

PEER International Pacific Rim Forum June 16-17, 2021

Towards Modeling Three-Dimensional Shallow Crust Nonlinearity in Broadband Deterministic Earthquake Simulations

Elnaz Seylabi, University of Nevada Reno

In Collaboration with:Domniki Asimaki (Caltech)Doriam Restrepo, Ricardo Taborda (EAFIT)

Ingredients for broadband deterministic earthquake simulations

Primary effects of shallow crust nonlinearity

https://www.scec.org

Primary effects of nonlinearity:

- Reduction in shear modulus
- Increase in material damping
- Reduction in site amplification factors
- Increase in residual deformations

Different proxies for modeling shallow crust nonlinearity at the regional-scale

Hybrid 3D-1D analysis: Blind to 3D nonlinear scattering effects

- 3D equivalent linear analysis: Incapable of modeling residual deformations
- 3D nonlinear analysis: Capable of modeling both residual deformations and 3D nonlinear scattering effects

Today we have a rich library of constitutive models for geotechnical engineering applications. Which ones are suitable for regional scale simulations?

Constitutive models for soils (Lade 2005)

- Simple Elastic Plastic Models
- Single Yield Surface Models
- Bounding Surface Models
- Multiple Surfaces Models
- Incrementally Nonlinear Models
- Double Hardening Models
- Critical State Models

Elastic perfectly plastic models can overestimate an increase in residual displacements and a reduction in site amplification factors.

Disadvantages:

- Do not accurately reproduce the behavior of most geomaterials
- Artificially large hysteresis loops at large strains; overestimation of residual deformations and attenuation.

RESEARCH ARTICLE | NOVEMBER 01, 2012

Earthquake Ground-Motion Simulation including Nonlinear Soil Effects under Idealized Conditions with Application to Two Case Studies ⊘

• Blind to the effects of geomaterial nonlinearity at small to moderate strain ranges

Going beyond perfect plasticity in large scale simulations

Necessary considerations:

- Rigorous but computationally efficient
- Small number of free model parameters

AWP-ODC (Olsen, Day, and Cui @ SDSU)

Verification of Hercules BSP model at different scales

150

Verification of Hercules BSP model at different scales

(B) z = 34 m

(C) z = 54 m

Garner Valley: Our testbed for broadband nonlinear simulations

 $3{\leq}\;Mw{\leq}4$

GVDA and GVAR sensor locations (plan view)

 $Mw \ge 5$

Garner Valley: Plane wave simulations

Time [s]

PGA Ratio Maps: PGA / Outcrop PGA

13 PEER

[m]

Garner Valley: Earthquake simulations

Simulation	Processors	Time [hrs]	Total # of Elements	Nonlinear Elements [%]	Maximum Frequency [Hz]
Linear	17,408	2.30	521,079,703	0	3.0
Nonlinear	17,408	28.5	521,079,703	19	3.0

3D differential ground motions and shifts in predominant frequencies can change seismic risk to both distributed lifelines and buildings.

Existing gaps and next steps...

- Today, the accuracy of deterministic earthquake simulations is limited by our knowledge of the elastic and anelastic properties of earth materials.
- Enabling scalable nonlinear simulations.
- Enriching the library of computationally efficient but rigorous constitutive models.
- Enriching the existing velocity models to incorporate constitutive model and water table information.
- Enabling validation of 3D linear and nonlinear simulations at the large-scale.
- Revisiting the predictive capability of hybrid proxies.
- Enhancing modeling capabilities for using the outcome of nonlinear simulations in engineering applications, and in connection with large deformation problems.

Acknowledgement

- Jorge Crempien > Kinematic Source Model Generation
- Philip Maechling and Mei-Hui Su > SCEC UCVM Support

Thank you for your attention!

