Simulated motions validation and acceptance criteria for ground motion databases

The Southern California Validation Experience

Ricardo Taborda

2024 PEER - LBNL Workshop Simulated Ground Motions for the San Francisco Bay Area January 18-19, 2024

The Southern California Validation Experience

Event scenario

>>	TeraShake	Independent	N/A
>>	ShakeOut	Coordinated	Verification
>>	Chino Hills	Independent	Validation
>>	La Habra	Coordinated	Verification and validation
>>	BBP	Coordinated	Verification and validation
>>	CyberShake	Coordinated	Validation
>>	Others		

Factors

»	Modeling scope	Physics
»	Minimum velocity	Resolution
»	Maximum frequency	Resolution
»	Velocity model	Accuracy, resolution, uncertainty
»	Source model	Accuracy, resolution, uncertainty
»	Attenuation model	Approach, model, uncertainty
»	Implementations	Numerical accuracy and computational efficiency

Verification and Validation

R. Taborda (2008)

Operational Validation

- » Level of agreement between synthetics and actual data
- » Comparison of simulations with observations

Implementation Verification

- » Correctness of the implementation of a simulation scheme
- » Comparison of simulations with exact or alternative solutions

R. Taborda (2008)

Operational Validation

- » Level of agreement between synthetics and actual data
- » Comparison of simulations with observations

Implementation Verification

- » Correctness of the implementation of a simulation scheme
- » Comparison of simulations with exact or alternative solutions

Legacy of the ShakeOut verification exercise

Bielak et al. (GJI, 2010)

Qualitative verification

Qualitative verification

Qualitative verification

Quantitative comparisons

Goodness-of-fit (GOF) metrics

Quantitative verification

Comb. Avg

Validation

2008 Mw 5.4 Chino Hills earthquake

Taborda and Bielak (BSSA, 2013) Taborda and Bielak (BSSA, 2014)

2008 Mw 5.4 Chino Hills earthquake verification and validation

- » 4 Hz
- » 200 m/s
- » 300+ observations

Validation: time series and energy integral

Validation: Fourier spectra

GOF maps (components of motion)

GOF maps (frequency bands)

Band 0.1–0.25 Hz (SB₁)

Band 0.25-0.5 Hz (SB₂)

Band 0.1-2 Hz (SB₄)

Band 0.5-1 Hz (SB₃)

Influence of seismic velocity models

Influence of seismic velocity models

Influence of seismic velocity models on synthetics

Influence of seismic velocity models on validation results

CVM-S4 CVM-H+GTL CVM-S4.26 CVM-H Epicentral Distance (km) Epicentral Distance (km) Epicentral Distance (km) Epicentral Distance (km) 100 110 120 130 140 110 120 130 140 n an 110 120 100 110 120 130 140 8 -Score 80 -Count 60 -40 -40 -20 -Score Score Score Score

Taborda and Bielak (BSSA, 2014)

Validation in terms of attenuation

Taborda and Bielak (BSSA, 2014)

Validation

Multiple events in the greater L.A. region

Taborda et al. (GJI, 2016)

Multiple events and additional models

(CVM-S4, CVM-S4.26.M01, CVM-H, CVM-H+GTL)

Code	Earthquake name	Mw Depth Strike/Dip/Ra (m)		Strike/Dip/Rake	Date (yyy/mm/dd)		
A	Wrightwood	4.40	8.99	285/57/86	1998/08/20		
В	NW of Devore	3.79	10.91	98/58/68	2001/07/19		
С	NNE of Devore	3.72	7.18	344/69/-33	2009/08/01		
D	Yucaipa	4.88	11.61	75/59/55	2005/06/16		
E	N of Rancho Cucamonga	3.60	4.92	2006/11/04			
F	2002 Fontana	3.74	6.54	233/72/-28	2002/07/25		
G	2005 Fontana	4.42	4.15	222/88/-25	2005/01/06		
Н	San Bernardino	4.45	14.22	87/70/28	2009/01/09		
1	N of Loma Linda	4.37	15.36	270/90/-6	2000/02/21		
J	Redlands	4.10	8.53	33/46/-68	2010/02/13		
К	2010 Beaumont	4.28	13.93	234/89/9	2010/01/16		
L	2006 Beaumont	3.90	11.53	45/31/-25	2006/07/10		
Μ	Simi Valley	3.59	13.81	234/62/60	2003/10/29		
Ν	WSW of Valencia	3.90	14.21	83/62/57	2002/01/29		
0	N of Pico Canyon	3.98	11.53	287/55/54	1999/07/22		
Ρ	Chatsworth	4.66	7.58	82/27/51	2007/08/09		
Q	Newhall	3.86	3.59	236/58/33	2012/10/28		
R	Beverly Hills	4.24	7.90	262/81/4	2001/09/09		
S	Inglewood Area	4.70	13.86	243/60/25	2009/05/18		
Т	NW of Compton	3.98	31.13	116/68/71	2001/10/28		
U	Downtown Los Angeles	3.77	9.53	125/49/79	1999/06/29		
V	Whittier Narrows	4.44	18.85	282/36/73	2010/03/16		
W	La Habra	5.10	5.00	239/70/38	2014/03/29		
Х	Chino Hills	5.39	14.70	47/51/32	2008/07/29		
Y	2002 Yorba Linda	4.75	12.92	34/84/-10	2002/09/03		
Z	2009 Yorba Linda	3.98	4.23	208/65/26	2009/04/24		
AA	ESE of Yorba Linda	3.64	3.59	56/65/37	2001/04/13		
AB	Lake Elsinore	4.73	12.60	65/59/58	2007/09/02		
AC	Westlake Village	4.42	14.17	254/73/30	2009/05/02		
AD	Hermosa Beach	3.69	11.23	57/41/54	2010/06/07		

Score

CE.13849

DATA

CVM-S

0

0.9

0.0

-0.9

3

0

-3 -

0.6

0.0

-0.6 -

5

0

-5 -

1.5

0.0

10

CI.SDD

10

20

CE.14825

0

CI.LDR

CE.25131

____ 20

CE.13079

30

Taborda et al. (GJI, 2016)

Verification and Validation

2014 Mw 5.1 La Habra earthquake

Taborda et al. (SCEC, 2016)

-119°30'

-119°00'

-118°30'

FEM

Hercules

-118°00'

-117°30'

AWP-ODC

La Habra

Name:

Point Source Model

Finite Fault Models

Station CI.FUL

Station CI.BRE – Filtered

Validation

Multiple factors and complexity levels

Taborda et al. (WCEE, 2017)

Sim. ID	Sim. CVM-S V _{Smin}		Pts. per α wavelength in $O_S = \alpha V_S$		λ in $O(f) = O_0 f^{\lambda}$			Source		Magnitude						
	4	4.26	200	500	10	20	50	100	0 (a)	0 (b)	0.8 (b)	Point	Ext.	5.4	5.45	5.5
S1	٠			•	•		•		•			•		•		
S 2		•		•	•		•		•			•		•		
S 3		•		•	•			•	•			•		•		
S 4		•	•		•			•	•			•		•		
S 5		•	•		•			•	•				•	•		
S 6		•	•		•			•		•			•	•		
S 7		•	•		•			•			•		•	•		
S 8		•		•		•		•		•			•	•		
S 9		•		•		•		•			•		•	•		
S10		•		•	•			•	•				•	•		
S11		•		•	•			•		•			•	•		
S12		•		•	•			•		•			•		•	
S13		•		•	•			•		•			•			•

(a) This corresponds to the attenuation model BKT2, which is frequency independent.

(b) This corresponds to the attenuation model BKT3, which can be frequency dependent if $\lambda \neq 0$.

Score

CVM-S4.26.M01 vs. CVM-S4 (1@4 Hz CH-ES)

Q as 100Vs vs. 50Vs (at 1 Hz for CH-PS)

BKT3 vs. BKT2 modeling (at 1 Hz for CH-PS)

Extended vs. point source (at 1 Hz for CH-PS)

Score

Varying to Mw 5.5 vs. 5.4 (at 1 Hz for CH-PS)

200 m/s vs. 500 m/s (at 1 Hz for CH-PS)

10 PPWL vs. 20 PPWL (at 1 Hz for CH-PS)

Other considerations

Purpose and intended use, hybrid approaches, metrics topography, plasticity and nonlinearity, built Environment, ...

Integrating 1D BBP and 3D Simulations

1D Models Comparison

BBP **BBP** + Hercules

3D Improvement 1D BBP BBP + 3D Hercules

Original Workflow

Alternatives to reduce validation post-processing

» C8: Response spectra

» C4: Energy

Attempts to understand effects of urban environments

Frequency (Hz)

In closing...

- » Velocity model Matters a lot perhaps the most.
- » Minimum Vs Matters provided the resolution of the model and that of the simulation are worth the computational effort.
- » Numerical resolution Matters a lot for verification, but it may not matter that much for validation
- » Attenuation model Matters significantly, especially for far field analysis and higher frequencies.
- » Source model Matters more than one would think of. Even for small earthquakes. Even at some distance (low vs high frequencies, near vs far field.)
- » Source uncertainty Can make a significant difference.
- » Nonlinear soil Matter a lot. Mostly local. But it may impact regional response to an extent we do not fully understand for now.
- » Topography We know it matters but cannot fully characterize it for synthesis at regional scale just yet.
- » Site-city interaction We do not fully understand yet.

- » Inversions: For better velocity models, thus other information.
- » Energy losses: Anelasticity and nonlinearities of engineering interest.
- » Variability: Anything that increases it matters at higher frequency (e.g., topography).
- » Uncertainty: Simulations / workflows that can carry forward information about uncertainty.
- » Workflows: In the form of automated simulations that can be repeated systematically.

Thank you

Simulated motions validation and acceptance criteria for ground motion databases

The Southern California Validation Experience

Ricardo Taborda

2024 PEER - LBNL Workshop Simulated Ground Motions for the San Francisco Bay Area January 18-19, 2024

