#### Utilization of Seismic Instruments Data in Assessing Building Code Provisions

#### Yijun Xiang, Farzad Naeim Farzin Zareian

#### **UC-Irvine**





#### Seismic Design and Assessment Documents













### Outline





- Accomplishments in utilizing instruments data in assessing code provisions:
  - Natural Periods and Equivalent Damping Ratios
  - Accidental Torsion
- Current/Future directions







## **Current Code Provision**

| Natural Period           | Structure Type                          | C <sub>t</sub> | x    |
|--------------------------|-----------------------------------------|----------------|------|
| • $T_a = C_t h_n^{\chi}$ | Steel Moment Resisting Frames           | 0.028          | 0.8  |
| (ASCE 7-10)              | Concrete Moment Resisting Frames        | 0.016          | 0.9  |
|                          | Steel Eccentrically Braced Frames       | 0.03           | 0.75 |
|                          | Steel Buckling Restrained Braced Frames | 0.03           | 0.75 |
|                          | All Other Structural Systems            | 0.02           | 0.75 |

Equivalent Modal Damping Ratio

- ASCE 7-10 uses 5% damped response spectrum
- FEMA P-58-1 suggests 1% to 5% of critical damping in the predominant vibration modes of the structure
- FEMA P-58-1 suggests that damping ratio values of 3% or less should be used for tall buildings

## **Current Code Provision**

#### Accidental Torsion

ASCE 7-10: "...accidental torsional moments caused by assumed displacement of the center of mass each way from its actual location by a distance equal to **5 percent** of the dimension of the structure perpendicular to the direction of the applied forces."



#### **CSMIP** Database





#### **CSMIP** Database





#### **CSMIP** Database

#### California Department of Conservation



#### Modal Properties: previous research

- Natural Period
  - Goel, R., & Chopra, A.K. (1997). "Period formulas for moment-resisting frame buildings".
  - Goel, R., & Chopra, A.K. (1998). "Period formulas for concrete shear wall frame buildings".



These Equations are implemented in ASCE code provision

#### Modal Properties: previous research

- Equivalent Modal Damping Ratio
  - Satake *et al.* (2003). "Damping Evaluation Using Full-Scale Data of Building in Japan".



#### Modal Properties: previous research

- Equivalent Modal Damping Ratio
  - Cruz, C., & Miranda, E. (2016). "Evaluation of Damping Ratios for the Seismic Analysis of Tall Buildings".









Steel Moment Resisting Frames (SMRF)

Reinforced Concrete Moment Resisting Frames (RCMRF)



Y. Xiang, F. Naeim, and F, Zareian (2019) Evaluation of Natural Periods and Modal Damping Ratios for Seismic Design of Building Structures, *Earthquake Spectra*, (in review)

#### Modal Properties: Comparisons



- O SMRF (at UCI)
- CBF (at UCI)
- EBF (at UCI)
- SMRF equation (at UCI)
- **•••** CBF equation (at UCI)
- – EBF equation (at UCI)
- —— ATC-72-1 2010 (lower bound)
- ↔ → Bernal et al. 2015, US
- +++ Fritz et al. 2009, US, JP, UK
- 🔸 🔶 Cruz at al. 2016, US

Satake at al. 2003, JP

#### Modal Properties: Comparisons



# Major findings:

- ✓ Equations for T and  $\xi$  are provided for different building types.
- ✓ Damping ratio can be amplitude dependent.
- ✓ For tall buildings, the response of structures can be insensitive to first mode damping ratio.

System Identification



System Identification



#### System Identification



Modal Properties (first three modes) of LA-52 estimated by System ID method: SRIM

• System Identification

Modal Properties (2<sup>nd</sup> mode) of LA-52 estimated by three System ID methods: SRIM, ERA-OKID and N4SID Second Mode Frequency(1/T2), SRIM Second Mode Frequency(1/T<sub>2</sub>), ERA-OKID Second Mode Frequency(1/T<sub>2</sub>), N4SID 0.59 0.59 0.58 0.58 0.58 0.57 0.57 0.57 0.56 0.56 0.56 0.55 0.55 Δ 100 N 100 N σ 100 N Second Mode Damping( $\xi_2$ ), SRIM Second Mode Damping( $\xi_2$ ), ERA-OKID Second Mode Damping( $\xi_2$ ), N4SID 300 400 100 N 100 N 100 N 

System Identification

A combined method for estimating modal properties using both time-domain methods and frequency domain method (EFDD)



#### Accidental Torsion

ASCE 7-10 says: "...accidental torsional moments caused by assumed displacement of the center of mass each way from its actual location by a distance equal to 5 percent of the dimension of the structure perpendicular to the direction of the applied forces."



#### Accidental Torsion: previous research

- Accidental Torsion
  - De la Llera, J.C., Chopra, A.K. (1994). "Accidental Torsion in Buildings Due To Stiffness Uncertainty".



#### Accidental Torsion: previous research

#### Accidental Torsion

• DeBock *et al.* (2014). "Importance of seismic design accidental torsion requirements for building collapse capacity".



"accidental torsion provisions are not necessary for seismic design of buildings without excessive torsional flexibility or asymmetry."



#### Selected buildings from CSMIP database

| Building ID  | Number of | Plan Aspect | Category |
|--------------|-----------|-------------|----------|
|              | stories   | Ratio       |          |
| 12299        | 4         | 1.8         |          |
| 58261        | 4         | 1.9         | 4-story  |
| 24463        | 5         | 1.4         |          |
| 12493        | 4         | 1.7         |          |
| 24571        | 9         | 2.5         |          |
| 24386        | 7         | 2.8         | 8-story  |
| 23481        | 7         | 1.5         |          |
| 24249        | 8         | 2.3         |          |
| 57357, x-dir | 13        | 1.0         |          |
| 57357, y-dir | 13        | 1.0         | 12-story |
| 58354        | 13        | 1.0         |          |
| 24322        | 13        | 2.6         |          |

Assessment of accidental torsion: Simulations vs. Instrumented data





#### Accidental Torsion: @UCI (8-story bldgs.)





• A Damping Element Model for Energy Dissipation Characterization in Building Structures (#23516

(#23516, 3-story SMRF, Landers)



• A Damping Element Model for Energy Dissipation Characterization in Building Structures

**Floor Acceleration Spectrum** 



 Assessment of Accidental Torsional Using Flexible Diaphragm Models



• Validation of Caltrans Ordinary Bridge Modeling Approach using Bayesian State and Parameter Estimation Method





