OBSERVATIONS AFTER 5/12/2008 WENCHUAN EARTHQUAKE BASED ON FIELD RECONNAISSANCE FROM 7/4/2008 TO 7/7/2008

Khalid M. Mosalam, PhD, PE <u>mosalam@ce.berkeley.edu</u> Professor and Vice Chair for Research and Technical Services Dept. of Civil and Environmental Engineering

Nicholas Sitar, PhD, PEng <u>sitar@ce.berkeley.edu</u> Professor and Director of the Earthquake Engineering Research Center

University of California, Berkeley, CA 94720-1710

Acknowledgements

Funding and logistical support were provided by: Office of International Strategy Development, University of California Office of the President (UCOP); Center for Information Technology Research in the Interest of Society (CITRIS), UC Berkeley; Prof. Jian-hui Deng, Prof. Bixiong Li, Prof. Ping Guan, and Prof. Shijing Yan, Sichuan University, Chengdu, China; Office of the President and International Office, Sichuan University, Chengdu, China

Outline

- □ Visited cities
- Dujiangyan and Zipingpu towns
- □ Yingxiu and Xuankou towns
- Hongkou town
- □ Hanwang town (Mianzhu city)
- □ Faulting and landslides
- Tunnels and retaining structures
- □ Materials and reconstruction
- □ Concluding remarks

Dujiangyan Town (Good Performance)

Dujiangyan Town (Fair Performance)

Dujiangyan Town (Poor Performance) (3/3)

6 story building

2 story building

Photo by K. Mosalam

2 story building

Zipingpu Dam (1/7) (1:2000)Photo by N. Sitar **建筑面干棉石** 下游坝体堆石区料 坝体主堆石区料 坝体次堆石区料 SHEER COUNT mm an HALLS IN JM. NO. 18-2 19 120-4 Photo by J. Sun Photo by N. Sitar Photo by K. Mosalam it fine Arch bridge downstream

Zipingpu Dam (2/7) Crest settlement ~ 73 cm at center

noto by K. Mosa

Zipingpu Dam (5/7)

Unbolted gate controllers toppled

Photo by K. Mosalam

Minor damage to bridge parapet

Zipingpu Dam (6/7) Photo by K. Mosalam

Zipingpu Dam (7/7)

Photo by K. Mosalam

4 unit, 760 MW powerhouse with minor damage

Photo by K. Mosalam Wall shear cracks

~30 cm differential settlement at the administration building

Bridges (1/4) Suspended steel bridge

(performed well)

Photo by K. Mosalam

RC bridge temporarily retrofitted with Bailey bridge (speed and weight limits)

Bridges (4/4)

Collapsed intermediate span of a multi-span bridge over Zipingpu reservoir

Photo by K. Mosalam

Photo by K. Mosalam

Middle School

Photo by K. Mosalam

Outline

- □ Fault trace
- □ Steel building
- Buildings under construction and RC slabs
- RC Columns
- □ RC Beam-column joints
- Overall frame failure
- □ Hongkou bridge faulting induced collapse
- □ Traditional versus modern structures

Steel Building

Good performance – within the fault zone

Buildings under Construction and RC Slabs (1/2)

Detail E

Buildings under Construction and RC Slabs (2/2)

RC Columns

RC Beam-Column Joints (1/2)

Photo by K. Mosalam

Photo by K. Mo

RC Beam-Column Joints (2/2)

RC Frame Failure Due to Faulting (2/2)

Hongkou Bridge – Faulting Induced Collapse (2/3) Photo by K. Mosalam Photo by K. Mosalam Photo by K. Mosalam

Hongkou Bridge – Faulting Induced Collapse (3/3)

Outline

- Good performance
- □ Fair performance
- Poor performance (Complete/Partial collapses)
- □ Bridge collapse and fault trace
- □ Infill walls/Masonry
- □ RC Beam-column joints

Good Performance (2/2)

Elevated water tank (tower)

Short arch bridge & Intake Structure

Fair Performance

6 story building

Poor Performance (Partial/Complete Collapse) (1/5)

4 story building

Photo by K. Mosalam

2 & 3 story buildings

Photo by K. Mosalam

Photo by K. Mosalam

5 story building

Poor Performance (Partial/Complete Collapse) (2/5)

Precast concrete structure

L story building (interior)

Poor Performance (Partial/Complete Collapse) (4/5) Light pole (compression-side) Photo Light pole (tension-side) Photo by K. Mosalam Mosalam **3 story building**

Poor Performance (Partial/Complete Collapse) (5/5) Photo by K. Mosalam

Photo by K. Mosalam

7 story building

Bridge Collapse and Fault Trace

Infill Walls (Poor Performance)

Masonry (Poor Performance)

Masonry (Good Performance)

Photo by B. Li

2 story confined masonry residential buildings built in 2006 performed well (Gao Yuan Village)

Photo by B. Li

finor cracks in masonry walls

RC Beam-Column Joints (1/2)

RC Beam-Column Joints (2/2)

Outline

- □ Fault features steeply dipping reverse faults
- □ Rock falls and landslides
- □ Slope stabilization excellent performance

Fault Features – Steeply Dipping Reverse Faults

Holtiple Fault Traces in Hanwang

Photo by N

Rock Falls and Landslides

Shallow Failures - Zipingpu

Photo by N. Sitar

Rock Fall - Hongkou

Slope Stabilization – Excellent Performance Rock Bolts and Shotcrete – Zipingpu Dam – Right Abutment

Photo by N. Sitar

Photo by J.

Tunnels – Minor Damage along Bedding Plane Shears

Conventional Retaining Structures – Minimal or No Damage

Materials and Reconstruction (1/4)

Materials and Reconstruction (2/4)

Materials and Reconstruction (4/4)

Concluding Remarks

- 1. Material quality (reinforced concrete, masonry)
- 2. Deformation compatibility (stair-wells)
- 3. Mixed role of unreinforced masonry infill walls
- 4. Poor diaphragm action (concrete planks)
- 5. Beam-column joints
- 6. Better performance of tall structures
- 7. Poor performance of short structures
- 8. Mixed response of mid-rise structures
- 9. Poor performance of bridges with limited or no redundancy
- 10. Multiple reverse fault traces along the principal fault lines
- 11. Thousands of slope failures and rock falls
- 12. Excellent performance of slope stabilization measures, tunnels and retaining walls.

