

Oregon State University

Next Generation Liquefaction Susceptibility Database and Modelling: Part 1

Armin W. Stuedlein,

with Arda Sahin, Dylan Heffern, Amalesh Jana, Scott Brandenberg, Jonathan Stewart, Steven Kramer, Kristin Ulmer, & T. Matthew Evans

COLLEGE OF ENGINEERING

Basic Framework for Liquefaction Hazard Assessments

- Liquefaction hazard assessments follow the typical progression:
 - Assessment of liquefaction susceptibility (could it happen ?);
 - Determination of liquefaction triggering under given loading (*will it happen ?*);
 - Evaluation of consequences (instabilities, displacements; what are the impacts?)
- NGL seeks to rationally unpack susceptibility and triggering from manifestation
- PEER- and NRC/USBR-funded NGL activities advance this goal

PEER Workshop on Liquefaction Susceptibility: Research Needs

- **Vision**: develop Next-Generation Liquefaction susceptibility models which:
 - Predict whether fundamentally-granular behavior will or will not occur
 - Are probabilistic in nature

• Scope:

- (1) Develop a database specifically for the purpose of supporting development of Next-Generation Liquefaction susceptibility models
- (2) Model development: can identify and treat sources of epistemic uncertainty, incl. regional, interpretations of behavior, and functional form of models

How to Characterize "Susceptibility" ?

PEER 2023/0: May 2023

PEER Workshop on Liquefaction Susceptibility

> Armin W. Stuedlein¹ Besrat Alemu¹ T. Matthew Evans¹ Steven L. Kramer² Jonathan P. Stewart³ Kristin Ulmer⁴ Katerina Ziotopoulou⁶

 ¹ School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
 ² Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
 ³ Department of Civil and Environmental Engineering, University of California, Los Angeles, California
 ⁴ Geoscience and Engineering Department, Southwest Research Institute, San Antonio, Texas
 ⁵ Department of Civil and Environmental Engineering, University of California, Davis, California

PEER Report No. 2023/02

Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley May 2023

How to Characterize "Susceptibility"

Material and/or State?:

- For example, should material characteristics (mineralogy and thus plasticity) be relied upon solely?
- Some combination of material and indicator of state (relative to the critical state)?
- NGL view: material characteristics alone should be used to identify whether soil *is* or *is not* susceptible to liquefaction
- Practical concern: CPT-based assessments (i.e., stress-dependent I_c) will by default consider soil state

Monotonic Behavior?:

- Can "parallelness" or lack thereof between the NCL and CSL be used to judge cyclic behavior?
- NGL view: under consideration

Cyclic Behavior?:

- NGL view: hysteretic behavior provides the definitive means to assess excess pore pressure generation and loss of stiffness and strength; facilitates linkage to material properties
- Requires medium to high quality intact samples, appropriate cyclic testing protocols

Characterization of "Susceptibility": Monotonic Behavior

- Hypothesis: if the NCL (or ICL) and CSL are parallel, then the material exhibits strength normalizable behavior (~ SHANSEP), a key feature of clay-like behavior
- Here, *PI* = 4 and 10.5 material exhibit parallel or near-parallel ICL and CSLs
- Question: what range in stresses should be considered to develop the NCL or ICL?

Boulanger & Idriss, (2006). "Liquefaction Susceptibility Criteria for Silts and Clays." JGGE, 132(11).

Characterization of "Susceptibility": Monotonic Behavior

- Three different **non-plastic silts** tested in DSS apparatus
- IZ silt (bottom right) tested in constant-volume and drained simple shear, identical NCL and CSL slopes
- These materials should not exhibit "parallelness"
- Is the range in stresses too narrow to establish the NCL?
- Other pertinent questions:
 - Can damage to fabric in monotonic loading evolve differently than that of cyclic loading?
 - Should normalizability of monotonic strengths be expected to capture cyclic behaviors?

Characterization of "Susceptibility": Monotonic Behavior

Monotonic Behavior

NG

 SHANSEP representation of low to medium *PI* silts from Oregon

$$\frac{s_{u,DSS}}{\sigma'_{vc}} = S \cdot OCR^m$$

- SHANSEP "m" ranges from 0.81 to 0.98
- Cyclic resistance model trained on larger database of silts (Dadashiserej et al. 2024):

 $\frac{\tau_{cyc}}{\sigma'_{vc}} = c_0 (PI + 1)^{c_1} (OCR)^{c_2} N^{-b}$

yields exponent c_2 of 0.34 to 0.44 (half of *m*), similar to findings by Eslami (2017), Chen & Olsen (2022)

 Cyclic loading may damage soil fabric in a sufficiently different manner than monotonic loading

Stuedlein et al. (2023). "Liquefaction susceptibility and cyclic response of intact nonplastic and plastic silts." JGGE, 149(1)

Linking Hysteretic Behavior to Liquefaction Susceptibility

- The laboratory data presented in the following slides consists of natural, *intact* specimens consolidated to σ'_{v0} with some artificially NC specimens, only
- Well-graded silty sands to sandy silts and clayey silts
- PIs range from 0 to 39, LLs from 28 to 70
- OCRs range from 1 to 4.2
- All data uploaded to NGL Liquefaction Susceptibility Database and publicly available

Linking Hysteretic Behavior to Liquefaction Susceptibility

- We can quantify certain hysteretic metrics for an objective assessment of behavior:
 - Angle of γ τ_{cyc} hysteresis prior to & following unloading
 - Cyclic shear stress difference at $\gamma = 0$, $\Delta \tau_{cyc}$
 - Minimum tangent shear modulus, *G*_{tan,min}
 - Maximum excess pore pressure generated, *r_{u,max}*
- Can assess differences between
 - $N_{\gamma=3\%}$ and $N_{max} \left(\gamma_{max} > 5\%\right)$

* Will largely focus on $r_{u,max}$ and $G_{tan,min}/\tau_{cyc}$

Linking Hysteretic Behavior to 40 **Liquefaction Susceptibility** 30

Example behaviors @ $N_{\gamma=3\%}$ and N_{max}

Specimen	Behavior		$r_{u,max}$ (%)		$G_{tan,min}/ au_{cyc,max}$		$\Delta au_{cyc}/ au_{cyc,max}$	
	$N_{\gamma=3\%}$	N _{max}	$N_{\gamma=3\%}$	N_{max}	$N_{\gamma=3\%}$	N_{max}	$N_{\gamma=3\%}$	N_{max}
F-2-6	Interm.	Sand	93	99	10.12	0.00	0.60	0.47
E-3-2	Clay	Clay	8	79	20.41	1.26	0.76	1.00

r_{u,max} = 79%

-10

-5

Shear Strain, γ (%)

E-3-2, PI = 27, OCR = 2.1

N_{x=3%}: Clay-Like Behavior

N_{max}: Clay-Like Behavior

1.5

1.0

 $\tau_{cyc}/\tau_{cyc,max}$

-0.5

-1.0

-1.5

-15

Normalized Cyclic Shear Stress,

Angle of the hysteresis prior to &

following shear stress reversal

Linking Hysteretic Behavior to 40 **Liquefaction Susceptibility** τ_{cyc} (kPa) 30

Example behaviors @ $N_{\gamma=3\%}$ and N_{max}

F-2-5

20

10

 $r_{u,max} = 98\%$

Minimum tangent

Observed Field Behavior

Jana, A. et al. (2023). "Multi-directional Vibroseis Shaking and Controlled Blasting to Determine the Dynamic In-Situ Response of a Low Plasticity Silt Deposit." JGGE, 149 (3).

Field Response?

http://nextgenerationliquefaction.org

Observed Field Behavior

Field Response?

NG

- Specimen from the OSU Blast Array, Port of Longview, WA
- Consider the *in-situ* performance of this material (controlled blasting; Jana et al. 2023)
- Excess pore pressures rise sharply with shear strain until drainage initiates; and,
- Appears to track the response of the Wildlife Array (▲, silty sand)
- Takeaway: large strain cyclic behavior points to smaller strain dynamic responses

Jana, A. et al. (2023). "Multi-directional Vibroseis Shaking and Controlled Blasting to Determine the Dynamic In-Situ Response of a Low Plasticity Silt Deposit." JGGE, 149 (3).

Proposed Hysteretic Metrics for Liquefaction Susceptibility

- No specimens exhibited Sand-Like behavior at $N_{\gamma=3\%}$
- Hysteretic behavior evolves following exceedance of γ = 3% for many specimens: *clay-like and intermediate* → sand-like

Clay-Like behavior suggested for:

 $r_{u,max}$ < 90%, $G_{tan,min}/\tau_{cyc,max} \gtrsim 2$, $\Delta \tau_{cyc}/\tau_{cyc,max} \gtrsim 0.55$

Intermediate behavior suggested for:

90
$$\lesssim$$
 $r_{u,max}$ < 95%, $G_{tan,min}$ / $au_{cyc,max}$ \gtrless 2, Δau_{cyc} / $au_{cyc,max}$ \gtrless 0.55

Sand-Like behavior suggested for:

$$r_{u,max}$$
 > 95% and $G_{tan,min}/\tau_{cyc,max} \lessapprox$ 2, $\Delta \tau_{cyc}/\tau_{cyc,max}$ < 0.55

Proposed Hysteretic Metrics for Liquefaction Susceptibility

- What if you don't have cyclic test data?
- Modified Bray and Sancio (2006) seemed to *generally* capture large-strain cyclic behavior
- PI ≤ 12 , $w_c/LL \gtrsim 0.85$: generally exhibits ultimate sand-like behavior
- Workshop organizers suggest dropping w_c/LL to remove influence of "state"

Comparison to Soil Behavior Type Index

- CPTs located within ~2 to 3 m of borehole
- Geometric average of I_c over sample interval from which specimen derived
- For the soils in our database, I_c does not correlate to ultimate hysteretic behavior at large strain ($\gamma > 5\%$)
- Transient liquefaction observed in specimens with $I_c \approx 2.95$
- Findings align with Maurer et al. (2019), *SDEE*, 117

Scope of PEER-funded Effort

- Database development: specifically for the purpose of supporting development of NGL susceptibility models:
 - Database entry should be associated with geographic coordinates; include paired CPT, borehole, and laboratory test data
 - Cyclic test data, and ideally monotonic data, must be available; testing should be performed to sufficiently large strain to identify ultimate hysteretic behavior
 - Metadata must be available (e.g., index test data)

- Workshop report identified numerous sources of such data;
- Jon's talk will discuss database development efforts and interpretations
- Model development: can identify and treat sources of epistemic uncertainty:
 - Regional
 - Interpretations of behavior
 - Functional form of models

[Thank You]

