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3D Seismic wave propagation simulations are
complex, require verification and validation

= Ground motions depend on several factors
— simulations must all of these get correct

= V&V are crucial to demonstrating accuracy and confidence
— Key to acceptance of simulated ground motions

= Numerical method must be accurate

= Computer code must solve the algorithm correctly

Verification

Related topic: Performance benchmarking

= |nputs must be accurate and physically meaningful
— Source, earthquake rupture
— Earth model must represent true 3D structure

« Path propagation effects: crustal, basin, topographic structure
« Site effects: minimum shear wavespeed, linear and non-linear response

Validation
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SW4: seismic wave propagation code based
on the summation-by-parts FD method

- Summatlon_by_pa rts FDTD github.com/geodynamics/sw4 %, : }a
— Node-centered, displacement formulation s

* Not velocity-stress staggered grid!
— Accurate, provably stable & energy conserving

— Super-grid boundary conditions

Curvilinear mesh with refinements

«— poadsanem

= SW4 is 4t order accurate (time & space)
— Fully 3D material models (iso- and anisotropic) Cartesian mesh with refinements
— Topography (curvilinear mesh)

— Mesh refinement in Curv. & Cart. meshes
 Accurate at boundaries & interfaces, w/ hanging nodes

= Optimized for the hardware ’:\\
N el { B
— Many core CPU’s (e.g. NERSC’s Cori-ll) \a...
. Hybrld MPl/OpenMP Communlcatlons EXASCALE COMPLITING PROMCT

— GPU’s (e.g. Sierra & Summit)
« RAJA directs work on GPU’s

Lawrence Livermore National Laboratory
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=\ Our demonstration problem:
T Hayward Fault M, 7.0 scenario earthquake

EXASCALE COMPUTING PROJECT

* Regional-scale
* Broadband, fully deterministic
e f . .=10Hz @ 8 PPW
* h,,=6.25,3.125m
* Anin=50,25m
Vemin = 500, 250 m/s
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FY20 EQSIM performance evaluation for a

M7 Hayward fault SFBA simulation
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Verification: the accuracy of mathematics and
computation of numerical simulations

Comparison of computed solutions (time-series) against analytic solutions or
other computed solutions

Goal: to obtain accurate and reliable simulations of seismic response and
build confidence in solutions

Criteria for comparing waveforms
— Pointwise differences with analytic or 1D semi-analytic solution (e.g. reflectivity)
— Anderson (2004) Goodness-of-fit score of waveform measurements

— Kristekova et al. (2006) time-frequency phase and envelope misfit
« wavelet-based decomposition

A few notable examples:

— S. M. Day, J. Bielak, D. Dreger, S. Larsen, R. Graves, A. Pitarka, and K. B. Olsen (2003).
Test of 3D elastodynamic codes: Lifelines program task 1A02. Technical report, PEER &
SCEC.

— Moczo et al. (2006). Comparison of Numerical Methods for Seismic Wave Propagation
and Source Dynamics - the SPICE Code Validation, ESG2006, Grenoble, France

— Bielak et al. (GJI, 2010) Compares 3 SCEC ShakeOut simulations

— Chaljub et al. (GJI, 2015) Mygdonian Basin, Greece: stringent methods

. . (783
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SW4 uses the method of manufactured solutions
for accuracy & convergence: “twilight mode”

Elastodynamic equations of motion in 3D Computed response
puy =V -T+F(x,t), xinQ, 0<t<T, , : —
U.(X, O) — 07 Ui (x7 O) — O, X in Q o ——— B xi\,f e 015

0.1

0.2 §

A.1 Method of manufactured solutions

0.05

The method of manufactured solutions provides a general way of testing the accuracy of numerical
solutions of partial differential equations, including effects of heterogeneous material properties and

various boundary conditions on complex geometries. The test scripts can be found in the directory — 4 005
-06 }

.../swd/examples/twilight LN 24 g - ‘ 01

In these tests, we take the material properties to be as— -

p(z,y,2) = Ap (2 + sin(wmx + 0p,) cos(wmy + Om) sin(wmz + 0p,)) , Ao : —
1z, y, 2) = Ay (3 + cos(Wm + 0,) sin(wmy + b) sin(wmz + 0)) , ¢ EQrth ' - h
ANz, y,z) = Ay (2 + sin(wpz + 0,,) sin(wpy + 0,,,) cos(wmz + 6,,)) .

(z,y,2) = Ax( ( ) sin(wmy ) cos( ) model .

The internal forcing, boundary forcing and initial conditions are chosen such that the exact (man- CO m pa re co m p Uted an d
ufactured) solution becomes| Chosen response analytIC solutions

(@, 7 P —cl - 0 smleed),  Compute norm for different
Ve(z, Y, 2,t) = sin(wz + 0) sin(w(y — cet)) sin(wz + 6), grld SpaCi ng

* Measure convergence

we(2,y, 2,t) = sin(wz + 6) sin(wy + 0) sin(w(z — cet)).

The values of the material parameters (wy,, Om, A,, Ax, A,) and the solution parameters (w, 0,
¢e), can be modified in the input script. Since the exact solution is know, it is possible to evaluate
the error in the numerical solution. By repeating the same test on several grid sizes, it is possible

to establish the convergence rate of the numerical method.
From SW4 User Guide, Petersson & Sjogreen, 2021

Lawrence Livermore National Laboratory N A‘S@ﬁg‘ 8
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Recent porting of SW4 to GPU/CPU platforms
requires verification of code: 0-5 Hz HF M7

Velocity Seismogram Comparison at: S 45 10

—— CPU (Cori) x
o24d b, | GPU (Lassen) x
-- difference

SW4 uses RAJA C++ package to manage
work on GPU

Velocity, m/s

SW4-RAJA uses the same source code as ~0.4 —————————
. .. . 0 10 20 30 40 50 60 70 80
SW4 and a machine-specific profile to Time, seconds
know how to offload compute intensive 04 T
loops to GPU £ 021 e e
2 00 ‘—’J\WWNMWWW
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-0.4 T T T T T T T
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e Waveforms agree to 107 2 02 - EE;((f))
* 3-component waveforms at 2301 sites Y —““WAWWWMMMW
§ —-0.2 +
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T T T
0 10 20 30 40 50 60 70 80
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Verfication of mesh refinement cases
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Validation: the evaluation of the physical
accuracy of numerical simulation

= Comparison of computed solutions against empirical data
— Tests inputs: source and Earth model with a verified code

= Goal: to ensure that simulation predictions are realistic and consistent
with empirical observations, to build confidence

Moderate (M, 3-5) earthquakes provide data sets for testing 3D Earth

models in California

— A few examples:
« Rodgers et al., (BSSA, 2008) SFBA moderate events, waveforms
« Kim et al. (BSSA, 2021) SFBA moderate events, intensities
- Olsen & Mayhew (SRL, 2010) 2008 Chino Hills GOF
« Taborda & Bielak (BSSA, 2013) 2008 Chino Hills
« Hirakawa and Aagaard (SSA, 2021) update(s) of USGS SFBA model

Large scenario events without empirical data
— Compare with ground motion models (GMM'’s, GMPE’s) or data from similar
events

: A (,/"‘a
@ Lawrence Livermore National Laboratory N A‘ Sy .._oﬂ 1
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Earlier evaluation of the USGS 3D model
using moderate events & long-periods (33-4 sec.)

Events, BB (BK) Stations
& Paths j>39

Moderate (M, 4-5)

12 events (circles)
15 stations (triangles)

Coverage uneven, many
paths along Hayward Fault

Rodgers et al. (BSSA, 2008)
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Long-period waveform comparisons for
August 3 2006, Glen Ellen Earthquake

124 123 122 121 Shifted and aligned

BKS data & synthetic

BKS.Z !;\ QQX)(Q A AN
ot=-15

Glen Ellen 2006/08/03

Note distortion of the Note long

. ag event: GLEN_ELLEN filter: 0.03 - 0.25 Hz duration
wavefield by San

. -20 0 20 40 60

Pablo Bay. This Reduced Time, t - A /6.0, seconds
generates su rface _L JRSC
wave coda observed ﬁc—zwx\q/\/\fmwm.w
at BKS. r=077

37

37 JRSC.R
ot=-22

A r=0.66
km JRSC.T
0 50 100
event: GLEN_ELLEN filter: 0.03 - 0.25 Hz
‘ _—mm -
36 36

-20 0 20 40 60 80
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Long-period waveform comparisons for
Aug. 18 1999, Bolinas Earthquake

LLNL-PRES-823639

National Nuclear Security Administratic

Vertical Radial Transverse
f— N -123 — -122 : - : : - : -
g 39
E £
ol 20 | 20 20
- Rei)luced Tii‘loe, t-0 ; 2.0, sec:r?ds o = Fieguced Tif:e, t-0 /4 g.o, seccfr(r)ds o - Reguoed Tir2noe, t-0 l‘1 2.0, sec:r?ds i
Frequencies = 0.03-0.15 Hz Delays increase with distance, suggests systematic bias
Periods = 7-33 seconds Note amplitudes are well matched
- see Kim, Dreger & Larsen, BSSA (2010)
Data such these are useful for waveform tomography
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More recent effort
looking at shorter 39°
periods: 1-32 sec.

Geysers
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Path Map
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Event: 21254601 BK.BRIB.BH
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Our demonstration problem:
Hayward Fault M,, 7.0 scenario earthquake

In the absence of empirical data

for scenario earthquakes,
we compare simulated ground

motion intensities with ground

motion models

Recall that we are pushing the
limits of fully deterministic
scenario earthquake simulatio
tof,. =10 Hz

This potentially exposes
shortcomings of our:
e source model
Vemin = 500 m/s
* linear wave propagation
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Several recent papers focus on simulations of
M7 Hayward Fault scenario earthquakes

uting

"'SCIENCE ENGINEERING
Toward Exascale Earthquake Ground
Motion Simulations for Near-Fault

Engineering Analys

is

Hans Johansen | Lawrence Berkeley National Laboratory

Arthur Rodgers and N. Anders Petersson
David McCallen | Lawrence Berkeley National

| Lawrence Livermore National Laboratory
Laboratory

Bjorn Sjogreen | Lawrence Livermore National Laboratory

& IEEE

Mamun Miah | Lawrence Berkeley National Laboratory

Application modernization for massively parallel time-domain simulations of earthquake ground
motion in 3D models is increasing application resolution and providing ground motion estimates
for critical infrastructure risk evaluations. Improvements to the geophysics application code
SW4 algorithms, developed while porting the code to systems at Lawrence Berkeley National
Laboratory, revealed that reorganizing operation order can improve performance for massive

problems.

Seismological

Research
Letters

Broadband (0-5 Hz) Fully Deterministic 3D
Ground-Motion Simulations of a Magnitude
7.0 Hayward Fault Earthquake: Comparison

with Empirical Ground-

Motion Models

and 3D Path and Site Effects from Source

Normalized Intensities

by Arthur J. Rodgers, N. Anders Petersson, Arben Pitarka, David B.
McCallen, Bjorn Sjogreen, and Norman Abrahamson

ABSTRACT

We report on high-performance computing (HPC) fully deter-
‘ministic simulation of ground motions for a moment magni-
tude (M,) 7.0 scenario carthquake on the Hayward faule
resolved to 5 Hz using the SW4 finie-difference code. We
computed motions obeying physics-based 3D wave propaga-
tion at a regional scale with an M,, 7.0 kinematic rupture
model generated following Graves and Pirarka (2016). Both
plane-layered (1D) and 3D Earth models were considered, with
3D subsurface macerial properties and topography interpolated
from 2 model of the US. Geological Survey (USGS). The
resulting ground-maotion intensities cover  broader frequency
range than typically considered in regional-scale simulations,
including higher frequencies relevant for enginecring analysis
of structures. Median inensities for sites across the domain are
within the reporced between-cvent uncercaintics (7) of ground-
motion models (GMMs) across spectral periods 02-10 s
(frequencics 0.1-5 Hz). The within-cvent standard deviation
4 of ground-motion intensity measurement residuals range
02-05 natural log units with values consistently larger for
the 3D model. Source-normalized ratios of intensities (3D/
1D) reveal patterns of path and site ffects that are correlated
with known geologic structure. These results demonstrate that
carthquake simulations with fully deterministic wave propaga-
tion in 3D Earch models on HPC platforms produce broad-
band ground motions with median and within-event aleatory
variability consistent with empirical models. Systematic inten-
sity variations for the 3D model caused by path and site cffects
suggest that these epistemic cffects can be estimated and
removed to reduce variation in site-specific hazard cstimates.

1268 Seismological Research Letters Volume 90, Number 3

“This study motivates future work to evalue the validity of
the USGS 3D model and investigate the development of path
and site corrections by running more scenarios

Supplemental Content: Animation of ground motions from the
3D subsurface model with topography.

INTRODUCTION

‘The Hayward faule (HF) dominates scismic hazard in the castern
San Francisco Bay arca (SFBAY),also referred to as the “Ease Bay.”
Curtendy, the HE and its northern extension, the Rodgers
Creck faul, represent the most likely faul in the SFBA to ruprure
with a moment magnitude (M) 67 or greater in the next 30 yrs
according o the Uniform California Earthquake Rupture
Forecast, Version 3 (Field and 2014 Working Group on
California Earthquake Probbiltcs, 2015). Figure 1 shows the
arca of interest for this study. The HE is capable of carthquakes
up to M, 7.0 and presens significant ground-motion hazard to
che heavily populated East Bay ciies,including Oakland, Berkeley;
Hayward, and Fremont. The last major HF ruprure occurred on
21 October 1868 with an M, 68-7.0 event (Toppozada e al,
1981, 2002; Bakun, 1999). Instrumental obscrvations of this
carthquake are not avaiable; however, historical triangulation
dara inform the moment magnitude and faul length (7.0 and
52 km, respectively; Yu and Scagall, 1996). Reported intensities
were used to create a ShakeMap for the 1868 event (Boarwrighe
and Bundock, 2008). Modified Mercalli intensities of VII-IX

May/June 2019 o 0 785/022080261
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Broadband (0-4 Hz) Ground Motions for a Magnitude
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Abstract We performed fully deterministic broadband (0-4 Hz) high-performance computing ground
motion simulations of a magnitude 7.0 scenario earthquake on the Hayward Fautt (HF) in the San
Francisco Bay Area of Northern Calif (D) and
3D and
y (GMIMs) for the geologic
het . the HF

the
model. Ratios Lﬂ! n/| TS CAMMA e 56 i e ot s ks ot A
model. Th as site-spec

suggesting th inour

empirical data.

Plain Language Summary With the use of powerful supercomputers and an efficent numerical
method, modeling of ground shaking for a magnitude 7.0 earthquake on the Hayward Fault results in

achieved. curent the

R Earth (geology and o compute shaking througt region.
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(a)

HF M7 0-4 Hz compared to ASK (2014) GMM
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Epsilon for all sites, 3D model, f__ =1.25-10 Hz

Colored bands show 50% of data, interquartile range
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Ground Motion Intensity Measurement
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SW4 (viscoelastic) PGV versus distance
compared with ASK (2014) GMM
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SW4 (viscoelastic) PGA versus distance

compared with ASK (2014) GMM
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High PGA values indicate shortcomings in our
simulations: linear viscoelasticity & assumed v, ...

V27t Noh

* Assumed v, = 500 m/s does not honor weak near-surface soils
* These can respond with competing effects:

 Amplify long-period weak motion

 Dampen short-period strong motion
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Site correction method reduces bias
At low V¢, sites Rodgers et al. (BSSA 2020)
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Ground motions without and with |
site response corrections: Berkeley
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Conclusions

= Verification must be an essential and ongoing task for seismic simulation codes
undergoing continuous development

= Validation is needed for both source and 3D Earth structure models

= Validation of path propagation in 3D Earth models with moderate events is

important
— We must learn as much as possible from smaller events
« Basin effects, crustal structure, waveform tomography
— We are awaiting update of the SFBA model from USGS (Hirakawa, Aagaard)

= Validation of large event ruptures is more complex due to:
— Lack available empirical data
— Dependence of intensities on source, path and site effects

— Simulated data may be consistent with GMM'’s, but is the Earth model correct?
— Additional criteria must be considered such as

« Median epsilon

« Within-event and between-event variability

« Spectra correlation

» Duration

 Building response, engineering demand
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Recommendations for community-based V&V

= Encourage FAIR (Findable, Accessible, Interoperable & Reusable)

best-practices
— Version control on data sets, synthetics and 3D models

= Standardization of waveform and event parameter data used in

simulations for validation s _
— Assembly with Python, ObsPy, Jupyter notebooks Jupyter
: : L™ ObsPy
— Storage as ASDF (single HDFS5 file per event) V11 vttt A—
= Standardization of simulated event data and metadata S

— Simulation metadata, e.g. input file(s) so others can reproduce ;S'df
— Storage as ASDF (single file per event) Py

— Source and site parameters used in GMM’s https://selsmic-data.org/

= Standardize metrics for comparison LAS|F
— Waveform and intensity measurements
gmprocess
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