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ABSTRACT 

We expect there to be locations around a rupture that experience both positive and negative 
directivity effects more than others. The concept was to develop a simple model of additional 
mean and standard deviation to add to existing published ground motion prediction equations to 
account for this. The directivity effect predicted by Chiou and Youngs [2014] using the 
directivity parameter DPP [Spudich et al. 2013] was selected as the basis for the model. A suite 
of rupture geometries for strike-slip and reverse ruptures was generated and the mean and 
standard deviation of the change in the 5% damped pseudo-spectral acceleration at sites out to 
rupture distances of 70 km was calculated. Models are presented for the change in mean and 
standard deviation for both strike-slip and reverse ruptures that use only simple parameters as 
inputs. 
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1 Study Overview 

1.1 INTRODUCTION 

To incorporate the effect of directivity on earthquake ground motion, engineers have relied on 
models developed as a correction to the median. These models were developed by fitting 
residuals from ground motion prediction equations (GMPEs) to functional forms that use 
additional parameters beyond what is included in the GMPE. These models include: 
Sommerville et al. [1997], Abrahamson [2000], Spudich and Chiou [2008], and Rowshandel 
[2010]. The most widely used of these is the Sommerville et al. (1997) model with the 
Abrahamson [2000] update. 

There are a number of problems associated with the most widely used directivity models. 
The major concerns include: (1) The parameters are normalized and lump moderate magnitude 
data with large magnitude data, which leads to very large directivity effects for large faults 
contrary to seismological principles; (2) the average directivity effect of the dataset is assumed to 
be the median ground motion regardless of the sampling; and (3) the directivity effect in the most 
widely used model has been shown to overestimate directivity effects when compared with the 
updated ground-motion dataset of the NGA West project [Watson-Lamprey 2007]. 

To address these problems, the NGA-West2 project included a Directivity Working 
Group that produced directivity parameters to be considered by the NGA-West2 developers for 
inclusion in their GMPEs. Of the five NGA-West2 GMPEs produced, only one included a 
directivity parameter in their GMPE. The other four NGA-West2 developer teams did not 
include directivity explicitly in their models. 

The single GMPE that explicitly includes directivity is Chiou and Youngs [2014]. It is 
expected that additional work on the directivity parameters will take place and that in the near 
future additional GMPEs will be produced that include directivity explicitly. In the meantime, 
there is a lack of sufficient models to include the effects of directivity. 

This study aims to take advantage of the work done by the Directivity Working Group to 
produce a model of the effect of directivity as an additional term in the median and standard 
deviation. This does not solve all of the problems inherent with the existing directivity models, 
but provides a simple model that can be used as a stop-gap for projects that take place in the 
interim. 
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1.2 INCOPORATING THE EFFECT OF DIRECTIVITY IN ALEATORY 
VARIABILITY 

We know that for any given site and earthquake rupture pair in the NGA-West2 ground-motion 
dataset there is a change in the median ground motion that could be predicted by including a 
directivity term. For any given site then, there is an unknown average change in the median 
given all sources and ruptures. This unknown average change in the median ground motion is a 
site-specific bias that is not being modeled. The variability of this bias from site to site—and the 
average variability over all sites of the bias at a given site—is included in the aleatory variability 
of the GMPE. We can write the equation for the aleatory variability from a GMPE as: 

GMPE
2 WithoutDirectivity

2 T, M j, Sitei   S 2S RandomHypocenters
2  Site RandomHypocenters

2

 (1.1) 

where the first term in the equation is the aleatory variability that is not due to directivity, the 
second term is the variability from site to site of the average change in the median at each site 
due to directivity over all sources and hypocenters, and the last term is the average over the 
dataset of the variability of the change in the median due to directivity at a given site from all 
sources and hypocenters. The majority of the median GMPEs published by the NGA-West2 do 
not explicitly include a directivity term. Thus the median ground motion predicted by most of the 
NGA-West2 GMPEs is biased at some sites, and there are some sites where the aleatory 
variability predicted by most of the NGA-West2 GMPEs is biased as well. 

To create a model of site-specific aleatory variability that explicitly includes the effect of 
directivity one would first take the published aleatory variability from a GMPE, reduce this 
aleatory variability by the average variability due to directivity described above, and then add on 
a site-specific variability due to the local sources, hypocenter distributions and rupture 
geometries. The equation for this would look like: 

 i
2 GMPE

2   S 2S RandomHypocenters
2  Site RandomHypocenters

2   i RandomHypocenters
2

 (1.2) 

where  i is the aleatory variability at site i, GMPE is the aleatory variability from a published 

GMPE,  S 2S RandomHypocenters
2  Site RandomHypocenters

2 is the average change in aleatory variability due to 

the effect of directivity, and  i,RandomHypocenters is the aleatory variability of the change in the median 

at a given site due to directivity from all sources and hypocenters. 

The average change in aleatory variability due to the effect of directivity can be 
calculated by taking a GMPE and performing one regression with a directivity term, a second 
regression without a directivity term, and then taking the difference of the two aleatory 
variabilities. That is, it is the savings in aleatory variability due to the inclusion of an additional 
term in the regression. Equation (1.2) can then be rewritten as: 

 i
2 GMPE

2  Reduction
2  i RandomHypocenters

2

 (1.3) 

This equation can then be used as the basis for a model to be added to existing GMPEs to give a 
site-specific aleatory variability. 
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1.3 MODEL DEVELOPMENT PROCEDURE FOR THE CHANGE IN THE MEDIAN 
GROUND MOTION 

To develop a model of the change in the median ground motion due to the effect of directivity, 
one must calculate the difference between the change in the median at a given site and across all 
sites for the same rupture and rupture distance due to the effect of directivity. The equation for 
this is given by: 

 ln Sai  Pj ln Sai Rupture, Rrup, Directivityj   ln Saj Rupture, Rrup  
j1,Nhypo


(1.4) 

where ln Sai  is the 5% damped pseudo-spectral acceleration for a given rupture geometry, 

rupture distance, and directivity parameter for hypocenter location j; ln Saj  is the average 5% 

damped pseudo-spectral acceleration over all sites that have the rupture distance Rrup for a given 
rupture geometry and hypocenter location j; Pj is the probability of hypocenter j; and Nhypo is the 
number of hypocenter locations. In order to calculate lnSa, one must have a GMPE that includes 
a directivity term in the mean equation. 

The Chiou and Youngs [2014] model includes GMPEs for median ground motion both 
with and without the directivity parameter ΔDPP [Spudich et al. 2013]. Thus, a significant 
amount of the work necessary to develop a model of the change in mean and aleatory variability 
of 5% damped pseudo-spectral acceleration due to directivity effects was completed for the 
directivity parameter ΔDDP. While it would be preferable to develop models for a larger number 
of GMPEs and directivity parameters, in the interest of time the decision was made to move 
forward using only the Chiou and Youngs [2014] GMPE and ΔDPP directivity parameter. 

The change in the median due to directivity is calculated for a range of magnitudes and 
distances by creating a suite of rupture geometries (see Table 1.1) and a suite of sites defined at a 
spacing of 0.5 km at rupture distances of 1, 5, 10, 20, 30, 40, 50 and 70 km. The adjustment to 
the median is then calculated using the following steps: 

1. Hypocenters are distributed in the rupture at a spacing of 1 km down-dip and 
1 km along-strike. 

2. For each hypocenter j and site i, DPPi,j is calculated. 

3. At each rupture distance, ΔDPPi,j is calculated by taking the difference 
between DPPi,j and the average value of DPPi,jfor that rupture distance. 

4. For each hypocenter j and site i, 5% damped pseudo-spectral acceleration 

ln Sai Rupture, Rrup,DPPij   is calculated for the periods: 0.5, 0.75, 1, 1.5, 2, 

3, 5, 7.5, and 10 sec. 

5. The mean change in the 5% damped pseudo-spectral acceleration at each site 
 is calculated using Equation (1.4), where the probability of the 

hypocenter location is defined using a hypocenter distribution model from 
Chiou and Youngs [2008]. 

 

 ln Sai
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The model of the change in the mean 5% damped pseudo-spectral acceleration is based 
on the results from the final step of the procedure described above. The results are modeled as a 
function of rupture geometry and magnitude. This model can be added to the published mean 
from a GMPE to estimate the mean at a site explicitly including the effect of directivity. 

Table 1.1 Rupture geometries for randomization of hypocenters. 

Rupture 
geometry 

Magnitude Sense of slip Width (km) Length (km) 

1 6 Strike-slip 10 10 

2 6.5 Strike-slip 15 21 

3 7 Strike-slip 15 67 

4 7.5 Strike-slip 15 211 

5 8 Strike-slip 15 667 

6 6 Reverse 10 10 

7 6.5 Reverse 18 18 

8 7 Reverse 21 47 

9 7.5 Reverse 21 149 

1.4 MODEL DEVELOPMENT PROCEDURE FOR THE CHANGE IN THE 
ALEATORY VARIABILITY 

To develop a model of the change in the aleatory variability of ground motion due to the effect of 
directivity, one must reduce the published aleatory variability by  Reductionand then increase it by 

 i RandomHypocenters as described in the previous section. The aleatory variability reduction has been 

estimated for the Chiou and Youngs [2014] ground motion prediction model by Bob Youngs 
(Personal communication, 2015]. The Chiou and Youngs [2014] directivity model was designed 
such that the mean change in the ground motion predicted by the directivity model across all 
sites equidistant from a given rupture is zero. Thus, there should be little to no impact on the 
inter-event residuals of the GMPE if the data for each earthquake are spatially evenly distributed. 
This is not the case for all earthquakes in the NGA-West2 dataset, but for simplicity Bob Youngs 
assumed it was. This allowed him to use only the intra-event residuals, and the change in the 
intra-event aleatory variability (2) to estimate the aleatory variability reduction. 

To compute the reduction in the aleatory variability, first the standard deviation of the 
intra-event residuals of the Chiou and Youngs [2014] model for earthquakes with magnitude 
greater than or equal to 6.5 (2) was calculated. The directivity term predicted by the Chiou and 
Youngs [2014] directivity model was then removed from the intra-event residuals, and the 
standard deviation of those residuals recalculated. The difference in the square of the two 
estimates of 2 is then  Reduction . The estimates of 2 are shown in Figure 1.1, and the difference 

between the two shown in Figure 1.2. The figures show that at periods greater than 2 sec, the 2 
reduction increases from 0 to a maximum value of 0.25 at 10 sec. 
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Figure 1.1 Estimates of the intra-event aleatory variability (2) of 5% damped 
pseudo-spectral acceleration for Chiou and Youngs [2014] GMPE for 
moment-magnitude 6.5 or greater data with rupture distances of 20 km 
both including and excluding DPP from the equation for the mean. 

 

Figure 1.2 Change in intra-event aleatory variability (2) of 5% damped pseudo-
spectral acceleration for Chiou and Youngs [2014] GMPE for moment-
magnitude 6.5 or greater data with rupture distances of 20 km or less 
from excluding DPP from the equation for the mean. 
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To estimate the site-specific aleatory variability of the change in the median ground 
motion due to directivity from all sources and hypocenters ( i RandomHypocenters ), one must calculate 

the variability of the difference between the change in the median at a given site and across all 
sites for the same rupture and rupture distance due to the effect of directivity. The equation for 
this is given by: 

 i,RandomHypocenters
2 

Pj ln Sai Rupture, Rrup, DPPj   ln Sa j Rupture, Rrup    ln Sai  2

j1,Nhypo


 (1.5) 

where ln Sai  is the 5% damped pseudo-spectral acceleration for a given rupture geometry, 

rupture distance, and directivity parameter for hypocenter location j; ln Saj  is the average 5% 

damped pseudo-spectral acceleration over all sites that have the rupture distance Rrup for a given 
rupture geometry and hypocenter location j;  ln Sai  is from Equation (1.4); Pj is the probability 

of hypocenter j, and Nhypo is the number of hypocenter locations. The directivity effect is 
modeled using the effect modeled in Chiou and Youngs [2014] and the directivity parameter 
DPP described in Spudich et al. [2013]. 

The Chiou and Youngs [2014] model does not predict an inter-event change in the mean 
ground motion values; thus the change in aleatory variability is confined to the intra-event 
standard deviation for large magnitudes (2). For this reason, the variability due to hypocenter 
randomization in this case can be labeled as i RandomHypocenters . The equation for calculating site-

specific aleatory variability that explicitly includes the effect of directivity [Equation (1.3)] 
would then be: 

i
2  GMPE

2 Reduction
2 i RandomHypocenters

2

 (1.6) 

The suite of ruptures from Table 1.1 and the results of the procedure outlined in the 
previous section are used to estimatei RandomHypocenters  following the procedure outlined above. The 

total change in aleatory variability that would be added to that predicted by a GMPE would then 
be: 

i 
0 for i RandomHypocenters  Reduction

i RandomHypocenters
2 Reduction

2 else












 (1.7)

 

The results of Equation (1.7) are then modeled as a function of rupture geometry and magnitude. 
The final model of the change in aleatory variability of 5% damped pseudo-spectral acceleration 
can be added to published GMPE aleatory variabilities to estimate the aleatory variability at a 
site explicitly including the effect of directivity. 
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2 Change in Mean and Standard Deviation of 
Ground Motion Due to Randomization of 
Hypocenters 

2.1 INTRODUCTION 

The change in mean and aleatory variability of the 5% damped pseudo-spectral acceleration 
experienced at a site due to the effect of directivity by randomizing over hypocenters is 
calculated for a suite of sites out to a rupture distance of 70 km. The change in pseudo-spectral 
acceleration is calculated using the Chiou and Youngs [2014] model. The rupture scenarios are 
given in Table 1.1, and the changes in mean and aleatory variability of 5% damped pseudo-
spectral acceleration are calculated for the periods: 0.5, 0.75, 1, 1.5, 2, 3, 5, 7.5, and 10 sec. 
Figures of all of the 1, 3 and 5 sec results are shown in electronic Appendix A. Selected results 
are shown in the following sections. 

2.2 STRIKE–SLIP RUPTURES 

2.2.1 Directivity Parameter DPP 

The change in the mean and aleatory variability of the ground motion is based on the directivity 
model from Chiou and Youngs [2014]. In order to understand the results of the hypocenter 
randomization, we first examine the directivity parameter DDP. The directivity parameter DPP is 

a function of three parameters: the length E, the parameter ˆc , and  [Spudich et al. 2013]. 
The length E is the length of fault from the hypocenter to the direct point. The parameter ˆc  is 
the isochrone velocity ratio, the ratio between the length E and the difference in arrival time of 
shear waves from the hypocenter and shear waves from the end of length E, normalized by the 

local shear-wave velocity [Spudich et al. 2004]. The parameter is an average shear-wave 
radiation pattern along the length E. 

The three parameters that are used to calculate DPP as well as DPP itself are presented in 
Figures 2.1—2.4 for two moment-magnitude 7 strike–slip ruptures. The first rupture has a 
hypocenter located in the middle of the rupture; the second has a hypocenter located 1 km from 
the left-hand edge of the rupture and 14 km down-dip, as shown in the figures. 

 

FS

FS
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Figure 2.1 The length of the fault from the hypocenter to the direct point (E) in 
kilometers for two moment-magnitude 7, strike–slip ruptures where the 
hypocenter of the upper figure is located at the center of the rupture and 
that of the lower is located 1 km from the left edge of the rupture length 
and 14 km down-dip.  
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Figure 2.2 The isochrone velocity ratio ( ˆc ) along the length of the fault from the 
hypocenter to the direct point for two moment-magnitude 7, strike–slip 
ruptures where the hypocenter of the upper figure is located at the center 
of the rupture and that of the lower is located 1 km from the left edge of 
the rupture length and 14 km down-dip. 
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Figure 2.3 The average shear-wave radiation pattern ( ) along the length of the 
fault from the hypocenter to the direct point for two moment-magnitude 7, 
strike–slip ruptures where the hypocenter of the upper figure is located at 
the center of the rupture and that of the lower is located 1 km from the left 
edge of the rupture length and 14 km down-dip. 
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Figure 2.4 The direct point parameter (DPP) for two moment-magnitude 7, strike–slip 
ruptures where the hypocenter of the upper figure is located at the center 
of the rupture and that of the lower is located 1 km from the left edge of 
the rupture length and 14 kilometers down-dip. 
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(a) (b) 

 
(c) 

Figure 2.5 Histogram of direct point parameter (DPP) for three sites 20 km from 
moment-magnitude 7, strike–slip ruptures where the hypocenters have 
been randomly distributed using hypocenter distribution models from 
Chiou and Youngs [2008]. The location of the sites are shown in Figure 
2.4 where site a is located 20 km to the left of the edge of the top of the 
rupture and sites b and c are located counterclockwise from site a. 

 

These two example hypocenters show us the center and the extremes of the DPP 
distributions. If we look at three sites around the rupture, notice how the parameters ˆc , , and 
E affect DPP and its distribution. At sites off the very ends of the rupture, ˆc  and  remain 
very similar and high for the two hypocenters, but E varies from 0 to 70 km; this change in E 
causes the DPP value to vary from moderate to high values. If we look at a histogram of DPP 
values as shown in Figure 2.5(a), most of the DPP values are high, but there is a small tail down 
to very low DPP values corresponding to those hypocenters where E is 0. At sites roughly 45 
from the end of the rupture, the greatest variability of DPP values are seen as at these sites 

FS
FS

FS
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 and E are positively correlated; thus very small DPP values are calculated for near 
hypocenters, and very large DPP values are calculated for distant hypocenters. This is shown in 
Figure 2.5(b). Lastly, at sites off the sides of the rupture  and E are inversely correlated, 
resulting in moderate DPP values with little variability as shown in Figure 2.5(c). 

2.2.2 Mean Change 

The change in the mean is calculated using Equation (1.4), where the change in pseudo-spectral 
acceleration is calculated using the Chiou and Youngs [2014] model, for the five strike–slip 
rupture scenarios detailed in Table 1.1. The change in the mean for 5% damped pseudo-spectral 
acceleration at 3 sec is shown for moment magnitudes of 6–8 in Figures 2.6–2.10. The results of 
these calculations are consistent with the DPP values presented in the previous section. There is 
an increase in the mean off the ends of the rupture and a slight decrease off the sides for the 
larger magnitudes. The smaller magnitude ruptures do not have as much variability, thus their 
change looks more like a DPP map from a rupture with a hypocenter in the center of the rupture 
with a large increase in the mean off the ends of the rupture, no change off the sides, and a 
reduction in the mean for sites 45-angle off strike. 

 

 

Figure 2.6 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6, strike–slip rupture. 
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Figure 2.7 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, strike–slip rupture. 

 
 

 

Figure 2.8 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 7, strike–slip rupture. 
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Figure 2.9 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 7.5, strike–slip rupture. 

 

Figure 2.10 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 8, strike–slip rupture. 

The period at which the peak directivity effect is located for each magnitude from the 
Chiou and Youngs [2014] model is predicted by the relationship between period and coefficient 
c8b given in Table 2.1. The calculated change in the mean is shown for a magnitude 6.5 rupture at 
1, 3 and 5 sec in Figures 2.11–2.13. These figures show that the effect peaks at 3 sec as predicted 
by this relationship. As the magnitude of the rupture increases, so does the peak calculated 
change in the mean, thus the amplitude of the peak effect for a magnitude 7 at 5 sec and shown 
in Figure 2.14, is larger than the peak effect for a magnitude 6.5 rupture at 3 sec and shown in 
Figure 2.12. 
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Table 2.1 Coefficient c8b from Chiou and Youngs [2014]. 

Period c8b 

0.40 4.3745 

0.5 4.6099 

0.75 5.0376 

1 5.3411 

1.5 5.7688 

2 6.0723 

3 6.5 

4 6.8035 

5 7.0389 

7.5 7.4666 

 
 
 
 

 

Figure 2.11 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 1 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, strike–slip rupture. 
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Figure 2.12 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, strike–slip rupture. 

 

 

Figure 2.13 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 5 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, strike–slip rupture. 
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Figure 2.14 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 5 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 7, strike–slip rupture. 

2.2.3 Standard Deviation Change Due to Randomization of Hypocenters 

The change in the standard deviation due to randomization of hypocenters (i RandomHypocenters ) is 

calculated using Equation (1.5), where the change in pseudo-spectral acceleration is calculated 
using the Chiou and Youngs [2014] model, for the five strike–slip rupture scenarios detailed in 
Table 1.1. The calculated change in the standard deviation for 5% damped pseudo-spectral 
acceleration at 3 sec is shown for moment-magnitudes 7–8 in Figures 2.14–2.16. The results of 
these calculations are consistent with the DPP values presented in the previous section. There is 
an increase in the standard deviation at sites off the ends of the rupture and at sites that have an 
average of approximately 45 from strike. 

The calculated change in the standard deviation is shown for a magnitude 6.5 rupture at 
1, 3 and 5 sec in Figures 2.20–2.22. These figures show that the effect peaks at 3 sec as predicted 
by the relationship between period and c8b from Table 2.1. As the magnitude of the rupture 
increases so does the peak calculated change in the standard deviation, thus the amplitude of the 
peak effect for a magnitude 7 at 5 sec and shown in Figure 2.23, is larger than the peak effect for 
a magnitude 6.5 rupture at 3 sec and shown in Figure 2.21. 
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Figure 2.15 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6, strike–slip rupture. 

 
 

 

Figure 2.16 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture. 
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Figure 2.17 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 7, strike–slip rupture. 

 
 

 

Figure 2.18 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 7.5, strike–slip rupture. 
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Figure 2.19 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 8, strike–slip rupture. 

 
 

 

Figure 2.20 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 1 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture. 
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Figure 2.21 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture. 

 
 

 

Figure 2.22 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 5 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture. 
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Figure 2.23 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 5 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 7, strike–slip rupture. 

 

2.2.4 Total Standard Deviation Change  

The total change in the standard deviation is calculated using Equation (1.7), where 
i RandomHypocenters  is from Section 2.2.3 and Reduction  is shown in Figure 1.2, for the five strike-slip 

rupture scenarios detailed in Table 1.1. Reduction  is not magnitude or distance dependent, but does 

increase with increasing period. The combined effect of the two cancels out at higher periods and 
smaller magnitudes, and reducing it slightly below i RandomHypocenters  at smaller periods and larger 

magnitudes. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for 
moment-magnitude 6–8 ruptures shown in Figures 2.24–2.28. The standard deviation for the 
moment-magnitude 6 rupture is zero at every site. For the larger magnitudes, the change in 
standard deviation is smaller than shown in Section 2.2.3 and though the peak effect still 
increases with increasing magnitude, it does so at a smaller rate than previously. 
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Figure 2.24 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 6, strike–slip rupture. 

 
 

 

Figure 2.25 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 6.5, strike–slip rupture. 
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Figure 2.26 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 7, strike–slip rupture. 

 
 

 

Figure 2.27 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 7.5, strike–slip rupture. 
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Figure 2.28 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 8, strike–slip rupture. 

2.3 REVERSE RESULTS 

2.3.1 Directivity Parameter DPP 

The length E, isochrones velocity ratio ( ˆc ), average shear-wave radiation ( ), and DPP are 
presented in Figures 2.29—2.32 for two moments-magnitude 6.5 reverse ruptures. The first 
rupture has a hypocenter located in the middle of the rupture, and the second has a hypocenter 
located 1 km from the left-hand edge of the rupture and 14 km down-dip, as shown in the 
figures. 
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Figure 2.29 The length of the fault from the hypocenter to the direct point (E) in 
kilometers for two moment-magnitude 6.5, dip-slip ruptures where the 
hypocenter of the upper figure is located at the center of the rupture and 
that of the lower is located 1 km from the left edge of the rupture length 
and 14 km down-dip.  
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Figure 2.30 The isochrone velocity ratio ( ˆc ) along the length of the fault from the 
hypocenter to the direct point for two moment-magnitude 6.5, dip-slip 
ruptures where the hypocenter of the upper figure is located at the center 
of the rupture and that of the lower is located 1 km from the left edge of 
the rupture length and 14 km down-dip. 
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Figure 2.31 The average shear-wave radiation pattern ( ) along the length of the 
fault from the hypocenter to the direct point for two moment-magnitude 
6.5, dip-slip ruptures where the hypocenter of the upper figure is located 
at the center of the rupture and that of the lower is located 1 km from the 
left edge of the rupture length and 14 km down-dip. 
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Figure 2.32 The direct point parameter (DPP) for two moment-magnitude 6.5, dip-slip 
ruptures where the hypocenter of the upper figure is located at the center 
of the rupture and that of the lower is located 1 km from the left edge of 
the rupture length and 14 km down-dip. 

These two example hypocenters show the center and the extremes of the DPP 
distributions. A study of the three sites around the rupture demonstrate how the parameters ˆc , 

, and E effect DPP and its distribution. Similarly to the strike–slip results at sites off the very 

ends of the rupture, ˆc  and  are similar and high for both hypocenters, but E varies from 0 to 
12 km; this change in E causes the DPP value to vary slightly but is generally moderate. At sites 
roughly 45 from the end of the rupture, the greatest variability of DPP values are seen at those 
sites where  and E are positively correlated; thus very small DPP values are calculated for 
sites near hypocenters, and moderate DPP values are calculated for more distant hypocenters. As 
shown in the histogram of DPP values in Figure 2.33c, most of the DPP values are moderate, but 
there is a tail down to very low DPP values corresponding to those hypocenters where  and E 
are small. For sites off the sides of the rupture,  and E are inversely correlated, resulting in 
less little variability; see Figures 2.33(b) and 2.33(a). Lastly, sites on the footwall side of the 
rupture have a larger ˆc  than hanging wall sites, resulting in larger DPP values as shown in 
Figures 2.33(b) and 2.33(a). 
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(a) (b) 

 
(c) 

Figure 2.33 Histogram of direct point parameter (DPP) for three sites 20 km from 
moment-magnitude 6.5, dip-slip ruptures where the hypocenters have 
been randomly distributed using hypocenter distribution models from 
Chiou and Youngs [2008]. The location of the sites are shown in Figure 
2.24 where the site a is located 14.7 km to the left and 19.12 km down 
from the left edge of the top of rupture and sites b and c are located 
clockwise from site a. 

2.3.2 Mean Change 

The change in the mean for the four reverse rupture scenarios detailed in Table 1.1 is calculated 
using Equation (1.4), where the change in pseudo-spectral acceleration is calculated using the 
Chiou and Youngs [2014] model. The change in the mean for 5% damped pseudo-spectral 
acceleration at 3 sec is shown for moment magnitudes of 6–7.5 in Figures 2.34–2.37. The results 
of these calculations are consistent with the DPP values presented in the previous section. There 
is an increase in the mean for those sites off the ends of the rupture, those that are approximately 
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45 off the end of the rupture, and footwall sites. There is a decrease in the mean for those sites 
on the hanging wall. 

 

 

Figure 2.34 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6, reverse rupture. 

 

 

Figure 2.35 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, reverse rupture. 
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Figure 2.36 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 7, reverse rupture. 

 

 

Figure 2.37 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 7.5, reverse rupture. 

 

The calculated change in the mean is shown for a magnitude 6.5 rupture at 1, 3 and 5 sec 
in Figures 2.38–2.40. These figures show that the effect peaks at 3 sec as predicted by the 
relationship between period and c8b from Table 2.1. As the magnitude of the rupture increases, so 
does the peak calculated change in the mean; thus the amplitude of the peak effect for a 
magnitude 7 at 5 sec (see Figure 2.41) is larger than the peak effect for a magnitude 6.5 rupture 
at 3 sec (see Figure 2.39). 
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Figure 2.38 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 1 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, reverse rupture. 

 
 

 

Figure 2.39 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, reverse rupture. 
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Figure 2.40 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 5 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, reverse rupture. 

 
 

 

Figure 2.41 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 5 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 7, reverse rupture. 
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2.3.3 Standard Deviation Change Due to Randomization of Hypocenters 

The change in the standard deviation due to randomization of hypocenters (i RandomHypocenters ) is 

calculated for the four reverse rupture scenarios detailed in Table 1.1 using Equation (1.5), where 
the change in pseudo-spectral acceleration is calculated using the Chiou and Youngs [2014] 
model,. The change in the mean for 5% damped pseudo-spectral acceleration at 3 sec is shown 
for moment magnitudes of 6–7.5 in Figures 2.42–2.45. The results of these calculations are 
consistent with the DPP values presented in the previous section. The change in standard 
deviation is largest over the hanging wall side of the rupture. This is the area where sites 
experience both shear wave maxima and minima, resulting in large variability. 

The calculated change in the standard deviation is shown for a magnitude 6.5 rupture at 
1, 3 and 5 sec shown in Figures 2.45–2.47. These figures show that the effect peaks at 3 sec as 
predicted by the relationship between period and c8b from Table 2.1. In contrast to the strike–slip 
results and mean results, as the magnitude of the rupture increases, the peak calculated change in 
the standard deviation does not increase. The amplitude of the peak effect for a magnitude 7 at 5 
sec (see Figure 2.48) is the same as the peak effect for a magnitude 6.5 rupture at 3 sec (see 
Figure 2.46). 

 

 

Figure 2.42 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, reverse rupture. 
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Figure 2.43 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 7, reverse rupture. 

 
 

 

Figure 2.44 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 7.5, reverse rupture. 

  



38 

 
 

 

Figure 2.45 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 1 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, reverse rupture. 

 
 

 

Figure 2.46 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, reverse rupture. 

  



39 

 
 

 

Figure 2.47 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 5 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, reverse rupture. 

 
 

 

Figure 2.48 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 5 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 7, reverse rupture. 
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Figure 2.49 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs (2008) for a moment-
magnitude 6, reverse rupture. 

 
 

 

Figure 2.50 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 6.5, reverse rupture. 
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2.3.4 Total Standard Deviation Change 

The total change in the standard deviation is calculated using Equation (1.7) for the four reverse 
rupture scenarios detailed in Table 1.1, where i RandomHypocenters  is from Section 2.2.3 and Reduction  

is shown in Figure 1.2. As shown in Figure 1.2, the 2 reduction is larger than the change in 
standard deviation for periods of 5 and greater and for the magnitude 6 change in standard 
deviation. This results in a zero change in the standard deviation at long periods and small 
magnitudes. For periods less than 5, the maximum total change in standard deviation is on the 
order of 0.1–0.17 or less for all magnitudes. The peak total change in standard deviation for each 
magnitude occurs at a period of 3 sec. The total change in standard deviation for 5% damped 
pseudo-spectral acceleration at 3 sec is shown for magnitudes 6–7.5 in Figures 2.49–2.52. 

 

 

 

 

Figure 2.51 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 7, reverse rupture. 
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Figure 2.52 Total change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec using hypocenter 
distribution models from Chiou and Youngs [2008] for a moment-
magnitude 7.5, reverse rupture. 
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3 Models of Change in Ground Motion Mean 
and Standard Deviation 

3.1 BASIC MODEL 

The basic model for the directivity adjustment is the same for both strike–slip and reverse 
ruptures for both the mean and sigma. The basic model for the adjustment is given by: 

 (3.1)
 

The first term of the model is the ratio of a revised c8 coefficient developed by Brian Chiou in 
2014 (Personal communication) with the original c8 coefficient having a value of 0.2154 [Chiou 
and Youngs 2014]. This term reduces the directivity effect to zero at periods less than 0.5 sec. 
The second term creates a peak in the directivity effect at a period of c8b as a function of 
magnitude. The form of the peak as well as the c8b coefficients are from Chiou and Youngs 
[2014] and are given in Table 3.1. 

 

Table 3.1 Coefficient c8 and c8b from Chiou and Youngs [2014]. 

Period c8 revised c8b 

0.40 0 4.3745 

0.5 0.0991 4.6099 

0.75 0.1982 5.0376 

1 0.2154 5.3411 

1.5 0.2154 5.7688 

2 0.2154 6.0723 

3 0.2154 6.5 

4 0.2154 6.8035 

5 0.2154 7.0389 

7.5 0.2154 7.4666 

10 0.2154 7.77 

Adjustment 
c8,revised

c8,original

*ebM Magc8b 2 *Taper _ Dist *Taper _ Mag * Dir _ Factor
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Two tapers are applied to the directivity model by Chiou and Youngs [2014]. These 
tapers are used as a basis for the tapers on the change in mean and standard deviation. The 
distance taper is as follows:  

Taper _ Dist  max 1
max Rrup  40,0 

30
,0





  (3.2) 

where Rrup is the rupture distance in kilometers. The magnitude taper is as follows: 

Taper _ Mag  min
max Mag  5.5,0 

0.8
,1





  (3.3) 

where Mag is the moment magnitude of the rupture. 

3.2 STRIKE–SLIP MODEL 

3.2.1 Mean Model 

The Dir_Factor term for the change in mean of 5% damped pseudo-spectral acceleration for 
strike–slip ruptures is as follows: 

Dir _ FactorSS 

b0  b1 max RyRatio*cos2 ,0.5   b2 max RyRatio*cos2 ,0.5 2

 b3 max RyRatio* cos2 ,0.5 3

 
            (3.4) 

where RyRatio and  are as follows. 

RyRatio is a measure of where the site is along the length of the rupture and is given by: 

 (3.5) 

where Ry is the site coordinate parallel to the strike of the surface projection of the rupture where 
zero is the center of the top of rupture in kilometers. For bending faults, the generalized 
coordinate system 2 is used to calculate Ry [Spudich and Chiou 2015], and Length is the length 
of the fault in kilometers. 

The average value of  evaluated over the length of the surface projection of the top 

of rupture is , and where  is the angle between the ray from a point on the surface of 
rupture to the site and the ray from the same point along the strike. This is calculated using the 
following equation: 

 

  (3.6) 

cos2

RyRatio  min
Ry

Length / 2
,1







cos2
cos2 

cos2 

Ry  Length / 2   2 Rx * ArcTangent
Ry  Length / 2

Rx













 Ry  Length / 2   2 Rx * ArcTangent

Ry  Length / 2
Rx














Length
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where Rx is the site coordinate perpendicular to the strike of the surface projection of the top of 
rupture where zero is the center of the top of rupture and the positive direction is over the 
hanging wall (if any) in kilometers, and Ry, and Length are as described above. 

The distance and magnitude tapers from Chiou and Youngs [2014] are modified to better 
fit the results. The peak change in the mean has a peak value at approximately 40 km from the 
rupture and decreases towards the rupture. Thus the distance taper is changed to the following: 

Taper _ Dist  if

Rrup  r0 r1
Rrup  r0 

r0






1

else max 1
max Rrup  40,0 

30
,0



























 (3.7) 

where Rrup is the rupture distance in kilometers. 

The peak change in the mean increases with magnitude, thus the magnitude taper is 
changed to the following: 

Taper _ Mag  if
Mag  6.3

max Mag  5.5,0 
0.8

else 1 m1 Mag  6.3   m2 Mag  6.3 2

















 (3.8) 

where Mag is the moment magnitude of the rupture. 

Coefficients for the model of the change in mean for strike–slip ruptures were estimated 
using a least-squares regressions and are given in Table 3.2. The model and data for 5% damped 
pseudo-spectral acceleration at 3 sec are shown with respect to the combined parameter 

RyRatio*cos2  for moment-magnitudes 6–8 shown in Figures 3.1–3.5. 

Table 3.2 Coefficients for model of change in mean for strike–slip ruptures. 

Coefficient Value Standard error 

b0 -0.110972 0.000245 

b1 0.0345899 0.000279 

b2 0.433312 0.001190 

b3 -0.128870 0.000815 

ro 16.7488 0.065292 

r1 0.574546 0.001269 

m1 0.948640 0.006477 

m2 -0.436357 0.003069 

bM -0.269988 0.000415 

Sigma 0.015801 
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Figure 3.1 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 6, strike–slip rupture. 

 

 

Figure 3.2 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 6.5, strike-–slip rupture. 



47 

 

Figure 3.3 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 7, strike–slip rupture. 

 

 

Figure 3.4 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 7.5, strike–slip rupture. 
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Figure 3.5 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 8, strike–slip rupture. 

 

3.2.2 Standard Deviation Model 

The Dir_Factor term and tapers for the change in standard deviation of 5% damped pseudo-
spectral acceleration for strike–slip ruptures are the same as for the median and are given in 
Equations (3.4), (3.7) and (3.8), respectively. Coefficients for the model for the change in 
standard deviation for strike slip were estimated using a least-squares regressions and are given 
in Table 3.3. The model and data for 5% damped pseudo-spectral acceleration at 3 sec are shown 

with respect to the combined parameter RyRatio*cos2  for moment-magnitudes 6–8 shown in 
Figures 3.6–3.10. 
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Table 3.3 Coefficients for model of change in standard deviation for strike–slip 
ruptures. 

Coefficient Value Standard error 

b0 0.0160638 0.000218 

b1 0.102589 0.001127 

b2 0.174049 0.001653 

b3 -0.273383 0.002450 

ro 17.4688 0.211929 

r1 0.627373 0.003879 

m1 0.578942 0.022945 

m2 -0.308831 0.010811 

bM -0.0554069 0.000640 

Sigma 0.0311712 

 
 

 

Figure 3.6 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 6, strike–slip rupture. 
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Figure 3.7 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 6.5, strike–slip rupture. 

 

 

Figure 3.8 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 7, strike–slip rupture. 
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Figure 3.9 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 7.5, strike-–slip rupture. 

 

 

Figure 3.10 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 8, strike–slip rupture. 
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3.3 REVERSE MODEL 

3.3.1 Mean Model 

The Dir_Factor term for the change in mean of 5% damped pseudo-spectral acceleration for 
reverse ruptures is as follows: 

Dir _ FactorRV 

b0  b1 RyRatio* sin2  * HW





 b2 RyRatio* sin2  * HW







2

 b3 RyRatio* sin2  * HW






3



b4 cos2  b5cos2
2
 b6 cos2

3


b7 RyRatio* cos2 




 b8 RyRatio* cos2 





2

 b9 RyRatio* cos2 





3





























 

  (3.9) 

where RyRatio is defined using Equation (3.5), and HW is -1 on the hanging-wall side of the 

rupture and 1 elsewhere; cos2 , cos2 , and sin2   are defined below. 

 is the average value of  evaluated in the plane perpendicular to rupture 
over the width of the rupture, and where  is the angle between the ray from a point on the 
rupture to the site and the ray from the same point up dip. This is calculated using the following 
equation: 

  

  (3.10) 

where Rx is the site coordinate perpendicular to the strike of the surface projection of the top of 
rupture where zero is the center of the top of rupture and the positive direction is over the 
hanging wall (if any) in kilometers. Ry is the site coordinate parallel to the strike of the surface 
projection of the rupture where zero is the center of the top of rupture in kilometers,  is the dip, 
and Width is the width of the rupture in kilometers. For bending faults, the generalized 
coordinate system 2 is used to calculate Rx and Ry [Spudich and Chiou 2015]. 

The average value of cos2  evaluated on the line halfway down-dip of the rupture 

projected onto the surface is cos2 . This is calculated using Equation (3.6) and exchanging Rx 
with coordinate R x  calculated from the center of the fault. R x  is calculated as follows: 

R x  Rx Width* cos   (3.11) 

where Rx is defined above,  is the dip, and Width is the width of the rupture in kilometers. 

The average value of sin2  evaluated on the line halfway down-dip of the rupture 

projected onto the surface is sin2  . This is calculated as follows  

cos2 cos2


cos2 

Rxsin   2 Rx cos * ArcTangent
Rxsin
Rx cos













 Rxsin Width   2 Rx cos * ArcTangent

Rxsin Width
Rx cos














Width




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sin2  
R x * ln Ry 

Length
2







2

 R x 2






 R x * ln Ry 

Length
2







2

 R x 2







Length

 (3.12) 

where R x and Ry are defined above, and Length is the length of the rupture in kilometers. 

The distance and magnitude tapers from Chiou and Youngs [2014] are modified to better 
fit the results. The change in the mean becomes closer to zero at sites close to the rupture. Thus 
the distance taper is changed to the following: 

Taper _ Dist  if

Rrup  r0 r1
Rrup  r0 

r0






1

else max 1
max Rrup  40,0 

30
,0



























 (3.13) 

where Rrup is the rupture distance in kilometers. 

The peak change in the mean increases with magnitude and the magnitude taper is 
changed to allow for this. The updated magnitude taper is given by: 

Taper _ Mag  if
Mag  6.3

max Mag  5.5,0 
0.8

else 1 m1 Mag  6.3   m2 Mag  6.3 2

















 (3.14) 

where Mag is the moment magnitude of the rupture. 

Coefficients for the model for the change in mean for reverse ruptures were estimated 
using a least-squares regressions and are given in Table 3.4. The model and data for 5% damped 
pseudo-spectral acceleration at 3 sec are shown with respect to the combined parameters 

RyRatio* sin2 , cos2 , and RyRatio* cos2  for moment-magnitudes 6–7.5 in Figures 3.11–
3.14. 
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Table 3.4 Coefficients for model of change in mean for reverse ruptures. 

Coefficient Value Standard error 

b0 -0.0670606 0.000429 

b1 -0.0309605 0.000476 

b2 0.0743133 0.000486 

b3 0.0640140 0.000647 

b4 -0.0520015 0.000505 

b5 0.0844005 0.000734 

b6 0.0940033 0.000997 

b7 0.0422176 0.000426 

b8 0.0284827 0.000612 

b9 0.00423869 0.000678 

ro 6.43713 0.078280 

r1 0.652545 0.013126 

m1 1.46839 0.028011 

m2 -0.657629 0.018571 

bM -0.269943 0.001484 

Sigma 0.0244068 
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(a) (b) 

 
(c) 

Figure 3.11 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 6, reverse rupture. 

  



56 

  
(a) (b) 

 
(c) 

Figure 3.12 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 6.5, reverse rupture. 
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(a) (b) 

 
(c) 

Figure 3.13 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 7, reverse rupture. 
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(a) (b) 

 
(c) 

Figure 3.14 Data and model of change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models for a moment-magnitude 7.5, reverse rupture. 
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3.3.2 Standard Deviation Model 

The change in the standard deviation with the 2 reduction is zero for periods of 5 sec and 
greater and for small magnitudes. For the other magnitudes and periods, the peak effect is 
approximately 0.2 at 3 sec. When combined with the total standard deviation from published 
GMPEs, this increases the variability by 0.03. Given the small increase in the standard deviation 
and limited periods and magnitudes to which it would be applied, the change in standard 
deviation to account for the effect of directivity for reverse ruptures is negligibly small and can 
be ignored for most engineering applications. 

A model is developed for engineering applications that wish to include an equation for 
the change in standard deviation for reverse ruptures. This model smooths out the increase in 
standard deviation so that it can be applied to a broader range of periods and magnitudes than it 
is calculated for. The Dir_Factor term and distance taper for the change in standard deviation of 
5% damped pseudo-spectral acceleration for reverse ruptures are the same as for the mean and 
are given in Equations (3.9) and (3.12), respectively. The magnitude taper is the same as that 
used by Chiou and Youngs [2014] and is given in Equation (3.3). 

Coefficients for the model for the change in standard deviation for reverse ruptures were 
estimated using a least-squares regressions and are given in Table 3.5. The model and data for 
5% damped pseudo-spectral acceleration at 3 sec are shown with respect to the combined 

parameters RyRatio*cos2  and 1 RyRatio *cos2  for moment-magnitudes 6–7.5 in Figures 

3.15–3.18. These figures show the maximum misfit between the data and the model. 
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Table 3.5 Coefficients for model of change in standard deviation for reverse ruptures. 

Coefficient Value Standard error 

b0 0.0622329 0.000561 

b1 0.00164904 0.000928 

b2 -0.00823970 0.000622 

b3 -0.00421270 0.001025 

b4 0.0160663 0.000941 

b5 -0.0145000 0.001132 

b6 -0.00926689 0.001770 

b7 0.0115074 0.000829 

b8 -0.00179300 0.000696 

b9 -0.0104468 0.001198 

ro 3.5 0 

r1 0.680677 0.017850 

m1 -0.724118 0.012627 

m2 0.100161 0.010090 

bM 0.0443404 0.001382 

Sigma 0.0265229 
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(a) (b) 

 
(c) 

Figure 3.15 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 6, reverse rupture. 
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(a) (b) 

 
(c) 

Figure 3.16 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 6.5, reverse rupture. 
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(a) (b) 

 
(c) 

Figure 3.17 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 7, reverse rupture. 
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(a) (b) 

 
(c) 

Figure 3.18 Data and model of change in the standard deviation of the natural log of 
the 5% damped pseudo-spectral acceleration at 3 sec due to the 
randomization of hypocenters using Chiou and Youngs [2008] hypocenter 
distribution models for a moment-magnitude 7.5, reverse rupture. 
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4 Effect of Hypocenter Distribution 

4.1 ALTERNATIVE HYPOCENTER DISTRIBUTIONS 

Hypocenter distribution models from Chiou and Youngs [2008] were used for the results in 
Sections 4.2 and 4.3. An analysis of hypocenter locations was performed to determine if the 
hypocenter distribution model should be updated. The analysis, given in electronic Appendix D, 
shows that the along-strike hypocenter distribution was clustered too close to the center for 
strike–slip ruptures, and that the along-strike distribution should be closer to uniform or favor 
unilateral ruptures. A sensitivity analysis of the strike-slip and reverse models was performed to 
determine what effect the updated hypocenter distribution model or a uniform distribution model 
would have on the results. Figures of all of the 1, 3 and 5 sec results using the uniform 
hypocenter distribution are shown in electronic Appendix B. Figures of all of the 1, 3 and 5 sec 
results using the electronic Appendix D hypocenter distribution are shown in electronic 
Appendix C. Selected results are shown in the following sections. 

4.1.1 Strike-Slip Hypocenter Distributions 

Three hypocenter distributions were used along the strike: Chiou and Youngs [2008], uniform, 
and the distribution given in electronic Appendix D. These distributions are shown in Figure 4.1. 
Two down-dip hypocenter distributions were used: Chiou and Youngs [2008] and uniform. 
These distributions are shown in Figure 4.2. 
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Figure 4.1 Hypocenter distributions along strike for strike–slip ruptures. 

 

 

Figure 4.2 Hypocenter distributions down-dip for strike–slip ruptures. 

4.1.2 Reverse Hypocenter Distributions 

Two hypocenter distributions were used along the strike: Chiou and Youngs [2008] and uniform. 
These distributions are shown in Figure 4.3. Two down-dip hypocenter distributions were used: 
Chiou and Youngs [2008] and uniform. These distributions are shown in Figure 4.4. 
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Figure 4.3 Hypocenter distributions along strike for reverse ruptures. 

 

 

Figure 4.4 Hypocenter distributions down-dip for reverse ruptures. 

4.2 STRIKE–SLIP RESULTS 

4.2.1 Mean Results 

The change in the mean of 5% damped pseudo-spectral acceleration was calculated for strike–
slip ruptures using a uniform hypocenter distribution and the hypocenter distribution from 
electronic Appendix D. Compared with the change calculated using the Chiou and Youngs 
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[2008] hypocenter distribution, the largest effect was found using the Chiou and Youngs [2008] 
hypocenter distribution and the smallest for the hypocenter distribution from electronic 
Appendix D. This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for a 
moment-magnitude 6.5 strike–slip earthquake shown in Figures 4.5– 4.7. 

 

 

Figure 4.5 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, strike–slip rupture. 
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Figure 4.6 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using a 
uniform hypocenter distribution for a moment-magnitude 6.5, strike–slip 
rupture. 

 

Figure 4.7 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution model from Appendix D for a moment-magnitude 
6.5, strike–slip rupture. 

4.2.2 Additional Mean Models 

Coefficients were estimated for the change in the mean of 5% damped pseudo-spectral 
acceleration for strike–slip ruptures using both a uniform hypocenter distribution and the 
hypocenter distribution from electronic Appendix D. The coefficients can be found in Tables 4.1 
and 4.2. The models are compared with the model calculated using the Chiou and Youngs [2008] 
hypocenter distribution for a site 20 km off the end of a moment-magnitude 7.5 strike–slip 
rupture with a Rx value of 0 km. The comparison is shown in Figure 4.8. 
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Table 4.1 Coefficients for model of change in mean using a uniform hypocenter 
distribution for strike–slip ruptures 

Coefficient Value Standard error 

b0 -0.103586 0.000215 

b1 0.0119421 0.000276 

b2 0.358110 0.001024 

b3 -0.0200015 0.000784 

ro 17.4501 0.064851 

r1 0.680090 0.001381 

m1 0.959704 0.005838 

m2 -0.571625 0.002972 

bM -0.269678 0.000456 

Sigma 0.0142550 

 

Table 4.2 Coefficients for model of change in mean using Appendix D hypocenter 
distribution for strike–slip ruptures. 

Coefficient Value Standard error 

b0 -0.080707 0.000221 

b1 -0.0130894 0.000287 

b2 0.270306 0.001033 

b3 0.0358174 0.000798 

ro 19.0763 0.085385 

r1 0.770570 0.001680 

m1 1.37281 0.008674 

m2 -0.807316 0.004450 

bM -0.269628 0.000565 

Sigma 0.0155178 
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Figure 4.8 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration due to the randomization of hypocenters using 
Chiou and Youngs [2008] hypocenter distribution models, uniform 
hypocenter distribution model, and hypocenter distribution model from 
Appendix D for a site 20 km from the end of a moment-magnitude 7.5, 
strike–slip rupture with a Rx value of 0 km. 

4.2.3 Standard Deviation Results 

The change in the standard deviation of 5% damped pseudo-spectral acceleration for strike–slip 
ruptures was calculated using a uniform hypocenter distribution and the hypocenter distribution 
from electronic Appendix D. Compared with the change calculated using the Chiou and Youngs 
[2008] hypocenter distribution, the largest effect is seen for the hypocenter distribution from 
electronic Appendix D and smallest for the Chiou and Youngs [2008] hypocenter distribution. 
This is demonstrated for 5% damped pseudo-spectral acceleration at 3 sec for a moment-
magnitude 6.5 strike–slip earthquake in Figures 4.9–4.11. 
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Figure 4.9 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, strike–slip rupture with 2 
reduction. 

 
 

 

Figure 4.10 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using a uniform hypocenter distribution for a moment-
magnitude 6.5, strike–slip rupture with 2 reduction. 
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Figure 4.11 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distributions model from Appendix D for a 
moment-magnitude 6.5, strike–slip rupture with 2 reduction. 

4.2.4 Additional Standard Deviation Models 

Coefficients were estimated for the change in the standard deviation of 5% damped pseudo-
spectral acceleration for strike–slip ruptures using both a uniform hypocenter distribution and the 
hypocenter distribution from electronic Appendix D. The coefficients can be found in Tables 4.3 
and 4.4. The models are compared with the model calculated using the Chiou and Youngs [2008] 
hypocenter distribution for a site 20 km off the end of a moment-magnitude 7.5 strike–slip 
rupture with a Rx value of 0 km. The comparison is shown in Figure 4.12. 

Table 4.3 Coefficients for model of change in standard deviation using a uniform 
hypocenter distribution for strike–slip ruptures. 

Coefficient Value Standard error 

b0 0.0113618 0.000202 

b1 0.141932 0.001270 

b2 0.303622 0.002162 

b3 -0.408713 0.002918 

ro 13.3528 0.076369 

r1 0.747826 0.002984 

m1 0.838457 0.020591 

m2 -0.398519 0.009572 

bM -0.111522 0.000629 

Sigma 0.0360734 
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Table 4.4 Coefficients for model of change in standard deviation using Appendix D 
hypocenter distribution for strike–slip ruptures. 

Coefficient Value Standard error 

b0 0.00657229 0.000195 

b1 0.154046 0.001278 

b2 0.351609 0.002308 

b3 -0.446410 0.002964 

ro 13.1910 0.068559 

r1 0.748240 0.002748 

m1 0.741209 0.018492 

m2 -0.315181 0.008461 

bM -0.129245 0.000621 

Sigma 0.0369480 

 
 

 

Figure 4.12 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration due to the randomization of 
hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models, uniform hypocenter distribution model, and hypocenter 
distribution model from Appendix D for a site 20 km from the end of a 
moment-magnitude 7.5, strike–slip rupture with a Rx value of 0 km. 
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4.3 REVERSE RESULTS 

4.3.1 Mean Results 

The change in the mean of 5% damped pseudo-spectral acceleration for reverse ruptures was 
calculated using a uniform hypocenter distribution. Compared with the change calculated using 
the Chiou and Youngs [2008] hypocenter distribution, the effect is largest for the Chiou and 
Youngs [2008] hypocenter distribution. This is demonstrated for 5% damped pseudo-spectral 
acceleration at 3 sec for a moment-magnitude 6.5 reverse earthquake shown in Figures 4.13 and 
4.14. 

 

Figure 4.13 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using 
hypocenter distribution models from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, reverse rupture. 

 

Figure 4.14 Change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration at 3 sec due to the randomization of hypocenters using a 
uniform hypocenter distribution a moment-magnitude 6.5, reverse 
rupture. 
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4.3.2 Additional Mean Model 

Coefficients were estimated for the change in the mean of 5% damped pseudo-spectral 
acceleration for reverse ruptures using a uniform hypocenter distribution. The coefficients can be 
found in Table 4.5. The model is compared with the model calculated using the Chiou and 
Youngs [2008] hypocenter distribution for a site over the hanging wall with a rupture distance of 
20 km and Ry value of 0 km. The comparison is shown in Figure 4.15. 

 
 

Table 4.5 Coefficients for model of change in mean using uniform hypocenter 
distribution for reverse ruptures. 

Coefficient Value Standard error 

b0 -0.0559015 0.000396 

b1 -0.0339914 0.000422 

b2 0.0686994 0.000479 

b3 0.0609142 0.000588 

b4 0.00549400 0.000365 

b5 0.0646359 0.000617 

b6 0.0107670 0.000701 

b7 0.0433411 0.000401 

b8 0.00376510 0.000509 

b9 0.0186525 0.000568 

ro 47.3150 0.302286 

r1 0.546951 0.003090 

m1 1.57341 0.029154 

m2 -0.434900 0.018083 

bM -0.270149 0.001336 

Sigma 0.0186421 
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Figure 4.15 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration due to the randomization of hypocenters using 
Chiou and Youngs [2008] hypocenter distribution models and uniform 
hypocenter distribution model for a site over the hanging wall of a 
moment-magnitude 6.5, reverse rupture, with a rupture distance of 20 km 
and a Ry value of 0 km. 

 

4.3.3 Standard Deviation Results 

The change in the standard deviation of 5% damped pseudo-spectral acceleration for reverse 
ruptures was calculated using a uniform hypocenter distribution. Compared with the change 
calculated using the Chiou and Youngs [2008] hypocenter distribution, the effect is largest for 
the uniform hypocenter distribution. This is demonstrated for 5% damped pseudo-spectral 
acceleration at 3 sec for a moment-magnitude 6.5 reverse earthquake shown in Figures 4.16 and 
4.17. 
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Figure 4.16 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using hypocenter distribution models from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, reverse rupture with 2 
reduction. 

 
 

 

Figure 4.17 Change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration at 3 sec due to the randomization of 
hypocenters using a uniform hypocenter distribution for a moment-
magnitude 6.5, reverse rupture with 2 reduction. 
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4.3.4 Additional Standard Deviation Model 

Coefficients were estimated for the change in the standard deviation of 5% damped pseudo-
spectral acceleration for reverse ruptures using a uniform hypocenter distribution. The 
coefficients can be found in Table 4.6. The model is compared with the model calculated using 
the Chiou and Youngs [2008] hypocenter distribution for a site over the hanging wall with a 
rupture distance of 20 km and Ry value of 0 km. The comparison is shown in Figure 4.18. 
 
 

Table 4.6 Coefficients for model of change in standard deviation using uniform 
hypocenter distribution for reverse ruptures. 

Coefficient Value Standard error 

b0 0.0792172 0.000759 

b1 0.0143492 0.001223 

b2 -0.00618220 0.000846 

b3 -0.0208327 0.001319 

b4 0.0183605 0.001217 

b5 -0.0123780 0.001454 

b6 -0.00522741 0.002243 

b7 0.0193431 0.001117 

b8 0.00155917 0.000895 

b9 -0.0120129 0.001567 

ro 11.1623 0.245612 

r1 0.378549 0.012649 

m1 -0.543070 0.012361 

m2 -0.0602970 0.009931 

bM 0.00752281 0.001375 

Sigma 0.0319598 
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Figure 4.18 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration due to the randomization of 
hypocenters using Chiou and Youngs [2008] hypocenter distribution 
models and uniform hypocenter distribution model for a site over the 
hanging wall of a moment-magnitude 6.5, reverse rupture, with a rupture 
distance of 20 km and a Ry value of 0 km. 
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5 Preferred Models 

5.1 PREFERRED STRIKE–SLIP MODELS 

The preferred strike–slip rupture models are those developed using the along-strike hypocenter 
distribution from Appendix D and the down-dip hypocenter distribution from Chiou and Youngs 
[2008]. The coefficients for these models are found in Tables 4.2 and 4.4. The model for the 
change in the mean of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec is 
shown for moment-magnitudes 6 through 8 in Figures 5.1–5.5. The model for the change in the 
standard deviation of the natural log of the 5% damped pseudo-spectral acceleration at 3 sec is 
shown for moment-magnitudes 6 through 8 in Figures 5.6–5.10. 

 

 

Figure 5.1 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Appendix D for a moment-
magnitude 6, strike–slip rupture. 
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Figure 5.2 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Appendix D for a moment-
magnitude 6.5, strike–slip rupture. 

 

Figure 5.3 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Appendix D for a moment-
magnitude 7, strike–slip rupture. 
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Figure 5.4 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Appendix D for a moment-
magnitude 7.5, strike–slip rupture. 

 
 

 

Figure 5.5 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Appendix D for a moment-
magnitude 8, strike–slip rupture. 
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Figure 5.6 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Appendix D for 
a moment-magnitude 6, strike–slip rupture. 

 

Figure 5.7 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Appendix D for 
a moment-magnitude 6.5, strike–slip rupture. 
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Figure 5.8 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Appendix D for 
a moment-magnitude 7, strike–slip rupture. 

 

 

Figure 5.9 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Appendix D for 
a moment-magnitude 7.5, strike–slip rupture. 
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Figure 5.10 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Appendix D for 
a moment-magnitude 8, strike–slip rupture.33. 

 

5.2 PREFERRED REVERSE MODELS 

The preferred reverse rupture models are those developed using the along-strike and down-dip 
hypocenter distributions from Chiou and Youngs [2008]. The coefficients for these models are 
found in Tables 3.4 and 3.5. The model for the change in the mean of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 6–7.5 in Figures 
5.11–5.14. The model for the change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec is shown for moment-magnitudes 6–7.5 in Figures 
5.15–5.18. 
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Figure 5.11 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Chiou and Youngs [2008] for a 
moment-magnitude 6, reverse rupture. 

 

Figure 5.12 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Chiou and Youngs [2008] for a 
moment-magnitude 6.5, reverse rupture. 
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Figure 5.13 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Chiou and Youngs [2008] for a 
moment-magnitude 7, reverse rupture. 

 

 

Figure 5.14 Model of change in the mean of the natural log of the 5% damped pseudo-
spectral acceleration at 3 sec due to the randomization of hypocenters 
using hypocenter distribution model from Chiou and Youngs [2008] for a 
moment-magnitude 7.5, reverse rupture. 
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Figure 5.15 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Chiou and 
Youngs [2008] for a moment-magnitude 6, reverse rupture. 

 

Figure 5.16 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Chiou and 
Youngs [2008] for a moment-magnitude 6.5, reverse rupture. 
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Figure 5.17 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Chiou and 
Youngs [2008] for a moment-magnitude 7, reverse rupture. 

 

Figure 5.18 Model of change in the standard deviation of the natural log of the 5% 
damped pseudo-spectral acceleration at 3 sec due to the randomization 
of hypocenters using hypocenter distribution model from Chiou and 
Youngs [2008]. 
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5.3 EXAMPLE APPLICATION 

Example calculations are performed at three sites around a strike–slip fault with a length of 150 
km and a width of 12 km. The locations of the three sites with respect to the fault are shown in 
Figure 5.19. The change in the mean of the natural log of the 5% damped pseudo-spectral 
acceleration is calculated using the preferred model for a moment-magnitude of 7.3 at the three 
sites; see Figure 5.20. The change in the standard deviation of the natural log of the 5% damped 
pseudo-spectral acceleration is calculated and presented in Figure 5.21. The change in the mean 
and standard deviation peaks for each site at a period of 5 sec. 

Example hazard calculations are performed at the three sites assuming the fault has a slip 
rate of 5 mm/yr and modeling the earthquake recurrence using Youngs and Coppersmith [1985] 
with an average characteristic magnitude of 7.3. The hazard curves calculated for 5% damped 
pseudo-spectral acceleration at 3 sec are shown in Figure 5.22. There is a very slight decrease in 
the hazard at the site located near the middle of the rupture, a slight increase in the hazard at the 
site located at the very end of the rupture, and an increase in the hazard at the site located 15 km 
off the end of the rupture. 

The uniform hazard spectrum (UHS) at all three sites with and without the preferred 
directivity model are calculated for an annual probability of exceedance of 10-4 and shown in 
Figure 5.23. The effect of the preferred directivity model on the 10-4 UHS is calculated by 
dividing the UHS calculated with the preferred model by the UHS calculated without the 
preferred model; see Figure 5.24. The change in the UHS is similar to that calculated for a full 
rupture of the fault using the average characteristic magnitude. 

 

 

Figure 5.19 Location of three sites for example strike–slip fault. 
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Figure 5.20 Preferred strike–slip model of change in the mean of the natural log of the 
5% damped pseudo-spectral acceleration for example magnitude 7.3 
strike–slip rupture with sites located at Rx = 0, Ry = 90, Rx = 5, Ry = 76, 
and Rx = 10, Ry = 0. 

 

Figure 5.21 Preferred strike–slip model of change in the standard deviation of the 
natural log of the 5% damped pseudo-spectral acceleration for example 
magnitude 7 strike–slip rupture with sites located at Rx = 0, Ry = 90, Rx = 
5, Ry = 76, and Rx = 10, Ry = 0. 
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Figure 5.22 Hazard curves calculated with and without the preferred directivity model 
for 5% damped pseudo-spectral acceleration at 3 sec for example 
application with sites located at Rx = 0, Ry = 90, Rx = 5, Ry = 76, and Rx = 
10, Ry = 0. 

  



94 

 
 
 
 
 

 

Figure 5.23 Uniform hazard spectra calculated with and without the preferred 
directivity model at an annual exceedance probability of 10-4 for the 
example application with sites located at Rx = 0, Ry = 90, Rx = 5, Ry = 76, 
and Rx = 10, Ry = 0. 
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Figure 5.24 The effect on the uniform hazard spectrum calculated with and without 
the preferred directivity model at an annual exceedance probability of 10-4 
for the example application with sites located at Rx = 0, Ry = 90, Rx = 5, 
Ry = 76, and Rx = 10, Ry = 0. 
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