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Overall, our research group at UC San Diego aims to contribute to the 
improvement of safety and resilience of our built environment and education of structural engineering students

Hybrid ManufacturingComputationalExperimental Design
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My Goal is to share findings from friction related experimental research at the material-, 
component-, and system-level that we conducted since 2011.



Scope

• Benefits of friction-based structural components
• Experimentally observed challenges
• Research to address the challenges
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Inertial Force-limiting Floor Anchorage Systems For Seismic Resistant 
Building Structures (2011-2016): Robert Fleischman, Jose Restrepo, 
Richard Sause, Joe Maffei, David Mar,  Dichuan Zhang, Zhi Zhang, Ulina 
Shakya, Arpit Nema, Gabriele Guerrini

Alternative designs of friction-based connections (2020-Present): 

Kaixin Chen, Franco Mayorga, Yeon Li, Dominic Tran, Anne-Sophie Roobol, 
Anthony Li

Steel buildings with sliding floors and elastic frames (2022-2025): 
Chung-Che Chou, Shih-Ho Chao, Chia-Ming Uang, Li-Yu Huang, Chi-Jeng 
Wu, Alvaro Cordova, Huang-Zuo Lin, Shu-Hsien Chao, Nicholas 
Tedjasukmana, Ming-Yen Xie, Wei-Xuan Chen, Hao Wei Jian
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Design related ongoing research
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Friction-based components in 
structural engineering

Early work by 
• Clark et al. 1973 – Limit forces in foundations
• Pall 1979, Pall and Mash 1982

• Filiatrault and Cherry 1987
• Aiken, Kelly, Pall 1988
• Anagnostides 1988
• Giacchetti, Whittaker, Bertero, Aktan 1989
• FitzGerald, Anagnos, Goodson, and Zsutty 1989
• Tremblay 1993

• Grigorian, Yang and Popov 1993

Example applications 
• Bridge structures
• Precast concrete structures
• Steel braced frames 
• Moment resisting frames
• Self-Centering Moment Resisting Frames

• Rocking Walls (Reinforced concrete and timber)
• Friction dampers
• Self-centering friction-based braces
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Literature review available in:
Tsampras et al. (2018), Chen et al. (2023)

Grigorian, Yang and Popov 1993



Example use of friction-based force-limiting connections
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Example Installation of Force-Limiting Connection

LFRS

FD

Clevis 
Plates FS

Half-Scale 4-story Precast Rocking Shear Wall Structure at NEES @ UCSD NEES @ 
UCSD

RB LFRS

FS

Zhi Zhang, Robert B. Fleischman, José I. Restrepo, Gabrielle Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, Richard Sause (2018), Shake table test performance of an inertial force-
limiting floor anchorage system, Earthquake Engineering & Structural Dynamics, 47 (10), 1987-2011, doi: 10.1002/eqe.3047
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https://www.google.com/url?q=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Feqe.3047&sa=D&sntz=1&usg=AFQjCNGOSqN0jRh8yHHRLes-bbQGwZBsvg


Example Installation at NEES @ UCSD 

Zhi Zhang, Robert B. Fleischman, José I. Restrepo, Gabrielle Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, Richard Sause (2018), Shake table test performance of an inertial force-
limiting floor anchorage system, Earthquake Engineering & Structural Dynamics, 47 (10), 1987-2011, doi: 10.1002/eqe.3047

Georgios Tsampras, Richard Sause, Robert B. Fleischman, José I. Restrepo (2017) Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to 
lateral force resisting system, Earthquake Engineering & Structural Dynamics, 47 (4), 1032-1053, doi: 10.1002/eqe.3004 10

https://www.google.com/url?q=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Feqe.3047&sa=D&sntz=1&usg=AFQjCNGOSqN0jRh8yHHRLes-bbQGwZBsvg
https://www.google.com/url?q=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Ffull%2F10.1002%2Feqe.3004&sa=D&sntz=1&usg=AOvVaw2Ce7ICzF3uL4KfueDyW343


Why friction-based force-limiting connections?

• Structural engineers have freedom in detailing

• Easy adjustments to achieve target force levels

• Decoupled stiffness and sliding friction force

• Possible designs with easy manufacturing and 
assembly

• Increase of displacement capacity by including 

longer slots in the design – no strain limitations

• Designs that allow low-damage and easy reparability

• Some designs are insensitive to damage
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~40 kN

~100 kN

~750 kN
~1.5 kN
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Why friction-based force-limiting connections?

• Structural engineers have freedom in detailing

• Easy adjustments to achieve target force levels

• Decoupled stiffness and sliding friction force

• Possible designs with easy manufacturing* and 

assembly

• Increase of displacement capacity by including 

longer slots in the design – no strain limitations

• Designs that allow low-damage and easy 
reparability

• Some designs are insensitive to damage
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*Manufacturing requirements depend on the design
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Why friction-based force-limiting connections?

• Structural engineers have freedom in detailing
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Why friction-based force-limiting connections?

• Structural engineers have freedom in detailing

• Easy adjustments to achieve target force levels

• Decoupled stiffness and sliding friction force

• Possible designs with easy manufacturing and 
assembly

• Increase of displacement capacity by including 

longer slots in the design – no strain limitations

• Designs that allow low-damage and easy 

reparability*

• Some designs are insensitive to damage

*Depends on design
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Test when failure was observed

10th test after failure was observed
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Challenges



Challenges with friction-based 
structural connections

Friction-sliding behavior is affected by:

• Sliding velocity

• Dwell time

• Galvanic corrosion in bimetallic friction interface

• Creep of composite materials

• Break-in and cumulative sliding effects

• Effect of machining and geometric tolerances

• The effectively zero post-elastic stiffness can be 
both an advantage and disadvantage

http://tsampras.ucsd.edu 21

Idealized target FD response

Example realistic FD response
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Fs = nsNµs, where ns = 2

Tsampras et al. (2018), 
Earth. Eng. & Str. Dyn.



Tsampras et al. 2014, 2018 Modified friction device

https://tsampras.ucsd.edu/Chen, Tsampras, Lee (2023)

MODIFIED FRICTION DEVICE



Sliding History: Low velocity effect
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|FFDs| in quasi-static tests that follow dynamic tests or 

earthquake tests increases to approximately 1.10Fs 
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|FFD| is the absolute FD 
force

|uFD| is the absolute FD 
deformation 

|vFD| is the absolute FD 
velocity 

Tsampras G., Sause R., Fleischman R. B., Restrepo J. I., Experimental study of deformable connection consisting of friction device and 
rubber bearings to connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053.
https://doi.org/10.1002/eqe.3004



Sliding History: High velocity effect
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| FFDs| in dynamic tests decreases to approximately 0.85Fs

|FFD| is the absolute FD 
force

|uFD| is the absolute FD 
deformation 

|vFD| is the absolute FD 
velocity 

Tsampras G., Sause R., Fleischman R. B., Restrepo J. I., Experimental study of deformable connection consisting of friction device and 
rubber bearings to connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053.
https://doi.org/10.1002/eqe.3004



Sliding History: High velocity effect (Cont’d)
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Tsampras G., Sause R., Fleischman R. B., Restrepo J. I., Experimental study of deformable connection consisting of friction device and 
rubber bearings to connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053.
https://doi.org/10.1002/eqe.3004
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N

N

FF

Small Sliding 
Velocity

Large Sliding 
Velocity

Asperities

Single 
Junction

Single 
Junction

Single 
Junction

Aj : true contact area
N : total normal force at friction interface
pj : normal pressure

sj : interface shear stress (strength)

µs : friction coefficient

- D. Tabor, "Friction - The present state of our understanding," Journal of Lubrication Technology, vol. 103, pp. 169-179, 1981
- Tsampras G., Sause R., Fleischman R. B., Restrepo J. I., Experimental study of deformable connection consisting of friction device and rubber bearings to 
connect floor system to lateral force resisting system. Earthquake Engng Struct Dyn. 2018;47:1032-1053.
https://doi.org/10.1002/eqe.3004

Evolution of friction interface with respect to sliding velocity
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Research to address material-level challenges



Challenges with friction-based structural connections

Friction-sliding behavior is affected by:

• Sliding velocity

• Dwell time

• Galvanic corrosion in bimetallic friction interface

• Creep of composite materials

• Break-in and cumulative sliding effects

• Effect of machining and geometric tolerances

• The effectively zero post-elastic stiffness can be 
both an advantage and disadvantage
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Experimental characterization of composite materials in 
friction interfaces for structural applications

Material Plates CNC Subtractive Machining

Onefinity 
CNC router

Material 
Plate

Material Plate (Machined)
Tensile 

coupons

Bearing 
plates

Square-
shaped plates

Coupon Tensile Test Plate Bearing Test

Plate Creep Test Friction Test

Kaixin Chen, Georgios Tsampras, Shivaglal Cheruvalathb, Mary Thundathilb and Craig Armstrong, Experimental Characterization of Mechanical Properties of Composite Friction Materials for Slotted-Bolted-
type Friction-based Structural Connections, Composites Part B, (Under Review, R1)



Material-level Study: Bolt Relaxation Test Tsampras
Research
Group

30

A36 Steel 
Clamping Plates

Through-hole Load Cell 

Structural Nut

Clamped Plate Specimen

A325 Structural Bolt①

②

THD-50K-Y
(Transducer Techniques Inc.)

Hytorc 
Washer 

Set

Backup 
Washer

Reaction 
Washer

① ②

(a) (b)

• Two target bolt load levels were considered
• High bolt load (173.5 kN = 39 kips): minimum pretension of 7/8’’ ASTM A325 structural bolt

• Nominal normal pressure = 11 MPa
• Low bolt load (57.8 kN = 13 kips): 1/3 of high bolt load

• Nominal normal pressure = 3.7 Mpa
• For each material under each load level, three specimens were tested
• Three specimens of A36 steel plates were tested, as a baseline test case
• Bolt load was recorded until a steady state of bolt load was observed

• In this test, defined as when the bolt load loss rate was lower than or 
equal to -5×10-6 kN/sec

Schematic 
representation 
of the bolt load 
time history



Material-level Study: Bolt Relaxation Test Results Tsampras
Research
Group

31

• Observation 1: As expected, the reference test group with A36 steel exhibited least percentage of bolt load loss
• Observation 2: For all the composite materials, the percentage of bolt load loss ranged approximately from 5 to 15%
• Observation 3: The correlation between material constituents and the percentage of bolt load loss was insignificant
• Observation 4: One specimen of Gatke 112 exhibited a 37.12% bolt load loss

• Deemed to be excessive and required further investigation



Material-level Study: Bolt Relaxation Test Results Tsampras
Research
Group

32

• Microscopy study of the Gatke 112 specimen with a 37.12% bolt load loss

• Gatke 112 plate inducing a 37.12% bolt load loss exhibited a relatively low volumetric ratio of phenolic resin

Fiber Cloth
Phenolic Resin

The cross section 
exhibited a relatively 
low volumetric 
ratio of phenolic 
resin



Material-level Study: Bolt Relaxation Test Results Tsampras
Research
Group
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Seepage of 
phenolic resin

• The relatively low volumetric ratio of phenolic resin was attributed to the flash compression molding manufacturing 
process

Resin-poor region

The results of the bolt relaxation test highlighted the 
importance of quality control in the manufacturing 
process of composite friction materials for friction-based 
structural components.

Selected pressure recording film 
results of Gatke 112 specimens

Concentrated normal 
pressure due to reduced 
compressive stiffness in the 
through-thickness direction



Material-level Study: Friction Test Tsampras
Research
Group
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• A slotted-bolted friction-based component 
was designed for the friction test

• The friction interface was established 
between composite friction materials and 
A36 steel (low-carbon structural steel)

• The surface of the A36 steel sliding 
plates was not specially treated

• Two normal load levels were considered, 
i.e., 39 kips and 13 kips

• Exception for Gatke 397 under higher 
normal load case: a reduced normal 
load of 31 kips was applied (to prevent 
the friction force from exceeding the 
testing machine’s capacity)

• Data collection
• Connection force
• Connection displacement
• Bolt load
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Test IDs 5~10
Velocity effect 
assessment

• Composite materials that consist of phenolic resin, glass fibers, graphite, Teflon and molybdenum 
disulfide MoS2 are among the most suitable materials for use in friction-based structural components 
for earthquake structural engineering applications. 



Challenges with friction-based structural connections

Friction-sliding behavior is affected by:

• Sliding velocity

• Dwell time

• Galvanic corrosion in bimetallic friction interface

• Creep of composite materials

• Break-in and cumulative sliding effects

• Effect of machining and geometric tolerances

• The effectively zero post-elastic stiffness can be 
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DESIGN
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SIMULATIONS
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MANUFACTURING - PROGRAMMING
Internal fixed plate Internal sliding plate Channels
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AUTOMATED MANUFACTURING
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COMPONENT LEVEL TESTING
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2023 NCREE SHAKE TABLE TESTING



Demonstration of repairability – If needed

http://tsampras.ucsd.edu 43



Relevant Publications, Open Data, and Patent
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