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Outline

Motivation

The GM simulation methods

— 1D, 3D, deterministic, stochastic, kinematic, dynamic
— High-Performance Computing is needed for realistic simulations

Challenges for more realistic and useful GM simulations

— Computational — Efficiency, porting to emerging HPC resources

— Physical
« Source — need realistic source models to represent excitation of seismic waves
« Path — 3D Earth models must represent crustal structure across length-scales
« Site — capture 3D effects, body and surface waves, variability

New results for My, 7.0 Hayward Fault ruptures
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Simulations provide valuable constraints on

site-specific near-fault ground motions
* Empirical data are limited

« Few observations at short distance O q 5§
. VarlabllltyIdue to different regions, conditions § '
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= Near-fault motions are highly variable :
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— Motions shaped by rupture details
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« Slip, directivity, rise-time, rupture speed
« Displacement step and velocity pulse

« Coupling into sedimentary basins

= Hazard to structures by specific faults,
deterministic scenarios

— Critical facilities (e.g. nuclear installations)

— Transportation infrastructure

— Lifelines (electricity, water, gas) Diablo Canyon

Electric Gri
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Computed motions support engineering applications:
geotechnical, building and/or SSI response
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See Dave McCallen’s talk
Friday afternoon
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Ground Motion Simulation Methods

Stochastic — acceleration time-history
is white noise, shaped to fit response
spectra

1D Kinematic, Anelastic — laterally
homogeneous, plane-layered model,
e.g. wavenumber integration

Kinematic

Kinematic

easiest

easy

unrealistic spatial and
spectral correlations

simplified wave
propagation 1D, plane-
layered, no basins

Hybrid — 1D or 3D low freq, stochastic
high freq (e.g. SCEC BBP, CyberShake)

3D Kinematic, Anelastic — includes
lateral heterogeneity,
e.g. FD, FEM, SEM, DG

3D Dynamic Rupture — fracture
mechanics, friction laws, spontaneous
rupture on fault

3D Non-Linear - Non-linear
geomechanics, plasticity

Kinematic

Kinematic

Dynamic

KorD

relatively easy,
modest HPC for 3D

full waveform, 3D
wave propagation w/
attenuation, basins

includes physics of
fracture, generates
slip time-dependence

More realistic for high
GMs, damping

high freq. stochastic (see
above)

requires HPC, steep climb
to increase f,,.
16x to double freq.

Most comp. intensive,
important unknown or
poorly parameters

Most comp. intensive,
even more unconstrained
parameters ...
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3D full waveform seismic simulation methods
(FD, FEM, SEM, DG) require fine discretization

= Methods need a certain number of grid
points per shortest wavelength (PPW), grid
spacing = h

— Numerical solution is more accurate as PPW
increases

= Doubling the highest resolved frequency,
fao generally requires:
— 8x more grid points, 2x more time steps
— 16x increase in computational effort
— fimax = Vinin / (PPW * h )

= Seismic wavespeeds increase with depth, so
increasing grid spacing with depth greatly

improves memory and computational
efficiency

1.5

Shortest Wavelength

— full

— PPW=8 |

| depth, vg |
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Ever-increasing ease of regional-scale simulations:
M,y 7.0 Hayward Fault on various machines

SW4 Resources for 120 x 80 x 30 km Domain
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Early HPC systems were clusters of
networked CPU nodes with MPI

Lawrence Livermore National Laboratory
Thunder - April 2004

= Integration of many cores per node,

multi-threading improved efficiency Summit
& Sierra

>

State-of-the-art systems rely on
graphic processing units (GPU’s)

= Software must be written to make

Wh GPU?
use of new hardware ye

. e Optimized for Many
— Algorithms modified and tested Sntiied i Parallel Tasks

Serial Tasks

— RAJA enables efficient offloading of work
from CPU to GPU | TR
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Challenges: Source modeling

= We expose details of the source
rupture process as we increase
the frequency content in our
kinematic simulation

= Rupture dynamics informs the
nature of slip

= Rock strength depends on
depth
— Rise time, ty ~ duration
— Duration ~ slip

— But, depends on depth, local rock
strength
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CVM-H v6.3 + GTL

Challenges: Path, improve 3D crustal structure

= Ad hoc models generally bwl’F =~ USGS
based on geologic & geophysical -
data .

= Many seismic tomography models
generally don’t fit waveforms

= Waveform-based inversion offers D™

possibility to resolve crustal
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Challenges: Path & Site, improved geomechanics

Plastic deformation with different rock properties

= Account for mechanical ® o o Good
. 0 e - 0 =
response beyond linear 22 Ez . T2 Ez @
o o :é 4 —4 :% :g" 4 —4 :%
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HPC ground motion simulations for
Hayward Fault My, 7.0 scenario earthquake

SW4 FDTD simulations \&

Physics-based wave propagation:
* 3D geologic/seismic model

* topography 38°00'
e attenuation

Broadband, deterministic
« f__:5-10Hz I
* h,,=12.5-6.25m

Run on large HPC systems 37°30'
* Port to GPU/CPU systems
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Our goal is to compute broadband motions in 3D
models with purely deterministic methods & HPC

Ruptures: Graves & Pitarka (2016) HIGH PERFORMANCE COMPUTING
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Recent developments enable SW4 simulations on the
world’s most powerful computers

. Cori Phase-Il at LBNL/NERSC
- ?"{ // I (\\
* For 0-5 Hz HF M 7 rupture, we [ %:—-—- #14 on Top 500 (June 2019)
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obtained ~50x speed-up in [ [ 27.8 PetaFLOPS (peak)

node-hour performance: iEErE AP

— Cori: 8,192 nodes * 10 hours =
81,920 node-hours

— Sierra: 256 nodes * 6.6 hours =
1,690 node-hours

- Sierra at LLNL
#2 on Top 500 (June 2019)
125 PetaFLOPS (peak)

T —

= Verification for 0-5 Hz of SW4-
RAJA (Sierra) and SW4 (Cori)

Velocity Seismogram Comparison at: S 45 10

—— CPU (Cori) x
~~~~~~~~ GPU (Lassen) x
--- difference

s

Velocity, m/s

3-year project developed RAJA and
ported SW4 to GPU platforms
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Moore’s Law, the IEEE Top 500
and Earthquake Science and Engineering

Moore’s Law is the observation that the IEEE Top 500 Statistics (Wikipedia)
number of transistors in a dense integrated g 1o0ooasose
circuit doubles about every two years. Q 1oooooee
(Gordon Moore, 1965, Wikipedia) I o e H
&0 10000000 o ot
9 1000000 #500
* Computers keep getting more powerful 5 10000 - Sum
* Enabling disruption to meet challenges % 10000 A 7200
and break barriers in science and T T
engineering = 100 <+t
> 10 B
. y g . =
Technology companies anticipate growth in 5 ~
U .

computational power without knowing the 9% 200 205 2i0 2015 2020

specifics of next generation architectures. Year

Future methods in seismic hazard and risk should rely on physics-based 3D simulations
to provide ground motions for structural response and performance-based design

Lawrence Livermore National Laboratory N I orff‘,‘ 16

LLNL-PRES-801241 National Nuclear Security Administration




Summary take away points

= Three factors contribute to more accessible broadband 3D GM

simulations:

— Improvement in numerical methods & algorithms
— Inexorable growth in computing power
— Optimization of computer codes (programs) to run on new platforms

= Three elements require ongoing research:

— Realism of earthquake rupture models
 Particularly slip function & rise time as we push to higher frequencies
* Follow developments in dynamic rupture modeling

— Improvement in 3D crustal models
« Particularly the upper crust (0-4 km) and smaller scale structure
 Full waveform inversion methods promise to improve resolution

— Methods to account for geotechnical structure
 Particularly short-scale length heterogeneity, 2D & 3D, non-linear effects
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