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Outline

®  Why is SHM needed?

®  Current Practice

®  The Ideal Solution (IMHO)

¢ Digital Twins + Bayesian Model Updating

C Validation: Samoa Channel Bridge
O Verification: The Golden Gate Bridge
> Application examples:
O Post-Earthquake Assessment: San Roque Canyon Bridge

O Operational Monitoring: The San Roque Canyon Bridge




Structures Need Doctors!

* Gradual damage is inevitable
* Aging
* Permanent and cyclic loading
» Environmental effects (temperature, humidity, etc.)
* Minor earthquakes

*  Older structures
* Recently understood vulnerabilities
» Configurational or utilization changes

. Severe events can/will also happen Hot zones for potential earthquakes in the U.S.
LOWEST HIGHEST
« Natural (Earthquakes, Fires, Hurricanes) wazagp | [ T 0

« Anthropogenic
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Our Bridges Are Old

“There are more than 56000 structurally deficient bridges in US”,
American Road and Transportation Builders Association

Estimated Cost to Complete All Needed Bridge Work (in billions $)

% of deficient bridges

yesterday option, current need,
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Today Challenges

* Inventories of complex structures and infrastructure are
exponentially growing

» Design philosophy has changed from the life safety to business
continuity

R
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Current Practice: Periodic Inspection

- Visual inspection
+ Time-consuming and expensive
* Periodic (discontinuous)
» Service interruptions
» Subjective and prone to human errors




Current Practice: Periodic Inspection

- Visual inspection

« Time-consuming and expensive
« Periodic (discontinuous)
« Service interruptions

* Subjective and prone to human errors

- The system-level source and consequence of visible
damage are hard to realize. Invisible damages
include:

* Loss of pretension forces
* Fatigue

* Foundations g
+ Cascading effect for=
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http://www.sciencedirect.com/science/article/pii/S0886779801000475

Current Practice: Periodic Inspection
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include:
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* Foundations

+ Cascading effects

- Life-cycle/operational damage

* Concrete damage, ¢
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After an Event

In case of an emergency we need to answer the following questions:
1. Do we need to stop operation?
2. If so, when will it be safe to restart?
3.  Where do we send the first responders?
4

Can we quickly assess structural damage?

* Is there damage in the system? <« detection
» What are the damaged components?

* How significant is the damage?

JR East evacuation during the 2011 Tohoku Eq.

+ Health assessment must be carried out quickly to minimize unnec
- Bridges are under operational traffic while afters

* Decision must be made based on quantitative
- Wrong decisions can result in di
There is no time to do tes
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Sensor-Based SHM Solutions

* Expensive . Non-Destructive
* Not applicable at every location Evaluation

* Not applicable continuously
+ Cause Performance interruptions
« Typically no system-level insight

Ultrasonic Test

Tap Test

Infrared Thermography

Acoustic Emission




Vibration-Based SHM Solutions
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(tremors, people, traffic, ...)

System Identification
The Brain of the SHM
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(earthquake, wind, explosion) /
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Existing SHM Solutions

Vibration-Based
— Structural Health
Monitoring

Data Mining

Expensive

Not applicable at every location
Not applicable continuously
Cause Performance interruptions
Typically no system-level insight

Operational Modal Analysis

-
<



A Robust SHM & Rapid PEA Framework

- It should work for rapid post-event (e.g., earthquake) damage assessment as
well as long-term health/performance monitoring

- It must be able to identify hidden and local damages loca G

- |t must be se:sors [e——

R — - < . -l

digitizers




SHM Solutions
Sensing Interpretation
Technology Algorithm

Vibration-Based
— Structural Health
Monitoring

-
<

» Expensive

» Not applicable at every location
» Not applicable continuously

» Performance interruption

* No system-level insight

Digital Twin



A Decade of Study

SOIL
structural Control Earthq gineering | DYNAMICS ENGINEERING SENGINEERING
Health Monitoring Struct ics E'A‘kal% STRUCTURES e
i

Engineering
Mechanics
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Bayesian Identification of soil-foundation stiffness of bullding

Blind ident
structures

Parameter identification of framed structures using an improved Performance of equilibrium-based system
finke slement model-updating athud-—Parc : formetion and identification algorithms with incomplete state
verification . 3
a
Response-only modal identification of structures using limited
sensors.
Modal System Identification and Fini round surface sigs
Element Model Updating of a 15-Story Ambient and Forced Vibration Testing of a
Building Using Earthquake and Amblent Reinforced Concrete Bullding before and
Vibration Data after Its Selsmic Retrofitting
. — - - Blind identification of site effects and bedrock
Response-only modal identification of structures using strong
On Forced Vibration Testing for Parametric Identification of Nondegrading motion data
Quantifying Damage in Bullding Structures H sis Laterally and Torslonally 5
Coupled Bullding Using an Unscented
Kalman Filter Blind modal Identification of structures from spatially sparse Estimation of the Soil-Structure Model Parameters for the M Library Bui
seismic response signals Using a Sequeatial Bayesian Finite Element Model Updating Technique

motion from surface response signa

Story-by-story estimation of the stiffness parameters of Hamed Exeahimian', S. Farid Ghaban’, Domniki Asimaks™ ", Entugrul Tacioghs*
laterally-torsionally coupled bulldings using forced or amblent

vibration data: I. Formulation and verification Extended Blind Modal Identification

Technique for Nonstatlonary Excitations
and Its Verification and Validation

Blind Identification of the Millikan Library from earthquake data
considering soll-structure interaction

UCLA s li S—
a m u e I Blind modal identification of non-classically damped structures

under non-stationary excitations
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Our Solution: SHM Rapid PEA using Digital Twins

Response Prediction

Operational
Assessment

Rapid Post-Event
Assessment

Detailed Post-Event -
Assessment

Prediction/
Preparation
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Some Theory

Nonlinear FE Model

(

Prior Information

Measurement

Simulation Error Model

Bayesian Updating



Method’s Capabilities

Golden Gate Bridge

Use itin identification mode, when:
e * Foundation measurements are fully available, and
« SSlis negligible, or
 Only the superstructure is of interest

Meloland Road Overpass

input-output

output-only



Progress Toward Real-Life Applications

Heterogeneous sensors

Real-world, large- Information fusion

scale applications

Parallelization
Scalability

Joint input and
nonlinear system |ID

" Nonlinear model updating
using input-output data
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Some of Our Past & Ongoing Projects

Caltrans: Comparative Study of Model Predictions and Data from Caltrans/CSMIP Bridge Instrumentation
Program: A Case study on the Eureka-Samoa Channel Bridge

CGS: Identification of Soil-Foundation-Structure Interaction Effects using Recorded Strong Motion
Response Data from Instrumented Buildings

CGS: Identification of Spatial Variability in Bridge Foundation Input Motions

Caltrans: Development of Accurate Damping Models for Nonlinear Time History Analysis

CGS: Identification of Earthquake Input Excitations for CSMIP-Instrumented Buildings

UCLA ITS: Digital Twins for Bridge Health Monitoring & Management

SCEC: Output-Only Bayesian Nonlinear Site Characterization using Geotechnical Downhole Array Data
FHWA: Digital Twins for Bridge Management through the Integrating of Computer Vision and Finite
Element Models, Phase |

CGS: Characterization of Nonlinear Dynamic Soil Properties from Geotechnical Downhole Array Data
FHWA: Digital Twins for Bridge Management through the Integrating of Computer Vision and Finite

Element Models, Phase Il
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Samoa Bridge .
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Response Prediction

~—— Recorded Ch #11 —— FE Model

An earthquake occurred right
after completing the project!

3
2
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——Recorded Ch #10 —— FE Model

Recorded

Displacement (cm)
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CSMIP Buildings

- Blind Prediction

——Recorded

T
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7th Floor
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CSMIP Buildings
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Tutorial available at YouTube (


https://www.youtube.com/watch?v=yMUpOmnP4yU

Workflow To Solve Any Problem Size

Googleimages Structural
g drawings
e Run
Initialization {n OpenSeeshiP Read results
‘ instances) ‘
|

-
4 Domain
OpenSees 7 4 i
ecomposition
mOde| (m cores)
i

-

.

Prepare TCL

Assigneach

MPIs a package
{Bash scnpt)

packages
(n packages)

Requestcores
(nxm)

Calln MPIs
(Bash scopt)

Update TCL ﬁlﬁ

Available FE
models
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Modeling Capabilities

z
Y
25>
West Carquinez S
Bridge >
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Modeling Tools

e e T ® SAP20S dynamically talks to SAP through API
i ; rather than usual reading static text file;

ShecwoT
]

¢ It converts all loads, mass, linear materials,
various sections, and different types of elements
(frames, shells, links) along with the geometry

3D OpenSEES Model

UCLA samueli
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SAP20S Converter Tool

~- Meloland Road Overpass, 1st Mode

"'San Roque Canyon Bridge, 1st Mode

UCLA Samuell .‘":‘: Golden Gate Bridge, 1st Mode

School of Engineering Millikan Library, 1st Mode



CSMIP-BRIDGE v1.0

*  Automatically connects to CESMD _ s, Search

(

* Retrieves all bridge data
Baoge Type 2] Ceanary =
Swpentuctre |7 Do Groer =

. Determines number of various data

Sussvuctore. (3] (Comen =

sets (instrumented bridges, ; I < \ 'a Comspeccat [2
earthquake data sets per bridge, ...) " - : \ AR

. Reads all available information of
each bridge —

. User is able to add additional

o, found. channets

information = — — A
*  Search module helps to classify - b - o o e

bridges based on their specifications [ R v ‘ o conmn chamen (2

2 " 3 ‘ine
Center {or Engineering Strong M

«ZUSGS

scvence bor ) chanplog workd

CSMIP BRIDGE..
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https://youtu.be/GX69tdeEmGo
http://strongmotioncenter.org/

Our SPHM Workflow

v

FE Model
(BT)

Detailed DT
Training
(offline)

Threshold

(online)

Fragility
Inform Decision (Rapid)

Makers

Detailed DT
Training



Detailed Post-Earthquake Assessment
Golden Gate Bridge, 2014 South Napa Earthquake

\
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Identifiability

No. Element Type
. . . 1 Bottom Bracing Elastic Modules
e We need to know how much information will be 2 Cable Elastic Modules
through the posted channels 3 Chord Elastic Modules
o . . 4 Deck Elastic Modules
We |n|t|ally considered ) Diagonal Bar Elastic Modules
° By removing certain parameters, we ended up with 6 Floor Beam Elastic Modules
7 Hanger Elastic Modules
8 Kneebrace Elastic Modules
9 Top Bracing Elastic Modules
10 Tower Elastic Modules
11 Track Girder Elastic Modules
12 Transverse Strut Elastic Modules
; 13 Vertical Rod Elastic Modules
{ Identifiable parameters 14 Vertical Bar Elastic Modules
b{ 15 | South Tower-South Side Span| Spring Stiffness, M2
s 16 | North Tower-North Side Span | Spring Stiffness, M2
8 § 17 South Abutment Spring Stiffness, P
£ £ 18 South Abutment Spring Stiffness, V2
. & 19 South Abutment Spring Stiffness, V3
{ 20 South Abutment Spring Stiffness, T
! 21 South Abutment Spring Stiffness, M2
22 North Abutment T Spring Stiffness, P
23 North Abutment Spring Stiffness, V2
oo Parameter D 24 North Abutment Spring Stiffness, V3
25 North Abutment Spring Stiffness, T
26 North Abutment Spring Stiffness, M2
= ® | 27 Damping Alpha
UCLA Samuell ® | 28 Damping beta
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IO Verification (synthetic Data)

Comparison between recorded (simulated) and predicted
responses at selected channels
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OO Verification (Synthetic Data)
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OO0 Validation (GERUDELE))
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Ordinary Bridges: A validation study (SRC)

T L A
- & - San Roque
N o d =/ Santa Barbar: Roque Canyon Briage
I\‘ - C.mww 51104 £6-50- 401 7T
- CE Ghatcn Mo, 25740
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By-Product: Rayleigh Damping g

higher frequency content wake
up diffuse damping resources in

'I\D/”e_:t‘:fes K the structure.
R:?g 0 Km ——San Simeon 2003 Contrary to the MRO, the role of
PGA=0.041 g — Islavista 2004 poundaries in energy dissi.pa.tion
PSA=0.152 g lavista 2013 is small (at least in these limited
savisia low-intensity earthquakes). So
<~ Montecito 2017 the larger the intensity level is,
the higher Rayleigh damping is
observed.
ML=3.4
Depth=14.2 Km
Mw=5.3 R=9.5 Km
Depth=9.9 Km PGA=0.022 g
R=68.0 Km PSA=0.046 g
PGA=0.016 g .
ML=4.4
PSA=0.058g Depth=4.4 Km
R=27.2 Km
PGA=0.016 g
Frequency (Hz) PSA=0.047 g
Mw=6.5
Depth=4.7 Km
High-frequency content of the low- R
PGA=0.015¢g

. amplitude far earthquakes is PSA=0.045 g
UCLA Samueli filtered out. The bridge moves

School of Engineering quasi-statically!




Virtual Sensors!

Shear Key Force-Deformation

\
N 2 \
e .V
e My e \
\
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Passive Soil Force-Deformation

Concrete Fiber Material
Response

t
|
=.
v
£
7]
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Operational Condition Assessment

Accelerometers

in Top slab f!
in Girder f!
in Tendon prestress

No damage in

Object Tracking / Type Detection

Bayesian FE Model Updating
(Integrating Data with Model)

Online

Poreal P, e e A e ey

Estmates Vale (Nomafizes)

Permanent/temporary L
sensors. \.

4

Acceleration THs

N e et

Estimate jointly the model parameters and vehicular loads

- ° d =
Prarmrer : T e U "“h S ».MN-M.W»“J
" Share Information with [ ! | I e
© Regularcamera system X = Stakeholders

(tripod or drone mounted) Digital Twin P’("w'w"“":"""‘””w ey

Woght (Nomatzes)

© On-site laptop
£ Office/server computer

- Time (Sec)
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Rapid Post-Event Assessment
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