

On the Use of Digital Twins for Structural Health and Performance Monitoring and Rapid Post-Event Assessment

2020 PEER Annual Meeting

The Future of Performance-Based Natural Hazards Engineering

January 16-17, 2020, Berkeley, California

Ertugrul Taciroglu Professor, University of California, Los Angeles

Hamed Ebrahimian

Assistant Professor, University of Reno, Nevada

S. Farid Ghahari <u>Project Scientist, University of California, Los Angeles</u>

Outline

- Why is SHM needed?
- Current Practice
- The Ideal Solution (IMHO)
- Digital Twins + Bayesian Model Updating
 - Validation: Samoa Channel Bridge
 - Verification: The Golden Gate Bridge
 - Application examples:
 - Post-Earthquake Assessment: San Roque Canyon Bridge
 - Operational Monitoring: The San Roque Canyon Bridge

Structures Need Doctors!

- Gradual damage is inevitable
 - Aging
 - Permanent and cyclic loading
 - · Environmental effects (temperature, humidity, etc.)
 - Minor earthquakes
- Older structures
 - Recently understood vulnerabilities
 - Configurational or utilization changes
- Severe events can/will also happen
 - Natural (Earthquakes, Fires, Hurricanes)
 - Anthropogenic

Our Bridges Are Old

"There are more than 56000 structurally deficient bridges in US", American Road and Transportation Builders Association

Estimated cost to complete all needed bridge works (billion \$)

Resources must be carefully managed!

SHM: yesterday option, current need, future necessity

Today Challenges

- Inventories of complex structures and infrastructure are exponentially growing
- Design philosophy has changed from the life safety to business continuity
- Indirect costs are becoming higher and higher!

- Visual inspection
 - Time-consuming and expensive
 - Periodic (discontinuous)
 - Service interruptions
 - Subjective and prone to human errors

Visual inspections are costly and time-consuming and thus, must be prioritized after a major event.

- Visual inspection
 - Time-consuming and expensive
 - Periodic (discontinuous)
 - Service interruptions
 - Subjective and prone to human errors
- The system-level source and consequence of visible damage are hard to realize. Invisible damages include:
 - Loss of pretension forces
 - Fatigue

UCLA Samueli

Foundations

School of Engineering

Cascading effect

Tunnel damage observed during the 1999 Chi-Chi Taiwan Earthquake (<u>Wang et al.</u>, 2001).

Damage may manifest in inaccessible locations (box girders, pile foundations, etc.).

- Visual inspection
 - Time-consuming and expensive
 - Periodic (discontinuous)
 - Service interruptions
 - Subjective and prone to human errors
- The system-level source and consequence of visible damage are hard to realize. Invisible damages include:
 - Loss of pretension forces
 - Fatigue
 - Foundations
 - Cascading effects
- Life-cycle/operational damage types include
 - · Concrete damage, corrosion
 - Deterioration of bearings, scouring
 - Collisions, fire, etc.

- Visual inspection
 - Time-consuming and expensive
 - Periodic (discontinuous)
 - Service interruptions
 - Subjective and prone to human errors
- The system-level source and consequence of visible damage are hard to realize. Invisible damages include:
 - Loss of pretension forces
 - Fatigue
 - Foundations
 - Cascading effects
- Life-cycle/operational damage types include
 - Concrete damage, corrosion
 - Deterioration of bearings, scouring
 - Collisions, fire, etc.

Instances that were perceived to be OK!

After an Event

In case of an emergency we need to answer the following questions:

- 1. Do we need to stop operation?
- 2. If so, when will it be safe to restart?
- 3. Where do we send the first responders?
- 4. Can we quickly assess structural damage?
 - Is there damage in the system? ← detection
 - What are the damaged components?

 localization
 - How significant is the damage? ← quantification

JR East evacuation during the 2011 Tohoku Eq.

- Health assessment must be carried out quickly to minimize unnecessary downtime
 - Bridges are under operational traffic while aftershocks are coming
- Decision must be made based on quantitative results
 - Wrong decisions can result in disasters
- There is no time to do tests
 - Number of assets in affected regions are large and resources are typically limited
- Number of assets to be inspected is typically very large

The proposed method must be scalabl

Logistics may become chaotic in the aftermath of a major event

Sensor-Based SHM Solutions

Vibration-Based SHM Solutions

Existing SHM Solutions

A Robust SHM & Rapid PEA Framework

- It should work for rapid post-event (e.g., earthquake) damage assessment as well as long-term health/performance monitoring
- It must be able to identify hidden and local damages
- It must be

UCLA Samueli

- practica
- low cost
- 🗸 quantitative
- ✓ reliable/accurate
- automated
- 🗸 scalab
- √ fast

reporting

- It should minimize operation/service interruptions
- It should help identify preventative maintenance
- It should be self-improving

School of Engineering

- It should take advantage of technology advancements over time

SHM Solutions

Hidden damage identification

A Decade of Study

Targery Variation Walkers and Driversh Tachroph

On Forced Vibration Testing for Quantifying Damage in Building Structures

School of Engineering

UCLA Samueli

after its Seismic Retrofitting

Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally **Coupled Building Using an Unscented**

Kalman Filter

TANAMA Algorith & Madure and J. Tachagle, A.M.ANCE

Story-by-story estimation of the stiffness parameters of laterally-torsionally coupled buildings using forced or ambient vibration data: I. Formulation and verification

ishanak Orreani. Ralph E. Hadson, Ernagnal Tacinggu 😦

Partice Abasearse⁴⁴, Parthere Nateght⁴⁴, S. Partid Ghahart⁴⁴, and Erbagnul Teorregiu⁴⁴

Blind identification of site effects and bedrock

Estimation of the Soil-Structure Model Parameters for the Millikan Library Building

Using a Sequential Bayesian Finite Element Model Updating Technique

Hamed Ebrahimian¹, S. Farid Ghahani², Domniki Asimaki^{3,*}, Ertuerul Taciroelu⁴

motion from surface response signals

Shahari S.F. Atazarta S.G. Joong T.A. Romolus S.E. Sartengio F.A.H

Response-only modal identification of structures using strong motion data

S.F. Chahari, F. Abatama, M.A. Ghannad, E. Tacoroglu G

Blind modal identification of structures from spatially sparse seismic response signals S.F. Ghahari, F. Abatama, M.A. Ghannad, M. Celebi, E. Taconghi G

Extended Blind Modal Identification Technique for Nonstationary Excitations and Its Verification and Validation

Blind identification of the Millikan Library from earthquake data considering soil-structure interaction S. F. Ghahari C. F. Abatama, G. Auci, M. Celetti, E. Tacinoglu

Blind modal identification of non-classically damped structures under non-stationary excitations

S. F. Chahari, F. Abatama, E. Tacanglu

Our Solution: SHM Rapid PEA using Digital Twins

Response Prediction

School of Engineering

Model Updating / training

Some Theory

Progress Toward Real-Life Applications

Some of Our Past & Ongoing Projects

Caltrans: Comparative Study of Model Predictions and Data from Caltrans/CSMIP Bridge Instrumentation Program: A Case study on the Eureka-Samoa Channel Bridge

CGS: Identification of Soil-Foundation-Structure Interaction Effects using Recorded Strong Motion Response Data from Instrumented Buildings

CGS: Identification of Spatial Variability in Bridge Foundation Input Motions

Caltrans: Development of Accurate Damping Models for Nonlinear Time History Analysis

CGS: Identification of Earthquake Input Excitations for CSMIP-Instrumented Buildings

UCLA ITS: Digital Twins for Bridge Health Monitoring & Management

SCEC: Output-Only Bayesian Nonlinear Site Characterization using Geotechnical Downhole Array Data FHWA: Digital Twins for Bridge Management through the Integrating of Computer Vision and Finite Element Models, Phase I

CGS: Characterization of Nonlinear Dynamic Soil Properties from Geotechnical Downhole Array Data FHWA: Digital Twins for Bridge Management through the Integrating of Computer Vision and Finite Element Models, Phase II

Samoa Bridge

								Free-F static
ent	Date	Magnitude	Source Location		Ep. Dist.(km)	PGA (g)*	PSA (g)**	Data Availability
pe locino	03/16/00	5.6 Mw	Lat.(N) 40.39	Long.(W) 125.24	102.5	0.006	0.020	Yes
eka	06/17/02	5.3 ML	40.83	124.61	36.9	0.053	0.108	No
nt City hore	06/14/05	7.2 ML	41.33	125.87	153.4	0.009	0.031	Yes
dale hore	02/26/07	5.4 ML	40.642	124.87	62.5	0.011	0.022	Yes
idad	06/24/07	5.1 ML	41.13	124.81	63.9	0.028	0.072	Yes
Creek	04/29/08	5.4 Mw	40.84	123.50	56.5	0.017	0.032	Yes
dad	08/16/08	4.6 Mw	41.18	124.20	40.2	0.018	0.057	Yes
le Area	01/09/10	6.5 Mw	40.65	124.76	53.9	0.150	0.370	Yes

"North" abutment

Geotechnical array

Response Prediction

0.67 Hz

30

45

Time (Sec.)

60

75

0.6

UCLA Samueli School of Engineering

CSMIP Buildings

Blind Prediction

CSMIP Buildings

Handhand Brandh Tantara Anny Chanarraid Brand Control for Expensive Tomag Hannas Expe ASSES - CSMEPCET - CCET	Locality of the second	
<section-header></section-header>		$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Tutorial available at YouTube (https://www.youtube.com/watch?v=yMUpOmnP4yU)

Workflow To Solve Any Problem Size

Modeling Capabilities

Modeling Tools

Eigen Setting

- SAP2OS dynamically talks to SAP through API rather than usual reading static text file;
- It converts all loads, mass, linear materials, various sections, and different types of elements (frames, shells, links) along with the geometry

SAP2OS Converter Tool

San Roque Canyon Bridge (Stick model), 1st Mode

Garner Valley Structure, 1st Mode

CSMIP-BRIDGE v1.0

- Automatically connects to CESMD
 (http://strongmotioncenter.org/)
- Retrieves all bridge data
- Determines number of various data sets (instrumented bridges, earthquake data sets per bridge, ...)
- Reads all available information of each bridge
- User is able to add additional information
- Search module helps to classify
 bridges based on their specifications

https://youtu.be/GX69tdeEmGo

Our SPHM Workflow

Detailed Post-Earthquake Assessment Golden Gate Bridge, 2014 South Napa Earthquake

Identifiability

- We need to know how much information will be available through the posted channels
- We initially considered 66 unknown parameters.
- By removing certain parameters, we ended up with 28 unknown parameters.

Final selection

┛				
Y	No.	Element	Туре	
	1	Bottom Bracing	Elastic Modules	
	2	Cable	Elastic Modules	
	3	Chord	Elastic Modules Elastic Modules Elastic Modules	
	4	Deck		
	5	Diagonal Bar		
	6	Floor Beam	Elastic Modules	
	7	Hanger	Elastic Modules	
	8	Kneebrace	Elastic Modules	
	9	Top Bracing	Elastic Modules	
	10	Tower	Elastic Modules	
	11	Track Girder	Elastic Modules	
	12	Transverse Strut	Elastic Modules	
	13	Vertical Rod	Elastic Modules	
	14	Vertical Bar	Elastic Modules	
	15	South Tower-South Side Span	Spring Stiffness, M2	
	16	North Tower-North Side Span	Spring Stiffness, M2	
	17	South Abutment	Spring Stiffness, P	
	18	South Abutment	Spring Stiffness, V2	
	19	South Abutment	Spring Stiffness, V3	
	20	South Abutment	Spring Stiffness, T	
	21	South Abutment	Spring Stiffness, M2	
	22	North Abutment	Spring Stiffness, P	
	23	North Abutment	Spring Stiffness, V2	
	24	North Abutment	Spring Stiffness, V3	
	25	North Abutment	Spring Stiffness, T	
	26	North Abutment	Spring Stiffness, M2	
)	27	Damping	Alpha	
	28	Damping	beta	

IO Verification (Synthetic Data)

Comparison between recorded (simulated) and predicted responses at selected channels

Known Inputs

Parameter	Initial Error (%)	Final Error (%)
Tower's E	50	0.03
Cable's E	50	0.04
Chord's E	50	0.23
Bottom Bracing's E	50	1.59
Mass-Prop. Damping	50	2.38
Stiffness-Prop. Damping	50	13.76

OO Verification (Synthetic Data)

Recorded vs. predicted responses

OO Validation (Real Data)

Recorded vs. predicted responses

Ordinary Bridges: A validation study (SRC)

By-Product: Rayleigh Damping

Larger level of excitation and

UCLA Samueli School of Engineering

Operational Condition Assessment

Rapid Post-Event Assessment

