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ABSTRACT

The survival of lifeline systems after a major earthquake in an urban area is essential for speedy
delivery of first aid and for post-earthquake recovery. Of particular importance are electric
power distribution systems. The research presented in this paper is part of a larger program
aimed at assessing the seismic fragility of electrical substations that form critical nodes in power

distribution systems.

A typical electrical substation consists of a complex set of interconnected equipment items,
such as transformers, circuit breakers, surge arresters, capacitor banks, disconnect switches, etc.,
many of which support fragile elements such as ceramic bushings. These equipment items are
usually connected to each other through rigid conductor buses or flexible cables. Due to dis-
similar characteristics of these equipment items, significant dynamic interaction between them
may occur during seismic disturbances if the connection is not sufficiently flexible. Post-
earthquake field investigations have indicated that this kind of interaction may be responsible for
some of the observed damage in electrical substations during recent earthquakes. Unfortunately
no sound design guidelines or analysis methods are currently available that account for this ef-

fect.

This investigation aims at assessing the effect of interaction in interconnected equipment
items and developing design guidelines for reducing the adverse nature of this effect. The study
focuses on two equipment items with a single connecting element. Equipment items are modeled
as linear, distributed-mass systems with one degree of freedom. Two distinct models of the con-
necting element are used: a linear spring-dashpot-mass element to represent a rigid bus with lin-
ear or linearized properties, and an extensible cable with negligible flexural rigidity to represent a
flexible cable conductor. A set of dimensionless response ratios are defined that quantify the in-
teraction effect on each equipment item relative to its response in a stand-alone configuration. A
response ratio to quantify the force in the connecting element is also defined. Extensive analyti-
cal and numerical analyses are carried out to evaluate the influences of various system parame-

ters on the interaction effect.

For the linear connecting element, a simple method of analysis utilizing a response spectrum
specification of the ground motion is developed. Parametric investigations with this method re-
veal that the interaction tends to amplify the response of the higher frequency equipment item and

de-amplify the response of the lower frequency equipment item relative to their respective stand-



alone responses. The amplification in the response of the higher frequency equipment item can
be as large as a factor of 6 or greater. Parameters having major influences on this effect include
the ratio of equipment frequencies, the ratio of equipment masses, the stiffness of the connecting
element, the damping of the connecting element, and the location of attachment of the connecting
element to each equipment item. Lesser influence is provided by the mass of the connecting
element and the shape of the response spectrum. No interaction occurs between equipment items
with identical frequencies and damping ratios, provided equal fractions of their masses act as ex-
ternal inertia forces. Specific guidelines for reducing the interaction effect on the higher fre-

quency equipment item are described.

The response of the cable-connected equipment system is found to be highly nonlinear and
asymmetric when the cable is taut. As a result, analysis by the response spectrum method is not
possible. Instead, an algorithm for time history analysis is developed and numerical calculations
are carried out for typical systems subjected to a selection of recorded ground motions. These
investigations reveal that the interaction can significantly amplify the response of the higher fre-
quency equipment item and moderately amplify the response of the lower frequency equipment
item. Parameters having major influences on this effect include the equipment frequencies and
the cable slackness. Due to the complex and unpredictable nature of the response, it is prudent to
design the cable-connected system with sufficient cable slackness to avoid the adverse effect of
interaction. A simple formula is developed that provides the minimum cable slackness in terms
of the chord length of the cable and the maximum relative displacement between the stand-alone
equipment items. Other specific guidelines for reducing the interaction effect on the cable-

connected equipment items are also described.

Aside from the above results concerning the interaction effect, this report contains a number
of new formulations and analytical results. These include closed form expressions for the modal
properties of connected oscillators, formulas for the stiffness and geometric properties of the
catenary cable, an algorithm for dynamic analysis of cable-connected equipment items, and a

criterion for neglecting the flexural rigidity of a cable.

Last but not least, based on the experience gained in this study, a set of topics for further
study are recommended that, in the view of the authors, would lead to a better understanding of

the behavior of interacting equipment items and would result in more reliable and safer designs.
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frequency response function of response quantity u(z);
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stiffness of lower-frequency equipment;

stiffness of higher-frequency equipment;

effective cable stiffness including effect of axial deformation;
stiffness due to cable action;

stiffness due to bending;

effective stiffness matrix of connected system;

effective mass producing external inertia force;
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effective mass producing external inertia force for lower-frequency equipment;
effective mass producing external inertia force for higher-frequency equipment;
cable span;

distances from lowest point of cable to left and right supports, respectively;

external inertia force coefficient vector of connected system;
mass of oscillator;

mass of connecting element;

mass of lower frequency equipment;
mass of higher frequency equipment;
i th modal mass;

effective mass matrix of connected system;

effective external force vector at » th time step;

root mean square,

response ratio for connecting element;
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restoring force vector for the cable-connected system;
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horizontal component of cable force;
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coordinate along a beam;

ground acceleration;

coordinate along equipment;

coordinate at equipment attachment point;
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angle of inclination of cable chord with the horizontal;

non-dimensional attachment coordinate;

interaction parameter; also parameter in numerical integration scheme;
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displacement vector increment at i th iteration and # th time step;
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parameter in numerical integration scheme;
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Recent earthquakes in Loma Prieta (1989), Northridge (1995) and Kobe (1996) have once
again demonstrated their devastating effects on the built environment in urban centers.
The resulting social and economic losses due to these earthquakes have been particularly
severe because of the extensive damage experienced by critical lifeline systems, such as
transportation networks, gas and water distributions systems, and power transmission and
communication networks. This experience has further highlighted the need to strengthen
the critical components of these systems so as to assure their functionality during future

earthquakes.

An important element within the power transmission network is the electrical sub-
station. This consists of a complex set of interconnected equipment items, such as trans-
formers, circuit breakers, surge arresters, capacitor banks, disconnect switches, etc., many
of which support fragile elements such as ceramic bushings or insulators. These equip-
ment items are usually connected to each other through conductor buses or cables. In the
event of an earthquake, these connections may induce dynamic interaction between the
equipment items. Field investigations during recent earthquakes (Benuska 1990, Hall
1995) have indicated that the dynamic interaction between connected equipment items
with dissimilar dynamic characteristics may have contributed significantly to the ob-
served damage. Unfortunately no design guidelines or analysis methods are currently

available that account for this effect.

This report aims at developing a thorough understanding of the effect of dynamic
interaction on the response of interconnected electrical substation equipment subjected to
earthquake ground motions that will lead to practical and effective design rules and
guidelines. Towards that end, we develop simple models of interconnected dynamical
systems that adequately represent equipment items and their connections in a typical sub-

station. Equipment items are modeled as lumped- or distributed-mass systems with a



single degree of freedom. The connection is modeled either as a linear spring-dashpot or
mass-spring-dashpot element, or as a cable. The ground motion is either described as a
stochastic process defined in terms of its mean response spectrum or power spectral den-

sity, or is a recorded ground motion.

A set of dimensionless measures of seismic interaction are defined by relating the re-
sponse of each equipment item in the connected system to its stand-alone response. A
similar measure is defined for the connecting element. These measures of interaction al-
low the designer to determine if additional strength should be provided for each equip-
ment item and the connecting element in order to assure its safety in the presence of the
interaction effect. They also provide a basis for determining the proper intensity of base

motion for qualification tests so as to indirectly account for the interaction effect.

For the linear connecting element, extensive parametric studies are carried out to un-
derstand the nature of the interaction effect and to identify the parameters that strongly
influence it. The possibilities of adding a damping element or mass to the connecting
element in order to reduce the adverse effects of interaction are explored. Also investi-

gated is the influence of the attachment configuration.

The connecting cable is modeled as an ideal cable with no flexural stiffness, but ac-
count is made of its extensibility in an approximate manner. The response of the cable-
connected system turns out to be strongly nonlinear when the cable is taut. Time history
analyses with recorded ground motions are carried out in order to understand the behavior
of the system and the influences of various parameters on the interaction effect. The
main focus is on determining the required cable slackness to avoid adverse interaction
effects. This is achieved by introducing a simple parameter involving the cable geometry
and slackness, which is shown to be an acute predictor of the significance of the interac-

tion effect.

A set of guidelines and recommendations for seismic design of interconnected elec-
trical substation equipment items are developed based on the results derived from this
study. Recommendations are made for reducing the effect of interaction in systems con-

nected by a linear element or a cable.



1.2 Objectives and Scope

The objective of this study is to gain a deep understanding of the effect of interaction

between connected electrical substation equipment items that are subjected to seismic

disturbances with the final goal of developing simple and practical guidelines for design

of such systems.

Attention in this study is focused on developing sufficiently simple models of

equipment items and connecting elements for practical use that incorporate the essential

features for accurately quantifying the interaction effect. These models, however, contain

limitations that need to be recognized so that the results of this study are used appropri-

ately. Specifically, the models used in this study are limited in the following ways:

a)

b)

Equipment items are modeled as linear, single-degree-of-freedom systems. While
allowance is made for the mass of the equipment to be distributed, no account is made
of contributions to the response arising from higher modes, nor of possible nonline-
arities in the behavior of the stand-alone equipment. All energy dissipation mecha-

nisms are idealized as viscous damping.

Connecting elements are idealized either as linear spring-dashpot or mass-spring-
dashpot elements, or as idealized cables with no flexural stiffness and no inertia ef-
fects. In reality, rigid conductor buses with thermal expansion loops may experience
hysteretic behavior as a result of plastic deformation in the loop, and flexible cable
conductors may possess significant flexural rigidity and possibly inertia effects.
These additional effects are not considered in this study. However, a criterion for the
condition under which the effect of cable flexural stiffness can be neglected is de-

scribed in the Appendix.

Consideration in this report is restricted to two equipment items with a single con-
necting element. The behavior of two equipment items with multiple connections, or

that of more than two connected equipment items can be considerably different.



d) Consideration is given to only one component of the ground motion. Furthermore, no
account is made of site response effects, other than that implicit in the assumed

ground response spectrum, or the effect of soil-equipment interaction.

It would appear that this investigation is the first in-depth study of interconnected
equipment items subjected to seismic motions. In spite of the limitations enumerated
above, we believe the results reported here are applicable to many interconnected equip-
ment items found in electrical substations, and the guidelines and recommendations

should be useful in the safer design and analysis of such systems in the future.

1.3 Organization of the Report

In Chapter 2, the equipment items are modeled as lumped- or distributed-mass systems
with one degree of freedom. The connecting element is modeled as a linear spring-
dashpot element. The equations governing the motion of the 2-degree-of-freedom con-
nected equipment system are derived by use of the method of virtual work. Closed form
expressions are derived for the modal properties of this system. Rules for computing the
responses of the stand-alone and connected equipment items based on the response spec-

trum method are described.

Chapter 3 begins with the introduction of three dimensionless response ratios that
characterize the effect of interaction in the two equipment items and the connecting ele-
ment. These ratios relate the response of each equipment and the connecting element to
the corresponding responses in the stand-alone equipment configuration. The influences
of various system parameters on these ratios are then investigated in a discriminating in-
depth manner. The parameters include the stiffness, damping and mass of the connecting
element, and the attachment configuration. Attention is also devoted to the influences of
various equipment parameters. For the analysis of the damping effect, an approach based
on random vibration theory that accounts for the non-classical damping of the system is
employed, and for the analysis of the connecting mass effect, a 3-degree-of-freedom con-
nected system is considered. The results in this chapter reveal the major influences on the

seismic interaction between two equipment items connected by a linear element.



Chapter 4 deals with equipment items connected by a flexible cable. The chapter be-
gins with an analysis of an ideal inextensible cable with no flexural stiffness. Closed
form expressions are derived for various geometric and mechanical properties of the ca-
ble. These results are extended to account for the extensibility of the cable in an approxi-
mate manner. The equations of motion for cable-connected equipment items are derived
and a step-by-step iterative solution algorithm is developed to determine response time-
histories for prescribed ground accelerograms. Detailed numerical studies are presented
for example systems subjected to five recorded earthquake ground motions with varied
characteristics. The main focus is on determining the influence of the cable slackness on
the interaction effect. The chapter ends with the introduction and evaluation of a pa-

rameter that determines when the interaction effect is significant..

Chapter 5 describes a set of guidelines and recommendation for seismic design and
analysis of interconnected equipment items. These are based on the results derived in
Chapters 3 and 4. A set of recommendations are presented for reducing the adverse effect
of interaction in connected equipment items. For cable-connected equipment items, a
simple expression for the minimum required cable slackness to avoid the interaction ef-

fect is presented.

A summary of the report and suggestions for further study are presented in Chapter



CHAPTER 2

TWO EQUIPMENT ITEMS CONNECTED
BY A LINEAR SPRING-DASHPOT ELEMENT

2.1 Introduction

In this chapter we describe models for characterization of electrical substation equipment.
A simple linear, distributed mass, single-degree-of-freedom model is used that is charac-
terized by its effective mass, stiffness and damping values, and its attachment configura-
tion. Subsequently, a model is developed for two equipment items that are connected by
a linear element consisting of a spring and a viscous damper. Closed form expressions
are derived for the undamped modal properties of the two-degree-of-freedom connected
system. These modal properties are used in conjunction with a modal combination rule to
formulate expressions for the peak responses of the equipment items in both the stand-
alone as well as connected configurations. These results form the basis for the investiga-

tion of interaction in the linear connected system that is the topic of Chapter 3.

2.2 Model of Equipment Iltem

A typical electrical substation contains a large variety of equipment items, e.g., trans-
formers, circuit breakers, capacitor banks, surge arresters, disconnect switches, etc., many
of which support fragile elements such as ceramic bushings. Often several different
models or designs of the same equipment are stationed at the same location. Further-
more, the interconnections between the different equipment items are varied both in con-
figuration and type. Given this plethora of configurations of equipment types and con-
nections, from the viewpoint of risk assessment or seismic design, it is impractical to de-
velop a detailed model of each equipment item. Furthermore, the information available
on each equipment is rather limited and at best may consist of the overall mass and stiff-
ness characteristics, or the fundamental frequency, and a measure of the energy dissipa-

tion capacity. Under these conditions, it is expedient to use a simple and general model



that is based on the limited information that is available and which captures the essential
dynamic features of the equipment and the effect of its interconnection with other equip-

ment items.

For the purpose of this study, an equipment item is modeled as a single-degree-of-
freedom system. When the mass of the equipment is effectively lumped at a single point,
then a simple mass-spring-dashpot system, as shown in Figure 2.1a, is an appropriate
model. The equation of motion of the equipment item, when it is subjected to a base mo-

tion, is then given by

mii + cti + ku = —mx, (2.1)

where m denotes the mass, ¢ denotes the viscous damping coefficient, k£ denotes the

spring stiffness, ¥,(¢) denotes the base acceleration, and u(z) denotes the displacement

of the mass relative to the base. For a given equipment, the spring stiffness k& can be de-
termined by estimating the required force to move the mass in the horizontal direction by
a unit amount. Alternatively, if an estimate of the fundamental circular frequency, o, of
the equipment is available, then the stiffness can be computed as k = mo”. The viscous
damping coefficient ¢ may be determined in terms of the critical damping ratio, C, from
¢ =2mn¢ . The value of £ depends on the energy dissipation capacity of the equipment,
including its support system. For typical substation equipment items, the damping ratio
is expected to be very small, i.e., of the order of 0.01 to 0.05. As we will see later, this

value does not significantly affect the nature of interaction between equipment items.

We will be concerned with attachments to the equipment item. For the model in
Figure 2.1a, we assume the attachment is made to the lumped mass so that u(z) repre-

sents the horizontal displacement of the attachment point relative to the base.

When the mass of an equipment is distributed over a domain, then a more detailed
model is necessary. Such a system can be approximated with a single degree of freedom
by employing an appropriate displacement “shape” function. As an example, consider an
equipment item modeled as a cantilever beam, as shown in Figure 2.1b, with distributed

mass density p(y) and flexural stiffness EI(y) along the vertical axis y. Let the dis-



placement of the system in time and space be described approximately by the separable
function u(y,7) = w(y)z(t) , where y(y) is the displacement shape function and z(¢) is
the generalized coordinate that describes the variation of the displacement amplitude in
time. Also let y, denote the point of an external attachment to the equipment. Using the
method of virtual work (see the derivation for a more general system in the following
section), one can show that the equation of motion for the displacement u =u(y,,) of

the equipment at the attachment point, assuming no force is acting at the attachment

point, is
mii +cu + ku=-1%, 2.2)
where
L
m= [p(IW()T dy (23)
0
is the equivalent mass,
L
k= [EI)w" ) dy (24)
0

is the equivalent stiffness, and

1= y(,) [pw()ady 2.5)

is the effective mass producing the external inertia force, where L denotes the length of

the beam and y”(x)=d*y(x)/dx’>. The shape function w(x), which must satisfy
geometric boundary conditions, may be chosen conveniently as the displacement shape
under a suitable static load approximately representing the earthquake effect, e.g., an in-

verted triangularly distributed load.

It can be seen that (2.1) and (2.2) are identical except for the coefficient of the base
acceleration on the right-hand side. The deviation of the quantity / from m is due to two
factors: (a) the distributed nature of the mass, (b) the point of attachment. One can easily

verify that (2.1) and (2.2) are identical when the mass is lumped at the attachment point



y,. Note that when the mass is lumped at a point 3, / will generally be different from

mif y, #y.

2.3 Model of Connected System

Consider two equipment items modeled as described in the previous section and con-
nected in the manner shown in Figures 2.2. For the more general model shown in Figure
2.2b, let u(y,t)= v,z () and wu,(y,t) =y,(»)z,(¢) describe the displacements
fields of the mass-distributed equipment items, where y, (y) and y,(y) are prescribed
displacement shapes for each equipment and z,(#) and z,(¢) are the corresponding gen-
eralized coordinates. Also, let y, and y, denote the coordinates of the respective at-
tachment points. We assume the connecting element consists of a linear spring of stiff-
ness k, and a linear viscous damper with coefficient ¢,, which are placed in parallel in a
horizontal position, as shown in Figure 2.2b. (If the connecting element is not in a hori-

zontal position, then in what follows k, and ¢, must be replaced by &k, cos’a and

c,cos’ o, where a denotes the angle of inclination with the horizontal.) To develop the
equations of motion by use of the method of virtual work, we consider virtual displace-
ments of the system in the form du, = y,(y)dz, and du, = y,(y)dz,. The equation of
dynamic equilibrium when the connected system is subjected to a uni-directional base

acceleration %, (), neglecting the damping effects, is developed by setting the work done

by the inertia and internal forces through the virtual displacements equal to zero. The

equation takes the form

jpl Ol )% 0 + 5, )] [w, ()82, ]dy + jEL IWT0)z0) [w] ()82, ]dy
o[, (71, 1) =0, (02, ][, ()82, = W, ()82, |

+ Ipz D 02,0+ 5, O[w, )62,y + [EL 0 ()2, O [wi ()82, ]dy =0 (2:6)

The above equality must hold for all selections of 8z, and &z,. This requires that the co-

efficient terms for both &z, and &z, be zero. Employing the abbreviated notations



u. =u(y,,t) and vy, = y,(y,) and noting that z, =u, / y,, i =1,2, the equations govern-

ing the displacements at the attachment point are obtained as
miy + [, + cow? i, — cowlit, + [k, + kowt | - kowin, = 1%, (2.72)

myii, + [Cz + coW;]i‘z — CoWth + [kz + kowg]uz — koyiu, = -Lx, (2.7b)

where m;, k, and I, i =1,2, are the effective properties defined as in (2.2)-(2.5). In or-
der to account for energy dissipation of the system, damping terms similar to the stiffness
terms have been added to the above equations. Note that ¢, and c, should be regarded as

effective damping coefficients representing the distributed nature of damping in each

equipment item.
The equations of motion (2.7) can be cast in the matrix form

Mii + Cu + Ku = -Lx (2.8)

g

where u=[u, u,]" is the vector of displacements of the two attachment points relative to
the base, and M, C and K are the effective mass, damping and stiffness matrices of the

system given by

m 0 A AU b k +kwl -kl

M = I: | :|, Co |:C1 Co\gl GV 2:|’ K = l: 1 o\lz’l oW1 i 2.9)
0 m GV G TGV, ko, ky+ kg

and L =[], [,]" is the external inertia force coefficient vector. It is noted that the stiff-

ness and damping matrices are not symmetric. This is a consequence of expressing the

equations of motion in terms of the displacements at the attachment points.

Up to this point we have not assigned scales to the displacement shape functions
v,(y) and y,(y). From (2.9), it is evident that it is most convenient to scale these
functions such that y, =y, =1, i.e,, scale y,(y) and y,(») such that these functions

attain unit values at the attachment points. With this scaling, the damping and stiffness

matrices take the symmetric forms
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+ - ki +k, -k
C= G+6G %o T o | 2.10)
-c, ¢ +¢, -k, k,+k,

For the conventional lumped-mass system shown in Figure 2.2a, the equations of
motion take the same form as in (2.8) with M as in (2.9) and C and K as in (2.10),
where m., ¢, and k;, i =1,2, now are the actual mass, damping and stiffness coefficients
of the two oscillators. However, in this case [, /m, =1,/m, =1. As mentioned earlier,
for the more general system in Figure 2.2b, /, / m, and [, / m, typically are different from
unity, as they depend on the distribution of mass and on the locations of the attachment
points. Thus, the difference between the two systems in Figure 2.2a and 2.2b lies in the
ratios  /m,, i =1,2. It is noted that the eigen-properties of the two systems are identi-

cal.

For an arbitrary value of ¢,, the connected system in general may not have classical
modal damping, i.e., its undamped eigen-vectors may not be orthogonal with respect to
the damping matrix. Initially, we neglect this effect and carry out analyses using un-
damped modal properties and approximate modal damping values. For this purpose, in
the following section, closed-form expressions are derived for the undamped modal prop-
erties of the connected system. Subsequently, the effect of non-classical damping is in-
vestigated by random vibration analysis using a non-modal approach. As shown there,
approximate modal analysis provides sufficiently accurate results for the system under

consideration.

2.4 Modal Properties of the Connected System

In this section we derive closed-form expressions for the undamped modal properties of
the 2-DOF connected system. The characteristic equation for the eigenvalues of the un-
damped connected system defined by the mass matrix in (2.9) and the stiffness matrix in

(2.10) is

k, + k, — Am, —k,

—k, k, + k, — Am, =0 211

11



where L =Q? and Q denotes the eigen-frequency of the system. Expanding the deter-

minant, one obtains

x2_|:ko+k, +k0+k2]7\+kok;+k0k2+k1k2 o (2.12)
m, m, mm,

It is convenient to define the connecting stiffness ratio

(2.13)

Using this notation and the expressions o, =./k,/m and o, =./k,/m, for the natural

frequencies of the stand-alone equipment items, (2.12) can be re-written in the form

M —ah+b=0 (2.14)

where a and b are the positive quantities

m m
a=(1+1<)(cof+(D§)+K(~lmf+—2w§) (2.152)
m, m,
m
b=(1+2K)0’0> +K[—1m;‘ +&m§j (2.15b)
m, m,

The two roots of this equation are

2
_a-Na -4b (2.16a)

A, :
2
p, =2tVa —4 ""2‘4” (2.16b)

The ordered modal frequencies of the connected system are obtained as Q, = \/?\,_1 and
Q, =\, with Q, <Q,.

Let the modal vectors of the connected system, denoted ®,, i =1,2, be scaled such

that @, =[1 @,]". Note that this vector defines the displacements of the two attachment

points for each mode shape. The element o, is obtained by solving
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ky+k, —him — ky 1 o (2.17)
-k, ky+k, —Am, ||9;

After algebraic manipulations, the solution for ¢, is obtained in the form

2

m ol
2 2
0, =— m, (,0i y 1—((2,./(01)2 =12 (2.18)
m, 0; 1-(Q;/0,)
m o)

It is seen that the modal frequencies and mode shapes of the connected system are fully
described in terms of the stand-alone equipment frequencies ®, and ®,, the mass ratio

m, / m, , and the connecting element stiffness ratio « .

To evaluate the response of the system, we need to determine the modal participation
factors. For the displacements at the attachment points, the participation factors are de-
fined as (Chopra 1995)

'L
M,

1

Y= i=1,2 (2.19)

where
M, = CD,.TMq)i =m, +m2(p? , i=1,2 (2.20)
are the modal masses. Using (2.20) in (2.19), we have

@;L _ _L+15o,

M, m+mo;

Yi=

hm b

M T 10 (2.21)
m 2
LU
m, ?;

It is evident that the participation factors involve the ratios /, /m;,, i=1,2. As men-

tioned earlier, these ratios depend on the distribution of mass of each equipment and the

location of its attachment point.
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It is also necessary to determine the modal damping ratios for the connected system.

We denote them as Z, and Z,. These ratios are determined from the formula

D'CO, (2.22)
=, i=12 :
Zi=%2am 7"
This approach essentially ignores the contributions of the cross-modal terms ®/CO i
i # j, which are non-zero when the system is non-classically damped. The specific val-
ues for ¢, and ¢, are obtained by assuming damping ratios C; and C, for the stand-alone

equipment items and using the relation ¢, =2mm;. A rigorous treatment of the non-

classical damping effect is presented in Section 3.4 of Chapter 3.

Before proceeding further, it is worthwhile to examine the special case when the two
oscillators have identical frequencies, i.e., ®, = ®, = ® . In that case, the two frequencies

of the connected system are

Q =0 (2.23a)

Q, = mJ1 N K(z N ﬂ) (2.23b)

m2 ml
Substituting these results in (2.18) yields an indefinite result for ¢, and ¢, =-m, /m,.
To obtain ®,, we invoke the orthogonality of the mode shapes with respect to the mass

matrix, which results in ®, =[1 1]" and ®, =[1 —m /m,]". It is clear that when the two
oscillators have identical frequencies, the first mode of the connected system does not
involve any interaction between the two oscillators since the corresponding mode shape

does not produce any deformation of the connecting spring.

It is also worthwhile to investigate the limiting cases when xk approaches zero and
infinity. When x — 0, i.e., a connecting element with negligible stiffness, the connected

system becomes a two degree of freedom system with frequencies approaching Q, = ®,
and Q, =®,. The corresponding mode shapes in this case approach ®, =[1 0]" and

®, =[0 1]", respectively. When k — o, i.e., an ideally rigid connecting element, the

14



lower frequency of the connected system approaches Q, = J(kl +ky)/ (m +m,),

whereas the second frequency approaches infinity. In this case, the connected system is

equivalent to a system with only one degree of freedom.

Before closing this section, it is worthwhile to numerically examine the frequencies
of the connected system. We consider the equipment mass ratios m, / m, =05 and 5, the
range of stand-alone equipment frequency ratios 01<®,/®, <1, and the connecting ele-
ment stiffness ratio values k =0, 0.2, 1 and . Note that for the range of frequency ratios
considered, equipment 1 has a frequency equal to or lower than the frequency of equip-
ment 2. As mentioned above, the extreme values x =0 and k = o correspond to the un-
attached configuration of the two equipment items and to the case of an ideally rigid con-
necting element, respectively. The value k = 0.2 is likely representative of a typical rigid
bus connecting element with a thermal expansion loop, whereas the value k =1 is repre-

sentative of a connecting element with a large but not unrealistic stiffness.

Figure 2.3 shows plots of the normalized modal frequencies Q, /®,, i =1,2. Note
that the curves for x = 0 are equivalent to the frequency ratios ®, /®, and ©, /®,. It can
be seen that the fundamental frequency of the connected system, Q,, is greater than the
stand-alone frequency, o, of the lower frequency equipment item, except at &, /@, =1
where it is equal to ®,. The second modal frequency of the connected system, Q,, is
always greater than the stand-alone frequency, ®,, of the higher frequency equipment
item. The differences between the frequencies of the connected system and the corre-
sponding frequencies of the stand-alone equipment items grow with increasing stiffness
ratio k. This is expected, since the system becomes stiffer with addition of the connect-
ing spring. The mass ratio m, / m, appears to have a greater influence on the fundamental
frequency of the system than on its second modal frequency. It is evident that the stiff-

ness of the connecting element has a strong influence on the behavior of the connected

system.
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2.5 Response of the Connected System

Our main interest in this study is to determine the effect of interaction on the restoring
force in each equipment item and the force in the connecting element, when the con-
nected system is subjected to a seismic ground motion. Given the shape functions v, (y)
and v, (), the internal forces in the two equipment items are directly proportional to the
displacements %, (¢) and u, () of the respective attachment points. Furthermore, the re-
storing force in the connecting element is proportional to the relative displacement,
u,(t) —u,(¢) . Hence, in the following analysis we focus our attention on these displace-
ment responses rather than forces. In Chapter 4, we introduce dimensionless ratios de-
scribing the effects of interaction on the two equipment items and the connecting element.
Because of the proportionality between the displacement and force responses, these ratios

will be the same for the above mentioned forces responses as well.

Initially, we describe the ground motion in terms of the response spectrum. This
manner of specification of the ground motion is convenient for seismic analysis of linear
systems. In previous studies dealing with the impact of earthquakes on electrical substa-
tion equipment, the site-specific response spectrum has been found to correlate well with
observed damage (Tsai 1993, Matsuda 1996). Furthermore, for electrical substation
equipment, IEEE (1997) design guidelines recommend the use of a particular response
spectrum. In a subsequent analysis, we employ a description of the ground motion in
terms of a power spectral density in order to investigate the effect of non-classical damp-
ing.

By definition, the displacement response spectrum is a function D(®,() representing
the maximum absolute displacement of a single-degree-of-freedom oscillator of fre-
quency o and damping ratio £ when its base is subjected to the specified ground accel-
eration ¥,(z). The “design” response spectrum specified in codes, such as that in the

IEEE (1997) guidelines, is a smooth function representing the mean value of D(®,%)

over an ensemble of ground motions with specified frequency content, intensity and du-

ration.
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The response spectrum can be used to compute the maximum responses in both the
connected system as well as the stand-alone equipment items. Let u,,(¢) and u,(¢) de-
note the displacements at the attachment points of the two equipment items in their stand-
alone configurations. The maximum absolute values of these responses are given directly

in terms of the response spectrum as
L : (2.24)
max‘”io(t)lng(o‘)i’Qi)7 i=12 )

where @, and ¢, are the corresponding frequency and damping ratio, respectively. The
maximum responses of the connected system, max|u, ()|, max|u, (t)] and max|u, () —u, (7)),
as well as the maximum absolute relative displacement between the two stand-alone
equipment items, max|u,(¢) —u,,(#)|, can be determined by use of a modal combination
rule. For this purpose, we make use of the CQC modal combination rule (Der Kiureghian
1981). According to this rule, the maximum absolute value of a generic response u(z) of

an n -degree-of-freedom linear system is given by

max|u(t)|= \/ZZaiaijD((S,-,E,-)D(ON)j,Ej) (2.25)

i=1 j=1

~

where a; are effective participation factors, D(®;,(;) is the displacement response spec-

trum ordinate associated with the frequency ®,; and damping ratio z,' of mode i of the
system, and p; is the correlation coefficient between the responses of modes i and j. A
reasonable approximation for the correlation coefficient is obtained by using a white-
noise representation of the input excitation, for which p; is given by (Der Kiureghian

1980)

8,/C.C, (3,8, +8,5)(@,6,)" (2.26)

~2  ~252 T E o~ o~ 22 e P T2\ 2
(@] —3%)* +4¢,660,6 (0] +33)+4(L' +C))0; 0]

Py =

When modes with frequencies higher than the predominant frequency of the ground mo-

tion are involved, a more accurate approximation given by Der Kiureghian and Nakamura
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(1993), which also involves the shape of the response spectrum, can be used. However,
numerical investigations with a large number of example two-degree-of-freedom con-
nected systems established that the simple approximation in (2.26) is sufficiently accurate
for the present application. Hence, for the present study we make use of the approxima-
tion in (2.26), which, conveniently, involves only the modal frequencies and damping

ratios of the system. With this approximation, to evaluate (2.25) for a given response

spectrum, we only need to determine ®,, E,. and the effective participation factors a,,

i =1,2, for each response quantity of interest.

To determine the maximum relative displacement between the two stand-alone
equipment items, max|u,,(¢) —u,,(¢)|, we consider these items as parts of a single system

with two degrees of freedom. Obviously, the modal frequencies are ®, =, and

®, =®,, and the modal damping ratios are El ={, and Ez =(,. Furthermore, one can
easily determine that the effective modal participation factors of the system for the re-
sponse under consideration are a, =-I, /m, and a, =/, /m,. Hence, using (2.24) and

(2.25), we have

max |u,, (£) —u,, ()= \/maxlulo (t)|2 —2p,, max|u,, ()| max |u,, (£)+ max |u,, (t)|2 (2.27)

The above simple expression is valuable for design of equipment items to be connected,
as it provides an estimate of the maximum relative displacement that can occur in the
stand-alone configuration. Obviously, this response measure will have a direct influence
on the interaction between the two equipment items. Note that the measure is easily
computed, as all quantities on the right-hand side are given in terms of the stand-alone
equipment properties. It is worth noting that for the special case ®, =, and &, =¢,,
i.e., equipment items with identical frequencies and damping ratios, we have p,, =1 and
max |u,, (t) —u,,(t))=0. This shows that equipment items with identical frequencies and
damping ratios do not interact if they are connected by a linear spring-dashpot element.
For cable-connected equipment items to be investigated in Chapter 4, a more appropriate

measure is the maximum relative displacement between the two equipment items defined

by
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A=max[u20(t) _ulo(t)] (2.28)

This quantity can also be computed by (2.27), provided the response spectrum ordinate
D(w,,&;) used in (2.24) is defined as the maximum positive displacement of an oscilla-
tor rather than its maximum absolute value, as is commonly done. However, the differ-
ence between the two response spectra ordinates normally does not exceed a few percent.
Hence, for all practical purposes, A can be taken equal to the value computed from
(2.27) using the conventional response spectrum. We note that this is a conservative ap-

proximation since A in general is equal to or smaller than max |u,,(¢) —u,,(2)].

For the connected system, the modal frequencies and damping ratios are as given in
the preceding section, i.e., ®, =Q, and a,. =Z,, i=1,2. Thus, it is only necessary to
determine the effective participation factors a; for each of the response quantities. For
each mode, g, is the product of the modal participation factor y, and the response of in-

terest when the system is deformed into its i -th mode shape. For the three response

quantities mentioned earlier, these coefficients, for i =1, 2, are

a,=vy, for max|u ()| (2.292)
=@y, for maxfu, ()| (2.29b)
= (¢, — 1y, for max|u,(r)—u(2)| (2.29¢)

It is evident from (2.18) and (2.21) that a, are functions only of the ratio o, /®, of the
stand-alone equipment frequencies, the mass ratio m, /m,, the ratios /, /m, and [, /m,,
and the connecting element stiffness ratio k. Using the CQC rule in (2.25), the peak
responses of the connected system are obtained in terms of these known system quanti-

ties, the modal damping ratios Z, and Z, obtained from (2.22), and the response spec-

trum shape D(®,C).
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u(y,1) =w(»)z(t)
attachment
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(2)
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Figure 2.2 Two-degree-of-freedom linear models of connected equipment items

20



3

Frequency
0)2 — -_— -
14
0
0
3 -
m, -7
— = _ -~
m, -
~
/
- -
2+ -~
-
- -
-
Frequency K= - _ -
- 1 — - — -
®, -

0,/o,

Figure 2.3 Normalized frequencies of the connected system
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CHAPTER 3

EFFECT OF INTERACTION IN
LINEARLY CONNECTED EQUIPMENT ITEMS

3.1 Introduction

This chapter examines the effect of interaction in two equipment items connected by a
linear spring-dashpot or spring-dashpot-mass element. We first introduce three dimen-
sionless response ratios that characterize the effect of interaction on the individual
equipment items and on the connecting element. Subsequently, through a set of carefully
planned parameter studies, we examine the influences of various key parameters on the
interaction effect. Investigated are the influences of the equipment frequencies and mass
ratio, the stiffness, damping and mass of the connecting element, and the attachment con-

figuration of the connecting element.

3.2 Response Ratios

In order to evince the effect of interaction in connected equipment items, we relate the
peak response of each equipment item in the connected system to the peak response in its
stand-alone configuration. For this purpose, we introduce the response ratios

=Mt_)|_’ i=12 3.1
max] i, (1)

i

where u,(¢) is the displacement of the i -th equipment item in the connected system
relative to the ground, and u,,(¢) is the same response in the stand-alone equipment.
The above dimensionless ratios provide measures of the interaction effect in the con-
nected system. A value greater than unity for one of the above response ratios indicates
that, on account of the interaction effect, the response of the corresponding equipment
item in the connected system is amplified relative to its response in the stand-alone con-

figuration, and a value smaller than unity indicates that it is de-amplified. It is important
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to recall that the internal forces in the two equipment items are directly proportional to
their displacement responses. Hence, the above ratios are equally applicable to force re-
sponses in the two equipment items. Since the peak stand-alone responses are readily
available from (2.24), the above ratios provide the kind of information that an engineer
would need in order to determine whether the equipment items in the connected system

are safe.

For the connecting element, we introduce the response ratio

_ maxlu, () —u, (1) (3.2)
 max|u,, (£) =, (2)]

0

The response quantity represented by the denominator of the above ratio is the maximum
absolute relative displacement between the two stand-alone equipment items. This quan-
tity is readily available from (2.27). In absence of interaction information, one may tend
to use this response quantity to make an estimate of the force acting in the connecting
element. The numerator of the ratio represents the actual absolute relative displacement
between the two equipment items in the connected system. Recall again that the relative
displacement between the two equipment items is proportional to the restoring force act-
ing in the connecting element. Hence, the response ratio R, provides the necessary in-
formation to determine the peak restoring force in the connecting element from the esti-
mate of that force based on the readily available stand-alone relative displacement re-

sponse, max|u,,(¢) — u,,(2)|.

In the remainder of this chapter, we investigate the influences of various parameters
on the response ratios R,, R, and R, for two equipment items connected by a linear
spring-dashpot or spring-dashpot-mass element. Unless specified otherwise, the response
spectrum shape specified by the IEEE guidelines (1997) is used. Note that the amplitude

of this spectrum need not be specified, since it does not affect the above response ratios.
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3.3 Effect of Equipment Frequencies, Mass Ratio, and Stiffness

of Connecting Element

To investigate the influence of the stiffness of the connecting element on the interaction
between the two equipment items, we examine the response ratios R,, R, and R, for the
values k =02, 1 and oo of the connecting stiffness ratio. For the other system parame-
ters, we consider the values m, /m, =05 and 5, ®, =10nrad/s and 20n rad/s (=5 Hz
and 10 Hz, respectively), 01<o,/0, <1, §, =£, =0.02 and 0.05, and ¢, =0. We as-
sume the attachment configuration is such that /, /m, =1, / m,. As mentioned earlier, the
extreme value k = oo represents an ideally rigid connecting element; k = 0.2 represents a
typical case, and k =1 represents the case of a large but not unrealistic value of the con-
necting stiffness. Two values of ®, are selected to examine the effect of a change in the
absolute values of the equipment frequencies. By shifting the modal frequencies relative
to a fixed response spectrum shape, in essence, we obtain an understanding of the influ-
ence of the frequency content of the ground motion on the interaction between the two
equipment items. Note that for the range of frequency ratios considered, equipment 1 al-

ways has a frequency lower than or equal to the frequency of equipment 2.

Figures 3.1 and 3.2 show plots of R,, R, and R, for ®, =10nrad/s and 0, = 20n
rad/s, respectively, for both values of the mass ratio and for the damping ratios
¢ =&, =0.02. Figure 3.3 shows the response ratio R, for w, =20nrad/s and C, =C, =

0.02 and 0.05. The following noteworthy observations can be made from the results re-

ported in these figures:

a) At o,/0,=1, i.e., equipment items with identical frequencies, R =R, =1, regardless
of the values of ¥, m, /m, and ®,. This is because, for identical frequencies, the
two equipment items have identical displacements and, therefore, the connecting ele-
ment is not activated. In this special case there is no interaction effect. It is noted that
the response ratio R, has an indefinite value for this special case, as both the nu-

merator and denominator in (3.2) are zero. The limits shown in Figures 3.1 and 3.2

were obtained numerically.
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b)

d)

The response ratio R, which describes the ratio of the deformation in the connecting
element to the maximum separation of the two stand-alone equipment items, remains
smaller than unity, typically smaller than 0.6, for all cases. This ratio tends to de-
crease with increasing connecting stiffness ratio « , and increase with increasing mass
ratio m, / m,. The trend with the frequency ratio ®, / ®, , however, is not monotonic,
as the ratio tends to assume its largest value for an intermediate frequency ratio be-
tween 0.1 and 1. It appears that the connecting element can be safely designed for
less than 60% of the maximum separation between the stand-alone equipment items

for a wide range of practical situations.

For all values of x, m, /m, and ®, /@, <1, interaction de-amplifies the response of
the lower frequency equipment, i.e., R, <1, and amplifies the response of the higher
frequency equipment, i.e., R, >1. These effects grow with increasing x and tend to
“saturate” near the limiting case k =0 . Increasing the mass ratio m, / m, for fixed
values of the other parameters tends to decrease the effect of interaction on the lower
frequency equipment item but increases the same effect on the higher frequency
equipment item. The effect of interaction also generally grows with increasing sepa-
ration between the two frequencies. Exceptions are evident in R, over narrow bands
of frequency. These are due to sharp changes in the shape of the IEEE response
spectrum at these frequencies. It is noted that for the large but not unrealistic value
k =1 of the connecting stiffness ratio, the amplification in the response of the higher
frequency equipment can be as large as a factor of 8 for m, /m, =5 and ®, /®, =0.1.
This shows that interaction between connected equipment items can have a severe ad-

verse effect on the equipment item with higher frequency.

The effect of the frequency content of the ground motion, as characterized by the
shape of the IEEE response spectrum, on the response ratios R,, R, and R, can be
determined by comparing the curves in Figures 3.1 and 3.2, which are respectively for
®, =10nrad/s and o, =20nrad/s, for the corresponding values of k and m, /m, .

One can show that, for a fixed frequency ratio ®, / ®,, these response ratios are en-
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tirely independent of the absolute values of the individual equipment frequencies if
the input excitation is a white noise process. Therefore, the deviations between the
corresponding curves in Figures 3.1 and 3.2 can be interpreted as the influence of the
non-white frequency content inherent in the IEEE spectrum. It is evident from this
comparison that the response ratios R,, R, and R, are at most moderately dependent
on the shape of the spectrum, or, equivalently, on the positions of the equipment fre-
quencies @, and o, relative to the spectrum. This is undoubtedly due to the defini-
tion of these quantities as response ratios rather than absolute responses, as well as the
fact that the IEEE response spectrum represents a wide-band excitation. It follows
that quantitative results derived for R,, R, and R, for a given ®,/®, are approxi-
mately applicable to a wide range of equipment items with the same ratio of stand-

alone frequencies, as long as the excitation is not overly narrow band.

To investigate the effect of the damping ratio of the individual equipment items, Fig-
ure 3.3 compares the response ratio R, for the damping ratios §;, =&, =0.02 (solid or
dashed lines) and &, =&, = 0.05 (square marks) for the case with ®, =20rrad/s. In
both cases, the connecting element is assumed to have no damping, i.e., ¢, =0. It
can be seen that the equipment damping values have virtually no influence on the re-
sponse ratio R, . Although not shown here, the same is true for response ratios R, and
R . Of course the individual equipment damping values influence the absolute re-

sponses in both the stand-alone and connected systems. However, these influences

are similar so that the response ratios for all practical purposes remain invariant.

3.4 Effect of Damping of the Connecting Element

As mentioned before, for an arbitrary value of the damping coefficient c,, the connected

system shown in Figure 2.2 and described by (2.8)-(2.10) in general is not classically

damped. In a non-classically damped system, the eigen-vectors are complex valued. The

conventional response spectrum method described in Section 2.5 is not applicable to such

a system without making an approximation. Although a response spectrum method for

non-classically damped systems is available (Igusa and Der Kiureghian 1985), it is more
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convenient to investigate the influence of ¢, and the non-classical damping effect by ran-
dom vibration analysis. For this purpose, we compute and compare the exact values of
R,, R, and R, for selected values of ¢, with results obtained by approximate modal
analysis using damping ratios in (2.22). The input ground acceleration is considered to
be a stationary, filtered white-noise process defined by the Kanai-Tajim power spectral

density function (Clough and Penzien 1993).

For stationary random vibration analysis, we need to determine the frequency re-
sponse function for each response quantity of interest. The frequency response functions
for the connected system are obtained by finding the steady-state solution of (2.8) for

x,(t) = exp(io?) . The result, using the damping and stiffness matrices in (2.10), is
usteady state (0)) = —H(O‘))L exp(l(ot) (3 3)
where

H(o) = (-0’M +ioC+K)™

—om, +io(c, +¢,) +ky +k, —ioc, — k, B

:{ —iwc, —k, —cozm2+ico(co+cz)+k0+k2:l

_ l[_wzmz +io(c, +¢,) +k, +k, ioc, +k, } (3.4)
A ioc, + k, —o’m, +io(c, +¢,) +k, + k,

A=[-om, +io(c, +¢,)+ky+k |- 0 m, +iole, +¢;) +k, + k|- Goc, +k)° (3.5

and i=+/—1. The elements of the vector — H(w)L are the frequency-response functions
of the attachment point displacements #,(¢) and u,(¢) of the connected system. We de-

note these as H, (®) and H, (o), respectively. For the relative displacement response,

u,(£)—u(t), the corresponding frequency response function is H, _, (w)=H, (0)-H, (o).

For the stand-alone equipment responses u,,(#) and u,(f), the frequency response
functions are obtained as steady-state solutions of (2.2) for X (¢) = exp(iwt) . The result

1s
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[, 1
H, (0)=-—- Lo,
o (©) m o -o’+2io,0

i=12 (3.6)

For the response u,,(t) —u,(t), the frequency response function is given by H, _, (w)=

H (0)-H, ().

For the ground acceleration, we consider a stationary, filtered white-noise process
defined by the well known Kanai-Tajimi power spectral density (Clough and Penzien
1993)

0l +4C050°

2 252 2.2 .2 0
(0, —0°) +45,0,0

D ; (0)= (3.7)

The parameters o, and &, of this model control the predominant frequency and band-
width of the process, respectively, and are related to the properties of the local site. For
the present analysis, we use ®, =5nrad/s and G, =06, which are appropriate for firm

ground. The parameter @, is related to the intensity of the ground motion; however, it

need not be specified for the subsequent analysis of the response ratios.

Since the mean of a peak stationary process is approximately proportional to its root-
mean-square (rms) value (Der Kiureghian 1980), it is convenient in the present analysis
to define the response ratios R,, R, and R, in terms of the rms responses of the con-
nected and stand-alone equipment systems instead of the peak values. Hence, for the

analysis in this section, we define the response ratios as

_ms{y, (O] 3.8
R M o

rms[u, () — u, (1)]

= (3.9
° rms[uy, (£) = 1,4(2)]
The rms responses are computed from the generic expression
+00 5
rms[u(r)] = \/ [|H, @) @ (@)do (3.10)
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where u(t) represents any of the responses u,(¢) , u,(¢) or u,(t) —u, () of the connected
system, or the responses u,,(f), y,(¢) OF u,,(2) —u,o(¢) of the stand-alone system, and

H_ (®) denotes the corresponding frequency response function.

In order to investigate the effect of the damping of the connecting element, we intro-

duce the dimensionless parameter

%

y =

s (3.11)

This parameter relates the viscous damping coefficient of the connecting element to the
sum of the viscous damping coefficients of the two stand-alone equipment items. The
damping of the connecting element may arise from material damping, friction at the con-
nections, or hysteretic behavior of the connecting element, e.g., of the thermal expansion
loop in a rigid bus. Although these energy dissipation mechanisms are not viscous in
nature, for the purpose of the present study a simple viscous damping model is sufficient.
When the energy dissipation mechanism arises from material damping or friction at the
connections, ¢, would tend to be small in relation to ¢, and ¢, and x would have a
small value. However, when the energy dissipation mechanism arises from hysteretic
behavior of the connecting element or its parts, e.g., the thermal expansion loop in a rigid
bus, then ¢, may have a larger value, possibly of the same order as ¢, and c,. Further-
more, it is possible to envision a dashpot specifically placed between the two equipment
items to dissipate energy. In the following, we investigate the beneficial effect of such a

connecting damping element to reduce the adverse effect of interaction.

Figure 3.4 shows plots of R, and R, for m, /m, =2, ®,=20nrad/s, 0l<o, /0, <I,
£, =¢, =002, k=05 and x =0, 1 and 10. The attachment configuration is assumed
to be such that /, / m, =1, / m,. For each value of  two sets of curves are shown. The

solid curves are the exact results computed by use of the equations derived earlier in this
section. The dashed curves are the approximate results obtained by modal random vibra-
tion analysis using the approximate damping ratios in (2.22). As mentioned earlier, the

latter analysis neglects the fact that the undamped mode shapes of the connected system
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are not orthogonal with respect to the damping matrix. The value y, = 0 corresponds to a
connecting element with no or negligible damping and is the case considered in all the
analyses in the preceding and subsequent sections. For this case, the approximate modal
damping ratios computed from (2.22) are in the range 0.007-0.020, depending on the val-
ues of m, /m,, x and ®, /®,. The case y =1 corresponds to a connecting element that
has a damping coefficient similar in magnitude to the damping coefficients of the indi-
vidual equipment items. As mentioned earlier, this value might be appropriate for certain
rigid-bus conductors that include thermal expansion loops that experience plastic defor-
mation during the earthquake. For this value of Y , the approximate modal damping ra-
tios computed from (2.22) are in the range 0.015-0.105, depending on the values of
m,/m,, x and ©,/©,. The case 3 =10 corresponds to a connecting element that has a
damping coefficient one order of magnitude larger than the damping coefficients of the
individual equipment items. Such a value might be appropriate if special damping de-
vices are added to the connecting element. Our aim from considering this case is to in-
vestigate whether such a device would have a significant beneficial effect for the con-
nected equipment items. For this case, the approximate modal damping ratios computed
from (2.22) are in the range 0.02-0.95, depending on the values of m /m,, x and
®,/®,. The following noteworthy observations can be derived from the results in Fig-

ure 3.4:

a) For small damping of the connecting element, the effect of non-classical damping in
the connected system is insignificant. This is evident from the fact that the solid and
dashed lines in Figure 3.4 virtually coincide for small values of y . This verifies the
accuracy of the response spectrum analyses performed in the preceding and subse-
quent sections that assume classical damping and employ the undamped mode shapes

of the connected system.

b) Increasing the damping of the connecting element significantly reduces the amplifi-
cation in the response of the higher frequency equipment item that is induced by the
interaction effect. This damping also tends to further de-amplify the response of the

lower frequency equipment item relative to its stand-alone response. Whether or not
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damping values in the connecting element as high or higher than the damping in the
individual equipment items can be implemented is an issue that is left to a future

study.

3.5 Effect of Mass of the Connecting Element

The previous analyses assumed that the mass of the connecting element had a negligible
influence on the response of the connected system. In this section, we investigate the va-
lidity of this assumption. Furthermore, we wish to investigate the possibility of adding a
mass to the connecting element in order to diminish the adverse effect of interaction on

the higher frequency equipment item.

To investigate the effect of the mass of the connecting element, we investigate the 3-
degree-of-freedom system shown in Figure 3.5, which consists of the two equipment
items modeled as single-degree-of-freedom systems with assigned displacement shape
functions, and a connecting element modeled as a spring-dashpot-mass element. The
mass m, may represent an equivalent lumped mass for a connecting element with distrib-
uted mass, e.g., a rigid or flexible bus, or it may represent an actual lumped mass placed
on the connecting element. Note that the stiffness and damping elements on each side of
this mass are selected in such a manner that when m, — 0 the system in Figure 3.5 be-
comes equivalent to the system in Figure 2.2b. For the analysis in this section, we intro-
duce the dimensionless mass parameter

m,

Com+m,

" (3.12)

The analyses in the preceding sections were for systems with p=0.

Let u,(¢) denote the displacement of the mass m, relative to the ground. The equa-

tions of motion for the 3-degree-of-freedom system in Figure 3.5 are formally the same as

(2.7) with u=[u, u, u,]", L=[m, I, ,,]' and the mass, damping and stiffness matrices

given by
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m, 0 0 4c, -2c, - 2c, 4k, -2k, -2k,
M=|0 m 0] C=[-2¢ 2¢c+c 0 || K=|-2k, 2k, +k, 0 (3.12)
0 0 m, - 2c¢, 0 2¢, +c, -2k, 0 2k, +k,
where it has been assumed that the equipment displacement shape functions are scaled to
have unit values at the attachment points. Determination of the modal properties of this
system requires the solution of a bi-cubic equation. While closed-form expressions can
be derived, they are too complex to provide insight into the behavior of the system.

Hence, we carry out numerical calculations for this system.

We first examine the effect of a small connecting element mass on the response ra-
tios R, and R,. Figure 3.6 shows plots of these response ratios for m, /m, =2,
®, =20nradls, 01<o,/0, <1, § =§, =002, k=05, c,=0, and p=0, 0.1 and
0.2. The attachment configuration is assumed to be such that [, /m, =1, /m, =1. The
input excitation is defined by the IEEE response spectrum. It can be seen that increasing
the mass of the connecting element amplifies the responses of both equipment items.
However, the amplifications are relatively modest as long as p remains small. For the
higher frequency equipment item, the amplification due to the mass of the connecting
element appears to be independent of the frequency of the lower frequency equipment
item. For the lower frequency equipment item, the amplification in the response due to
the mass of the connecting element is greatest when ©, approaches ®,. For such values,
the response ratio R, becomes greater than unity, indicating an amplification in the re-
sponse of the lower frequency equipment item relative to its stand-alone response. How-
ever, this amplification is not significant for realistic values of the connecting element
mass (e.g., it is only a factor of 1.32 for p = 0.2) and should not be cause for serious con-

cern.

Next, we explore the possibility of using the mass m, of the connecting element as a

tuned-mass damper to reduce the effect of interaction between the two equipment items.

Considering the frequency ®, = +/4k, / m, of the connecting element when the equip-

ment masses m, and m, are fixed, we examine two cases: (a) connecting element tuned
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to equipment 1, i.e., ®, =0,, and (b) connecting element tuned to equipment 2, i.e.,

®, = ®,. One can easily show that these cases correspond to the mass ratios

2 2
ﬁ_*_((_nlj (&) ﬁ—-{-l
w (O]
Fll=4K’"2—1_ and = P (3.13)
L) |
m, m,

respectively. Numerical investigations reveal, however, that a reduction in the response
due to the effect of tuned-mass damping occurs only when « is small. For example, Fig-
ure 3.7 shows the response ratios R, and R, as a function of p for the parameter values
mim,=2, L/im=L/m=1, o, =20nradls, ®,/0,=05 and 1, x=002,
¢, =¢, =002, and ¢, =0. Unlike the steady increase in the response ratios R, and R,
with p observed in Figure 3.6, the curves here do not show monotonic behavior. For
o,/ o, =05, adip in the curve for R, appears around p = 0.045, which nearly coincides
with the value p, =0.04 computed from (3.13). This is the tuned-mass damper effect of
the connecting mass on the higher frequency equipment item. The corresponding value
for the lower frequency equipment item from (3.13) is p, =0.16. Indeed, the curve for
the response ratio R, for ®,/®, =05 shows a decreasing trend for p around 0.16. For
o, /o, =1, (3.13) yields p, =p, =008. The curve for R, in Figure 3.7 for this fre-
quency ratio shows a shallow dip, whereas the curve for R, shows a slowdown in the rate
of increase. We note, however, that all these reductions in the response due to the tuned-
mass damper effect are relatively insignificant, and that they occur at small values of x
for which the interaction effect between the two equipment items is not of seriously det-
rimental nature. Hence, we find the idea of adding a mass to the connecting element to

act as a tuned-mass damper not to be an effective design strategy.

3.6 Effect of Attachment Configuration

When the attachment point on either equipment item is different from the point of its ef-
fective lumped mass, the corresponding /; / m; ratio is different from unity. While the ex-

pressions for the eigen-properties of the system remain unchanged, the response ratios
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R,, R, and R, are affected on account of the dependence of the modal participation fac-
tors (2.21) on [, /m;, i=1,2. It turns out that, for the linear 2-degree-of-freedom model
in Figure 2.2b, the response ratios remain invariant for any /, /m, =1, /m,. This hap-
pens because the same scale factor applies to both the connected and stand-alone systems.
It follows that the attachment configuration has an influence on the response ratios only
when I, /m, #1, /m,. This effect can be investigated by computing the response ratios
R,, R, and R, by varying /, /m, and I, / m,. However, it is more revealing to carry out

calculations with a specific system in mind, as described below.

Consider the system shown in Figure 3.8, which consists of two rigid bars with uni-
form mass distributions, restrained by two linear torsional springs at their bases, and con-
nected by a linear spring-dashpot element at attachment points y, = o, L, and y, =a,L,,
where 0 <a,,o, <1. For rigid bars, the displacement shapes are v, (y) =y /(L)

and y,(y)=y/(a,L,), which are scaled to have unit amplitudes at the attachment
points. Using (2.3) and (2.5), one obtains m; =p,L, /(Ba?) and I =p,L;/(2a;),

i=1,2, where p, is the mass per unit length of bar i . It follows that /, /m; =3a,; /2,
i=12.

Figure 3.9 shows plots of the response ratios R, and R, for m /m, =2, w, =201
rad/s, 01<w, /0, <1, £, =, =002, k=05, ¢, =0 and the following attachment
configurations: o, =o, =2/3, i.e., attachment points at 2/3 the length of each equipment,
which results in [, /m, =1, /m, =1 (solid lines); o, =1 and a, =1/3, i.e., attachment
points at top of equipment 1 and 1/3 the length of equipment 2, which results in
I,/m =3/2 and I, /m, =1/2 (dashed lines); and o, =1/3 and a, =1, i.e., attach-
ment points at 1/3 the length of equipment 1 and at top of equipment 2, which results in
I /m =1/2 and I, /m, =3/2 (dotted lines). It is noted that the solid curves here apply
to any attachment configuration such that o, = a., , including the case when the attach-

ments are at the top of both bars.
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It is evident from Figure 3.9 that the attachment configuration of the connecting ele-
ment can have a dramatic influence on the response ratios R, and R,, particularly on the
ratio R, for the higher frequency equipment item. It is clear that the response ratio for an
equipment item increases when its attachment point is moved towards its base, and it de-
creases when the attachment point is moved towards its top. Hence, attaching the con-
necting element near the base of the higher frequency equipment item would produce the
most adverse interaction effect. It is also worth noting that, depending on the attachment
configuration, the interaction effect can actually amplify the response of the lower fre-
quency equipment item as well (see the dotted curve for R, near o,/ ®, =1, where R, is
greater than unity). However, this response amplification is no where as critical as the

amplification of the higher frequency equipment response.

In real systems, the attachment points on equipment items are most often dictated by
restrictions related to functionality of the system, such as clearance for electrical conduc-
tors. As a result, from the viewpoint of mitigating seismic effects, one may not have a
real choice in the location of attachment points other than those dictated by the function-

ality requirements.
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Figure 3.1 Response ratios for connecting element for [ /m, =1, /m,,
o, =10nrad/s, £, =£, =0.02 and ¢, = 0, based on the IEEE spectrum
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Figure 3.2 Response ratios for connecting element for [ /m =1,/ m,,
o, =20nrad/s, §, =, =0.02 and ¢, = 0, based on the IEEE spectrum
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Figure 3.3 Effect of damping of equipment items on response ratio R, for
L/m =1/m,, o,=20nrad/s and c, = 0, based on the IEEE Spectrum

ST — —  Non-classical damping analysis

Approximate modal analysis

Response Ratio

Figure 3.4 Effect of damping of connecting element on response ratios for m, /m, =2,
Lim=1/m, o, =20nrad/s, k=05 and §, =&, = 0.02, based on the Kanai-Tajimi
spectrum
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Figure 3.5 Three-degree-of-freedom model of connected system with mass of

the connecting element

Response Ratio

0,/0,

Figure 3.6 Effect of mass of connecting element on response ratios for m, /m, =2,
Lim=1L/m, o,=20nradls, £, =, =002, k=05 and ¢, = 0, based on the [EEE

spectrum
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Figure 3.7 Tuned-mass damper effect of the connecting element on response ratios R, and
R, for m /m,=2, I/m =1/m,, ®, =20nrad/s, {;, =¢, =002, k=002 and ¢, =0,
based on the IEEE spectrum
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Figure 3.8 Example connected system with variable attachment points

7. . —  a,=2/3,a,=2/3
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6 + \\ ................................. OL1=1/3,O(,2=1

Figure 3.9 Effect of attachment configuration on response ratios R, and R, for
m/m, =2, ®, =20nrad/s, {, =&, =002, k=05 and ¢, =0, based on the
IEEE spectrum
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CHAPTER 4

TWO EQUIPMENT ITEMS CONNECTED BY A CABLE

4.1 Introduction

Many equipment items in electrical substations are connected to each other by flexible
conductors, typically cables made of braided aluminum wires. In this chapter we investi-
gate the effect of interaction between equipment items connected by idealized cables. It
is assumed that the cable has no flexural stiffness and that no load other than self-weight
is acting on the cable. Furthermore, inertia effects associated with the mass of the cable

are considered to be negligible.”

In Section 4.2, the connecting cable is first modeled as having zero flexural and infi-
nite extensional rigidity. A criterion under which the flexural stiffness of the cable can be
neglected is described in Appendix A. Subsequently, the effect of extensibility is ac-
counted for in an approximate manner. Closed form expressions are derived for various
geometric and mechanical properties of the cable. Graphs displaying these expressions in

dimensionless form are produced for convenient engineering analysis and design.

In Section 4.3, the equations of motion are derived for a 2-degree-of-freedom system
consisting of two equipment items connected by a cable. Due to strong geometric non-
linearity and asymmetry inherent in the system, the response spectrum method cannot be
used. Instead, an iterative numerical integration method is used to compute the response
of the system to specific ground motions. Full account is made of the axial extensibility

of the cable.

The effect of interaction in cable-connected equipment items is investigated in Sec-
tion 4.4 by a comprehensive examination of the response ratios R, and R,, which were
defined in Chapter 3, for a range of parameter values. These results are used to identify a
simple interaction parameter, defined in terms of the geometry of the cable, its slackness,

and the maximum relative displacement of the stand-alone equipment items. It is shown

* See Epilogue on page 94.
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that this parameter is an acute predictor of the expected severity of the interaction effect

between the two equipment items.

4.2 Catenary Cable as Connecting Element

Consider an ideal inextensible cable with no flexural stiffness in equilibrium under its
own weight, as shown in Figure 4.1. It is well known that such a cable takes on the
catenary shape (Meriam and Kraige 1992). In the coordinate system of Figure 4.1, the
shape of the cable is defined by the expression

y= —i—[cosh(%) - 1} @.1)

where w is the weight per unit length of the cable and T is the horizontal component of
the cable force, which is constant throughout the cable. We first consider the case where
the lowest point of the cable is below both supports. Let H be the vertical separation
between the end supports, L the span length, L, and L, the horizontal distances from
the lowest point of the cable to the left and right supports, respectively, and % the sag,
which is defined as the vertical distance between the lowest point of the cable and the
lower support, as shown in Figure 4.1. Given w, H, L and %, the unknown quantities
are L, L, and T. Substituting the end point coordinates (—L,,4) and (L,,h+ H) in the
preceding equation, we have

h= Z[cosh(wTL]) — 1} (4.2a)

w

T L,
h+H-= ;[cosh( WT ) - 1} (4.2b)

These equations together with the identity
L+L =L (4.2¢)

are used to solve for the unknowns. It is useful to recast the above equations in the non-

dimensional form
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—h—=i{cosh(w—L£) -1} (43a)

LWL T L

L h(w—Li‘z—) I 4.3b)

L w711 ¢
L L _, (4.3¢)
L'

Given H/ L,the normalized cable force T'/(wL) can be determined as a function of the
normalized sag 4/ L by numerically solving the above set of transcendental equations.
Figure 4.2 shows the corresponding plots for /L =0, 0.1 and 0.5. It is noted that the
tension force is highly sensitive to small values of the normalized sag /4 / L, and that it
asymptotically approaches infinity as 4/ L — 0. Naturally, the tension force in the ac-
tual cable is bounded by the plastic limit load of the cable, which depends on the effective
diameter of the cable and the yield strength of its material. It follows that for small 2/ L,
the axial deformation of the cable will have an important influence on the stiffness of the

cable. This effect is accounted for later in this section.

The instantaneous or tangent stiffness of the cable for horizontal separation of its
supports is the derivative dT/dL. To determine this quantity, we take derivatives of
(4.2) with respect to L, which after elementary algebraic manipulations, and noting that

H is a constant, result in

dh _wLih L -nh(w_Lﬁj dT nh(W_LAjdi 44

i T|1 1 T L) |wdl ™™ 1) dL (4.42)

dh _wLlh+H L, nh(w_L_L_) ar_ . (wLL)dL 44D

Z- 7| L ) Lt T (4.4b)
a, 4, _ (4.4¢)
dL " dL

The preceding represents a system of three linear algebraic equations for the unknown

dimensionless derivatives dh/dL, dI/(wdL), dL,/dL and dL,/dL. One more equa-
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tion is needed to solve for these unknowns. It is obtained by observing that the length, s,
of the inextensible cable remains constant with respect to variations in L.  Let
s=s,+5,, where s, and s, are the lengths of the cable from its lowest point to the left
and right supports, respectively. It is well known that for the catenary cable

T L T L
5, = ;sinh(%) and s, = ;sinh( sz) (4.5)

so that

T nh( L) nh(wL ) 16
s=—|s +si :
mh{ = T (4.6)
Differentiating (4.6) with respect to L, one obtains
_wLls L wL L) L, (@_&) T (wLL)dL (wLLjsz 4.7
O_T[L LCOSh(T Lj L cosh TL]de+ T Al ey b

Solving the system of simultaneous linear equations (4.4) and (4.7), after lengthy alge-

braic manipulations, we obtain

(sh Hslij s

iT T L)L

WdL:;Z(sh Hs)wL s (sz (s)z (4.8)
rr )T\ L

dh  wL dT h H wLs,\s,L| wLs s, L
= — = |t 4.9

dL ~ T wdlL L T L)Ls| T LLs

These expressions are plotted in Figures 4.3 and 4.4, respectively, against the normalized
sag h/L for H/ L=0,0.1 and 0.5. It is noted that the stiffness of the ideal catenary ca-
ble rapidly grows as &/ L decreases, approaching infinity as A/ L—0 when H/L=0.
While in the subsequent analysis of the cable-connected system we do not make use of
(4.9), this formula is nevertheless valuable as it relates changes in the sag to changes in

the span length of the cable.

The above analysis is based on the assumption that a minimum point of the cable

exists between the two end support points. For H > 0, it is possible that the cable have
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no minimum point between the two end supports, as is shown in Figure 4.5. The equa-
tions developed earlier remain valid for such a case, as long as one uses negative values
for L, and s, with the sag defined by extrapolating the catenary cable curve in the man-
ner shown in Figure 4.5. This “virtual” sag, however, cannot be directly measured in the

field. For such cases, a more convenient measure is the slackness of the cable, which we

define as s/c—1, where s is the length of the cable and ¢ = m is the chord
length as defined in Figure 4.5. This dimensionless quantity measures the excess of the
cable length over the chord length. The catenary shape provides a unique relation be-
tween the slackness s/c—1 and the normalized sag %/ L, including for the case of vir-
tual sag. This relation is plotted in Figure 4.6 for selected values of H/ L, where values
of the virtual sag are shown as negative. Note that as s/¢c—1—>0, 2/ L — —o when
H/L>0. The relation between the normalized sag and the slackness can be used to
determine the normalized cable force and cable stiffness directly in terms of s/ c. These
plots are computed by use of (4.1)-(4.8) and are shown in Figures 4.7 and 4.8, respec-
tively.

Two observations in Figures 4.7 and 4.8 are noteworthy. First we note that the
curves for T/(wL) and dT/(wdL) are insensitive to H/ L when plotted against the
slackness (s/c—1). In fact, the curves for H/ L =0, 0.1 and 0.2 are practically indis-
tinguishable. It follows that for a constant slackness the force and stiffness properties of
the catenary cable are essentially invariant to the configuration of its support points. The
second observation relates to the three diamond-shaped marks on the curves in these fig-
ures. From left to right, these marks correspond to the configurations of the cable for
H/L=01,0.2 and 0.5, for which the minimum point of the cable (with zero slope) oc-
curs at the lower support. Segments of the curves to the right of these points correspond
to configurations of the cable as in Figure 4.1, and segments of the curves to the left of
these points correspond to the configurations of the cable as in Figure 4.5. For
H/ L =0, the minimum point of the cable always lies between the two supports. Thus,
as opposed to Figures 4.2 and 4.3 that apply only to the cable configuration in Figure 4.1,

Figures 4.7 and 4.8 are applicable to catenary cables of arbitrary configuration.
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In the preceding analyses, we assumed an inextensible cable. Of course in a real ca-
ble there is axial deformation. The influence on the stiffness of the cable from this de-
formation becomes significant when the slackness s/c—1 approaches zero. In the limit
as s/c—1—> 0, the stiffness of the cable approaches its extensional stiffness in the hori-

zontal direction, which, provided the cable remains within the elastic range, is equal to

(EA/ s)cos® o., where E denotes the elastic modulus of the material, 4 denotes the
cross sectional area of the cable, and o denotes the angle of inclination of the chord with
the horizontal so that cosa. = L/c. For s/c—1 not close to zero, the cable stiffness is
governed by its geometry, as previously described. In between these two limiting re-
gimes, there is a transition zone where both contributions are important. In order to ob-
tain an approximation of the cable stiffness for this range, we assume that the total flexi-
bility of the cable is the sum of its flexibilities arising from its shape and its axial defor-
mation. In essence, we are assuming that the effective stiffness of the cable is equivalent
to the stiffness of two springs in series, one representing the cable stiffness and the other
the axial stiffness. Based on this approximation, the effective stiffness of the cable, de-

noted k. , that combines both contributions is given by the relation

1 e 4 4.10
k, EAL ~ dT (4.10)
It is useful to write this expression in the dimensionless form
dT EAL’
2
keff - wdL wsc : (4.11)
w dT N EAL
wdl ~ wsc’

One should note that, due to the extensibility of the cable, the length s now is not a con-
stant, as it depends on the tension force in the cable. This effect would be important for
an exceptionally taut cable. In using the preceding approximation, it is appropriate to use

the current value of the cable length to compute the stiffness term d7/dL.

As an example, consider a cable of span L =5m, vertical separation H / L=0, and

normalized axial stiffness EA/ws=537,000. (The specified axial stiffness is that of an
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aluminum cable of an equivalent solid cross section of Scm diameter.) Figure 4.9 shows
the dimensionless effective stiffness k /w of the cable as a function of both 4/ L and
s/c—1. It can be seen that as A/ L —> 0 or s/c—1— 0, the effective stiffness of the

cable makes a rapid transition from that of the ideal inextensible cable stiffness, dT /dL,

to that of the axial stiffness, EAL* / sc*.

4.3 Analysis of the Cable-Connected System

Consider two equipment items, possibly with distributed mass, modeled as linear, vis-
cously damped, single-degree-of-freedom systems, connected by a cable of weight w per
unit length, initial span length L, and initial sag #,, both measured in the static equilib-
rium position of the system, and the vertical separation H , as shown in Figure 4.10. If
the cable does not have a minimum point between the two supports, then 4, will denote
the virtual sag, as defined in Figure 4.5. For the two equipment items, the displacement
shape functions y,(y) and y,(») are scaled to have unit values at the attachment points
y, and y, with the cable. Note that H =|y, —y,|. Given this information, the initial
length of the cable, s,, and the initial horizontal cable tension force, T;, are determined

from (4.2) and (4.6).

In the following analysis we neglect the inertia effect of the cable mass. This is justi-
fied by the finding in Section 3.5 that indicated only a small influence of the mass of the
connecting element on the interaction effect, provided that the mass of the cable is small
in relation to the sum of the masses of the two equipment items. Based on (2.7), the
equation of motion of the system, relative to its static equilibrium position under the

weight of the cable, can be written as

Mii + Cit + R(u) = —L (4.12)

g

where u=[u, u,]" is the vector of displacements at the attachment points relative to the
base (including the static displacements due to the weight of the cable), M is the mass
matrix in (2.9), C is the damping matrix in (2.10) and L is as defined following (2.9).

R(u) denotes the vector of restoring forces, which in general depends on the displaced
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shape of the system. The restoring force vector for the cable-connected system is given

by

ku, — T(L)
R(u)={k . +T(L)} (4.13)
where
L =L, +[u,(t) —u, (0)] - [, (£) = 1, (0)] (4.14)

is the current span length.

The preceding equations are nonlinear because of the nonlinear dependence of 7 on
L. We employ a step-by-step numerical integration scheme to solve these equations.
The time axis is discretized into a set of equally spaced points #,,¢,,...,¢,,..., with £, =0
and Ar=t¢,,, —t,. The Newmark integration algorithm together with a Newton iteration
scheme at each step are utilized. The Newmark algorithm is based on the approximation

of the velocity and displacement at step n+1 in terms of the same responses at step »

and an assumed shape of the acceleration increment. The general form is
u,,, =u,+(-y)Ad, +yAdi,,, (4.152)
u,, =u, +Am, +(05-B)As%i, +PAz i, (4.15b)

where u, = u(¢,), B and y are parameters dependent on the assumed shape of the accel-
eration increment. Here, we use 3 = 0.25 and y = 0.5, which correspond to the approxi-
mation of the acceleration over the time step by a constant equal to its average over the

increment. The preceding equations are solved for u,,, and ii,,, in terms of the solu-

n+l

tions u,, u, and ii, at the previous step and the displacement u,,, at the new step.

n’

Substituting these in (4.12), one obtains

1
[ M +&C}um +R(u,,) =P, (4.16)

where

49



Y Y . Y ..
C —-1 — —1|Adi .
+ {BAI un+(B ]un+(2[3 ) n} (4.17)
is the effective external force vector. The nonlinear equation (4.16) is solved by Newton

iterations using the following set of equations:

1 A | ,
sz M + &c +F K@ }Au;+1 = AP' (4.18a)
ui1+1 = “;11 + Auim
(4.18b)
Y (4.18¢)

i i 1 i i i-
AP, =AP, - {BATM + @C}A“m - [R@ui.)) -R@u)]

where u’_, denotes the i-th trial value of u

n+l

.1 and K(u) =dR(u)/du in (4.18a) is the de-

rivative of the restoring force vector with respect to the displacement vector, which is

commonly known as the tangent stiffness matrix. Using (4.13) and (4.14), this matrix is

dT dT

; k1+EZ ~ L
= __sz ) +d_T (4.19)

dL  ? dL

where the cable stiffness term d7/dL must be computed from (4.8) using the current
geometry of the cable. The Newton iteration proceeds as follows: The i -th displace-

ment increment Au'’,, is computed from (4.18a) using information from the previous it-

eration. This is used in (4.18b) to compute a new estimate u’, of the displacement vec-

n+l

tor, which is then used in (4.18c) to update the effective residual force AP’ . The itera-

n+l*

tion count is increased by 1 and the process is repeated until convergence is achieved.

The convergence criterion used is ”AP,‘,'+1 |/HAP°

n+l

<g,, where £, =107°

n+l1

<g, and ”APi

RO

n+l

and €, =107?. The initial values u’,, =u =R(u,) and AP, =P, —P, are em-

n?

ployed at the beginning of each time step.
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The above analysis neglected the axial deformation of the cable. As we have noted

before, this effect can be important for taut cables. Let EAL® /(sc’) denote the axial
stiffness of the cable, where s, L and c are the current length, span and chord length of
the cable, accounting for its elongation and horizontal support displacements. To ap-
proximately account for the contribution of axial deformation, we simply replace d7'/ dL

with k,; as defined in (4.11) so that (4.19) becomes

k1 + keff - keff
K= . (4.20)
- keff kz + keff

Note that in computing d7'/dL from (4.8), the current length of the cable and its span
should be used.

4.4 Numerical Studies with Example Cable-Connected Systems

For the analysis in this section, we first consider two equipment items connected by an
aluminum cable having the cross-sectional area 4 =19.6 cm? (equivalent to a solid cable

of Scm diameter), weight per unit length w=522 N/m, elastic modulus
E =7 x10°N/cm?, initial span length L, = 5m (under static equilibrium conditions), ver-
tical separation H = 0, and variable initial normalized sag 4,/ L,. The equipment items
are considered to have the masses m, = 1000kg and m, = 500kg, an attachment configu-
ration such that [ /m =1[,/m, =1, stand-alone frequencies o, =2nrad/s and
®, =10nrad/s, and damping ratios £, =&, =0.02. The cable is assumed to have zero
damping, i.e., ¢, =0. The mass of the cable is approximately 27kg and its inertia effect

is assumed to be negligible.

The initial cable stiffness normalized by its weight per unit length, kg ,/w, is
strongly dependent on the initial sag, as is evident in Figure 4.3. For example, with
H=0, for hy/ L, =005, kg ,/w=192, whereas for h,/ L, =010, kg ,/w=259.
For the considered equipment items, these correspond to initial values of the connecting

stiffness ratio x = k¢, / (k, + k,) equal to 0.0188 and 0.0025, respectively. These indi-
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cate very small initial stiffness values of the connecting cable. However, during the
seismic disturbance, the effective stiffness of the cable varies dramatically and x as-

sumes large values, as we will shortly see.

We first examine the response of the cable-connected system with the initial nor-
malized sag A,/ L, = 0.05 to the N-S component of the Newhall record of the 1994
Northridge earthquake, which is shown in Figure 4.11. The initial cable length for this
normalized sag is s, =5.033m. For this record, Figure 4.12 shows the displacement re-
sponses of the two equipment items in both the stand-alone, u,,(¢) and Uy (t), and con-
nected, u,(f)and u,(¢), configurations. The maximum stand-alone displacements are
mex|u, (£)}=0.3375m and max|u,,(¢)|= 0.0162 m and the maximum separation between the
two stand-alone equipment items is A = max[u,,(¢) —u,,(t)] = 0.3163m. The two stand-
alone responses are significantly different because of the large separation between the
equipment frequencies (1Hz and 5Hz, respectively). These time histories tend to have
nearly symmetric peaks relative to the equilibrium position with nearly zero averages
over time. The displacement time histories #,(¢) and u,(¢) of the connected system start
from the static equilibrium positions u,(0) and u,(0), respectively, which are not zero.
These responses exhibit strongly skewed peaks relative to the equilibrium position, with
non-zero averages over time and larger displacements occurring towards the side that
slackens the cable. This is a clear indication of nonlinearity in the response. Note also
that the response of equipment 1 in the connected system has a higher frequency content
than its stand-alone response. This is due to the contribution of the added stiffness pro-
vided by the cable and equipment 2. More significantly, we observe a large increase in
the peak response of equipment 2 (the higher frequency equipment item) in the connected
system relative to its stand-alone response, and a moderate increase in the peak response
of equipment 1. The ratio of the peak responses of equipment 2 in the connected and

stand-alone configurations is R, =7.62. The ratio for equipment 1 is R, =1.48.

Figure 4.13 shows the time history of the cable span L(¢) as defined in (4.14). The

strong nonlinearity in the response is clearly evident from the marked skewness of this
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time history. Whereas the span shortens to a minimum of 4.53m, its maximum value is
only 5.046m, which is larger than the original length of the cable s, = 5.033m. It is evi-

dent that, for this system, the axial deformation of the cable is important.

Figure 4.14 shows the time history of the normalized cable force 7'(¢)/(wL,), plot-
ted on a semi-logarithmic scale. The response shows peak forces at various instances of
time that are more than two orders of magnitude greater than the initial cable force.
These occur at instances at which the cable is stretched almost straight. Obviously such
large forces could be damaging to the attached equipment, including the cable-to-

equipment connections.

Figure 4.15 shows the time history of normalized effective cable stiffness, k(¢)/w,
plotted on a semi-logarithmic scale. Relative to its initial value, the effective stiffness
increases by more than three orders of magnitude and decreases by almost two orders of
magnitude at certain instants during the response. At many instants, the effective stiff-
ness caps at a constant value, which is nearly equal to the axial stiffness of the cable. At
these instants, the cable is stretched almost straight. The stiffness ratio k , which had an
initial value of 0.0188, reaches 51 at these points. This means that at these instances the
effective stiffness of the cable is 51 times the sum of the stiffnesses of the two equipment

items.

The example described above is a rather extreme case, as the normalized sag of the
cable is only 5%. To gain insight into the influence of the sag on the interaction between
the two equipment items, we compute the response ratios R, and R, for the system under
consideration as functions of the normalized initial sag 4,/ L, for the five earthquake re-
cords shown in Figure 4.16. Recall that R, and R, represent ratios of the peak equip-
ment responses in the connected system to the corresponding responses in the stand-alone
system. The results are shown in Figure 4.17. It is seen that the effect of interaction is
particularly adverse on the higher frequency equipment item as the response ratio R, is
much greater than unity for several of the ground motions. The response ratio R, also

has values greater than unity for certain ranges of the normalized initial sag. This is be-
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cause of the specific frequency content of the selected ground motions. For example, the
spectrum for the Tabas LN record shows a deep trough at the frequency of 27 rad/s,
which happens to coincide with the frequency ®, of equipment 1. As a result of this co-
incidence, any change in the natural frequency of the system, such as that induced by the
connection of equipment 1 to equipment 2, amplifies the response of equipment 1. The
most salient observation from this figure is that the interaction effect tends to diminish
with increasing normalized initial sag of the cable. It appears that for the present system

the interaction effect is insignificant for a normalized initial sag greater than about 0.15.

To demonstrate the sensitivity of the nonlinear interaction effect on the details of the
ground motion, we repeat the above analysis while switching the positions of the two
equipment items. (This is equivalent to changing the sign of the ground motion while
maintaining the equipment positions.) The results for the response ratios R, and R, are
shown in Figure 4.18. For a linear system, such a change would not have any influence
on the maximum absolute responses. However, because of the particular nonlinearity of
the system, which causes a strong asymmetry in the response, the switching of the posi-
tions of the two equipment items (or the direction of the motion) significantly affects the
response ratios. This can be seen by comparing the curves in Figure 4.17 with the corre-
sponding curves in Figure 4.18. In particular, the peak value of R,, which is 7.62 in Fig-
ure 4.17, reduces to 6.05 for the case in Figure 4.18. This comparison serves to demon-

strate the particular nature of the nonlinearity in the cable-connected system.

A quantity that strongly influences the degree of interaction between the cable-
connected equipment items is the maximum amount that the two stand-alone equipment

items move away from one another. We define this quantity as
A = max(u (t) — o (£)] (4.21)

Two factors determine the magnitude of A. One is the displacement spectral ordinates of
the ground motion at the equipment frequencies, particularly that of the lower frequency
equipment. As shown in (2.24), the peak values of u,,(¢) and wu,,(#) are proportional to

these spectral ordinates. Ordinarily, the lower the equipment frequencies, the larger will
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be the spectral ordinates and, therefore, the peak stand-alone responses as well as the
peak of their difference, A. Naturally, the lower-frequency equipment item will tend to
have a larger displacement and, therefore, dominate A. The second factor is the separa-
tion between the two equipment frequencies. We note, in particular, that when the two
equipment items have identical frequencies and damping ratios A = 0 regardless of the
frequency content of the ground motion. Furthermore, A would tend to increase with
increasing separation between the equipment frequencies as a consequence of losing co-
herence between the two responses, even if the spectral ordinates at the two frequencies
remain the same. To investigate these effects, we repeat the preceding analysis while
changing only the frequency of equipment 1 from ©, =2nrad/s to o, =4nrad/s. Be-
cause of the higher frequency of this equipment, the displacement spectral ordinate is ex-
pected to be smaller. Furthermore, the separation between the two frequencies is re-
duced. Hence, we expect a smaller value of A and, therefore, reduced interaction be-
tween the two equipment items. As an example, for the Northridge record we obtain
A =0.1369 m, which is much smaller than the value A =0.3163 m obtained for the pre-
vious system. Figure 4.19 shows plots of the response ratios R, and R, for the five re-
corded ground motions. Note that the scale used in this figure is different from the scale
used in Figures 4.17 and 4.18. It is found that the interaction effect in this case is indeed
greatly reduced. Furthermore, no significant interaction occurs if the normalized initial

sag is greater than about 0.10.

The preceding analyses was for a cable with no vertical separation between its sup-
ports, i.e., H =0. For such a cable, the initial normalized sag A4, / L, represents a good
measure of the flexibility and for that reason it was used to present the results in Figures
4.17-4.19. When H >0, the initial cable slackness s,/c, —1 is a more convenient
measure of the flexibility of the cable than the initial normalized sag. Using the relation
between the two measures shown in Figure 4.6, it is possible to recast the results in Fig-
ures 4.17-4.19 in terms of the slackness. However, we find it more useful to make the

plots against a measure that also involves the relative displacement between the stand-

alone equipment items.
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Suppose one end of the cable is moved horizontally by the amount
A = max[u,,(t) — u,,(¢)] , which represents the maximum relative displacement between
the stand-alone equipment items, as shown in Figure 4.20. For A << ¢,, the chord length
will then increase approximately by the amount AL, / ¢,. One can regard this quantity as
a seismic demand on the reserve cable length, s, — ¢,, which can be regarded as the cor-
responding capacity. Obviously, if AL, /¢, is small in relation to s, — ¢, then there will
be little interaction between the two equipment items. Conversely, if AL, /¢, is of the
same magnitude or greater than s, —c,, then one can expect significant interaction. It
follows that the dimensionless quantity (AL, /c,)/(s, —c¢,), which is the ratio of the

seismic demand over capacity, is a good measure to characterize the intensity of interac-

tion. This measure can be written in the dimensionless form

_ALy/c,

422
sy/cy—1 (4.22)

which we define as the interaction parameter. Recall that A is easily computed in terms
of the stand-alone equipment properties and the ground response spectrum, as described
in Section 2.5 of Chapter 2. With A given, the interaction parameter 3 only depends on

the initial geometry of the cable and its slackness.

Figures 4.21-4.23 show the results for the response ratios R, and R, reported in Fig-
ures 4.17-4.19, but now in terms of the interaction parameter . Figure 4.24 shows
similar results for a cable-connected system with the attachment points having the vertical
separation H =2.5m. The equipment frequencies are ©, =2nrad/s and ®, = 107 rad/s,
with all other equipment and cable properties remaining the same as in the previous

cases. The following noteworthy observations can be derived from the results shown in

Figures 4.21-4.24:

a) There appears to be virtually no interaction between the two equipment items when 3
is less than about 1, regardless of the nature of the ground motion, values of the

equipment frequencies, or the initial geometry of the cable.
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b) For values of B greater than 1, significant interaction between the two equipment

items occurs for all cable geometries. However, the degree of interaction strongly de-
pends on the nature of the ground motion. Closer examination of the results reveals
that the interaction effect is particularly sensitive to the positions of the equipment
frequencies relative to the frequency content of the ground motion. As demonstrated
earlier, the interaction tends to amplify the response of the higher frequency equip-

ment item much more than that of the lower frequency item.

It appears from the results in Figures 4.21-24 that, for values of 3 greater than 1, de-
tailed dynamic analysis of the combined system is necessary to accurately determine
the peak responses of the two equipment items, particularly that of the higher fre-
quency item. Otherwise, to be on the safe side, it is necessary to assure a capacity for
the higher frequency equipment item that is anywhere from 4 to 8 times larger than

the demand placed upon it by the earthquake in its stand-alone configuration.

Given the above facts, it appears to be prudent to design cable-connected equipment

items in such a way that the interaction parameter B is no greater than 1.”

* See Epilogue on page 94.
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CHAPTER 5
RECOMMENDATIONS AND GUIDELINES FOR
DESIGN OF CONNECTED EQUIPMENT
5.1 Introduction

In this chapter, we first summarize the major findings of the study. These findings form
the bases for a set of recommendations and guidelines for design of connected equipment
items. Attention is given to both linear connecting elements, representative of rigid buses,
and cable connections. Where appropriate, references are made to specific sections of the

report, where appropriate formulas or analysis methods are given.

5.2 Major Findings

Response Ratios

Response ratios R;, R, and R, introduced in this study provide valuable informa-
tion on the effect of interaction between two connected equipment items. Ratio R,, re-
lating the response of the connecting element to the maximum absolute relative dis-
placement between the stand-alone equipment items, is useful for the design of the con-
necting element. Response ratios R, and R, relate the responses of the two equipment
items in the connected system to their corresponding responses in the stand-alone con-
figurations. As such, they are acute measures of interaction between the two equipment
items. A value for R, or R, that is greater than unity indicates an amplification of the
corresponding equipment response due to the interaction effect, whereas a value smaller
than unity indicates a de-amplification. A designer can use these ratios together with es-
timated responses of the stand-alone equipment items to determine the seismic demands
on the equipment items in their connected configurations. This information could then
be used to provide adequate strength to the equipment and their supports in order to with-

stand the seismic forces in both their stand-alone and connected configurations.
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Parameters Influencing Interaction Between Equipment Items with Linear Connecting

Element

Parameters having major influences on the effect of interaction between two equip-
ment items connected by a linear element, such as a rigid bus with linear or linearized
stiffness, include the following: (a) ratio of the frequencies of the stand-alone equipment
items, (b) ratio of equipment masses, (c) stiffness of the connecting element, (d) location
of attachment point of the connecting element to each equipment item, and (e) damping
of the connecting element. Lesser influence is provided by the mass of the connecting
element and the shape of the response spectrum. Damping of individual equipment items
has little influence on the response ratios. No interaction occurs between equipment
items with identical frequencies and damping ratios, as long as the connecting element
has negligible mass and the attachment configuration is such that the same fraction of

each equipment mass acts as the external inertia force.
Parameters Influencing Interaction Between Cable-Connected Equipment ltems

The parameters described above have similar influences on the interaction effect in
the cable-connected system. However, when the cable is taut, the response of the con-
nected system is highly nonlinear and strongly sensitive to the details of the ground mo-
tion, including its frequency content. A measure that characterizes the influence of the
cable on the system response is the normalized sag, %/ L, where 4 is the sag and L is
the span length. However, this measure is appropriate only when the cable supports are
at the same level. A more general measure is the cable slackness, s/c—1, where s is the
cable length and c is the chord length. This measure is appropriate for cables of arbitrary
vertical separation between the supports. Generally speaking, small values of cable
slackness may result in strong interaction between the equipment items. Due to the
strong nonlinearity of the response, a response spectrum method of analysis is inappro-
priate in this case. For this reason, an algorithm for nonlinear time-history analysis of
such systems is developed in this study. No interaction occurs between cable-connected

equipment items with identical frequencies and damping ratios, as long as the cable has
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negligible mass and the attachment configuration is such that the same fraction of each

equipment mass acts as the external inertia force.
Maximum Relative Displacement Between Stand-Alone Equipment Items

An important quantity for determining the effect of interaction between connected
equipment items is the maximum relative displacement between them when they are in
their stand-alone configurations. The larger this relative displacement, the larger will be
the interaction effect. For the linear connecting element, the absolute value of the maxi-
mum relative displacement is the relevant quantity, whereas for the cable-connected sys-
tem, the maximum relative displacement of the two equipment items away from one an-
other is the quantity of interest. As described in Chapter 2, these two quantities have al-
most equal magnitudes. A simple formula for computing this measure that involves only
the properties of the individual equipment items and the prescribed response spectrum is
developed in Chapter 2. The maximum relative displacement between two equipment
items is zero when they have identical frequencies and damping ratios, provided the at-
tachment configuration is such that the same fraction of each equipment mass acts as the

external inertia force
Effect of Interaction on Equipment Items

In general, when two equipment items are connected, interaction amplifies the re-
sponse of the item with higher frequency. The magnitude of the amplification depends
on the parameters described above and can be as large as a factor of 8 or even larger.
Under certain conditions, the response of the lower-frequency equipment item may also
be amplified. However, this amplification, if it occurs, is generally small and seldom
reaches the factor 2. The amplification of the higher frequency equipment response tends
to increase with increasing stiffness of the connecting element, increasing mass of the
lower frequency equipment, increasing separation between equipment frequencies, and
increasing relative displacement between the stand-alone equipment items. This amplifi-
cation also increases when the connecting element is attached to a point near the base of
the higher frequency equipment item and at a point at or near the top of the lower fre-

quency equipment item. Damping in the connecting element has a significant effect in
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reducing the amplification due to interaction. The mass of the connecting element tends
to increase the amplification by only a small amount, as long as this mass is small in re-

lation to the total mass of the equipment items.

The interaction effect in a cable-connected system strongly depends on the slackness
of the cable. If the cable retains even a small amount of slackness during the excitation,
the effect of interaction between the two equipment items would be small. However, if
during the course of the excitation, the cable is stretched beyond its original length, then
the effect of interaction can be very significant. In that case the response of the interact-
ing system is strongly nonlinear. Even small variations in the time history can result in
large variations in the equipment responses. Therefore, from a design stand-point, it is
advisable to provide sufficient slackness in the cable so that the interaction effect is es-

sentially avoided.
Effect of Interaction on the Connecting Element

For a linear connecting element, the response ratio R, provides the necessary infor-
mation to determine the maximum restoring force in the element. In general this force is
smaller than the force in the element were it to be elongated by the relative displacement
between the stand-alone equipment items. For most cases, the connecting element can be
safely designed for an elongation smaller than 60% of the stand-alone relative displace-
ment. In a cable-connected system, when the cable is initially taut, the tension force in
the cable can vary by several orders of magnitude during the course of the seismic re-
sponse. Furthermore, the cable can be almost fully stretched, in which case its stiffness
reaches its axial stiffness. These variations, if not avoided, can have severe effects on the

cable and its connections.
Other New Results

In addition to results derived for connected equipment items, new results are developed to
characterize the force, stiffness and geometric properties of the catenary cable. These in-
clude closed form expressions for the tangent stiffness of the cable, while accounting for

its extensibility, and for variations in the cable sag. A numerical algorithm for computing
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the strongly nonlinear and asymmetric response of the cable-connected system was de-

veloped and tested.

5.3 Guidelines for Design of Equipment Connected by Rigid Bus

Characterization of Equipment Items

In order to determine the interaction effect, characterize each stand-alone equipment item
together with its support structure by a mass and a stiffness distribution, or a mass distri-
bution and the fundamental frequency. An appropriate displacement shape should be se-
lected to determine the effective mass and stiffness properties, as well as the fraction of
the mass that acts as the external inertia force. Assign a damping ratio to characterize the
energy dissipation capacity of the equipment and its support structure. Alternatively,
these equipment parameters can be determined by laboratory or field tests. These pa-

rameters for equipment i, i =1, 2, were denoted in this report as follows: m,= effective
mass, k= effective stiffness, /, / m,= fraction of mass acting as the external inertia force,

o, = fundamental frequency, and {,= damping ratio.
Characterization of the Connecting Element

Characterize the connecting element by its axial stiffness k,, its damping coefficient c,,
and its mass m,. These parameters could be effective values obtained by assuming an
appropriate deformation shape function for the element. Appropriate linearization meth-
ods may be employed to approximately characterize elements that have nonlinear behav-
ior. Alternatively, these connecting element properties can be obtained by laboratory or

field tests.
Characterization of Input Ground Motion

For analysis of the interaction effect between connected equipment items, it is most con-
venient to characterize the input ground motion in terms of a design response spectrum,
such as that described in IEEE (1997), and a peak ground acceleration that scales the

spectrum. The spectrum shape should be selected in accordance with the soil conditions
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at the site of the equipment. The peak ground acceleration should be selected on the basis

of the seismic zone associated with the site.
Evaluate the Effect of Interaction on Equipment Items

For a linear connecting element, the interaction effect tends to de-amplify the response of
the lower frequency equipment item and amplify the response of the higher frequency
equipment item. For design purposes, it is advisable not to take advantage of the de-
amplification in the response of the lower frequency equipment item in the connected
system, so as to ensure its safety were it to be subjected to an earthquake in its stand-
alone configuration. The amplification in the response of the higher frequency equipment
item, however, should be properly determined so that adequate strength to resist the
earthquake forces in the connected configuration can be provided. As we have seen
above, system parameters having important influences on the amplification factor (re-
sponse ratio R,) are the ratio of the frequencies of the stand-alone equipment items, the
ratio of equipment masses, the stiffness of the connecting element, the location of at-
tachment points, and damping of the connecting element. For a wide range of these sys-
tem parameter values, the response ratio R, can be readily read from the graphs in Fig-
ures 3.1-3.4, 3.6 and 3.9. For system parameter values not in this range, the response ra-
tio should be determined by use of the response spectrum method described in Chapter 2.

The seismic demand in the equipment in the connected system is determined by multi-

plying the demand for the stand-alone configuration by the response ratio R,.

Reducing the Effect of Interaction on the Higher-Frequency Equipment Item

When the seismic demand on the higher frequency equipment item exceeds its capacity,
the design engineer has two alternative recourses: increase the capacity of the equipment;
reduce the amplification due to the interaction. The following measures can be employed

to reduce the interaction effect on the higher frequency equipment item:

* Reduce the separation between the stand-alone equipment frequencies. This can be
done by increasing the stiffness or reducing the mass of the lower frequency equip-

ment item. Another alternative is to place the higher frequency equipment item on an
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isolation system such that its base-isolated frequency is close to that of the lower fre-

quency equipment item.

* Reduce the stiffness of the connecting element by, e.g., providing special expansion

connectors.

* Increase the energy dissipation capacity of the connecting element. This can be done
by installing a special device, such as a viscous damper, on the connecting element,
or, more practically, by providing an expansion connector that dissipates energy

through plastic deformation.

 Attach the connecting element to a point at or near the top of the higher frequency
equipment item and to a point near the base of the lower frequency equipment item,

subject to electrical clearance requirements.

5.4 Guidelines for Design of Equipment Connected by Flexible Cables

Characterization of Equipment Items
Characterize equipment items in the manner described in Section 5.3.
Characterization of the Connecting Cable

Provided the flexural rigidity of the cable is negligible (see Appendix A), we can model

the connecting cable as a catenary cable with axial extensibility. Characterize the cable
by its span length L,, vertical separation H of the attachment points, chord length
¢y =+/L + H? | length S, sag h,, weight per unit length w, and axial stiffness AE/ S, -

The quantities Z,, c,, s, and &, should correspond to the initial values of the cable in

the equilibrium position of the combined system. The cable length can be determined
from the relevant equations of the catenary cable in Chapter 4, or by reading from the

plots of slackness versus normalized sag in Figure 4.6.
Characterization of Input Ground Motion

A characterization of the input ground motion in terms of a design response spectrum as

described in the previous section is also useful for cable-connected equipment items, as
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we will see below. However, such a characterization does not allow an accurate analysis
of the interaction effect caused by a taut cable that has a strongly nonlinear response. If
such analysis is necessary, one alternative is to describe the ground motion by a suite of
time histories that are typical for the site. Another alternative, not developed in this
study, is to employ a stochastic model of the ground motion and evaluate the interaction
effect through nonlinear stochastic dynamic analysis. These alternatives, however, are
time consuming, cumbersome and not well suited for design and analysis of electrical
substation equipment items that come in many different configurations and characteris-
tics. A simple design rule that eliminates the need for such complex analyses is described

below.
Evaluate the Maximum Relative Displacement Between Stand-Alone Equipment Items

For a cable connection, an important parameter is the maximum amount that the two
equipment items displace away from each other, defined as A =max[u, () —u,,(?)].

With the equipment items characterized as described above, this quantity can be com-

puted by use of the response spectrum method in the manner described in Section 2.5.
Determine Minimum Cable Slackness to Avoid Adverse Interaction™

As mentioned earlier, the response of the cable-connected system can be strongly nonlin-
ear when the cable slackness (s,/c, —1) is small and the cable is stretched beyond its
original length during the course of the excitation. In that case, significant interaction
between equipment items occurs, which can result in large amplification of the higher
frequency equipment item and moderate amplification of the lower frequency equipment
item. Unfortunately, these effects cannot be predicted by simple response spectrum
analysis. We recommend providing sufficient slackness in the cable to entirely avoid this
problem. Based on results in Section 4.4, the minimum slackness that accomplishes this
objective is determined by using the rule <1, where B is the interaction parameter de-
fined in Section 4.4. Based on this rule, the minimum cable slackness to avoid adverse

interaction effect in the equipment items is computed from

" See Epilogue on page 94.
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PR (5.1)

For a given L, and ¢, dictated by the locations of the equipment items in the substation,
the above requirement can be satisfied in two ways. One is to increase the cable length
s, , subject to electrical clearance requirements. The other is to reduce A. The latter can

be accomplished by several means, including:

e Reduction of the separation between the stand-alone equipment frequencies. This can
be done by increasing the stiffness or reducing the mass of the lower frequency
equipment item. Another alternative is to place the higher frequency equipment item
on an isolation system such that its base-isolated frequency is close to that of the

lower frequency equipment item.

e Attach the connecting element to a point at or near the top of the higher frequency
equipment item and to a point near the base of the lower frequency equipment item,

subject to electrical clearance requirements.
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CHAPTER 6

SUMMARY AND RECOMMENDATIONS

FOR FURTHER STUDY

6.1 Summary

This study investigates the effect of interaction between connected electrical substation
equipment items that are subjected to earthquake motions. To the best of our knowledge,
this is the first analytical study of this subject. Equipment items are modeled as lumped-
or continuous-mass linear systems idealized by a single degree of freedom. The connecting
element is modeled either as a linear spring-dashpot-mass element, or an extensible cable
with negligible inertia. The effect of interaction is represented in terms of the ratio of peak
equipment responses in the combined system to their corresponding responses in the stand-

alone equipment configurations.

Study of the combined system with the linear connecting element reveals that the inter-
action effect tends to amplify the response of the higher frequency item, and de-amplify the
response of the lower frequency item. Parameters having major influences on the effect of
interaction include the frequencies of the stand-alone equipment items, the ratio of equip-
ment masses, the stiffness of the connecting element, the location of attachment of the
connecting element to each equipment item, and the damping of the connecting element.
Lesser influence is provided by the mass of the connecting element and the shape of the
response spectrum of the ground motion. Damping of individual equipment items has little
influence on the response ratios. No interaction occurs between equipment items with iden-
tical frequencies and damping ratios, as long as the connecting element has negligible mass
and the attachment configuration is such that the same fraction of each equipment mass acts

as the external inertia force.

Study with the cable-connected system reveals that the response of this system when

the cable is taut is highly nonlinear, asymmetric and strongly sensitive to the details of
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the ground motion, including its frequency content. The amplification of the higher fre-
quency equipment relative to its stand-alone response in this case can be large; further-
more, the lower frequency equipment item may also experience a moderate amplification
in its response, depending on the frequency content of the ground motion. A convenient
measure that characterizes the severity of the interaction effect for this system is identi-
fied as the slackness s/c—1, where s is the length of the cable and c is its chord length.
This measure is appropriate for cables of arbitrary geometry. Through a comprehensive
set of time history analysis, a simple rule for determining the minimum required slack-

ness to avoid the adverse interaction effect is developed in this study.

A more detailed description of the major findings of this study are presented in
Chapter 5. Included in there are also a set of recommendations and guidelines for design

of connected equipment items, and for reducing the adverse effect of interaction.

In addition to results derived for connected equipment items, new results are devel-
oped in this study that characterize the force, stiffness and geometric properties of the
catenary cable. These include closed form expressions for the tangent stiffness of the ca-

ble, while accounting for its extensibility, and for variations in the cable sag.

While this has been a comprehensive study of the effect of interaction between con-
nected equipment items, the investigation has been conducted based on a set of idealiza-
tions and within a prescribed scope. The following section lists recommendations for
further study that in our opinion will broaden the scope of application of the results de-

rived in this study, while relaxing some of the idealizations that were made.

6.2 Recommendations for Further Study

Based on the experience gained from the present study, we believe pursuing further re-
search on the following topics would lead to a better understanding of the behavior of in-

teracting equipment items and would result in more reliable and safe design methods.

a) Study of interaction among multiple equipment items with multiple connections: The
present study is limited to two equipment items with only one connecting element.

The interaction phenomenon in several equipment items that are multiply connected
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b)

d)

to each other is expected to be far more complex. It would be useful to investigate
and determine whether the results derived from the present study can be carried over

to such systems. If not, then new results for such systems need to be developed.

Refined modeling of rigid bus connectors: In this study, the rigid bus connector was
modeled as a linear spring-dashpot-mass element. In reality, these elements may act
nonlinearly, either because of closing of their expansion gap or because of inelastic
deformation of their expansion loop. It is worthwhile to investigate nonlinear models
of the connecting element with the objective of understanding their behavior and pos-
sibly deriving rules for their equivalent linearization. Such rules would then allow
utilization of the results reported in the present study for rigid buses having nonlinear

behavior.

Flexible bus connector with flexural rigidity: In the present study, the flexible bus
connector was modeled as an extensible cable with negligible flexural stiffness. A
criterion for the conditions under which the flexural rigidity can be neglected was de-
rived. In the field there are many flexible connectors (made of braided aluminum
wires) that have significant flexural stiffness and are in fact pre-formed into standard
shapes before attaching to equipment items. It is important to investigate the influ-
ence of the flexural rigidity of such elements to fully understand the effect of interac-
tion between the connected equipment items. It may also be worthwhile to investi-
gate the influence of damping in the flexible connector that arises from friction be-
tween braided wires. We believe the results developed in the present study provide

the proper foundation for such an investigation.

Correlation with laboratory and field studies: The present study is based on ideal-
ized mathematical models. It is highly desirable to correlate the results derived from
this study with results obtained from laboratory or field experiments. It is particularly
important to obtain experimental data on the stiffness, damping and elastic/inelastic
properties of rigid and flexible connectors, as well as on the dynamic characteristics
of typical equipment items. Experimental or field observations can also be used to

validate the analytical predictions of the interaction effect made in this study.
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APPENDIX A

CRITERION FOR NEGLECTING
FLEXURAL STIFFNESS OF CABLE

In Chapter 4, we have developed formulas for the connecting cable assuming that the
flexural stiffness of the cable is negligible. Here, we develop a criterion to examine the

circumstances under which this assumption is valid.

Consider the symmetric cable in Figure Al having span L, sag %, weight per unit
length w, section moment of inertia I, and elastic modulus E£. Let s denote the length
of the cable and 7' denote the horizontal component of the cable force. The stiffness due

to cable action is given in (4.8) of Chapter 4, which for H =0 is

k T+ wh
cable =T (Al)
ML (s—1L)
T

Our interest here is in shallow cables. For such cables, s = L and T = wL’ /8h (Meriam

and Kraige 1997) and (A1) reduces to

_wL A2
cable 6 4 h 3 ( )

To determine the flexural stiffness, consider a simply-supported curved beam having
the shape of the cable, which we approximate as a parabola y = 4Ax>/L*, as shown in
Figure A2. Let dL denote the differential displacement of the beam at the right support
caused by the application of a horizontal differential force d7". The bending moment
along the beam is given by dM =dT(h-y), and the change in curvature is
dy =dM /(EI). The horizontal displacement at the right support from the bending of a
differential segment dx of the beam is given by ydydx. The total displacement is ob-

tained by integration along the beam, i.e.,
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L/2
dL = jyd\p dx

-L/2

L2 4px? dT( 4hx2]
= — dx

- I EI 2

-L/2

A

It follows that the stiffness due to bending is

15EI
flexure — W (A4)

A measure of the significance of the flexural stiffness is given by the ratio

k k4. For a given cable, one is justified in neglecting the flexural rigidity if this

flexure

ratio is small in comparison to unity. Using (A2) and (A4), we obtain the following crite-
rion:
k

flexwre. — 480 E[3 % <<1 (AS)

wL

cable

It is clear that the flexural stiffness can only be significant for large values of the sag. It

is noted that as # — 0, both & and &

become very large. In that case, the flexi-

flexure cable

bility of the system is governed by the axial deformation of the cable, which is accounted

for in our analysis in Chapter 4.

As an example, we consider a Class A Trillium cable made by ALCAN according to
ASTM Standard B230 (PG&E 1998). This cable consists of 127 strands each having a
diameter of 0.154in, which is equivalent to 3.90x10m. The weight per unit length of
the cable is w=41.5N/m. Assuming negligible friction between the strands, the effec-
tive moment of inertia of the cable cross section is equal to the sum of the moments of
inertia of the strands, thus yielding 7 =127xnx(3.90x107°)* /64 =1.44x10"m*. (If
friction were to be accounted for, this value would be larger by an amount depending on

the coefficient of friction.) For aluminum, the elastic modulus is approximately
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E =7.27x10""N/m*. Substituting these values in (A5) for a cable of length L = 5m, the

ratio of stiffnesses is

k, h
exure — 9.7 _
P (A6)

cable

For a normalized sag /#/L =0.05, the above gives k k., =0.485. At first sight,

flexure cable

this value may not appear sufficiently small in relation to unity. However, as pointed out
in Chapter 4, the stiffness of the cable for this value of the sag is negligible in relation to
the stiffnesses of the two equipment items and consequently induces little interaction
between the two equipment items. (See discussion of values of parameter k in the sec-
ond paragraph of Section 4.4.) It follows that the flexural stiffness, which is even
smaller, will also induce insignificant interaction. For smaller values of the sag, the cable
stiffness rapidly increases (in proportion to 4~), whereas the flexural stiffness increases
more slowly (in proportion to #7>). Hence, the cable stiffness dominates the behavior of
the connecting element when the total stiffness becomes significant in relation to the
stiffnesses of the equipment items. This shows that, for the cable under consideration, it
is reasonable to neglect the flexural stiffness in determining the interaction effect between

the two equipment items.
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Figure Al. Cable with no flexural stiffness

Figure A2. Horizontal support displacement of curved beam
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EPILOGUE

The formulation and results for the cable-connected equipment system in Chapter 4
and the corresponding recommendations in Chapter 5 were derived based on the assump-
tion that the influence of the inertia associated with the cable mass was negligible. After
completing this study, while this report was being printed, we came across an important
paper by J.-B. Dastous and J.-R. Pierre (1996)°. They performed experiments on flexi-
ble conductors under imposed dynamic displacement at one or both ends. Their results
indicate a strong influence of the cable inertia on the horizontal cable force. Our prelimi-
nary analytical investigation reveals that indeed, under certain conditions, the cable iner-
tia can have an important influence on the interaction between the two equipment items
and on the force transmitted by the cable to each equipment item. It appears that this in-
fluence could further amplify the response of the equipment items beyond that estimated
in Chapter 4 of this report. Furthermore, when this effect is significant, the rule described

in (5.1) can be unconservative.

This issue is a subject of our current study that deals with flexible conductors having
flexural stiffness. The results reported in Chapter 4 and the recommended rule (5.1)
should be regarded as preliminary until their re-evaluation at the completion of the pres-

ent investigation.

" Dastous, J.-B., and J.-R. Pierre (1996). Experimental investigation on the dynamic be-
havior of flexible conductors between substation equipment during an earthquake. IEEE
Transactions on Power Delivery, 11(2), 801-807.
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