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Ingredients for broadband deterministic earthquake simulations

https://www.scec.org
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https://www.scec.org
Primary effects of nonlinearity:

• Reduction in shear modulus

• Increase in material damping

• Reduction in site amplification factors

• Increase in residual deformations

Primary effects of shallow crust nonlinearity
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Different proxies for modeling shallow crust nonlinearity at the
regional-scale

3D Anelastic Simulation 1D Inelastic Simulation

• Hybrid 3D-1D analysis: Blind to 3D

nonlinear scattering effects

• 3D equivalent linear analysis: Incapable of

modeling residual deformations

• 3D nonlinear analysis: Capable of

modeling both residual deformations and

3D nonlinear scattering effects

3D Inelastic Simulation
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Today we have a rich library of constitutive models for geotechnical
engineering applications. Which ones are suitable for regional
scale simulations?

Constitutive models for soils (Lade 2005)

• Simple Elastic Plastic Models

• Single Yield Surface Models

• Bounding Surface Models

• Multiple Surfaces Models

• Incrementally Nonlinear Models

• Double Hardening Models

• Critical State Models

SANICLAY
~10 free parameters

Yang et al. (2019)

SANISAND
~15 free parameters
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Elastic perfectly plastic models can overestimate an increase in residual
displacements and a reduction in site amplification factors.

Disadvantages:

• Do not accurately reproduce the behavior of most

geomaterials

• Artificially large hysteresis loops at large strains;

overestimation of residual deformations and

attenuation.
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• Blind to the effects of geomaterial nonlinearity at small to moderate strain ranges
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Going beyond perfect plasticity in large scale simulations

Necessary considerations:

• Rigorous but computationally efficient

• Small number of free model parameters 

AWP-ODC (Olsen, Day, and Cui @ SDSU)

Iwan (1966), Chiang (1997)

Element response Material point response

Hercules (Quake/Bielak Group @ CMU)

Borja & Amies (1994)
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Verification of Hercules BSP model at different scales



9

Verification of Hercules BSP model at different scales
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Garner Valley: Our testbed for broadband nonlinear simulations

San Jacinto Fault Zone

San Andreas Fault Zone
GVDA
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GVDA

Depth to Vs = 800 m/s 
[SCEC CVMS4.26 + Ely GTL]

Garner Valley: Plane wave simulations
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PGA Ratio Maps: PGA / Outcrop PGA

3D

Hybrid 3D-1D
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Vs at surface [SCEC CVMS4.26 + Ely GTL]

GVDA

Garner Valley: Earthquake simulations

Simulation Processors Time [hrs] Total # of 
Elements

Nonlinear Elements 
[%]

Maximum 
Frequency [Hz]

Linear 17,408 2.30 521,079,703 0 3.0

Nonlinear 17,408 28.5 521,079,703 19 3.0

2010 Mw 5.4 Borrego 
Springs Earthquake
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PGD [cm]

PGA [g]

Linear Simulation Nonlinear Simulation

Linear

Nonlinear

Mw 5.4 Borrego Springs 
Earthquake

3D differential ground motions and shifts in predominant frequencies
can change seismic risk to both distributed lifelines and buildings.
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Existing gaps and next steps…

• Today, the accuracy of deterministic earthquake

simulations is limited by our knowledge of the elastic

and anelastic properties of earth materials.

• Enriching the library of computationally efficient but

rigorous constitutive models.

• Enriching the existing velocity models to incorporate

constitutive model and water table information.

• Enabling validation of 3D linear and nonlinear

simulations at the large-scale.

• Revisiting the predictive capability of hybrid proxies.

• Enhancing modeling capabilities for using the

outcome of nonlinear simulations in engineering

applications, and in connection with large

deformation problems.

Courtesy of Doriam Restrepo 

• Enabling scalable nonlinear simulations.
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Thank you for your attention!
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