

Oregon State University

An Update on PEER-Related Next Generation Liquefaction (NGL) Activities

Armin W. Stuedlein On Behalf of the NGL Project Team Members

COLLEGE OF ENGINEERING

Outline

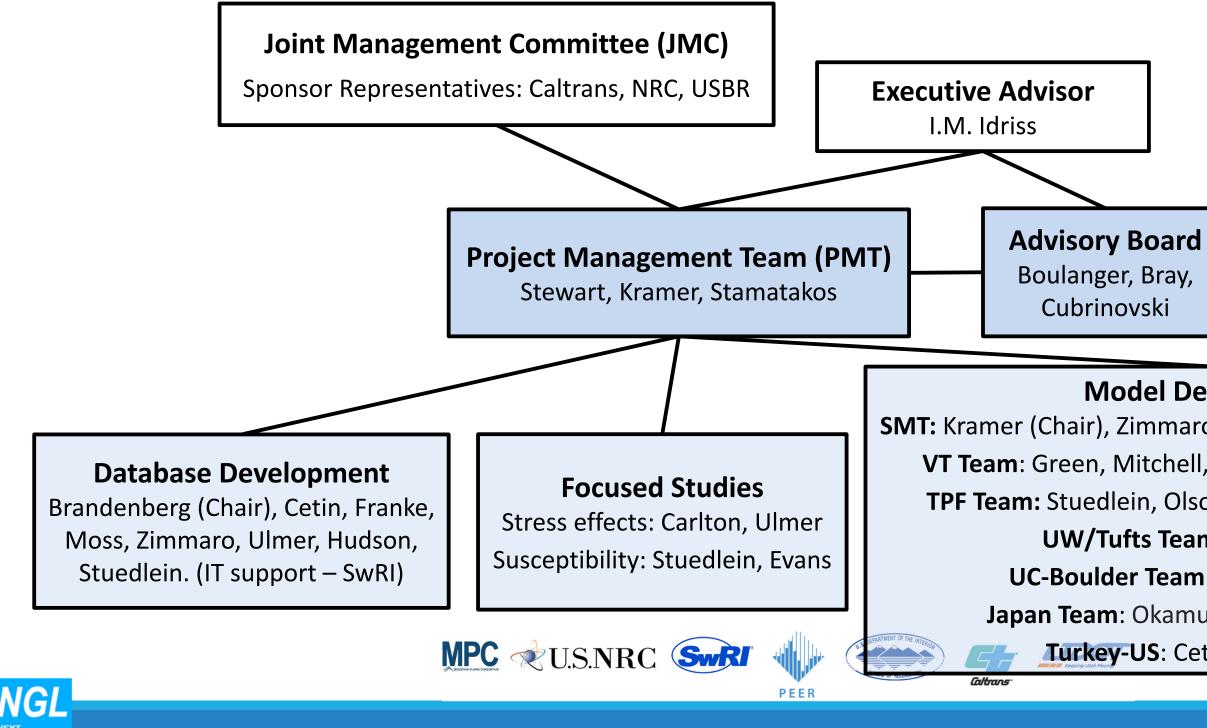
- NGL Project Overview
- PEER Report 2023/02: Workshop on Liquefaction Susceptibility
- Thrusts of new PEER-NGL Projects
- Envisioned usage of project outcomes
- PEER Report 2023/01: Cyclic Resistance Models for Transitional Silts

http://nextgenerationliquefaction.org

	PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER
	PEER Workshop on Liquefaction Susceptibility
	Armin W. Stuedlein¹ Besrat Alemu¹ T. Matthew Evans¹ Steven L. Kramer² Jonathan P. Stewart³ Kristin Ulmer⁴ Katerina Ziotopoulou⁵
	 ¹ School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon ² Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington ³ Department of Civil and Environmental Engineering, University of California, Los Angeles, California ⁴ Geoscience and Engineering Department, Southwest Research Institute, San Antonio, Texas ⁵ Department of Civil and Environmental Engineering, University of California, Davis, California
PEER 2023/02 May 2023	PEER Report No. 2023/02 Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley May 2023

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

Models for the Cyclic Resistance of Silts and Evaluation of Cyclic Failure during Subduction Zone Earthquakes


> Armin W. Stuedlein Ali Dadashiserej Amalesh Jana

School of Civil and Construction Engineering Oregon State University, Corvallis, Oregon

PEER Report No. 2023/01

Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley

NGL Project Structure

http://nextgenerationliquefaction.org

Model Development

SMT: Kramer (Chair), Zimmaro, Ulmer, Hudson, Brandenberg VT Team: Green, Mitchell, Rodriguez-Marek, Stafford **TPF Team:** Stuedlein, Olson, Lingwall, Rollins, Franke **UW/Tufts Team**: Baise, Maurer UC-Boulder Team: Dashti, Kamai, Liel Japan Team: Okamura, Kiyota, and PWRI Turkey-US: Cetin, Moss, Kayen

Tools & Resources for Interacting w/Data

- Graphical User Interface (GUI) https://nextgenerationliquefaction.org/
- Connect to the NGL database through Jupyter Notebooks on DesignSafe https://www.designsafe-ci.org/
- Schema website <u>https://nextgenerationliquefaction.org/schema/index.html</u>
- NGL Tools and Documentation
 - CPT Layer Detection Algorithm; Hudson et al. 2023 (https://onlinelibrary.wiley.com/share/author/H3PXJ3WU8MEVNAMSDNUT?target=10.1002/eqe.3961)
 - Use case documentation on DesignSafe (<u>https://www.designsafe-ci.org/rw/use-cases/</u>)
 - <u>https://ngl-tools.readthedocs.io/en/latest/</u>
 - CPT-based FC correlations for liquefaction case history sites forthcoming
- NGL YouTube Channel

NGI

- Webinars on case histories and related topics
- October DesignSafe Workshop: creating Jupyter Notebooks
- https://www.youtube.com/channel/UCtcbOIVb3soaJ5X60vdgKkw

Basic Framework for Liquefaction Hazard Assessments

- Liquefaction hazard assessments follow the typical progression:
 - Assessment of liquefaction susceptibility (could it happen ?);
 - Determination of liquefaction triggering under given loading (will it happen ?);
 - Evaluation of consequences (instabilities, displacements; *what are the impacts*?)
- NGL seeks to rationally unpack susceptibility and triggering from manifestation
- PEER-funded NGL activities advance this goal

http://nextgenerationliquefaction.org

NGL-PEER Activities

http://nextgenerationliquefaction.org

6

2023/02: PEER Workshop on **Liquefaction Susceptibility**

- Held 8 9 September 2022 in Corvallis, OR
- 50 participants from six countries, including academics, practitioners, and government employees
- **Key Item #1**: Should liquefaction susceptibility consider:
 - Material (inherent) characteristics alone (e.g., plasticity)
 - Material and state (e.g., D_r or e) characteristics
- **Key Item #2**: Terminology & usage of current criteria:
 - "liquefaction susceptibility," focus on *behavior*
 - "cyclic strength evaluation criteria," focus on *engineering procedures*

MPC VUS.NRC SwR

• Key Item #3: Research needs

Caltrans

PACIFIC EARTHQUAKE ENGINEERING **RESEARCH CENTER**

PEER Workshop on Liquefaction Susceptibility

Armin W. Stuedlein¹ **Besrat Alemu¹** T. Matthew Evans¹ Steven L. Kramer² Jonathan P. Stewart³ Kristin Ulmer⁴ Katerina Ziotopoulou⁵

¹ School of Civil and Construction Engineering. Oregon State University, Corvallis, Oregon ² Department of Civil and Environmental Engineering University of Washington, Seattle, Washington

³ Department of Civil and Environmental Engineering, University of California, Los Angeles, California ⁴ Geoscience and Engineering Department, Southwest Research Institute, San Antonio, Texas 5 Department of Civil and Environmental Engineering University of California, Davis, California

PEER Report No. 2023/02

Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley May 2023

PEER 2023/02 May 2023

Key Item #2: Liquefaction Susceptibility

- Two widely-available criteria are available
- Bray & Sancio (2006, 2008*): criteria developed based on silty soils which exhibited cyclic mobility type behaviors (lab specimens) and ground failure during 1999 Kocaeli EQ
- Boulanger & Idriss (2006, 2008*): "liquefaction" associated with those soils for which penetration resistance-based liquefaction triggering models may be used to quantify cyclic strength (hence "cyclic strength evaluation criteria")
- The Workshop Report and extended abstracts discuss similarities and differences between the criteria, serving to clarify their use

Ground failure in silt, Adapazari 1999

* Closures to 2006 papers in ASCE JGGE

Key Item #3: Research Needs

- Vision: develop Next-Generation Liquefaction susceptibility models which:
 - Predict whether fundamentally-granular behavior will or will not occur: "material susceptibility"
 - Are probabilistic in nature (broad, though not unanimous, agreement among participants)
- Scope: (1) Develop a database specifically for the purpose of supporting development of the Next-Generation Liquefaction susceptibility model:
 - Database entry should be associated with geographic coordinates; include paired CPT, borehole, and laboratory test data
 - Cyclic test data, and ideally monotonic data, must be available; testing should be performed to sufficiently large strain to identify strength normalization and ultimate hysteretic behavior
 - Metadata related to tests performed, index test data, etc., must be available
- (2) Model development: can identify and treat sources of epistemic uncertainty, incl. regional, interpretations of behavior, and functional form of models

s which: ial susceptibility" participants) porting development

Next Steps Following Workshop

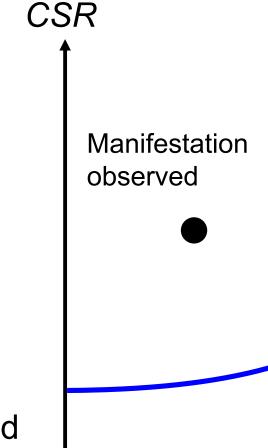
- Collaborative PEER-funded Research Projects
- Next Generation Liquefaction Susceptibility Database and Modelling; PI: Jonathan P. Stewart, Co-PI: Scott J. Brandenberg
- Next Generation Liquefaction Susceptibility Database: Expansion of the Laboratory Component to Leverage Pacific Northwest Soils
- Two-year projects with partial student support
- Will seek to directly address research needs identified in the PEER Workshop on Liquefaction Susceptibility and integrate findings into the broader NGL effort

http://nextgenerationliquefaction.org

PACIFIC EARTHQUAKE ENGINEERING itiatil 20

Application of PEER Research in NGL

http://nextgenerationliquefaction.org


Current Probabilistic NGL Formulation

• Traditional Approach:

```
Manifestation = triggering, M = T
  P[T|M] = 1.0
  P[NT|M] = 0.0
No manifestation = no triggering, NM = NT
 P[T|NM] = 0.0
 P[NT|NM] = 1.0
```

- NGL Modeling Approach
 - Probabilistic (similar to recent models)
 - Uses a triggering "prior" probability \rightarrow laboratory-based
 - Manifestation models \rightarrow case histories
 - Update of "prior"

http://nextgenerationliquefaction.org

Manifestation not observed

Resistance

Graph: Kramer

Current Probabilistic NGL Formulation

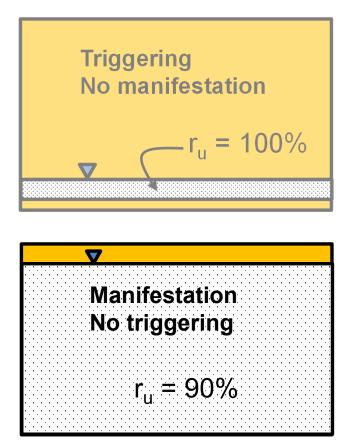
P[NT|NM] < 1.0

P[T|M] < 1.0

P[T|NM] > 0.0

P[NT|M] > 0.0

- Approach: allows rational consideration of:
 - No Manifestation \neq No Triggering Manifestation \neq Triggering
- Current functional form:


$$P[T | M] = \frac{P[M | T]P[T]}{P[M]} = \frac{P[M | T]P[T]}{P[M | T]P[T] + P[M | NT](1 - P[T])}$$

Need three probabilities:

- Probability of manifestation given triggering, P[M|T]
- Probability of manifestation without triggering, *P*[*M*|*NT*]
- Probability of triggering before incorporation of case history data, P[T] prior probability

Probabilistic manifestation model; informed by case histories in the NGL Database

Graphics: Stewart & Brandenberg

Updated Probabilistic NGL Formulation

- Previously, the laboratory-based "prior" assumed P[S] = 1.0
- Characterize probability of liquefaction susceptibility, *P*[S]:
 - SPT-based triggering: *PI*
 - CPT-based triggering: *PI* and CPT $I_c \int$
- Susceptibility defined using
 hysteretic behavior & strength normalization

Plasticity Index, Pl

20

15

10

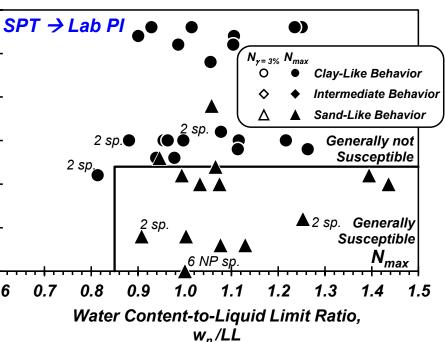
(f)

90

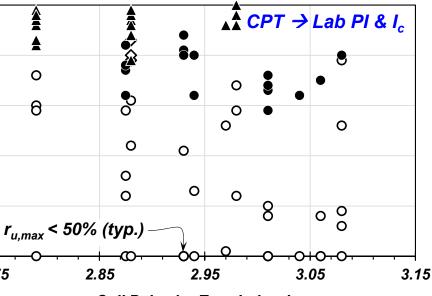
70

60

(%)


Excess Pore I Ratio, r_u

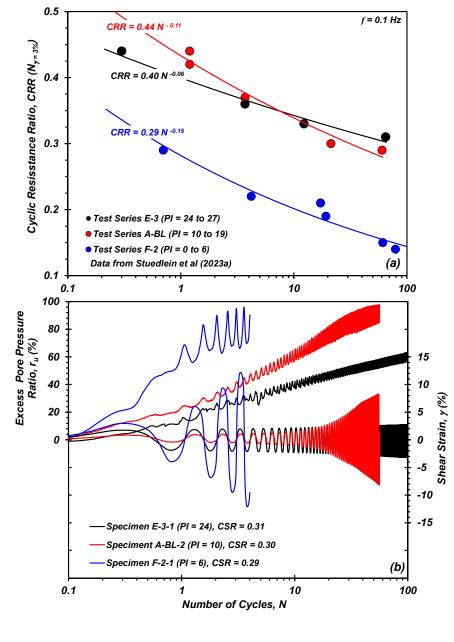
- Evaluate sensitivity *P*[*S*] models to soils with differing fines contents, and fines of differing plasticity
- Functional form of model:


 $P[T|M,S] = \frac{P[M|T] \cdot P[T|S] \cdot P[S]}{P[M|T] \cdot P[T|S] \cdot P[S] + P[M|NT] \cdot (1 - P[T|S]P[S])}$

Stuedlein et al. (2023) JGGE 149(1)

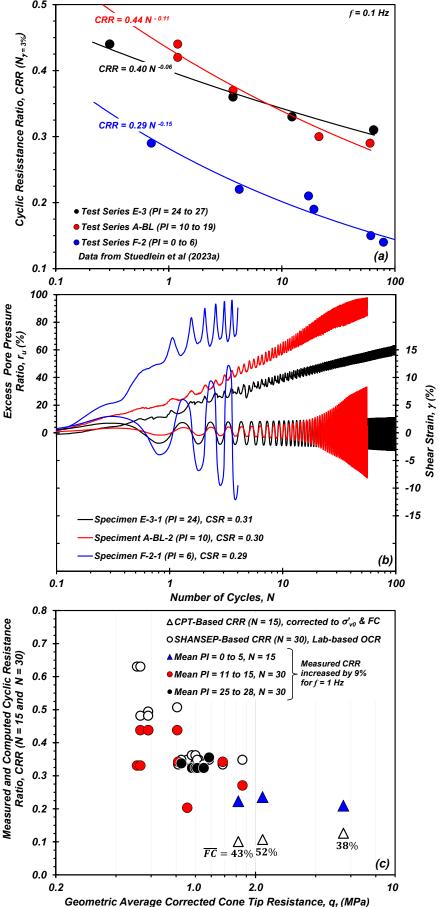
Soil Behavior Type Index, I_c Stuedlein & Evans (2022) PEER Workshop

Cyclic Resistance Models for Transitional Soils


2023/01: Motivation

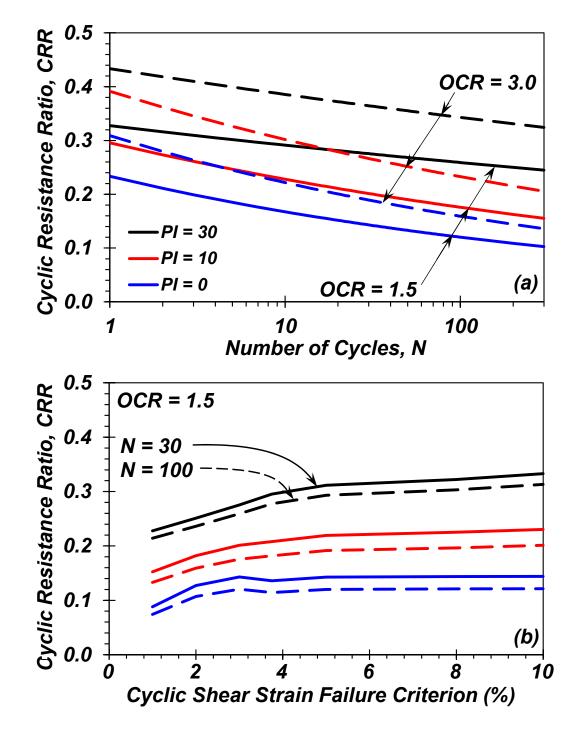
- Transitional soils: silty a/o clayey sands, sandy silts, silts, clayey silts
- Cyclic resistance estimates for transitional silts are challenging
 - Low-plasticity silts with CPT $I_c < 2.6$ not well-represented in pre-NGL liquefaction case history databases
 - Soils with $I_c \ge 2.6$ often excluded from pre-NGL databases
 - Penetration resistance affected by partial drainage
- Transitional soils exhibit a clear, though uncertain, transition in soil behavior (i.e., "sand-like", "clay-like") and cyclic resistance

http://nextgenerationliquefaction.org



2023/01: Motivation

- - PI = 24 to 27, $FC \ge 97\%$, $I_c = 2.94$ to 3.06
 - SHANSEP-based cyclic resistance estimates are excellent
- Example "Sand-like" soils (A, liquefaction-susceptible)
 - PI = 0 to 5, FC = 38 to 52%, $I_c = 2.79$ to 3.08, $q_{c1Ncs} = 66$ to 96
 - CPT-based cyclic resistance underestimates actual by 50%⁺
- Example Transitional soils (•, liquefaction-susceptible)
 - PI = 11 to 15, $FC \ge 80\%$, $I_c = 2.46$ to 2.99
 - CPT-based cyclic resistances inapplicable
 - SHANSEP-based cyclic resistances poor; non-parallel CSL and NCL lines


2023/01: Project Outcome

• Shear strain-dependent cyclic resistance model for transitional silts for $1\% \le \gamma \le 10\%$:

 $CRR^{*}(\gamma) = c_{0} \cdot (PI+1)^{c_{1}} \cdot OCR^{c_{2}} \cdot N^{-b^{*}}$ $b^{*} = a_{0} \cdot (PI+1) + a_{1}$

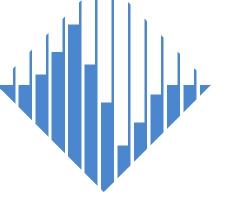
- Trained on laboratory CDSS specimens from good-tohigh quality samples
- Captures transition in cyclic resistance with plasticity and stress history, independent of susceptibility determinations
- Accompanied by N_{eq} and magnitude scaling factor models specifically for subduction zone earthquakes

MPC VUS.NRC SwRI

2023/01: Applications

- Preliminary assessments of cyclic failure (e.g., 30% design level):
 - Estimate N_{eq} and $N_{eq} \pm \sigma$ for a given M_{w}
 - Compute $CRR^*(\gamma)$ given N_{eq} and M_w ; fully-compatible with PBEE framework
 - Assess FS_{cvclic failure} and need for cyclic testing program to improve understanding of risk of cyclic failure and/or mitigation strategies
- Planning cyclic testing programs:
 - Select seismic hazard(s) to consider, $M_{w,i}$
 - Estimate N_{eq} and $N_{eq} \pm \sigma$ for a given M_{w} , set termination criterion for test specimens
 - Conduct post-cyclic tests to appraise hazard-specific consequences
- Calibration of constitutive models for nonlinear dynamic analyses:
 - Ground response analysis
 - Deformation analysis (OpenSees, FLAC, etc.) •

Concluding Remarks



20

Concluding Remarks

- PEER-funded research serving to advance critical areas in soil liquefaction / cyclic softening
 - Cyclic resistance for transitional soils (2023/01)
 - Clarifying perspectives on liquefaction susceptibility (2023/02)
 - Expanding the NGL Database to support susceptibility models (initiating Fa23)
 - Development of NGL liquefaction susceptibility models (initiating Fa23) •
- Next Generation Liquefaction Project
 - NGL Database continues to expand w/r/t field cases, lab data, and tools for querying data
 - Multiple community modeling teams on differing timelines
 - Supporting NGL studies to tackle outstanding model components
 - SMT continues to improve probabilistic model, unpacking triggering from susceptibility and manifestation MPC & U.S.NRC SwRI

