Capturing Directivity Effects in the Mean and Aleatory Variability of the NGA-West2 Ground-Motion Prediction Equations

Jennie A. Watson-Lamprey
Slate Geotechnical Consultants
Berkeley, California

PEER Report No. 2018/04
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley

November 2018
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s), the Pacific Earthquake Engineering Research Center, or the Regents of the University of California.
Capturing Directivity Effects in the Mean and Aleatory Variability of the NGA-West2 Ground-Motion Prediction Equations

Jennie A. Watson-Lamprey
Slate Geotechnical Consultants
Berkeley, California

PEER Report 2018/04
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley
November 2018
ABSTRACT

We expect there to be locations around a rupture that experience both positive and negative directivity effects more than others. The concept was to develop a simple model of additional mean and standard deviation to add to existing published ground motion prediction equations to account for this. The directivity effect predicted by Chiou and Youngs [2014] using the directivity parameter DPP [Spudich et al. 2013] was selected as the basis for the model. A suite of rupture geometries for strike-slip and reverse ruptures was generated and the mean and standard deviation of the change in the 5% damped pseudo-spectral acceleration at sites out to rupture distances of 70 km was calculated. Models are presented for the change in mean and standard deviation for both strike-slip and reverse ruptures that use only simple parameters as inputs.
ACKNOWLEDGMENTS

This study was sponsored by the Pacific Earthquake Engineering Research Center (PEER) and funded by the Pacific Gas & Electric Company and Arizona Public Service. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsoring organizations, PEER, or the Regents of the University of California.
CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... v

CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1 STUDY OVERVIEW .. 1
 1.1 Introduction .. 1
 1.2 Incorporating the Effect of Directivity in Aleatory Variability 2
 1.3 Model Development Procedure for the Change in the Median Ground Motion ... 3
 1.4 Model Development Procedure for the Change in the Aleatory Variability ... 4

2 CHANGE IN MEAN AND STANDARD DEVIATION OF GROUND MOTION DUE TO RANDOMIZATION OF HYPOCENTERS ... 7
 2.1 Introduction .. 7
 2.2 Strike–Slip Ruptures ... 7
 2.2.1 Directivity Parameter DPP ... 7
 2.2.2 Mean Change ... 13
 2.2.3 Standard Deviation Change Due to Randomization of Hypocenters......... 18
 2.2.4 Total Standard Deviation Change .. 23
 2.3 Reverse Results... 26
 2.3.1 Directivity Parameter DPP ... 26
 2.3.2 Mean Change ... 31
 2.3.3 Standard Deviation Change Due to Randomization of Hypocenters........ 36
 2.3.4 Total Standard Deviation Change .. 41

3 MODELS OF CHANGE IN GROUND MOTION MEAN AND STANDARD DEVIATION ... 43
 3.1 Basic Model... 43
 3.2 Strike–Slip Model.. 44
 3.2.1 Mean Model .. 44
3.2.2 Standard Deviation Model ... 48

3.3 Reverse Model .. 52
3.3.1 Mean Model ... 52
3.3.2 Standard Deviation Model ... 59

4 EFFECT OF HYPOCENTER DISTRIBUTION .. 65
4.1 Alternative Hypocenter Distributions ... 65
4.1.1 Strike-Slip Hypocenter Distributions ... 65
4.1.2 Reverse Hypocenter Distributions ... 66
4.2 Strike-Slip Results .. 67
4.2.1 Mean Results .. 67
4.2.2 Additional Mean Models ... 69
4.2.3 Standard Deviation Results ... 71
4.2.4 Additional Standard Deviation Models .. 73
4.3 Reverse Results .. 75
4.3.1 Mean Results .. 75
4.3.2 Additional Mean Model ... 76
4.3.3 Standard Deviation Results .. 77
4.3.4 Additional Standard Deviation Model .. 79

5 PREFERRED MODELS ... 81
5.1 Preferred Strike-Slip Models ... 81
5.2 Preferred Reverse Models ... 86
5.3 Example Application ... 91

REFERENCES ... 97

LIST OF PEER REPORTS .. 99

APPENDIX A Results using Choiu and Youngs [2008] Hypocenter Distribution Models (Electronic Appendix)

APPENDIX B Results using Uniform Hypocenter Distribution (Electronic Appendix)

APPENDIX C Results using Appendix D Hypocenter Distribution Model (Electronic Appendix)

APPENDIX D Hypocenter Location Distribution (Electronic Appendix)
LIST OF TABLES

Table 1.1	Rupture geometries for randomization of hypocenters	4
Table 2.1	Coefficient c_{8b} from Chiou and Youngs [2014]	16
Table 3.1	Coefficient c_8 and c_{8b} from Chiou and Youngs [2014]	43
Table 3.2	Coefficients for model of change in mean for strike–slip ruptures	45
Table 3.3	Coefficients for model of change in standard deviation for strike–slip ruptures	49
Table 3.4	Coefficients for model of change in mean for reverse ruptures	54
Table 3.5	Coefficients for model of change in standard deviation for reverse ruptures	60
Table 4.1	Coefficients for model of change in mean using a uniform hypocenter distribution for strike–slip ruptures	70
Table 4.2	Coefficients for model of change in mean using Appendix D hypocenter distribution for strike–slip ruptures	70
Table 4.3	Coefficients for model of change in standard deviation using a uniform hypocenter distribution for strike–slip ruptures	73
Table 4.4	Coefficients for model of change in standard deviation using Appendix D hypocenter distribution for strike–slip ruptures	74
Table 4.5	Coefficients for model of change in mean using uniform hypocenter distribution for reverse ruptures	76
Table 4.6	Coefficients for model of change in standard deviation using uniform hypocenter distribution for reverse ruptures	79
LIST OF FIGURES

Figure 1.1 Estimates of the intra-event aleatory variability (ϕ^2) of 5% damped pseudo-spectral acceleration for Chiou and Youngs [2014] GMPE for moment-magnitude 6.5 or greater data with rupture distances of 20 km both including and excluding DPP from the equation for the mean.......................5

Figure 1.2 Change in intra-event aleatory variability (ϕ^2) of 5% damped pseudo-spectral acceleration for Chiou and Youngs [2014] GMPE for moment-magnitude 6.5 or greater data with rupture distances of 20 km or less from excluding DPP from the equation for the mean..5

Figure 2.1 The length of the fault from the hypocenter to the direct point (E) in kilometers for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ...8

Figure 2.2 The isochrone velocity ratio (\hat{c}') along the length of the fault from the hypocenter to the direct point for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ..9

Figure 2.3 The average shear-wave radiation pattern (\overline{FS}) along the length of the fault from the hypocenter to the direct point for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ...10

Figure 2.4 The direct point parameter (DPP) for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 kilometers down-dip. ...11

Figure 2.5 Histogram of direct point parameter (DPP) for three sites 20 km from moment-magnitude 7, strike-slip ruptures where the hypocenters have been randomly distributed using hypocenter distribution models from Chiou and Youngs [2008]. The location of the sites are shown in Figure 2.4 where site a is located 20 km to the left of the edge of the top of the rupture and sites b and c are located counterclockwise from site a.12

Figure 2.6 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, strike-slip rupture...13
Figure 2.7 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture..14

Figure 2.8 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture...14

Figure 2.9 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, strike–slip rupture..15

Figure 2.10 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 8, strike–slip rupture...15

Figure 2.11 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture..16

Figure 2.12 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture...17

Figure 2.13 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture..17

Figure 2.14 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture...18

Figure 2.15 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, strike–slip rupture...19

Figure 2.16 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture...19
Figure 2.17 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture.................................20

Figure 2.18 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, strike–slip rupture.................................20

Figure 2.19 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 8, strike–slip rupture.................................21

Figure 2.20 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.................................21

Figure 2.21 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.................................22

Figure 2.22 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.................................22

Figure 2.23 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture.................................23

Figure 2.24 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, strike–slip rupture...24

Figure 2.25 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture...24

Figure 2.26 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture...25
Figure 2.27 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, strike-slip rupture. ...25

Figure 2.28 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 8, strike-slip rupture. ..26

Figure 2.29 The length of the fault from the hypocenter to the direct point (E) in kilometers for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ..27

Figure 2.30 The isochrone velocity ratio (\hat{c}') along the length of the fault from the hypocenter to the direct point for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ...28

Figure 2.31 The average shear-wave radiation pattern (\bar{S}) along the length of the fault from the hypocenter to the direct point for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ...29

Figure 2.32 The direct point parameter (DPP) for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip. ...30

Figure 2.33 Histogram of direct point parameter (DPP) for three sites 20 km from moment-magnitude 6.5, dip-slip ruptures where the hypocenters have been randomly distributed using hypocenter distribution models from Chiou and Youngs [2008]. The location of the sites are shown in Figure 2.24 where the site a is located 14.7 km to the left and 19.12 km down from the left edge of the top of rupture and sites b and c are located clockwise from site a. ...31

Figure 2.34 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, reverse rupture. ...32

Figure 2.35 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...32
Figure 2.36 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture. ...33

Figure 2.37 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture. ...33

Figure 2.38 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...34

Figure 2.39 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...34

Figure 2.40 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...35

Figure 2.41 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...35

Figure 2.42 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...36

Figure 2.43 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture. ...37

Figure 2.44 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture. ...37

Figure 2.45 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...38
Figure 2.46 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...38

Figure 2.47 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...39

Figure 2.48 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture. ..39

Figure 2.49 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs (2008) for a moment-magnitude 6, reverse rupture. ...40

Figure 2.50 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ...40

Figure 2.51 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture. ...41

Figure 2.52 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture. ...42

Figure 3.1 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, strike–slip rupture. ...46

Figure 3.2 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, strike–slip rupture. ...46

Figure 3.3 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, strike–slip rupture. ...47
Figure 3.4 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, strike–slip rupture.................................47

Figure 3.5 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 8, strike–slip rupture.................................48

Figure 3.6 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, strike–slip rupture.................................49

Figure 3.7 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, strike–slip rupture.................................50

Figure 3.8 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, strike–slip rupture.................................50

Figure 3.9 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, strike–slip rupture.................................51

Figure 3.10 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 8, strike–slip rupture.................................51

Figure 3.11 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, reverse rupture.................................55

Figure 3.12 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, reverse rupture.................................56

Figure 3.13 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, reverse rupture.................................57
Figure 3.14 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, reverse rupture. ..58

Figure 3.15 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, reverse rupture.61

Figure 3.16 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, reverse rupture.62

Figure 3.17 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, reverse rupture. ...63

Figure 3.18 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, reverse rupture. ...64

Figure 4.1 Hypocenter distributions along strike for strike–slip ruptures. ..66
Figure 4.2 Hypocenter distributions down-dip for strike–slip ruptures. ..66
Figure 4.3 Hypocenter distributions along strike for reverse ruptures. ...67
Figure 4.4 Hypocenter distributions down-dip for reverse ruptures. ...67
Figure 4.5 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture. ...68
Figure 4.6 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution for a moment-magnitude 6.5, strike–slip rupture. ...69
Figure 4.7 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6.5, strike–slip rupture. ...69
Figure 4.8 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models, uniform hypocenter distribution model, and hypocenter distribution model from Appendix D for a site 20 km from the end of a moment-magnitude 7.5, strike-slip rupture with a R_x value of 0 km.

Figure 4.9 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike-slip rupture with ϕ_2 reduction.

Figure 4.10 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution for a moment-magnitude 6.5, strike-slip rupture with ϕ_2 reduction.

Figure 4.11 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distributions model from Appendix D for a moment-magnitude 6.5, strike-slip rupture with ϕ_2 reduction.

Figure 4.12 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models, uniform hypocenter distribution model, and hypocenter distribution model from Appendix D for a site 20 km from the end of a moment-magnitude 7.5, strike-slip rupture with a R_x value of 0 km.

Figure 4.13 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.

Figure 4.14 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution a moment-magnitude 6.5, reverse rupture.

Figure 4.15 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models and uniform hypocenter distribution model for a site over the hanging wall of a moment-magnitude 6.5, reverse rupture, with a rupture distance of 20 km and a R_y value of 0 km.

Figure 4.16 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture with ϕ_2 reduction.
Figure 4.17 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution for a moment-magnitude 6.5, reverse rupture with ϕ_2 reduction. ..78

Figure 4.18 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models and uniform hypocenter distribution model for a site over the hanging wall of a moment-magnitude 6.5, reverse rupture, with a rupture distance of 20 km and a R_y value of 0 km. ..80

Figure 5.1 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6, strike–slip rupture. ...81

Figure 5.2 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6.5, strike–slip rupture. ..82

Figure 5.3 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7, strike–slip rupture. ..82

Figure 5.4 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7.5, strike–slip rupture. ...83

Figure 5.5 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 8, strike–slip rupture. ...83

Figure 5.6 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6, strike–slip rupture. ...84

Figure 5.7 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6.5, strike–slip rupture. ...84
Figure 5.8 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7, strike–slip rupture. ...85

Figure 5.9 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7.5, strike–slip rupture. ...85

Figure 5.10 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 8, strike–slip rupture.33. ...86

Figure 5.11 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6, reverse rupture. ..87

Figure 5.12 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ..87

Figure 5.13 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture. ..88

Figure 5.14 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture. ..88

Figure 5.15 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6, reverse rupture. ..89

Figure 5.16 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture. ..89

Figure 5.17 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture. ..90
Figure 5.18 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008]..90

Figure 5.19 Location of three sites for example strike–slip fault..91

Figure 5.20 Preferred strike–slip model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration for example magnitude 7.3 strike–slip rupture with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$. ..92

Figure 5.21 Preferred strike–slip model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration for example magnitude 7 strike–slip rupture with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$. ...92

Figure 5.22 Hazard curves calculated with and without the preferred directivity model for 5% damped pseudo-spectral acceleration at 3 sec for example application with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$. ..93

Figure 5.23 Uniform hazard spectra calculated with and without the preferred directivity model at an annual exceedance probability of 10^{-4} for the example application with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$. ..94

Figure 5.24 The effect on the uniform hazard spectrum calculated with and without the preferred directivity model at an annual exceedance probability of 10^{-4} for the example application with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$. ..95
1 Study Overview

1.1 INTRODUCTION

To incorporate the effect of directivity on earthquake ground motion, engineers have relied on models developed as a correction to the median. These models were developed by fitting residuals from ground motion prediction equations (GMPEs) to functional forms that use additional parameters beyond what is included in the GMPE. These models include: Sommerville et al. [1997], Abrahamson [2000], Spudich and Chiou [2008], and Rowshandel [2010]. The most widely used of these is the Sommerville et al. (1997) model with the Abrahamson [2000] update.

There are a number of problems associated with the most widely used directivity models. The major concerns include: (1) The parameters are normalized and lump moderate magnitude data with large magnitude data, which leads to very large directivity effects for large faults contrary to seismological principles; (2) the average directivity effect of the dataset is assumed to be the median ground motion regardless of the sampling; and (3) the directivity effect in the most widely used model has been shown to overestimate directivity effects when compared with the updated ground-motion dataset of the NGA West project [Watson-Lamprey 2007].

To address these problems, the NGA-West2 project included a Directivity Working Group that produced directivity parameters to be considered by the NGA-West2 developers for inclusion in their GMPEs. Of the five NGA-West2 GMPEs produced, only one included a directivity parameter in their GMPE. The other four NGA-West2 developer teams did not include directivity explicitly in their models.

The single GMPE that explicitly includes directivity is Chiou and Youngs [2014]. It is expected that additional work on the directivity parameters will take place and that in the near future additional GMPEs will be produced that include directivity explicitly. In the meantime, there is a lack of sufficient models to include the effects of directivity.

This study aims to take advantage of the work done by the Directivity Working Group to produce a model of the effect of directivity as an additional term in the median and standard deviation. This does not solve all of the problems inherent with the existing directivity models, but provides a simple model that can be used as a stop-gap for projects that take place in the interim.
1.2 INCORPORATING THE EFFECT OF DIRECTIVITY IN ALEATORY VARIABILITY

We know that for any given site and earthquake rupture pair in the NGA-West2 ground-motion dataset there is a change in the median ground motion that could be predicted by including a directivity term. For any given site then, there is an unknown average change in the median given all sources and ruptures. This unknown average change in the median ground motion is a site-specific bias that is not being modeled. The variability of this bias from site to site—and the average variability over all sites of the bias at a given site—is included in the aleatory variability of the GMPE. We can write the equation for the aleatory variability from a GMPE as:

\[\sigma^2_{\text{GMPE}} = \sigma^2_{\text{WithoutDirectivity}}(T,M_j,\text{Site}_i) + \sigma^2_{S2S\text{RandomHypocenters} \text{RandomHypocenters}} + \sigma^2_{\text{Site RandomHypocenters}} \] \hspace{1cm} (1.1)

where the first term in the equation is the aleatory variability that is not due to directivity, the second term is the variability from site to site of the average change in the median at each site due to directivity over all sources and hypocenters, and the last term is the average over the dataset of the variability of the change in the median due to directivity at a given site from all sources and hypocenters. The majority of the median GMPEs published by the NGA-West2 do not explicitly include a directivity term. Thus the median ground motion predicted by most of the NGA-West2 GMPEs is biased at some sites, and there are some sites where the aleatory variability predicted by most of the NGA-West2 GMPEs is biased as well.

To create a model of site-specific aleatory variability that explicitly includes the effect of directivity one would first take the published aleatory variability from a GMPE, reduce this aleatory variability by the average variability due to directivity described above, and then add on a site-specific variability due to the local sources, hypocenter distributions and rupture geometries. The equation for this would look like:

\[\sigma^2_i = \sigma^2_{\text{GMPE}} - \left(\sigma^2_{S2S\text{RandomHypocenters} \text{RandomHypocenters}} + \sigma^2_{\text{Site RandomHypocenters}} \right) + \sigma^2_{i \text{RandomHypocenters}} \] \hspace{1cm} (1.2)

where \(\sigma_i \) is the aleatory variability at site i, \(\sigma^2_{\text{GMPE}} \) is the aleatory variability from a published GMPE, \(\sigma^2_{S2S\text{RandomHypocenters} \text{RandomHypocenters}} + \sigma^2_{\text{Site RandomHypocenters}} \) is the average change in aleatory variability due to the effect of directivity, and \(\sigma^2_{i \text{RandomHypocenters}} \) is the aleatory variability of the change in the median at a given site due to directivity from all sources and hypocenters.

The average change in aleatory variability due to the effect of directivity can be calculated by taking a GMPE and performing one regression with a directivity term, a second regression without a directivity term, and then taking the difference of the two aleatory variabilities. That is, it is the savings in aleatory variability due to the inclusion of an additional term in the regression. Equation (1.2) can then be rewritten as:

\[\sigma^2_i = \sigma^2_{\text{GMPE}} - \sigma^2_{\text{Reduction}} + \sigma^2_{i \text{RandomHypocenters}} \] \hspace{1cm} (1.3)

This equation can then be used as the basis for a model to be added to existing GMPEs to give a site-specific aleatory variability.
1.3 MODEL DEVELOPMENT PROCEDURE FOR THE CHANGE IN THE MEDIAN GROUND MOTION

To develop a model of the change in the median ground motion due to the effect of directivity, one must calculate the difference between the change in the median at a given site and across all sites for the same rupture and rupture distance due to the effect of directivity. The equation for this is given by:

\[
\Delta \ln(S_{ai}) = \sum_{j=1}^{N_{hypo}} P_j \left(\ln(S_{ai}(\text{Rupture, Rrup, Directivity}_j)) - \overline{\ln(S_{aj}(\text{Rupture, Rrup}))} \right)
\]

where \(\ln(S_{ai}) \) is the 5% damped pseudo-spectral acceleration for a given rupture geometry, rupture distance, and directivity parameter for hypocenter location \(j \); \(\overline{\ln(S_{aj})} \) is the average 5% damped pseudo-spectral acceleration over all sites that have the rupture distance \(Rrup \) for a given rupture geometry and hypocenter location \(j \); \(P_j \) is the probability of hypocenter \(j \); and \(N_{hypo} \) is the number of hypocenter locations. In order to calculate \(\ln(Sa) \), one must have a GMPE that includes a directivity term in the mean equation.

The Chiou and Youngs [2014] model includes GMPEs for median ground motion both with and without the directivity parameter \(\Delta DPP \) [Spudich et al. 2013]. Thus, a significant amount of the work necessary to develop a model of the change in mean and aleatory variability of 5% damped pseudo-spectral acceleration due to directivity effects was completed for the directivity parameter \(\Delta DDP \). While it would be preferable to develop models for a larger number of GMPEs and directivity parameters, in the interest of time the decision was made to move forward using only the Chiou and Youngs [2014] GMPE and \(\Delta DPP \) directivity parameter.

The change in the median due to directivity is calculated for a range of magnitudes and distances by creating a suite of rupture geometries (see Table 1.1) and a suite of sites defined at a spacing of 0.5 km at rupture distances of 1, 5, 10, 20, 30, 40, 50 and 70 km. The adjustment to the median is then calculated using the following steps:

1. Hypocenters are distributed in the rupture at a spacing of 1 km down-dip and 1 km along-strike.
2. For each hypocenter \(j \) and site \(i \), \(DPP_{i,j} \) is calculated.
3. At each rupture distance, \(\Delta DPP_{i,j} \) is calculated by taking the difference between \(DPP_{i,j} \) and the average value of \(DPP_{i,j} \) for that rupture distance.
4. For each hypocenter \(j \) and site \(i \), 5% damped pseudo-spectral acceleration \(\ln(Sa(\text{Rupture, Rrup, } \Delta DPP_{s})) \) is calculated for the periods: 0.5, 0.75, 1, 1.5, 2, 3, 5, 7.5, and 10 sec.
5. The mean change in the 5% damped pseudo-spectral acceleration at each site \(\Delta \ln(Sa) \) is calculated using Equation (1.4), where the probability of the hypocenter location is defined using a hypocenter distribution model from Chiou and Youngs [2008].
The model of the change in the mean 5% damped pseudo-spectral acceleration is based on the results from the final step of the procedure described above. The results are modeled as a function of rupture geometry and magnitude. This model can be added to the published mean from a GMPE to estimate the mean at a site explicitly including the effect of directivity.

<table>
<thead>
<tr>
<th>Rupture geometry</th>
<th>Magnitude</th>
<th>Sense of slip</th>
<th>Width (km)</th>
<th>Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Strike-slip</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>Strike-slip</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Strike-slip</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>7.5</td>
<td>Strike-slip</td>
<td>15</td>
<td>211</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>Strike-slip</td>
<td>15</td>
<td>667</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Reverse</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>6.5</td>
<td>Reverse</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>Reverse</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>7.5</td>
<td>Reverse</td>
<td>21</td>
<td>149</td>
</tr>
</tbody>
</table>

1.4 MODEL DEVELOPMENT PROCEDURE FOR THE CHANGE IN THE ALEATORY VARIABILITY

To develop a model of the change in the aleatory variability of ground motion due to the effect of directivity, one must reduce the published aleatory variability by $\sigma_{\text{Reduction}}$ and then increase it by $\sigma_{\text{RandomHypocenters}}$ as described in the previous section. The aleatory variability reduction has been estimated for the Chiou and Youngs [2014] ground motion prediction model by Bob Youngs (Personal communication, 2015). The Chiou and Youngs [2014] directivity model was designed such that the mean change in the ground motion predicted by the directivity model across all sites equidistant from a given rupture is zero. Thus, there should be little to no impact on the inter-event residuals of the GMPE if the data for each earthquake are spatially evenly distributed. This is not the case for all earthquakes in the NGA-West2 dataset, but for simplicity Bob Youngs assumed it was. This allowed him to use only the intra-event residuals, and the change in the intra-event aleatory variability (ϕ_2) to estimate the aleatory variability reduction.

To compute the reduction in the aleatory variability, first the standard deviation of the intra-event residuals of the Chiou and Youngs [2014] model for earthquakes with magnitude greater than or equal to 6.5 (ϕ_2) was calculated. The directivity term predicted by the Chiou and Youngs [2014] directivity model was then removed from the intra-event residuals, and the standard deviation of those residuals recalculated. The difference in the square of the two estimates of ϕ_2 is then $\sigma_{\text{Reduction}}^2$. The estimates of ϕ_2 are shown in Figure 1.1, and the difference between the two shown in Figure 1.2. The figures show that at periods greater than 2 sec, the ϕ_2 reduction increases from 0 to a maximum value of 0.25 at 10 sec.
Figure 1.1 Estimates of the intra-event aleatory variability (ϕ_2) of 5% damped pseudo-spectral acceleration for Chiou and Youngs [2014] GMPE for moment-magnitude 6.5 or greater data with rupture distances of 20 km both including and excluding DPP from the equation for the mean.

Figure 1.2 Change in intra-event aleatory variability (ϕ_2) of 5% damped pseudo-spectral acceleration for Chiou and Youngs [2014] GMPE for moment-magnitude 6.5 or greater data with rupture distances of 20 km or less from excluding DPP from the equation for the mean.
To estimate the site-specific aleatory variability of the change in the median ground motion due to directivity from all sources and hypocenters ($\sigma_{\text{RandomHypocenters}}$), one must calculate the variability of the difference between the change in the median at a given site and across all sites for the same rupture and rupture distance due to the effect of directivity. The equation for this is given by:

$$\sigma_{i,\text{RandomHypocenters}}^2 = \sum_{j=1, N_{\text{hypo}}} P_j \left(\ln Sa_i(\text{Rupture, Rrup, DPP}) - \left(\overline{\ln Sa_j(\text{Rupture, Rrup})} + \Delta \ln Sa_i \right) \right)^2$$

(1.5)

where $\ln Sa_i$ is the 5% damped pseudo-spectral acceleration for a given rupture geometry, rupture distance, and directivity parameter for hypocenter location j; $\overline{\ln Sa_j}$ is the average 5% damped pseudo-spectral acceleration over all sites that have the rupture distance $Rrup$ for a given rupture geometry and hypocenter location j; $\Delta \ln Sa_i$ is from Equation (1.4); P_j is the probability of hypocenter j, and N_{hypo} is the number of hypocenter locations. The directivity effect is modeled using the effect modeled in Chiou and Youngs [2014] and the directivity parameter DPP described in Spudich et al. [2013].

The Chiou and Youngs [2014] model does not predict an inter-event change in the mean ground motion values; thus the change in aleatory variability is confined to the intra-event standard deviation for large magnitudes (ϕ_2). For this reason, the variability due to hypocenter randomization in this case can be labeled as $\phi^2_{\text{RandomHypocenters}}$. The equation for calculating site-specific aleatory variability that explicitly includes the effect of directivity [Equation (1.3)] would then be:

$$\phi_i^2 = \phi^2_{\text{GMPE}} - \phi^2_{\text{Reduction}} + \phi^2_{\text{RandomHypocenters}}$$

(1.6)

The suite of ruptures from Table 1.1 and the results of the procedure outlined in the previous section are used to estimate $\phi_{\text{RandomHypocenters}}$ following the procedure outlined above. The total change in aleatory variability that would be added to that predicted by a GMPE would then be:

$$\Delta \phi_i = \begin{cases}
0 & \text{for } \phi_{\text{RandomHypocenters}} < \phi_{\text{Reduction}} \\
\sqrt{\phi^2_{\text{RandomHypocenters}} - \phi^2_{\text{Reduction}}} & \text{else}
\end{cases}$$

(1.7)

The results of Equation (1.7) are then modeled as a function of rupture geometry and magnitude. The final model of the change in aleatory variability of 5% damped pseudo-spectral acceleration can be added to published GMPE aleatory variabilities to estimate the aleatory variability at a site explicitly including the effect of directivity.
2 Change in Mean and Standard Deviation of Ground Motion Due to Randomization of Hypocenters

2.1 INTRODUCTION

The change in mean and aleatory variability of the 5% damped pseudo-spectral acceleration experienced at a site due to the effect of directivity by randomizing over hypocenters is calculated for a suite of sites out to a rupture distance of 70 km. The change in pseudo-spectral acceleration is calculated using the Chiou and Youngs [2014] model. The rupture scenarios are given in Table 1.1, and the changes in mean and aleatory variability of 5% damped pseudo-spectral acceleration are calculated for the periods: 0.5, 0.75, 1, 1.5, 2, 3, 5, 7.5, and 10 sec. Figures of all of the 1, 3 and 5 sec results are shown in electronic Appendix A. Selected results are shown in the following sections.

2.2 STRIKE–SLIP RUPTURES

2.2.1 Directivity Parameter DPP

The change in the mean and aleatory variability of the ground motion is based on the directivity model from Chiou and Youngs [2014]. In order to understand the results of the hypocenter randomization, we first examine the directivity parameter DPP. The directivity parameter DPP is a function of three parameters: the length E, the parameter \hat{c}', and \overline{FS} [Spudich et al. 2013]. The length E is the length of fault from the hypocenter to the direct point. The parameter \hat{c}' is the isochrone velocity ratio, the ratio between the length E and the difference in arrival time of shear waves from the hypocenter and shear waves from the end of length E, normalized by the local shear-wave velocity [Spudich et al. 2004]. The parameter \overline{FS} is an average shear-wave radiation pattern along the length E.

The three parameters that are used to calculate DPP as well as DPP itself are presented in Figures 2.1—2.4 for two moment-magnitude 7 strike–slip ruptures. The first rupture has a hypocenter located in the middle of the rupture; the second has a hypocenter located 1 km from the left-hand edge of the rupture and 14 km down-dip, as shown in the figures.
Figure 2.1 The length of the fault from the hypocenter to the direct point (E) in kilometers for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.
Figure 2.2 The isochrone velocity ratio (\hat{c}') along the length of the fault from the hypocenter to the direct point for two moment-magnitude 7, strike–slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.
Figure 2.3 The average shear-wave radiation pattern (\overline{FS}) along the length of the fault from the hypocenter to the direct point for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.
Figure 2.4 The direct point parameter (DPP) for two moment-magnitude 7, strike-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 kilometers down-dip.
Figure 2.5 Histogram of direct point parameter (DPP) for three sites 20 km from moment-magnitude 7, strike-slip ruptures where the hypocenters have been randomly distributed using hypocenter distribution models from Chiou and Youngs [2008]. The location of the sites are shown in Figure 2.4 where site a is located 20 km to the left of the edge of the top of the rupture and sites b and c are located counterclockwise from site a.

These two example hypocenters show us the center and the extremes of the DPP distributions. If we look at three sites around the rupture, notice how the parameters \hat{c}', \overline{FS}, and E affect DPP and its distribution. At sites off the very ends of the rupture, \hat{c}' and \overline{FS} remain very similar and high for the two hypocenters, but E varies from 0 to 70 km; this change in E causes the DPP value to vary from moderate to high values. If we look at a histogram of DPP values as shown in Figure 2.5(a), most of the DPP values are high, but there is a small tail down to very low DPP values corresponding to those hypocenters where E is 0. At sites roughly 45° from the end of the rupture, the greatest variability of DPP values are seen as at these sites \overline{FS}
\overline{FS} and E are positively correlated; thus very small DPP values are calculated for near hypocenters, and very large DPP values are calculated for distant hypocenters. This is shown in Figure 2.5(b). Lastly, at sites off the sides of the rupture \overline{FS} and E are inversely correlated, resulting in moderate DPP values with little variability as shown in Figure 2.5(c).

2.2.2 Mean Change

The change in the mean is calculated using Equation (1.4), where the change in pseudo-spectral acceleration is calculated using the Chiou and Youngs [2014] model, for the five strike–slip rupture scenarios detailed in Table 1.1. The change in the mean for 5% damped pseudo-spectral acceleration at 3 sec is shown for moment magnitudes of 6–8 in Figures 2.6–2.10. The results of these calculations are consistent with the DPP values presented in the previous section. There is an increase in the mean off the ends of the rupture and a slight decrease off the sides for the larger magnitudes. The smaller magnitude ruptures do not have as much variability, thus their change looks more like a DPP map from a rupture with a hypocenter in the center of the rupture with a large increase in the mean off the ends of the rupture, no change off the sides, and a reduction in the mean for sites 45°-angle off strike.

![Figure 2.6](image)

Figure 2.6 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, strike–slip rupture.
Figure 2.7 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.

Figure 2.8 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture.
The period at which the peak directivity effect is located for each magnitude from the Chiou and Youngs [2014] model is predicted by the relationship between period and coefficient c_{8b} given in Table 2.1. The calculated change in the mean is shown for a magnitude 6.5 rupture at 1, 3 and 5 sec in Figures 2.11–2.13. These figures show that the effect peaks at 3 sec as predicted by this relationship. As the magnitude of the rupture increases, so does the peak calculated change in the mean, thus the amplitude of the peak effect for a magnitude 7 at 5 sec and shown in Figure 2.14, is larger than the peak effect for a magnitude 6.5 rupture at 3 sec and shown in Figure 2.12.
Table 2.1 Coefficient c_{8b} from Chiou and Youngs [2014].

<table>
<thead>
<tr>
<th>Period</th>
<th>c_{8b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>4.3745</td>
</tr>
<tr>
<td>0.5</td>
<td>4.6099</td>
</tr>
<tr>
<td>0.75</td>
<td>5.0376</td>
</tr>
<tr>
<td>1</td>
<td>5.3411</td>
</tr>
<tr>
<td>1.5</td>
<td>5.7688</td>
</tr>
<tr>
<td>2</td>
<td>6.0723</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>6.8035</td>
</tr>
<tr>
<td>5</td>
<td>7.0389</td>
</tr>
<tr>
<td>7.5</td>
<td>7.4666</td>
</tr>
</tbody>
</table>

Figure 2.11 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
Figure 2.12 Change in the mean of the natural log of the 5\% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.

Figure 2.13 Change in the mean of the natural log of the 5\% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
2.2.3 Standard Deviation Change Due to Randomization of Hypocenters

The change in the standard deviation due to randomization of hypocenters ($\phi_{\text{RandomHypocenters}}$) is calculated using Equation (1.5), where the change in pseudo-spectral acceleration is calculated using the Chiou and Youngs [2014] model, for the five strike–slip rupture scenarios detailed in Table 1.1. The calculated change in the standard deviation for 5% damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 7–8 in Figures 2.14–2.16. The results of these calculations are consistent with the DPP values presented in the previous section. There is an increase in the standard deviation at sites off the ends of the rupture and at sites that have an average of approximately 45° from strike.

The calculated change in the standard deviation is shown for a magnitude 6.5 rupture at 1, 3 and 5 sec in Figures 2.20–2.22. These figures show that the effect peaks at 3 sec as predicted by the relationship between period and c_{8b} from Table 2.1. As the magnitude of the rupture increases so does the peak calculated change in the standard deviation, thus the amplitude of the peak effect for a magnitude 7 at 5 sec and shown in Figure 2.23, is larger than the peak effect for a magnitude 6.5 rupture at 3 sec and shown in Figure 2.21.
Figure 2.15 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, strike–slip rupture.

Figure 2.16 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
Figure 2.17 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture.

Figure 2.18 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, strike–slip rupture.
Figure 2.19 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 8, strike–slip rupture.

Figure 2.20 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
Figure 2.21 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.

Figure 2.22 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
2.2.4 Total Standard Deviation Change

The total change in the standard deviation is calculated using Equation (1.7), where $\phi_{\text{RandomHypocenters}}$ is from Section 2.2.3 and $\phi_{\text{Reduction}}$ is shown in Figure 1.2, for the five strike-slip rupture scenarios detailed in Table 1.1. $\phi_{\text{Reduction}}$ is not magnitude or distance dependent, but does increase with increasing period. The combined effect of the two cancels out at higher periods and smaller magnitudes, and reducing it slightly below $\phi_{\text{RandomHypocenters}}$ at smaller periods and larger magnitudes. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for moment-magnitude 6–8 ruptures shown in Figures 2.24–2.28. The standard deviation for the moment-magnitude 6 rupture is zero at every site. For the larger magnitudes, the change in standard deviation is smaller than shown in Section 2.2.3 and though the peak effect still increases with increasing magnitude, it does so at a smaller rate than previously.
Figure 2.24 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, strike–slip rupture.

Figure 2.25 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
Figure 2.26 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, strike–slip rupture.

Figure 2.27 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, strike–slip rupture.
Figure 2.28 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiu and Youngs [2008] for a moment-magnitude 8, strike–slip rupture.

2.3 REVERSE RESULTS

2.3.1 Directivity Parameter DPP

The length E, isochrones velocity ratio (\hat{c}'), average shear-wave radiation (\overline{FS}), and DPP are presented in Figures 2.29—2.32 for two moments-magnitude 6.5 reverse ruptures. The first rupture has a hypocenter located in the middle of the rupture, and the second has a hypocenter located 1 km from the left-hand edge of the rupture and 14 km down-dip, as shown in the figures.
Figure 2.29 The length of the fault from the hypocenter to the direct point (E) in kilometers for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.
Figure 2.30 The isochrone velocity ratio (\hat{c}') along the length of the fault from the hypocenter to the direct point for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.
Figure 2.31 The average shear-wave radiation pattern (\overline{FS}) along the length of the fault from the hypocenter to the direct point for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.
Figure 2.32 The direct point parameter (DPP) for two moment-magnitude 6.5, dip-slip ruptures where the hypocenter of the upper figure is located at the center of the rupture and that of the lower is located 1 km from the left edge of the rupture length and 14 km down-dip.

These two example hypocenters show the center and the extremes of the DPP distributions. A study of the three sites around the rupture demonstrate how the parameters \hat{c}', \overline{FS}, and E effect DPP and its distribution. Similarly to the strike–slip results at sites off the very ends of the rupture, \hat{c}' and \overline{FS} are similar and high for both hypocenters, but E varies from 0 to 12 km; this change in E causes the DPP value to vary slightly but is generally moderate. At sites roughly 45° from the end of the rupture, the greatest variability of DPP values are seen at those sites where \overline{FS} and E are positively correlated; thus very small DPP values are calculated for sites near hypocenters, and moderate DPP values are calculated for more distant hypocenters. As shown in the histogram of DPP values in Figure 2.33c, most of the DPP values are moderate, but there is a tail down to very low DPP values corresponding to those hypocenters where \overline{FS} and E are small. For sites off the sides of the rupture, \overline{FS} and E are inversely correlated, resulting in less little variability; see Figures 2.33(b) and 2.33(a). Lastly, sites on the footwall side of the rupture have a larger \hat{c}' than hanging wall sites, resulting in larger DPP values as shown in Figures 2.33(b) and 2.33(a).
Figure 2.33 Histogram of direct point parameter (DPP) for three sites 20 km from moment-magnitude 6.5, dip-slip ruptures where the hypocenters have been randomly distributed using hypocenter distribution models from Chiou and Youngs [2008]. The location of the sites are shown in Figure 2.24 where the site a is located 14.7 km to the left and 19.12 km down from the left edge of the top of rupture and sites b and c are located clockwise from site a.

2.3.2 Mean Change

The change in the mean for the four reverse rupture scenarios detailed in Table 1.1 is calculated using Equation (1.4), where the change in pseudo-spectral acceleration is calculated using the Chiou and Youngs [2014] model. The change in the mean for 5% damped pseudo-spectral acceleration at 3 sec is shown for moment magnitudes of 6–7.5 in Figures 2.34–2.37. The results of these calculations are consistent with the DPP values presented in the previous section. There is an increase in the mean for those sites off the ends of the rupture, those that are approximately
45° off the end of the rupture, and footwall sites. There is a decrease in the mean for those sites on the hanging wall.

Figure 2.34 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6, reverse rupture.

Figure 2.35 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
The calculated change in the mean is shown for a magnitude 6.5 rupture at 1, 3 and 5 sec in Figures 2.38–2.40. These figures show that the effect peaks at 3 sec as predicted by the relationship between period and c_{8b} from Table 2.1. As the magnitude of the rupture increases, so does the peak calculated change in the mean; thus the amplitude of the peak effect for a magnitude 7 at 5 sec (see Figure 2.41) is larger than the peak effect for a magnitude 6.5 rupture at 3 sec (see Figure 2.39).
Figure 2.38 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.

Figure 2.39 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
Figure 2.40 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.

Figure 2.41 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture.
2.3.3 Standard Deviation Change Due to Randomization of Hypocenters

The change in the standard deviation due to randomization of hypocenters ($\phi_{\text{RandomHypocenters}}$) is calculated for the four reverse rupture scenarios detailed in Table 1.1 using Equation (1.5), where the change in pseudo-spectral acceleration is calculated using the Chiou and Youngs [2014] model. The change in the mean for 5% damped pseudo-spectral acceleration at 3 sec is shown for moment magnitudes of 6–7.5 in Figures 2.42–2.45. The results of these calculations are consistent with the DPP values presented in the previous section. The change in standard deviation is largest over the hanging wall side of the rupture. This is the area where sites experience both shear wave maxima and minima, resulting in large variability.

The calculated change in the standard deviation is shown for a magnitude 6.5 rupture at 1, 3 and 5 sec shown in Figures 2.45–2.47. These figures show that the effect peaks at 3 sec as predicted by the relationship between period and c_{8b} from Table 2.1. In contrast to the strike–slip results and mean results, as the magnitude of the rupture increases, the peak calculated change in the standard deviation does not increase. The amplitude of the peak effect for a magnitude 7 at 5 sec (see Figure 2.48) is the same as the peak effect for a magnitude 6.5 rupture at 3 sec (see Figure 2.46).

![Figure 2.42](image-url)

Figure 2.42 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
Figure 2.43 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture.

Figure 2.44 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture.
Figure 2.45 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 1 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.

Figure 2.46 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
Figure 2.47 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.

Figure 2.48 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 5 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture.
Figure 2.49 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs (2008) for a moment-magnitude 6, reverse rupture.

Figure 2.50 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
2.3.4 Total Standard Deviation Change

The total change in the standard deviation is calculated using Equation (1.7) for the four reverse rupture scenarios detailed in Table 1.1, where $\phi_{RandomHypocenters}$ is from Section 2.2.3 and $\phi_{Reduction}$ is shown in Figure 1.2. As shown in Figure 1.2, the ϕ_2 reduction is larger than the change in standard deviation for periods of 5 and greater and for the magnitude 6 change in standard deviation. This results in a zero change in the standard deviation at long periods and small magnitudes. For periods less than 5, the maximum total change in standard deviation is on the order of 0.1–0.17 or less for all magnitudes. The peak total change in standard deviation for each magnitude occurs at a period of 3 sec. The total change in standard deviation for 5% damped pseudo-spectral acceleration at 3 sec is shown for magnitudes 6–7.5 in Figures 2.49–2.52.

![Figure 2.51](image_url)

Figure 2.51 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture.
Figure 2.52 Total change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture.
3 Models of Change in Ground Motion Mean and Standard Deviation

3.1 BASIC MODEL

The basic model for the directivity adjustment is the same for both strike–slip and reverse ruptures for both the mean and sigma. The basic model for the adjustment is given by:

\[
\text{Adjustment} = \frac{c_{8,\text{revised}}}{c_{8,\text{original}}} \cdot e^{b(M_{\text{mag}}-c_{8b})^2} \cdot \text{Taper} _\text{Dist} \cdot \text{Taper} _\text{Mag} \cdot \text{Dir} _\text{Factor}
\]

(3.1)

The first term of the model is the ratio of a revised \(c_8\) coefficient developed by Brian Chiou in 2014 (Personal communication) with the original \(c_8\) coefficient having a value of 0.2154 [Chiou and Youngs 2014]. This term reduces the directivity effect to zero at periods less than 0.5 sec. The second term creates a peak in the directivity effect at a period of \(c_{8b}\) as a function of magnitude. The form of the peak as well as the \(c_{8b}\) coefficients are from Chiou and Youngs [2014] and are given in Table 3.1.

<table>
<thead>
<tr>
<th>Period</th>
<th>(c_8) revised</th>
<th>(c_{8b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>0</td>
<td>4.3745</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0991</td>
<td>4.6099</td>
</tr>
<tr>
<td>0.75</td>
<td>0.1982</td>
<td>5.0376</td>
</tr>
<tr>
<td>1</td>
<td>0.2154</td>
<td>5.3411</td>
</tr>
<tr>
<td>1.5</td>
<td>0.2154</td>
<td>5.7688</td>
</tr>
<tr>
<td>2</td>
<td>0.2154</td>
<td>6.0723</td>
</tr>
<tr>
<td>3</td>
<td>0.2154</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>0.2154</td>
<td>6.8035</td>
</tr>
<tr>
<td>5</td>
<td>0.2154</td>
<td>7.0389</td>
</tr>
<tr>
<td>7.5</td>
<td>0.2154</td>
<td>7.4666</td>
</tr>
<tr>
<td>10</td>
<td>0.2154</td>
<td>7.77</td>
</tr>
</tbody>
</table>

Table 3.1 Coefficient \(c_8\) and \(c_{8b}\) from Chiou and Youngs [2014].
Two tapers are applied to the directivity model by Chiou and Youngs [2014]. These tapers are used as a basis for the tapers on the change in mean and standard deviation. The distance taper is as follows:

\[
Taper_{\text{Dist}} = \max \left(1 - \frac{\max (Rrup - 40, 0)}{30}, 0 \right)
\]

(3.2)

where \(Rrup \) is the rupture distance in kilometers. The magnitude taper is as follows:

\[
Taper_{\text{Mag}} = \min \left(\frac{\max (Mag - 5.5, 0)}{0.8}, 1 \right)
\]

(3.3)

where \(Mag \) is the moment magnitude of the rupture.

3.2 STRIKE–SLIP MODEL

3.2.1 Mean Model

The \(\text{Dir_Factor} \) term for the change in mean of 5% damped pseudo-spectral acceleration for strike–slip ruptures is as follows:

\[
\text{Dir_Factor}_{SS} = b_0 + b_1 \left(\max \left(\text{RyRatio} \cdot \cos \theta, 0.5 \right) \right) + b_2 \left(\max \left(\text{RyRatio} \cdot \cos \theta, 0.5 \right)^2 \right) + b_3 \left(\max \left(\text{RyRatio} \cdot \cos \theta, 0.5 \right)^3 \right)
\]

(3.4)

where \(\text{RyRatio} \) and \(\cos \theta \) are as follows.

\(\text{RyRatio} \) is a measure of where the site is along the length of the rupture and is given by:

\[
\text{RyRatio} = \min \left(\frac{|\text{Ry}|}{\text{Length} / 2}, 1 \right)
\]

(3.5)

where \(\text{Ry} \) is the site coordinate parallel to the strike of the surface projection of the rupture where zero is the center of the top of rupture in kilometers. For bending faults, the generalized coordinate system [Spudich and Chiou 2015] is used to calculate \(\text{Ry} \), and \(\text{Length} \) is the length of the fault in kilometers.

The average value of \(\cos \theta \) evaluated over the length of the surface projection of the top of rupture is \(\cos \theta \), and where \(\theta \) is the angle between the ray from a point on the surface of rupture to the site and the ray from the same point along the strike. This is calculated using the following equation:

\[
\frac{\cos \theta}{\text{Length}} = \frac{(\text{Ry} + \text{Length} / 2) - 2 |\text{Rx}| \cdot \text{ArcTangent} \left(\frac{\text{Ry} + \text{Length} / 2}{|\text{Rx}|} \right) - (\text{Ry} - \text{Length} / 2) - 2 |\text{Rx}| \cdot \text{ArcTangent} \left(\frac{\text{Ry} - \text{Length} / 2}{|\text{Rx}|} \right)}{\text{Length}}
\]

(3.6)
where Rx is the site coordinate perpendicular to the strike of the surface projection of the top of rupture where zero is the center of the top of rupture and the positive direction is over the hanging wall (if any) in kilometers, and Ry, and $Length$ are as described above.

The distance and magnitude tapers from Chiou and Youngs [2014] are modified to better fit the results. The peak change in the mean has a peak value at approximately 40 km from the rupture and decreases towards the rupture. Thus the distance taper is changed to the following:

$$Taper_\text{Dist} = \begin{cases}
Rrup < r_0 & r_0 \left(\frac{Rrup - r_0}{r_0} \right) + 1 \\
else & \max\left(1 - \frac{\max(Rrup - 40, 0)}{30}, 0\right)
\end{cases}$$

(3.7)

where $Rrup$ is the rupture distance in kilometers.

The peak change in the mean increases with magnitude, thus the magnitude taper is changed to the following:

$$Taper_\text{Mag} = \begin{cases}
Mag < 6.3 & \frac{\max(Mag - 5.5, 0)}{0.8} \\
else & 1 + m_1(Mag - 6.3) + m_2(Mag - 6.3)^2
\end{cases}$$

(3.8)

where Mag is the moment magnitude of the rupture.

Coefficients for the model of the change in mean for strike–slip ruptures were estimated using a least-squares regressions and are given in Table 3.2. The model and data for 5% damped pseudo-spectral acceleration at 3 sec are shown with respect to the combined parameter $RyRatio*\cos2\theta$ for moment-magnitudes 6–8 shown in Figures 3.1–3.5.

Table 3.2 Coefficients for model of change in mean for strike–slip ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.110972</td>
<td>0.000245</td>
</tr>
<tr>
<td>b_1</td>
<td>0.0345899</td>
<td>0.000279</td>
</tr>
<tr>
<td>b_2</td>
<td>0.433312</td>
<td>0.001190</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.128870</td>
<td>0.000815</td>
</tr>
<tr>
<td>r_0</td>
<td>16.7488</td>
<td>0.065292</td>
</tr>
<tr>
<td>r_1</td>
<td>0.574546</td>
<td>0.001269</td>
</tr>
<tr>
<td>m_1</td>
<td>0.948640</td>
<td>0.006477</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.436357</td>
<td>0.003069</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.269998</td>
<td>0.000415</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.015801</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.1 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, strike–slip rupture.

Figure 3.2 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, strike—slip rupture.
Figure 3.3 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, strike–slip rupture.

Figure 3.4 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, strike–slip rupture.
3.2.2 Standard Deviation Model

The *Dir_Factor* term and tapers for the change in standard deviation of 5% damped pseudo-spectral acceleration for strike–slip ruptures are the same as for the median and are given in Equations (3.4), (3.7) and (3.8), respectively. Coefficients for the model for the change in standard deviation for strike slip were estimated using a least-squares regressions and are given in Table 3.3. The model and data for 5% damped pseudo-spectral acceleration at 3 sec are shown with respect to the combined parameter $RyRatio \cdot \cos^2 \theta$ for moment-magnitudes 6–8 shown in Figures 3.6–3.10.
Table 3.3 Coefficients for model of change in standard deviation for strike–slip ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0.0160638</td>
<td>0.000218</td>
</tr>
<tr>
<td>b_1</td>
<td>0.102589</td>
<td>0.001127</td>
</tr>
<tr>
<td>b_2</td>
<td>0.174049</td>
<td>0.001653</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.273383</td>
<td>0.002450</td>
</tr>
<tr>
<td>r_o</td>
<td>17.4688</td>
<td>0.211929</td>
</tr>
<tr>
<td>r_1</td>
<td>0.627373</td>
<td>0.003879</td>
</tr>
<tr>
<td>m_1</td>
<td>0.578942</td>
<td>0.022945</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.308831</td>
<td>0.010811</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.0554069</td>
<td>0.000640</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0311712</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.6 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, strike–slip rupture.
Figure 3.7 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, strike–slip rupture.

Figure 3.8 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, strike–slip rupture.
Figure 3.9 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, strike–slip rupture.

Figure 3.10 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 8, strike–slip rupture.
3.3 REVERSE MODEL

3.3.1 Mean Model

The \textit{Dir_Factor} term for the change in mean of 5\% damped pseudo-spectral acceleration for reverse ruptures is as follows:

\[
\text{Dir_Factor}_{\text{RV}} = \left\{ b_0 + b_1 \left(\text{RyRatio} \cdot \sin 2\theta' \cdot \text{HW} \right) + b_2 \left(\text{RyRatio} \cdot \sin 2\theta' \cdot \text{HW} \right)^2 + b_3 \left(\text{RyRatio} \cdot \sin 2\theta' \cdot \text{HW} \right)^3 \right. \\
+ b_4 \cos 2\phi' + b_5 \cos 2\phi + b_6 \cos 2\phi^3 + \\
b_7 \left(\text{RyRatio} \cdot \cos 2\theta' \right) + b_8 \left(\text{RyRatio} \cdot \cos 2\theta' \right)^2 + b_9 \left(\text{RyRatio} \cdot \cos 2\theta' \right)^3 \right\}
\]

(3.9)

where \text{RyRatio} is defined using Equation (3.5), and \text{HW} is -1 on the hanging-wall side of the rupture and 1 elsewhere; \cos 2\phi, \cos 2\theta', and \sin 2\theta' are defined below.

\cos 2\phi is the average value of \cos 2\phi evaluated in the plane perpendicular to rupture over the width of the rupture, and where \phi is the angle between the ray from a point on the rupture to the site and the ray from the same point up dip. This is calculated using the following equation:

\[
\frac{(Rx \sin \delta) - 2[Rx \cos \delta] \cdot \text{ArcTangent} \left(\frac{Rx \sin \delta}{Rx \cos \delta} \right)}{\text{Width}} + \left(\frac{(Rx \sin \delta - \text{Width}) \cdot 2[Rx \cos \delta] \cdot \text{ArcTangent} \left(\frac{Rx \sin \delta - \text{Width}}{Rx \cos \delta} \right)}{\text{Width}} \right)
\]

(3.10)

where \text{Rx} is the site coordinate perpendicular to the strike of the surface projection of the top of rupture where zero is the center of the top of rupture and the positive direction is over the hanging wall (if any) in kilometers. \text{Ry} is the site coordinate parallel to the strike of the surface projection of the rupture where zero is the center of the top of rupture in kilometers, \delta is the dip, and \text{Width} is the width of the rupture in kilometers. For bending faults, the generalized coordinate system 2 is used to calculate \text{Rx} and \text{Ry} [Spudich and Chiou 2015].

The average value of \cos 2\theta' evaluated on the line halfway down-dip of the rupture projected onto the surface is \cos 2\theta'. This is calculated using Equation (3.6) and exchanging \text{Rx} with coordinate \text{Rx'} calculated from the center of the fault. \text{Rx'} is calculated as follows:

\[
\text{Rx'} = \text{Rx} + \text{Width} \cdot \cos \delta
\]

(3.11)

where \text{Rx} is defined above, \delta is the dip, and \text{Width} is the width of the rupture in kilometers.

The average value of \sin 2\theta' evaluated on the line halfway down-dip of the rupture projected onto the surface is \sin 2\theta'. This is calculated as follows
\[
\frac{\sin 2\theta'}{\sin 2\theta} = \left| \frac{Rx' \ln \left(\frac{Ry + \frac{\text{Length}}{2} + Rx'^2}{2} \right) - |Rx'| \ln \left(\frac{Ry - \frac{\text{Length}}{2} + Rx'^2}{2} \right)}{\text{Length}} \right|
\]

where \(Rx' \) and \(Ry \) are defined above, and \(\text{Length} \) is the length of the rupture in kilometers.

The distance and magnitude tapers from Chiou and Youngs [2014] are modified to better fit the results. The change in the mean becomes closer to zero at sites close to the rupture. Thus the distance taper is changed to the following:

\[
\text{Taper}_\text{Dist} = \begin{cases}
Rrup < r_0 & \frac{r_1 \left(\frac{Rrup - r_0}{r_0} \right)}{r_1 + 1} \\
\text{else} & \max \left(1 - \frac{\max (Rrup - 40, 0)}{30}, 0 \right)
\end{cases}
\]

where \(Rrup \) is the rupture distance in kilometers.

The peak change in the mean increases with magnitude and the magnitude taper is changed to allow for this. The updated magnitude taper is given by:

\[
\text{Taper}_\text{Mag} = \begin{cases}
\text{Mag} < 6.3 & \frac{\max (\text{Mag} - 5.5, 0)}{0.8} \\
\text{else} & 1 + m_i (\text{Mag} - 6.3) + m_2 (\text{Mag} - 6.3)^2
\end{cases}
\]

where \(\text{Mag} \) is the moment magnitude of the rupture.

Coefficients for the model for the change in mean for reverse ruptures were estimated using a least-squares regressions and are given in Table 3.4. The model and data for 5\% damped pseudo-spectral acceleration at 3 sec are shown with respect to the combined parameters

\(\text{RyRatio} \cdot \sin 2\theta' \), \(\cos 2\phi \), and \(\text{RyRatio} \cdot \cos 2\theta' \) for moment-magnitudes 6–7.5 in Figures 3.11–3.14.
Table 3.4 Coefficients for model of change in mean for reverse ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.0670606</td>
<td>0.000429</td>
</tr>
<tr>
<td>b_1</td>
<td>-0.0309605</td>
<td>0.000476</td>
</tr>
<tr>
<td>b_2</td>
<td>0.0743133</td>
<td>0.000486</td>
</tr>
<tr>
<td>b_3</td>
<td>0.0640140</td>
<td>0.000647</td>
</tr>
<tr>
<td>b_4</td>
<td>-0.0520015</td>
<td>0.000505</td>
</tr>
<tr>
<td>b_5</td>
<td>0.0844005</td>
<td>0.000734</td>
</tr>
<tr>
<td>b_6</td>
<td>0.0940033</td>
<td>0.000997</td>
</tr>
<tr>
<td>b_7</td>
<td>0.0422176</td>
<td>0.000426</td>
</tr>
<tr>
<td>b_8</td>
<td>0.0284827</td>
<td>0.000612</td>
</tr>
<tr>
<td>b_9</td>
<td>0.00423869</td>
<td>0.000678</td>
</tr>
<tr>
<td>r_o</td>
<td>6.43713</td>
<td>0.078280</td>
</tr>
<tr>
<td>r_1</td>
<td>0.652545</td>
<td>0.013126</td>
</tr>
<tr>
<td>m_1</td>
<td>1.46839</td>
<td>0.028011</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.657629</td>
<td>0.018571</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.269943</td>
<td>0.001484</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0244068</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.11 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, reverse rupture.
Figure 3.12 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, reverse rupture.
Figure 3.13 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, reverse rupture.
Figure 3.14 Data and model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, reverse rupture.
3.3.2 Standard Deviation Model

The change in the standard deviation with the ϕ_2 reduction is zero for periods of 5 sec and greater and for small magnitudes. For the other magnitudes and periods, the peak effect is approximately 0.2 at 3 sec. When combined with the total standard deviation from published GMPEs, this increases the variability by 0.03. Given the small increase in the standard deviation and limited periods and magnitudes to which it would be applied, the change in standard deviation to account for the effect of directivity for reverse ruptures is negligibly small and can be ignored for most engineering applications.

A model is developed for engineering applications that wish to include an equation for the change in standard deviation for reverse ruptures. This model smooths out the increase in standard deviation so that it can be applied to a broader range of periods and magnitudes than it is calculated for. The Dir_Factor term and distance taper for the change in standard deviation of 5% damped pseudo-spectral acceleration for reverse ruptures are the same as for the mean and are given in Equations (3.9) and (3.12), respectively. The magnitude taper is the same as that used by Chiou and Youngs [2014] and is given in Equation (3.3).

Coefficients for the model for the change in standard deviation for reverse ruptures were estimated using a least-squares regression and are given in Table 3.5. The model and data for 5% damped pseudo-spectral acceleration at 3 sec are shown with respect to the combined parameters $\text{RyRatio}\cdot\cos2\theta$ and $(1-\text{RyRatio})\cdot\cos2\phi$ for moment-magnitudes 6–7.5 in Figures 3.15–3.18. These figures show the maximum misfit between the data and the model.
Table 3.5 Coefficients for model of change in standard deviation for reverse ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0.0622329</td>
<td>0.000561</td>
</tr>
<tr>
<td>b_1</td>
<td>0.00164904</td>
<td>0.000928</td>
</tr>
<tr>
<td>b_2</td>
<td>-0.00823970</td>
<td>0.000622</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.00421270</td>
<td>0.001025</td>
</tr>
<tr>
<td>b_4</td>
<td>0.0160663</td>
<td>0.000941</td>
</tr>
<tr>
<td>b_5</td>
<td>-0.0145000</td>
<td>0.001132</td>
</tr>
<tr>
<td>b_6</td>
<td>-0.00926689</td>
<td>0.001770</td>
</tr>
<tr>
<td>b_7</td>
<td>0.0115074</td>
<td>0.000829</td>
</tr>
<tr>
<td>b_8</td>
<td>-0.00179300</td>
<td>0.000696</td>
</tr>
<tr>
<td>b_9</td>
<td>-0.0104468</td>
<td>0.001198</td>
</tr>
<tr>
<td>r_0</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>r_1</td>
<td>0.680677</td>
<td>0.017850</td>
</tr>
<tr>
<td>m_1</td>
<td>-0.724118</td>
<td>0.012627</td>
</tr>
<tr>
<td>m_2</td>
<td>0.100161</td>
<td>0.010090</td>
</tr>
<tr>
<td>b_M</td>
<td>0.0443404</td>
<td>0.001382</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0265229</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.15 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6, reverse rupture.
Figure 3.16 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 6.5, reverse rupture.
Figure 3.17 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7, reverse rupture.
Figure 3.18 Data and model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models for a moment-magnitude 7.5, reverse rupture.
4 Effect of Hypocenter Distribution

4.1 ALTERNATIVE HYPOCENTER DISTRIBUTIONS

Hypocenter distribution models from Chiou and Youngs [2008] were used for the results in Sections 4.2 and 4.3. An analysis of hypocenter locations was performed to determine if the hypocenter distribution model should be updated. The analysis, given in electronic Appendix D, shows that the along-strike hypocenter distribution was clustered too close to the center for strike–slip ruptures, and that the along-strike distribution should be closer to uniform or favor unilateral ruptures. A sensitivity analysis of the strike-slip and reverse models was performed to determine what effect the updated hypocenter distribution model or a uniform distribution model would have on the results. Figures of all of the 1, 3 and 5 sec results using the uniform hypocenter distribution are shown in electronic Appendix B. Figures of all of the 1, 3 and 5 sec results using the electronic Appendix D hypocenter distribution are shown in electronic Appendix C. Selected results are shown in the following sections.

4.1.1 Strike-Slip Hypocenter Distributions

Three hypocenter distributions were used along the strike: Chiou and Youngs [2008], uniform, and the distribution given in electronic Appendix D. These distributions are shown in Figure 4.1. Two down-dip hypocenter distributions were used: Chiou and Youngs [2008] and uniform. These distributions are shown in Figure 4.2.
4.1.2 Reverse Hypocenter Distributions

Two hypocenter distributions were used along the strike: Chiou and Youngs [2008] and uniform. These distributions are shown in Figure 4.3. Two down-dip hypocenter distributions were used: Chiou and Youngs [2008] and uniform. These distributions are shown in Figure 4.4.
4.2 STRIKE–SLIP RESULTS

4.2.1 Mean Results

The change in the mean of 5% damped pseudo-spectral acceleration was calculated for strike–slip ruptures using a uniform hypocenter distribution and the hypocenter distribution from electronic Appendix D. Compared with the change calculated using the Chiou and Youngs
[2008] hypocenter distribution, the largest effect was found using the Chiou and Youngs [2008] hypocenter distribution and the smallest for the hypocenter distribution from electronic Appendix D. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for a moment-magnitude 6.5 strike–slip earthquake shown in Figures 4.5–4.7.

Figure 4.5 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture.
4.2.2 Additional Mean Models

Coefficients were estimated for the change in the mean of 5% damped pseudo-spectral acceleration for strike–slip ruptures using both a uniform hypocenter distribution and the hypocenter distribution from electronic Appendix D. The coefficients can be found in Tables 4.1 and 4.2. The models are compared with the model calculated using the Chiou and Youngs [2008] hypocenter distribution for a site 20 km off the end of a moment-magnitude 7.5 strike–slip rupture with a R_x value of 0 km. The comparison is shown in Figure 4.8.
Table 4.1 Coefficients for model of change in mean using a uniform hypocenter distribution for strike–slip ruptures

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.103586</td>
<td>0.000215</td>
</tr>
<tr>
<td>b_1</td>
<td>0.0119421</td>
<td>0.000276</td>
</tr>
<tr>
<td>b_2</td>
<td>0.358110</td>
<td>0.001024</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.0200015</td>
<td>0.000784</td>
</tr>
<tr>
<td>r_0</td>
<td>17.4501</td>
<td>0.064851</td>
</tr>
<tr>
<td>r_1</td>
<td>0.680090</td>
<td>0.001381</td>
</tr>
<tr>
<td>m_1</td>
<td>0.959704</td>
<td>0.005838</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.571625</td>
<td>0.002972</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.269678</td>
<td>0.000456</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0142550</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 Coefficients for model of change in mean using Appendix D hypocenter distribution for strike–slip ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.080707</td>
<td>0.000221</td>
</tr>
<tr>
<td>b_1</td>
<td>-0.0130894</td>
<td>0.000287</td>
</tr>
<tr>
<td>b_2</td>
<td>0.270306</td>
<td>0.001033</td>
</tr>
<tr>
<td>b_3</td>
<td>0.0358174</td>
<td>0.000798</td>
</tr>
<tr>
<td>r_0</td>
<td>19.0763</td>
<td>0.085385</td>
</tr>
<tr>
<td>r_1</td>
<td>0.770570</td>
<td>0.001680</td>
</tr>
<tr>
<td>m_1</td>
<td>1.37281</td>
<td>0.008674</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.807316</td>
<td>0.004450</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.269628</td>
<td>0.000565</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0155178</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.8 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models, uniform hypocenter distribution model, and hypocenter distribution model from Appendix D for a site 20 km from the end of a moment-magnitude 7.5, strike–slip rupture with a R_x value of 0 km.

4.2.3 Standard Deviation Results

The change in the standard deviation of 5% damped pseudo-spectral acceleration for strike–slip ruptures was calculated using a uniform hypocenter distribution and the hypocenter distribution from electronic Appendix D. Compared with the change calculated using the Chiou and Youngs [2008] hypocenter distribution, the largest effect is seen for the hypocenter distribution from electronic Appendix D and smallest for the Chiou and Youngs [2008] hypocenter distribution. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for a moment-magnitude 6.5 strike–slip earthquake in Figures 4.9–4.11.
Figure 4.9 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture with ϕ_2 reduction.

Figure 4.10 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution for a moment-magnitude 6.5, strike–slip rupture with ϕ_2 reduction.
Figure 4.11 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distributions model from Appendix D for a moment-magnitude 6.5, strike–slip rupture with ϕ_2 reduction.

4.2.4 Additional Standard Deviation Models

Coefficients were estimated for the change in the standard deviation of 5% damped pseudo-spectral acceleration for strike–slip ruptures using both a uniform hypocenter distribution and the hypocenter distribution from electronic Appendix D. The coefficients can be found in Tables 4.3 and 4.4. The models are compared with the model calculated using the Chiou and Youngs [2008] hypocenter distribution for a site 20 km off the end of a moment-magnitude 7.5 strike–slip rupture with a R_x value of 0 km. The comparison is shown in Figure 4.12.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0.0113618</td>
<td>0.000202</td>
</tr>
<tr>
<td>b_1</td>
<td>0.141932</td>
<td>0.001270</td>
</tr>
<tr>
<td>b_2</td>
<td>0.303622</td>
<td>0.002162</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.408713</td>
<td>0.002918</td>
</tr>
<tr>
<td>r_o</td>
<td>13.3528</td>
<td>0.076369</td>
</tr>
<tr>
<td>r_1</td>
<td>0.747826</td>
<td>0.002984</td>
</tr>
<tr>
<td>m_1</td>
<td>0.838457</td>
<td>0.020591</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.398519</td>
<td>0.009572</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.111522</td>
<td>0.000629</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0360734</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.4 Coefficients for model of change in standard deviation using Appendix D hypocenter distribution for strike–slip ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0.00657229</td>
<td>0.000195</td>
</tr>
<tr>
<td>b_1</td>
<td>0.154046</td>
<td>0.001278</td>
</tr>
<tr>
<td>b_2</td>
<td>0.351609</td>
<td>0.002308</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.446410</td>
<td>0.002964</td>
</tr>
<tr>
<td>r_o</td>
<td>13.1910</td>
<td>0.068559</td>
</tr>
<tr>
<td>r_1</td>
<td>0.748240</td>
<td>0.002748</td>
</tr>
<tr>
<td>m_1</td>
<td>0.741209</td>
<td>0.018492</td>
</tr>
<tr>
<td>m_2</td>
<td>-0.315181</td>
<td>0.008461</td>
</tr>
<tr>
<td>b_M</td>
<td>-0.129245</td>
<td>0.000621</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0369480</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.12 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiu and Youngs [2008] hypocenter distribution models, uniform hypocenter distribution model, and hypocenter distribution model from Appendix D for a site 20 km from the end of a moment-magnitude 7.5, strike–slip rupture with a R_x value of 0 km.
4.3 REVERSE RESULTS

4.3.1 Mean Results

The change in the mean of 5% damped pseudo-spectral acceleration for reverse ruptures was calculated using a uniform hypocenter distribution. Compared with the change calculated using the Chiou and Youngs [2008] hypocenter distribution, the effect is largest for the Chiou and Youngs [2008] hypocenter distribution. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for a moment-magnitude 6.5 reverse earthquake shown in Figures 4.13 and 4.14.

Figure 4.13 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.

Figure 4.14 Change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution a moment-magnitude 6.5, reverse rupture.
4.3.2 Additional Mean Model

Coefficients were estimated for the change in the mean of 5% damped pseudo-spectral acceleration for reverse ruptures using a uniform hypocenter distribution. The coefficients can be found in Table 4.5. The model is compared with the model calculated using the Chiou and Youngs [2008] hypocenter distribution for a site over the hanging wall with a rupture distance of 20 km and \(R_y \) value of 0 km. The comparison is shown in Figure 4.15.

Table 4.5 Coefficients for model of change in mean using uniform hypocenter distribution for reverse ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>-0.0559015</td>
<td>0.000396</td>
</tr>
<tr>
<td>(b_1)</td>
<td>-0.0339914</td>
<td>0.000422</td>
</tr>
<tr>
<td>(b_2)</td>
<td>0.0686994</td>
<td>0.000479</td>
</tr>
<tr>
<td>(b_3)</td>
<td>0.0609142</td>
<td>0.000588</td>
</tr>
<tr>
<td>(b_4)</td>
<td>0.00549400</td>
<td>0.000365</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.0646359</td>
<td>0.000617</td>
</tr>
<tr>
<td>(b_6)</td>
<td>0.0107670</td>
<td>0.000701</td>
</tr>
<tr>
<td>(b_7)</td>
<td>0.0433411</td>
<td>0.000401</td>
</tr>
<tr>
<td>(b_8)</td>
<td>0.00376510</td>
<td>0.000509</td>
</tr>
<tr>
<td>(b_9)</td>
<td>0.0186525</td>
<td>0.000568</td>
</tr>
<tr>
<td>(r_0)</td>
<td>47.3150</td>
<td>0.302286</td>
</tr>
<tr>
<td>(r_1)</td>
<td>0.546951</td>
<td>0.003090</td>
</tr>
<tr>
<td>(m_1)</td>
<td>1.57341</td>
<td>0.029154</td>
</tr>
<tr>
<td>(m_2)</td>
<td>-0.434900</td>
<td>0.018083</td>
</tr>
<tr>
<td>(b_M)</td>
<td>-0.270149</td>
<td>0.001336</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0186421</td>
<td></td>
</tr>
</tbody>
</table>
4.3.3 Standard Deviation Results

The change in the standard deviation of 5% damped pseudo-spectral acceleration for reverse ruptures was calculated using a uniform hypocenter distribution. Compared with the change calculated using the Chiou and Youngs [2008] hypocenter distribution, the effect is largest for the uniform hypocenter distribution. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for a moment-magnitude 6.5 reverse earthquake shown in Figures 4.16 and 4.17.
Figure 4.16 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution models from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture with ϕ_2 reduction.

Figure 4.17 Change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using a uniform hypocenter distribution for a moment-magnitude 6.5, reverse rupture with ϕ_2 reduction.
4.3.4 Additional Standard Deviation Model

Coefficients were estimated for the change in the standard deviation of 5% damped pseudo-spectral acceleration for reverse ruptures using a uniform hypocenter distribution. The coefficients can be found in Table 4.6. The model is compared with the model calculated using the Chiou and Youngs [2008] hypocenter distribution for a site over the hanging wall with a rupture distance of 20 km and \(R_y \) value of 0 km. The comparison is shown in Figure 4.18.

Table 4.6 Coefficients for model of change in standard deviation using uniform hypocenter distribution for reverse ruptures.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>0.0792172</td>
<td>0.000759</td>
</tr>
<tr>
<td>(b_1)</td>
<td>0.0143492</td>
<td>0.001223</td>
</tr>
<tr>
<td>(b_2)</td>
<td>-0.00618220</td>
<td>0.000846</td>
</tr>
<tr>
<td>(b_3)</td>
<td>-0.0208327</td>
<td>0.001319</td>
</tr>
<tr>
<td>(b_4)</td>
<td>0.0183605</td>
<td>0.001217</td>
</tr>
<tr>
<td>(b_5)</td>
<td>-0.0123780</td>
<td>0.001454</td>
</tr>
<tr>
<td>(b_6)</td>
<td>-0.00522741</td>
<td>0.002243</td>
</tr>
<tr>
<td>(b_7)</td>
<td>0.0193431</td>
<td>0.001117</td>
</tr>
<tr>
<td>(b_8)</td>
<td>0.00155917</td>
<td>0.000895</td>
</tr>
<tr>
<td>(b_9)</td>
<td>-0.0120129</td>
<td>0.001567</td>
</tr>
<tr>
<td>(r_0)</td>
<td>11.1623</td>
<td>0.245612</td>
</tr>
<tr>
<td>(r_1)</td>
<td>0.378549</td>
<td>0.012649</td>
</tr>
<tr>
<td>(m_1)</td>
<td>-0.543070</td>
<td>0.012361</td>
</tr>
<tr>
<td>(m_2)</td>
<td>-0.0602970</td>
<td>0.009931</td>
</tr>
<tr>
<td>(b_M)</td>
<td>0.00752281</td>
<td>0.001375</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.0319598</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.18 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration due to the randomization of hypocenters using Chiou and Youngs [2008] hypocenter distribution models and uniform hypocenter distribution model for a site over the hanging wall of a moment-magnitude 6.5, reverse rupture, with a rupture distance of 20 km and a \(R_y \) value of 0 km.
5 Preferred Models

5.1 PREFERRED STRIKE–SLIP MODELS

The preferred strike–slip rupture models are those developed using the along-strike hypocenter distribution from Appendix D and the down-dip hypocenter distribution from Chiou and Youngs [2008]. The coefficients for these models are found in Tables 4.2 and 4.4. The model for the change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 6 through 8 in Figures 5.1–5.5. The model for the change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 6 through 8 in Figures 5.6–5.10.

Figure 5.1 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6, strike–slip rupture.
Figure 5.2 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6.5, strike–slip rupture.

Figure 5.3 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7, strike–slip rupture.
Figure 5.4 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7.5, strike–slip rupture.

Figure 5.5 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 8, strike–slip rupture.
Figure 5.6 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6, strike–slip rupture.

Figure 5.7 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 6.5, strike–slip rupture.
Figure 5.8 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7, strike–slip rupture.

Figure 5.9 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 7.5, strike–slip rupture.
Figure 5.10 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Appendix D for a moment-magnitude 8, strike–slip rupture.33.

5.2 PREFERRED REVERSE MODELS

The preferred reverse rupture models are those developed using the along-strike and down-dip hypocenter distributions from Chiou and Youngs [2008]. The coefficients for these models are found in Tables 3.4 and 3.5. The model for the change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 6–7.5 in Figures 5.11–5.14. The model for the change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 6–7.5 in Figures 5.15–5.18.
Figure 5.11 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6, reverse rupture.

Figure 5.12 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
Figure 5.13 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture.

Figure 5.14 Model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 7.5, reverse rupture.
Figure 5.15 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6, reverse rupture.

Figure 5.16 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 6.5, reverse rupture.
Figure 5.17 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008] for a moment-magnitude 7, reverse rupture.

Figure 5.18 Model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec due to the randomization of hypocenters using hypocenter distribution model from Chiou and Youngs [2008].
5.3 EXAMPLE APPLICATION

Example calculations are performed at three sites around a strike–slip fault with a length of 150 km and a width of 12 km. The locations of the three sites with respect to the fault are shown in Figure 5.19. The change in the mean of the natural log of the 5% damped pseudo-spectral acceleration is calculated using the preferred model for a moment-magnitude of 7.3 at the three sites; see Figure 5.20. The change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration is calculated and presented in Figure 5.21. The change in the mean and standard deviation peaks for each site at a period of 5 sec.

Example hazard calculations are performed at the three sites assuming the fault has a slip rate of 5 mm/yr and modeling the earthquake recurrence using Youngs and Coppersmith [1985] with an average characteristic magnitude of 7.3. The hazard curves calculated for 5% damped pseudo-spectral acceleration at 3 sec are shown in Figure 5.22. There is a very slight decrease in the hazard at the site located near the middle of the rupture, a slight increase in the hazard at the site located at the very end of the rupture, and an increase in the hazard at the site located 15 km off the end of the rupture.

The uniform hazard spectrum (UHS) at all three sites with and without the preferred directivity model are calculated for an annual probability of exceedance of 10^{-4} and shown in Figure 5.23. The effect of the preferred directivity model on the 10^{-4} UHS is calculated by dividing the UHS calculated with the preferred model by the UHS calculated without the preferred model; see Figure 5.24. The change in the UHS is similar to that calculated for a full rupture of the fault using the average characteristic magnitude.

![Figure 5.19](image_url) Location of three sites for example strike–slip fault.
Figure 5.20 Preferred strike–slip model of change in the mean of the natural log of the 5% damped pseudo-spectral acceleration for example magnitude 7.3 strike–slip rupture with sites located at \(Rx = 0 \), \(Ry = 90 \), \(Rx = 5 \), \(Ry = 76 \), and \(Rx = 10 \), \(Ry = 0 \).

Figure 5.21 Preferred strike–slip model of change in the standard deviation of the natural log of the 5% damped pseudo-spectral acceleration for example magnitude 7 strike–slip rupture with sites located at \(Rx = 0 \), \(Ry = 90 \), \(Rx = 5 \), \(Ry = 76 \), and \(Rx = 10 \), \(Ry = 0 \).
Figure 5.22 Hazard curves calculated with and without the preferred directivity model for 5% damped pseudo-spectral acceleration at 3 sec for example application with sites located at \(Rx = 0, Ry = 90, Rx = 5, Ry = 76, \) and \(Rx = 10, Ry = 0. \)
Figure 5.23 Uniform hazard spectra calculated with and without the preferred directivity model at an annual exceedance probability of 10^{-4} for the example application with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$.
Figure 5.24 The effect on the uniform hazard spectrum calculated with and without the preferred directivity model at an annual exceedance probability of 10^{-4} for the example application with sites located at $Rx = 0$, $Ry = 90$, $Rx = 5$, $Ry = 76$, and $Rx = 10$, $Ry = 0$.
REFERENCES

LIST OF PEER REPORTS

PEER reports are available as a free PDF download from https://peer.berkeley.edu/peer-reports. In addition, printed hard copies of PEER reports can be ordered directly from our printer by following the instructions also at https://peer.berkeley.edu/peer-reports. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall, Mail Code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; and Email: peer_center@berkeley.edu.

| PEER 2015/06 | Adjusting Ground-Motion Intensity Measures to a Reference Site for which $V_{S30} = 3000$ m/sec. David M. Boore. May 2015. |

Demand Fragility Surfaces for Bridges in Liquefied and Laterally Spreading Ground. Scott J. Brandenberg, Jian Zhang, Pirooz Kashighandi, Yili Huo, and Minxing Zhao. March 2011.

PEER 2006/02 Pacific Earthquake Engineering Research Center Highway Demonstration Project. Anne Kiremidjian, James Moore, Yue Yue Fan, Nesrin Basoz, Ozgur Yazali, and Meredith Williams. April 2006.

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Month/L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER 2004/06</td>
<td>Performance-Based Regulation and Regulatory Regimes.</td>
<td>Peter J. May and Chris Koski.</td>
<td>September 2004</td>
</tr>
<tr>
<td>PEER 2004/03</td>
<td>Evaluation and Application of Concrete Tilt-up Assessment Methodologies.</td>
<td>Timothy Graf and James O. Malley.</td>
<td>October 2004</td>
</tr>
<tr>
<td>PEER 2003/17</td>
<td>Predicting Earthquake Damage in Older Reinforced Concrete Beam-Column Joints.</td>
<td>Catherine Pagni and Laura Lowes.</td>
<td>October 2004</td>
</tr>
<tr>
<td>PEER 2003/16</td>
<td>Seismic Demands for Performance-Based Design of Bridges.</td>
<td>Kevin Mackie and Božidar Stojarl-brandović.</td>
<td>August 2003</td>
</tr>
<tr>
<td>PEER 2003/04</td>
<td>Experimental Assessment of Columns with Short Lap Splices Subjected to Cyclic Loads.</td>
<td>Murat Melek, John W. Wallace, and Joel Conte.</td>
<td>April 2003</td>
</tr>
<tr>
<td>Paper ID</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>PEER 2002/20</td>
<td>Barriers to Adoption and Implementation of PBEE Innovations.</td>
<td>Peter J. May.</td>
<td>August 2002</td>
</tr>
<tr>
<td>PEER 2002/10</td>
<td>Centrifuge Modeling of Settlement and Lateral Spreading with Comparisons to Numerical Analyses.</td>
<td>Sivapalan Gajan and Bruce L. Kutter.</td>
<td>January 2003</td>
</tr>
</tbody>
</table>

PEER REPORTS: ONE HUNDRED SERIES

PEER 2010/102 Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I_{IM}) Using the PEER–NGA Strong Motion Database. Kenneth W. Campbell and Yousef Bozorgnia. February 2010.

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.

PEER Core Institutions

University of California, Berkeley (Lead Institution)
California Institute of Technology
Oregon State University
Stanford University
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, San Diego
University of Nevada, Reno
University of Southern California
University of Washington

PEER reports can be ordered at https://peer.berkeley.edu/peer-reports or by contacting

Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, Mail Code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437
Email: peer_center@berkeley.edu

ISSN 1547-0587X