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improvement of safety and resilience of our built environment and education of structural engineering students
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My Goal is to share findings from friction related experimental research at the material-,
component-, and system-level that we conducted since 2011.




Scope

« Benefits of friction-based structural components
» Experimentally observed challenges
» Research to address the challenges



Inertial Force-limiting Floor Anchorage Systems For Seismic Resistant
Building Structures (2011-2016): Robert Fleischman, Jose Restrepo,
Richard Sause, Joe Maffei, David Mar, Dichuan Zhang, Zhi Zhang, Ulina
Shakya, Arpit Nema, Gabriele Guerrini

Alternative designs of friction-based connections (2020-Present):

Kaixin Chen, Franco Mayorga, Yeon Li, Dominic Tran, Anne-Sophie Roobol,
Anthony Li

Steel buildings with sliding floors and elastic frames (2022-2025):
Chung-Che Chou, Shih-Ho Chao, Chia-Ming Uang, Li-Yu Huang, Chi-Jeng
Wu, Alvaro Cordova, Huang-Zuo Lin, Shu-Hsien Chao, Nicholas
Tedjasukmana, Ming-Yen Xie, Wei-Xuan Chen, Hao Wei Jian
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Design related ongoing research
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Early work by

Clark et al. 1973 — Limit forces in foundations
Pall 1979, Pall and Mash 1982

Filiatrault and Cherry 1987

Aiken, Kelly, Pall 1988

Anagnostides 1988

Giacchetti, Whittaker, Bertero, Aktan 1989
FitzGerald, Anagnos, Goodson, and Zsutty 1989
Tremblay 1993

Grigorian, Yang and Popov 1993

Example applications

Bridge structures

Precast concrete structures

Steel braced frames

Moment resisting frames

Self-Centering Moment Resisting Frames
Rocking Walls (Reinforced concrete and timber)
Friction dampers

Self-centering friction-based braces

UC San Diego
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Friction-based components in
structural engineering
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Literature review available in:
Tsampras et al. (2018), Chen et al. (2023)



Example use of friction-based force-limiting connections
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Example Installation of Force-Limiting Connection

Half-Scale 4-story Precast Rocking Shear Wall Structure at NEES @ UCSD

Clevis
Plates

Zhi Zhang, Robert B. Fleischman, José I. Restrepo, Gabrielle Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, Richard Sause (2018), Shake table test performance of an inertial force-
limiting floor anchorage system, Earthquake Engineering & Structural Dynamics, 47 (10), 1987-2011, doi: 10.1002/ege.3047



https://www.google.com/url?q=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Feqe.3047&sa=D&sntz=1&usg=AFQjCNGOSqN0jRh8yHHRLes-bbQGwZBsvg

Example Installation at NEES @ UCSD

EQ 14: Berkeley MCE - Floor 4

Force [kips]

) -1 0 1 2
Deformation [in]

THEUNNERSY @ UC SanDiego HaplCis

UNIVERSITY

Zhi Zhang, Robert B. Fleischman, José |. Restrepo, Gabrielle Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, Richard Sause (2018), Shake table test performance of an inertial force-
limiting floor anchorage system, Earthquake Engineering & Structural Dynamics, 47 (10), 1987-2011, doi: 10.1002/eqe.3047

Georgios Tsampras, Richard Sause, Robert B. Fleischman, José I. Restrepo (2017) Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to
lateral force resisting system, Earthquake Engineering & Structural Dynamics, 47 (4), 1032-1053, doi: 10.1002/ege.3004 10



https://www.google.com/url?q=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Feqe.3047&sa=D&sntz=1&usg=AFQjCNGOSqN0jRh8yHHRLes-bbQGwZBsvg
https://www.google.com/url?q=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Ffull%2F10.1002%2Feqe.3004&sa=D&sntz=1&usg=AOvVaw2Ce7ICzF3uL4KfueDyW343

Why friction-based force-limiting connections?

« Structural engineers have freedom in detailing
» Easy adjustments to achieve target force levels
» Decoupled stiffness and sliding friction force

» Possible designs with easy manufacturing and
assembly

» Increase of displacement capacity by including
longer slots in the design — no strain limitations

» Designs that allow low-damage and easy reparability

* Some designs are insensitive to damage

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Structural Engineering




Why friction-based force-limiting connections? I

» Structural engineers have freedom in detailing Z’E
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Why friction-based force-limiting connections?
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Why friction-based force-limiting connections?

» Structural engineers have freedom in detailing
» Easy adjustments to achieve target force levels
» Decoupled stiffness and sliding friction force

» Possible designs with easy manufacturing® and
assembly

* Increase of displacement capacity by including
longer slots in the design — no strain limitations

* Designs that allow low-damage and easy
reparability

« Some designs are insensitive to damage

UC San Diego
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*Manufacturing requirements depend on the design
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Why friction-based force-limiting connections?

» Structural engineers have freedom in detailing
» Easy adjustments to achieve target force levels
» Decoupled stiffness and sliding friction force

» Possible designs with easy manufacturing and
assembly

* Increase of displacement capacity by including
longer slots in the design — no strain limitations

* Designs that allow low-damage and easy
reparability

« Some designs are insensitive to damage

UC San Diego EEEE

JACOBS SCHOOL OF ENGINEERING T http://tsampras.ucsd.edu
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Why friction-based force-limiting connections?

» Structural engineers have freedom in detailing
» Easy adjustments to achieve target force levels
» Decoupled stiffness and sliding friction force

» Possible designs with easy manufacturing and
assembly

* Increase of displacement capacity by including
longer slots in the design — no strain limitations

» Designs that allow low-damage and easy
reparability*

« Some designs are insensitive to damage

*Depends on design

UC San Diego EEEE

oLt
JACOBS SCHOOL OF ENGINEERING T
Structural Engineering =i 0

http://tsampras.ucsd.edu 17




Why friction-based force-limiting connections?

» Structural engineers have freedom in detailing
» Easy adjustments to achieve target force levels
» Decoupled stiffness and sliding friction force

» Possible designs with easy manufacturing and
assembly

* Increase of displacement capacity by including
longer slots in the design — no strain limitations

* Designs that allow low-damage and easy reparability

« Some designs are damage tolerant

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Structural Engineering
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Why friction-based force-limiting connections?
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Challenges with friction-based o B /\M
structural connections AVA /\ C A N VAM M )
4 .
Friction-sliding behavior is affected by: v \/ \/ v Lawet v \/ \/ U U \/ fime
- Sliding velocit D
« Dwell time F, TANAARAAF THNARARAR
» Galvanic corrosion in bimetallic friction interface
>
» Creep of composite materials 1 H L L [} time
» Break-in and cumulative sliding effects -Fslu U O HHHEE B -_-Hu 1 LARRAL
Frp A
» Effect of machining and geometric tolerances AFZ,
« The effectively zero post-elastic stiffness can be F, | T7mgmm-—-9 B Fy = nNy,, where n, =2
both an advantage and disadvantage i ----- Example realistic FD response
> Idealized target FD response

D! / UFp
S -:I.- — Tsampras et al. (2018),

Earth. Eng. & Str. Dyn.
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Tsampras et al. 2014, 2018 Modified friction device
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Sliding History: Low velocity effect

|Fepsl in quasi-static tests that follow dynamic tests or

earthquake tests increases to approximately 1.10F;

|
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uc SanDiego Tsampras G., Sause R., Fleischman R. B., Restrepo J. I., Experimental study of deformable connection consisting of friction device and

Jacoss scHooL of enaiveeriis! DDET bearings to connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053. 23
Structural Engineering https://doi.org/10.1002/eqe.3004



Sliding History: High velocity effect

| Frpsl In dynamic tests decreases to approximately 0.85F;
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Sliding History: High velocity effect (Cont’d)

O

(1) Uexp does not depend on the instantaneous vep

(2) Uy, decreases as the maximum Vep peai inCreases

Normalized

Normalized
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Tsampras G., Sause R., Fleischman R. B., Restrepo J. I., Experimental study of deformable connection consisting of friction device and
rubber bearings to connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053.
https://doi.org/10.1002/eqe.3004
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Evolution of friction interface with respect to sliding velocity

l N Asperities
taihAial amilim

N Single Single
. Junction Junction
Single . o
Junction Small Sliding Large Sliding
Velocity Velocity

A;: true contact area

N: total normal force at friction interface
p;: normal pressure

s;: interface shear stress (strength)

A,,<A;= NJp,
1.10F,= As

Sjo il et B

jusjn

u,=F/N=s,/p, 110u=110F/N=s,/p, 0.85u,=0.85F/N=s/p,
Pi<Pjo <35

F.=A

U, - friction coefficient

- D. Tabor, "Friction - The present state of our understanding," Journal of Lubrication Technology, vol. 103, pp. 169-179, 1981

- Tsampras G., Sause R., Fleischman R. B., Restrepo J. |., Experimental study of deformable connection consisting of friction device and rubber bearings to
connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053.

https://doi.org/10.1002/eqe.3004
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Research to address material-level challenges



Challenges with friction-based structural connections

Friction-sliding behavior is affected by:

Sliding velocity

Dwell time

Galvanic corrosion in bimetallic friction interface
Creep of composite materials

Break-in and cumulative sliding effects

Effect of machining and geometric tolerances

The effectively zero post-elastic stiffness can be
both an advantage and disadvantage

UC San Diego

JACOBS SCHOOL OF ENGIN ING
Structural Engineering

* http://tsampras.ucsd.edu
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Experimental characterization of composite materials in

friction interfaces for structural applications

Material Plates CNC Subtractive Machining

Coupon Tensile Test Plate Bearing Test
| \ W—

‘, .‘L| ‘ :

Onefinity
CNC router

Material
Plate

v

Material Plate (Machined)

Tensile
coupons

Bearing
plates e

Square-
shaped plates

Kaixin Chen, Georgios Tsampras, Shivaglal Cheruvalathb, Mary Thundathilb and Craig Armstrong, Experimental Characterization of Mechanical Properties of Composite Friction Materials for Slotted-Bolted-
type Friction-based Structural Connections, Composites Part B, (Under Review, R1)
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Structural Engineering Group

Material-level Study: Bolt Relaxation Test

(a) @ . A325 Structural Bolt
<

Through-hole Load Cell

A36 Steel
Clamping Plates
/F ——————————————————
7] Hytorc @ :
< h Backup Reactionl
@ ' Structural Nut_ » 1 Wgs cr Washer Washer !
I et

« Two target bolt load levels were considered

« High boltload (173.5 kN =39 kips): minimum pretension of 7/8"7 ASTM A325 structural bolt
 Nominal normal pressure =11 MPa

. _ A Bolt Load
« Low boltload (57.8 kN = 13 kips): 1/3 of high bolt load P
« Nominal normal pressure = 3.7 Mpa ’ Schematic

« Foreach material under each load level, three specimens were tested \ representation
. Three specimens of A36 steel plates were tested, as a baseline test case Steady state ﬁmehibs‘igr'oad
« Boltload was recorded until a steady state of bolt load was observed of bolt load d

* |nthis test, defined as when the bolt load loss rate was lower thanor 0 .

equal to -5x10-6 kN/sec Time 30



: : N UC San Diego
Material-level Study: Bolt Relaxation Test Results ) o o e
Structural Engineering
thke 81 ' thke 82 , Ga'tke 112‘
] R —

— 08}

= 0.6}

S04t
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g 0 Low bolt load
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| e
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=40 .
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o] ¢
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ho) 20 — ¢ _|
3 b4 ’e ’
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% ‘ § ¢ : $ o8 i ‘ ¢ — ==
m 0 | | | | | | = I
Gatke 81 Gatke 82 Gatke 112 Gatke 113 Gatke 397 Gatke 398 |A36 Steel

r
LJ

Observation 1: As expected, the reference test group with A36 steel exhibited least percentage of bolt load loss
Observation 2: For all the composite materials, the percentage of bolt load loss ranged approximately from 5 to 15%
Observation 3: The correlation between material constituents and the percentage of bolt load loss was insignificant

Observation 4: One specimen of Gatke 112 exhibited a 37.12% bolt load loss

Deemed to be excessive and required further investigation

Tsampras
Research
Group

31
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Structural Engineering Group

Material-level Study: Bolt Relaxation Test Results
« Microscopy study of the Gatke 112 specimen with a 37.12% bolt load loss

- ,
The cross section

" exhibited a relatively
low volumetric
. ratio of phenolic
resin

A% AL, ,vt

L 100000m ]

Fiber Cloth
Phenolic Resin

« Gatke 112 plate inducing a 37.12% bolt load loss exhibited a relatively low volumetric ratio of phenolic resin

32



Material-level Study: Bolt Relaxation Test Results

UC San Dlegg r Tsampras

JACOBS SCHOOL OF ENGINEERING Research
Structural Engineering Group

« The relatively low volumetric ratio of phenolic resin was attributed to the flash compression molding manufacturing

process

Flash Channels

T

Flash Mold

Seepage of

//g phenolic resin

\|

Lands

Resin-poor region

Concentrated normal

pressure due to reduced -
compressive stiffness in the
through—thicknessldirection

|

Bolt load loss Bolt lola e
=37.12% = 110670

l'_..‘l

Selected pressure recording film
results of Gatke 112 specimens

The results of the bolt relaxation test highlighted the
importance of quality control in the manufacturing
process of composite friction materials for friction-based
structural components.
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Material-level Study: Friction Test @F
~ | = .+ Aslotted-bolted friction-based component
was designed for the friction test
« The friction interface was established
between composite friction materials and
A36 steel (low-carbon structural steel)
 The surface of the A36 steel sliding
plates was not specially treated
« Two normal load levels were considered,
l.e., 39 kips and 13 kips
» Exception for Gatke 397 under higher
normal load case: a reduced normal
load of 31 kips was applied (to prevent
the friction force from exceeding the
testing machine’s capacity)
» Data collection
« (Connection force
« Connection displacement
« Bolt load

s L\

b+
%
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Test IDs 5~10 5
Velocity effect 51
assessment 1™ , | — || —e— Gatke 81 (L)
15y 0 —e— Gatke 82 (L)
=1 Gatke 112 (L)
EU ||—e—Gatke 113 (L)
l =1 —e— Gatke 397 (L)
l = —o— Gatke 398 (L)
I 2k10 PO T
1] WM . |-* -Gatke 81 (H)
> SR /’ - o -Gatke 82 (H)
el (| Vo /7 |- e Gatke 112 (H)
:g l v e - o -Gatke 397 (H)
: ;: =3 \'//" - o Gatke 398 (H)
|§ I'20 I \ | Test IDs 5 and 10
|£ | Test IDs 6 and 9
— Test IDs 7 and 8
25 L— 1 : | ‘

5 6 7 8
Test IDs

« Composite materials that consist of phenolic resin, glass fibers, graphite, Teflon and molybdenum

disulfide MoS, are among the most suitable materials for use in friction-based structural components
for earthquake structural engineering applications.

\O
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Challenges with friction-based structural connections

Friction-sliding behavior is affected by:

« Effect of machining and geometric tolerances

» The effectively zero post-elastic stiffness can be
both an advantage and disadvantage

UC San Diego
OOOOOOOOOOOOOOOOOOOOOOOOO
Structural Engineering

* http://tsampras.ucsd.edu

Ir.

36



REVISION HISTORY
REV DESCRIPTION INCORP BY DATE CHECKED

Initial drawing 28 Aug. 2023 | NCREE, UTA, UCSD

Single bolt in friction interface 06 Sept. 2023 | N/A

NOTES: A
B

(1) Draft drawings for the 40 kN friction connections used in the NCREE Shake

Table test, December 2023 c

(2) Concept of "loose plates” was implemented to limit the effect of the bolted end
connections shared with the buckling-restrained braces.

(3) Load cells allow for control of normal force. Composite friction pads allow for

Eccentric, one-sided end connection, similar to HBRB

Used channel steel section common in Taiwan

Added parts for end connections and framing beam

Added simple safety mechanism to prevent out of plane spread of
channels (unlikely to happen due to small load & large channel

07 Sept. 2023 | N/A

reduced axial compressive stiffness. Assume no use of Spring Washers.

Fslip= pux Nx npx ng=0.4 x 50 kN x 1 x 2 =40 kN
where

- pis the friction coefficient in the interface between structural steel clean of mill
scale (no special surface finish) and the composite friction pad

- Nis the normal force due to the bolt preload

- np is the number of bolts in the friction interface

- ngis the number of friction interfaces

2xC 250 x 90 (Hx B)

For past research on the composite friction pads see: Length varies between the two
- Georgios Tsampras, Richard Sause, Robert B. Fleischman, José |. Restrepo
(2017) Experimental study of deformable connection consisting of friction device
and rubber bearings to connect floor system to lateral force resisting system,
Earthquake Engineering & Structural Dynamics, 47 (4), 1032-1053, doi:
10.1002/eqe.3004

- Georgios Tsampras, Richard Sause (2014), Full-scale, components test of
Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building
Structures using a Buckling Restrained Brace and Steel Reinforced Low Damping
Rubber Bearings, DesignSafe-Cl, 10.4231/D3N87311M
https://www.designsafe-ci.org/data/browser/public/nees.public/NEES-2011-1083.gr
oups/Experiment-2

Approximate mass = 85 kg
Including bolts and load cell, excluding end connections and steel beam

Approximate eccentricity = 17.5 mm

section)
D Modified the design to reduce the total weight by approx. 10kg 08 Sept. 20.
1x Internal Sliding Plate
2x Steel washer Plates

ty=9mm, to=13mm, Ry =14 mm, R2 =7 mm

channels

Machined friction pads
provided by UCSD

6x M27, 80 mm Long (Typical)
1x Load Cell
1x M20, 140 mm Long

6x M27, 75 mm Long (Typical)
or 80 mm with additional flat washers

6x M27, 75 mm Long (Typical)
or 80 mm with additional flat washers

-2 -1 ITEM PART OR NOMENCLATURE
QTY REQD NO. IDENTIFYING NO. OR DESCRIPTION
Units: mm PARTS LIST

INIT| APPROVALS | DATE || INIT APPROVALS | paTE | 98/2023 10:26:23 AM

CONTRACT NO. MATERIAL Georgios Tsampras

FINISH
TITLE
THIRD ANGLE PROJECTION TREATMENT Friction Device 40 kN
6 " o [sMiRTo SIZE ICAGE CODE  [owGNo. o REV
APPLICATION SCALE 1.72 [ [sHeeT 70f 7

UC San Diego
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Internal fixed plate

Internal sliding plate

Channels
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!'\ 2023 shaking Table Tests of a Three-Story Steel SCBF with Sliding Slabs
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Demonstration of repairability — It needed
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