soil system to harmonic free-field excitation. ...........145 

Figure 5.7  Transfer functions computed for variable SDOFO properties. Note fixed-
base fundamental frequency f1,SDOFO = 7 Hz for all cases. ...................................147 

Figure 5.8  Effect of varying fixed-base fundamental frequency of SDOFO–pile–soil 
system relative to kinematic pile–soil interaction transfer function corner 
frequency. .............................................................................................................149 



xviii 

Figure 5.9  Effect of nonlinear pile–soil interaction on SDOFO–pile–soil system 
transfer functions for homogeneous soil subjected to sine-sweep free-field 
excitation. .............................................................................................................151 

Figure 5.10  Formulation of nonlinear and equivalent-linear impedance spring macro-
elements to replace pile in substructure method of analysis. ...............................152 

Figure 5.11  Effect of nonlinear pile–soil interaction on SDOFO–pile–soil system 
transfer functions for Site 1 subjected to 1971 San Fernando, California, 
earthquake Lake Hughes #4 recording. ...............................................................153 

Chapter 6 

Figure 6.1  Tohoku Institute of Technology building layout after Givens et al. [2012] 
and idealized single-degree-of-freedom oscillator representation. ......................156 

Figure 6.2  Subsurface information for Sendai site after Givens et al. [2012]. 
Subsurface data originally reported by OYO Corporation [2007]. ......................156 

Figure 6.3  Model predictions versus empirical data for Tohoku Institute of 
Technology building during 2011 Tohoku earthquake after Givens et al. 
[2012]. ..................................................................................................................158 

Figure 6.4  Lancaster, California, hospital building layout and idealized single-degree-
of-freedom oscillator representation after Stewart and Stewart [1997]. ..............160 

Figure 6.5  Subsurface conditions at Lancaster site after Stewart and Stewart [1997]. .........161 

Figure 6.6  Predicted kinematic pile–soil interaction transfer function for the 
Lancaster site plotted versus (a) plain frequency and (b) dimensionless 
frequency. .............................................................................................................162 

Figure 6.7  Model predictions versus empirical data for the Lancaster building during 
1994 Northridge, California, earthquake after Kim and Stewart [2003]. ............163 

Figure 6.8  Longitudinal elevation view of proposed Linden Street Overcrossing 
replacement (after Caltrans [2016]). ....................................................................164 

Figure 6.9  Transverse elevation view of interior bent for proposed Linden Street 
Overcrossing replacement (after Caltrans [2016]). ..............................................164 

Figure 6.10  Acceleration response spectrum used for proposed Linden Street 
Overcrossing replacement (after construction plans, Caltrans [2016]). ..............165 

Figure 6.11  Shear-wave velocity profile measured using P-S suspension logging (after 
Caltrans [2016]). ..................................................................................................165 

Figure 6.12  Predicted spectral ratios for Linden Street Overcrossing. ...................................167 

Figure 6.13  Kinematic pile–soil interaction effect on acceleration response spectrum. .........167 

 

 
  



xix 

LIST OF SYMBOLS 

LATIN SYMBOLS (default units listed in parenthesis unless otherwise noted in 
text) 

0
pa
 

Dimensionless frequency for pile dynamics 

Ag Pile gross cross-sectional area (m2) 

B Pile diameter, or beam transverse width for beam-on-springs methods (m) 

c Dashpot coefficient (kNꞏs/m) 

c0 Phase speed of flexural waves in cylindrical rod (m/s) 

E Young’s modulus (kPa) 

Es Soil elastic Young’s modulus (kPa) 

Ep Pile elastic Young’s modulus (kPa) 

EISDOFO Flexural rigidity of single-degree-of-freedom oscillator column (kNꞏm2) 

f Frequency (Hz) 

f1,SDOFO First-mode fundamental frequency of fixed-base single-degree-of-freedom oscillator 
(Hz) 

f1̃,SDOFO First-mode fundamental frequency of flexible-base single-degree-of-freedom 
oscillator, i.e. considering foundation flexibility (Hz)  

fc Corner frequency of kinematic pile–soil interaction transfer function, defined as 
frequency beyond which significant deamplification of the free-field motion occurs 
due to kinematic pile–soil interaction (Hz) 

f’c Concrete 28-day nominal compressive strength (kPa) 

fm Ground motion mean frequency; inverse of Tm (Hz) 

G Shear modulus (kPa) 

H Thickness of soil profile from ground surface to bedrock (m) 

HSDOFO Height of single-degree-of-freedom oscillator from ground surface to lumped mass 
centroid (m) 

Hu Transfer function ordinate 

Ip Pile gross moment of inertia (m4) 

k Linear-elastic soil p-y curve stiffness [(kN/m)/m = kPa]  

kmsr Modulus of subgrade reaction [kN/m2/m = kPa/m = kN/m3] 

kSDOFO Horizontal swaying stiffness of single-degree-of-freedom oscillator (kN/m) 

Ke Soil p-y curve elastic stiffness [(kN/m)/m = kPa] 



xx 

Ke,10B Average value Ke computed over upper ten pile diameters [(kN/m)/m = kPa] 

Kxx Foundation impedance for horizontal translation degree of freedom (kN/m) 

K0 At-rest coefficient of lateral earth pressure 

L Pile length (m) 

lc Pile active length (m) 

mSDOFO Mass of single-degree-of-freedom oscillator (kg) 

M Moment (kNꞏm) 

M Earthquake moment magnitude 

Mcr Moment corresponding to cracking of concrete in tension for reinforced-concrete 
section (kNꞏm) 

My Moment corresponding to yielding of longitudinal reinforcing steel in tension for 
reinforced-concrete section (kNꞏm) 

My Yield moment for reinforced-concrete section (kNꞏm) 

p Soil p-y curve force, per unit length of pile (kN/m) 

P Pile axial load (kN) 

su Soil undrained shear strength (kPa) 

SDS Short-period spectral acceleration as defined in ASCE 7 (ASCE 2010); (g) 

Sij Cross power spectral density between signals i and j 

Sii Auto power spectral density for signal i 

Tm Ground motion mean period computed using Rathje et al. (2004); (s) 

ug Ground surface displacement (m) 

up Pile head displacement (m) 

u(t) Displacement signal in time domain (m) 

U(ω) Frequency-domain representation of the time domain signal u(t)  

VS Soil shear wave velocity (m/s) 

VS,10B Time-averaged shear wave velocity computed over upper ten pile diameters (m/s) 

VS,30 Time-averaged shear wave velocity computed over upper 30 m of site profile (m/s) 

VS,H Time-averaged shear wave velocity computed over full thickness of soil profiles 
used for ground response analyses, H (m/s) 

VS,L Time-averaged shear wave velocity computed over length of pile, L (m/s) 

y Soil p-y curve relative horizontal displacement between pile and soil (m) 

z Depth below ground surface measured as a positive number (m) 
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GREEK SYMBOLS AND OPERATORS 

α Static stiffness modifier for pile lateral translation 

β Damping, expressed as percentage of critical damping. 

δ Ratio of Winkler modulus Ke to soil elastic modulus Es  

Δt Time increment for discrete time signal (s) 

ε50 Strain mobilized at one-half of maximum stress during laboratory strength tests on 
soil 

F Fourier transform operator 

γavg Average soil shear strain in pile–soil interaction zone of influence for laterally-
loaded pile 

γr Reference strain corresponding to 50% modulus reduction 

γ2 Coherence 

κ Wavenumber 

λ Characteristic term or “Winkler parameter” for laterally loaded pile (m-1) 

λff Wavelength of free-field soil column under harmonic excitation (m) 

ν Poisson’s ratio 

ω Angular frequency (rad./s) 

ϕ Curvature (m-1) 

ϕpk Soil peak friction angle (deg.) 

θ Pile head rotation (radians) 

ρp Mass density of pile (Mg/m3) 

ρs Mass density of soil (Mg/m3) 
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1 Introduction 

Seismic design of bridges and other structures supported on bored or driven piles often utilizes a 
substructure method of dynamic analysis in which the foundation elements are not explicitly 
modeled but are replaced by springs and dashpots representing the foundation impedance. The 
ground motion appropriate for input to the free end of the springs, known as the foundation input 
motion (FIM) differs from the free-field motion (FFM) due to the difference in stiffness and 
deformation characteristics between the pile(s) and soil, which is the concept of kinematic soil–
structure interaction (SSI). As with many other aspects of SSI, the difference between the FIM and 
FFM often results in a favorable reduction in demand placed on the structure, yet it is typically 
ignored in practice. In some cases, however, the FIM could actually be greater than the FFM, 
which is also typically overlooked. 

Within the substructure method, the problem of relating the FFM to the FIM is solved 
separately from the dynamic analysis of the superstructure. Ground motions from a seismic hazard 
analysis represent shaking in the free field and must be modified to account for kinematic SSI. For 
example, the PEER ground-motion database [Ancheta et al. 2014], a commonly used source for 
accelerograms used for dynamic analyses, excludes records influenced by SSI. Similarly, response 
spectra representative of the FFM rather than the FIM are typically used for pseudo-static response 
spectrum analysis. Pseudo-spectral accelerations (PSA) on seismic hazard maps and site 
amplification factors used in building codes and seismic design guidelines (e.g., ASCE-7 [2010]) 
do not include the influence of SSI. 

Whereas kinematic SSI for shallow foundations is relatively well understood, and tools are 
available for implementation in routine practice (e.g., NIST [2012]), similar tools are not yet 
available for piles. Since the 1960s, several researchers have studied the response of piles and pile 
groups using simplifying assumptions such as linear elasticity, homogeneous soil properties, and 
harmonic ground motions, including Tajimi [1969], Flores-Berones and Whitman [1982], Gazetas 
and Dobry [1984a], Fan et al. [1991], Kaynia and Novak [1992], and many others. More recent 
developments such as Anoyatis et al. [2013], Sica et al. [2013], and Di Laora and Rovithis [2014] 
have incorporated the effects of inhomogeneous and layered soil profiles and different pile 
boundary conditions. However, the previous studies to-date have yet to produce tools such as 
formulas for transfer functions and response spectrum scaling factors that reliably account for the 
complexity of realistic pile, soil, and ground motion conditions—in particular, nonlinear material 
behavior—yet are simple enough for implementation in routine practice. The purpose of this study 
is to develop such tools with consideration of realistic dynamic material behavior and subsurface 
conditions using the type of information known for a typical project. Emphasis is placed on 
evaluating the influence of the following factors: 
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 Nonlinearity due to (i) free-field site response, (ii) interaction at the pile–soil 
interface, and (iii) nonlinear pile structural behavior. 

 Inhomogeneous soil profiles, which for this study are developed from the 
results of real subsurface investigations. 

 The complexity of real ground motions, including variable frequency content, 
intensity, and incoherence (i.e., spatial variability). 

 Pile group behavior, in particular the influence of ground-motion incoherence 
over the spatial extent of the pile group in light of the preceding factors. 

Previous computational studies using elastic material properties and other highly idealized 
conditions have generally concluded that reductions between the FIM and FFM are insignificant 
and can be ignored in practice. This study demonstrates that large-diameter piles used in soft-soil 
conditions can result in reductions to design ground motions that are significant and could result 
in appreciable cost savings. 

The few documented case studies of measured kinematic pile–soil interaction effects 
provide conflicting evidence as to whether or not it is a significant phenomenon that should be of 
interest to foundation engineers. This research seeks to explain these case studies and clearly 
demonstrate the conditions under which pile kinematic SSI should be considered, and likewise 
when it can safely be ignored. 

The outcome of this work is a set of “generalized models” for predicting transfer functions 
and spectral ratios for use in routine practice. The terminology “generalized model” is used here 
to refer to a mathematical model (i.e., equation with a specified functional form) intended to cover 
a wide range of conditions encountered in routine practice. The generalized model is implemented 
for specific project conditions by computing coefficients based on known project parameters such 
as pile size and soil shear-wave velocity. The coefficients have been determined by statistical 
regression of the results of a parametric analysis covering typical foundation, subsurface, and 
ground motions conditions. 

1.1 ORGANIZATION 

This report is organized as follows: 

 The remainder of Chapter 1 introduces the fundamentals of kinematic pile–soil 
interaction, followed by a literature review of previous work on the subjects of 
pile dynamics and lateral load analyses using the p-y method. Since most of the 
available pile kinematic solutions rely on simplifying assumptions of linear 
elasticity and highly idealized subsurface conditions, a critique is given in the 
context of the limitations of these assumptions and the motivation to overcome 
them with the present study. The limited amount of available empirical and 
experimental evidence of pile kinematic SSI is also presented. 

 Chapter 2 presents a derivation of an elastic analytical solution for kinematic 
pile–soil interaction. The closed-form solution that results is used for validating 
the numerical modeling approach that will subsequently be used for nonlinear 
analyses. 
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 Chapter 3 defines the bounds of the parametric study performed to investigate 
the kinematic pile problem, and lays out the means by which the input 
parameters for the nonlinear analyses were formulated. 

 Chapter 4 presents the results of the parametric study, followed by development 
of generalized models for predicting those results in a forward-design scenario. 
The forward prediction models consist of a specified functional form with 
coefficients that are predicted via equations developed through statistical 
regression. Comparisons are made between the nonlinear analysis results and 
idealized elastic solutions, which show that the elastic solutions generally are 
capable of predicting the average response of the nonlinear system. However, 
the elastic solutions fail to capture the large variability exhibited by the 
nonlinear analysis results, which is caused by the complexity of realistic 
subsurface conditions and ground motions, and soil nonlinearity. 

 Chapter 5 investigates issues related to the combination of inertial and 
kinematic SSI effects. An understanding of the combined effects is necessary 
for the re-examination of case history data presented in the following chapter. 

 Chapter 6 provides example applications of the generalized models through (i) 
re-examination of existing case history data, and (ii) a hypothetical bridge 
design scenario. 

 Chapter 7 provides conclusions and recommendations for implementation of 
the generalized results in engineering practice. 

 Appendix A contains profiles of soil properties that define the sites used for 
nonlinear analyses. 

 Appendix B discusses a pilot field study done as part of this project to measure 
kinematic pile–soil interaction transfer functions for full-scale conditions. The 
framework used for this pile study is documented with the intent that it will be 
repeated in the future for further validation of computational approaches. 

1.2 FUNDAMENTALS 

Soil–structure interaction (SSI) can be broadly classified into two effects1: 

 Inertial interaction, which describes how inertial forces generated in the 
structure induce foundation displacements and rotations that would not occur if 
the structure had a fixed base, resulting in additional displacements in the 
structure and a change of fundamental frequency or “period lengthening” 

 Kinematic interaction, which describes how waves propagating in the free field 
differ from the motion of the foundation(s) due to differential foundation–soil 
stiffness, ground-motion incoherence, and wave-scattering effects 

                                                 
 
1 Professor Robert V. Whitman is credited with coining the terms inertial and kinematic during the 1970s [Roesset 
1994; Kausel 2010]. 
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In the context of the substructure method, foundation “impedance” (defined below) depends 
primarily on inertial SSI, and kinematic SSI determines the appropriate FIM to be used for the 
analysis. For pile-supported structures, kinematic SSI will be referred to as “kinematic pile–soil 
interaction” in this text. 

Two effects resulting from kinematic pile–soil interaction are of interest to foundation 
engineers. The first, which is the primary subject of this study, is the difference between the FIM 
and the FFM. The second topic of interest is quantifying demands placed on the pile directly as a 
result of excitation of the surrounding soil. Pile foundations are typically designed only to resist 
force effects from the superstructure, including inertial demands during earthquake loading in 
seismic regions. Kinematic loads coming from the ground are often ignored, except for cases of 
large permanent ground displacement such as lateral spreading. However, kinematic pile–soil 
interaction can impose large demands on piles even in the absence of permanent ground 
deformation, particularly where a significant soil stiffness contrast exists over the length of the 
pile. While kinematic demands are not the focus of this study, the analysis method described herein 
sheds lights on the problem and could be used for future studies. 

The substructure method of SSI analysis (e.g., Roesset et al. [1973]) for a pile-supported 
structure can be summarized in three steps: 

1. Determine the kinematic response of the pile foundation with the mass of the 
supported structure set equal to zero; this provides an estimate of the demand on the 
pile resulting from the ground vibration as well as the motion at the top of the pile 
(the FIM); 

2. Determine the dynamic impedance at the pile head, consisting of frequency-
dependent springs and dashpots that relate an applied force or moment at the pile 
head to a unit displacement or rotation, respectively; and 

3. Evaluate the response of the structure supported on the springs and dashpots from 
step 2 and excited by the FIM from step 1. 

 

Figure 1.1 Substructure method of analysis for bridge bent supported on a pile 
group. Note that vertical impedance is not shown but could also be 
considered. 
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The substructure method for a pile-supported bridge bent is depicted in Figure 1.1. The 
alternative to the substructure method is to analyze the complete structure–pile–soil system 
simultaneously, known as the “direct” method of analysis. While this approach overcomes certain 
issues associated with combining the different steps of the substructure method, it is 
computationally expensive, difficult to perform using existing commercial software, and requires 
advanced expertise in both geotechnical and structural engineering. Hence for routine practice, 
tools and associated guidance for facilitating use of the substructure method are preferred. 

The stiffness contrast between a pile and surrounding soil is the primary mechanism driving 
kinematic pile–soil interaction. A stiff pile in a relatively soft-soil profile will generally undergo 
less deformation than the free-field soil, whereas the deformed shape of a flexible pile in stiff soil 
will be closer to the deformation of the surrounding ground. 

Frequency of the free-field excitation has a strong influence on kinematic pile–soil 
interaction because the wavelength of the free-field motion determines the extent to which the 
ground movement varies over the length of the pile. Wavelength of the free-field motion is defined 

as ff SV f  , where VS is soil shear-wave velocity, and f is the excitation frequency. This is 

illustrated in Figure 1.2 for a “floating” pile with free-head and free-tip boundary conditions of 
length L = 20 m, subjected to harmonic free-field excitation representing idealized vertically-
propagating shear waves. The pile flexural rigidity EpIp = 1325 MNꞏm2

 (Ep and Ip are the pile 
Young’s modulus and moment of inertia, respectively) corresponds to a B = 1-m-diameter circular 
reinforced concrete (RC) section. Figure 1.3 depicts the response of the same system, but for a 
fixed-head pile boundary condition in which the pile head is restrained against rotation to simulate 
connection to a pile cap or other stiff structural element. 

For low-frequency excitation, the pile moves in concert with the ground since the ground 
displacement is relatively uniform over L. For high-frequency, short-wavelength excitation, the 
ground displacement reverses directions many times over L. The pile flexural stiffness prevents it 
from conforming exactly to the ground displacement, instead averaging the variable ground 
displacements imposed over its length. This average displacement approaches zero at high 
frequencies corresponding to low ratios of λff/L. This is similar to the concept of base–slab 
averaging for shallow foundations (e.g., see Veletsos and Prasad [1988]), in which the stiffness 
and strength of the foundation average the spatially variable ground motions imposed across its 
footprint. As for shallow foundations, spatial variability (incoherence) of real ground motions has 
the potential to further increase the averaging effect for pile groups that cover a large area, such as 
the footprint of a building. 

Between these extremes, intermediate-frequency excitation places the largest flexural 
demands on the pile for the example parameters considered here. Notice that the free-field 
excitation has the same displacement amplitude for each of the frequencies shown. 
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Figure 1.2 Profiles of soil and free-head pile displacement for three frequencies of 
harmonic free-field excitation. 

 

 

 

Figure 1.3 Profiles of soil and fixed-head pile displacement for three frequencies of 
harmonic free-field excitation. 
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Figure 1.4 Kinematic pile–soil interaction transfer functions computed for idealized 
linear-elastic conditions. 

Taking the pile head motion up as the FIM and the ground surface displacement ug as the 
FFM, the ratio FIM/FFM can be expressed as a frequency-dependent transfer function by 
computing FIM/FFM at several frequencies over a range of interest. The transfer function can be 
thought of as a filter, which describes how the pile–soil system modifies an input signal (the FFM) 
to produce an output signal (FIM). A transfer function ordinate Hu of unity indicates that the soil 
and pile move in unison, such as depicted in Figure 1.2(a), while Hu ≈ 1.2 and 0.15 for the 
conditions depicted in Figure 1.2(b) and (c), respectively. Transfer functions for the free- and 
fixed-head piles are depicted in Figure 1.4. Notice that for the free-head pile, Hu exceeds 1.0 for 
frequencies up to about 7 Hz, indicating that the pile amplifies the ground motion (up > ug), while 
the fixed-head pile displaces less than the free field at all frequencies. The phenomenon of Hu >1.0 
for free-head piles, which occurs when λff ≈ L as depicted in Figure 1.2(b), will be referred to as 
“kinematic amplification” in this study. 

For both fixed- and free-head piles, the FIM is reduced from the FFM at high frequencies, 
implying that a structure supported by the piles will experience a beneficial reduction in demand 
at these frequencies if the FIM is used for design. The frequency beyond which Hu descends below 
unity will be referred to as the “corner frequency” (fc) of the transfer function in this text. Since Hu 
is technically less than unity for any f > 0 for elastic fixed-head transfer functions, an arbitrary 
definition of fc will be adopted as the frequency at which Hu ≈ 0.95, for example about 3.5 Hz for 
the fixed-head case in Figure 1.4. Whether or not the corner frequency falls within the frequency 
range of engineering interest (approximately 0.2–20 Hz for typical structures) depends on factors 
such as the relative stiffness contrast between the pile and soil, changes in soil stiffness over the 
length of the pile, and whether or not restraint against rotation is provided at the pile head. 

In addition to the differences in displacement between the pile and soil, Figure 1.2 shows 
that a free-head pile also undergoes rotation at the pile head due to the kinematic response. To 
compute the response of a structure supported by free-head piles using the substructure method, 
the pile head rotation θFIM must be input to the base of the structural model in addition to uFIM. 
Since rotation of the free-field soil column is zero at the ground surface for vertically propagating 
shear waves (since shear strain has to be zero for a zero stress condition), the transfer function for 
free-head pile rotation is instead normalized by the free-field displacement, and is usually 
multiplied by pile diameter such that is dimensionless (i.e., Hθ = θFIMꞏB / uFFM). 
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The transfer functions depicted in Figure 1.4 were computed using an analytically-derived 
linear-elastic solution that is presented in detail in Chapter 2. For more realistic pile, soil, and 
ground motion conditions typical of a real project, numerical techniques such as the finite-element 
method can be used to compute the dynamic response of the system, which is the approach used 
in this study. Because real earthquakes cause the free field and structure to respond at multiple 
frequencies simultaneously, and because of nonlinearity in the system response, the results of 
dynamic analyses cannot be used directly to compute up/ug at a single isolated frequency. Instead, 
the response history of the pile-head and ground-surface motions must be transformed to the 
frequency domain, e.g., using a Fourier transform. This allows Hu to be computed as the ratio of 
Fourier amplitude spectra (FAS) at each frequency over the range of interest as depicted in Figure 
1.5. The following notation is used to denote these operations: 

    u t U F   (1.1) 

     u FIM FFMH U U      (1.2) 

In Equations (1.1) and (1.2), u(t) is the time-domain signal of either the FIM (up) or FFM (ug), and 
F denotes a Fourier transform operation that produces a complex-valued frequency-domain signal 
denoted by capital letter U(ω). The amplitude and phase of the signal are computed from its real 
and imaginary parts [Re(U(ω)) and Im(U(ω))] as: 

     2 2
U Re U Im U             (1.3) 

 
 
 

arctanU

Im U

Re U


 



         
   (1.4) 

For simplicity, the abbreviation FAS is sometimes used as a shorthand for the magnitude of the 
FAS, that is FAS =  U  . The frequency domain signal can be represented equivalently in terms 

of either frequency f or angular frequency ω. 

Although transfer functions may be unfamiliar to foundation engineers outside the realm 
of pile dynamics, they are a very useful tool for seismic design. Once a kinematic pile–soil 
interaction transfer function has been defined for a given pile–soil system, it can be used to 
compute a FIM given a FFM without repeating the actual dynamic analysis of the pile subjected 
to the FFM. This is accomplished by convolving the transfer function with the FFM in the 
frequency domain (i.e., multiplying the FAS ordinates of the FFM and transfer function at each 
frequency), then performing an inverse-Fourier transform to recover the FIM signal in the time-
domain—essentially performing the process depicted in Figure 1.5(b)–(d) in reverse. These 
operations can easily be performed with commonly used mathematical software. Hence, if a 
reliable predictive model is made available to define a transfer function using parameters known 
for a typical project—pile and soil properties and estimates of ground-motion intensity measures 
from a seismic hazard analysis—then foundation engineers can skip the dynamic pile analysis yet 
still provide the structural designer an estimated FIM instead of FFM for more realistic dynamic 
analysis of the superstructure. 

While response history analysis may be used for major bridges or other critical 
infrastructure, for routine projects, seismic design is usually performed via pseudo-static response 
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spectrum analysis. By computing response spectra from a FIM and FFM, the ratio of spectral 
ordinates at each period can be computed as depicted in Figure 1.6. These “spectral ratios” (also 
referred to as ratio-of-response-spectra or RRS) can then be used in a forward-design scenario to 
modify FFM response spectra generated from the building code or site-specific seismic hazard 
analysis to represent a FIM. Hence, just as in the case of the transfer functions for dynamic 
analysis, if foundation engineers can reliably estimate spectral ratios using known project 
parameters, FIM response spectra can be generated for design purposes without performing 
dynamic pile analyses. 

Although the spectral ratio plot in Figure 1.6(d) appears to be equal to the transfer function 
plot in Figure 1.5(d) with the horizontal axes flipped, spectral ratios should not be interpreted 
simply as the inverse of the kinematic transfer function. A response spectrum represents the 
response of a single-degree-of-freedom oscillator (SFOFO) to an input ground motion and 
therefore depends on the properties of both the ground motion and the oscillator. Whereas the 
response spectrum ordinate at longer natural periods (low natural frequency) is heavily dependent 
on the flexibility of the oscillator, at short natural periods (high natural frequency) the spectral 
ordinate is controlled by the largest amplitude peak in the ground motion, which is usually 
dominated by intermediate frequency energy. 

 

 

Figure 1.5 Time- and frequency-domain representations of pile seismic response for 
computation of kinematic transfer function. 
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Figure 1.6 Time-domain and response spectrum representations of pile seismic 
response for computation of kinematic spectral ratios. 

1.3 PREVIOUS STUDIES 

1.3.1 Winkler Analysis and p-y Curves 

The approach used in this study is the beam-on-dynamic-nonlinear-Winkler-foundation (BDNWF) 
model solved numerically with the finite-element method. The Winkler method refers to the 
response of a beam supported on a bed of springs characterized by a constant elastic stiffness or 
“modulus of subgrade reaction,” the term favored by Terzaghi and Peck [1948]. Winkler’s [1867] 
hypothesis is that the pressure exerted by the subgrade on a loaded beam at a given point is 
proportional to the deflection of the beam at that point and independent of the response at other 
locations. Hetenyi [1946] and Vesic [1961] demonstrated that the error between Winkler models 
and elastic continuum models is small for many realistic scenarios involving flexible beams, and 
that when used within the appropriate bounds, the Winkler method can generate reliable results 
for foundation design. For analysis of piles, the Winkler family of methods considers a discretized 
foundation element attached to the ground through springs representative of horizontal and/or 
vertical pile–soil interaction, and has been extended to include nonlinear pile–soil interaction 
through p-y, t-z, and q-z curves. 

While the majority of previous studies of dynamic pile–soil interaction using the Winkler 
method have utilized linear-elastic Winkler foundation springs, this study utilizes nonlinear soil 
springs. Accounting for soil nonlinearity directly is a more robust approach than equivalent-linear 
methods that approximate nonlinearity through a strain-compatible degraded stiffness. This is 
particularly true when soil strains vary over the duration of a dynamic problem and over the length 
of a pile. Several variations of the Winkler method are possible ranging from static analysis with 
linear-elastic springs (BWF), to static analysis with nonlinear springs (BNWF), to the dynamic 
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analyses performed for this project. These methods will be collectively referred to as Winkler-type 
to distinguish them from continuum models. 

Early nonlinear p-y curves (e.g., McClelland and Focht [1958]) were developed by 
matching the results of full-scale load tests to simple functional forms that were based on the 
theoretical state of stress around a laterally loaded pile. The offshore oil drilling industry funded 
seminal work by Matlock [1970] for soft clays, Reese and Welch [1975] for stiff clay above 
groundwater, Reese et al. [1975] for submerged stiff clays, and Reese et al. [1974] for sand. Reese 
et al. [2006] provides an overview of the theoretical and experimental development of these p-y 
curves. Much of this original work has been improved upon and adapted for specific conditions; 
e.g., Reese et al. [1974] was updated by O’Neill and Murchison [1983] and is often known as the 
“API sand” curve [API 1993]. Boulanger et al. [2003] recommended further modifications to the 
API [1993] curve to reflect the fact that the modulus of sand tends to increase approximately in 
proportion to the square root of confining pressure rather than increasingly linearly with depth. 

The first-widely available computer-based implementation of the p-y method was a finite-
difference solution called COM624 [Reese and Sullivan 1980]. This code later became the basis 
for the commercial program LPILE [Reese et al. 2005] and other similar software that is widely 
used in practice. For many projects, the extent of “seismic” foundation design is that the project 
structural engineer provides the foundation engineer with top-of-pile force effects (shear, axial, 
and moment), and the foundation designer sizes the pile in terms of diameter and length to 
adequately resist these loads. Even in cases when the design loads are pseudo-static representations 
of seismic inertial forces, LPILE or an equivalent program is often used to design for seismic 
lateral loads as if they were static, without consideration of the fact that the default p-y curves 
available in the software are not intended for dynamic problems. While top-of-pile spring stiffness 
matrices (impedance functions) are sometimes provided back to the structural designer for further 
analyses, kinematic pile–soil interaction is rarely considered. 

While the p-y curves described above have seen widespread use in practice, they were 
initially developed for static or slow-monotonic loading conditions. In some instances, effects of 
cyclic degradation over time were taken into account, but these were meant to represent repeated 
cyclic loading from wave action for offshore applications—not rapid, high-intensity cyclic loading 
from earthquakes. Existing p-y curve definitions have several shortcomings, including (after 
Khalili-Tehrani et al. [2014]): 

 Inaccurate small-strain stiffness. 

 A functional dependence on diameter that is not thoroughly validated since the 
curves are based on a limited number of tests. 

 A lack of functional dependence on the pile head boundary condition. 

For dynamic analyses, the initial stiffness problem is of greatest concern. There are two 
issues to consider: 

1. Some of the functional forms (e.g., Matlock [1970] and Reese and Welch [1975]) 
have an initial tangent stiffness of infinity. While this may be trivial for conventional 
problems in which loads applied at the pile head induce significant head displacement 
and thus reach the nonlinear range of the p-y curve, infinite stiffness is problematic 
for dynamic problems where small relative displacements may occur between the pile 
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and soil, especially at depth. Small trial displacements during numerical solution 
routines will result in erroneously large forces, causing convergence problems. 
Furthermore, infinite initial stiffness is problematic when performing modal analyses 
to compute natural frequencies of the pile-soil or structure-pile–soil system. 

2. Because of the rudimentary equipment used in the early tests, accurate 
measurements of pile strains could not be achieved in the range of truly elastic 
soil behavior [Choi et al. 2015]. This error is further propagated when the strains 
are numerically double integrated to compute displacement and double 
differentiated to compute soil reaction, which are necessary steps to generate p-y 
curves from load test results. Hence, even if the functional form of the p-y curve 
allows specification of the initial stiffness, the available load test results are not 
adequate for accurately defining it. A more attractive approach would relate the 
initial stiffness of the soil–pile interaction to the elastic soil stiffness measured in 
situ using geophysical methods (e.g., maximum shear modulus Gmax), which is 
described further in §3.4.1. 

Lam [2009] questioned the applicability of initial stiffness corresponding to Gmax for 
practical applications of p-y curves, noting that several lateral load tests of full- and model-scale 
piles have shown that the measured initial p-y stiffness is significantly softer— by a factor of as 
much as ten—than the elastic stiffness computed from the results of small-strain geophysical site 
investigation methods. In reality, however, the instrumentation used during the load test is not 
capable of measuring the true initial stiffness. Hence, the experimental measurements to which 
Lam [2009] refers are actually in the nonlinear, albeit small-strain, range. 

Numerical implementation of p-y curves to accommodate cyclic loading via unload/reload 
rules is described by Wang et al. [1998] and Boulanger et al. [1999]. With some exceptions that 
will be discussed further in §3.3, the p-y macro-element described by Boulanger et al. is 
implemented in OpenSees [McKenna 1997; McKenna et al. 2010] as the material PySimple1. The 
backbone curve defined by the PySimple1 material is formulated to match the shapes of the 
Matlock [1970] and API [1993] curves for clay and sand, respectively. The infinite initial stiffness 
problem of Matlock [1970] is overcome in PySimple1 by using a finite elastic stiffness computed 
using the method of Vesic [1961] up to a value of 35% of the ultimate resistance of the spring 
(pult). 

1.3.2 Analytical and Numerical Solutions for Pile Dynamics 

Computational studies of pile dynamics can generally be divided into two groups: (i) simulated 
loading is applied at the pile head by machine vibrations or seismically-induced inertial forces in 
the structure, thereby inducing inertial SSI; or (ii) loading is applied by excitation of the free field, 
typically from seismic sources, inducing kinematic SSI. Studies falling into the latter category may 
or may not include inertial effects in addition to kinematic effects, depending on whether or not a 
superstructure mass is included. Studies can be further classified based on (i) the computational 
method used to arrive at the solution—analytical versus numerical; (ii) whether the domain is 
represented as a continuum or is discretized into thin layers using, for example, Winkler’s 
assumption; and (iii) whether linear or nonlinear material properties are used. While even further 
subcategories could be defined (two- versus three-dimensional domains, homogeneous versus 
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layered soil, mixed linear/nonlinear materials, etc.), the preceding classification broadly outlines 
the existing body of work on pile dynamics and will guide the following literature review. 

Two of the earliest studies of pile dynamics, Penzien et al. [1964] and Tajimi [1969], 
considered a complete soil–pile–superstructure system excited by seismic waves. Penzien et al. 
performed one-dimensional ground response analysis of a clay layer using a lumped mass model 
and applied these free-field excitations to the pile foundations via viscoelastic Winkler springs, 
which in turn excited the superstructure. Soil nonlinearity was approximated using bilinear rather 
than linear springs, and connection details within the bridge superstructure were modeled 
explicitly. The entire system was solved simultaneously using a numerical time-stepping approach, 
a considerable achievement given computational power in the 1960s. Penzien [1970] describes 
application of this method for design of the Elkhorn Slough Bridge in California, with a detailed 
account of how the soil properties were selected based on results of a rigorous field investigation 
and laboratory testing program. Tajimi [1969] derived an elasticity-based analytical solution for a 
rigid structure supported by a flexible pile in a three-dimensional elastic continuum. While an 
exact solution is not reached, approximate solutions are given for the amplification of the structure 
displacement relative to the free-field ground displacement and for the pile head impedance. 

In much of the pile dynamics work that followed, and especially over the following decade, 
emphasis was placed on inertial SSI with less attention given to kinematic effects. In inertial SSI 
studies, loading is applied at the pile head, and the goal is to generate impedance functions to 
represent foundation stiffness and damping for use in the substructure method. This includes 
studies utilizing Winkler models by Novak [1974], Matlock et al. [1978], Kagawa and Kraft 
[1981], Dobry et al. [1982], Gazetas and Dobry [1984a], Nogami and Konagi [1988], Nogami et 
al. [1992], and Chau and Yang [2005], as well as continuum model approaches by Novak et al. 
[1978], Kuhlemeyer [1979], Kaynia and Kausel [1982; 1991], Sen et al. [1985], Wolf [1985], Pak 
and Jennings [1987], Tronchanis et al. [1991], and Mamoon and Banerjee [1992]. While the 
inertial SSI results are not directly applicable to this study, the analytical framework developed by 
these researchers was often used subsequently to investigate kinematic effects. Additionally, 
studies that focused on inertial SSI provide the only available references for quantifying certain 
parameters, such as the dashpot coefficient used to model radiation damping for Winkler-type 
analyses. 

Blaney et al. [1976] generated perhaps the first kinematic transfer functions for free-head 
piles from results of a finite-element continuum model considering a limited parametric range of 
pile and soil profile properties. At roughly the same time, R. Flores-Berrones’ research [1974], 
who was completing a Ph.D. at the time, focused on the pile kinematic problem but utilized a 
Winkler model. In their seminal 1982 paper, Flores-Berrones and Whitman provide a chart-based 
solution for predicting the amplification or de-amplification of the pile head relative to the free-
field soil displacement as a function of excitation frequency and the soil-profile fundamental 
frequency. The kinematic response is isolated by using a massless superstructure; the work also 
considers combination of inertial and kinematic effects. Other studies including kinematic 
response include Gazetas [1984], Gazetas and Dobry [1984a], Banerjee et al. [1987], Fan et al. 
[1991], Makris and Gazetas [1992], Makris et al. [1996]), Giannakou et al. [2010] for battered 
piles, Di Laora et al. [2012], Di Laora and Sanctis [2013], Anoyatis et al. [2013], and Di Laora 
and Rovithis [2014]. The most recent references provide analytical solutions for increasingly 
complex soil profiles (e.g., stiffness increasing as a nonlinear function of depth) and new insight 
into normalization of the results. 
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While most of these studies modeled seismic excitation by vertically-propagating shear 
waves, similar solutions for inclined waves have been presented by Barghouthi [1984], Mamoon 
and Banerjee [1992], and Kaynia and Novak [1992]. Kaynia and Novak [1992] and Makris [1994] 
also provided solutions for Rayleigh waves, and solutions are available for axial kinematic 
response due to vertical P-wave excitation (e.g., Mylonakis and Gazetas [2002]). 

Kaynia and Kausel [1982] formulated a boundary-integral solution to the Green’s functions 
for a loaded circular disc in an elastic half-space meant to represent a pile. Their rigorous approach 
produced impedance functions and kinematic transfer functions for single piles and pile groups, 
and became the standard by which many other studies were judged throughout the 1980s and 
1990s. Fan et al. [1991] implemented a computer-based solution of the Kaynia and Kausel [1982] 
formulation, which allowed computation of transfer functions for single piles and pile groups for 
a variety of pile/soil stiffness ratios, pile length/diameter ratios, and pile head-fixity conditions. 
Up until this point, most studies had failed to present generalized recommendations that could 
easily be applied in a forward design sense. Fan et al. [1991] thus became the standard against 
which future pile KSSI studies were judged. Transfer functions from the Fan et al. [1991] study 
are shown in Figure 1.7. 

The results of these studies showed that pile kinematic SSI effects depend primarily on (i) 
the stiffness contrast between the pile and soil, often expressed as a ratio of pile to soil modulus 
(Ep/Es); (ii) the variation of soil stiffness over the length of the pile, e.g. homogeneous soil versus 
layered or increasing stiffness with depth; (iii) the pile head-fixity condition; and (iv) the pile 
length to diameter or “slenderness” ratio (L/d). With regards to L/d, recent work by Anoyatis et al. 
[2013] as well as the results of this study show that for piles longer than the active length (i.e., 
flexible piles), as is typical for deep foundations, kinematic effects are not strongly dependent on 
the slenderness ratio as a standalone parameter. Fan et al. also considered pile groups, and 
concluded that the group response was similar to that for a single pile for typical pile spacing when 
coherent ground motions are considered. 

For the studies that do center on kinematic effects, the focus is often placed on the flexural 
and/or shear demands imposed on the pile by the deforming soil (e.g., Banerjee et al. [1987]; 
Kavvadas and Gazetas [1993]; Kaynia and Mahzooni [1996]; Mylonakis [2001]; Nikolaou et al. 
[2001]; Saitoh [2005]; Maiorano et al. [2009]; Di Laora et al. [2012], and Sica et al. [2013]) rather 
than on modification of the FIM relative to the FFM. This is likely in part due to the prevailing 
opinion that piles in general do not have sufficient stiffness to significantly reduce the FIM over 
the frequency range of engineering interest. However, this may not be true considering that (i) 
large diameter drilled shafts and cast-in-steel-shell piles on the order of 2 m to 3 m diameter or 
more are now commonplace for supporting large bridges; (ii) soil nonlinearity effectively increases 
the stiffness contrast between pile and soil, and explicit consideration of nonlinearity has been 
missing from most previous studies; and (iii) the ability to reduce high-frequency motions may be 
of significant interest for certain structures, higher modes of conventional structures, and vibration-
sensitive nonstructural components, even if there is no significant reduction near the first-mode 
period of the structure. 

Beginning in the early 1990s and continuing to the present, the advent of personal 
computers and commercial and open-source finite-element/difference software has produced a 
number of studies that expand upon previous work by incorporating more realistic assumptions 
such as soil and pile nonlinearity, three-dimensional domains, and dynamic analysis with realistic 
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earthquake motions. This includes Nogami et al. [1992], Badoni and Makris [1996], Wu and Finn 
[1997a; 1997b], Boulanger et al. [1999], Bentley and El Naggar [2000], Klar and Frydman [2002], 
Maheshwari et al. [2004], Chau and Yang [2005], Kampitsis et al. [2013], Hussein et al. [2014], 
Pecker [2014], and others. In most cases, these studies attempted to recreate the results of model-
scale dynamic tests and/or to compare to previous simplified approaches. While the findings 
provide valuable insight, especially on the importance of considering nonlinearity explicitly, in 
most cases results were not generalized for use with simplified design methods in forward analysis. 
One of the primary goals of this study is to fill that gap. 

 

Figure 1.7 Kinematic pile-soil transfer functions from Fan et al. [1991] study for 
single pile with length-to-diameter ratio of 20. 

1.3.3 Normalization Schemes 

In order for the results of numerical pile kinematic SSI studies to be made useful for practical 
design applications, and indeed for SSI in general, it is desirable to find normalization schemes 
that describe kinematic pile response using variables that capture the physics of the problem and 
are themselves tractable to predict. For solutions based on linear-elasticity, closed-form solutions 
may be tractable because the solution does not depend on shaking intensity or other ground motion 
parameters, and involves a small number of input parameters. The task is more complicated for 
nonlinear problems and inhomogeneous soil domains because the solution becomes sensitive to 
shaking intensity and involves significantly more input parameters. 

For pile dynamics problems, transfer functions are often presented versus dimensionless 

frequency 0
pa , typically defined as (e.g., Kaynia and Kausel [1982] and Fan et al. [1991]): 
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where 2 f   is the angular frequency of excitation, B is the pile diameter (or radius for some 
studies, e.g., Novak et al. [1978] and Gazetas and Dobry [1984a]), and VS is the soil shear-wave 
velocity. This dimensionless frequency was borrowed from the equivalent term for shallow 
foundations, where the B term represents the shallow foundation radius (e.g., Gazetas [1983]). 
While this form of a0 is essentially the only available choice for shallow foundations, pile behavior 
can be better characterized by terms other than diameter, which is a poor standalone representation 
of stiffness and characteristic patterns of deformation. 

To incorporate the effect of pile-to-soil stiffness ratio, results of early studies are often 
presented as families of transfer function curves for various ratios of pile-to-soil modulus Ep/Es. 
For example, the Fan et al. [1991] results in Figure 1.7 indicate that the same result is achieved for 
any size pile and soil stiffness as long as the slenderness ratio L/B and Ep/Es are held constant. 
While the ratio of pile-to-soil stiffness is a very significant parameter in terms of its influence on 
the kinematic pile–soil interaction, the simple quantity Ep/Es is a poor representation of this 
mechanism for practical applications because it does not contain any information on the geometric 
properties of the pile cross section. An “effective” pile modulus can be computed that equates a 
hollow section such as a steel pipe to an equivalent solid section, but this calculation is 
cumbersome and unfamiliar in routine foundation engineering. A more informative and familiar 
quantity to describe the pile stiffness is its flexural rigidity, which is the product of the pile material 
elastic modulus Ep and its moment of inertia Ip. By using flexural rigidity, explicit consideration 
can be made of (i) any pile geometry (e.g., rectangular, circular, hollow, octagonal, etc.); (ii) 
composite sections such as cast-in-steel-shell concrete piles; and (iii) material nonlinearity such as 
cracking of concrete in tension or yielding of reinforcing steel. Likewise, the use of B in Equation 
(1.5) serves only as a proxy for pile stiffness because it does not contain information about the 
material modulus. Accordingly, a more desirable dimensionless frequency parameter would be 
one that contains the pile flexural rigidity directly along with a measure of the soil stiffness. A 
useful parameter that combines these quantities is [Hetenyi 1946]: 
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Hetenyi referred to λ as the “characteristic” term because it appears in the roots of the 
characteristic equation of the homogeneous form of the governing differential equation for a 
laterally-loaded pile (presented in §2.1). Hetenyi also noted that since λ has the units [length-1], the 
quantity 1/ λ has units of length and hence he dubbed it “characteristic length.” More recent 
researchers sometimes refer to λ as the “Winkler parameter,” which is not to be confused with the 
Winkler coefficient δ as defined for this study in §2.3. 

Randolph [1981] used the term “critical length” (and, interchangeably, “active length”) to 
refer to the portion of a laterally-loaded pile that effectively resists a lateral load, approximated as: 
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For piles that are longer than the active length, further increases in length will not affect the 
response to lateral loads at the pile head; thus, the piles are classified as “long” or “flexible” in 
comparison to “short” piles that are shorter than the active length. Close inspection of Equation 
(1.7) reveals that it is not equal to the inverse of Equation (1.6). The ratio of 1/ λ to Equation (1.7) 
is 4-3/4 ≈ 0.35; therefore, the definitions of “characteristic” and “critical” length used by Hetenyi 
and Randolph, respectively, are different. To avoid confusion, “active length” will be used in this 
text to refer to the portion of the pile that effectively resists the lateral load such as defined by 
Equation (1.7). 

Di Laora and Sanctis [2013], expanding on the work of Rovithis et al. [2009] and 

recognizing the aforementioned shortcomings of the typical definition of 0
pa  given by Equation 

(1.5), proposed a revised dimensionless frequency that incorporated the characteristic length 
directly. Similarly, Anoyatis et al. [2013] proposed the following dimensionless frequency: 
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where λ is consistent with the definition given by Equation (1.6). This term improves upon the 
previous form given by Equation (1.5) because it contains (i) the ratio of pile stiffness expressed 
as flexural rigidity to soil stiffness contained in the λ term, and (ii) the ratio of pile characteristic 
length (1/ λ) to the wavelength of soil free-field excitation (λff = VS/ω). The latter quantity captures 
a fundamental aspect of the problem at hand, which is that a stiff pile will not conform to the 
deformed shape of the free field under high-frequency excitation as shown in Figure 1.2. Because 
the new normalization scheme better captures the underlying physics of the problem, the static 
results (radiation damping and pile inertia not considered) for a flexible pile (L > La) with any 
combination of soil and pile stiffness conveniently collapse into a narrow band as shown in Figure 
1.8, which can be represented by a simple best-fit equation. Similarly, transfer functions for free-
head pile rotation collapse into a narrow band when the transfer function ordinate is defined as Hθ 
= θFIM /λꞏuFFM, where 1/λ is used to normalize the result in lieu of B. This finding is perhaps the 
most significant advancement in elastic analytical solutions for pile kinematic SSI in recent years. 
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Figure 1.8 Static kinematic pile–soil interaction transfer functions using improved 
dimensionless frequency definition from Anoyatis et al. [2013]. Applies 
for a free-tip pile with λL ≥ 5 and homogeneous elastic soil of any 
stiffness. 

The Anoyatis et al. [2013] study considered a uniform, homogeneous viscoelastic soil 
profile such that the λ and VS terms in Equation (1.8) are constant over the length of the pile. To 
extend these results to more realistic soil profiles in which the soil stiffness varies as a function of 
depth, Di Laora and Rovithis [2014] proposed a dimensionless frequency with the same form as 
Equation (1.8) except with λ and VS computed as average values over a depth interval equal to the 
uppermost active pile length. They described increases in soil stiffness versus depth using a 
generalized power law function such that analytical solutions could still be derived in closed form 
for the pile kinematic response. This approach provides a convenient framework to account for the 
fact that the soil profiles considered for this study, and real soil profiles in general, do not have 
uniform shear-wave velocity or modulus. To compute λ for use in Equation (1.8) for this study, 
the following will be used: 
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where Ke,La is the average value of p-y curve initial elastic stiffness (Ke) computed over the upper 
active length of the pile. Likewise, VS for use in Equation (1.8) will be computed as the time-
averaged shear-wave velocity computed over the upper pile active length, VS,La. From this point 
forward, any plots or discussion of normalizing by dimensionless frequency use the definition of 
Equation (1.8) unless noted otherwise. 

The pile active length La is usually on the order of 10B to 15B [Randolph 1981; Gazetas 
and Dobry 1984a], depending on the pile-to-soil stiffness ratio. In general, increasing soil stiffness 
results in a decreasing La if the pile properties are held constant. While this is a useful first-order 
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approximation, a more precise value will be computed for this study as the length for which 
4L    [Timoshenko 1948; Reese et al. 2006], where λ is computed using the average values [as 

in Equation (1.9)] over the trial pile length L. Because the soil properties vary with depth, a simple 
iterative calculation is required to determine La in this manner. 

Because the concept of active length refers specifically to the upper portion of a pile that 
responds to a lateral load imposed at the pile head, it is not directly applicable to the pile kinematic 
SSI case in which kinematic demands are imposed over the full length of pile. Nonetheless, the 
results of this study have shown that the pile–soil interaction near the surface has the greatest 
influence on the foundation input motion; therefore, considering some portion of the pile length 
near the surface is a useful descriptor of system response. 

1.3.4 Limitations of Elastic and Analytical Solutions 

The previous studies described above generally considered highly idealized soil–pile domains, 
such as uniform or simple layered combinations of uniform elastic soil layers, rigid bedrock, rigid 
and/or infinitely long piles, and simple harmonic excitation in lieu of realistic earthquake ground 
motions. Linear-elastic solutions are useful for elucidating the driving mechanisms behind 
complex SSI problems and have some advantages over nonlinear approaches. The primary 
attraction is that they require low computational effort, and in many cases chart-based or closed-
form solutions are available. This makes them amenable to preliminary analysis when full details 
of a project or soil conditions are not yet known, and the solutions can quickly be updated as more 
information becomes available. Also, the principle of superposition is exactly valid for use with 
the substructure method when linear elasticity is used to model all system components, and 
because the elastic solutions are exact, they should be reproducible for verification. However, to 
quote the late professor A.S. Vesic [1977], “…analyses of this kind assume that the surrounding 
soil acts as an elastic-isotropic solid defined by a constant modulus of deformation and a Poisson’s 
ratio. This assumption represents a serious departure from reality…” Put simply, this is because 
lateral pile–soil interaction is nonlinear, and real subsurface conditions are inhomogeneous. 

Highly idealized assumptions can have unintended and unrealistic consequences on the 
dynamic behavior of the system. For example: 

 Pile radiation damping cannot occur for a pile embedded in an elastic soil layer 
underlain by rigid bedrock at frequencies below the fundamental frequency of 
the soil profile (e.g., see Gazetas [1991], Syngros [2004], and Anoyatis et al. 
[2013]), which is unrealistic for real systems. 

 Theoretical transfer functions for fixed-head piles suggest that the pile head 
motion is always less than the free-field motion for any pile and soil properties 
and at all frequencies. Not only is this shown to be false when realistic 
stratigraphy is considered, but it is erroneous in the unsafe direction, potentially 
resulting in an underestimate of actual demands imposed on the structure. 

A primary issue with elastic SSI solutions is that a single value of strain-compatible soil 
stiffness must be specified to approximate nonlinearity. Simplified methods are available for 
estimating the average shear modulus reduction induced in the free field by a ground motion of a 
given amplitude (e.g., Table 2-1 in NIST [2012]). However, no similar method is available for 
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estimating a reduced modulus to represent pile–soil interaction that considers the non-uniform 
relative pile–soil displacement occurring over the length of the pile. An accurate equivalent-linear 
modulus must combine the effects of modulus degradation due to pile–soil interaction and shearing 
by the ground motion during free-field site response2. 

Furthermore, even in the simplest case of an approximately uniform soil layer such as stiff 
over-consolidated clay, because the amount of relative pile–soil displacement will vary over the 
depth of the layer [e.g., see Figure 1.2(b)], the equivalent-linear soil stiffness needed to accurately 
capture the response changes with depth. This has been recognized since the early work on pile 
dynamics began; see Kagawa and Kraft [1980]. Although the stiffness specified in an equivalent-
linear analysis could be varied with depth, this further complicates the selection of appropriate 
equivalent-linear properties and makes most closed-form solutions unsolvable. 

Relative to the total number of publications concerning pile dynamics for elastic material 
properties, the amount of guidance on selection of equivalent-linear properties for actual 
implementation is comparatively sparse. While back-analyses of single case studies or model 
studies may be able to determine a single value of reduced modulus that can be used in equivalent-
linear analysis to match the desired response, doing so in a generalized manner for forward design 
cases presents significant challenges and uncertainty. 

A shortcoming of continuum solutions, whether solved analytically or numerically, is that 
the interaction between the pile and soil is often distilled to a simple condition of displacement 
compatibility (e.g., Tajimi [1969], Novak et al. [1978], and Kaynia and Kausel [1982]). Even if 
the independent behavior of soil and pile materials could be captured by constitutive models, a 
pile-soil system cannot be accurately modeled without capturing interaction at the interface. While 
the assumption of displacement compatibility (i.e., no slip) may be appropriate for relatively small 
amplitude loading, such as produced by vibrating machinery, design-level earthquakes will induce 
significant nonlinearity at the pile–soil interface. 

While the simplifications adopted for theoretical, elasticity-based solutions may have been 
state-of-the-art and the “best available” tools for practicing engineers in the decades before modern 
personal computing power became widely available, this is simply no longer the case. Tools such 
as dynamic p-y analysis using nonlinear finite elements that enable significantly more accurate 
modeling of realistic pile, soil, and ground motion characteristics are now at the disposal of our 
profession. Nonetheless, use of these tools is beyond the scope of most projects and the expertise 
of most practitioners. The present work is meant to address these disparities by providing 
simplified tools that capture realistic complexities of soil and pile dynamics in a more rigorous 
manner than previous efforts. 

1.3.5 Experimental Investigations 

Experimental studies of pile dynamics are limited relative to the number of computational studies 
described in the previous section. Of the experiments that have been conducted, most use dynamic 
loading applied at the pile head to generate inertial SSI as opposed to loading the pile via free-field 
                                                 
 
2 Stewart et al. [2000] referred to these as “secondary” and “primary” nonlinearities, respectively. These terms could 
be misleading for pile-soil interaction because the nonlinearity induced by pile-soil interaction can exceed that due 
to site response for large earthquakes. 
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excitation. From a practical standpoint, it is much easier to apply load directly to a test structure 
via actuators or shakers than to load the structure indirectly by loading the adjacent ground. To 
measure a purely kinematic response, (i) no superstructure mass can be supported by the pile, and 
(ii) it must be excited by the free field. Hence, experimental results for purely kinematic pile SSI 
are very limited. 

One g model-scale tests of piles undergoing dynamic loading at the pile head by Gaul 
[1958], Novak and Grigg [1976], Novak and El Sharnouby [1984], Blaney and O’Neill [1986], 
Han and Novak [1988], and El-Marsafawi et al. [1992] along with centrifuge tests by Prevost et 
al. [1981] were useful for validating early analytical procedures. More recent full-scale tests by 
Vaziri and Han [1992], centrifuge tests by Ashlock and Pak [2009], and model-scale tests by Burr 
et al. [1997], Tokimatsu et al. [2005], and Manna and Baidya [2010] have been compared 
favorably to nonlinear analyses. Durante et al. [2015] describe a series of 1g tests that provide an 
opportunity to validate combined kinematic and inertial analysis techniques. 

Only a handful of full-scale dynamic tests have been reported and only for inertia loading. 
Vaziri and Han [1992] conducted ground-level forced vibration tests on a group of six 7.5-m-long, 
0.32-m-diameter drilled shafts connected by a concrete pile cap. McManus and Alabaster [2004] 
performed cyclic loading on a group of four 5.5-m-long, 0.75-m-diameter piles. Appendix B 
documents an attempt made as part of this study to measure transfer functions for full-scale piles 
by exciting the free field and establishes a repeatable method for this type of testing in the future. 
Apart from this effort, the authors are not aware of any full-scale experiments of purely kinematic 
SSI for piles. Further experimental testing to validate the results of this study is an important future 
research need. 

A common finding of the experimental tests listed here, especially for the full-scale tests, 
is that the stiffness and damping of the piles are highly strain-dependent. This makes it difficult to 
choose a single value of stiffness or damping that is appropriate for design, supporting the notion 
that nonlinear analyses are superior to analytical or theoretical methods utilizing a single value of 
equivalent-linear stiffness or damping. 

1.3.6 Empirical Observations of Kinematic Pile–Soil Interaction 

Due to the same challenges that make experimental measurements of purely kinematic pile–soil 
interaction difficult—namely, the necessary absence of a superstructure mass atop the pile—
empirical observations of pile kinematic SSI during past earthquakes are also limited. A few well-
documented cases of pile-supported buildings instrumented with accelerographs at the foundation-
level and in the adjacent free field undergoing strong earthquakes are available. However, 
interpretation of these cases is complicated by the fact that the foundation-level response includes 
not only the influence of pile kinematic SSI, but also inertial SSI due to the superstructure response. 
The issue of combined kinematic and inertial SSI effects is examined in more detail in Chapter 5. 

1.3.6.1 Empirical Transfer Functions 

Stewart et al. [1999a; 1999b] considered pairs of instrumented structure and adjacent free-field 
recordings to compare foundation-level and free-field intensity measures from earthquake 
recordings at 57 building sites in California and Taiwan, including 23 buildings supported on deep 
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foundations. The intensity measures considered were peak ground acceleration (PGA) and pseudo-
spectral acceleration (PSA) at the flexible-base, first-mode building period. The results indicated 
that kinematic reduction of the foundation-level PGA was appreciable, whereas the reductions of 
first-mode PSA was relatively modest. However, this study did not present foundation/free-field 
transfer functions and hence provides limited insight into kinematic interaction effects. 

Kim and Stewart [2003] focused specifically on kinematic interaction and considered 
recordings from 16 of the pile-supported buildings, all of which utilized grade beams or mat slabs 
to connect the piles. Figure 1.9 shows a comparison from the Kim and Stewart study between the 
Fan et al. [1991] kinematic pile model and the observed “transmissibility” function at one of the 
sites. (A transmissibility function represents the same concept as a transfer function, but is 
computed from ratios of power spectral density functions rather than spectral amplitude; the 
motivation for this alternative approach is discussed below.) The Fan et al. model generally 
underpredicts the reduction seen in the observed transfer function, while a base-slab averaging 
model representing shallow foundation kinematic SSI by Veletsos et al. [1997], using a site-
specific value of a parameter controlling ground motion incoherence (a), provided a closer match. 
Kim and Stewart concluded that kinematic interaction between the ground and surface foundation 
elements likely dominated the response of the pile-supported buildings in their study. However, 
Kim and Stewart noted that the Fan et al. model and other existing kinematic pile models fail to 
include the effects of ground motion incoherence (spatial variability), thus posing a lingering 
question as to whether or not consideration of incoherence in a pile kinematic model would provide 
a closer match to observed behavior. 

Mikami et al. [2006; 2008] and Givens et al. [2012] describe recordings from a pile-
supported building in Sendai, Japan, during the 2003 Off-Miyagi and 2011 Tohoku earthquakes 
that show a stronger reduction of foundation-level motion to FFM than the California and Taiwan 
recordings reported above. Three modeling approaches were applied in an attempt to match the 
observed transfer function: (i) a shallow foundation base-slab averaging model [Veletsos et al. 
1997; Kim and Stewart 2003] similar to that ultimately published in NIST [2012]; (ii) a linear-
elastic model including piles in the computer program SASSI [Ostadan 2005] subjected to coherent 
ground motions; and (iii) a second SASSI model without piles but with incoherent ground motions. 
The results are shown in Figure 1.10. 

The NIST model and SASSI model with coherent ground motions and piles both fail to 
capture the significant reduction in the observed transfer function between about 2–7 Hz. The 
SASSI model with incoherent ground motions but no piles comes closer to capturing the reduction 
but misses the sharp drop-off occurring around 2 Hz. Mikami et al. and Givens et al. speculate that 
the misfit of these models may be due to inadequate consideration of incoherence in combination 
with the pile kinematic interaction or failure to capture the end-bearing resistance of the piles. 
Recent discussion with Professor Atsushi Mikami [personal communication, 2015] and a re-
examination of this case in Chapter 6 make it clear that the influence of inertial SSI is the dominant 
factor causing the significant reduction in the observed transfer function. 
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Figure 1.9 Comparison of observed versus model prediction transfer functions for a 
5-story hospital building in Lancaster, California, during the 1994 
Northridge, California, earthquake (after Kim and Stewart [2003]).  

 

Figure 1.10 Comparison of observed versus model prediction transfer functions for a 
4-story building at Tohoku Institute of Technology in Sendai, Japan, 
during the 2011 Tohoku, Japan, earthquake (after Givens et al. [2012]). 
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1.3.6.2 Signal Processing Techniques  

Empirical transfer functions computed from recorded earthquake motions exhibit sudden changes 
in amplitude over short frequency ranges as seen in Figure 1.9 and Figure 1.10. Especially at high 
frequencies where the motion amplitude is typically low, this is due in part to the fact that the ratio 
of two very small numbers is being computed, such that small oscillations in either the free field 
or foundation-level motion can result in spurious peaks in the transfer functions. The level of 
displacement required to produce such a spike may be close to the recording accuracy of the 
accelerographs and therefore representative of “noise” in the signal rather than a meaningful 
representation of the system response. Noise could also result from energy sources other than 
seismic waves that affect either the free field or foundation-level accelerographs, but not both, 
such as vibrating machinery near one of the recording stations. 

Kim and Stewart [2003], and Mikami et al. [2008] describe signal processing techniques 
to separate the meaningful transfer function ordinates from noise by utilizing an alternative transfer 
function definition: 

( ) ( ) / ( )u pp ggH S S    (1.10) 

where Spp and Sgg are the smoothed auto power spectral density functions of the foundation-level 
and FFM, respectively3. Auto (Spp and Sgg) and cross (Sgp) power spectral density functions are 
defined as: 

     pp pp ppS U U    (1.11) 

     gg gg ggS U U    (1.12) 

     gp gg ppS U U    (1.13) 

where U*(ω) is the complex conjugate of U(ω): 

       U Re U - Im U i      (1.14) 

and i is the imaginary number defined by 2 1i   . In signal processing terms, Hu computed using 
Equation (1.10) is called a transmissibility function, while Equation (1.2) produces a transfer 
function. The concept is the same—describing the manner in which a system modifies an input 
signal to produce an output signal—so the term “transfer function” will be used from this point 
forward. 

There are two benefits to using Equation (1.10) rather than defining the transfer function 
directly as the ratio of the FAS: 

 Coherence can be computed, which allows quantitative identification of the 
transfer function ordinates with the highest signal-to-noise ratio. 

                                                 
 
3 Kim and Stewart [2003] and Mikami et al. [2006; 2008] use the notation x and y to refer to the free-field and 
foundation-level, respectively; p and g will be used here to be consistent with the previous notation and to retain the 
physical interpretation as the pile and ground-surface motions. 
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 Smoothing of the power spectral density functions, a necessary step for 
computing coherence, further reduces the spurious nature of the transfer 
functions computed from raw signals. 

Coherence (γ2) between the foundation-level and FFM signals is defined as [Pandit 1991]: 

 
   

2

2 gp

gg pp

S

S S




 
  (1.15) 

Coherence indicates the strength of the relationship between an input and output signal; values 
near 1.0 indicate a strong dependence of the output on the input, while smaller values indicate a 
weak relationship. Hence, coherence can be used as a quantitative measure of whether certain 
frequency components of the foundation-level motion are likely a result of the system responding 
to excitation by the FFM or represent noise. By using a threshold value of coherence below which 
data are discarded, empirical transfer functions can effectively be filtered to discern the most 
meaningful data points. Points with coherence greater than 0.8 are show in Figure 1.10, which is 
the cutoff used by Mikami et al. and Givens et al. 

Prior to computing coherence with Equation (1.15), the power spectral density functions 
must be smoothed. Coherence computed between unsmoothed input and output signals over the 
full frequency bandwidth of the signals will be unity at every frequency and thus is not a useful 
metric. The smoothing operation is accomplished by replacing each ordinate of the unsmoothed 
power spectrum with a weighted average value of the unsmoothed ordinates over a frequency band 
(i.e., window) centered on the point of interest. Mikami et al. [2008] examined the influence of the 
parameters used to define the smoothing window, which ultimately affect the computed value of 
coherence, and found that an 11-point Hamming window provided qualitatively good results. 
Mikami et al. also recommended not only emphasizing empirical transfer function points with high 
coherence, but bandwidths that have high coherence at multiple successive frequencies. This is an 
important secondary criterion, because even pairs of white noise signals will occasionally have 
coherence greater than 0.8 despite having a mean value of approximately 0.15 to 0.25 (the exact 
value depends on the shape and bandwidth of the windowing function used for smoothing). 

As the terminology implies, incoherent or spatially-variable ground motions resulting from 
stochastic effects such as wave scattering and subsurface variability will result in differences in 
the foundation-level and FFM that are not due to foundation kinematic interaction; this ground 
motion incoherence will manifest as low coherence in the computed empirical transfer function. 
Since the incoherence of real ground motions tends to increase with increasing frequency, this 
mechanism is especially significant at higher frequencies. Mikami et al. [2008] concluded that 
empirical transfer function ordinates at high frequencies are usually dominated by incoherence, 
and thus should be deemphasized relative to low-frequency ordinates when quantifying kinematic 
SSI. For the examples described in their paper, the usable frequency range is typically below about 
10 Hz. 

Although interpretation of empirical transfer functions is not the main focus of this study, 
the signal processing techniques described above turn out to be very useful, if not necessary, for 
interpreting the results of the numerical simulations. Ground motions used as input to the pile–soil 
interaction analyses are sourced from earthquake recordings at a single location, and the 
foundation is modeled as occupying the same physical location. Therefore, the incoherence of real 
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ground motions between the physical locations of the free field and foundation-level recording 
stations that can cause low coherence for high-frequency empirical transfer function ordinates does 
not apply, at least for single pile models. Nonetheless, variability between the computed FIM and 
FFM when represented in the frequency domain can mimic the variability between empirical 
foundation-level and FFM signals because: 

 Numerical oscillations in the finite-element solution on the order of the 
tolerance that satisfies the convergence criterion are significant relative to the 
Fourier amplitude of the computed FIM, particularly at higher frequencies, and 

 Transfer functions are an imperfect representation of seismic response due to 
the finite-duration and non-stationary nature of the signals used to compute 
them (discussed further below). 

As a result, transfer functions computed from the numerical simulations look similar to the 
empirical transfer functions described above, in particular exhibiting large variability at higher 
frequencies. This is true even when the numerical solution approach is used to compute transfer 
functions for elastic pile and soil conditions subjected to harmonic free-field ground motions, and 
thus is not solely an artifact of nonlinearity in the system response. To facilitate extraction of 
meaningful trends from the simulations performed in this study, the same signal processing 
techniques described by Mikami et al. [2008] are applied, specifically: 

 Transfer functions are computed using Equation (1.10), 

 Power spectral density functions are smoothed with an 11-point Hamming 
window, 

 A minimum coherence threshold of 0.8 is applied to the computed transfer 
functions, while in some instances a more stringent value of 0.9 is used to 
clarify the trend exhibited by the results, particularly for stiffer soil sites for 
which the transfer function corner frequency is relatively high, and 

 Transfer functions are only defined up to the frequency at which a smoothed 
version of the coherence-versus-frequency curve is above the minimum 
threshold (0.8 or 0.9). 

Although other approaches could be taken for smoothing the results, for example simply 
smoothing the computed transfer functions directly, the approach used for interpretation of 
empirical data is adopted here because of its demonstrated applicability to the mechanisms 
governing kinematic SSI. 

The last criterion in the above list is intended to satisfy the recommendation by Mikami et 
al. [2008] that not only should high coherence points be emphasized, but a further restriction 
should be implemented of focusing on bandwidths over which high coherence occurs for a series 
of successive frequencies. The coherence versus frequency curve is smoothed using a 25-point 
median smoothing window, which replaces each value with the median of the 25 points centered 
on that frequency. This allows automated processing of the thousands of results from the 
parametric study. 

In addition to the insights provided in the context of interpreting empirical transfer function 
data, the concept of using transfer functions as a means of quantifying SSI has additional 
limitations, and some discussion is warranted here. 
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Strictly speaking, the concept of a transfer function applies only to an infinitely-repeating 
stationary process, which is defined as an entirely stochastic (random) process that displays no 
trends in mean or variance with time. While certain aspects of SSI are approximately stochastic, 
time signals of earthquake ground motions and the response of structures to these ground motions 
exhibit strong trends with time, and are of a finite duration. While advanced signal processing 
techniques are available to transform the time response of some physical systems from non-
stationary to approximately stationary (e.g., White and Boahash [1990]), they are generally not 
applicable to ground motions. 

In particular, the ordinates of FAS can be unintentionally altered by the non-repeating 
nature of ground motions, and by the simple fact that the Fast-Fourier transform (FFT) algorithm 
used to perform the Fourier transform generates very small numbers at frequencies away from the 
predominant energy of the signal. Consider the following simple examples to illustrate these 
points. 

A signal defined as a sine wave with amplitude of unity and frequency 1 Hz is passed 
through a system that has the ability to modify the input signal and produce an output signal. Since 
the FFT algorithm applied to a discrete time signal requires that the signal have 2n points, where n 
is an integer, the input signal for this example is chosen to have 211 = 2,048 points. The time step 
Δt is taken as four times the inverse of n (4/2,048 sec) so that the vector of frequencies at which 
the FFT is defined includes f = 1 Hz without the need for interpolation. The amplitude is zero at 
time t = 0, and the amplitude of the 2,048th point is  2 1 0.012sin f t n        such that the 

2049th point would have an amplitude of zero and the signal could repeat indefinitely. 

The time- and frequency-domain representations of the input and output signals are 
presented in Figure 1.11, along with the transfer functions computed between them using Equation 
(1.2). First consider that the system makes no modification to the input signal, such that the input 
and output are identical [Figure 1.11(a)]. The FFT captures the amplitude of the signal at 1 Hz 
exactly. Theoretically, the amplitude at all other frequencies is zero since the signals are perfect 1 
Hz sine waves, but the FFT returns a non-zero, albeit very small, amplitude ranging between 1.0E-
13 and 1.0E-15. Nonetheless, the values are exactly the same for the input and output, thus the 
transfer function ordinate is exactly unity at all frequencies. Figure 1.11(b) shows the results when 
the output signal is perfectly out of phase by ±π radians. Even though the transfer function 
amplitude is defined only as the ratio of Fourier amplitude spectra and should not be affected by 
phase, the small, yet non-zero oscillations in computed Fourier amplitude now vary between the 
input and output signals, such that the transfer function is erratic away from f = 1 Hz. This 
highlights an important point—the transfer function amplitude does not reflect the amplitude of 
the input and output signals over different frequencies, only the ratio of their amplitudes. Hence 
by simply examining a transfer function without viewing the corresponding FAS, it cannot be 
known which transfer function ordinates correspond to the predominant energy in the system and 
are therefore most meaningful. 
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Figure 1.11 Influence of small changes between input and output signals on system 
transfer functions. Relative to input signal, the output signal (a) is 
identical, (b) is perfectly out-of-phase, (c) is out of phase by 0.1, and (d) 
exhibits slight baseline drift.  
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Figure 1.11(c) shows the effect of a small phase offset, which produces similar high-
frequency noise in the transfer function. Again, the amplitude of the output signal is identical to 
the input signal for (b) and (c). Figure 1.11(d) shows the effect of a small baseline drift in the 
output signal (linear change of 0.01 over 1 sec), which also has a drastic effect on the transfer 
transfer function away from f = 1 Hz. 

These example of changes between input and output signals were chosen because, to some 
extent, they all appear in signals representing the free field and a structure during seismic 
excitation. The intent in pointing out their influence on the computed transfer functions is not to 
suggest that the transfer function approach should not be used; on the contrary, it is an excellent 
tool for earthquake engineering. These issues simply need to be kept in mind when trying to discern 
the meaningful trends from noise. 

1.3.6.3 Pile Damage due to Kinematic Demands 

Many of the same earthquakes that inspired the seminal work in geotechnical earthquake 
engineering on topics such as soil liquefaction and ground-motion estimation also provided 
evidence that kinematic demands caused damage to pile foundations. The documented cases 
include damage to concrete piles supporting bridges during the 1964 Alaska Earthquake 
[Kachadoorian 1968] and a building during the 1964 Niigata Earthquake [Nishizawa et al. 1984]. 
Mizuno [1987] documented pile performance during several Japanese earthquakes that occurred 
between 1923 and 1983, including several cases of piles damaged by kinematic demands, although 
most appear to be cases with large permanent ground displacement. Tazoh et al. [1987] 
instrumented the Ohba-Ohashi Bridge in Japan and recorded the structural response during several 
earthquakes, including a M 6.0. They found that the peak strains recorded by longitudinal strain 
gauges in the piles supporting one of the main piers occurred deep in the soil profile at the interface 
between the bearing stratum and softer overlying soil. 

Studies by Nikolaou et al. [2001] and others cite this evidence as motivation for considering 
kinematic demands in design, which eventually became a building code requirement as discussed 
in the following section. It is worth noting that the number of documented cases in which ground 
failure (e.g., liquefaction), permanent ground displacement, and inertial loads could be ruled out 
as the cause of damage is relatively low. This does not necessarily imply that this damage 
mechanism is not common; but it is likely more attributable to the difficulty and cost associated 
with post-earthquake inspections of piles at significant depths. 

1.4 KINEMATIC SSI IN BUILDING CODES 

The influence of kinematic pile–soil interaction on FIM receives little or no attention in U.S. 
building codes. On the other hand, demands resulting from pile–soil interaction must be considered 
according to most building codes. For example, ASCE 7-10 (ASCE 2013) §12.13.6.7 “Pile Soil 
Interaction” requires that piles be designed for the moment, shear, and deflections “considering 
the interaction of the shaft and soil.” Unlike the specifications in Chapter 19 of ASCE 7-10 “Soil-
Structure Interaction for Seismic Design,” which are optional and can be ignored at the designer’s 
discretion, the requirement that piles be designed to resist kinematic demands in addition to 
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superstructure demands is required in all cases. Nonetheless, in the authors’ experience it is often 
neglected in practice. 

1.5 NOTES ON TERMINOLOGY AND NOTATION 

Because the terms used to describe various types of deep foundations tend to evolve over time, a 
few clarifications are noteworthy in the context of this study. 

During the timeframe of the early work on this subject (1960s-1980s), the term “pile” was 
most commonly used to refer specifically to driven piles. Drilled shafts were often referred to as 
“caissons” or “piers.” This distinction is important, because driven piles were categorically 
assumed to be more flexible than their drilled counterparts. Early work on this subject often applied 
specifically to relatively flexible driven piles for which kinematic SSI effects are less significant 
in comparison to larger-diameter, stiffer drilled shafts. For example, in the seminal 1982 paper by 
Flores-Berrones and Whitman, “Seismic Response of End-Bearing Piles,” the authors conclude 
that: 

… Piles located in seismic zones are subjected to two very important effects; one is 
the action of the soil along the pile length [kinematic SSI] and the other one is 
related to the supported mass at the pile’s head [inertial SSI]. Regarding the first 
of these effects, very often neglected in dynamic analysis for piles subjected to 
seismic forces, there are two extremes… (1) Piles behave as flexible elements and 
follow the ground displacements; and (2) piles behave as rigid elements, and their 
tendency is to remain still while the soil moves around them… Most “piles” fall 
into the first of these categories while piers and caissons might fall in the second 
one… Generally speaking, piles do not reduce significantly the horizontal 
movements of a structure…  

Consistent with this conclusion, much of the work on the topic of kinematic pile–soil interaction 
has focused on the shear and moment demands imposed on relatively flexible piles, while less 
attention has been paid to the beneficial reduction in FIM that large, stiff piles can provide. Because 
large-diameter piles in soft-soil conditions are now commonplace, especially for the support of 
bridges, this topic is worth revisiting. 

For simplicity, the term “pile” foundation will be used herein to refer to both driven piles 
and drilled, cast-in-place deep foundations, also known as drilled shafts or piers, bored piles (the 
predominant term outside the U.S.), cast-in-drilled-hole piles (Caltrans), etc. The distinction 
between driven and drilled shaft-type piles will be noted when relevant; otherwise the content of 
this study is intended to apply to both. 

Early work (1960s–1990s) on pile KSSI and much of the contemporary work using 
analytical solutions use the term Iu, short for interaction factor, to represent the transfer function 
ordinate. This study adopts the term Hu based on the work of Kim and Stewart [2003], who applied 
signal processing techniques borrowed from the field of electrical engineering where H is typically 
used to represent the transfer function between input and output signals. 
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2 Elastic Analytical and Numerical Solutions 

Elastic solutions for kinematic pile–soil interaction are useful for elucidating the fundamental 
mechanisms that control the physics of the problem and for formulating the bounds of the nonlinear 
numerical analyses performed subsequently. In this chapter, a closed-form elastic analytical 
solution is derived, compared to previous solutions by other researchers, and then used to validate 
the proposed numerical modeling approach. 

In addition, for the nonlinear numerical analyses that follow, pile–soil interaction is 
characterized by elastic behavior at very small strains. Hence, issues related to the small-strain 
elastic behavior of the nonlinear system are explored in the second half of this chapter. 

2.1 ELASTIC ANALYTICAL SOLUTION 

Derivation of the closed-form static solution for a vertical elastic pile in elastic soil begins with 
the following fourth-order differential equation for a laterally-loaded pile (after Hetenyi [1946]): 

4 2

4 2
0p p

p p p

d u d u
E I P k u

dz dz
     (2.1) 

in which up is the horizontal pile displacement, z is the depth measured downwards from the pile 
head, EpIp is the pile flexural rigidity, P is axial load, and k is the soil–pile interaction stiffness 
intensity, all defined in a consistent set of units. Equation (2.1) states that the force applied 
externally by the soil reaction (kꞏup term) is in equilibrium with the internal forces in the pile 
described by the 4th derivative of the transverse displacement multiplied by the pile flexural 
rigidity, plus second-order (“P-Δ”) effects. The pile is treated as an Euler-Bernoulli beam in this 
formulation. For the purpose of this derivation going forward, axial load is taken as zero such that 
second-order effects are dropped4. 

For a kinematic pile–soil interaction dynamic solution, the pile–soil interaction modulus k 
is replaced with the complex-valued *k k i c  , where c is the dashpot coefficient for equivalent 
viscous damping, the displacement term is replaced with the relative displacement between the 
pile and free-field soil, and an additional term is added to capture the inertial force generated by 

acceleration of the pile mass per unit length pm : 

                                                 
 
4 Second-order moments are included in the nonlinear numerical analyses performed for this study. 
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4 2
*
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[ ] 0p p

p p p g p

d u d u
E I k u u m

dz dt
     (2.2) 

If the free-field ground motion is represented as harmonic excitation by vertically propagating 
shear waves (after Kramer [1996]): 

0( ) cos( )  g gu z u z  (2.3) 

where ug0 is the ground displacement at the surface due to the harmonic seismic excitation, and κ* 
is the complex-valued wave number defined as the ratio of excitation angular frequency (ω) to soil 

complex-valued shear-wave velocity ( * 1 2S S sV V i  , where βs is the soil hysteretic damping 

ratio), then Equation (2.3) can be substituted into (2.2) to give: 

4 2
*

04 2
[ cos( )] 0p p

p p p g p

d u d u
E I k u u z m

dz dt
     (2.4) 

Although a solution is available to the dynamic Equation (2.4) (e.g., Anoyatis et al. [2013]), 
the static solution without consideration of damping or pile inertia is still a reasonable means of 
investigating the controlling mechanisms of kinematic pile–soil interaction. The static version of 
Equation (2.4) is: 

4

04
[ cos( )] 0p

p p p g

d u
E I k u u z

dz
    (2.5) 

The solution to Equation (2.5) is the sum of complementary and particular solutions. 
Finding the complementary solution begins by solving the homogeneous form of Equation (2.5), 
which does not include the ground displacement term since it is not a function of pile displacement 
up: 

 
4

4
0p

p p p

d u
E I k u

dz
   (2.6) 

The characteristic equation for the homogeneous form is: 

4 0
p p

k
r

E I
   (2.7) 

The roots of Equation (2.7) are equal to the 4th roots of the k/EpIp term: 

4 4 4 4
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exp
4 2 4 4p p p p p p p pj
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 



                   
 (2.8) 

Recalling that a complex root of the characteristic equation results in two terms in the 
complementary solution, the complementary solution to Equation (2.4) can be written as: 

1 2 3 4cos( ) sin( ) cos( ) sin( )                z z z zu e z e z e z e z  (2.9) 

where χ1 through χ4 are constants and the characteristic term β is a substitution variable defined 
as: 
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4
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k

E I
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This is the origin of the familiar “Winkler’s parameter”, and the inverse of Equation (2.10) is often 
called the characteristic length. 

The particular solution is found using the method of undetermined coefficients as: 

 0

4
cosg

p p

k u
u z

E I k





 
 

 (2.11) 

and the sum of Equations (2.9) and (2.11) is the complete solution to Equation (2.4) for the pile 
horizontal displacement at any depth z: 

0
1 2 3 4 4
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A similar derivation can be found in Flores-Berrones and Whitman [1981] for pile–soil 
kinematic interaction, and in Hetenyi [1946] for conventional lateral loading at the pile head in the 
absence of free-field excitation. 

Successive derivatives of Equation (2.12) provide expressions for slope (S), curvature (ϕ), 
moment (M), shear (V), and soil reaction (p): 
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The following substitutions were used to abbreviate Equations (2.13) through (2.16): 
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To solve for the constants χ1 through χ4, a set of four permissible boundary conditions must 
be imposed. Typically the boundary conditions are prescribed at the pile head and tip since these 
can be determined on the basis of details such as embedment into a pile cap or a stiff bearing 
stratum. For example, in the absence of superstructure force or moment demands (required for a 
kinematic pile–soil interaction analysis) the boundary conditions for a fixed-head, free-tip pile of 
length L are: 

z 0 z 0 z z
0 ;     0 ;     0 ;     0

L L
V S V M

   
= = = =  (2.18) 

An example of the solution in terms of pile-versus-soil displacement, moment, and shear 
is shown in Figure 2.1 for the following input parameters: 

 E = 27 GPa, I = 0.0031 m4 (corresponding to a 0.5-m-diameter RC pile), length 
(L) = 10 m 

 Vs = 100 m/sec (soft soil), k = 47 MPa 

 ug0 = 0.1 m, f = 10 Hz 

 Boundary condition at pile head = zero slope and zero shear; i.e., a fixed-head 
pile with no superstructure demands so that the kinematic pile–soil interaction 
can be evaluated independently 

 Boundary condition at pile tip = zero shear and zero moment; i.e., the pile tip is 
unrestrained 

To produce an analytical transfer function, the pile head displacement determined from 
Equation (2.12) at depth z = 0 is normalized by the amplitude of the harmonic ground motion, ug0, 
and computed over the frequency range of interest (recall that the solution is frequency-dependent 
even for the simplified static version because it contains the wavenumber term κ). Parametric 
studies using elastic solutions can provide valuable insight into the range of pile and soil stiffness 
for which kinematic pile–soil interaction is significant over the frequency range of engineering 
interest. Figure 2.2 shows kinematic pile–soil interaction transfer functions computed using the 
elastic analytical solution for three diameters of a 25-m-long pile in two homogeneous soil profiles 
representative of relatively soft and relatively stiff soil. The boundary conditions for the pile are 
the same as shown in Figure 2.1—the pile tip is free (zero shear, zero moment), and the pile head 
is restrained against rotation to model a fixed-head condition with zero applied shear. The ranges 
of pile and soil properties considered are as follows: 

 Pile flexural rigidity (EpIp) between 82 MNꞏm2 and 21,200 MNꞏm2. These 
values approximately correspond to a 50-cm-diameter RC pile, such as might 
be used in a pile group, and a 2.0-m-diameter pile that would likely be used as 
a mono-shaft to support a single column or in a pile group for a very large 
suspension or cable-stayed bridge. 

 Pile–soil interaction stiffness k of 60 MPa, corresponding to the initial elastic 
stiffness for a VS = 100 m/sec soft-soil site, and 1050 MPa, corresponding to a 
VS = 400 m/sec stiff-soil site. 
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Figure 2.1 Soil and pile response under imposed 10 Hz harmonic ground motion 
using elastic analytical solutions. 

The transfer functions shown in Figure 2.2 represent the bounds of these ranges of soil and 
pile properties over a frequency range of 0.1 to 100 Hz. The first-mode period for most bridges 
and building structures typically falls in the range of about 0.1 to 2 sec, so the value of the transfer 
function ordinate Hu over this range is of most significance. This corresponds to a frequency range 
of 0.5 to 10 Hz. 

Figure 2.2 shows that the pile/soil combination with the greatest reduction in Hu within the 
frequency range of interest is the larger diameter 1.0-m and 2.0-m piles embedded in the soft-soil 
profile. In contrast to the stiff-pile/soft-soil cases, there is little reduction in Hu for the piles 
embedded in the stiff soil profile over the frequency range of interest, even for the 2.0-m-diameter 
shaft. Significant reduction is predicted only for frequencies greater than about 20 Hz 
(corresponding to a period less than 0.05 sec). Such high-frequency energy usually does not have 
a large influence on the behavior of a structure relative to the energy content at the structure 
fundamental frequency. Structures supported on stiff soil with significant participation from higher 
modes may still be affected in some cases. These findings are consistent with the previous elastic 
studies by Flores-Berrones and Whitman [1982] and Fan et al. [1991]. 

As discussed in the previous chapter, transfer functions are usually presented in a 
normalized manner by plotting versus dimensionless frequency. The version of dimensionless 
frequency given in Equation (1.8), proposed by Di Laora and Sanctis [2013] and Anoyatis et al. 
[2013], is demonstrated in Figure 2.3 to provide “perfect normalization” (i.e., the results all 
collapse onto a single line) for the parametric bounds considered here. 
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Figure 2.2 Transfer function for kinematic soil–structure interaction effects for three 
diameters of 25-m long, fixed-head reinforced concrete piles in soft- and 
stiff-soil profiles. 

 

Figure 2.3 Transfer functions from Figure 2.2 plotted versus dimensionless 
frequency and compared to Anoyatis et al. [2013]. All solutions lie within 
the same narrow band. 
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2.2 ELASTIC NUMERICAL SOLUTION 

The numerical modeling approach used for this study consists of discretized pile segments attached 
to soil springs at each node as depicted in Figure 1.1(b). The elastic analytical solution from the 
preceding section provides an opportunity to verify that the proposed numerical modeling 
approach provides an accurate solution, since the elastic analytical solution is explicit and the 
numerical solution should converge to a high degree of accuracy for elastic conditions. While each 
component of the numerical modeling approach is discussed in detail in Chapter 3, this section 
will focus only on the results of elastic simulations. The pile and soil are modeled using elastic 
beam–column and elastic zero-length uniaxial materials, respectively, in OpenSees.  

Two categories of input excitation are considered, sine-sweep motions consisting of 
uniform-displacement amplitude broadband frequency content from 0.1 to 50 Hz, and recorded 
ground motions with variable bandwidth. The free-field input motions were specified at the ground 
surface and motions at the depth of each soil spring were computed using Equation (2.3). By 
specifying the input motion at the ground surface rather than the base of the soil profile, the 
problem of infinite amplification at resonant site frequencies is avoided. The amplitude of the input 
excitation does not affect the computed transfer functions since the model is linear-elastic. 

Soil and pile properties for the numerical analyses match the properties used in the 
analytical solution so that a direct comparison of the computed transfer functions can be made. 
The soil–pile interaction stiffness (k) at depth z is defined as [Gazetas and Dobry 1984]: 
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where Ep is the pile elastic modulus, taken as 2.7E7 kPa for RC, and Es is depth-dependent elastic 
soil modulus computed from VS based on classical elasticity theory with assumed soil density ρ = 
1.6 Mg/m3 and Poisson’s ratio ν = 0.3. The uniaxial spring stiffness is defined as k divided by the 
tributary length of the pile element to which it is attached. The soil springs connected to the pile 
head and tip are assigned a tributary length equal to half of the pile segment discretization length. 

Transfer functions for the analytical solution are compared to the numerical solution results 
for a sine-sweep input motion in Figure 2.4 and for recorded earthquake ground motions in Figure 
2.5. Two sizes of circular concrete piles were considered, 0.5-m and 2.0-m diameter, for a site with 
VS =150m/sec. Both fixed-head and free-head restraint conditions were considered. The sine-sweep 
input motion transfer functions showed near-perfect agreement with the analytical solution for 
both pile sizes over the entire frequency range considered. 

For the nonlinear parametric study described in the following chapter, ground motions were 
sourced from a set of 40 records with broad frequency content and statistical variability compiled 
by Baker et al. [2011]. These motions and their characteristics are described in detail in §3.7.1. 
For the current comparison, three of the 40 the motions were selected that have variable frequency 
content as seen in the Fourier amplitude spectra (FAS) in Figure 2.5. The three motions are 
described in Table 2.1. 
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Figure 2.4 Analytical and numerical solution transfer functions for sine-sweep input 
motion. 

 

 

Figure 2.5 Fourier amplitude spectra for free-field and foundation-input motions 
(top) and corresponding transfer functions (bottom). 
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Table 2.1 Ground motions for elastic numerical analyses; numbering follows Baker 
et al. [2011]. 

Motion # Earthquake Recording Station M PGA (s) 

25 1989 Loma Prieta UCSC 6.9 0.34 

4 1994 Northridge LA – Wonderland Ave. 6.7 0.13 

24 1989 Loma Prieta Golden Gate Bridge 6.9 0.16 

 

Figure 2.5 shows acceleration FAS for the pile head motion (FIM) and ground surface 
motion (FFM) for each of the three input ground motions. Note that each ground motion FAS is 
only plotted over the useable frequency range of the ground motion, which depends on the 
processing applied to the original recording [Ancheta et al. 2014]. The ratio of the displacement 
FAS is the unsmoothed transfer function shown along with the high-coherence transfer function 
computed using Equation (1.10) in the lower portion of the figure. At frequencies up to about 20 
Hz, the analytical solution matches the numerically-computed transfer functions exactly. At higher 
frequencies, the numerical transfer functions are dominated by noise, although the smoothed, high-
coherence transfer function reduces the noise significantly. 

The finding that the transfer functions computed for the three ground motions with variable 
frequency content all agree perfectly with the analytical solution (and therefore with each other) 
highlights the underlying assumption of elastic material behavior and superposition of the response 
at each frequency. For realistic nonlinear conditions, the response of the system will change for 
input motions with different frequency content. 

In light of the findings that the numerical results provide a near-perfect match to the 
analytical solution (Figure 2.4 and Figure 2.5), and that the analytical solution matches previous 
solutions by others (e.g., Figure 2.3), it has been verified that the proposed numerical modeling 
approach is valid, at least for elastic material properties. 

The remaining sections in this chapter discuss elastic behavior that applies to the small-
strain, initial stiffness range of pile–soil interaction for the nonlinear analyses that follow. 

2.3 ELASTIC WINKLER MODULUS 

2.3.1 Terminology and Units 

In the past, terms such as modulus of subgrade reaction, coefficient of subgrade reaction, Winkler 
stiffness, Winkler modulus, normalized Winkler modulus, and other similar combinations of these 
phrases have been used somewhat interchangeably to refer to two concepts that are distinct and 
must be clearly differentiated. Some clarification is warranted here to avoid confusion. 

The concept of “modulus of subgrade reaction” refers to the soil settlement that occurs 
beneath a uniformly loaded area, and hence has units of [(force/length2)/length = force/length3]. 
Herein the symbol kmsr refers to this definition. It is formulated in this way because of its usefulness 
in structural models for estimating settlement resulting from the bearing pressure exerted by a 
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structure; it has limited usefulness as a standalone descriptor of soil behavior (true soil modulus Es 
is more meaningful). Values of modulus of subgrade reaction can be crudely measured in the field 
using the “plate load test” [ASTM D 1194)] by applying a measured force to a steel plate of known 
area (stress = force/area) and measuring the downward deflection. Terzaghi and Peck [1955] 
provided tabulated values of kmsr for different relative densities of sand that were widely used for 
lateral pile analyses until full-scale pile testing began in the 1970s. 

When used with a beam-on-springs Winkler approach, the soil stiffness term must be 
modified to account for the out-of-plane (transverse) width of the beam over which the soil 
pressure acts, since Winkler models consider only two dimensions—the longitudinal axis of the 
beam and the orthogonal direction in which load is applied, parallel to the beam height. For 
example, if a measured value of kmsr was to be used for a Winkler analysis, it would be multiplied 
by beam width to obtain Ke = kmsrB, where Ke is the Winkler modulus with units of distributed load 
per unit deflection [force/length/length], which is equivalent to the units of stress [force/length2]. 
The symbol Ke will be used in this text in reference to both (1) Winkler stiffness for elastic analyses 
and (2) the initial elastic stiffness of p-y springs for nonlinear analyses. 

Confusion may arise because Ke and soil Young’s modulus Es share the same units and are 
sometimes presented as being related by a dimensionless coefficient for pile analysis. A discussion 
of the basis for this assumption is provided in the following sections, but it should be noted that Es 
cannot be exactly defined from a measured value of kmsr. To define Es, a measurement of strain 
parallel to the direction of loading is needed. In a laboratory test this is trivial because the specimen 
height and boundary conditions are known. To measure strain during a plate load test would require 
knowing the height of the soil column (h) that is influenced by the load applied at the surface, 
which for an elastic half-space is theoretically infinite. While finite values of h are more reasonable 
and could be estimated by taking into account the three-dimensional attenuation of stress below 
the plate, the computed value of Es scales linearly with h and is therefore highly sensitive to the 
estimate. Hence any tabulated values relating kmsr to Es (e.g., Table 9-1 in Bowles [1997]) contain 
an inherent assumption about the plate load test depth of influence and how this will scale with 
size between the test and real foundations. Likewise any relation between measured or tabulated 
kmsr and Winkler modulus for lateral pile analysis contain a similar embedded assumption, or 
represent the results of specific load test(s). 

2.3.2 Previous Definitions of Ke 

Existing p-y relationships such as the widely-used API [1993] curve for sand and Matlock’s [1970] 
curves for clay were derived by fitting equations that have a theoretically-derived functional form 
to the results of full-scale load tests. While load tests may provide a reasonable estimate of the 
near-surface ultimate lateral soil resistance pult, the instrumentation used to measure pile strain in 
the original tests was not capable of accurately measuring small enough deformations to capture 
the truly elastic soil behavior [Choi et al. 2015]. Since Es can be related to the small-strain shear 
modulus measured using geophysical methods, and since geophysical tests are an increasingly 
common part of site investigations for projects in seismic regions, a more attractive approach 
would relate the soil elastic Young’s modulus Es directly to the initial stiffness of the p-y curve, 
Ke. Soil shear modulus G, shear-wave velocity VS, and Young’s modulus are related through the 
following well known equations from elasticity theory: 
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where ν and ρs are the soil Poisson’s ratio and mass density, respectively. 

Vesic [1961] provided the following expression for Ke: 
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which explicitly recognizes that beam width B must be taken into account when formulating a 
Winkler modulus from kmsr. This is straightforward for the case that Winkler (1867), Hetenyi 
[1946], and Vesic [1961] were considering—an infinitely-long rectangular or wide-flange beam 
that only exerts normal stress at the contact between the flat base of the beam and the ground 
surface. For the case of a laterally-loaded circular pile, the stress field at the pile–soil interface is 
a combination of shear and normal stresses, and the relative contribution and direction of each 
component changes around the circumference of the pile as shown in Figure 2.6. Equation (2.22) 
has been used in the past to define p-y curve elastic stiffness (e.g., Boulanger et al. [1999]) despite 
not being derived for these conditions. 

Several researchers performing elastic pile KSSI analyses have quantified a Winkler spring 
coefficient δ, where the linear-elastic Winkler spring stiffness is defined as the product of the 
dimensionless parameter δ and the soil modulus Es: 

e sK E   (2.23) 

In other words, δ is the ratio of the p-y elastic stiffness to the soil elastic stiffness: 
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Figure 2.6 (a) Normal and (b) shear stress contours around a laterally-loaded pile. 
Color key indicates change in stress from initial condition. 
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Values and equations for δ for fixed- and free-head piles and for various soil properties 
(homogeneous, layered, stiffness increasing linearly with depth, etc.) have been proposed by many 
researchers including Kagawa and Kraft [1980], Roesset [1980a], Dobry et al. [1982], Gazetas and 
Dobry [1984b], Kavvadas and Gazetas [1993], and Syngros [2004]. In these studies, a single value 
of δ was applied over the length of the pile in an elastic BDWF model; the value of δ was then 
adjusted until the pile head displacement matched the displacement computed with finite-element 
or boundary-element continuum solutions under the same applied lateral force at the pile head. In 
other words, the pile-head lateral impedances were matched between the two numerical modeling 
approaches. Regression models to determine best-fits to parametric results were then used to 
determine coefficients for the expressions. A selection of these expressions and notes on their 
derivation are given in Table 2.2 and plotted in Figure 2.7. 

Even in the case of a homogeneous soil profile, relative pile–soil displacement varies with 
depth for both inertial and kinematic loading due to the deformation pattern of the pile. Since a 
single value of δ was applied over the entire pile length in these comparative studies, the mechanics 
controlling the interaction at a single depth are not directly reflected in the result, which represents 
an average response. This is counterproductive for practical applications because real soil profiles 
are inhomogeneous, and foundation designers need reliable methods for specifying accurate p-y 
curve parameters at a single depth within a given soil layer. Furthermore since this approach simply 
equates one numerical study with another, the outcome is perhaps less a reflection of reality than 
it is of the difference between the modeling approaches. A more rigorous derivation of δ based on 
theory and rigorous numerical modeling complemented by validation from accurate small strain 
measurements during physical modeling studies is a future research need. 

Since loading was applied at the pile head in these studies, the resulting values of δ were 
not derived for the fundamental mechanics governing kinematic interaction from free-field 
excitation. Anoyatis et al. [2013] showed that the commonly used value of δ =1.2, initially 
proposed by Roesset [1980a], does not provide a good match to finite-element solutions for 
kinematic loading for certain pile and soil stiffness combinations. Furthermore, the parametric 
results of Anoyatis et al. showed that even for the same pile and soil conditions, different values 
of δ are required to match the BDWF results to the continuum finite-element results depending on 
which result is being matched (e.g., curvature ratios between the pile and soil at the pile head 
versus pile tip, maximum pile bending moment, etc.), which has also been reported by Kavvadas 
and Gazetas [1993]. This is again a reflection of the fact that the approach of obtaining δ by 
matching impedances from BDWF and continuum analyses does not faithfully capture the 
underlying pile–soil interaction mechanics; if it did then a single expression would work for a 
variety of boundary conditions. A useful finding of Anoyatis et al. is that the δ parameter is not 
strongly frequency-dependent, which is convenient because of the difficulties involved in 
performing frequency-domain analyses. 

Despite the shortcomings of the impedance-matching approach, the difference between δ 
values for fixed- and free-head piles in Figure 2.7 clearly shows that pile rotation or the lack thereof 
has a significant influence on the magnitude of the mobilized soil resistance, and there is a physical 
basis for this trend. Near the head of a free-head pile where rotation is significant, the pile 
encounters greater soil resistance than a fixed-head pile because pile rotation mobilizes soil shear 
resistance in addition to the predominantly compressive stress induced by translation. Ideally, p-y 
curves should be formulated as p-y-θ curves, where θ is pile rotation. This is another future 
research need and will not be addressed in the current study. 
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Figure 2.7 Values of Winkler coefficient δ proposed in previous pile SSI research. 
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Table 2.2 δ expressions from previous researchers derived by matching results of 
BDWF analyses to continuum analyses. 

Applicable 
soil 

condition 

Pile 
head-
fixity 

condition 

Source: 
Roesset 
[1980a] 

Dobry et al. 
[1982] 

Kavvadas and Gazetas 
[1993]b 

Syngros 
[2004]c 

Any, or not 
specified 

Any, or 
not 

specified 

δ = 

1.2 - - - 
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stiffness w/ 

depth 
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Linearly 
increasing 
stiffness w/ 

deptha 

Fixed - - - 

0.08
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 Free - - - 
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s

E
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
 
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 

 

aSoil stiffness Es defined as the stiffness at the pile tip, decreases linearly to zero at the ground surface. 
bMain emphasis of study was matching peak bending moments between BDWF and finite-element (FEM) continuum analyses 
cFEM studies performed using K-PAX software, described in Syngros [2004] dissertation. The axisymmetric domain is two-
dimensional and formulated in radial coordinates. Soil-pile interaction represented by a strain compatibility condition at interface.  

2.3.3 Diameter Effects 

The relationships for δ in Table 2.2 generally lack a functional dependence on pile diameter, 
suggesting that pile–soil interaction initial stiffness is independent of diameter. While this holds 
true for plane-strain elastic solutions considering a homogeneous full-space domain, solutions 
using more realistic boundary conditions along with experimental results (e.g., see Carter 1984 
and Pender [2004]) indicate that initial stiffness does depend on pile diameter. Conversely, 
experimental work by Ashford and Juirnarongrit [2003] showed that a diameter-independent 
estimate of Ke provided the best match to full-scale experimental results, but only for piles with 
active length contained within a uniform-stiffness stiff clay layer. 

A dependence on diameter is intuitive—it would seem that a pile undergoing lateral 
displacement will encounter greater soil resistance than a smaller diameter pile undergoing the 
same displacement due simply to the fact that it is wider than the small-diameter pile. Pile rotation 
and changes in soil stiffness with depth also affect the resistance encountered by the pile as a 
function of its diameter [Pender 2004]. These effects are due to the dependence of the pile’s 
flexural response on EI (and hence B), and because a larger diameter pile mobilizes soil resistance 
over an increasingly larger depth increment and hence “feels” an increase in stiffness with depth. 
Pender [2004] and others have suggested that previous experimental campaigns failed to identify 
these trends because only a small number of pile diameters were tested—in some cases, one. 
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Nonetheless, the majority of elastic pile dynamics work and many nonlinear p-y studies 
(e.g., Kagawa and Kraft [1981] and Boulanger et al. [1999]) have proceeded with the assumption 
of Ke being independent of pile diameter. The underlying assumption for this approach is that a 
small-diameter pile will induce greater average soil strain than a large-diameter pile for the same 
lateral displacement by a factor proportional to the difference of the two piles diameters. This is 
consistent with Terzaghi’s [1955] assumption that the zone in which significant strain is mobilized 
beneath a loaded footing scales in proportion to the size of the footing. 

Kagawa and Kraft [1980] adapted a formulation by Matlock [1970] as the basis for 
applying this assumption to pile dynamics5, suggesting that the average shear strain γave which 
develops around a laterally loaded pile is a linear function of the ratio of displacement to pile 
diameter (y/B), such that as B increases, the relationship between stress and strain, and hence p/y, 
scales at the same rate: 

 1

2.5ave

y

B





  (2.25) 

To test this hypothesis, a series of simple plane-strain elastic analyses were run for this 
study in the finite-element program Phase2 [Rocscience 2013]. The results showed that δ is 
independent of diameter, but only if the domain size is scaled to match changes in pile size—a 
significant caveat. This is in agreement with previous two- and three-dimensional elastic analyses 
(e.g., see Pender [2004]), so further details will not be provided here. 

The potential error introduced by using a diameter-independent Ke is likely minor for many 
applications in which large relative pile–soil displacements are expected, since the tangent 
modulus of a nonlinear p-y curve depends on both the initial stiffness and the ultimate resistance. 
The results of Ashford and Juirnarongrit [2003] also suggest that the error is minor for small-strain 
dynamic loading if the soil stiffness is approximately constant with depth. 

Despite its shortcomings, the framework of Equation (2.25) is convenient because it allows 
the relative pile–soil displacement defining the onset of nonlinearity yyield to be defined as a 
function of shear strain at the onset of soil nonlinearity, the latter of which has been studied 
extensively through laboratory testing (e.g., Vucetic and Dobry [1991]). Hence, a diameter-
independent definition for Ke based on Equation (2.25) will be adopted for this study, with the 

                                                 
 
5 It is worth noting that further examination of the underlying theory behind Equation (2.25) reveals that it has little 
relation to lateral pile-soil interaction. The basis for Equation (2.25) is Skempton’s [1951] method for estimating the 
immediate settlement of an embedded strip footing on clay based on a combination of elasticity theory, limit-state 
concepts, and laboratory tests results. Skempton estimated that the ratio of Es to undrained strength (su) for typical 
clays is about 50 to 200, and assumed that the inverse of this range (0.005 to 0.02) could be used to approximate the 
strain occurring at one-half the measured strength (ε50). Using these values and an assumption of the size of the 
stress zone of influence below the footing, a simple approximation for settlement was provided. Matlock adopted 
this for piles by taking the average of the ε50 range (≈ 0.01) and substituting pile diameter for footing width, 
resulting in the expression that average normal strain around the pile could be approximates as y/2.5B—hardly a 
rigorous consideration of pile-soil interaction mechanics. Kagawa and Kraft [1980] later adopted this approach for 
their theoretical pile dynamics study. Noting that the strain orthogonal to ε is –υε, and thus the maximum shear strain 
is (1+υ)ε, they came up with Equation (2.25). 
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opportunity to revise the findings in the future if more rigorous relationships between δ and B (or 
γave and B) become available. 

2.4 QUESTIONS OF PILE MASS AND INERTIA 

For static loading, since acceleration is zero (or is ignored for pseudo-static analysis) no inertial 
force is associated with movements of the pile mass. During the rapid and potentially large-
amplitude loading from an earthquake, however, pile inertia contributes to the overall response of 
the pile–soil system and should be included in dynamic analyses, as recognized early on by Novak 
[1974]. To produce more tractable and simplified solutions, previous researchers using Winkler 
models have often neglected the pile mass such that a static solution is being used to approximate 
the dynamic response (e.g., Dobry et al. [1982] and Anoyatis et al. [2013]). Others assigned a mass 
density greater than the true pile mass (e.g., Berger et al. [1977] and Marshall et al. [1977]) to 
account for the fact that some portion of the soil surrounding the pile moves in phase with the pile, 
amplifying its inertia. The volume of soil that moves with the pile likely varies depending on the 
frequency and amplitude of the excitation along with the pile and soil properties, and is therefore 
difficult to quantify. 

The influence of pile mass is demonstrated in Figure 2.8, which compares normalized 
elastic transfer functions computed for two pile sizes with and without mass. In general, these 
elastic analyses indicate that the effect of pile mass is minor, which agrees with previous findings 
by Kagawa and Kraft [1980], and only deviates from the no-mass condition over a limited 
frequency range. The effect does not appear to scale with pile diameter, since the difference 
between the with-mass and without-mass curves is approximately equal for the two sizes 
considered when plotted versus dimensionless frequency. The effect of pile inertia may not be as 
consistent when system nonlinearity is considered. As discussed in the following section, including 
pile mass in numerical simulations can complicate interpretation of the kinematic transfer function 
because of inertial resonance near the fundamental frequency of the pile–soil system. Because of 
this, and in light of the finding that the influence of pile inertia is minor, piles will be modelled as 
massless for the numerical simulations that follow. 
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Figure 2.8 Normalized elastic transfer functions computed with and without pile 
mass. 

2.5 PILE–SOIL SYSTEM FUNDAMENTAL FREQUENCY AND RESONANCE 

When pile mass is included in a Winkler model, the pile–soil system will have a defined 
fundamental frequency. It is important to recognize that this represents a somewhat fictitious mode 
of vibration in the context of a real structure, since in general the dynamic response of a system 
depends on the coupled response of the superstructure and foundation-soil components. 
Nonetheless, transfer functions computed for this study have the potential to be influenced by 
inertial resonance when pile mass is included. To investigate the potential influence of resonance, 
transfer functions were computed for pile–soil systems with and without pile mass, similar to the 
analyses presented in the previous section. 

As shown in Figure 2.9, it is clear that the kinematic transfer function is strongly influenced 
by resonance near the first-mode period of the pile–soil system (at about 17 Hz), amplifying the 
free-field motion by a factor of nearly five. Also of note is that the bandwidth of the zone 
influenced by first-mode resonance is on the order of 5 Hz. In general this bandwidth will increase 
with increasing fundamental frequency of the system [Rathje et al. 2004; Chopra 2007]. Hence, it 
is possible for resonance to influence the kinematic transfer function over the frequency range of 
interest even if the fundamental frequency of the pile–soil system lies beyond this this range. 

Inflation of transfer function ordinates due to inertial resonance further compounds the 
difficulties associated with accurately defining kinematic transfer functions at high frequencies as 
discussed in §1.3.6.2. In light of this, pile mass will be set to zero for the analyses that follow 
unless otherwise noted. This approach is especially helpful for nonlinear analyses in which the 
fundamental frequency of the system changes over the duration of the problem, which makes it 
difficult to discern which portions of the resulting transfer function are strongly affected by 
resonance. 
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Figure 2.9 Effect of resonance at pile–soil system fundamental frequency on 
kinematic transfer functions. 

 
 
  



49 

 

3 Analysis 

3.1 APPROACH 

The approach for investigating kinematic pile–soil interaction for this study is through numerical 
analyses using the finite element modeling platform OpenSees. A model of a single pile or pile 
group connected to nonlinear p-y springs is formulated as shown in Figure 3.1(b). Dynamic time-
domain analyses are then conducted in which the free ends of the p-y springs are displaced to 
simulate free-field ground response due to earthquake excitation; the free-field ground motions are 
computed separately using one-dimensional nonlinear ground response analysis in DEEPSOIL 
[Hashash et al. 2015] as depicted in Figure 3.1(a). Transfer functions and spectral ratios are then 
computed using the pile head and free-field ground surface response histories. 

In the following sections, the various components used in the beam-on-dynamic-nonlinear-
Winkler-foundation (BDNWF) and ground response models for this study are discussed. 
Background on the parameters is first given in the context of previous efforts by other researchers 
studying pile dynamics, followed by an explanation of how the parameters were quantified for this 
study. 

 

Figure 3.1 Numerical modeling approach. 
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3.2 PARAMETRIC STUDY BOUNDS 

The range of pile and soil properties considered for this study are intended to span the conditions 
encountered in typical bridge design practice. The study bounds were further refined based on the 
combinations of pile and soil stiffness found to result in significant kinematic interaction based on 
elastic solutions in the previous chapter. 

Table 3.1 presents the range of single pile properties considered. Models of each of the 
four piles in Table 3.1 have been analyzed for six different soil profiles each subjected to 40 ground 
motions for free- and fixed-head pile boundary conditions. This represents 960 analyses for each 
head-fixity, for a total of 1920 single pile analyses. Properties of sites 1 through 6 are discussed in 
§3.6, and the 40 ground motions are discussed in §3.7. In addition, a limited number of pile group 
analyses were performed to investigate group effects and the influence of ground-motion 
incoherence, and are discussed in §3.5.4 and §3.7.3, respectively 

Table 3.1 Parametric study bounds for single piles. 

Length (L) Diameter (B) Slenderness Ratio (L/B) Cracked Section 
Stiffness (MNꞏm) 

7.5 m 0.5 m 15 28 

15 m 0.5 m 30 28 

30 m 2.0 m 15 7220 

60 m 2.0 m 30 7220 

3.3 PySimple3—MOTIVATION AND MODEL UPDATES 

It is well known in the geotechnical community that the generic p-y springs typically used in 
practice do not sufficiently capture realistic soil behavior, especially for dynamic analysis. For this 
study, a modified version of the p-y model developed by Choi et al. [2015] is used, known as 
PySimple3 in OpenSees. The PySimple3 model was developed specifically for dynamic analysis 
of laterally loaded piles and includes several features not found in previously available models, 
such as the ability to independently specify small stain stiffness, the force at which 
yielding/nonlinearity occurs, and hysteretic and radiation damping. The model consists of an initial 
linear portion followed by nonlinear behavior according to a bounding-surface plasticity 
formulation (e.g., Dafalias [1986]) as illustrated in Figure 3.2. The user specifies the initial elastic 
slope of the curve Ke, the ultimate resistance pult, the resistance at yielding py, and shape parameter 
C that describes curvature and hence affects the amount of soil hysteric damping. Radiation 
damping can also be modeled by specifying an optional viscous damping coefficient. 
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Figure 3.2 Basic features of PySimple3 material under monotonic loading (after Choi 
et al. [2015]). 

3.3.1 Motivation 

Prior to development of PySimple3, the primary tool available for pile SSI modeling with a BNWF 
approach was the PySimple1 material model in OpenSees, which is based on a framework 
presented by Boulanger et al. [1999]. The implementation of PySimple1 in OpenSees is formulated 
to approximate the shape of the API [1993] or Matlock [1970] p-y curves for sand and clay, 
respectively. Because the material model is coded to match the shapes of these previous p-y 
definitions, the user has limited control over specific aspects of the curve. For example, the initial 
stiffness cannot be specified directly, only adjusted indirectly by changing the other parameters. 
In addition, as shown in Figure 3.3, the viscous dashpot used to represent radiation damping is 
placed in parallel with the entire material instead of just the far-field elastic component as 
presented in Boulanger et al. [1999]. For the OpenSees implementation, the dashpot force is 
computed after force and displacement compatibility has been achieved between the gap, plastic, 
and elastic components based on the proportion of the total displacement that occurs in the elastic 
component relative to the total element. In other words, the dashpot force is not considered while 
solving for compatible forces and displacements in the other components, only after the fact. While 
this approach is computationally stable, it is more desirable to have a true viscoelastic-plastic 
implementation as shown in Figure 3.4(b). Note that placing the dashpot in parallel with the elastic 
component, also known as the Kelvin-Voigt viscoelasticity model, is distinct from placing the two 
components in series, known as the Maxwell model [Simo and Hughes 1998]. The PySimple1 and 
PySimple3 materials are compared for sand and clay in Figure 3.5. 
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Figure 3.3 Comparison of Boulanger et al. [1999] dynamic p-y material and later 
implementation in OpenSees. 

 

 

Figure 3.4 PySimple3 viscoelastic-plastic material model formulation. 
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Figure 3.5 Comparison of PySimple1 and PySimple3 material models. 

3.3.2 Governing Equations and OpenSees Implementation 

The PySimple3 constitutive model by Choi et al. [2015] is based on a bounding-surface plasticity 
formulation according to the following governing equations: 
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Equation (3.1) is the elastic constitutive law relating the rate of change versus time 
(signified by the overdot) of force in the element p  to the elastic displacement rate  ey  based on 

the elastic stiffness Ke. The right-hand side of Equation (3.1) shows that the elastic displacement 
rate is equivalent to the total displacement rate minus the plastic displacement rate. Equation (3.2) 
is the yield function used to determine if yielding has occurred (f = 0) or if the current state remains 
in the elastic region (f < 0). When yielding has occurred, Equations (3.3)–(3.5) define the plastic 
modulus, kinematic hardening law, and elastoplastic (tangent) modulus. The force pα tracks the 
center of the elastic region, which evolves with the yield surface during continued post-yield 
loading. This is equivalent to the concept of backstress in classical plasticity formulations, but in 
this case is a “backforce.” The plastic modulus is determined by how close the current state p lies 
to the ultimate resistance (bounding surface) represented by pult and the force at the onset of 
yielding pin. The formulation allows for a smooth transition between elastic and post-yield 
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behavior since the plastic modulus is infinite at the onset of yielding, such that the elastoplastic 
modulus is initially equal to the elastic modulus but undergoes degradation with continued 
displacement. Further details are available in Choi et al. [2015]. 

Three updates were made to PySimple3 to meet the needs of this study and to improve the 
performance of the material for general use in other pile dynamics problems: (i) optional 
viscoelastic behavior was added to model radiation damping; (ii) a backforce-updating routine was 
added to prevent overestimates of force following an unload-reload cycle; and (iii) the implicit 
integration scheme used for solving the governing equations was updated to use the 
unconditionally-stable and efficient Ridders’ method [1979]. 

An elastic spring in parallel with a viscous dashpot as shown in Figure 3.4(b) is known as 
the Kelvin-Voigt viscoelasticity model. The instantaneous force in a Kelvin-Voigt material is the 
sum of the force in the elastic component due to the material’s elastic stiffness plus the force in 
the dashpot: 
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where c is the dashpot coefficient. This formulation defines the elastic (now viscoelastic) 
constitutive law for the updated PySimple3 material. The viscoelastic-plastic tangent becomes: 
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The term relating change in force to change in elastic displacement (dp/dye) can be isolated 
from Equation (3.6) in incremental form as follows: 
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where dye,last/dt is the elastic displacement rate during the last converged step. Note that the 
following possible alternative formulation for dp/dye: 
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implies that the dashpot force would continue to be added to the total force in the viscoelastic 
component even if the elastic displacement rate stays constant. This is an incorrect formulation; if 
the elastic displacement rate (i.e., velocity) is constant, then the dashpot force should remain 
constant between successive increments. Only the force in the elastic spring component changes 
if the elastic displacement rate is constant; Equation (3.8) has been formulated to capture this. 

The approach for solving the governing equations in the OpenSees implementation of the 
PySimple3 material is as follows: 
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 A trial displacement step is passed to the material by the program; if yielding 
does not occur, the resulting force is determined from Equation (3.6) directly. 

 If yielding occurs, an initial guess is made that divides the trial displacement 
increment into elastic and plastic sub-increments. 

 The force in the plastic and viscoelastic components is computed based on the 
imposed trial displacements. 

 Since the plastic and viscoelastic components are in series, the force in the two 
components must be equal. Hence the unbalanced force between the two 
components is cast as a residual equation, and the trial amount of elastic versus 
plastic displacement is adjusted until the residual unbalanced force falls below 
a specified tolerance. Ridder’s method is used to solve this iteration scheme. 

3.4 PySimple3—PARAMETER VALUES 

The following sections describe how each of the parameters that define the PySimple3 model are 
defined for this study. 

3.4.1 Initial Elastic Stiffness Ke 

The initial horizontal interaction between a laterally-loaded pile and soil does not induce 
nonlinearity in the pile or soil. Although the nonlinear PySimple3 model used for this study is 
linear only for very small displacements [on the order of y/B of 2x10-5 (after Choi et al. [2015]), 
the elastic slope has a significant impact on the shape of the p-y curve and the resulting tangent 
stiffness and hysteresis at displacements large enough to induce nonlinearity. Figure 3.6 
demonstrates that for all other parameters being equal, the amount of hysteretic damping during 
harmonic loading is significantly different when Ke is varied by a factor of two—even at 
displacements less than 1 cm. Hence, it is important to make an accurate estimate of Ke in order to 
capture nonlinear behavior at larger strains. 

Values of the parameter δ that relates Ke to the soil elastic modulus were discussed in 
§2.3.2. In general, these values apply to inertial interaction cases and have not been validated 
against real pile behavior. In the absence of more rigorous studies specifically targeting δ for 
kinematic pile SSI applications, lower- and upper-bound values of 1.0 and 3.0 were used for this 
study. The lower-bound value 1.0 was used for fixed-head piles, including pile groups connected 
by a stiff pile cap that undergo translation with little corresponding rotation. The finite-element 
simulations discussed in the following section indicate that this value is reasonable. A value of δ 
= 3.0 was used in this study for free-head piles (such as extended-shaft bridge columns). These 
values fall within the range implied by the elastic solutions presented in Figure 2.7 and Table 2.2. 

The effect of head-fixity condition on the pile response is most significant near the pile 
head within the uppermost pile active length La. Hence, it is possible that using a δ value of 3.0 
over the full length of a free-head pile results in an overestimate of the pile–soil interaction 
stiffness. To investigate whether or not this has a significant effect on the transfer functions 
computed for this study, a comparison was made between transfer functions computed using a 
uniform value of δ = 3.0 over the full length of a free-head pile versus using δ = 3.0 over a depth 
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increment from the surface to eight pile diameters, and δ = 1.0 below this depth. As indicated in 
Figure 3.7, there is a negligible influence of the value of δ used over the lower portion of the pile 
on the computed transfer function. Hence, a uniform value of δ = 3.0 will be used for free-head 
piles for simplicity. 

 

Figure 3.6 Effect of initial elastic stiffness Ke on PySimple3 behavior for typical soft-
clay properties. 

 

 

Figure 3.7 Transfer functions (left) and p-y curve initial stiffness parameter versus 
depth plots (right) for free-head pile with uniform and variable values of 
Winkler coefficient  over the depth of the pile. 
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3.4.2 Ultimate Resistance 

The API [1993] and Matlock [1970] values for p-y spring ultimate resistance were adopted for this 
study for sand and clay, respectively. Although these relationships are semi-empirical and do not 
account for seismic loading conditions, they provide a convenient method for estimating ultimate 
resistance. Furthermore, since the relative displacement between the pile and the soil due to 
kinematic interaction is small over the majority of the length of the pile, the ultimate resistance of 
the p-y springs will rarely be mobilized, and the initial stiffness Ke and yield force pyield are more 
important terms. Further research is needed to better characterize the ultimate resistance for both 
static and dynamic loading conditions. 

3.4.3 Curvature Parameter and Yield Force 

The parameter C controls the shape of the PySimple3 curve between the elastic region and the 
ultimate resistance, with smaller values of C resulting in more curvature if Ke and pult are held 
constant (Figure 3.8). C can be calibrated to fit the results of model- or full-scale load tests, or can 
be set such that the curve passes through a target point. 

In this study, C was computed such that the curve passes through a target y50 point, where 
y50 is the deformation at which 50% of pult has been mobilized and, conveniently, is a parameter 
usually defined for existing p-y curve models. Choi et al. [2015] derived the following expression 
for C as a function of y50 and the remaining PySimple3 parameters from the governing Equations 
(3.1) through (3.5) presented above: 
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Figure 3.8 Effect of PySimple3 curvature parameter C. 
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where y e yieldp K y  is the value of p at which yielding occurs. The relative pile–soil displacement 

yyield is the value of y at the onset of soil nonlinearity. For this study, yyield was estimated using 
Equation (2.25), the same approach taken in the Choi et al. [2015] study. Shear strain 
corresponding to the onset of soil nonlinearity was approximated as 0.001% based on laboratory 
direct simple shear test results performed by Darendeli [2001]. 

As the target y50 value becomes smaller and the denominator of Equation (3.10) approaches 
zero, C approaches infinity. Very large values of C result in approximately elastic perfectly-plastic 
p-y behavior, which can lead to numerical instability in the finite element solution. (The trend 
towards this behavior is shown in Figure 3.8.) Permissible values of y50 must satisfy the expression: 
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One approach for establishing the target y50 is to use expressions from an existing p-y 
relationship such as API [1993] or Matlock [1970]. For sand, the API relationship tends to predict 
y50 values that are close to the lower bound defined by Equation (3.11), especially for loose to 
medium-dense sands at confining pressures greater than about 400 kPa. This is partially due to the 
implicit assumption in the API formulation that the stiffness of sand increases linearly with depth; 
the stiffness of sand can more accurately be described as scaling in proportion to the square root 
of confining stress [Hardin and Drnevich 1972]. Hence, the API formulation tends to overpredict 
sand stiffness, with the magnitude of the overprediction increasing with depth. This results in a 
corresponding underestimate of y50. The modified version of the API sand formulation described 
by Boulanger et al. [2003], in which soil stiffness is assumed to increase in proportion to the square 
root of confining pressure, also resulted in y50 values near the lower bound defined by Equation 
(3.11). 

To address the shortcoming described above for estimating y50 for sand, a series of plane-
strain finite element analyses of laterally-loaded piles were conducted using the program Phase2 
[Rocscience 2013]. The domain consists of a horizontal slice through the pile and the surrounding 
soil as shown in Figure 3.9. The plane-strain behavior is meant to capture the lateral pile–soil 
interaction below the depth at which a passive pressure wedge would form and displace upward 
near the ground surface. The sand was characterized as having minimum and maximum void ratios 
of 0.4 and 0.9, respectively, and a critical state friction angle of 32° [Bolton 1986]. For three 
relative densities corresponding to loose, medium-dense and dense sand (20%, 50%, and 80%) 
and assumptions of 100% saturation and a specific gravity of solids of 2.65, unit weights and 
corresponding vertical stresses were calculated at depths of 5, 10, 20, and 40 m. Shear strength 
and stiffness properties of the sand were then estimated using a consistent framework to ensure 
that the properties scaled uniformly with changes in stress. 

Peak friction angles were calculated based on relative density, confining pressure, and 
mean effective stress at failure assuming a triaxial stress path after Bolton [1986]. The resulting 
values of ϕ ranged from 32 to 45°; these values were used to compute the coefficient of lateral 
earth pressure at-rest K0 using the expression for normally consolidated sand by Jaky [1948]: 

0 1 sinK     (3.12) 

Values of Young’s modulus for the sand were estimated using an expression proposed by Lewis 
[1990] with the coefficients representing the average results of laboratory testing on sands at 
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different relative densities and confining stresses. The expression captures the increase in stiffness 
of sand as a function of square root of confining pressure: 
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where p is mean effective stress, pa is atmospheric pressure in the same units as p, and e is void 
ratio. The parameters ϕ and Es were used to define the Duncan-Chang [1970] nonlinear-elastic 
hyperbolic material model in Phase2. Soil Poison’s ratio ν = 0.3 and a failure ratio Rf = 0.9 were 
used for the model. Although the Duncan-Chang model does not include plasticity, it provides a 
reasonable representation of the stress–strain behavior of soil up to the point of shear failure and 
is simple to define based on readily-quantifiable soil parameters. 

Analyses were performed for the four depths listed previously for pile diameters of 0.5 and 
2.0 m. The loose soil (Dr= 20%) was not considered at the 40-m depth. The plane-strain behavior 
results in p-y curves that do not reach an asymptotic value of pult since increasing pile displacement 
mobilizes resistance in an increasingly larger zone of soil (which is likely a realistic behavior, 
although current p-y curves are not formulated this way). As such, pult was defined somewhat 
arbitrarily as the value of p for which the secant slope of the p-y curve decreased to 5% of the 
initial slope. 

The results of the simulations are presented in normalized form in Figure 3.10(b) along 
with the normalized values predicted by API [1993] and the modified API relationship presented 
by Boulanger et al. [2003] in Figure 3.10(a). The 1:1 slope line in Figure 3.10 represents the 
minimum value of y50/B that satisfies Equation (3.11) for a given pile diameter; values of y50/B 
plotting to the left of this line are inadmissible and values plotting near the line indicate 
approximately elastic perfectly-plastic behavior that can result in numerical instability. The best-
fit linear trend line passing through the Phase2 results can be simplified to the following 
expression: 
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Equation (3.14) was used to define y50 for sand layers in this study. 
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Figure 3.9 Phase2 finite element domain for plane-strain analyses of laterally loaded 
pile. The pile is displaced from left to right during the analyses. 

 

Figure 3.10 Comparison of normalized y50 values using (a) existing p-y relationships 
and (b) from results of plane-strain finite element simulations of laterally-
loaded piles in Phase2 using Duncan-Chang nonlinear-elastic (D-C) and 
Mohr-Coulomb (M-C) soil constitutive models. 
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3.4.4 Radiation Damping 

As a pile vibrates, stress waves propagate or “radiate” away into the surrounding soil. This form 
of energy dissipation is known as radiation damping or alternatively as geometric damping because 
the radiated energy tends to attenuate with increasing propagation distance. For dynamic pile 
analyses using continuum elements, radiation damping is usually accounted for by using an 
energy-absorbing boundary that prevents incident stress waves from reflecting back into the 
domain (e.g., Lysmer and Kuhlemeyer [1969]). For Winkler-type analyses, if radiation damping 
is to be considered, it must be incorporated into the pile–soil interaction elements. Equivalent 
viscous damping, modeled through a rate-dependent viscous dashpot, is typically utilized for this 
purpose. The viscous dashpot component is characterized by a dashpot coefficient, c, which is 
defined as the ratio of the force in the dashpot pdashpot to velocity dy/dt, i.e.: 

  dashpot

dy
p c cy

dt
 (3.15) 

The dashpot coefficient has units of [F][T][L]-1 or equivalent, such that when multiplied by a 
velocity a force results. 

For Winkler-type analyses, the energy dissipation due to radiation damping can be thought 
of as additional soil resistance for a given amount of relative pile–soil displacement (y) compared 
to the equivalent static or slow-monotonic loading case. Hence, a dynamic p-y curve including 
radiation damping would be stiffer than the p-y curve for the same pile and soil conditions 
undergoing static loading. This is depicted in Figure 3.11. 

Supporting this concept, cyclic lateral load tests of a full-scale four-pile group in granular 
soil by McManus and Alabaster [2004] found an increase in dynamic stiffness of about 50% over 
the static stiffness, which they concluded was at least partially due to radiation damping effects. 
Ignoring radiation damping for dynamic loading conditions would therefore result in an 
underestimate of foundation stiffness and a corresponding overestimate of superstructure 
displacement and rotation. This may be a conservative design assumption for certain scenarios, 
but for the purpose of quantifying foundation input motions it could result in an unconservative 
overestimate of the kinematic pile–soil interaction effect since the stiffness contrast between the 
pile and soil is a dominant factor controlling the interaction. Indeed, even the pioneering work on 
pile dynamics (e.g., Novak [1974]) recognized the importance of radiation damping in forming an 
accurate solution. 

Much of the previous research utilizing Winkler-type and continuum models for dynamic 
analysis of piles used equivalent-linear viscoelastic elements without a plastic component (e.g., 
Novak [1974], Kaynia and Kausel [1982], Gazetas and Dobry [1984a], Banerjee et al. [1987], and 
Fan et al. [1991]). Recognizing the importance of soil nonlinearity, especially for dynamic time 
domain analyses, other researchers have attempted to modify nonlinear p-y relationships to include 
dynamic effects, including radiation damping. Matlock et al. [1978] proposed adding a viscous 
dashpot in parallel with existing static p-y curves [Matlock 1970], perhaps the first attempt to 
explicitly capture dynamic effects with the nonlinear p-y method. Nogami and Konogai [1988] 
formulated a dynamic p-y element with separate near-field and far-field elements, where the 
nonlinear near-field element captured material hysteretic damping and the linear far-field element 
included a dashpot in parallel with a linear spring; a similar formulation has been adopted for the 
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PySimple3 material as described above. Badoni and Makris [1996] and Bentley and El Naggar 
[2000] also performed analyses with viscous damping in parallel to the hysteretic p-y response. 
However, Wang et al. [1998] demonstrated that this arrangement, which they term “parallel 
radiation damping”, can produce erroneous results because forces in the pile can effectively bypass 
the near-field hysteretic pile–soil interaction during high-velocity loading pulses by transmitting 
through the dashpot component directly to the far field. Wang et al. proposed that a more 
appropriate arrangement is “series radiation damping” in which a nonlinear near-field element 
accounts for elastic or elastoplastic interaction at the soil–pile interface and a separate far-field 
element, connected in series to the near-field element, captures radiation damping. This 
formulation satisfies the intuitive notion that lateral loads must mobilize a response in the zone 
immediately surrounding the pile before energy can be radiated away to the far field. The modified 
PySimple3 element uses series radiation damping. 

While the conceptual motivation for including radiation damping is clear, successful 
implementation is dependent on accurately quantifying the dashpot coefficients, which is 
nontrivial and unfamiliar in the realm of traditional foundation design. Engineers face two 
significant challenges when quantifying dashpots: (i) choosing an appropriate relationship from 
the many available in the literature, and (ii) addressing frequency-dependence. 

Quantifying pile radiation damping based on experimental results is a difficult proposition, 
to say the least. While it is feasible to estimate the total damping of a pile–soil system during 
forced-vibration testing (e.g., Ashford and Juirnarongrit [2003]), this will include the combined 
effects of hysteretic damping in the pile and soil materials as well as radiation damping. While the 
former can be approximately inferred from material stress–strain curves if extensive 
instrumentation is used, there is no simple means for measuring radiation damping directly. 
Furthermore, even if the contribution of radiation damping to the total damping could be 
determined, there is an additional challenge in formulating the corresponding dashpot coefficients 
to be used with distributed springs and dashpots for Winkler-type analysis. Even if these results 
could be generated from a single test, there remains the issue of formulating generalized 
expressions for practical use. In light of these challenges, the available models for c are derived 
from a theoretical approach. Future experimental campaigns that are able to measure pile radiation 
damping more directly would be a valuable contribution to the field of pile dynamics. 

Many researchers have used the theory of wave propagation in a linear viscoelastic medium 
to derive expressions for c. Berger et al. [1977] derived theoretical frequency-independent dashpot 
coefficients for a wave propagating in a one-dimensional elastic rod. Novak et al. [1978], 
expanding on the work of Novak [1974], developed a plane-strain solution based on a cylindrical 
elastic rod embedded in a viscoelastic half-space (Baranov’s solution). Gazetas and Dobry [1984a; 
1984b] took a similar approach but assumed the rod was rigid and infinitely long, hence their 
expression does not include a pile modulus or length term. Makris and Gazetas [1992] proposed a 
simplified expression for c based on the results of the aforementioned studies and their own further 
analyses, and Kavvadas and Gazetas [1993] provided yet another expression with the same form 
as Gazetas and Dobry [1984a] but with slightly simplified coefficients. Nogami and Konagai 
[1988] approximated frequency-independent dashpot coefficients by calibrating the results of 
equivalent-linear viscoelastic time-domain BDWF analyses of a pile undergoing inertial head 
loading to frequency domain solutions. The relationship between normalized c and dimensionless 
frequency a0 [defined in this case using the Equation (1.5) definition] from these references are 
shown in Figure 3.12. Note that the Nogami and Konagai [1988] far-field element formulation is 



63 

actually a series of three elements; the value plotted in Figure 3.12 is the third and softest of the 
three dashpots. Note also that NIST [2012] Table 2-4b provides an impedance function for the 
equivalent pile head radiation damping to be used with the substructure method, but not dashpot 
coefficients for distributed Winkler-type springs for BDWF analyses. 

The frequency-dependent models indicate a sharp increase in c at low frequencies, but an 
approximately constant value for a0 greater than about 0.5. While c may indeed be frequency-
dependent, only frequency-domain solution approaches (e.g., Banerjee et al. [1987] and Wu and 
Finn [1997a]) can explicitly implement such behavior. For time-domain solutions, which are used 
for this study and are the predominant method used for structural and geotechnical nonlinear 
analyses, it is necessary to specify a single value of c for the entire duration of the analysis. To do 
so, the foundation designer can either: (1) choose a representative frequency, such as the 
fundamental frequency of the pile–soil system to be used with a frequency-dependent expression 
for c; or (2) use a frequency-independent expression for c. Researchers that have made an effort to 
develop and evaluate nonlinear time-domain solution approaches for laterally-loaded piles tend to 
favor the latter, while those that have focused on developing analytical solutions can accommodate 
frequency dependence. 

Using a computer implementation of the plane-strain solutions of Novak et al. [1978], 
Novak et al. [1983] found an approximately linear relationship between pile damping and 
increasing frequency above the fundamental frequency of the soil profile. They concluded that a 
constant value of c can be used to represent equivalent viscous radiation damping at frequencies 
above the profile fundamental frequency, and that below this frequency only the soil hysteretic 
damping (also referred to as “material” damping) was significant. Gazetas [1991] and Syngros 
[2004] also proposed that radiation damping only be considered above a dimensionless “cutoff 
frequency” defined as: 
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where B is pile diameter, and ωs is the natural angular frequency of the site, based on the natural 
site period T computed from the well-known formula relating one-quarter wavelength of a 
harmonic oscillation to the thickness of the soil profile H: 

0 1 sinK    (3.17) 

where VS is the soil shear-wave velocity. The fundamental frequency of the site is the inverse of 
Equation (3.17). 

 



64 

 

Figure 3.11 Effect of radiation damping in PySimple3 material. 

 

Figure 3.12 Normalized dashpot coefficient for ν = 0.25 m, ρs = 1.7 Mg/m3 and Ep/Es ≈ 
690. 

The concept that pile radiation damping cannot occur at frequencies below the site 
fundamental frequency only applies for an elastic pile embedded in an elastic soil layer underlain 
by rigid bedrock, which is hardly representative of realistic soil conditions. In this author’s opinion, 
this limitation can safely be ignored for realistic conditions. 

The approach taken for this study is to define the dashpot coefficient using the Gazetas and 
Dobry [1984a] relationship at the frequency corresponding to the dimensionless frequency ω/λVS 
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= 1.25. This value approximately corresponds to Hu = 0.5 for the elastic analytical solutions (e.g., 
see Figure 2.3), and as will be shown in the next chapter, for the nonlinear analyses as well. The 
frequency corresponding to a 50% reduction in free-field motions was chosen because the purpose 
of this study is to define the conditions for which kinematic pile–soil interaction is significant and 
especially to identify the frequency range over which significant de-amplification of free-field 
motions could occur. 

In addition to radiation and hysteretic damping, Rayleigh damping was used in the 
OpenSees analyses to achieve damping at low strains. Unlike hysteretic damping or the type of 
radiation damping discussed above that are incorporated into the material model, Rayleigh 
damping operates directly on the mass and stiffness matrices in the formulation of the equation of 
motion that is solved in the finite-element method. Since soil is known to exhibit damping even at 
the smallest levels of measurable strain (e.g., Vucetic and Dobry [1991]), incorporating small-
strain damping is realistic, and is also computationally beneficial for achieving convergence. 

3.5 PILE MODELING 

For the present study, piles are modeled using 0.5-m-long displacement-based beam–column 
elements. Pile nonlinearity is considered by using an equivalent EI representative of a reduced 
moment of inertia due to concrete cracking. The following subsections describe specific aspects 
of the structural modeling approach. 

3.5.1 Pile Moment-Curvature Behavior 

Reinforced-concrete elements exhibit nonlinear moment-curvature (M-ϕ) behavior when flexural 
demands exceed the yield strength of either the concrete or reinforcing steel in tension or 
compression. Of greatest interest in the context of a laterally-loaded pile is the reduction in stiffness 
that occurs when concrete cracks in tension since flexural demands during extreme event loading 
would typically be expected to exceed the cracking moment. As illustrated in Figure 3.13, the 
initial portion of the M-ϕ curve corresponds to linear-elastic material behavior across the entire 
section. Because the slope of a M-ϕ curve is the flexural rigidity of the section, the slope of the 
elastic region corresponds to the elastic EpIp computed using the gross moment of inertia of the 
section. The upper bound of the elastic region is defined by cracking of the concrete in tension, 
which is typically the first nonlinear material behavior. In accordance with §5.6.1.1 of the Caltrans 
[2013] Seismic Design Criteria, this study defined the cracked section stiffness by the secant slope 
of the M-ϕ plot between the origin and the moment corresponding to the first yielding of the 
longitudinal reinforcing steel in tension, My. 

For the generalized transfer function and spectral ratio prediction models generated from 
the results of this study, flexural rigidity of the pile is an input variable. Whether or not the value 
used should correspond to the elastic or cracked section stiffness depends on the anticipated 
behavior under design loading, and the foundation engineer is responsible for making this decision. 
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Figure 3.13 Moment curvature analyses conducted at axial load P = 0.05*Ag*f’c for (a) 
2-m- and (b) 0.5-m-diameter pile sections. 

The M-ϕ plots shown in Figure 3.13 were computed using fiber models of the 2-m- and 
0.5-m-diameter pile sections in OpenSees. In the fiber-modeling approach, the section is 
discretized into separate zones (fibers) characterized by unique uniaxial stress–strain behavior 
representative of, e.g., reinforcing steel, confined concrete, and unconfined concrete. Radial 
discretization is used to define the circular cross sections. The following assumptions and analysis 
parameters were used for the M-ϕ analyses: 

 The longitudinal reinforcing steel layout was based on a target steel ratio (ρsteel) 
of 1.5%, with the following layouts used for the analyses: 

o  For the 2-m-diameter shaft, 32 No. 14 bars bundled in groups of two (to 
achieve adequate spacing between adjacent bars) with 6 in. (15.2 cm) of 
clear cover— ρsteel = 1.48%. 

o For the 0.5-m-diameter shaft, 8 No. 7 bars with 3 in. (7.6 cm) of clear 
cover— ρsteel = 1.58%. 

 Clear-cover from the edge of the pile to the edge of the longitudinal bars is 
based on the recommendations in the FHWA drilled shaft design manual 
[Brown et al. 2010] based on the diameter of the pile. 

 Assumed concrete compressive strength of 5 ksi (34.5 MPa) modelled with the 
ConcreteCM uniaxial material model in OpenSees. 

 Grade 60 steel for the longitudinal bars modelled using the ReinforcingSteel 
uniaxial material model with expected material properties (i.e., accounting or 
overstrength in accordance with the Caltrans [2013] Seismic Design Criteria). 

 Confinement of the core concrete was not considered, where the core is the 
portion of the section inside the perimeter formed by the longitudinal bars. 
Because confined and unconfined concrete exhibit similar stress–strain 
behavior up to point of crushing of the unconfined concrete in compression, the 
effect on the M-ϕ behavior is only significant in the post-yield range. 

 The number of discrete fibers was increased until the results were stable, which 
was achieved with 24 radial and 24 angular divisions within the core of the 
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section and four radial and 24 angular divisions outside the core for the cover 
concrete. 

 Analysis were performed for an axial load P equal to 5% of the gross 
compressive capacity of the concrete section, i.e., P = 0.05*Ag*f’c. 

The axial load imposed on a pile is a function of the tributary load supported by each bridge 
bent, the number and layout of piles relative to the number of columns or pier walls per bent, 
geotechnical conditions over the length of the pile, whether axial or lateral loads govern the pile 
diameter, and many other factors. In addition, the pile axial load is likely to fluctuate during an 
earthquake as bents undergo frame action, and the axial load changes over the depth of the pile as 
load is shed into or added from the ground. Clearly there is no unique definition for a “typical” 
axial load for a pile foundation based solely on the section diameter. As discussed above, the axial 
load used to define the effective flexural rigidity for design cases should be based on the actual 
anticipated axial load during extreme event loading. In the absence of such information for the 
parametric analyses performed for this study, the arbitrary definition of P = 0.05*Ag*f’c was 
adopted for simplicity, which is consistent with the typical axial load for RC columns and is 
therefore a good approximation for extended-shaft column type foundations. 

3.5.2 Pile Head Fixity Condition 

The pile head-fixity conditions used in this study are either “fixed-head”—perfectly fixed against 
rotation, or “free-head”— completely free to rotate without encountering any rotational resistance. 
While these idealized assumptions are conceptually attractive and convenient for analytical 
purposes, the pile-head boundary condition in a real structure falls somewhere between the two 
extremes. 

Piles embedded in a reinforced pile cap or interconnected with stiff grade beams are often 
characterized as fixed head, which implies that an imposed moment will result in zero rotation at 
the connection. However, the true rotational stiffness of these connections is less than rigid. 
Rotation at the connection could be accommodated either on a global or local scale, for example 
by rocking of the entire pile cap or by strain concentrated in the zone around the connection, 
respectively. Short of experimental measurements or continuum numerical modeling, the author 
is not aware of any geotechnical or structural references that provide general guidance on 
quantifying this rotational stiffness. However, previous experience by the author has shown that 
while allowing a small amount of rotation at the pile head in BNWF analyses can significantly 
decrease moment demands, it does not have a significant influence on the pile head horizontal 
translation. Hence, use of a less-than-rigid boundary condition would not be expected to 
significantly change transfer functions computed for free-field versus pile-head horizontal 
displacement. 

For conventional foundation design applications in which superstructure loads are carried 
through the foundation into the ground, a free-head assumption is reasonable for extended-shaft 
columns (i.e., the “flagpole” condition) or for piles that lack significant embedment or structural 
anchorage into a pile cap. However, for the kinematic pile–soil interaction case, it is important to 
remember that the load path acts in the opposite direction—ground movement results in foundation 
displacements and force effects that are subsequently imposed on the base of the superstructure. 
Hence, the pile-head fixity condition should be assessed in terms of the following question: What 
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resisting force/moment would be mobilized in above-ground structural elements due to a unit 
displacement/rotation at the pile head? For extended-shaft columns, pile head rotation due to 
kinematic interaction would encounter resistance as the resulting rotation and corresponding 
moment and translations are carried up the column, through the column-to-superstructure 
connection (e.g., bearings and/or other anchorage between the bent cap and girders), and into the 
superstructure. Clearly these elements would provide some resistance to rotation such that the pile 
head is not truly “free” to rotate. 

Despite these inconsistencies between real behavior and the idealized extremes, fixed- and 
free-head boundary conditions will be used for this study for several reasons. First, these extremes 
provide bounds on the problem. The true behavior is somewhere in between, and the foundation 
designer can use judgment to interpret where in between these bounds their problem lies or simply 
use whichever assumption results in greater demands. The latter approach is advocated in the realm 
of conventional deep foundation design for lateral loading by Reese et al. [2005]. Second, the 
rotational resistance provided by pile-to-pile-cap connections and other above-ground structural 
elements depends on the specific geometry and material properties of each project; thus, it is hard 
to generalize in a simplified design tool such as the transfer function models being developed for 
the present study. Finally, because free-head or fixed-head boundary conditions are the standard 
of practice for routine design, and because there are no established guidelines for quantifying 
rotational resistance, including rotational stiffness as a parameter in the transfer function model 
would make the model more difficult to implement in practice. Given that the intent of this study 
is to provide a transfer function model that is compatible with the current state of practice for 
seismic design, such a limitation would be counterproductive. Future studies could investigate the 
influence of head-fixity through parametric analysis of varying rotational spring stiffness applied 
at the pile head. 

3.5.3 Pile Shear Deformations 

Conventional beam-on-Winkler-foundation analyses treat the pile as an Euler-Bernoulli beam, for 
which flexural demands are resisted structurally by the flexural rigidity (EI) of the pile (see 
derivation in §2.1). Shear deformations are neglected in this approach, which is a reasonable 
assumption when it is kinematically possible for the pile to respond to imposed demands primarily 
in flexure, such as for the “flagpole” configuration. However, significant rotational resistance 
provided by embedment into a pile cap or toe embedment into rock may result in shear 
deformations that are significant within a few pile diameters of the point of rotational restraint. For 
example, Massone and Lemnitzer [2012] found that shear deformations accounted for up to 40% 
of total horizontal displacement near the pile head connection during full-scale lateral load tests of 
24-in.- (0.61-m-) diameter piles. Moreover, when flexural demands approach the pile plastic 
moment capacity, these shear deformations can be nonlinear in terms of the shear–stress versus 
shear–strain behavior even when shear stresses are well below the shear strength of the concrete 
(e.g., Massone and Wallace [2004]), which further complicates interpretation of load test results. 
The Massone and Lemnitzer study along with follow-up work by Khalili-Tehrani et al. [2014] 
suggests that commonly used semi-empirical p-y curve models derived from free-head lateral load 
test results (e.g., API [1993]) are inaccurate for fixed-head conditions because shear deformations 
were not considered explicitly in their derivation. 
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For the case of kinematic pile–soil interaction for fixed-head piles, using a numerical model 
that allows shear deformations would be expected to result in slightly larger total displacement 
near the pile head and thus would increase transfer function ordinates (Hu) relative to the same 
case analyzed without consideration of shear deformations, such as done herein. However, simply 
using a structural model that accounts for shear deformations, such as the Timoshenko beam 
column element in OpenSees, or the recently added cyclic shear-flexure interaction model by 
Kolozvari et al. [2015a, b], could provide misleading results. This is because, as determined from 
the experimental work described above, alternative p-y curves should be used in combination with 
structural consideration of shear deformations, and a generalized p-y model for this purpose is not 
currently available. A future study that integrates the Kolozvari et al. cyclic shear-flexure 
interaction elements and p-y curves that explicitly consider shear deformations into the numerical 
modeling framework used for the present study could shed light on the influence of shear-flexure 
interaction for kinematic transfer functions. 

3.5.4 Pile Groups 

Pile groups were modeled as multiple individual piles connected at their heads through massless 
rigid links using the equalDOF command in OpenSees. Pile caps were not modelled explicitly 
because their mass and stiffness would result in inertial and kinematic interaction in addition to 
the pile–soil interaction. The rigid link between piles combined with a fixed-head pile boundary 
condition essentially captures the restraint offered by the pile cap without introducing additional 
SSI, such that pile–soil interaction can be studied independently. In real systems utilizing pile 
groups, the pile cap motion, which excites the superstructure, depends on kinematic pile–soil 
interaction as well as kinematic interaction between the pile cap and the ground. For example, an 
embedded pile cap is subjected to ground motions imposed through lateral earth pressure on its 
sides, horizontal motions imposed on its base, and the motions of the piles which it connects. 
Depending on the surficial soil stiffness and the pile cap dimensions, particularly the depth of 
embedment, the pile cap motion could be dominated by cap–soil interaction more than pile–soil 
interaction. Future studies could investigate this effect by explicitly modeling pile caps in addition 
to piles. 

The pile group layout considered for the present study is for a 23 group of 2-m-diameter 
piles on a 7.5-m center-to-center spacing (i.e., 3.75ꞏB) as shown in Figure 3.14. This configuration 
is typical for support of large bridge bents, and use of B = 2-m piles allows for direct comparison 
to the 2-m single pile results. The incoherent ground motions discussed below in §3.7.3 were 
imposed on the piles such that each pile in the group experienced a different input motion. The 
motion at each pile head is identical because of the rigid links and effectively is an average of the 
motions imposed on the individual piles, which is similar to the concept of base slab averaging. 
Additional group configurations were not considered because of the considerable effort required 
to generate incoherent ground motions at each pile location as well as the significant computational 
demand for running dynamic group analyses. 



70 

 

Figure 3.14 Pile-group layout considered for analyses. 

3.6 SOIL PROFILES FOR ANALYSES 

Six soil profiles were developed based on cone penetration test (CPT) soundings. The purpose of 
developing soil profiles from real sites rather than using simple fictitious homogeneous or layered 
models such as those used in past studies is to examine the effect that realistic subsurface 
variability has on the results. Soil stiffness, quantified by the time-averaged shear-wave velocity 
in the upper 30 m of the profile (VS30), ranges between about 100 and 400 m/sec for the six soil 
profiles. These bounds are intended to capture the range of soil stiffness over which kinematic 
pile–soil interaction is likely to be significant as suggested by the elastic solutions presented in the 
previous chapter. Likewise, for a given pile stiffness, the range is intended to extend to high enough 
soil stiffness such that the conditions for which kinematic interaction is no longer significant can 
be defined. 

The CPT data used to develop the six soil profiles was obtained from the United States 
Geological Survey (USGS) research division’s repository of CPT data, available online 
(http://earthquake.usgs.gov/research/cpt/). As indicated by the shear-wave velocity profiles in 
Figure 3.15, sites were chosen that showed relatively uniform gradients of shear-wave velocity 
versus depth in order to avoid the large shear demands that are imposed on piles at such an 
impedance contrast. Sites 1, 2, and 4 contain a combination of granular and cohesive layers, Sites 
3 and 6 are all granular, and Site 5 is all stiff clay. Layer thicknesses and relevant soil properties 
for each of the six sites are presented in Appendix A. A general description is also provided of the 
real sites that are represented, including their inferred geologic history and depositional 
environment. In general, the profiles were discretized into 0.5-m-thick layers to match the 
discretization of pile elements so that input displacement time series could be computed from 
ground response analysis without interpolation. 

The arbitrary metric VS30 was used as a convenient measure of the site stiffness and because 
of its familiarity in practice (e.g., for building code site classifications); as will be shown in the 
results chapter, shear-wave velocity computed over the length of the pile is more relevant for 
describing pile–soil interaction. Table 3.2 gives values of time-averaged VS computed over depth 
intervals corresponding to the four pile lengths from Table 3.1, denoted as VS,z, where z is the depth 
increment over which the computation is made. When not referring to a specific pile length, this 
term will subsequently be denoted by the variable VS,L. 
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Figure 3.15 Shear-wave velocity and reference strain (γr) profiles for Sites 1–6. 

 

Table 3.2 Site time-averaged shear-wave velocity characteristics for Sites 1–6. 

Site: 1 2 3 4 5 6 

VS7.5 (m/sec) 92 134 158 186 230 344 

VS15 (m/sec) 97 150 176 204 259 396 

VS30 (m/sec) 111 192 217 264 305 446 

VS60 (m/sec) 151 244 253 332 351 504 

VSH (m/sec) 173 280 289 367 383 525 

Thickness (H, m) 76.0 80.0 82.0 76.0 80.0 72.00 

3.7 GROUND MOTIONS 

3.7.1 Baker et al. [2011] Ground Motion Suite 

Input motions for the ground response analyses were sourced from the collection of motions 
developed by Baker et al. [2011] for PEER Transportation Research Program projects. Multiple 
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sets of motions are included in the Baker et al. set; for this study the “Set #2, broad-band ground 
motions corresponding to M 7.0, R [source-to-site distance] = 10 km, and rock conditions” were 
used. These motions are specifically intended to represent rock conditions with an average VS of 
760 m/sec for use in ground response analysis, and were selected by Baker et al. such that the 
median and ± standard deviation response spectra computed from the 40 unscaled motions match 
the Boore and Atkinson [2008] ground-motion prediction equations. A basic description of the 
motions is provided in Table 3.3, and Table 3.4  lists their peak ground acceleration, velocity, and 
displacement (PGA, PGV, and PGD) values. Table 3.5 lists minimum, maximum, and mean 
PGA/PGV/PGD for the 40 motions, showing that the set covers a wide range in terms of these 
intensity measures. For each motion, a fault-normal (FN), fault-parallel (FP), and vertical record 
are available. The FN component of each ground motion was used for this study, which on average 
is slightly stronger than the FP component. Further details of the motions are available in the Baker 
et al. report. 
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Table 3.3 Ground-motion records used for analyses (after Baker et al. [2011]). 

Record 
No. 

NGA 
Record 

Sequence 
No. 

Earthquake 
Name 

Year Station Magnitude 
Closest 
Distance 

1 72 San Fernando 1971 Lake Hughes #4 6.6 25.1 

2 769 Loma Prieta 1989 Gilroy Array #6 6.9 18.3 

3 1165 Kocaeli, Turkey 1999 Izmit 7.5 7.2 

4 1011 Northridge-01 1994 LA - Wonderland Ave 6.7 20.3 

5 164 Imperial Valley-06 1979 Cerro Prieto 6.5 15.2 

6 1787 Hector Mine 1999 Hector 7.1 11.7 

7 80 San Fernando 1971 Pasadena - Old Seismo Lab 6.6 21.5 

8 1618 Duzce, Turkey 1999 Lamont 531 7.1 8.0 

9 1786 Hector Mine 1999 Heart Bar State Park 7.1 61.2 

10 1551 Chi-Chi, Taiwan 1999 TCU138 7.6 9.8 

11 3507 Chi-Chi, Taiwan-06 1999 TCU129 6.3 24.8 

12 150 Coyote Lake 1979 Gilroy Array #6 5.7 3.1 

13 572 
Taiwan 
SMART1(45) 

1986 SMART1 E02 7.3 - 

14 285 Irpinia, Italy-01 1980 Bagnoli Irpinio 6.9 8.2 

15 801 Loma Prieta 1989 
San Jose - Santa Teresa 
Hills 

6.9 14.7 

16 286 Irpinia, Italy-01 1980 Bisaccia 6.9 21.3 

17 1485 Chi-Chi, Taiwan 1999 TCU045 7.6 26.0 

18 1161 Kocaeli, Turkey 1999 Gebze 7.5 10.9 

19 1050 Northridge-01 1994 Pacoima Dam (downstr) 6.7 7.0 

20 2107 Denali, Alaska 2002 Carlo (temp) 7.9 50.9 

21 1 Helena, Montana-01 1935 Carroll College 6.0 - 

22 1091 Northridge-01 1994 Vasquez Rocks Park 6.7 23.6 

23 1596 Chi-Chi, Taiwan 1999 WNT 7.6 1.8 

24 771 Loma Prieta 1989 Golden Gate Bridge 6.9 79.8 

25 809 Loma Prieta 1989 UCSC 6.9 18.5 

26 265 Victoria, Mexico 1980 Cerro Prieto 6.3 14.4 

27 1078 Northridge-01 1994 Santa Susana Ground 6.7 16.7 

28 763 Loma Prieta 1989 Gilroy - Gavilan Coll. 6.9 10.0 

29 1619 Duzce, Turkey 1999 Mudurnu 7.1 34.3 

30 957 Northridge-01 1994 Burbank - Howard Rd. 6.7 16.9 

31 2661 Chi-Chi, Taiwan-03 1999 TCU138 6.2 22.2 

32 3509 Chi-Chi, Taiwan-06 1999 TCU138 6.3 33.6 

33 810 Loma Prieta 1989 UCSC Lick Observatory 6.9 18.4 

34 765 Loma Prieta 1989 Gilroy Array #1 6.9 9.6 

35 1013 Northridge-01 1994 LA Dam 6.7 5.9 

36 1012 Northridge-01 1994 LA 00 6.7 19.1 

37 1626 Sitka, Alaska 1972 Sitka Observatory 7.7 34.6 

38 989 Northridge-01 1994 LA - Chalon Rd 6.7 20.5 

39 748 Loma Prieta 1989 Belmont – Envirotech 6.9 44.1 

40 1549 Chi-Chi, Taiwan 1999 TCU129 7.6 1.8 

 

  



74 

Table 3.4 Intensity measures for ground-motion set. 

Record 
number 

Earthquake name Year Magnitude PGA 
(g) 

PGV 
(m/sec) 

PGD 
(m) 

1 San Fernando 1971 6.6 0.15 0.08 0.02 

2 Loma Prieta 1989 6.9 0.16 0.17 0.06 

3 Kocaeli, Turkey 1999 7.5 0.15 0.23 0.10 

4 Northridge-01 1994 6.7 0.16 0.11 0.03 

5 Imperial Valley-06 1979 6.5 0.15 0.18 0.08 

6 Hector Mine 1999 7.1 0.34 0.37 0.14 

7 San Fernando 1971 6.6 0.09 0.07 0.01 

8 Duzce, Turkey 1999 7.1 0.16 0.13 0.08 

9 Hector Mine 1999 7.1 0.07 0.07 0.03 

10 Chi-Chi, Taiwan 1999 7.6 0.20 0.41 0.36 

11 Chi-Chi, Taiwan-06 1999 6.3 0.34 0.17 0.06 

12 Coyote Lake 1979 5.7 0.45 0.52 0.07 

13 Taiwan SMART1(45) 1986 7.3 0.13 0.13 0.05 

14 Irpinia, Italy-01 1980 6.9 0.19 0.29 0.10 

15 Loma Prieta 1989 6.9 0.27 0.26 0.13 

16 Irpinia, Italy-01 1980 6.9 0.12 0.18 0.11 

17 Chi-Chi, Taiwan 1999 7.6 0.60 0.44 0.38 

18 Kocaeli, Turkey 1999 7.5 0.24 0.52 0.44 

19 Northridge-01 1994 6.7 0.50 0.49 0.06 

20 Denali, Alaska 2002 7.9 0.09 0.10 0.05 

21 Helena, Montana-01 1935 6.0 0.15 0.06 0.01 

22 Northridge-01 1994 6.7 0.16 0.18 0.02 

23 Chi-Chi, Taiwan 1999 7.6 0.96 0.69 0.31 

24 Loma Prieta 1989 6.9 0.14 0.29 0.07 

25 Loma Prieta 1989 6.9 0.37 0.12 0.06 

26 Victoria, Mexico 1980 6.3 0.63 0.31 0.13 

27 Northridge-01 1994 6.7 0.23 0.14 0.03 

28 Loma Prieta 1989 6.9 0.29 0.31 0.07 

29 Duzce, Turkey 1999 7.1 0.11 0.10 0.09 

30 Northridge-01 1994 6.7 0.11 0.08 0.02 

31 Chi-Chi, Taiwan-03 1999 6.2 0.13 0.20 0.04 

32 Chi-Chi, Taiwan-06 1999 6.3 0.06 0.09 0.04 

33 Loma Prieta 1989 6.9 0.41 0.18 0.05 

34 Loma Prieta 1989 6.9 0.43 0.39 0.07 

35 Northridge-01 1994 6.7 0.58 0.77 0.20 

36 Northridge-01 1994 6.7 0.38 0.22 0.05 

37 Sitka, Alaska 1972 7.7 0.10 0.07 0.05 

38 Northridge-01 1994 6.7 0.19 0.19 0.02 

39 Loma Prieta 1989 6.9 0.14 0.20 0.06 

40 Chi-Chi, Taiwan 1999 7.6 1.01 0.60 0.51 
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Table 3.5 Summary of ground-motion intensity measures. 

Value PGA 
(g) 

PGV 
(m/sec) 

PGD 
(m) 

Minimum 0.06 0.06 0.01 

Maximum 1.01 0.77 0.51 

Mean 0.28 0.25 0.11 

3.7.2 Ground Response Analyses 

To define the free-field ground motion at the p-y spring depths for the BDNWF models, each of 
the 40 motions was propagated through a one-dimensional ground response analysis model in the 
program DEEPSOIL [Hashash et al. 2015]. DEEPSOIL analyses were conducted using the 
nonlinear time-domain total stress method. Using the idealized profiles for each of the six sites 
presented in Appendix A, modulus reduction and damping curves were developed using the 
procedures of Menq [2003] and Darendeli [2001] for granular and cohesive materials, respectively. 
The “hybrid” procedure recommended by Yee et al. [2013] was used to ensure that the modulus 
reduction curves matched the inferred shear strength of the material at large strains, although 
strains approaching these levels were generally not mobilized during the analyses. Profiles of 
reference strain γr for the modulus reduction curves are shown alongside the VS profiles in Figure 
3.15. The reference strain corresponds to 50% modulus reduction (i.e., G/Gmax = 0.5) and thus is a 
good proxy for the amount of nonlinearity exhibited by the material; smaller values indicate that 
the soil will exhibit greater nonlinearity at small strains. 

As described above, the idealized site stratigraphy is based on real CPT data to the 
approximate maximum depth of the CPT sounding, typically between 30 and 40 m. Below this 
depth, additional layers were added to the profile to create a gradual transition to the elastic 
bedrock. This was done so that the input motions, which are representative of outcrop motions on 
rock with an average VS = 760 m/sec, would not encounter a strong impedance contrast at the base 
of the profiles. 

The following options were used for the DEEPSOIL analyses: 

 Pressure-dependent modified Kodner-Zelesko nonlinear backbone formulation 
[Matasovic 1993] with non-Masing unloading/reloading formulation. 

 Input motions specified as outcrop motions. 

 Elastic half-space (bedrock) with VS = 760 m/sec and unit weight 22 kN/m3 
underlying the soil profiles. 

 Frequency-independent damping formulation. 

 When needed to achieve convergence, sub-stepping of time increments using 
linear interpolation of input motion with maximum strain increment of 0.005. 

Acceleration time series computed from DEEPSOIL for each layer were manually post-
processed to generate displacement records, which are needed as the input to the soil nodes of the 
p-y springs for the OpenSees analyses. Performing the integration necessary to compute 
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displacement from acceleration time series, whether executed in the time or frequency domain, is 
a nontrivial exercise that can result in spurious amplification of low-frequency noise if proper 
filtering procedures are not implemented. Recent versions of DEEPSOIL offer the option to export 
displacement records computed during direct integration of the equation of motion, but no filtering 
was applied to these records. 

For this study, high-pass filtering was applied to remove low-frequency noise using a third-
order Butterworth filter at frequencies above about 0.1–0.2 Hz. To remove spurious high-
frequency noise, the motions were also filtered using a low-pass Butterworth filter at the higher of 
(i) the low-pass frequency used for the original PEER ground motion processing or (ii) the 
maximum frequency that could be propagated through the DEEPSOIL model, which depends on 
thickness and shear-wave velocity of the layers. In most cases the low-pass frequency used for the 
original PEER ground motion processing was higher, so this was used for the low-pass filtering. 
In addition, the acceleration time series were baseline corrected and zero-padded at the beginning 
and end of each record. The transition between a displacement of zero and the computed 
displacement was achieved with a cosine filter over 20 time increments; failure to do so can result 
in significant low-frequency noise even if the beginning and end displacements have relatively 
small amplitudes. The fundamental frequency of each site as computed by DEEPSOIL is given in 
Table 3.6. 

Table 3.6 Site fundamental frequencies. 

Site: 1 2 3 4 5 6 

Site fundamental frequency fS (Hz) 0.57 0.87 0.88 1.21 1.20 1.82 

3.7.3 Ground Motion Incoherence 

Real ground motions exhibit incoherence, or variation between two physical locations because of 
two effects: (i) the wave-passage effect, which for inclined waves simply characterizes the delay 
in arrival time of a uniform planar wave front between two locations; and (ii) “stochastic” 
incoherence, which is due to the inherent spatial variability of the ground motion itself since 
earthquake ground motions are generated not at a single point but along a heterogeneous fault, and 
from the scattering of waves due to material heterogeneity at the site. Abrahamson and Youngs 
[1992a] and others have demonstrated that this can have important consequences for SSI. 

Because DEEPSOIL performs one-dimensional ground response analysis assuming 
vertically-propagating shear waves, the only component of incoherence that is captured is the 
influence of changing soil properties with depth; the wave passage effect and stochastic 
incoherence are not captured. For a single pile foundation, this is acceptable. For pile groups, 
however, ground-motion incoherence results in different motion being imposed on each pile within 
the group. Much like the concept of base-slab averaging for shallow and mat foundations, the 
response of a stiff pile cap represents an average of the motions imposed on each pile within the 
group. 
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To capture ground motion incoherence in the horizontal direction for the pile group 
simulations in this study, spatially-variable ground motions (SVGM) were generated using the 
program FDW2D.r, which is based on a simulation routine described by Ancheta and Stewart 
[2015]. Starting with one of the 40 input motions as a “seed” motion corresponding to a corner 
pile location within the pile group shown in Figure 3.14, a motion was generated at each of the 
five remaining pile locations that matches a set of target spatially variable ground-motion (SVGM) 
functions. Dr. Timothy Ancheta was hired as a sub-consultant for this project to generate the 
incoherent motions, and the following is a summary of his work. 

The basic process of simulating an incoherent motion is to modify a seed ground motion 
by adding a random phase and amplitude at each frequency to match target coherency and 
amplitude models that are consistent with empirical observations. Additionally, for the method 
used here, the coherency between the seed-to-simulation and simulation-to-simulation matches the 
target coherency function for all locations simultaneously. The FDW2D.r simulation method uses 
an energy randomization process called Frequency Dependent Windowing (FDW). The FDW 
method is used to conserve the low-frequency (coherent) energy and resample the high-frequency 
(random) energy to be consistent with a set of SVGM functions without introducing unwanted 
spectral leakage. 

The FDW method is a non-stationary simulation routine that utilizes a modified short-time 
Fourier transform (MSFT) routine. The MSFT routine allows preservation of the non-stationary 
properties of the motion and incorporation of time-varying nonlinear spectral modifications. The 
routine is summarized in the following steps: 

 The seed time series is split into short time segments. 

 A discrete Fourier transform (DFT) is performed on the segment. 

 Phase angles at each frequency within a desired frequency range (dependent on 
segment length) are modified consistent to a coherency function for each 
segment (this procedure is fully described in Ancheta [2010]). 

 The new set of Fourier phase angles is combined with the seed Fourier 
amplitudes and transformed into the time domain with an inverse Fourier 
transform (IFT). 

 The modified short time segments are recombined to form a modified time 
series. 

 The preceding steps are performed multiple times for multiple segment lengths, 
with each segment length having a specified frequency range over which phase 
angles are modified. Hence, multiple modified time series are created. Segment 
lengths and corresponding frequency limits used are shown in Table 3.7. 

 The multiple modified time series are band-pass filtered within the limits of the 
pass-band matching the band of the modification to combine the modified 
frequency bands in the frequency domain. 

 The non-overlapping frequency bands are transformed back to the time domain 
to create the final broadband modified time series. 
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The SVGM generated using this procedure all occur within a single horizontal plane. In 
other words, the seed and simulated motions exist at different x and y horizontal locations, but at 
the same depth z. For the purpose of this study, this depth corresponds to the base of the soil 
profiles. To generate motions at each depth increment for input to the BDNWF group analyses, 
transfer functions were computed from the DEEPSOIL results relating the seed input motions to 
the motion computed at the depth of each layer. These transfer functions were then used to compute 
a ground motion at the depth of each layer from the SVGM, thus effectively propagating the same 
amount of spatial variability generated at the base of each profile from FDW2D.r uniformly over 
the full depth of the profile. In other words, horizontal and vertical incoherence are uncoupled in 
the approach used here, but both are ultimately reflected in the ground motions imposed on the 
pile group. 

An example of the seed and SVGM is shown in Figure 3.16 in terms of acceleration and 
displacement. Note that only a short time window of two seconds is shown. It is apparent from this 
figure that while a modest amount of variability exists between pile locations in terms of 
acceleration, the displacement time series are nearly identical. This is because incoherence 
increases with increasing frequency, and displacement tends to amplify low-frequency energy and 
de-amplify high-frequency energy relative to acceleration. 

 

Table 3.7 Segment duration (L) and frequency bands (b) used in the FDW routine. 

Segment duration (sec) Frequency limits (Hz)  

1.28 2-Nyquist 

2.56 1–2 

5.12 0.5–1 

10.24 0.25–0.5 

20.48 0.12–0.25 

Full duration of time series 0–0.12 
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Figure 3.16 Acceleration (top) and displacement (bottom) time series for seed motion 
(1971 San Fernando, California, earthquake, Lake Hughes #4 recording 
station) and simulated spatially-variable ground motions at locations 
corresponding to other piles in group layout shown in Figure 3.14. 

3.8 OPENSEES ANALYSIS 

The following parameters were used to define the OpenSees finite-element analyses: 

 Penalty constraints to enforce boundary conditions. 

 Norm of the displacement increment (NormDispIncr command) to test for 
convergence with a starting tolerance of 10-6 m/ 

 Krylov-Newton solution algorithm [Scott and Fenves 2010] used to solve 
nonlinear system of equations. 
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 If convergence was not achieved at a particular step, the modified-Newton 
algorithm with initial stiffness was used; if this failed to converge, the tolerance 
was decreased by an order of magnitude and the Krylov-Newton algorithm was 
used again. 

 Newmark integrator with γ = 0.5 and  = 0.25. 

 A P- transformation was utilized to capture secondary moments induced by 
offset axial loads 
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4 Results 

4.1 SINGLE PILES 

Horizontal displacement transfer function results for each pile/site/motion combination are 
presented in Figures 4.1–4.12. Each figure is for one site and contains four plots, one for each of 
the four piles, where each plot contains the computed transfer function ordinates with high 
coherence for the 40 ground motions along with the mean and ± one standard deviation of the 
results shown in that plot. Separate figures are presented for the fixed- and free-head conditions. 
Collectively, the plots represent the results of 1920 single-pile simulations. 

Because the time step, duration, and high- and low-pass filtering for the input ground 
motions vary, the frequency vector computed during the Fast Fourier Transform (FFT) operation 
varies between ground motions. To accommodate computing the mean and standard deviation at 
each frequency, the data were binned into 200 log-evenly spaced frequency bins spanning between 
the minimum high-pass and maximum low-pass frequencies used during processing of the 40 
motions (0.0375 and 62.5 Hz, respectively). Furthermore, within each frequency bin it is typically 
the case that not all 40 transfer functions exceeded the minimum coherence threshold of 0.8. In 
general, the number of transfer functions meeting the minimum coherence threshold decreases 
with increasing frequency above the corner frequency. To avoid spurious fluctuations at these 
higher frequencies, the mean and ± one standard deviation were only computed if at least 25% 
(10) of the 40 transfer functions exist in a given frequency bin. For this reason, the plots show 
individual transfer functions at higher frequencies than the mean, and ± one standard deviation 
were generally plotted. 

Following presentation of the single pile results versus plain frequency, normalized plots 
versus dimensionless frequency are presented in §4.2. This is followed by identification of the 
controlling parameters for kinematic pile–soil interaction and a comparison to previous elastic 
solutions in §4.3. Models for predicting transfer functions and spectral ratios for design 
applications are developed in §4.4 and §4.5. The chapter concludes with a summary of pile group 
simulation results. 
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Figure 4.1 Transfer functions for Site 1 fixed-head piles. 

  



83 

 
 
 
 
 

 

Figure 4.2 Transfer functions for Site 2 fixed-head piles. 
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Figure 4.3 Transfer functions for Site 3 fixed-head piles. 
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Figure 4.4 Transfer functions for Site 4 fixed-head piles. 
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Figure 4.5 Transfer functions for Site 5 fixed-head piles. 
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Figure 4.6 Transfer functions for Site 6 fixed-head piles. 
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Figure 4.7 Transfer functions for Site 1 free-head piles. 
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Figure 4.8 Transfer functions for Site 2 free-head piles. 
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Figure 4.9 Transfer functions for Site 3 free-head piles. 
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Figure 4.10 Transfer functions for Site 4 free-head piles. 
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Figure 4.11 Transfer functions for Site 5 free-head piles. 
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Figure 4.12 Transfer functions for Site 6 free-head piles. 

4.2 NORMALIZED RESULTS USING DIMENSIONLESS FREQUENCY 

To be of practical use in foundation design, the results of soil–structure interaction studies are 
usually presented in a normalized fashion in which the independent variable is a dimensionless 
function of frequency rather than plain frequency. The intention of normalization is to collapse the 
range of results into a narrow band which can then be represented by a single mathematical model 
(equation) for use in a forward-design scenario. 

The normalization scheme developed by Di Laora and Sanctis [2013] and Anoyatis et al. 
[2013] is adopted here because of its strong fundamental basis and demonstrated ability to achieve 
near-perfect normalization for flexible piles considering elastic behavior. Furthermore, this allows 
for comparison between the elastic analytical solutions and the nonlinear results computed for this 
study. The dimensionless frequency for this approach is computed as ω/(λVS). Recall that the 
improvements realized with this normalization scheme over the previous (ωB)/VS scheme are due 



94 

to: (i) the use of flexural rigidity EpIp in the λ term instead of diameter; and (ii) inclusion of the 
characteristic length relative to the free-field wavelength, which drives the frequency-dependence 
of the problem. 

Following the approach of Di Laora and Rovithis [2014], λ and VS are computed over the 
depth increment corresponding to the uppermost pile active length, denoted by λLa and VS,La. 
Consistent with Equation (1.9), λLa is computed using the initial stiffness of pile–soil interaction 
Ke. Nonlinearity due to degradation of the p-y springs is reflected in the results and will be 
considered in development of the prediction models. 

Figure 4.13 presents the normalized transfer functions for fixed-head piles. Free-head pile 
transfer functions for horizontal displacement and head rotation are presented in Figure 4.14 and 
Figure 4.15. Unlike the plots in the previous section, computed transfer functions for the 
normalized versions are plotted as points rather than lines. This is simply because plotting 960 
lines within a narrow band would make it nearly impossible to discern one from another. In 
contrast, plotting only points that represent transfer function ordinates with high coherence not 
only makes the overall trend clear, but it also provides a visual guide to where the greatest 
concentration of points lie. Prior to plotting, the results were binned into 200 equally spaced 
dimensionless frequency bins. The results were further grouped into nine equally spaced 
dimensionless frequency bins for computing mean and standard deviation trends as shown in the 
figures. Note that the “best-fit to functional form” curves in these figures are for the functional 
forms discussed subsequently in §4.4. 
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Figure 4.13 Normalized horizontal displacement transfer function results for fixed-head piles. 
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Figure 4.14 Normalized horizontal displacement transfer function results for free-head piles. 
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Figure 4.15 Normalized rotation transfer function results for free-head piles. 

4.3 CONTROLLING PARAMETERS AND COMPARISON TO ELASTIC 
SOLUTIONS 

The normalized and plain-frequency transfer function results presented above allow for 
identification of the key parameters that control kinematic pile–soil interaction. These findings 
will be used subsequently to guide development of models for predicting transfer functions and 
spectral ratios for design applications. While identifying the key parameters, a comparison is also 
made to elastic analytical solutions to highlight the important effects of realistic modeling 
assumptions and material nonlinearity. 

Previous work using simplified elastic models (e.g., Fan et al. [1991]) identified the key 
parameters for kinematic pile–soil interaction as (i) pile-to-soil stiffness contrast, (ii) variations (or 
lack thereof) in soil stiffness over the length of the pile, and (iii) pile head-fixity condition. The 
effect of head-fixity is so significant that the results of fixed- and free-head piles must be 
considered separately. This is because free-head piles show “kinematic amplification” over a 
frequency range where the free-field wavelength is similar to the pile length. Because of this 
fundamental difference, head-fixity is considered less of a controlling parameter than simply a 



98 

different category of results from this point forward, and separate predictive models will be 
developed for each case. 

Consistent with elastic solutions, pile-to-soil stiffness ratio remains the dominant factor 
that determines over what frequency range kinematic pile–soil interaction will be significant. 
Comparison of the mean results for each pile/site combination (Figure 4.16) reveals that the corner 
frequency6 shifts higher with decreasing pile-to-soil stiffness contrast (i.e., as the sites get stiffer), 
while the shape of the transfer function remains relatively consistent. 

 

 

Figure 4.16 Mean fixed-head transfer function results for each pile/site combination. 

  

                                                 
 
6 See Chapter 7: “corner frequency” is the term used herein to refer to the frequency beyond which significant pile–
soil interaction occurs such that the transfer function ordinates fall below about 0.95. 
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Variations in soil stiffness over the length of pile also play an important role as suggested 
by Fan et al. [1991] and others. For example, the difference between the Anoyatis et al. [2013] and 
Di Laora and Rovithis [2014] curves in Figure 4.13 is due to the fact that Di Laora and Rovithis 
used a soil profile with increasing stiffness versus depth, while Anoyatis et al. considered a 
homogeneous profile. Figure 4.17 compares transfer functions computed for the B = 2.0 m, L = 30 
m pile for three ground motions at Sites 3 and 4. Recall that Sites 3 and 4 have similar shear-wave 
velocity profiles over the upper 20 m (see Figure 3.15) and both consist of predominantly granular 
soil; the only significant difference between the two sites is that the stiffness of Site 4 shows a 
marked increase below 20 m. The portion of the pile embedded in this stiffer layer influences the 
response of the upper portion of the pile at Site 4, whereas Site 3 lacks this behavior. 

The two most significant effects that are not reflected in the elastic analytical solutions are 
(i) nonlinearity due to pile–soil interaction and (ii) radiation damping. An increase in ground-
motion intensity generally results in greater pile–soil relative displacement and corresponding p-y 
softening, effectively increasing the pile-to-soil stiffness contrast and shifting transfer function 
ordinates to lower values. On the other hand, because radiation damping manifests as an increase 
in stiffness for dynamic p-y curves, its effect is to decrease the pile-to-soil stiffness contrast and 
shift transfer function ordinates higher. Hence, nonlinearity due to pile–soil interaction and 
radiation damping are competing effects in terms of their influence on the transfer functions. 

This is illustrated in Figure 4.18, which shows transfer functions computed for the B = 0.5 
m, L = 7.5 m pile in the Site 1 profile subjected to the 1971 San Fernando, California, earthquake 
(NGA record sequence number 72). A comparison of the transfer functions computed with (i) a 
constant value of elastic p-y stiffness set equal to the initial stiffness Ke, versus (ii) an equivalent-
linear degraded stiffness, verifies that a decrease in soil stiffness shifts the transfer function 
ordinates down. However, when a dashpot representing radiation damping is added to the degraded 
stiffness model, the transfer function ordinates are shifted back up, in this case above the transfer 
function representing initial stiffness but without the dashpot. Finally, the transfer function for the 
fully-nonlinear model is shown, which on average plots above the elastic transfer functions 
computed without radiation damping. Thus, the effect of nonlinearity due to pile–soil interaction 
is effectively outweighed by the increase in stiffness due to radiation damping for this case. (Note 
that all four models were subjected to the same input ground motions, so the effect of nonlinearity 
due to site response is equal for all cases). 

Comparison of the trends indicated by the binned means in Figures 4.13– 4.15 shows that 
the nonlinear results computed for this study plot near or slightly above the elastic analytical 
solution. This is somewhat counterintuitive, as it would seem that including pile–soil interaction 
nonlinearity would shift the results below the elastic analytical solution due to soil softening. 
However, because the elastic solutions in these plots do not include radiation damping, this is a 
somewhat misleading comparison. Although radiation damping is included in the full derivation 
by Anoyatis et al. [2013], the best-fit curves from their study that are shown on the normalized 
transfer function plots in the previous section are for a static simplification in which pile inertia 
and radiation damping are ignored (the influence of hysteretic damping on the free-field ground 
response can be included by using a complex shear-wave velocity *

SV  ). Furthermore, ground-
motion intensity does not influence elastic solutions except to the extent that the soil modulus 
values specified by the designer should be consistent with the anticipated level of strain. 
Unfortunately, little guidance is available on predicting this strain due to pile–soil interaction, and 
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methods for predicting free-field nonlinearity due to site response (e.g., NIST [2012]) are only 
approximate. Additionally, the elastic solutions will produce essentially the same transfer function 
regardless of the pile-to-soil stiffness contrast for any flexible pile as demonstrated in Chapter 2. 

 

 

Figure 4.17 Influence of changes in stiffness over pile length for B = 2.0 m, L = 30 m 
pile subjected to (a) 1971 San Fernando, California, earthquake (NGA 
record sequence number 72); (b) 1994 Northridge, California, earthquake 
(NGA record 1011); and (c) 1999 Chi-Chi, Taiwan, earthquake (NGA record 
2661). 

 

Figure 4.18 Competing effects of radiation damping and stiffness degradation due to 
pile–soil interaction. 
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Figure 4.19 Mean fixed-head transfer function results for each pile/site combination 
plotted versus dimensionless frequency: (a) shows variability in results 
due to pile stiffness, and (b) shows lack of variability in results due to pile 
slenderness ratio L/B. 

It is immediately clear when examining the normalized transfer function plots that 
significant dispersion exists in the computed results relative to the perfect normalization suggested 
by elastic solutions. Figure 4.19 provides insight into this variability by showing only the mean 
transfer functions for each pile/site combination (rather than all 40), with all 24 pile/site 
combinations plotted versus dimensionless frequency on a single graph. Three key trends are 
apparent from this figure: 

 Increasing soil stiffness (and thus decreasing pile-to-soil stiffness contrast) still 
shifts the corner frequency higher, as was seen in Figure 4.17 when the results 
were plotted versus plain frequency. 

 Likewise, increasing pile stiffness (which is best characterized by flexural 
rigidity EpIp) shifts the corner frequency down—it is apparent in Figure 4.19(a) 
that the larger-diameter piles result in more significant pile–soil interaction and 
thus produce lower transfer function ordinates. 

 Figure 4.19(b) confirms a lack of dependence on pile slenderness ratio L/B, 
consistent with Anoyatis et al. [2013]. 

Again, it should be reiterated that the first two trends in the above list are not captured by elastic 
analytical solutions. The primary driver of these trends is that decreasing soil stiffness and 
increasing pile stiffness result in greater pile–soil interaction nonlinearity. 

In addition to the variability exhibited by the means of each pile/site combination relative 
to one another, it is apparent that individual transfer functions show significant fluctuations relative 
to the smooth curves produces by elastic solutions (e.g., examine the individual transfer functions 
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in Figures 4.1 through 4.12). One of the causes of this variability is that pile/site combinations 
which are initially the same but then subjected to different ground motions exhibit different levels 
of nonlinearity due to free-field site response and pile–soil interaction. While the former effect is 
only approximately reflected in the results by means of the variable displacement time series 
imposed on each p-y spring, nonlinearity due to pile–soil interaction directly alters the pile-to-soil 
stiffness contrast. The effect of this interaction nonlinearity is difficult to isolate in the resulting 
transfer function, because the level of nonlinearity varies over the duration of the earthquake. 

A related effect is due to the variable frequency content between the different input 
motions. By using a nonlinear time-domain solution, the pile–soil system is subjected and responds 
to energy at multiple frequencies and amplitudes simultaneously, just like in a real earthquake. 
The resulting interaction of nonlinear responses to different frequencies can have a significant 
influence on the results that is not captured by elastic solutions, which assume the system response 
to all frequencies can be superimposed. As a simple example, consider excitation of a pile–soil 
system by a signal containing a low-frequency, large-amplitude pulse, and a second high-
frequency component with a smaller amplitude. For an elastic system, the transfer function will be 
the same regardless of when the low-frequency energy arrives relative to the high-frequency 
waves. For a nonlinear system, if the high-frequency energy arrives during the low-frequency pulse 
such that the pulse has resulted in significant p-y softening, the high-frequency excitation 
effectively occurs during a period of softened pile-to-soil stiffness contrast. Hence, the transfer 
function ordinate at the high frequency will be lower compared to a case where the high-frequency 
energy excitation occurs prior to the low-frequency pulse arrival. 

Again, the effect of variable frequency content demonstrated by the preceding example is 
hard to pinpoint in the computed transfer functions, because many more than two frequencies of 
excitation are present in the input motions, and the effect of variable frequency content is conflated 
with the other effects discussed in this section. Rather, it can generally be stated that the effect of 
variable frequency content along with time-variable pile–soil interaction nonlinearity is to increase 
fluctuations in the computed transfer functions relative to the idealized elastic case. Moreover, the 
interplay of these effects with highly variable stratigraphy, as opposed to uniform or smoothly 
varying soil stiffness, further increases the irregularity of the transfer functions computed herein 
relative to elastic solutions. 

In summary, the key parameters controlling kinematic pile–soil interaction are: 

 Pile head-fixity condition 

 Pile-to-soil stiffness contrast 

 Variations in soil stiffness over the pile length 

 Nonlinear soil behavior due to pile-soil-interaction, which depends on relative 
pile-to-soil stiffness contrast, and due to free-field ground response 

 Radiation damping 

 Variable frequency content of the free-field excitation 

The key differences between simplified elastic solutions and the nonlinear results computed for 
the more realistic conditions considered in this study are caused by the latter three factors in the 
above list. 
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The results presented above make it clear that although using an elastic solution may 
provide a reasonable approximation of average behavior, it cannot capture the variability that is 
possible when more realistic subsurface conditions and ground motions are used along with 
explicit consideration of nonlinearity. It is noteworthy, and rather convenient, that the elastic 
solutions are approximately coincident with the average results of this study. While this suggests 
that elastic solutions provide a reasonable first-order approximation of behavior, it also means that 
they over-predict reductions in free-field motions roughly half the time. A need to capture the 
impact of realistic conditions, which is reflected by the variability in the results computed for this 
study, is the motivation for development of predictive models in the following sections. 

4.4 GENERALIZED MODELS FOR PREDICTING TRANSFER FUNCTIONS 

The results presented above demonstrate that when the nonlinear transfer functions computed for 
this study are normalized using dimensionless frequency ω/(λVS), consistent trends are exhibited 
between the individual results, but significant dispersion still exists about the mean trend. In this 
section, predictive models (i.e., equations with a specified functional form) are developed to 
predict this variability so that it can be represented in transfer functions used for design 
applications. Coefficients used in these models depend on the controlling parameters identified in 
the previous section. Similar models are developed for predicting spectral ratios in the following 
section. 

Two potential approaches for developing the models were considered. Each begins with 
specifying a functional form, which is described in more detail in the following subsection. For 
now, consider the functional form suggested by Anoyatis et al. [2013] for fixed-head piles: 
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in which Anoyatis et al. recommended values of C0 = 0.25 and C1 = 4 for the coefficients. Equation 
(4.1) with these values for the coefficients is plotted in Figure 4.13 through Figure 4.15. The first 
option for a fixed-head pile transfer function predictive model would be to add terms to Equation 
(4.1) that are functions of dimensionless frequency and other parameters in an attempt to achieve 
better normalization, for example: 

1 0 0 1 1

0

1
, , ... .

1

u C
S S

S

H f parameter f parameter etc
V V

C
V

 
 



   
      

     
  

 

  (4.2) 

Mathematically speaking, many potential variations of this approach are possible, e.g., including 
terms in the denominator of the fraction rather than as additive terms. The alternative approach is 
to leave the functional form of the model unchanged—e.g., the use of Equation (4.1)—and develop 
regression models to predict the coefficients: 

     0 0 1 1 ...j n nC f predictor f predictor f predictor intercept       (4.3) 
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Equation (4.3) is an example of a multiple linear regression model for predicting a coefficient Cj 
as a linear combination of functions of predictor variables, each with an independent coefficient 
(slope) β. In a multiple linear model, functions of predictor variables do not necessarily have to be 
linear, but they must be combined in a linear fashion. For example, the following is a permissible 
multilinear model: 

   2
0 0 1 0   jC predictor predictor intercept   (4.4) 

while this is not: 

    2

0 0 1 0     jC predictor predictor intercept   (4.5) 

The approach of using multiple linear regression to predict individual coefficients rather 
than attempting to modify the functional form has several benefits. First, performing multiple 
linear regressions for one coefficient model at a time is much simpler and faster than performing 
a nonlinear mixed-effects regression on the entire 60,000+ data points reflected in each of the 
Figure 4.13 through Figure 4.15. Second, it maintains the ability to compare to elastic solutions. 
If the functional form were modified to improve normalization of the nonlinear results, the x-axis 
value of the normalized plots would no longer have a clear physical meaning like ω/(λVS) does. A 
modified x-axis variable would also complicate the process of converting the normalized transfer 
function back to Hu as a function of plain frequency, a necessary step to actually implement the 
transfer function for practical applications. Furthermore, there would be no clear way to express 
the elastic solutions in the new normalized space if the x-axis values were functions of parameters 
describing nonlinearity. It is useful to retain the ability to make the elastic versus nonlinear 
comparison, because it highlights the shortcoming of elastic solutions in terms of their inability to 
predict the variability that occurs when realistic conditions are modelled. Hence, the multiple linear 
regression approach is used here. 

Predictor variables used in the multiple linear regression models must capture the physical 
mechanisms that control kinematic pile–soil interaction in order for the models to be meaningful 
and reliable. The recent work by Anoyatis et al. [2013] and Di Laora and Rovithis [2014] shows 
that the ω/(λVS) normalization scheme captures two of the controlling parameters well for elastic 
conditions: (i) pile-to-soil stiffness contrast and (ii) the ratio of pile characteristic length to the 
wavelength of free-field excitation, which controls the frequency-dependence of the problem. 
Hence, the primary goal of the of the coefficient prediction models is to capture the effects that are 
not present in the elastic solutions, namely: 

 Nonlinearity due to pile–soil interaction. 

 The influence of ground response on the free-field motions that excite the pile, 
and nonlinearity associated with the free-field response. 

 Ground motion intensity and frequency content characteristics. 

 Furthermore, parameters used in the models should be dimensionless if possible 

 Easy to define with routine project information, i.e., without the need for in situ 
or laboratory testing that is outside the bounds of conventional practice, and 
using readily-quantifiable structural properties. 
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 Based on parameters consistent with the level of seismic hazard analysis 
appropriate for the project. For example, if spectral ratios are desired for a 
response-spectrum based design, the parameters in the spectral ratio prediction 
model should be based on the free-field response spectrum rather than requiring 
parameters that describe an appropriate acceleration time series. 

4.4.1 Functional Form 

The functional forms used here for fixed- and free-head horizontal displacement transfer functions 
are adopted from the Anoyatis et al. [2013] and Rovithis et al. [2009] studies, respectively. Note 
that Anoyatis et al. provide results for free-head piles in terms of plots of normalized transfer 
functions, but they only present a best-fit function for the fixed-head case. Although Rovithis et 
al. do not present the free-head function in the same form that it is presented below, the form below 
can be derived from other equations presented in their paper. 

Prior to adopting these previously-established functional forms, an independent study was 
conducted to derive expressions for the fixed- and free-head cases in order to evaluate if alternative 
forms existed that could capture the underlying trends with fewer coefficients or simply provide a 
better fit. To do this, the derivation presented in Chapter 2 was distilled down to the simplest 
possible mathematical form, and then terms were dropped one at a time to evaluate whether or not 
each term was necessary to capture the underlying trends. This exercise produced results that were 
essentially the same as Anoyatis et al. [2013] and Rovithis et al. [2009], presumably because they 
used a similar process, so their functional forms will be used herein. 

The functional form for normalized (i.e., versus dimensionless frequency) fixed-head 
transfer functions is: 
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  (4.6) 

The only difference between this functional form and Equation (4.1) used by Anoyatis et al. [2013] 
is that Equation (4.6) uses λLa and VS,La, that is, values of λ and VS computed over the depth 
increment corresponding to the uppermost active length of the pile. This makes Equation (4.6) 
consistent with the form recommended by Di Laora and Rovithis [2014], who proposed C0 = 0.3 
and C1 = 3 as an approximate best-fit to their elastic results. 

The functional form for normalized free-head horizontal displacement transfer functions 
is: 
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  (4.7) 

The second term in Equation (4.7) containing coefficients C4 and C5 captures the kinematic 
amplification exhibited by free-head piles. Note that although Equation (4.6) appears as the first 
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term in Equation (4.7), coefficients C0 and C1 generally do not take on the same values as C2 and 
C3 for a given pile/site/ground-motion combination in which all factors are equal other than the 
head-fixity condition. Although Rovithis et al. [2009] used the same coefficients for this portion 
of their free- and fixed-head equations, the models developed herein were found to have more 
predictive power if the coefficients were defined independently for each head-fixity case. 

To the best of the authors’ knowledge, no functional form for the underlying trend of free-
head pile rotation transfer functions has previously been established. The curve shown in Figure 
4.15 for Anoyatis et al. is simply a replication of results they presented graphically. Based on the 
similarity between these transfer functions (see Figure 4.15) and the kinematic amplification 
region of free-head horizontal displacement transfer functions (see Figure 4.14), the following 
functional form for normalized free-head rotation transfer functions has been established for this 
study: 
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  (4.8) 

4.4.2 Approach 

The statistical software package R [R Core Team 2015] was used to aid in development of the 
multiple linear regression for each coefficient prediction model. The steps taken to develop the 
models can be summarized as follows: 

 Use R software to perform nonlinear least-squares regression (NLSR) to 
determine best-fit coefficients for each transfer function result for fixed- and 
free-head piles. For example, see Figure 4.20. These values of coefficients 
become the “targets” that the coefficient models will be used to predict. 
Computed transfer functions that lacked a significant number of high coherence 
points or did not extend to a high enough dimensionless frequency such that the 
underlying trend was well-constrained by the data were excluded from the 
regression model at this step. 

 Evaluate a number of statistically independent predictive parameters for 
possible inclusion in the models by looking for strong correlation, low standard 
error, and an approximately linear trend between a given parameter and 
coefficient. In most cases, a log transformation of both the predictive 
parameters and pool of target coefficients [e.g., log(parameter0) and log(C0)] 
was found to improve linearity, correlation, and normality/variance structure of 
residuals, while in other cases either no transformation or a power 
transformation was found to be optimum. The Box-Cox test [Box and Cox 
1964] was used to determine the optimum transform power. 

 Once best candidates for predictive parameters have been identified, use R to 
assess the performance of the models. Begin with a null model (predicted 
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coefficient = mean of best-fit results from NLSR), then add the single-best 
standalone predictor and test for statistical significance; look for next-best 
predictor that can be added that will have most predictive power and statistical 
significance, etc., until adding additional predictors does not significantly 
increase the predictive power of the model. This saturation usually occurred 
once three strong predictors were identified. 

 After a model has been developed for each coefficient needed for a given 
functional form, identify the predictors that (i) have the clearest physical 
meaning; (ii) have the most predictive power; and (iii) appear in multiple 
coefficient prediction models. Reformulate all coefficient prediction models to 
use the same set of predictors. While this may decrease the predictive capability 
of an individual coefficient prediction model, using the same predictors in each 
model makes them easier to implement. 

 Throughout the process outlined by the above steps, but especially when a 
potential set of final models has been produced, check that the underlying 
assumptions of multiple linear regression are satisfied (after Kutner et al. 
[2004]): 

o Linear relationship between predictor and target parameter 

o Normally-distributed predictor variables, e.g. as tested by a Q-Q plot 

o Little or no multicollinearity between predictor variables 

o Homoscedasticity and lack of autocorrelation of residuals 
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Figure 4.20 Example of nonlinear least-squares regression to determine coefficients 
for free-head pile functional form [Equation (4.7)] using computed data for 
B = 2 m, L = 60 m pile embedded in Site 4 and subjected to 1999 Hector 
Mine earthquake (NGA record sequence number 1786). 

4.4.3 Models for Predicting Fixed-Head Transfer Function Coefficients 

Models for predicting the coefficients to be used in Equation (4.6) are given in Equations (4.9) and 
(4.10). Metrics for assessing the statistical significance of the models are presented in Table 4.1 
and Figure 4.21. 
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  (4.10) 

The physical interpretation and motivation for using each of the predictor variables that 
appear in Equations (4.9) and (4.10) are summarized as follows: 
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 is essentially a dimensionless frequency term, inspired by the 

dependence of kinematic interaction on ω/(λVS). The difference is that the term 
used here corresponds to a single value of frequency fm, which is the inverse of 
the mean period Tm defined by Rathje et al. [2004]: 
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where FASi are the Fourier amplitude coefficients from the Fourier Amplitude 
Spectrum (FAS) of the free-field ground surface motion, fi are the frequencies 
corresponding to each FASi, and Δf is the frequency interval used in the FFT 
computation. This term will be referred to as “mean frequency” of the surface 
motion, although Rathje et al. do not use this terminology because they refer 
to it only in terms of period. Use of mean frequency as a predictor term is a 
convenient way to represent the frequency content of the ground surface 
motion with a single value. (Note: in order to be consistent with this model, fm 
must be computed from the ground surface motion and not the input motion 
used for one-dimensional ground response analysis). Using mean frequency in 
a dimensionless frequency term effectively compares the pile characteristic 
length to the wavelength of free-field excitation corresponding to the 
predominant energy in the ground motion. Finally, the λLa term allows the 
coefficient to have a dependence on pile-to-soil stiffness contrast, which has 
been demonstrated in this study to influence the results due to its effect on 
nonlinearity beyond what is captured by the dimensionless frequency term in 
the basic fixed-head functional form. 
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 is a proxy for shear strain in the free field due to ground response, and 

also serves as a general proxy for ground-motion intensity. The former is based 
on the fundamental relationship of ground velocity normalized by shear-wave 
velocity in the transverse direction being equal to shear strain (e.g., see 
Newmark [1967]). Again, PGV is the peak ground velocity (PGV) of the free-
field ground surface motion and is not the base input motion used for ground 
response analysis. In addition to producing a dimensionless ratio when 
normalized by shear-wave velocity, PGV was found to be a strong predictor 
because it is mostly dependent on mid-range frequency content of the ground 
motion, which is where kinematic pile–soil interaction becomes significant. 

 The preceding two terms are multiplied in order to allow the ground motion 
intensity to interact with the pile-to-soil stiffness term, which is an attempt to 
capture the increase in pile–soil interaction nonlinearity that is caused by 
increasing ground-motion intensity. 
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 is the ratio of shear-wave velocity over the uppermost pile active length 

(hence, near the ground surface) to the shear-wave velocity over the full length 
of the pile. This quantifies the increase, or lack thereof, in soil stiffness over the 
length of the pile. 
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 is the ratio of free-field ground surface acceleration response 

spectrum ordinates at 0.5 and 0.05 sec, which serves as another descriptor of 
free-field ground motion frequency content. The periods 0.5 and 0.05 sec (f = 2 
to 20 Hz) were chosen because the transfer function corner frequencies and 
bandwidth over which significant de-amplification occurs usually falls within 
this range (e.g., see Figure 4.16). The term may also capture, at least in part, the 
influence of free-field motion variable frequency-content on nonlinearity as 
discussed in §4.3. 

As shown in Figure 4.19(a), there is variability between the normalized transfer functions 
computed for the two diameters of piles considered in this study. This is shown again in terms of 
all computed transfer function ordinates with high coherence in Figure 4.22. This variability 
provides an opportunity to test the predictive capabilities of the coefficient models (4.9) and (4.10) 
by comparing the mean model predictions to the study results for each diameter independently. 
Figure 4.23 and Figure 4.24 show that the models match the overall trends exhibited by the two 
sizes of piles well. Note that although this variability is discussed here in terms of diameter, the 
actual behavior is better characterized by its dependence on EpIp, and diameter only appears in the 
functional form and coefficient prediction models through its inclusion in the EpIp term. 

 

Table 4.1 Fixed-head transfer function coefficient prediction model metrics. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C0 0.44 139 2.2E-16 

C1 0.19 43 2.2E-16 
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Figure 4.21 Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for fixed-head transfer function coefficient prediction models. Lines on 
residuals plots show trend and ± one standard deviation. 
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Figure 4.22 Variability in fixed-head transfer function results for the two pile 
diameters considered in this study. 
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Figure 4.23 Mean fixed-head transfer function model prediction for B = 0.5 m 
compared to computed results. 

  



114 

 

Figure 4.24 Mean fixed-head transfer function model prediction for B = 2.0 m 
compared to computed results. 

4.4.4 Models for Predicting Free-Head Displacement Transfer Function 
Coefficients 

Models for predicting the coefficients to be used in Equation (4.7) are given in Equations (4.12) 
through (4.15). Metrics for assessing the statistical significance of the models are presented in 
Table 4.2 and Figure 4.25. The same predictive parameters used for the fixed-head pile coefficient 
prediction models were used here for the free-head case, and the physical meaning and motivation 
for each parameter that was described above applies here as well. 
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  (4.15) 

As for the fixed-head pile transfer functions, the free-head transfer functions exhibit 
variability between the two diameters considered in the study. Figure 4.26 and Figure 4.27 
demonstrate that the coefficient prediction models are capable of capturing these trends well. 

Table 4.2 Metrics for free-head displacement transfer function coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C2 0.51 72 2.2E-16 

C3 0.22 21 8.0E-12 

C4 0.47 62 2.2E-16 

C5 0.06 5 1.5E-3 
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Figure 4.25 Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for free-head displacement transfer function coefficient prediction 
models. Lines on residuals plots show trend and ± one standard 
deviation. 
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Figure 4.26 Mean free-head displacement transfer function model prediction for B = 
0.5 m compared to computed results. 
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Figure 4.27 Mean free-head displacement transfer function model prediction for B = 
2.0 m compared to computed results. 

4.4.5 Models for Predicting Free-Head Rotation Transfer Function Coefficients 

Models for predicting the coefficients to be used in Equation (4.8) are given in Equations (4.16) 
through (4.19). Metrics for assessing the statistical significance of the models are presented in 
Table 4.3 and Figure 4.28, and the ability to capture diameter-variability in the results (see Figure 
4.29) is shown in Figure 4.30 and Figure 4.31. 
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Table 4.3 Metrics for free-head rotation transfer function coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C6 0.52 40 2.2E-16 

C7 0.31 17 4.1E-09 

C8 0.44 29 1.3E-13 

C9 0.18 9 2.3E-05 
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Figure 4.28 Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for free-head rotation transfer function coefficient prediction models. 
Lines on residuals plots show trend and ± one standard deviation. 
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Figure 4.29 Variability in free-head rotation transfer function results for the two pile 
diameters considered in this study. 
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Figure 4.30 Mean free-head rotation transfer function model prediction for B = 0.5 m results. 
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Figure 4.31 Mean free-head rotation transfer function model prediction for B = 2.0 m results. 

4.5 GENERALIZED MODELS FOR PREDICTING SPECTRAL RATIOS 

The same approach described above for development of transfer function prediction models was 
used to develop models for predicting spectral ratios that include variability due to the controlling 
parameters identified in §4.3. Spectral ratios primarily depend on the same physical mechanisms 
that influence transfer functions, except that short-period (high-frequency) spectral ordinates are 
controlled by the largest amplitude peak in the signals rather than the high-frequency energy. 
Response spectra used to compute spectral ratios were computed from the free-field ground surface 
and pile-head motions for 5% damping. 

4.5.1 Functional Form 

Spectral ratios for kinematic pile–soil interaction exhibit a characteristic form in which the 
ordinates generally decrease with decreasing period, down to some limiting value corresponding 
to the period Tmin (see Figure 4.32). The minimum value defines a transition point in the pile–soil 
system behavior. At periods below Tmin (i.e., frequencies above 1/Tmin), spectral acceleration of 
both the pile head and free-field ground surface motion are controlled by the largest amplitude 
peak in the respective motions. This behavior is maximized at T = 0 sec (i.e., PGA), when the 
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spectral acceleration is simply equal to the maximum of the acceleration time series. The largest 
amplitude peak of design-level earthquake motions usually occurs within mid-range frequencies 
of 2–5 Hz (e.g., periods around 0.2–0.5 sec), which corresponds to the range over which kinematic 
pile–soil interaction may be significant for stiff piles in soft soil but relatively insignificant for 
smaller piles in stiffer soil (see Figure 4.16). Hence the spectral ratio ordinate at zero period 
depends on the level of kinematic pile–soil interaction that occurs at frequencies corresponding to 
the peak amplitude of the free-field ground surface motion and for fixed-head piles will approach 
unity as the level of pile–soil interaction decreases. 

The only published work that the authors are aware of in which kinematic pile–soil 
interaction spectral ratios are computed and discussed in terms of an underlying functional form 
is the elastic study by Di Laora and Sanctis [2013]. The functional form used here for fixed-head 
piles is adopted from their study: 
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  (4.20) 

Equation (4.20) is a piecewise combination of two parabolas and a straight line, where R0 and Rmin 
are coefficients defining the spectral ratio at a period of zero and the minimum spectral ratio, and 
Tmin, and Tcrit are the period corresponding to the minimum spectral ratio and the period beyond 
which no significant reduction occurs, respectively. These parameters and the basic functional 
form are illustrated in Figure 4.32. 

 

Figure 4.32 Fixed-head pile spectral ratio functional form after Di Laora and Sanctis [2013]. 
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Figure 4.33 Free-head pile spectral ratio functional form. 

Di Laora and Sanctis only considered fixed-head piles; for free-head pile spectral ratios, 
the authors are not aware of any published functional forms. The trend exhibited by free-head pile 
spectral ratios computed for this study is matched well by the following: 
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  (4.21) 

Equation (4.21) is a modified version of the fixed-head form which captures the effect of 
kinematic amplification on the computed spectral ratios by adding a third parabolic leg to the 
piecewise formulation. The peak spectral ratio is defined by (Rmax, Tmax) as shown in Figure 4.3. 

4.5.2 Models for Predicting Fixed-Head Spectral Ratio Coefficients 

Models for predicting the coefficients to be used in Equation (4.20) are given in Equations (4.22)
–(4.25). Metrics for assessing the statistical significance of the models are presented in Table 4.4 
and Figure 4.34. 
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Note that Tmin and Tcrit in Equations (4.24) and (4.25) are in seconds. 

The physical interpretation and motivation for using each of the predictor variables that 
appear in Equations (4.22) through (4.25) are summarized as follows: 

 Similar to the transfer function models, the 0
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 term is a dimensionless 

frequency computed at a single frequency value. In this case f0 is used, which 
is the inverse of the “smoothed spectral predominant period” period T0 defined 
by Rathje et al. [2004]: 
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where Ti are the discrete periods in the acceleration response spectrum 
equally spaced on a log axis and PSA(Ti) are the spectral accelerations at 
periods Ti. If the spacing criterion is not satisfied, the spectral values must 
be interpolated over a closer log interval. Equation (4.26) essentially 
extracts the spectral ordinates that are greater than 1.2 times PGA, thus 
exhibiting significant amplification and returns the period corresponding to 
the peak of a smoothed curve of these ordinates. The way in which T0 is 
defined makes it mostly dependent on the moderate- to high-frequency 
content of a ground motion, which is the important range for kinematic pile–
soil interaction. As demonstrated by Rathje et al., T0 is also a better overall 
descriptor of the mean frequency content of the motion than the peak of the 
unsmoothed spectrum because it represents a weighted average of the entire 
period bandwidth over which amplification occurs, and thus is not 
controlled by a single peak that may have narrow bandwidth. Furthermore, 
f0 was chosen because it is defined from the free-field ground surface 
motion response spectrum. For design applications in which spectral ratios 
for kinematic pile–soil interaction are desired, it would be impractical to 
have to compute a parameter like fm which is defined by a ground motion 
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time series instead of a response spectrum. The empirical relationships 
developed by Rathje et al. could also be used to predict f0 for use in 
Equations (4.22)—(4.25) at the planning stages of a project or for cases 
when a site-specific seismic hazard analysis to define response spectra is 
not performed. 
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 quantifies changes in soil stiffness over the length of the pile.  
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 is simply the maximum spectral acceleration normalized by gravity 

such that the term is dimensionless. This measure of ground-motion intensity 
serves as a proxy for nonlinearity and was found to be a more effective predictor 
than spectral acceleration at any one specified period. As discussed above, the 
maximum spectral acceleration also plays an important role in defining the 
zero-period ordinate and thus is a powerful predictor of R0. 

 

Table 4.4 Fixed-head spectral ratio coefficient prediction model metrics. 

Coefficient: Adjusted R2 F-Statistic P-Value 

R0 0.19 74 2.2E-16 

Rmin 0.54 381 2.2E-16 

Tmin 0.33 157 2.2E-16 

Tcrit 0.70 734 2.2E-16 
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Figure 4.34 Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for fixed-head spectral ratio coefficient prediction models. Lines on 
residuals plots show trend and ± one standard deviation. 
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Figure 4.35 Fixed-head spectral ratio results. 

As for the transfer functions, variability exists in the computed spectral ratios between the 
two diameters considered for this study (Figure 4.35). Since no normalization scheme is applied 
to the results—that is, the computed spectral ratios are presented versus period rather than a 
dimensionless combination of period and other variables—there is variability in the spectral ratio 
results that has effectively been removed (or at least reduced) from the corresponding normalized 
transfer function results by using a dimensionless frequency that captures the underlying physics 
(e.g., Figure 4.13 and Figure 4.14). While it would be possible to first normalize the spectral ratio 
results using a “dimensionless period” akin to the dimensionless frequency used for transfer 
functions, this would obscure the meaning of a spectral ratio at a given period. Moreover, 
promoting the false notion that spectral ratios are simply the mirror image of transfer functions 
since period is the inverse of frequency is undesirable, so “dimensionless period” is avoided herein. 

Residuals between the predictive model and the computed spectral ratio results are shown 
in Figure 4.36. To compute these residuals, the coefficient prediction models [Equations (4.22)—
(4.25)] were applied for a given combination of pile, site, and ground motion properties to predict 
spectral ratio values at each period. These predicted values were then subtracted from the spectral 
ratios computed in the parametric analyses for the same combination of pile, site, and ground-
motion properties. The mean trend exhibited by the residuals is close to zero, indicating that the 
predictive model is generally unbiased. Furthermore, the ± one standard deviation error bars shown 
that the majority of the residuals fall close to zero. The ± one standard deviation error bars are the 
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best means of visually assessing these trends because the large number of points (over 60,000) 
shown on the plot make it visually difficult to assess where the greatest concentration of points lie. 

The largest bias occurs around a period of 0.05 to 0.1 sec, which is where the minimum 
spectral ratio occurs. The mean bias at this period is approximately 0.1, meaning that, on average, 
predicted spectral ratios are about 10% below those computed for this study. This bias is 
attributable to the difficulty in predicting the period and corresponding ordinate at which the local 
minimum in the spectral ratio will occur (Tmin and Rmin, respectively). In future studies, it may be 
possible to reduce this bias and/or further reduce the total variability exhibited the residuals, thus 
improving the reliability of the model. 

 

 

Figure 4.36 Fixed-head pile spectral ratio predictive model residuals. 

4.5.3 Models for Predicting Free-Head Spectral Ratio Coefficients 

Models for predicting the coefficients to be used in Equation (4.21) are given in Equations (4.27)
–(4.32). Metrics for assessing the statistical significance of the models are presented in Table 4.5 
and Figure 4.37. The same predictor variables used in the fixed-head models are used here. 
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Note that Tmin, Tmax, and Tcrit in Equations (4.29), (4.31), and (4.32) are in seconds. 
 

Table 4.5 Metrics for free-head spectral ratio coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

R0 0.47 203 2.2E-16 

Rmin 0.13 35 2.2E-16 

Tmin 0.41 163 2.2E-16 

Rmax 0.47 203 2.2E-16 

Tmax 0.58 313 2.2E-16 

Tcrit 0.60 350 2.2E-16 
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Figure 4.37 Residuals versus predicted values plots (left) and normal Q-Q plots (right) 
for free-head spectral ratio coefficient prediction models. 
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Figure 4.38 Free-head pile spectral ratio results. 

 

Figure 4.39 Free-head pile spectral ratio predictive model residuals. 
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Free-head pile spectral ratios show amplification (ordinates > 1.0) at short periods because 
kinematic amplification usually occurs during the largest-amplitude pulse in the ground motion, 
which is the component of the motion that controls PGA and short-period spectral ordinates. What 
appears to be a large number of points showing significant amplification at short periods in Figure 
4.38 is somewhat exaggerated as the points are approximately log-normally distributed, which is 
not visually apparent in Figure 4.38. 

The ability of the predictive models to capture the effect of kinematic amplification at short 
periods is demonstrated in the plot of residuals shown in Figure 4.39. The average residual value 
is near zero at periods greater than about 0.1 sec and is around 0.05 to 0.1 at shorter periods. This 
indicates that the predictive model underestimates the computed spectral ratio by, on average, 
about 5 to 10%. Future studies may be able to reduce this bias by adjusting the coefficient 
prediction models. 

4.6 PILE-GROUP RESULTS 

Simulations of pile groups subjected to incoherent ground motions generally showed that group 
effects were minimal for the parametric bounds considered here, which is consistent with previous 
findings based on elastic solutions. For stiff-pile/soft-site combinations for which single piles 
exhibit significant reduction of the free-field motion at low frequencies, the average trends 
exhibited by pile-group transfer functions typically ranged between 0–10% below the 
corresponding single-pile transfer functions computed for the same ground motion. For pile/site 
combinations with less of a pile-to-soil stiffness contrast, pile groups amplified narrow-bandwidth 
frequency components of some ground motions up to about 10–20% relative to the single pile 
transfer functions, but the average trends of the group transfer functions still generally plotted 
slightly below the single pile results. 

For design applications, a reasonable first-order approximation of pile group behavior 
could be estimated by reducing transfer functions predicted using the models presented in this 
chapter by an additional 5% at frequencies beyond the corner frequency. Because of the 
idiosyncratic nature of the group results, for critical projects, modeling of the type used for this 
study would be more appropriate than this rough approximation. Alternatively, group effects could 
be ignored due to their relatively insignificant contribution to kinematic pile–soil interaction. Pile-
supported buildings that use a stiff mat foundation (i.e., piled-raft) or grade beams to connect piles 
over a large footprint could potentially experience a larger reduction due to the group averaging. 
This should be examined in future studies. 

Examples results are shown in Figure 4.40–Figure 4.42. Comparison of Figure 4.40 to 
Figure 4.41 (same pile/site combination, different motion) shows that the group transfer function 
varies based on the ground-motion amplitude and frequency content in much the same manner as 
the single pile results. Comparison of Figure 4.41 to Figure 4.42 (same pile/motion, different site) 
shows that for stiffer sites, the pile groups may amplify or de-amplify certain frequency 
components, but the smoothed trend exhibits approximately the same difference between single 
pile and group pile results for both sites. 
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Figure 4.40 Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 1, 
subjected to 1994 Northridge, California, earthquake (NGA record 
sequence number 957). 

 

 

Figure 4.41 Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 1, 
subjected to 1971 San Fernando, California, earthquake (NGA record 
sequence number 72).  
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Figure 4.42: Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 4, 
subjected to 1971 San Fernando, California, earthquake (NGA record 
sequence number 72). 
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5 Combination of Inertial and Kinematic Pile–
Soil Interaction 

5.1 COMBINING INERTIAL AND KINEMATIC SSI 

For comparison of predictive models to empirical transfer functions, and in a broader sense, for 
consideration of a structure’s earthquake response considering soil–structure interaction (SSI), it 
is necessary to consider the combination of kinematic and inertial effects. Analytically decoupling 
these effects for use with the substructure method of design is convenient but must be kept in check 
by considering important factors related to their combined effects. This chapter will discuss this 
topic prior to presentation of the example applications in the next chapter. 

Three distinct motions will be considered in the context of combined inertial and kinematic 
SSI: the free-field motion (FFM), foundation-input motion (FIM), and foundation motion (FM). 
The FFM and FIM are consistent with the definitions given in previous chapters, and represent the 
modification of the free-field ground response due to kinematic pile–soil interaction. In the 
absence of inertia from the superstructure, the FM is the same as the FIM. When superstructure 
inertia is present, however, the FM will differ from the FIM because inertial force effects from the 
superstructure will induce additional foundation displacements and rotations, which is the concept 
of inertial SSI. In other words, the FM is influenced by both inertial and kinematic SSI. 

When considering empirical transfer functions computed between recordings of 
instrumented structures and the adjacent free field, it is important to keep in mind that the empirical 
transfer function represents the ratio of FM/FFM—as opposed to FIM/FMM—since inertial effects 
are present in the structure foundation-level recording. To make a meaningful comparison between 
an empirical transfer function and a purely kinematic transfer function model such as the ones 
developed herein, it is necessary to simulate the response of the structure subjected to the FIM; the 
FM is an outcome of this analysis. An alternative method is to approximately remove inertial 
effects by ignoring the portion of an empirical transfer function that is near the first-mode 
frequency of the system, based on the assumption that this is where inertial effects are most 
pronounced (e.g., Mikami et al. [2008]). However, this is often where the greatest reductions 
between FM and FFM are observed, so ignoring this frequency range can leave important 
questions unanswered. 

For many applications, the structure response can be idealized as a SDOFO, and the FM 
can be computed using the substructure analysis method. This process is illustrated in Figure 5.1 
and can be summarized as follows: 
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1. Compute kinematic transfer function using site and pile parameters [Figure 5.1(a) and 
(b)]. This could be achieved using the generalized models presented in Equations 
(4.6)–(4.8) (depending on head-fixity) or by directly simulating the dynamic pile 
response to free-field motions at discrete depth intervals computed from a ground 
response analysis. 

2. Convolve the transfer function from step 1 with the FFM to generate a FIM. 

3. Impose this FIM on the free end of a spring representing foundation impedance for 
the appropriate degree-of-freedom. For example, Kxx represents the pile translational 
impedance in Figure 5.1(c). Additional impedance springs can be used to model pile 
rotation and/or vertical translation depending on the pile boundary conditions. The 
stiffness of impedance springs can be computed for specific site conditions or 
approximated using a simplified equivalent-linear approach (e.g., see NIST [2012]). 

4. Compute dynamic response of system subjected to FIM through impedance spring(s), 
from which FM can be determined. The transfer function computed between the FM 
and FFM [Figure 5.1(d)] can be compared to empirical transfer functions for the 
system being modeled. 

 

 

Figure 5.1 (a) Schematic of pile-soil kinematic interaction, which produces 
foundation-input motion (FIM) to free-field motion (FFM) transfer function 
(b), and (c) application of kinematic transfer function using substructure 
approach to represent a structure supported by a fixed-head pile; (d) the 
foundation motion (FM) transfer function differs from the FIM transfer 
function because of additional foundation displacements resulting from 
superstructure inertial forces. 
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5.1.1 Linear-Elastic SDOFO-Pile–Soil System 

A series of dynamic simulations of the idealized linear-elastic system depicted in Figure 5.2 were 
conducted to illustrate the effects of combining inertial and kinematic SSI. 

 

Figure 5.2 Idealized system used for direct analysis method. 

A structure represented by a SDOFO is supported on a single pile, embedded in a 
homogeneous soil medium excited by vertically-propagating shear waves. The SDOFO is defined 
by a lumped mass (mSDOFO) and a massless column of height HSDOFO and swaying stiffness kSDOFO. 
The swaying stiffness of a fixed-base SDOFO is related to the column flexural rigidity EISDOFO by: 
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   (5.1) 

The first-mode fundamental frequency of the fixed-base SDOFO f1,SDOFO can be computed from 
its mass and stiffness using the following basic relationship: 
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Figure 5.3 compares a kinematic pile–soil interaction transfer function (i.e., FIM/FFM) to 
FM/FFM transfer functions computed with superstructure inertia included. The following system 
properties were used for the analyses: 

 Soil: VS = 100 m/sec, ρs = 17 Mg/m3, βs = 0.05, νs= 0.35 

 Pile: L = 10 m, elastic stiffness EpIp = 84 MNꞏm2, ρp = 24.5 Mg/m3, and a fixed-
head boundary condition 

 Soil–pile Interaction: interaction modulus k = 37 MPa, which represents a 
modulus reduction of about 20% from the initial elastic condition to 
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approximate nonlinearity due to site response and pile–soil interaction, and 5% 
damping modeled as equivalent viscous damping through distributed dashpots. 

 SDOFO: HSDOFO = 5 m, mSDOFO = 10 Mg, and f1,SDOFO = 7 Hz, which 
corresponds to EISDOFO = 81 MNꞏm2. Flexible-base (i.e., including foundation 
flexibility) first- and second-mode natural frequencies of f1̃,SDOFO. = 6.1 and 
f2̃,SDOFO = 33 Hz, respectively, were computed using the eigen command in 
OpenSees. 

 Rayleigh damping was imposed on the structural elements corresponding to 5% 
damping at f1̃,SDOFO and f2̃,SDOFO. 

 Ground motion: sine-sweep motion of constant 0.1-m amplitude over a 
frequency range of 0.1–25 Hz, specified at the ground surface and computed at 
each depth increment of the pile using Equation (2.3). 

 

 

Figure 5.3 Comparison of transfer functions computed for pile–soil system and 
combined SDOF oscillator and pile–soil systems using direct and 
substructure analysis methods. 

The direct analysis transfer function in Figure 5.3 was computed from analyzing the 
complete system depicted in Figure 5.2, while the substructure analysis transfer function was 
computed from analyzing the system depicted in Figure 5.1(c). For the substructure analysis, the 
FIM was computed by convolving the free-field sine-sweep motion at the ground surface with the 
kinematic pile–soil interaction transfer function. The pile was replaced with an equivalent 
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macroelement representing the foundation translational impedance. To determine the foundation 
impedance, a “pushover” analysis of the pile was performed by imposing a lateral force on a model 
of the pile–soil domain (no SDOFO) and recording the lateral displacement. This produced a pile-
head lateral force-versus-displacement stiffness Kxx = 54.7 MN/m. To capture foundation damping, 
a dashpot with a coefficient of 142 kNꞏs/m was modeled in parallel with the spring. This dashpot 
coefficient corresponds to 5% damping at f1̃,SDOFO based on the following relationship relating 
damping ratio β to equivalent viscous damping [NIST 2012]: 

2 j j
j

j

k
c




   (5.3) 

In Equation (5.3), k is stiffness (in this case Kxx), ω is the frequency of interest, and the subscript j 
stands for the mode of interest, which in this case is the first mode. 

The transfer functions computed from the direct and substructure analysis methods are in 
close agreement in this example. The slight misfit between them occurs because of the different 
modal properties of the two systems and the manner in which damping was implemented. While 
the substructure model with lumped mass and a SDOF has only one defined mode, the direct-
analysis model has multiple higher modes associated with deflection of the pile’s distributed mass. 
Hence the modal-mass participation and mode-shapes of the two models are not identical. In 
addition, f1̃,SDOFO of the substructure model is slightly less than for the direct-analysis model (6.01 
versus 6.12 Hz) because of the different distribution of mass and stiffness that occurs when the 
pile is replaced by a single macroelement. Nonetheless, the good agreement between the two 
approaches verifies that the substructure method can provide a reasonably accurate response for 
linear-elastic systems. Note that at a single frequency of interest, the substructure method can 
provide an exact match to the direct analysis method, but a perfect match cannot be achieved over 
a wide frequency bandwidth for a time-domain solution when Rayleigh damping and equivalent 
viscous damping are combined in the manner of this example. 

Two deviations between the complete SDOFO–pile–soil system transfer function and the 
purely kinematic pile–soil transfer function are of interest. First, significant amplification occurs 
in the complete-system transfer function near f1̃,SDOFO as a result of resonance. At frequencies near 
f1̃,SDOFO, the SDOFO mass undergoes displacements in excess of the ground displacement, which 
generates inertial base shear and moment acting on the foundation. In this example, note that in 
Figure 5.3 the purely-kinematic pile–soil transfer function predicts a negligible difference between 
the FIM and FFM near f1̃,SDOFO; therefore, it can be said that the FM is controlled by the structure 
response near f1̃,SDOFO, and that kinematic pile–soil interaction has a negligible influence. This can 
be verified by repeating the substructure analysis with the FFM in place of the FIM—effectively 
bypassing kinematic pile–soil interaction. Figure 5.4 shows that this results in a nearly identical 
transfer function for frequencies up to the kinematic pile–soil interaction transfer function corner 
frequency (about 7 Hz). Only at frequencies above 7 Hz does the reduction of FIM due to kinematic 
pile–soil interaction result in a significant difference between the two transfer functions computed 
for the complete system. 
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Figure 5.4 Comparison of transfer functions computed with and without 
consideration of kinematic pile–soil interaction. 

The second difference of interest between the complete-system transfer function (i.e., 
including the SDOFO inertia) and pile-only kinematic transfer function is that the complete-system 
transfer function is significantly reduced relative to the pile-only kinematic transfer function at 
frequencies greater than the range where resonance occurs. For example, referring back to Figure 
5.3, the complete-system transfer function is less than the pile-only kinematic transfer function at 
all frequencies shown in the plot above about 6.5 Hz. This is significant because it indicates that 
kinematic pile–soil interaction is not entirely responsible for reductions between FM and FIM that 
are observed in empirical transfer functions, even away from f1̃,SDOFO. Even for the case where the 
FFM was used in place of the FIM with the substructure method, shown as the dashed-orange 
transfer function in Figure 5.4, the transfer function plots below 1.0 at all frequencies shown above 
about 6.5 Hz. 

This reduction occurs as a result of phase lag between the oscillator response and the 
ground surface motion, which is depicted for the system in the above example by the phase angle 
frequency-response curve in Figure 5.5(a). In this context, phase lag is defined as the time 
difference between the peak ground response and the subsequent peak SDOFO response. As 
described by Chopra [2007], phase lag of a SDOF system varies over three distinct frequency 
ranges based on the ratio of excitation frequency to the system first-mode fundamental frequency. 
Chopra’s explanation is expanded here to include the SDOFO foundation-level response, including 
foundation flexibility and the influence of pile–soil kinematic interaction—two factors not present 
for a truly SDOF system. When these additional system components are considered, four distinct 
regions of phase-lag behavior are observed as depicted in Figure 5.5 and Figure 5.6: 
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1. At low frequencies (f << f1̃,SDOFO), the direction of base excitation changes slowly, 
hence inertial forces are low and damping is insignificant, so the stiffness of the 
system controls the response. Because insignificant inertial forces develop at the 
SDOFO mass-level, the SDOFO response is in-phase with the ground surface 
response at both the mass- and foundation-level. This is evident as near-zero 
phase-lag in the low-frequency range of Figure 5.5(a). 

2. As the excitation frequency approaches the system fundamental frequency (f ≈ 
f1̃,SDOFO), inertia increases, along with the corresponding displacement, velocity, 
and damping of the SDOFO. The magnitude of the peak SDOFO response at the 
mass level, which occurs at f / f1̃,SDOFO = 1, is dependent primarily on the system 
damping. The large base shear and moment resulting from inertia dominates the 
SDOFO foundation-level response; hence, the response at mass level and 
foundation level are nearly in phase with each other. However, as illustrated in 
Figure 5.5(c) and Figure 5.6(e) and (f), the SDOFO response is approximately 90 
out-of-phase with the ground surface response near f / f1̃,SDOFO = 1, i.e., the peak 
SDOFO response occurs when the ground surface displacement passes through 
zero. This is a fundamental property of resonance of a SDOF system. 

3. At high frequencies (f >> f1̃,SDOFO), the direction of base excitation changes 
rapidly. The inertia of the SDOFO mass now opposes the rapidly-changing 
direction of ground displacement, hence the mass-level response approaches a 
phase lag of 180 (perfectly out-of-phase). As shown in Figure 5.6(j)-(l), this 
means that when the ground surface displaces to the right, the SDOFO mass 
displaces to the left and vice versa. As the SDOFO mass increases, the mass-level 
response approaches zero at high frequencies; hence, the SDOFO response is 
controlled by its mass in this frequency range. The pile displaced shape is 
controlled by the profile of ground displacement rather than the SDOFO response; 
hence, the pile-head motion (i.e., SDOFO foundation-level response) is in phase 
with the ground-surface response, so the phase lag returns to zero at high 
frequencies. The magnitude of the SDOFO foundation-level response is reduced 
from the ground-surface response by two mechanisms: (i) the tendency of the 
SDOFO mass to remain still due to its inertia; and (ii) kinematic pile–soil 
interaction, which reduces the foundation-level response relative to the ground-
surface response even in the absence of inertial forces. 

4. A transition between (2) and (3) occurs when the foundation-level response shifts 
from being dominated by inertia to being controlled primarily by the ground 
displacement. This transition is marked by the peak in the foundation-level 
response phase-lag plot [red line in Figure 5.5(a)] and the response history plot 
and graphics in Figure 5.5(d) and Figure 5.6(g)-(i). The local minimum of the 
complete-system transfer function occurring around 7 Hz in Figure 5.3 occurs 
approximately when the foundation-level response transitions from being out-of-
phase with the ground surface response (phase lag > 90) to in-phase (phase lag < 
90). The transfer function ordinate Hu may then increase slightly until kinematic 
pile–soil interaction becomes significant. This occurs between about 7 and 10 Hz 
in Figure 5.3. 
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Figure 5.5 (a) Phase angle frequency-response curves for SDOFO–pile–soil system 
(inset) and (b)-(e) response history of system components at different 
frequencies of harmonic free-field excitation. 
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Figure 5.6 Response of SDOFO-pile–soil system to harmonic free-field excitation. 

Several other issues can be investigated with the modeling framework presented above. A 
select few will be discussed in the following sections, although this is not meant to be an exhaustive 
treatment of the combination of kinematic and inertia SSI. 
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5.1.2 Effects of SDOFO Properties 

In the familiar context of a response spectrum, a SDOFO is defined solely by its fundamental 
frequency (or period). When representing an actual structure as a SDOFO, however, the height, 
mass, and stiffness of the system—not just the fundamental frequency—also affect its seismic 
response. This is because a change to any of these properties will affect the inertial base shear and 
moment imposed on the foundation, in-turn altering the overall seismic response. To illustrate 
these effects, the complete system with the “baseline” properties given in §5.1.1 was re-analyzed 
with the following modifications: 

 mSDOFO varied by a factor of three from the original 10 Mg to 3.33 and 30 Mg 

 HSDOFO varied by a factor of three from the original 5 m to 1.67 and 15 m. 

 Free-head pile boundary condition considered in addition to fixed head. 

The fixed-base fundamental frequency of the SDOFO f1,SDOFO was held constant at 7 Hz by 
changing EISDOFO. The transfer function computed from the results of these simulations are plotted 
in Figure 5.7, demonstrating that: 

 The flexible-base fundamental frequency of the system f1̃,SDOFO is decreased 
when the mass or height are increased, and is always less than the fixed-base 
f1,SDOFO. 

 The amount of amplification near f1̃,SDOFO and de-amplification at f > f1̃,SDOFO is 
also altered when the mass and height are changed, 

 The trends of increasing versus decreasing the amount of amplification near 
f1̃,SDOFO relative to the baseline properties as a result of changes in mass are 
opposite for the free- and fixed-head-pile systems, and  

 The effect of changes in height is negligible for the fixed-head pile system over 
the range of properties considered for this example. 

The different behavior of the free- versus fixed-head-pile systems occurs because the 
inertial base shear and moment result in greater rotations and displacements of the free-head pile 
than for the fixed-head pile. 

The effect of SDOFO properties on the combined inertial-kinematic transfer function is 
highlighted here simply for the purpose of demonstrating that accurate mass, height, and stiffness 
must be specified for a meaningful comparison to be made between an empirical transfer function 
and a simplified model. Unfortunately, adequate information to model an instrumented structure 
as a SDOFO is not always available, even when recordings of the structure and ground motions 
are available. Likewise for forward-design scenarios, it is important to accurately specify more 
than just the fundamental frequency of the structure for consideration of combined kinematic-
inertial SSI effects. 
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Figure 5.7 Transfer functions computed for variable SDOFO properties. Note fixed-
base fundamental frequency f1,SDOFO = 7 Hz for all cases. 
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5.1.3 Effect of Pile-Soil Kinematic Interaction Corner Frequency versus SDOFO 
Fundamental Frequency 

In the preceding examples, the corner frequency fc of the purely kinematic pile–soil interaction 
transfer functions have always been greater than f1̃,SDOFO of the SDOFO–pile–soil system. (Recall 
that the corner frequency of the kinematic pile–soil interaction transfer function is the frequency 
beyond which significant de-amplification of the FFM occurs, e.g. approximately 7 Hz in Figure 
5.3). This means that over the range where amplification occurs for the complete-system transfer 
function due to inertial resonance (e.g., approximately 4–7 Hz in Figure 5.3), kinematic SSI is 
negligible. This section investigates briefly the result of having fc be approximately equal-to or 
less-than f1̃,SDOFO since this is a possibility for flexible structures supported on stiff piles in soft 
soil. 

A series of dynamic simulations similar to those described in §5.1.1 were performed, 
except that f1,SDOFO was varied from 4 to 19 Hz while fc remained constant at about 7 Hz. HSDOFO 
= 5 m and mSDOFO = 10 Mg were held constant, and EISDOFO was adjusted according to Equation 
(5.1) to yield the desired f1,SDOFO. In other words, the only system component that was changed in 
order to vary f1,SDOFO is the column stiffness. Rayleigh damping coefficients were adjusted to 
achieve 5% damping at f1̃,SDOFO and f2̃,SDOFO. 

The results shown in Figure 5.8 demonstrate that the shape of the transfer function stays 
approximately the same as f1,SDOFO is varied relative to fc; only the magnitude of the amplification 
near f1̃,SDOFO and de-amplification at f > f1̃,SDOFO change. For the example systems shown in the 
figure, the magnitude of these two mechanisms both increase as f1,SDOFO increases, but this is not 
solely a function of f1,SDOFO relative to fc—inertial SSI increases as f1,SDOFO increases because the 
higher acceleration of the excitation results in greater inertial force, in turn resulting in greater 
peak amplification at resonance. (Recall that for the constant-amplitude input displacement used 
for the analysis, as frequency is increased, velocity and acceleration increase.) 

The influence of kinematic SSI on the results is primarily on the amount of de-
amplification at f > f1̃,SDOFO. For systems that have f1̃,SDOFO < fc, kinematic SSI is the primary 
mechanism controlling the transfer function at f > fc. For example, the de-amplification at 
frequencies greater than about 7 Hz for the f1,SDOFO = 4 Hz transfer function is due almost entirely 
to kinematic SSI, whereas for the higher f1,SDOFO transfer functions, inertial SSI still plays a 
significant role at f > fc. Hence, the following statement can be made: if f1̃,SDOFO < fc, kinematic 
pile–soil interaction is the dominant mechanism causing reduction (or lack thereof) of the FM 
relative to the FFM at frequencies greater than f1̃,SDOFO; if f1̃,SDOFO > fc, both inertial and kinematic 
SSI influence the complete-system transfer function at frequencies greater than f1̃,SDOFO. 
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Figure 5.8 Effect of varying fixed-base fundamental frequency of SDOFO–pile–soil 
system relative to kinematic pile–soil interaction transfer function corner 
frequency. 

5.1.4 Effect of Pile–Soil interaction Nonlinearity 

The results presented in Chapter 4 show that kinematic pile–soil interaction is strongly dependent 
on soil nonlinearity. This issue is significant because the principal of superposition produces an 
exact result only for linear-elastic systems, and the substructure methods relies on superposition 
to combine inertial and kinematic effects. In this section the error introduced to the substructure 
method as a result of neglecting nonlinear pile–soil interaction is examined. While not shown here, 
it should also be recognized that nonlinearity in other system components, such as free-field site 
response and nonlinear structural behavior, further violate the principal of superposition. 

The SDOFO–pile–soil system with the properties given in §5.1.1 was again analyzed, 
except that the linear elastic soil springs and dashpots were replaced with nonlinear p-y springs for 
the direct analysis. For the substructure analysis, the pile was replaced by a single macro-element 
representing foundation impedance with either a nonlinear or equivalent-linear impedance spring. 
For the analyses previously presented in §5.1.1 through §5.1.3, the p-y modulus Ke was computed 
assuming a 20% modulus reduction to approximately account for nonlinearity. For the analyses in 
this section computed using nonlinear p-y springs, the initial elastic behavior was defined based 
on the full elastic stiffness (i.e., Ke = 46 MPa corresponding to VS = 100 m/sec), not a reduced 
value, since the PySimple3 material inherently captures the nonlinear behavior at larger 
displacement. 
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Figure 5.9 presents results generated using the same sine-sweep motion of constant 0.1-m 
amplitude over a frequency range of 0.1 to 25 Hz. For this case, the substructure analysis 
performed with a nonlinear foundation impedance spring closely matches the direct analysis 
results, with only a slight over-prediction of the peak response at resonance due to a minor 
mismatch in damping between the two systems. 

Formulation of the nonlinear impedance spring is depicted in Figure 5.10. To begin, a 
pushover analysis of a model of the pile and soil was performed. Because nonlinear p-y springs 
were used, the pile-head versus lateral deformation relationship is nonlinear. A single PySimple3 
element was then formulated to approximately match the pushover curve as shown in the figure. 
A close match can easily be achieved given the flexible user control over the PySimple3 shape. 
Besides faithfully capturing the nonlinear pushover behavior of the pile–soil system, using a 
nonlinear impedance spring has an added benefit: the material and radiation damping that occur 
due to kinematic interaction are inherently captured by the pushover response (as long as the 
pushover analysis is performed at a velocity similar to the excitation velocity near the system 
f1̃,SDOFO). Hence by closely fitting the pushover curve with the nonlinear impedance spring, the 
effects of these damping mechanisms are included in the complete system response during the 
substructure analysis. 

Also shown in Figure 5.10 is an equivalent-linear impedance spring with secant stiffness 
defined by passing through the origin and the peak displacement of approximately 0.1 m. The 
magnitude of the pushover displacement to which the impedance springs were matched was chosen 
based on the outcome of the direct analysis, which showed that the peak pile-head relative 
displacement was about 0.1 m. Since the nonlinear impedance spring matches the pushover curve 
over both small and large deformation regions, the largest displacement to which it is defined is 
not a critical factor as long as it lies within the range of the subsequent analyses. On the contrary, 
the modulus of the equivalent-linear impedance spring is directly dependent on the displacement 
at which it is defined, complicating the fitting process. 

Furthermore, foundation damping must be modeled separately when using an equivalent-
linear impedance spring. To some degree, foundation damping is inherently captured by fitting the 
equivalent-linear spring to the nonlinear pushover curve since the nonlinear soil response implies 
non-zero hysteretic damping under cyclic loading, but it is difficult to quantify the extent to which 
this is the case. For these analyses, it was found that use of a dashpot in parallel to the impedance 
spring resulted in spurious behavior at frequencies other than the frequency for which the dashpot 
coefficient was defined. Instead, foundation damping was imposed as Rayleigh damping 
corresponding to β = 0.05 at 25 Hz and β = 0.22 at 3.9 Hz ≈ f1̃,SDOFO. Foundation damping at f1̃,SDOFO 
was computed using the following equations from NIST [2012]: 
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In Equations (5.4) through (5.6) the damping subscripts p, s, and r stand for pile and soil material 
damping and radiation damping, respectively; α is the static stiffness modifier for pile lateral 
translation, δ is the Winkler coefficient taken as 1.0 for fixed-head piles, and 0

pa  is dimensionless 

frequency defined at f1̃,SDOFO using the classical definition / SB V . Soil and pile material damping 
were approximated as 0.05. 

When the equivalent-linear impedance spring is used with the substructure method, the 
computed system response is in reasonable agreement with the nonlinear impedance spring and 
direct analysis results for this example; see Figure 5.9. Given that the current state-of-practice for 
deep foundation lateral loading design is to use nonlinear p-y curves, the tools necessary for 
creating a nonlinear force versus displacement head pushover curve to which an equivalent-linear 
stiffness can be matched are already available and should be used. The equivalent-linear 
impedance spring result appears to have over-estimated f1̃,SDOFO by about 10% and under-estimated 
damping, causing an over-prediction of the peak FM/FFM ordinate by about 15%. Also shown for 
reference is the result computed using linear properties corresponding to the initial elastic soil 
properties, i.e., with no modulus reduction. This approach clearly produces an erroneous result, 
highlighting the importance—and difficulty—of selecting appropriate equivalent-linear 
properties. The equivalent-linear properties could be further refined to provide a closer match to 
the nonlinear system behavior in a design setting. 

 

Figure 5.9 Effect of nonlinear pile–soil interaction on SDOFO–pile–soil system 
transfer functions for homogeneous soil subjected to sine-sweep free-
field excitation. 
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Figure 5.10 Formulation of nonlinear and equivalent-linear impedance spring macro-
elements to replace pile in substructure method of analysis. 

To assess the impact of pile–soil interaction nonlinearity for more realistic conditions, the 
analyses were repeated for the same SDOFO-pile system embedded in the soft soil Site 1 and 
subjected to the 1971 San Fernando, California, earthquake Lake Hughes #4 recording (known as 
ground motion 1 for this study; refer to §3.6 and §3.7 for site and motion descriptions). The mass 
of the SDOFO was varied from 10 Mg to 25 Mg to produce different amounts of period 
lengthening, while the remaining system properties were held constant. Foundation impedance 
springs were formulated in the same manner depicted in Figure 5.10. The results are shown in 
Figure 5.11. 

For both the mSDOFO = 10 Mg and 25 Mg cases, the substructure analysis using a nonlinear 
foundation impedance spring gives a close match to the direct analysis result in terms of matching 
the correct f1̃,SDOFO and peak transfer function ordinates. However, the accuracy of the results does 
appear to decrease slightly with increasing period lengthening. The results using the equivalent-
linear impedance spring formulated from the nonlinear pushover curve also provide a reasonably 
close match to the direct analysis results. However, formulating these equivalent-linear springs 
and capturing the foundation damping required knowing the nonlinear behavior of the system in 
advance, which would not be known a priori if the equivalent-linear method was used as a 
standalone approach. 

Also shown in Figure 5.11 are substructure analysis results computed with equivalent-
linear impedance springs based on the modulus reduction values recommended in NIST [2012] 
Table 2-1 for SSI analysis. Based on a short-period spectral acceleration SDS ≈ 0.2g for the ground 
motions used, the modulus reduction factor (G/Gmax) for Site Class E (VS30 < 180 m/sec) is given 
as 0.60. Since the p-y modulus is linearly related to soil-shear modulus for the formulation used 
herein, these factors can be applied directly to Ke to approximately capture nonlinearity due to 
ground response for equivalent-linear pile–soil interaction modeling. 
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Figure 5.11 Effect of nonlinear pile–soil interaction on SDOFO–pile–soil system 
transfer functions for Site 1 subjected to 1971 San Fernando, California, 
earthquake Lake Hughes #4 recording. 
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The results show that as the amount of period lengthening increases, the accuracy of the 
transfer functions computed with the NIST reduction factors decreases. For the mSDOFO = 10 Mg 
system (f1̃,SDOFO/ f1,SDOFO ≈ 0.75), the peak transfer function ordinate is under-predicted by about 
10%; for the mSDOFO = 25 Mg system (f1̃,SDOFO/ f1,SDOFO ≈ 0.55), the peak transfer function ordinate 
is under-predicted by about 20% and period lengthening is significantly underestimated. One of 
the reasons for this trend is that the NIST factors for estimating modulus reduction only depend 
on the magnitude of free-field excitation without consideration of the system properties such as 
mass, stiffness, and foundation flexibility because they are only intended to capture modulus 
reduction due to site response and not SSI. Since the amount of pile–soil interaction nonlinearity 
depends on all of these properties, a proxy for quantifying nonlinearity based only on ground-
motion intensity is unlikely to provide a realistic estimate over a wide range of project conditions. 

The period-lengthening ratio (or equivalently, the frequency-shortening ratio (f1̃,SDOFO/ 
f1,SDOFO) could therefore by a more useful metric for quantifying whether or not the error introduced 
to the substructure method of analysis by neglecting pile–soil interaction nonlinearity is 
significant. The results presented above indicate that f1̃,SDOFO/ f1,SDOFO below about 0.75 could 
introduce significant errors to the substructure method, but a more comprehensive parametric study 
would be useful for refining this criterion. To make an accurate estimate of f1̃,SDOFO/ f1,SDOFO, pile–
soil interaction nonlinearity should be considered. Even for superstructure dynamic analysis using 
equivalent-linear foundation impedance springs, nonlinear pile–soil interaction analyses should be 
conducted to define the equivalent linear impedance properties. 
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6 Example Applications of Transfer Function 
and Spectral Ratio Prediction Models 

In this chapter, the generalized kinematic pile–soil interaction transfer function and spectral ratio 
models developed in Chapter 4 will be compared to previously recorded empirical transfer 
functions and implemented for a bridge design scenario. This requires consideration of the effects 
of combined kinematic and inertia soil–structure interaction (SSI) discussed in Chapter 5. 

6.1 EMPIRICAL CASE STUDIES 

The empirical transfer functions for pile-supported buildings reported by Kim and Stewart [2003] 
and Givens et al. [2012] provide an opportunity to apply the predictive models developed for this 
study and investigate issues of combined kinematic and inertial SSI for real systems. The empirical 
transfer functions and attempts to replicate them in previous studies were originally discussed in 
§1.3.6.1. These case studies will be revisited in the following sections. 

6.1.1 Sendai, Japan, Site after Givens et al. [2012] 

This site consists of an instrumented four-story reinforced-concrete building and adjacent free-
field accelerographs located on the Tohoku Institute of Technology campus in Sendai, Japan. 
Multiple strong earthquakes have been recorded at the site. Transfer functions computed from 
these earthquakes show a significant reduction of the foundation motion (FM) relative to the free-
field motion (FFM) over a frequency bandwidth of approximately 2.5 to 8 Hz. As reported by 
Givens et al. [2012], the reductions were observed to be approximately equal (Hu ≈ 0.5) for the M 
7.1 2003 Off-Miyagi and M 9.0 2011 Tohoku earthquakes, despite significantly different recorded 
PGAs of 0.23g and 0.81g for the two earthquakes, respectively. This behavior is inconsistent with 
the notion that kinematic pile–soil interaction should result in lower values of Hu for stronger 
shaking due to greater modulus reduction of the soil. The original researchers hypothesized that 
the misfit between existing kinematic transfer function models and the empirical data could be due 
to ground-motion incoherence, and that perhaps nonlinear effects are not significant for kinematic 
interaction. 

Further details regarding the site are presented in Figure 6.1 and Figure 6.2 based on 
information presented by Mikami et al. [2006], Givens et al. [2012], and from discussions with 
Professor Atsushi Mikami [personal communication, 2015]. The building’s lateral-force resisting 
system consists of shear walls in the transverse (narrow) direction and concrete moment frames in 
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the longitudinal direction. A total of 24 reinforced-concrete B = 0.75-m, L = 8-m piles 
interconnected by stiff grade beams support the building. The piles pass through 6 m of soft to 
medium-stiff surficial soil (VS ≈ 130 to 200 m/sec) and are socketed 2 m into soft mudstone (VS ≈ 
320 m/sec). Assuming good construction practices were followed, the piles likely exhibit 
significant base resistance given the diameter and stiffness of material at the base elevation. 

 

 

Figure 6.1 Tohoku Institute of Technology building layout after Givens et al. [2012] 
and idealized single-degree-of-freedom oscillator representation. 

 

 

Figure 6.2 Subsurface information for Sendai site after Givens et al. [2012]. 
Subsurface data originally reported by OYO Corporation [2007]. 
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The substructure modeling approach presented in the previous chapter has been applied to 
this case study for the 2011 Tohoku earthquake recording originally reported by Givens et al. 
[2012]. The modeling steps are summarized as follows: 

 The generalized transfer function model for fixed-head piles presented in §4.4.3 
was used to predict a kinematic pile–soil interaction transfer function relating 
foundation-input motion (FIM) to FFM in the absence of superstructure inertia 
(i.e., FIM/FFM transfer function). This kinematic model considers only pile 
effects and not base slab averaging. 

 The recorded FFM was convolved with the predicted kinematic FIM/FFM 
transfer function to produce a FIM for subsequent dynamic analysis. 

 A beam-on-dynamic-nonlinear-Winkler-foundation (BDNWF) model of the 
pile embedded in the subsurface profile shown in Figure 6.2 was constructed in 
OpenSees. Nonlinear pile–soil interaction was modeled using p-y curves 
defined by the PySimple3 material. A “pushover test” of this pile was simulated 
to produce a nonlinear pushover curve (e.g., see Figure 5.10) relating lateral 
force imposed at the pile head to lateral displacement. 

 The structure was idealized as a pile-supported SDOFO with height 9.4 m and 
mass 75 Mg. The mass is based on four 38.5 m  28.5 m above-grade floors 
supporting an assumed uniform dead load of 5 kPa, evenly distributed to the 24 
piles. The height corresponds to the centroid of the above-grade floors as shown 
in Figure 6.1. The SDOFO-pile model represents a single pile and its tributary 
mass, but the response of this system is assumed to approximately represent the 
entire structure. 

 The flexible-based period of the building is reported by Mikami et al. [2006] as 
0.43 s (f1̃,SDOFO = 2.35 Hz) based on system identification techniques. The 
SDOFO with mass = 75 Mg and height = 9.4 m described above was added to 
the OpenSees pile-soil model. After specifying an initial trial value for fixed-
base period f1,SDOFO, from which SDOFO column stiffness was computed using 
Equations (5.1) and (5.2), the eigen command was used to compute f1̃,SDOFO of 
the combined SDOFO-pile–soil system. Using 2.35 Hz as the target f1̃,SDOFO, 
the fixed-base frequency was adjusted until a good match was achieved using 
f1,SDOFO = 2.45 Hz (0.41 sec). This finding suggests that period lengthening was 
relatively insignificant, which is reasonable given the relatively flexible 
structure and stiff subsurface. Note that this calibration step would not have 
been possible if only the building period were known without information about 
its mass and stiffness. 

 The pile and p-y springs in the OpenSees model were replaced with a single 
macroelement impedance spring calibrated to fit the nonlinear pushover curve. 
This nonlinear spring was modelled using the PySimple3 material. Rayleigh 
damping was specified as 10 and 5% at frequencies of 2.35 and 25 Hz, 
respectively. 
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 A dynamic analysis was performed by imposing the FIM on the free end of the 
impedance spring macroelement to excite the SDOFO-macroelement system 
[e.g., see Figure 5.1(c)]. 

 The foundation motion (FM) recorded at the base of the SDOFO column during 
this analysis was then used to compute a FM/FFM transfer function for 
comparison to the empirical transfer function as shown in Figure 6.3. 

The kinematic pile–soil interaction FIM/FFM transfer function (purple line in Figure 6.3) 
predicts negligible reduction of the FFM over the frequency range where the empirical Hu ≈ 0.5. 
On the other hand, the combined SDOFO-pile prediction computed using the substructure method 
(orange triangles) matches the empirical transfer function very well over this frequency range, 
including prediction of the sharp drop-off occurring just beyond f1̃,SDOFO. It can be concluded from 
these results that the large reduction in the foundation-level motion relative to the free-field motion 
between 2.5 and 8 Hz is due primarily to the influence of inertial interaction and not the inability 
of the kinematic pile–soil interaction model to adequately capture the underlying mechanisms. 

 

Figure 6.3 Model predictions versus empirical data for Tohoku Institute of 
Technology building during 2011 Tohoku earthquake after Givens et al. 
[2012]. 
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6.1.2 Lancaster, California, Site after Kim and Stewart [2003]. 

This site consists of a five-story pile-supported hospital building in Lancaster, California. During 
the 1994 M 6.7 Northridge earthquake, a free-field sensor located 360 ft (110 m) away from the 
building recorded a PGA of 0.071g. The Lancaster site is included in a database of 57 structure 
and adjacent free-field recordings compiled by Stewart and Stewart [1997] for empirical 
evaluation of SSI. Kim and Stewart [2003] reanalyzed 16 of the buildings that were pile-supported 
and found that the Fan et al. [1991] elastic model generally under-predicted reductions in 
foundation-level motions (FM) relative to FFM. In many of these cases, including the Lancaster 
site, a base–slab averaging model by Veletsos et al. [1997] modified with an empirically adjusted 
factor to approximate ground motion incoherence, foundation flexibility, and wave inclination 
effects was found to provide a better fit to the measured transfer functions. The authors concluded 
that interaction between shallowly embedded or surface foundation elements dominated the 
foundation motion, and that piles played an insignificant role. Given the relatively stiff soil 
(estimated VS ≈ 210 to 370 m/sec) and flexible B = 20-in. (51 cm) piles at the Lancaster site, this 
hypothesis is consistent with the findings of the present study. 

Re-evaluation of the Lancaster site therefore had two goals: (i) to compare the kinematic 
model from this study to the measured transfer function, for which a poor match was expected; 
and (ii) determine if including inertial SSI effects provides a better match to the measured transfer 
function as was the case for the Sendai site. 

Further details of the building and site are presented in Figure 6.4 and Figure 6.5 based on 
original documentation presented in Stewart [1996] and Stewart and Stewart [1997], with 
additional information from Stewart et al. [1999], Kim [2001], and Kim and Stewart [2003]. The 
building was designed circa-1986 with steel moment frames serving as the lateral force resisting 
system in both building directions. Steel columns are supported by B = 20-in. (51 cm) drilled shafts 
ranging in length between 15 and 50 ft (4.6–15.2 m). Although not stated explicitly in the original 
documentation, based on the building layout shown in Figure 6.4 and typical design practices it 
assumed for the purpose of this analysis that each column is supported directly by an individual 
pile. The first floor of the building is not embedded below the ground surface. Fixed-base and 
flexible-base first-mode periods are reported by Stewart et al [1999] as 0.69 and 0.73 sec, 
respectively, corresponding to a relatively small period-lengthening value of 1.06. These values 
and the transfer functions computed below correspond to the building transverse direction, which 
is roughly east-west (see Figure 6.4). Subsurface conditions consist of interbedded medium-dense 
to dense silty sand and medium-stiff to very stiff silty clay. The unit weights and estimated shear-
wave velocity profile shown in Figure 6.5 were used to define the subsurface profile for the transfer 
functions computed for the present study. 

The procedures for computing the purely kinematic FIM/FFM transfer function and 
combined SDOFO-pile FM/FFM transfer function are the same as for the Sendai site and so will 
not be repeated here. The exception is that the system identification work done by Stewart [1996] 
provides some parameters for the Lancaster site that had to be estimated for evaluating the Sendai 
case. These are the equivalent-SDOFO height (40 ft) and fixed-base period (0.69 sec). As for the 
Sendai site, the building is modelled as a SDOFO supported by a single pile, where the mass of 
the SDOFO represents the estimated tributary mass supported by a single pile in the real structure. 
Using the same assumed uniform dead load of 5 kPa distributed over the floor plans shown in 
Figure 6.4, this resulted in an equivalent SDOFO mass of 145 Mg. The 50-ft pile length is used 
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for the model. The measured transfer function ordinates with high coherence do not indicates that 
strong kinematic amplification occurred, which would be indicative of a free-head pile condition, 
so the pile heads are assumed to be fixed. Although not shown on the building drawings or 
described in the original documentation, it is assumed that grade beams interconnect the piles and 
provide some resistance against rotation. The impedance spring macro-element used for the 
substructure analysis is defined to a stiffness of 0.01 m, which is in the range of the maximum 
differential displacement between the recorded FM and FFM. 

 

Figure 6.4 Lancaster, California, hospital building layout and idealized single-
degree-of-freedom oscillator representation after Stewart and Stewart 
[1997]. 
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Figure 6.5 Subsurface conditions at Lancaster site after Stewart and Stewart [1997]. 

The kinematic FIM/FFM transfer function predicted using the models presented in §4.4.3 
is shown in Figure 6.6. Note that significant reduction of the FIM relative to the FFM is predicted 
only at frequencies above about 30 Hz, which is well beyond the range of interest for this case and 
for most buildings in general. The FIM/FFM transfer function is also shown versus dimensionless 
frequency compared to the range of results computed for the parametric analysis done for this 
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study (e.g., see Figure 4.13). This comparison shows that the predicted transfer function falls 
within the range of the study results. 

Comparison between the combined SDOFO-pile FM/FFM transfer function and recorded 
FM/FFM transfer function is shown in Figure 6.7. Note that a log-frequency scale is used to 
emphasize low frequencies near the building fundamental frequency. The computed transfer 
function (orange triangles) provides a good match to the recorded transfer function (green dots) up 
to the peak occurring around approximately 1.2–1.3 Hz, which occurs because of inertial 
resonance near the building’s flexible first-mode period. Immediately beyond this frequency, the 
computed transfer function predicts a significant drop-off down to Hu ≈ 0.5, while the recorded 
transfer function only decreases to around Hu ≈ 0.75. 

Recalling Figure 5.5 and Figure 5.6, the local minimum in this region of the transfer 
function marks the transition between the foundation-level response being dominated by inertia to 
being controlled primarily by the ground displacement at higher frequencies. For the Lancaster 
case, over-prediction of the drop-off after f1̃,SDOFO is likely a result of not including the surface–
foundation elements in the SDOFO-pile substructure model. Interaction of surface foundation 
elements through base friction and rocking would decrease foundation-level motions in addition 
to the lateral resistance provided by piles, which in turn would decrease the effect of the foundation 
motion being dominated by inertia of the structure mass. Because the pile-to-soil stiffness contrast 
was relatively low at this site, and the piles are relatively small, base–slab averaging likely provides 
a better explanation for the observed behavior than the pile kinematic model, as concluded by the 
original researchers. Nonetheless, these results again highlight the fact that recorded FM/FFM 
transfer functions inherently contain inertial SSI effects, especially near the fundamental mode 
frequency, and comparison of empirical results to kinematic SSI models is more meaningful if the 
combined inertial-kinematic effects are explicitly considered. 

 

 

Figure 6.6 Predicted kinematic pile–soil interaction transfer function for the 
Lancaster site plotted versus (a) plain frequency and (b) dimensionless 
frequency. 
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Figure 6.7 Model predictions versus empirical data for the Lancaster building during 
1994 Northridge, California, earthquake after Kim and Stewart [2003]. 

6.2 EXAMPLE APPLICATION OF SPECTRAL RATIO PREDICTION MODEL FOR 
PILE-SUPPORTED BRIDGE 

The California Department of Transportation (Caltrans) is currently in the process of replacing a 
bridge at the Highway 101—Linden Avenue overcrossing in Carpinteria, California. Construction 
plans for the replacement bridge, which are available online [Caltrans 2016]7, show that 78-in.-
diameter cast-in-steel-shell (CISS) piles will be used to support the single-bent structure; see 
Figure 6.8 and Figure 6.9. The CISS piles consist of a driven steel-pile shell that is subsequently 
filled with concrete and reinforcing steel, resulting in a stiff foundation element. The first-mode 
natural frequency of the bridge in the longitudinal direction is 0.45 sec [Caltrans, personal 
communication, 2015]. Based on the design response spectrum for free-field conditions shown in 
the plans (see Figure 6.10), the spectral acceleration at this period is approximately 1.34g. 

Using the proposed bridge foundations as an example, the spectral ratio prediction model 
for free-head piles presented in §4.5.3 will be used to modify the free-field acceleration response 
spectrum to account for kinematic pile–soil interaction. 

Subsurface conditions at the bent location generally consist of loose to medium-dense silty 
sand and sandy silt interbedded with soft to medium-stiff lean clay. The CISS piles will extend 
from elevation +18 ft to -58 ft for a total length of 75 ft. A shear-wave velocity profile measured 
using P-S suspension logging is shown in Figure 6.11. Considering the VS profile and based on a 

                                                 
 
7 http://www.dot.ca.gov/hq/esc/oe/project_ads_addenda/05/05-4482U4/plans/ 
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review of the borings and CPT soundings done at the site, the stratigraphy is idealized as consisting 
of a surface layer extending from the ground surface to a depth of 15 m with unit weight 108 pcf 
(17 kN/m3) overlying a denser layer with unit weight 120 pcf (19 kN/m3). Both layers are assumed 
to behave as predominately granular soils. 

 

 

Figure 6.8 Longitudinal elevation view of proposed Linden Street Overcrossing 
replacement (after Caltrans [2016]). 

 

 

Figure 6.9 Transverse elevation view of interior bent for proposed Linden Street 
Overcrossing replacement (after Caltrans [2016]). 
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Figure 6.10 Acceleration response spectrum used for proposed Linden Street 
Overcrossing replacement (after construction plans, Caltrans [2016]). 

 

 

Figure 6.11 Shear-wave velocity profile measured using P-S suspension logging 
(after Caltrans [2016]). 
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The following list summarizes how the parameters needed as inputs for the coefficient 
prediction models were defined based on information obtained from the construction plans and 
other references: 

 The effective flexural rigidity (i.e., considering the reduced moment of inertia 
due to concrete cracking) was estimated from the following expression from 
AASHTO [2009] for concrete-filled steel structural members: 

0.4 c c
eff s s s

s

E A
EI E I I

A

 
   

 
       (6.1) 

in which E, I, and A are the Young’s modulus, moment of inertia, and cross-
sectional area, respectively, and the subscripts c and s denote concrete and 
steel. The steel shell has a wall thickness of 1 in. (25.4 mm) and an assumed 
Young’s modulus of 29,000 ksi (200 GPa). The concrete has a design 
strength of 3.6 ksi and assumed modulus of 3420 ksi (23.6 GPa). EIeff 
computed using these parameters and the appropriate values of I and A in 
the above equation is 28,100 MNꞏm2. This value was also checked with a 
moment-curvature analysis, which showed good agreement. 

 Active length La was computed as 50 ft (15.4 m; about 8 times the pile diameter) 
using the iteration process described in §1.3.3. Based on this length, λLa and 
VS,La were computed as 0.079 ft-1

 (0.26 m-1) and 606 ft/sec (185 m/sec), 
respectively. The λLa calculation was based on EIeff and Ke computed from the 
shear-wave velocities and unit weights given above, an assumed Poisson’s ratio 
of 0.35, and δ = 3.0 (for free-head piles) as described in §2.3. 

 The frequency f0 as defined by Rathje et al. [2004] computed from the design 
acceleration response spectrum is 2.05 Hz. This parameter describes the 
frequency corresponding to the predominant energy of the spectrum as 
discussed in §4.5.2. In order to meet the period spacing criterion established by 
Rathje et al., the spectrum was resampled on a log-evenly spaced period axis. 
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 Time-averaged shear-wave velocity over the full pile length is 656 ft/sec (200 
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 The maximum spectral ordinate is max 1.37
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The last three parameters in the above list are the inputs to the spectral ratio coefficient 
prediction models for free-head piles presented in §4.5.3. Using the coefficients predicted by 
Equations (4.27) through (4.32), the resulting spectral ratio curve defined by the Equation (4.21) 
functional form is presented in Figure 6.12. 
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The predicted spectral ratios in Figure 6.12 were multiplied by the design response 
spectrum to produce the modified spectrum shown in Figure 6.13. The modified spectral 
acceleration at the first mode period of the Linden Avenue Overcrossing (0.45 sec) is 1.34g, which 
is unchanged from the free-field spectrum value. For this example, the first-mode period of the 
bridge lies just beyond the range where kinematic pile–soil interaction is predicted to cause a 
significant modification to the free-field spectrum. 

 

 

Figure 6.12 Predicted spectral ratios for Linden Street Overcrossing. 

 

 

 

Figure 6.13 Kinematic pile–soil interaction effect on acceleration response spectrum. 
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7 Conclusions and Recommendations for 
Engineering Practice 

A comprehensive parametric study of the influence of kinematic pile–soil interaction on 
foundation-input motions (FIM) by means of nonlinear numerical analysis has been presented. The 
analysis approach consisted of performing one-dimensional ground response analysis to define 
free-field motions, which were subsequently imposed on a beam-on-nonlinear-dynamic-Winkler-
foundation model of a pile or pile group. The free-field ground surface motion (FFM) and top-of-
pile “foundation-input motion” (FIM) computed from these results were then used to compute 
transfer functions and spectral ratios for use with the substructure method of seismic analysis. A 
total of 1920 parametric combinations of different pile sizes, soil profiles, and ground motions 
were analyzed. 

Results of the study show significant reductions of the FFM due to kinematic pile–soil 
interaction occur for stiff, large-diameter piles in soft soil, which could result in a favorable 
reduction in design demands for short-period structures. Simulations of a 3  2 pile group subjected 
to incoherent ground motions showed that group effects further reduce the FIM relative to the FFM 
in comparison to an equivalent single pile—but typically by less than 10%— and only over a 
limited frequency range. Still, the simulations performed for this study confirm this trend, and it 
is likely that consideration of ground-motion incoherence over a larger spatial extent, such as the 
footprint of a building supported on a piled-raft foundation, could be more significant. The tools 
for generating incoherent motions based on the work of Ancheta and Stewart [2015] described in 
§3.7.3 could be used for this purpose for future studies. 

The key parameters controlling kinematic pile–soil interaction are: 

 Pile head-fixity condition 

 Pile-to-soil stiffness contrast 

 Variations in soil stiffness over the pile length 

 Nonlinear soil behavior due to pile–soil interaction, which depends on relative pile-
to-soil stiffness contrast, and due to free-field ground response 

 Radiation damping 

 Variable frequency content of the free-field excitation, as opposed to harmonic 
excitation at a single frequency 
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The first three items in the above list have long been recognized from the results of elastic 
studies (e.g., Flores-Berrones and Whitman [1982], Fan et al. [1991], and Anoyatis et al. [2013]). 
The key differences between simplified elastic solutions and the nonlinear results computed for 
the more realistic conditions considered herein are caused by the latter three factors, including 
time-varying coupling and interference of these factors that is not captured when linear 
superposition is assumed. 

The primary motivation for performing this study was to overcome the limitations of 
idealistic assumptions that have been employed in previous studies, such as linear-elastic material 
behavior, drastically simplified stratigraphy, and harmonic oscillations in lieu of real ground 
motions. In order to capture the important influence of more realistic conditions such as material 
nonlinearity, subsurface heterogeneity, and variable frequency-content ground motions, a set of 
models for predicting transfer functions and spectral ratios was developed through statistical 
regression of the results from this parametric study. 

The results presented in Chapter 4 demonstrate that elastic solutions are approximately 
coincident with the average results of this study, but fail to capture the variability that is possible 
when more realistic subsurface conditions and ground motions are used along with explicit 
consideration of nonlinearity. While this suggests that elastic solutions provide a reasonable first-
order approximation of behavior, it also means that they would over-predict the reduction in free-
field ground motion due to kinematic pile–soil interaction roughly half of the time. A method that 
produces an erroneous prediction in the unsafe direction (i.e., an “un-conservative” estimate) half 
the time is generally unacceptable for engineering practice. A robust design approach should 
include measures for predicting the amount of variability that is anticipated due to realistic 
conditions. 

Although a comparison to elastic analytical solutions provides a good means for checking 
that the results of this study fall within reasonable bounds (which has been confirmed), the 
importance of this comparison should not weighted too heavily. Significant effort has been made 
to model realistic conditions for this study, which often represent a significant departure from the 
assumptions used in elastic analytical solutions; hence, it is expected that the results will differ. 
The large amount of variability exhibited by the results of this study should not be viewed as a 
negative outcome, but rather a reflection of the amount of variability that should be anticipated for 
real system behavior. 

The results of the numerical analyses performed for this study are likely skewed slightly in 
the direction of under-predicting kinematic pile–soil interaction, which is to say that the computed 
transfer function ordinates are slightly above what may be anticipated for real behavior. 
Reductions in free-field motions computed in this study thus error slightly on the safe side in a 
design sense. This judgment is based on the effects of assumptions made when defining two of the 
modeling parameters as discussed subsequently: (i) radiation damping and (ii) using a value of δ 
= 3.0 for free-head piles. 

Radiation damping manifests as an increase in stiffness for dynamic p-y curves (see 
§3.4.4). Increases in soil stiffness, which correspond to a decrease in pile-to-soil stiffness contrast, 
result in less kinematic interaction. For example, Figure 4.18 showed that radiation damping 
effectively outweighed the effect of p-y softening due to soil nonlinearity. The models used herein 
to define dashpot coefficients for radiation damping are from elasticity-based solutions that assume 
perfect radiation of stress waves to infinity through homogeneous elastic media. For more realistic 
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heterogeneous subsurface conditions, radiation damping may be a less efficient mechanism of 
energy dissipation than assumed by these models. Some portion of the energy due to stress waves 
generated at the pile–soil interface could be reflected back by other piles, adjacent structures, or 
geomaterial impedance contrasts. Hence, it is likely that the influence of radiation damping is over-
predicted in this study, but because this results in a decrease in kinematic pile–soil interaction, it 
is considered acceptable. Experimental measurements of these effects could provide justification 
for reducing the magnitude of radiation damping employed in future studies. 

It is worth noting that conventional deep foundation design based on static or pseudo-static 
methods does not take damping into consideration. Ignoring damping is usually a reasonable 
assumption for typical design applications in which soil is relied upon to provide resistance to 
loads generated in the superstructure and transmitted to the ground through foundations. For 
example, because ignoring the contribution of radiation damping to dynamic p-y stiffness 
effectively results in a softer curve, estimates of lateral pile displacements due to superstructure 
lateral loads would be expected to exceed the real behavior. Thus a safe design can be developed 
by assuring that the predicted displacements are within tolerable limits. 

For free-head piles, the assumption of zero rotational restraint at the pile head is an 
oversimplification. For a system that can be represented by a SDOF oscillator, such as a sign pole 
supported on a single pile, complete lack of rotational restraint may be a reasonable approximation. 
But for the case of piles supporting a bridge bent, the tendency for the pile head to rotate due to 
free-field kinematic demands would be resisted by other bridge components via the connection 
between the top of the bent and the superstructure. For example, consider rotations in the 
longitudinal direction of the bent foundations shown in Figure 6.8, which would be resisted by the 
bent-to-deck connection and the abutment stiffness. This connection was found to play an 
important role in resisting kinematic lateral spreading demands by Turner et al. [2016]. Likewise 
this factor could play an important role in influencing pile behavior during transient kinematic 
loading and affect the transfer of the foundation input motion to the superstructure. The most 
significant impact of this restraint would be to limit rotations of the pile near the ground surface, 
which should result in a smaller value of Winkler coefficient δ. Recall that δ = 3.0 was used for 
free-head piles to account for the increases shear resistance mobilized in the soil due to pile 
rotation, while δ = 1.0 was used for the fixed-head piles, which undergo less rotation and thus exert 
predominantly compressive stresses in the direction of loading. Hence, the value of δ = 3.0 used 
in this study for free-head piles may result in an overestimate of p-y stiffness and aa corresponding 
underestimate of kinematic interaction for cases where significant restraint against rotation is 
provided by the superstructure, even if restraint is not provided at the ground surface elevation. 

7.1 PREDICTIVE MODELS AND LIMITATIONS 

Models for predicting transfer functions and spectral ratios were presented in §4.4 and §4.5. These 
models represent a means for predicting kinematic pile–soil interaction with consideration of 
nonlinear behavior, realistic subsurface condition, and real ground-motion characteristics without 
the need to perform dynamic analysis of a pile–soil system. Input parameters for the predictive 
models are computed from the type of information typically known for real projects, and are 
consistent with the type of seismic design that will be performed. For example, the spectral ratio 
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prediction equations use terms defined from the free-field response spectrum, while the transfer 
function prediction equations use terms defined from a free-field acceleration time series. 

For design applications, a reasonable first-order approximation of pile-group behavior 
could be estimated by reducing transfer functions predicted using the single-pile prediction models 
by an additional 5% at frequencies beyond the corner frequency. Because of the idiosyncratic 
nature of the group results, for critical projects, modeling of the type used for this study would be 
more appropriate than this rough approximation. Alternatively, group effects could be ignored due 
to their relatively insignificant contribution to kinematic pile–soil interaction. 

Caution should be exercised when applying the transfer function and spectral ratio 
prediction models to conditions falling outside the bounds considered in this study. In particular, 
the kinematic pile–soil interaction behavior predicted by the models may differ significantly from 
actual behavior for: 

 Sites with a strong ground response effect caused by an abrupt impedance 
contrast occurring over the length of the pile or a stiff layer overlaying a 
significantly soft layer. 

 Sites with time-averaged shear-wave velocity over the length of the pile (VS,L) 
significantly below 100 m/sec, which could result in soil nonlinearity during 
site response and due to pile–soil interaction that is beyond the amount of 
nonlinearity captured in this study. 

 Cases of ground failure such as liquefaction, significant cyclic softening of 
cohesive soils, or permanent ground displacements. 

For these cases, the nonlinear modeling approach used to generate the results for this study 
would be more appropriate than applying the generalized transfer function or spectral ratio 
predictions models. 

7.2 REINTERPRETATION OF EMPIRICAL CASE STUDIES 

Empirical transfer functions computed from pile-supported structures instrumented at the 
foundation level and adjacent free-field recordings were reported by Kim and Stewart [2003], 
Mikami et al. [2006], and Givens et al. [2012]. These studies found that elastic kinematic pile–soil 
interaction transfer function models (e.g., Fan et al. [1991]) did not provide a good match to 
empirical observations, while in some cases, base–slab averaging models considering ground-
motion incoherence provided a better match (e.g., see Kim and Stewart [2003]). Based on these 
findings, the researchers posed questions as to whether consideration of ground-motion 
incoherence in combination with an improved kinematic interaction model would provide a better 
match to the empirical observations. 

As shown in §6.1, the trends exhibited by the empirical transfer functions are dominated 
by inertial interaction. Simulations using the substructure modeling approach that included a 
SFOFO to represent the structure provided a close match to the observed behavior near the first-
mode period of the system. The improved kinematic transfer function model developed herein 
produced a predicted kinematic transfer function that was not significantly different from previous 
kinematic models, suggesting that the ability or lack thereof to accurately capture kinematic 
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interaction was not critical for interpreting these cases; it was more important to consider the 
combination of inertial and kinematic effects. The original researchers recognized that inertial 
effects are present in the recorded foundation-level motions; therefore, they focused their efforts 
on interpreting kinematic effects at frequencies away from the fundamental frequency of the 
structures. Combined kinematic-inertial analysis methods or closed-form analytical methods give 
the opportunity to study both effects simultaneously, which can be particularly useful when 
evaluating case studies. 

Further issues related to the combined effects of inertial and kinematic interaction were 
explored in Chapter 5. These findings, along with the lessons learned from revisiting the case 
studies, highlight the fact that when superstructure inertia is present, the foundation motion (FM) 
differs from the FIM corresponding to a pile that does not support a structure. To compute a 
FM/FFM transfer function for comparison to empirical transfer functions requires performing a 
dynamic analysis of a structural model (e.g., a SDOF oscillator) subjected to the FIM, e.g., using 
the substructure method. This requires knowing enough information to form a reasonably accurate 
structural model beyond just knowing the structure’s period. 

7.3 FUTURE RESEARCH NEEDS 

In addition to the transfer function and spectral ratio models presented herein, the analytical 
framework that is used to generate the results can be used to investigate further complexities. 
Likewise, future improvements to numerical modeling methods such as improved p-y curves can 
be incorporated. 

The work performed for this study made it apparent that the following factors are important 
research topics in the field of pile dynamics that need further exploration: 

 P-y-θ springs that explicitly consider pile rotation (applies to conventional static 
loading as well). 

 Better quantification of δ through theoretical and rigorous numerical modeling 
approaches as well as experimental measurements. 

 Better quantification of the p-y curve’s ultimate resistance for sand based on 
rigorous theory and validated with experiments and rigorous three-dimensional 
numerical studies. 

 Group analyses considering spatially-variable (incoherent) ground motions 
over the footprint of a typical building. Whereas group effects were relatively 
minor for the pile group layout considered here, which represents a typical 
bridge bent substructure, the larger footprint of a building could result in a 
greater group-averaging effect and further kinematic reduction of free-field 
motions. 

 The analyses performed here decoupled free-field ground response from pile–
soil interaction for computational efficiency. In a real system, because soil 
nonlinear behavior due to these two effects occurs simultaneously, it is difficult 
to predict their combined effects a priori without a coupled simulation. A 
limited number of couple numerical analyses and/or experimental data 
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specifically targeted at studying the combined effects of nonlinearity due to 
ground response and kinematic pile–soil interaction would be helpful for 
validating the results of this study. 

 Experimental measurements of kinematic pile–soil interaction; especially 
measurements of radiation damping. 

 Thorough recommendations on the combination of inertial and kinematic soil–
structure interaction effects, especially as affected by system nonlinearity. 
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APPENDIX A SITE PROFILES FOR KINEMATIC 
PILE–SOIL INTERACTION 
ANALYSIS 

A.1 INTRODUCTION 

Stratigraphy and soil properties for the six sites used for baseline pile kinematic soil–structure 
interaction analyses are presented below. Each of the six sites is based on CPT data, including 
seismic shear-wave velocity measurements obtained from the United States Geological Survey’s 
(USGS) CPT database website9. Note that several of the VS30 values presented on the USGS 
website are incorrect based on the data provided; the correct values are given in the site 
descriptions below. Soil properties presented in Appendix A were interpreted from CPT data in a 
manner consistent with routine practice following the methods of Mayne et al. [2009] and 
Robertson [2012] unless otherwise noted. 

The stratigraphy has been slightly modified from conditions encountered during CPT as 
explained below in order to avoid significant impedance contrasts that would result in a strong site 
response effect. Analyses were also performed with these impedance contrasts left in the profiles 
to evaluate their influence on the pile kinematic response. Below the maximum depth of the CPT 
explorations, the profiles were extended such that they exceeded the maximum pile depth 
considered for the analyses (L = 60 m) and reached a shear-wave velocity of 760 m/sec to be 
consistent with the input motions. The soil properties of these additional layers were computed 
based on stiffness versus depth scaling relationships as described in the main text. 

The following sections briefly summarize the geologic setting and stratigraphy of each site. 

A.2 SITE 1 

Site 1 is based on USGS CPT-ALC014, located on Alameda Island near the Alameda entrance to 
the Posey Tube tunnel that connects Alameda to Oakland, California. The original profile has been 
modified by removing the stiff layer at a depth of 22–23 m so that there is a relatively smooth 
increase in stiffness with depth. Layer properties of the idealized soil profile are presented the table 
below. Groundwater was estimated at a depth of 1.2 m below the surface during the CPT but is 

                                                 
 
9 http://earthquake.usgs.gov/research/cpt/  
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considered to be at the ground surface for the idealized profile used for analyses.The VS30 of the 
idealized profile presented below is 111 m/sec. The VS30 computed using the actual data is 123 
m/sec. 
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Table A.1 Site 1 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

VS  OCR K0 
Shear 

strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 
1 clay 0 2 16.5 90 N/A 1.5 0.54 12 15 
2 clay 2 2 16.5 90 N/A 1.4 0.53 12 15 
3 clay 4 2 16.5 95 N/A 1.3 0.52 15 15 
4 clay 6 2 16.5 95 N/A 1.2 0.50 18 15 
5 clay 8 2 16.5 100 N/A 1.1 0.49 20 15 
6 clay 10 2 16.5 100 N/A 1.0 0.47 22 15 
7 clay 12 2 16.5 105 N/A 1.0 0.47 25 15 
8 clay 14 2 17 110 N/A 1.0 0.47 28 15 
9 clay 16 2 17 115 N/A 1.0 0.47 32 15 

10 clay 18 2 17 120 N/A 1.0 0.47 35 15 
11 clay 20 2 17 125 N/A 1.0 0.47 39 15 
12 clay 22 2 17.5 130 N/A 1.0 0.47 42 15 
13 clay 24 2 17.5 140 N/A 1.0 0.47 46 15 
14 clay 26 2 17.5 145 N/A 1.0 0.47 50 15 
15 clay 28 2 17.5 160 N/A 1.0 0.47 53 15 
16 clay 30 2 18 200 N/A 1.0 0.47 57 15 
17 sand 32 2 19 220 38 1.0 0.38 201 0 
18 sand 34 2 19 224 38 1.0 0.38 215 0 
19 sand 36 2 19 228 38 1.0 0.38 230 0 
20 sand 38 2 19 231 38 1.0 0.38 244 0 
21 sand 40 2 19 234 38 1.0 0.38 258 0 
22 sand 42 2 19 237 38 1.0 0.38 273 0 
23 sand 44 2 19 241 38 1.0 0.38 287 0 
24 sand 46 2 19 244 38 1.0 0.38 302 0 
25 sand 48 2 19 246 38 1.0 0.38 316 0 
26 sand 50 2 19 249 38 1.0 0.38 330 0 
27 sand 52 2 19 252 38 1.0 0.38 345 0 
28 sand 54 2 19 254 38 1.0 0.38 359 0 
29 sand 56 2 19 257 38 1.0 0.38 373 0 
30 sand 58 2 19 259 38 1.0 0.38 388 0 
31 sand 60 2 19 262 38 1.0 0.38 402 0 
32 sand 62 2 19 264 38 1.0 0.38 416 0 
33 sand 64 2 19 266 38 1.0 0.38 431 0 
34 sand 66 1 19 300 38 1.0 0.38 434 0 
35 sand 67 1 19 350 38 1.0 0.38 441 0 
36 sand 68 1 19 400 38 1.0 0.38 448 0 
37 sand 69 1 19 450 38 1.0 0.38 456 0 
38 sand 70 1 19 500 38 1.0 0.38 463 0 
39 sand 71 1 19 550 38 1.0 0.38 470 0 
40 sand 72 1 19 600 38 1.0 0.38 477 0 
41 sand 73 1 19 650 38 1.0 0.38 484 0 
42 sand 74 1 19 700 38 1.0 0.38 492 0 
43 sand 75 1 19 760 38 1.0 0.38 499 0 
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A.3 SITE 2 

Site 2 is based on USGS CPT-SCC069, which is located on the southern margin of the San 
Francisco Bay near San Jose, California. The surficial materials are classified as fine-grained 
Holocene alluvial fan and overbank flood deposits. Deeper layers may be marine sediments. 
Groundwater is at a depth of 2 m. The VS30 of the idealized profile presented below is 192 m/sec. 
The VS30 computed using the actual data is 172 m/sec. The difference is a result of modifications 
made to the upper 14 m of the idealized profile to remove stiff layers overlying soft layers. The 
“stiff over soft” condition is considered in Site “2a” as described in the main text, which is closer 
to the conditions measured in the field. 
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Table A.2 Site 2 properties for DEEPSOIL analysis. 

Layer Material 
type 

Depth 
top 

Thickness Unit 
weight 

Vs Friction 
Angle 

OCR K0 Shear 
Atrength 

PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 clay 0 2 17 120 N/A 7.4 0.73 37 15 

2 clay 2 1.5 17 130 N/A 5.3 0.60 44 15 

3 clay 3.5 5.5 17 145 N/A 3.1 0.44 61 30 

4 clay 9 3.5 17 165 N/A 3.4 0.45 73 15 

5 clay 12.5 1.5 17 190 N/A 4.0 0.49 86 15 

6 clay 14 2 18 206 N/A 3.9 0.48 96 15 

7 clay 16 1.5 18 222 N/A 3.6 0.46 96 10 

8 sand 17.5 1.5 18 251 37 3.4 0.40 127 0 

9 clay 19 2.5 18 273 N/A 2.8 0.40 96 20 

10 clay 21.5 2.5 18 276 N/A 2.6 0.38 101 15 

11 clay 24 2 18 285 N/A 2.7 0.39 110 15 

12 clay 26 2 18 302 N/A 3.4 0.43 143 15 

13 clay 28 2 18 306 N/A 4.4 0.48 188 15 

14 clay 30 2 18 315 N/A 4.3 0.47 197 15 

15 clay 32 2 18 318 N/A 4.1 0.46 201 15 

16 clay 34 2 18 321 N/A 4.0 0.45 205 15 

17 clay 36 2 18 324 N/A 3.8 0.44 210 15 

18 clay 38 2 18 328 N/A 3.7 0.43 214 15 

19 clay 40 2 18 331 N/A 3.6 0.42 218 15 

20 clay 42 2 18 334 N/A 3.4 0.42 223 15 

21 clay 44 2 18 337 N/A 3.3 0.41 227 15 

22 clay 46 2 18 340 N/A 3.3 0.40 231 15 

23 clay 48 2 18 343 N/A 3.2 0.40 235 15 

24 clay 50 2 18 346 N/A 3.1 0.39 239 15 

25 clay 52 2 18 349 N/A 3.0 0.38 243 15 

26 clay 54 2 19 343 N/A 2.9 0.38 248 15 

27 clay 56 2 19 346 N/A 2.9 0.37 252 15 

28 clay 58 2 19 349 N/A 2.8 0.37 257 15 

29 clay 60 2 19 352 N/A 2.7 0.36 261 15 

30 clay 62 2 19 355 N/A 2.7 0.36 266 15 

31 sand 64 2 19 400 38 2.6 0.38 444 0 

32 sand 66 2 19 450 38 2.6 0.38 458 0 

33 sand 68 2 19 500 38 2.5 0.38 472 0 

34 sand 70 2 19 550 38 2.5 0.38 487 0 

35 sand 72 2 19 600 38 2.4 0.38 501 0 

36 sand 74 2 19 650 38 2.4 0.38 516 0 

37 sand 76 2 19 700 38 2.4 0.38 530 0 

38 sand 78 2 19 760 38 2.3 0.38 544 0 
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A.3 SITE 3 

Site 3 is based off USGS CPT-MSC019, performed in point bar deposits in the Mississippi River 
Valley. Groundwater is at a depth of 4 m. The VS30 of the idealized profile presented below is 208 
m/sec. The VS30 computed using the actual data is 217 m/sec. 
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Table A.3 Site 3 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

Vs 
Friction 
angle 

OCR K0 
Shear 

atrength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 
1 sand 0 3 17 150 34 N/A 0.44 34 0 

2 sand 3 3 17 160 34 N/A 0.44 65 0 

3 sand 6 2 17 170 34 N/A 0.44 72 0 

4 sand 8 3 17 185 36 N/A 0.41 98 0 

5 sand 11 2 17 205 40 N/A 0.36 118 0 

6 sand 13 1 17 220 39 N/A 0.37 118 0 

7 sand 14 2 18 235 40 N/A 0.35 141 0 

8 sand 16 2 18 225 42 N/A 0.33 164 0 

9 sand 18 2 18 233 42 N/A 0.32 182 0 

10 sand 20 2 18 240 42 N/A 0.32 197 0 

11 sand 22 2 18 280 42 N/A 0.33 209 0 

12 sand 24 2 18 265 42 N/A 0.33 222 0 

13 sand 26 2 18 285 42 N/A 0.34 235 0 

14 sand 28 2 18 290 42 N/A 0.33 251 0 

15 sand 30 2 19 295 42 N/A 0.33 269 0 

16 sand 32 2 19 299 42 N/A 0.33 286 0 

17 sand 34 2 19 303 42 N/A 0.33 302 0 

18 sand 36 2 19 307 42 N/A 0.33 319 0 

19 sand 38 2 19 311 42 N/A 0.33 336 0 

20 sand 40 2 19 315 42 N/A 0.33 352 0 

21 sand 42 2 19 319 42 N/A 0.33 369 0 

22 sand 44 2 19 322 42 N/A 0.33 385 0 

23 sand 46 2 19 326 42 N/A 0.33 402 0 

24 sand 48 2 19 329 42 N/A 0.33 418 0 

25 sand 50 2 19 332 42 N/A 0.33 435 0 

26 sand 52 2 19 335 42 N/A 0.33 451 0 

27 sand 54 2 19 338 42 N/A 0.33 468 0 

28 sand 56 2 19 341 42 N/A 0.33 484 0 

29 sand 58 2 19 344 42 N/A 0.33 501 0 

30 sand 60 2 19 347 42 N/A 0.33 518 0 

31 sand 62 2 19 350 42 N/A 0.33 534 0 

32 sand 64 2 19 352 42 N/A 0.33 551 0 

33 sand 66 2 19 400 42 N/A 0.33 567 0 

34 sand 68 2 19 450 42 N/A 0.33 584 0 

35 sand 70 2 19 500 42 N/A 0.33 600 0 

36 sand 72 2 19 550 42 N/A 0.33 617 0 

37 sand 74 2 19 600 42 N/A 0.33 633 0 

38 sand 76 2 19 650 42 N/A 0.33 650 0 

39 sand 78 2 19 700 42 N/A 0.33 667 0 

40 sand 80 2 19 760 42 N/A 0.33 683 0 
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A.4 SITE 4 

Site 4 is based off USGS CPT-CHN007, performed in Pleistocene barrier-beach ridge deposits 
near Charleston, South Carolina. Groundwater is estimated to be at a depth of 2.5 m. The VS30 of 
the idealized profile presented below is 253 m/sec. The VS30 computed using the actual data is 261 
m/sec. 

  



191 

Table A.5 Site 4 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 
Top 

Thickness 
Unit 

weight 
Vs 

Friction 
Angle 

OCR K0 
Shear 

Strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 sand 0 2 17 170 35 1.0 0.43 24 0 

2 sand 2 3 18 200 35 1.0 0.43 55 0 

3 clay 5 1.5 17 170 N/A 3.1 0.45 44 15 

4 sand 6.5 3.5 18 210 32 1.0 0.47 75 0 

5 clay 10 1 18 215 N/A 3.4 0.46 68 15 

6 sand 11 3 18 255 35 1.0 0.43 105 0 

7 clay 14 1 18 210 N/A 2.7 0.40 73 15 

8 sand 15 5 18 260 35 1.0 0.43 146 0 

9 sand 20 2 18 335 32 1.0 0.47 131 0 

10 sand 22 2 19 365 32 1.0 0.47 142 0 

11 sand 24 2 19 380 33 1.0 0.46 158 0 

12 sand 26 2 19 420 33 1.0 0.46 172 0 

13 sand 28 2 19 440 34 1.0 0.44 190 0 

14 sand 30 2 19 447 36 1.0 0.41 220 0 

15 sand 32 2 19 453 36 1.0 0.41 233 0 

16 sand 34 2 19 460 36 1.0 0.41 247 0 

17 sand 36 2 19 466 36 1.0 0.41 260 0 

18 sand 38 2 19 472 36 1.0 0.41 273 0 

19 sand 40 2 19 477 36 1.0 0.41 287 0 

20 sand 42 2 19 483 36 1.0 0.41 300 0 

21 sand 44 2 19 488 36 1.0 0.41 314 0 

22 sand 46 2 19 493 38 1.0 0.38 352 0 

23 sand 48 2 19 498 38 1.0 0.38 366 0 

24 sand 50 2 19 503 38 1.0 0.38 380 0 

25 sand 52 2 19 508 38 1.0 0.38 395 0 

26 sand 54 2 19 512 38 1.0 0.38 409 0 

27 sand 56 2 19 517 38 1.0 0.38 423 0 

28 sand 58 2 19 521 38 1.0 0.38 438 0 

29 sand 60 2 19 525 38 1.0 0.38 452 0 

30 sand 62 2 19 529 38 1.0 0.38 466 0 

31 sand 64 2 19 533 38 1.0 0.38 481 0 

32 sand 66 2 19 550 38 1.0 0.38 495 0 

33 sand 68 2 19 600 38 1.0 0.38 510 0 

34 sand 70 2 19 650 38 1.0 0.38 524 0 

35 sand 72 2 19 700 38 1.0 0.38 538 0 

36 sand 74 2 19 760 38 1.0 0.38 553 0 
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A.5 SITE 5 

Site 5 is based on USGS CPT-ALC046, which is located in the east San Francisco Bay in Albany, 
California, about 1 km from the Bay margin. The surficial materials are classified as Holocene 
alluvial fan and natural levee deposits. Groundwater is at a depth of 2.1 m. The profile generally 
consists of 18 m of soft to medium-stiff clay overlying stiff clay. The VS30 of the idealized profile 
presented below is 301 m/sec. The VS30 computed using the actual data is 305 m/sec. 
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Table A.5 Site 5 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

Vs 
Friction 
angle 

OCR K0 
Shear 

strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 clay 0 2 17 205 N/A 48.2 1.81 166 15 

2 clay 2 1 17 220 N/A 17.2 1.06 101 15 

3 clay 3 2 17 250 N/A 24.4 1.22 188 15 

4 clay 5 1 17 240 N/A 18.7 1.07 157 15 

5 clay 6 2 18 245 N/A 54.5 1.76 485 15 

6 clay 8 1.5 18 280 N/A 14.3 0.91 185 15 

7 clay 9.5 2.5 18 300 N/A 17.9 1.00 277 15 

8 clay 12 2.5 18 310 N/A 20.7 1.05 362 15 

9 clay 14.5 3.5 18 320 N/A 6.6 0.60 178 15 

10 clay 18 2 19 340 N/A 23.7 1.10 526 15 

11 clay 20 3 19 360 N/A 23.1 1.07 604 15 

12 clay 23 4 19 380 N/A 21.9 1.03 686 15 

13 clay 27 3 19 400 N/A 22.4 1.03 759 15 

14 clay 30 2 19 403 N/A 21.4 1.00 767 15 

15 clay 32 2 19 406 N/A 20.2 0.97 778 15 

16 clay 34 2 19 409 N/A 19.2 0.94 788 15 

17 clay 36 2 19 411 N/A 18.2 0.92 799 15 

18 clay 38 2 19 414 N/A 17.4 0.89 809 15 

19 clay 40 2 19 416 N/A 16.6 0.87 818 15 

20 clay 42 2 19 419 N/A 15.9 0.85 828 15 

21 clay 44 2 19 421 N/A 15.3 0.83 837 15 

22 clay 46 2 19 423 N/A 14.7 0.81 846 15 

23 clay 48 2 19 425 N/A 14.2 0.79 854 15 

24 clay 50 2 19 427 N/A 13.7 0.77 863 15 

25 clay 52 2 19 429 N/A 13.2 0.76 871 15 

26 clay 54 2 19 432 N/A 12.8 0.74 880 15 

27 clay 56 2 19 433 N/A 12.4 0.73 888 15 

28 clay 58 2 19 435 N/A 12.0 0.72 896 15 

29 clay 60 2 19 437 N/A 11.6 0.71 903 15 

30 clay 62 2 19 439 N/A 11.3 0.69 911 15 

31 clay 64 2 19 486 N/A 14.1 0.77 1117 15 

32 clay 66 2 19 488 N/A 13.7 0.76 1125 15 

33 clay 68 2 19 512 N/A 14.9 0.79 1238 15 

34 clay 70 2 19 534 N/A 16.0 0.81 1349 15 

35 clay 72 2 19 556 N/A 17.0 0.83 1458 15 

36 clay 74 2 19 576 N/A 18.0 0.86 1568 15 

37 clay 76 2 19 645 N/A 23 1 1963 15 

38 clay 78 2 19 704 N/A 28 1.1 2344 15 
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A.6 SITE 6 

Site 6 is based on USGS CPT-SBC109, performed in stiff granular alluvial fan deposits on the 
north side of the San Gabriel Mountains near Adelanto, California. Groundwater depth is assumed 
to be 4 m for analyses. The VS30 of the idealized profile presented below is 446 m/sec. The VS30 
computed using the actual data to a depth of 18 m and then extrapolating to 30 m is 409 m/sec. 
The increase between the idealized and measured VS30 values is the result of replacing the soft 
layers encountered during the CPT in the upper 4 m of the profile with stiffer layers to prevent a 
strong impedance contrast. Site “6a” includes these softer layers as described in the main text such 
that their influence on the pile kinematic response can be considered. 
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Table A.6 Site 6 properties for DEEPSOIL analysis. 

Layer 
Material 

type 
Depth 

top 
Thickness 

Unit 
weight 

Vs 
Friction 
angle 

OCR K0 
Shear 

strength 
PI 

- - m m kN/m3 m/sec degrees - - kPa - 

1 sand 0 2 18 320 43 N/A 0.32 17 0 

2 sand 2 2 18 340 42 N/A 0.33 48 0 

3 sand 4 3 18 360 41 N/A 0.34 74 0 

4 sand 7 2 18 380 41 N/A 0.34 92 0 

5 sand 9 1 18 480 43 N/A 0.32 107 0 

6 sand 10 2 18 490 42 N/A 0.33 118 0 

7 sand 12 3 19 500 41 N/A 0.34 133 0 

8 sand 15 2 19 510 43 N/A 0.32 160 0 

9 sand 17 3 19 510 43 N/A 0.32 185 0 

10 sand 20 10 19 510 43 N/A 0.31 242 0 

11 sand 30 2 19 535 41 N/A 0.34 271 0 

12 sand 32 2 19 543 41 N/A 0.34 287 0 

13 sand 34 2 19 551 41 N/A 0.34 303 0 

14 sand 36 2 19 558 41 N/A 0.34 319 0 

15 sand 38 2 19 565 41 N/A 0.34 335 0 

16 sand 40 2 19 571 41 N/A 0.34 351 0 

17 sand 42 2 19 577 41 N/A 0.34 367 0 

18 sand 44 2 19 584 41 N/A 0.34 383 0 

19 sand 46 2 19 590 41 N/A 0.34 399 0 

20 sand 48 2 19 596 41 N/A 0.34 415 0 

21 sand 50 2 19 601 41 N/A 0.34 431 0 

22 sand 52 2 19 606 41 N/A 0.34 447 0 

23 sand 54 2 19 612 41 N/A 0.34 463 0 

24 sand 56 2 19 617 41 N/A 0.34 479 0 

25 sand 58 2 19 622 41 N/A 0.34 495 0 

26 sand 60 2 19 627 41 N/A 0.34 511 0 

27 sand 62 2 19 632 41 N/A 0.34 527 0 

28 sand 64 2 19 637 41 N/A 0.34 543 0 

29 sand 66 2 19 650 41 N/A 0.34 559 0 

30 sand 68 2 19 700 41 N/A 0.34 575 0 

31 sand 70 2 19 760 41 N/A 0.34 591 0 
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APPENDIX B A FRAMEWORK FOR FULL-SCALE 
EXPERIMENTAL MEASUREMENTS 
OF KINEMATIC PILE–SOIL 
INTERACTION 

Experimental data for validating kinematic pile–soil transfer function models is scarce and often 
includes superstructure inertia, making it difficult to isolate the kinematic effects. The authors are 
not aware of any full-scale tests in which kinematic pile–soil transfer functions have been 
measured experimentally and without a superstructure supported on the pile(s). 

In this appendix, a pilot experimental field test is briefly described. Although the results of 
the pilot test program do not necessarily provide a sufficiently accurate means for validating the 
models developed in Chapter 4, the approach is documented here in hopes that similar tests will 
be conducted in the future on a scale that does provide a means for validation. 

The basic field test setup is depicted in Figure B.1. The goal is to replicate the modeling 
approach used for the numerical study described in the previous chapters in which a pile is 
subjected to free-field excitation, and the pile head and free-field ground surface responses are 
recorded; experimental transfer functions can then be computed from these recordings. Since most 
piles are built to support structures, executing an experiment like this requires either gaining access 
to a construction site during the brief window between completion of the piles but prior to the 
beginning of superstructure construction, or the costly alternative of building a sacrificial test pile 
solely for the purpose of the experiment. 

Ideally, the vibration source should excite the free field to a level consistent with design 
earthquakes, but this would be difficult from a practical point of view. A more feasible approach 
is to measure small-strain soil behavior by exciting the ground with a shaker such as the type 
commonly used for geophysical testing methods like spectral analysis of surface waves (SASW). 
Ambient noise from traffic or other consistent sources could also provide enough energy to 
mobilize a small-strain response. 
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Figure B.1 Instrumentation for full-scale measurements. 

B.1 PILOT STUDY 

The pilot field study program was conducted at a Caltrans culvert construction project site in 
Goleta, California. A row of 16-in. diameter, L = 60 ft open pipe piles with 0.625-in. wall thickness 
had been driven to support the culvert wall as shown in Figure B.2, and a brief window of time 
was available to perform the experiment prior to beginning of the wall construction. 

The pile to be tested and adjacent free field were instrumented with triaxial MEMS 
accelerometers10 housed in PVC tubing. The pile accelerometer was epoxied to the pile head, and 
the instrumentation end of the free-field accelerometer was buried in surficial gravel to improve 
coupling with the ground surface as shown in Figure B.3. The accelerometers were connected to a 
portable data acquisition system that interfaced with a laptop computer. 

 

                                                 
 
10 Model 4630 accelerometer manufactured by Measurement Specialties http://meas-spec.com/  
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Figure B.2 Pilot study test site. 

 

 

Figure B.3 Pilot study test piles and free-field accelerometers. 
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Figure B.4 Striking pile adjacent to test pile. 

A number of vibration sources were used in combination with various spacings between 
the pile and free-field sensors as well as different spacings between the pile and the vibration 
source. The attempted vibration sources included striking a steel plate vertically with a sledge 
hammer, striking adjacent piles vertically and in multiple horizontal directions relative to the 
orientation of a line between the test pile and the pile being struck (Figure B.4), dropping a 75-lb 
bag of aggregate from a ladder, and recording ambient noise from traffic and other sources. For 
each attempted source, a series of at least ten recordings were made, which were later stacked to 
improve the quality of the signals. This was necessary in part because of the relatively low quality 
of the MEMS accelerometers that were used. 

Spacing between the pile and free-field sensors corresponded to either two pile diameters 
or 6 pile diameters. For the sledge-hammer-on-steel-plate and aggregate sack sources, the spacing 
between the vibration source and the test pile either corresponded to a “near-field” spacing of 
approximately 3 pile diameters (steel plate visible in Figure B.3), or a “far-field” spacing of 
approximately 10 pile diameters. 

B.2 RESULTS 

Recorded time signals of the pile-head and free-field response were stacked and used to compute 
transfer functions. A lower-bound coherence cutoff of 0.8 was applied, consistent with the 
procedures implemented in the numerical study and by Mikami et al. [2008]. The vibration sources 
that generated the strongest signals, and thus the most consistent trends in terms of their transfer 
functions, were striking the steel plate vertically and dropping the aggregate sack. Transfer 
functions for these sources are shown in Figure B.5. The figure also shows free-head pile elastic 
analytical transfer functions for vertically-propagating shear waves (derived in Chapter 2) and 
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Rayleigh waves (after Makris [1994]). The vertical S-wave analytical model significantly over-
predicts the measured transfer functions, while the Rayleigh wave model appears to capture the 
underlying trends. This is likely due to the fact that the vibration sources primarily produced 
surface waves rather than vertically-propagating shear waves. 

The measured transfer functions show significant fluctuations, and only have high 
coherence over a relatively high-frequency range; they do not constrain the underlying trend over 
the lower frequency range of zero to 10 Hz that is of greater foundation engineering interest. 
Hence, they are not very useful for validating the models developed for this study. An experimental 
program in which transfer functions are measured using high-quality instrumentation that exhibit 
significant deamplification of the free-field motion over this lower frequency range would be 
extremely valuable for validation purposes. 

 

 

Figure B.5 Theoretical versus recorded transfer functions. 
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