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ABSTRACT

The ATC-40 and FEMA-274 documents contain simplified nonlinear analysis procedures
to determine the displacement demand imposed on a building expected to deform inelastically.
The Nonlinear Static Procedure in these documents, based on the capacity spectrum method,
involves several approximations: The lateral force distribution for pushover analysis and
conversion of these results to the capacity diagram are based only on the fundamental vibration
mode of the elastic system. The earthquake-induced deformation of an inelastic SDF system is
estimated by an iterative method requiring analysis of a sequence of equivalent linear systems,
thus avoiding the dynamic analysis of the inelastic SDF system. This last approximation is first
evaluated in this report, followed by the development of an improved simplified analysis
procedure, based on capacity and demand diagrams, to estimate the peak deformation of inelastic
SDF systems.

Several deficiencies in ATC-40 Procedure A are demonstrated. This iterative procedure
did not converge for some of the systems analyzed. It converged in many cases, but to a
deformation much different than dynamic (nonlinear response history or inelastic design
spectrum) analysis of the inelastic system. The ATC-40 Procedure B always gives a unique value
of deformation, the same as that determined by Procedure A if it converged.

The peak deformation of inelastic systems determined by ATC-40 procedures are shown
to be inaccurate when compared against results of nonlinear response history analysis and
inelastic design spectrum analysis. The approximate procedure underestimates significantly the
deformation for a wide range of periods and ductility factors with errors approaching 50%,
implying that the estimated deformation is about half the “exact” value.

Surprisingly, the ATC-40 procedure is deficient relative to even the elastic design
spectrum in the velocity-sensitive and displacement-sensitive regions of the spectrum. For
periods in these regions, the peak deformation of an inelastic system can be estimated from the
elastic design spectrum using the well-known equal displacement rule. However, the
approximate procedure requires analyses of several equivalent linear systems and still produces
worse results.

Finally, an improved capacity-demand-diagram method that uses the well-known
constant-ductility design spectrum for the demand diagram has been developed and illustrated by
examples. This method gives the deformation value consistent with the selected inelastic design
spectrum, while retaining the attraction of graphical implementation of the ATC-40 methods.
One version of the improved method is graphically similar to ATC-40 Procedure A whereas a
second version is graphically similar to ATC-40 Procedure B. However, the improved
procedures differ from ATC-40 procedures in one important sense. The demand is determined by
analyzing an inelastic system in the improved procedure instead of equivalent linear systems in
ATC-40 procedures.

The improved method can be conveniently implemented numerically if its graphical
features are not important to the user. Such a procedure, based on equations relating Ry  and µ
for different Tn  ranges, has been presented, and illustrated by examples using three different

TR ny −µ−  relations.



iii

ACKNOWLEDGMENTS

This research investigation is funded by the National Science Foundation under Grant
CMS-9812531, a part of the U.S.-Japan Cooperative Research in Urban Earthquake Disaster
Mitigation. This financial support is gratefully acknowledged. Dr. Rakesh Goel acknowledges
the State Faculty Support Grant Fellowship received during summer of 1998.

The authors have benefited from discussions with Chris D. Poland and Wayne A. Low,
who are working on a companion research project awarded to Degenkolb Engineers; and with
Sigmund A. Freeman, who, more than any other individual, has been responsible for the concept
and development of the capacity spectrum method.



iv

CONTENTS

ABSTRACT...................................................................................................................................ii

ACKNOWLEDGMENTS ...........................................................................................................iii

CONTENTS.................................................................................................................................. iv

INTRODUCTION......................................................................................................................... 1

EQUIVALENT LINEAR SYSTEMS.......................................................................................... 3

ATC-40 ANALYSIS PROCEDURES ......................................................................................... 7

PROCEDURE A........................................................................................................................ 8
Examples: Specified Ground Motion...................................................................................... 8
Examples: Design Spectrum ................................................................................................. 15

PROCEDURE B...................................................................................................................... 21
Examples: Specified Ground Motion.................................................................................... 21
Examples: Design Spectrum ................................................................................................. 26

EVALUATION OF ATC-40 PROCEDURES.......................................................................... 29

SPECIFIED GROUND MOTION......................................................................................... 29
DESIGN SPECTRUM............................................................................................................ 33

IMPROVED PROCEDURES .................................................................................................... 38

INELASTIC DESIGN SPECTRUM..................................................................................... 38
INELASTIC DEMAND DIAGRAM..................................................................................... 38
PROCEDURE A...................................................................................................................... 40

Examples ............................................................................................................................... 40
Comparison with ATC-40 Procedure A................................................................................ 46

PROCEDURE B...................................................................................................................... 46
Examples ............................................................................................................................... 47
Comparison with ATC-40 Procedure B................................................................................ 47

ALTERNATIVE DEFINITION OF EQUIVALENT DAMPING ..................................... 47

IMPROVED PROCEDURE: NUMERICAL VERSION........................................................ 51

BASIC CONCEPT ..................................................................................................................51
RY – µ −TN EQUATIONS......................................................................................................... 51

CONSISTENT TERMINOLOGY............................................................................................. 55

CONCLUSIONS ......................................................................................................................... 55

NOTATION................................................................................................................................. 58

REFERENCES............................................................................................................................ 60



v

APPENDIX A. DEFORMATION OF VERY-SHORT PERIOD SYSTEMS BY ATC-40
PROCEDURE B.......................................................................................................................... 63

APPENDIX B: EXAMPLES USING TR ny −− µ  EQUATIONS........................................... 65



1

INTRODUCTION

A major challenge to performance-based seismic design and engineering of buildings is
to develop simple, yet effective, methods for designing, analyzing and checking the design of
structures so that they reliably meet the selected performance objectives. Needed are analysis
procedures that are capable of predicting the demands — forces and deformations — imposed by
earthquakes on structures more realistically than has been done in building codes. In response to
this need, simplified, nonlinear analysis procedures have been incorporated in the ATC-40 and
FEMA-274 documents (Applied Technology Council, 1996; FEMA, 1997) to determine the
displacement demand imposed on a building expected to deform inelastically.

The Nonlinear Static Procedure in these documents is based on the capacity spectrum
method originally developed by Freeman et al. (1975) and Freeman (1978). It consists of the
following steps:

1. Develop the relationship between base shear, Vb , and roof (Nth floor) displacement, uN

(Fig. 1a), commonly known as the pushover curve.

2. Convert the pushover curve to a capacity diagram, (Fig. 1b), where
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and mj  = lumped mass at the jth floor level, φ 1j  is the jth-floor element of the fundamental

mode φ1 , N  is the number of floors, and M *
1  is the effective modal mass for the

fundamental vibration mode.

3. Convert the elastic response (or design) spectrum from the standard pseudo-acceleration, A,
versus natural period, Tn , format to the DA−  format, where D  is the deformation spectrum
ordinate (Fig. 1c).

4. Plot the demand diagram and capacity diagram together and determine the displacement
demand (Fig. 1d). Involved in this step are dynamic analyses of a sequence of equivalent
linear systems with successively updated values of the natural vibration period, Teq , and

equivalent viscous damping, ζ̂eq
 (to be defined later).

5. Convert the displacement demand determined in Step 4 to global (roof) displacement and
individual component deformation and compare them to the limiting values for the specified
performance goals.

Approximations are implicit in the various steps of this simplified analysis of an inelastic
MDF system. Implicit in Steps 1 and 2 is a lateral force distribution assumed to be fixed, and
based only on the fundamental vibration mode of the elastic system; however, extensions to
account for higher mode effects have been proposed (Paret et al., 1996). Implicit in Step 4 is the
belief that the earthquake-induced deformation of an inelastic SDF system can be estimated
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Figure 1. Capacity spectrum method: (a) development of pushover curve, (b) conversion of
pushover curve to capacity diagram, (c) conversion of elastic response spectrum from
standard format to A-D format, and (d) determination of displacement demand.
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satisfactorily by an iterative method requiring analysis of a sequence of equivalent linear SDF
systems, thus avoiding the dynamic analysis of the inelastic SDF system. This investigation
focuses on the rationale and approximations inherent in this critical step.

The principal objective of this investigation is to develop improved simplified analysis
procedures, based on capacity and demand diagrams, to estimate the peak deformation of
inelastic SDF systems. The need for such procedures is motivated by first evaluating the above
mentioned approximation inherent in Step 4 of the ATC-40 procedure. Thereafter, improved
procedures using the well-established inelastic response (or design) spectrum (e.g., Chopra,
1995; Section 7.10) are developed. The idea of using the inelastic design spectrum in this context
was suggested by Bertero (1995) and introduced by Reinhorn (1997) and Fajfar (1998, 1999);
and the capacity spectrum method has been evaluated previously, e.g., Tsopelas et al. (1997).

EQUIVALENT LINEAR SYSTEMS

The earthquake response of inelastic systems can be estimated by approximate analytical
methods in which the nonlinear system is replaced by an “equivalent” linear system. These
methods attracted the attention of researchers in the 1960s before high speed digital computers
were widely used for nonlinear analyses, and much of the fundamental work was accomplished
over two decades ago (Hudson, 1965; Jennings, 1968; Iwan and Gates, 1979a). In general,
approximate methods for determining the parameters of the equivalent linear system fall into two
categories: methods based on harmonic response and methods based on random response. Six
methods are available in the first category and three in the second category. Formulas for the
natural vibration period and damping ratio are available for each method (Iwan and Gates,
1979a). Generally speaking, the methods based on harmonic response considerably overestimate
the period shift, whereas the methods considering random response give much more realistic
estimates of the period (Iwan and Gates, 1979b).

Now there is renewed interest in applications of equivalent linear systems to design of
inelastic structures. For such applications, the secant stiffness method (Jennings, 1968) is being
used in the capacity spectrum method to check the adequacy of a structural design (e.g., Freeman
et al., 1975; Freeman, 1978; Deierlein and Hsieh, 1990; Reinhorn et al., 1995) and has been
adapted to develop the “nonlinear static procedure” in the ATC-40 report (Applied Technology
Council, 1996) and the FEMA-274 report (FEMA, 1997). A variation of this method, known as
the substitute structure method (Shibata and Sozen, 1976), is popular for displacement-based
design (Gulkan and Sozen, 1974; Shibata and Sozen, 1976; Moehle, 1992; Kowalsky et al.,
1995; Wallace, 1995). Based on harmonic response, these two methods are known to be not as
accurate as methods based on random response (Iwan and Gates, 1979a,b). The equivalent linear
system based on the secant stiffness is reviewed next.

Consider an inelastic SDF system with bilinear force-deformation relationship on initial
loading (Fig. 2a). The stiffness of the elastic branch is k  and that of the yielding branch is kα .
The yield strength and yield displacement are denoted by f y  and uy , respectively. If the peak

(maximum absolute) deformation of the inelastic system is um , the ductility factor uu ym=µ .

For the bilinear system of Fig. 2a, the natural vibration period of the equivalent linear
system with stiffness equal to ksec, the secant stiffness, is
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α−αµ+
µ=

1
TT neq

(2)

where Tn  is the natural vibration period of the system vibrating within its linearly elastic range
( uu y≤ ).

The most common method for defining equivalent viscous damping is to equate the
energy dissipated in a vibration cycle of the inelastic system and of the equivalent linear system.
Based on this concept, it can be shown that the equivalent viscous damping ratio is (Chopra,
1995: Section 3.9)

E

E

S

D
eq π

=ζ
4

1 (3)

where the energy dissipated in the inelastic system is given by the area ED  enclosed by the

hysteresis loop (Fig. 2b) and 2/2
secukE mS =  is the strain energy of the system with stiffness ksec

(Fig. 2b). Substituting forED  and ES  in Eq. (3) leads to

( )( )
( )α−αµ+µ

α−−µ
π

=ζ
1

112
eq

(4)

The total viscous damping of the equivalent linear system is

ζ+ζ=ζ eqeq
ˆ (5)

where ζ  is the viscous damping ratio of the bilinear system vibrating within its linearly elastic
range ( uu y≤ ).

For elastoplastic systems, 0=α  and Eqs. (2) and (4) reduce to

µ= TT neq           
µ
−µ

π
=ζ

12
eq

(6)

Equations (2) and (4) are plotted in Fig. 3 where the variation of TT neq  and ζeq  with µ
is shown for four values of α . For yielding systems (µ  > 1), Teq is longer than Tn  and ζeq> 0.

The period of the equivalent linear system increases monotonically with µ  for all α . For a fixed

µ , Teq  is longest for elastoplastic systems and is shorter for systems with α > 0. For α = 0, ζeq

increases monotonically with µ but not for α > 0. For the latter case, ζeq  reaches its maximum

value at a µ value, which depends on α, and then decreases gradually.
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ATC-40 ANALYSIS PROCEDURES

Contained in the ATC-40 report are approximate analysis procedures to estimate the
earthquake-induced deformation of an inelastic system. These procedures are approximate in the
sense that they avoid dynamic analysis of the inelastic system. Instead dynamic analyses of a
sequence of equivalent linear systems with successively updated values of Teq  and ζ̂eq

 provide a

basis to estimate the deformation of the inelastic system; Teq  is determined by Eq. (2) but ζ̂eq
by

a modified version of Eq. (5):

ζκ+ζ=ζ eqeq
ˆ (7)

with ζeq  limited to 0.45. Although the basis for selecting this upper limit on damping is not

stated explicitly, ATC-40 states that “The committee who developed these damping coefficients
concluded that spectra should not be reduced to this extent at higher values and judgmentally …
set an absolute limit on … [ ζ+05.0 eq] of about 50 percent.”
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0
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1.2
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κ
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Figure 4. Variation of damping modification factor with equivalent viscous damping.

The damping modification factor, κ , based primarily on judgment, depends on the
hysteretic behavior of the system, characterized by one of three types: Type A denotes hysteretic
behavior with stable, reasonably full hysteresis loops, whereas Type C represents severely
pinched and/or degraded loops; Type B denotes hysteretic behavior intermediate between Types
A and C. ATC-40 contains equations for κ  as a function of ζeq  computed by Eq. (3) for the

three types of hysteretic behavior. These equations, plotted in Fig. 4, were designed to ensure
that κ  does not exceed an upper limit, a requirement in addition to the limit of 45% on ζeq .
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ATC-40 states that “… they represent the consensus opinion of the product development team.”
Concerned with bilinear systems, this paper will use the κ  specified for Type A systems.

ATC-40 specifies three different procedures to estimate the earthquake-induced
deformation demand, all based on the same underlying principles, but differing in
implementation. Procedures A and B are analytical and amenable to computer implementation,
whereas procedure C is graphical and most suited for hand analysis. Designed to be the most
direct application of the methodology, Procedure A is suggested to be the best of the three
procedures. The capacity diagram is assumed to be bilinear in Procedure B. The description of
Procedures A and B that follows is equivalent to that in the ATC-40 report except that it is
specialized for bilinear systems.

PROCEDURE A

This procedure in the ATC-40 report is described herein as a sequence of steps:

1. Plot the force-deformation diagram and the 5%-damped elastic response (or design) diagram,
both in the DA−  format to obtain the capacity diagram and 5%-damped elastic demand
diagram, respectively.

2. Estimate the peak deformation demand Di  and determine the corresponding pseudo-
acceleration Ai  from the capacity diagram. Initially, assume %)5,( =ζ= TDD ni , determined
for period Tn  from the elastic demand diagram.

3. Compute ductility uD yi ÷=µ .

4. Compute the equivalent damping ratio ζ̂eq
 from Eq. (7).

5. Plot the elastic demand diagram for ζ̂eq
 determined in Step 4 and read-off the displacement

D j  where this diagram intersects the capacity diagram.

6. Check for convergence. If ≤÷− DDD jij )(  tolerance (=0.05) then the earthquake induced

deformation demand DD j= . Otherwise, set DD ji =  (or another estimated value) and repeat

Steps 3-6.

Examples: Specified Ground Motion

This procedure is used to compute the earthquake-induced deformation of the six
example systems listed in Table 1. Considered are two values of Tn : 0.5s in the acceleration-
sensitive spectral region and 1s in the velocity-sensitive region, and three levels of yield strength;
ζ=5% for all systems. The excitation chosen is the north-south component of the El Centro
ground motion; the particular version used is from Chopra (1995). Implementation details are
presented next for selected systems and final results for all systems in Table 2.

The procedure is implemented for System 5 (Table 1).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and the capacity
diagram in Fig. 5a.
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2. Assume cm27.11%)5,0.1( == DDi .

3. 40.4562.227.11 =÷=µ .

4. ( ) 49.040.4140.4637.0 =÷−×=ζeq ; instead use the maximum allowable value 0.45. For

45.0=ζeq  and Type A systems (Fig. 4), 77.0=κ  and ζκ+ζ=ζ eqeq
ˆ  45.077.005.0 ×+=

397.0= .

5. The elastic demand diagram for 39.7% damping intersects the capacity diagram at
cm725.3=D j (Fig. 5a).

6. DDD jij ÷−× )(100 = ( ) %6.202725.327.11725.3100 −=÷−×  > 5% tolerance. Set

cm725.3=Di and repeat Steps 3 to 6.

For the second iteration, cm725.3=Di , 45.1562.2725.3 =÷=µ ,

( ) 198.045.1145.1637.0 =÷−×=ζeq , κ= 0.98, and 243.0ˆ =ζeq
. The intersection point

cm654.5=D j and the difference between Di  and D j  = 34.1% which is greater than the 5%

tolerance. Therefore, additional iterations are required; results of these iterations are summarized
in Table 3. Error becomes less than the 5% tolerance at the end of sixth iteration and the
procedure could have been stopped there. However, the procedure was continued until the error
became practically equal to zero. The deformation demand at the end of the iteration process,

cm458.4=D j . Determined by response history analysis (RHA) of the inelastic system,

cm16.10=Dexact  and the error = ( ) 16.1016.10458.4100 ÷−× = -56.1%.

Fig. 5b shows the convergence behavior of the ATC-40 Procedure A for System 5.
Observe that this iterative procedure converges to a deformation much smaller than the exact
value. Thus convergence here is deceptive because it can leave the erroneous impression that the
calculated deformation is accurate. In contrast, a rational iterative procedure should lead to the
exact result after a sufficient number of iterations.

The procedure is next implemented for System 6 (Table 1).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and capacity
diagram in Fig. 6a.

2. Assume cm27.11%)5,0.1( == DDi .

3. 62.2302.427.11 =÷=µ .

4. ( ) 39.062.2162.2637.0 =÷−×=ζeq . For 39.0=ζeq  and Type A systems (Fig. 4),

82.0=κ and 371.039.082.005.0ˆ =×+=ζκ+ζ=ζ eqeq
.

5. The elastic demand diagram for 37.1% damping intersects the capacity diagram at
cm538.3=D j (Fig. 6a).

6. DDD jij ÷−× )(100 = ( ) %6.218538.327.11538.3100 −=÷−×  > 5% tolerance. Set

cm538.3=Di and repeat Steps 3 to 6.
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The results for subsequent iterations, summarized in Table 4, indicate that the procedure
fails to converge for this example. In the first iteration, the 37.1%-damped elastic demand
diagram intersects the capacity diagram in its linear-elastic region (Fig. 6a). In subsequent
iterations, the intersection point alternates between 11.73 cm and 3.515 cm (Table 4 and Fig. 6b).
In order to examine if the procedure would converge with a new starting point, the procedure
was restarted with cm5=Di  at iteration number 7. However, the procedure diverges very
quickly as shown by iterations 7 to 15 (Table 4 and Fig. 6b), ending in an alternating pattern.

Table 1. Properties of example systems and their response to El Centro (1940) ground
motion.

System Properties System Response
System Tn

(s)
wf y ÷ uy

(cm)
µ Dexact

(cm)
1 0.1257 0.7801 6 4.654
2 0.1783 1.106 4 4.402
3

0.5

0.3411 2.117 2 4.210
4 0.07141 1.773 6 10.55
5 0.1032 2.562 4 10.16
6

1

0.1733 4.302 2 8.533

Table 2. Results from ATC-40 Procedure A analysis of six systems for El Centro (1940)
ground motion.

System Converged
(?)

Dapprox

(cm)
Dexact

(cm)
Error
(%)

1 Yes 3.534 4.654 -24.1
2 Yes 3.072 4.402 -30.2
3 No -- 4.210 --
4 Yes 7.912 10.55 -25.0
5 Yes 4.458 10.16 -56.1
6 No -- 8.533 --
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Table 3. Detailed results from ATC-40 Procedure A analysis of System 5 for El Centro
(1940) ground motion.

Iteration
No.

Di Ai ζ̂ eq
D j Aj Difference

(%)

1 11.272 0.1032 0.3965 3.7252 0.1032 -202.6
2 3.7252 0.1032 0.2432 5.6537 0.1032 34.1
3 5.6537 0.1032 0.3466 4.0832 0.1032 -38.5
4 4.0832 0.1032 0.2732 4.7214 0.1032 13.5
5 4.7214 0.1032 0.3114 4.3523 0.1032 -8.5
6 4.3523 0.1032 0.2912 4.5002 0.1032 3.3
7 4.5002 0.1032 0.2999 4.4425 0.1032 -1.3
8 4.4425 0.1032 0.2966 4.4639 0.1032 0.5
9 4.4639 0.1032 0.2978 4.4561 0.1032 -0.2
10 4.4561 0.1032 0.2974 4.4589 0.1032 0.1
11 4.4589 0.1032 0.2975 4.4579 0.1032 0
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Table 4. Detailed results from ATC-40 Procedure A analysis System 6 for El Centro (1940)
ground motion.

Iteration
No.

Di Ai ζ̂eq
D j Aj Difference

(%)
Comments

1 11.272 0.1733 0.371 3.5376 0.14251 -218.6 Start with elastic
response

2 3.5376 0.1733 0.05 11.726 0.1733 69.8
3 11.726 0.1733 0.3756 3.5146 0.14158 -233.6
4 3.5146 0.1733 0.05 11.726 0.1733 70
5 11.726 0.1733 0.3756 3.5146 0.14158 -233.6
6 3.5146 0.1733 0.05 11.726 0.1733 70 Indefinite oscillation

7 5 0.1733 0.1389 5.6491 0.1733 11.5 Iteration restarted
8 5.6491 0.1733 0.2019 4.856 0.1733 -16.3
9 4.856 0.1733 0.1227 6.1903 0.1733 21.6
10 6.1903 0.1733 0.2394 4.2884 0.17276 -44.3
11 4.2884 0.1733 0.05 11.726 0.1733 63.4
12 11.726 0.1733 0.3756 3.5146 0.14158 -233.6
13 3.5146 0.1733 0.05 11.726 0.1733 70
14 11.726 0.1733 0.3756 3.5146 0.14158 -233.6
15 3.5146 0.1733 0.05 11.726 0.1733 70 Failure to converge

16 5.3 0.1733 0.17 5.3711 0.1733 1.3 Iteration restarted
17 5.3711 0.1733 0.1768 5.2752 0.1733 -1.8
18 5.2752 0.1733 0.1675 5.4011 0.1733 2.3
19 5.4011 0.1733 0.1796 5.2299 0.1733 -3.3
20 5.2299 0.1733 0.163 5.4519 0.1733 4.1
21 5.4519 0.1733 0.1844 5.1522 0.1733 -5.8
22 5.1522 0.1733 0.1551 5.5307 0.1733 6.8
23 5.5307 0.1733 0.1915 5.0337 0.1733 -9.9
24 5.0337 0.1733 0.1426 5.6263 0.1733 10.5
25 5.6263 0.1733 0.1999 4.8902 0.1733 -15.1
26 4.8902 0.1733 0.1266 6.0294 0.1733 18.9
27 6.0294 0.1733 0.2296 4.3819 0.1733 -37.6
28 4.3819 0.1733 0.0616 11.077 0.1733 60.4
29 11.077 0.1733 0.3688 3.5484 0.14294 -212.2
30 3.5484 0.1733 0.05 11.726 0.1733 69.7
31 11.726 0.1733 0.3756 3.5146 0.14158 -233.6
32 3.5146 0.1733 0.05 11.726 0.1733 70
33 11.726 0.1733 0.3756 3.5146 0.14158 -233.6 Slow divergence
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Figure 6. Application of ATC-40 Procedure A to System 6 for El Centro (1940) ground
motion: (a) iterative procedure, and (b) convergence behavior.
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Examples: Design Spectrum

The ATC-40 Procedure A is next implemented to analyze systems with the excitation
specified by a design spectrum. For illustration we have selected the design spectrum of Fig. 7,
which is the median-plus-one-standard-deviation spectrum constructed by the procedures of
Newmark and Hall (1982), as described in Chopra (1995; Section 6.9). The systems analyzed
have the same Tn  as those considered previously but their yield strengths for the selected µ
values were determined from the design spectrum (Table 5). Implementation details are
presented next for selected systems and the final results for all systems in Table 6.
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Figure 7. Newmark-Hall elastic design spectrum.

The procedure is implemented for System 5 (Table 5).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and capacity
diagram in Fig. 8a.

2. Assume cm64.44%)5,0.1( == DDi .

3. 416.1164.44 =÷=µ .

4. ( ) 48.00.410.4637.0eq =÷−×=ζ ; instead use the maximum allowable value 0.45. For

45.0=ζeq  and Type A systems (Fig. 4), 77.0=κ  and ζκ+ζ=ζ eqeq
ˆ  45.077.005.0 ×+=

397.0= .
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5. The elastic demand diagram for 39.7% damping intersects the capacity diagram at
cm18.28Dj = (Fig. 8a).

6. DDD jij ÷−× )(100 = ( ) %4.5818.2864.4418.28100 −=÷−× >5% tolerance. Set =Di  28.18

cm and repeat Steps 3 to 6.

For the second iteration, cm18.28Di = , 52.216.1118.28 =÷=µ ,

( ) 38.052.2152.2637.0eq =÷−×=ζ , κ= 0.84, and 37.0ˆ
eq

=ζ . The intersection point

cm55.31=D j and the difference between Di  and D j  = 10.7% which is greater than the 5%

tolerance. Therefore, additional iterations are required; results of these iterations are summarized
in Table 7. The error becomes less than the 5% tolerance at the end of fourth iteration and the
procedure could have been stopped there. However, the procedure was continued till the error
became practically equal to zero. The deformation demand at the end of the iteration process is

cm44.30=D j .

Determined directly from the inelastic design spectrum, constructed by the procedures of
Newmark and Hall (1982), as described in Chopra (1995, Section 7.10), the “reference” value of
deformation is cm64.44=Dspectrum  and the discrepancy = ( ) 64.4464.4444.30100 ÷−× = -31.8%.

Fig. 8b shows the convergence behavior of the ATC-40 Procedure A for System 5.
Observe that the iterative procedure converges to a deformation value much smaller than the
“reference” value.

The procedure is next implemented for System 6 (Table 5).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and capacity
diagram in Fig. 9a.

2. Assume cm64.44%)5,5.0( == DDi .

3. 0.232.2264.44 =÷=µ .

4. ( ) 32.00.210.2637.0eq =÷−×=ζ . For 32.0eq =ζ  and Type A systems (Fig. 4), 87.0=κ and

33.032.087.005.0ˆ
eqeq

=×+=ζκ+ζ=ζ .

5. The elastic demand diagram for 33% damping intersects the capacity diagram at
cm56.18Dj = (Fig. 9a).

6. DDD jij ÷−× )(100 = ( ) %6.14056.1864.4456.18100 −=÷−×  > 5% tolerance. Set

cm56.18Di = and repeat Steps 3 to 6.

The results for subsequent iterations, summarized in Table 8, indicate that the procedure
fails to converge for this example. In the first iteration, the 33%-damped elastic demand diagram
intersects the capacity diagram in its linear-elastic region (Fig. 9a). In subsequent iterations, the
intersection point alternates between 13.72 cm and 89.28 cm (Table 8 and Fig. 9b). In order to
examine if the procedure would converge with a new starting point, the procedure was restarted
with cm28Di =  at iteration number 6. However, the procedure diverges very quickly as shown
by iterations 6 to 11 (Table 8 and Fig. 9b), ending in an alternating pattern.
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Table 5. Properties of example systems and their deformations from inelastic design
spectrum.

System Properties System Response
System Tn

(s)
wf y ÷ uy

(cm)
µ Dspectrum

(cm)
1 0.5995 3.7202 6 22.32
2 0.8992 5.5803 4 22.32
3

0.5

1.5624 9.6962 2 19.39
4 0.2997 7.4403 6 44.64
5 0.4496 11.160 4 44.64
6

1

0.8992 22.321 2 44.64

Table 6. Results from ATC-40 Procedure A analysis of six systems for design spectrum.

System Converged
(?)

Dapprox

(cm)
Dspectrum

(cm)
Discrepancy

(%)
1 No -- 22.32 --
2 No -- 22.32 --
3 No -- 19.39 --
4 No -- 44.64 --
5 Yes 30.44 44.64 -31.8
6 Yes 42.28 44.64 -5.3

Table 7. Detailed results ATC-40 Procedure A analysis of System 5 for design spectrum.

Iteration
No.

Di Ai ζ̂ eq
D j Aj Difference

(%)

1 44.64 0.4496 0.3965 28.18 0.4496 -58.4
2 28.18 0.4496 0.3664 31.55 0.4496 10.7
3 31.54 0.4496 0.3796 30.01 0.4496 -5.1
4 30.01 0.4496 0.3741 30.64 0.4496 2
5 30.64 0.4496 0.3764 30.37 0.4496 -0.9
6 30.36 0.4496 0.3754 30.48 0.4496 0.4
7 30.48 0.4496 0.3759 30.43 0.4496 -0.2
8 30.43 0.4496 0.3757 30.45 0.4496 0.1
9 30.45 0.4496 0.3757 30.44 0.4496 0
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Table 8. Detailed results ATC-40 Procedure A analysis of System 6 for design spectrum.

Iteration
No.

Di Ai ζ̂eq
D j Aj Difference

(%)
Comments

1 44.64 0.8992 0.3288 18.56 0.7475 -140.6 Start with elastic response
2 18.56 0.8992 0.0500 89.28 0.8992 79.2
3 89.28 0.8992 0.3965 13.72 0.5527 -550.7
4 13.72 0.8992 0.0500 89.28 0.8992 84.6
5 89.28 0.8992 0.3965 13.72 0.5527 -550.7 Indefinite oscillation

6 28.00 0.8992 0.1792 35.27 0.8992 20.6 Iteration restarted
7 35.27 0.8992 0.2705 23.10 0.8992 -52.7
8 23.10 0.8992 0.0715 71.67 0.8992 67.8
9 71.67 0.8992 0.3917 14.03 0.5653 -410.7
10 14.03 0.8992 0.0500 89.28 0.8992 84.3
11 89.28 0.8992 0.3965 13.72 0.5527 -550.7 Indefinite oscillation

12 29.00 0.8992 0.1967 32.29 0.8992 10.2 Iteration restarted
13 32.29 0.8992 0.2413 26.23 0.8992 -23.1
14 26.23 0.8992 0.1449 42.56 0.8992 38.4
15 42.56 0.8992 0.3189 19.34 0.7791 -120.1
16 19.34 0.8992 0.0500 89.28 0.8992 78.3
17 89.28 0.8992 0.3965 13.72 0.5527 -550.7
18 13.72 0.8992 0.0500 89.28 0.8992 84.6
19 89.28 0.8992 0.3965 13.72 0.5527 -550.7 Slow divergence
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PROCEDURE B

This procedure in the ATC-40 report is described herein as a sequence of steps:

1. Plot the capacity diagram.

2. Estimate the peak deformation demand Di . Initially assume %)5,( =ζ= TDD ni .

3. Compute ductility uD yi ÷=µ .

4. Compute equivalent period Teq  and damping ratio ζ̂eq
 from Eqs. (2) and (7), respectively.

5. Compute the peak deformation )ˆ,( ζeqeqTD  and peak pseudo-acceleration )ˆ,( ζeqeqTA of an

elastic SDF system with vibration properties Teq  and ζ̂eq
.

6. Plot the point with coordinates )ˆ,( ζeqeqTD  and )ˆ,( ζeqeqTA .

7. Check if the curve generated by connecting the point plotted in Step 6 to previously
determined, similar points intersects the capacity diagram. If not, repeat Steps 3-7 with a new
value of Di ; otherwise go to Step 8.

8. The earthquake-induced deformation demand is given by the D -value at the intersection
point.

Examples: Specified Ground Motion

Procedure B is implemented for the Systems 1 to 6 (Table 1). The final results are
summarized in Table 9; details are presented next. For a number of assumed values of µ (or D),
pairs of values )ˆ,( ζeqeqTD  and )ˆ,( ζeqeqTA  are generated (Tables 10 and 11). These pairs are

plotted to obtain the curve A-B in Fig. 10, wherein capacity diagrams for three systems are
shown together with the 5%-damped linear elastic demand diagram; the latter need not be
plotted. The intersection point between the curve A-B and the capacity diagram of a system gives
its deformation demand: cm536.3=D , cm075.3=D , and cm284.3=D  for Systems 1 to 3,
respectively (Fig. 10a); and cm922.7D = , cm454.4=D , and cm318.5=D  for Systems 4 to
6, respectively (Fig. 10b). In contrast, the exact deformations computed by RHA of the inelastic
systems are 4.654 cm, 4.402 cm, and 4.210 cm for Systems 1 to 3; and 10.55 cm, 10.16 cm, and
8.533 cm for Systems 4 to 6, indicating that the error in the approximate procedure ranges from –
22% to –56.2%. Observe that the curve A-B provides the information to determine the
deformation demand in several systems with the same Tn values but different yield strengths.

Procedure B always gives a unique estimate of the deformation, whereas, as noted earlier,
the iterative Procedure A may not always converge. If it does converge, the two procedures give
the same value of deformation (within round-off and interpolation errors) in the examples solved.



22

Table 9. Results from ATC-40 Procedure B analysis of six systems for El Centro ground
motion.

System Dapprox

(cm)
Dexact

(cm)
Discrepancy

(%)
1 3.536 4.654 -24.0
2 3.075 4.402 -30.1
3 3.284 4.210 -22.0
4 7.922 10.55 -24.9
5 4.453 10.16 -56.2
6 5.318 8.533 -37.7
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Table 10. Detailed results from ATC-40 Procedure B analysis of Systems 1 to 3 for El
Centro (1940) ground motion.

µ Teq ζ̂ eq
D A

1 0.5 0.05 5.6846 0.91599
1.1 0.5244 0.1079 4.411 0.64616
1.2 0.5477 0.1562 4.0093 0.53837
1.3 0.5701 0.197 3.7297 0.46229
1.4 0.5916 0.2292 3.5032 0.40321
1.5 0.6124 0.2539 3.3449 0.35933

1.55 0.6225 0.2646 3.2859 0.3416
1.5515 0.6228 0.2649 3.2842 0.3411
1.5531 0.6228 0.2649 3.2854 0.34085

1.6 0.6325 0.2743 3.228 0.3251
1.7 0.6519 0.2914 3.1162 0.29537
1.8 0.6708 0.3058 3.0093 0.26939
1.9 0.6892 0.3182 2.9207 0.2477

2 0.7071 0.3288 2.8739 0.23155
2.1 0.7246 0.338 2.898 0.22237
2.2 0.7416 0.3461 2.9204 0.2139
2.3 0.7583 0.3532 2.9412 0.20606
2.4 0.7746 0.3595 2.9605 0.19877
2.5 0.7906 0.365 2.9929 0.19291
2.6 0.8062 0.37 3.024 0.18742
2.7 0.8216 0.3745 3.0531 0.18221

2.7787 0.8335 0.3778 3.0747 0.1783
2.8 0.8367 0.3786 3.0804 0.17727
2.9 0.8515 0.3823 3.1058 0.17257

3 0.866 0.3856 3.1295 0.16809
3.1 0.8803 0.3887 3.1517 0.16382
3.2 0.8944 0.3914 3.1723 0.15974
3.3 0.9083 0.394 3.1992 0.15621
3.4 0.922 0.3964 3.2273 0.15295
3.5 0.9354 0.3965 3.2632 0.15023
3.6 0.9487 0.3965 3.2973 0.14759
3.7 0.9618 0.3965 3.3293 0.14499
3.8 0.9747 0.3965 3.359 0.14244
3.9 0.9874 0.3965 3.3868 0.13993

4 1 0.3965 3.4126 0.13747
4.1 1.0124 0.3965 3.4366 0.13506
4.2 1.0247 0.3965 3.4588 0.1327
4.3 1.0368 0.3965 3.4792 0.13038
4.4 1.0488 0.3965 3.5023 0.12826
4.5 1.0607 0.3965 3.528 0.12633

4.525 1.0636 0.3965 3.5342 0.12585
4.533 1.0645 0.3965 3.5362 0.1257



24

Table 11. Detailed results from ATC-40 Procedure B analysis of Systems 4 to 6 for El
Centro (1940) ground motion.

µ Teq ζ̂ eq
D A

1 1 0.05 11.272 0.45407
1.1 1.0488 0.1079 7.4536 0.27297
1.2 1.0954 0.1562 5.7066 0.19157

1.225 1.1068 0.167 5.4288 0.17852

1.2362 1.1119 0.1717 5.3182 0.17330
1.2375 1.1119 0.1717 5.3157 0.17304

1.3 1.1402 0.197 5.0373 0.15609
1.4 1.1832 0.2292 4.8741 0.14025
1.5 1.2247 0.2539 4.7401 0.12730
1.6 1.2649 0.2743 4.6154 0.11620
1.7 1.3038 0.2914 4.4969 0.10656

1.7384 1.3185 0.2972 4.4535 0.1032
1.8 1.3416 0.3058 4.3893 0.09823
1.9 1.3784 0.3182 4.5607 0.09670

2 1.4142 0.3288 4.7224 0.09512
2.1 1.4491 0.338 4.8831 0.09367
2.2 1.4832 0.3461 5.0397 0.09228
2.3 1.5166 0.3532 5.1901 0.09090
2.4 1.5492 0.3595 5.335 0.08955
2.5 1.5811 0.365 5.4748 0.08822
2.6 1.6125 0.37 5.6097 0.08692
2.7 1.6432 0.3745 5.7401 0.08564
2.8 1.6733 0.3786 5.8749 0.08452
2.9 1.7029 0.3823 6.0057 0.08343

3 1.7321 0.3856 6.1323 0.08234
3.1 1.7607 0.3887 6.2546 0.08128
3.2 1.7889 0.3914 6.3727 0.08023
3.3 1.8166 0.394 6.491 0.07924
3.4 1.8439 0.3964 6.6094 0.07831
3.5 1.8708 0.3965 6.742 0.07760
3.6 1.8974 0.3965 6.8714 0.07689
3.7 1.9235 0.3965 7.0005 0.07622
3.8 1.9494 0.3965 7.1297 0.07558
3.9 1.9748 0.3965 7.2543 0.07493

4 2 0.3965 7.3773 0.07430
4.1 2.0248 0.3965 7.501 0.07370
4.2 2.0494 0.3965 7.6197 0.07308
4.3 2.0736 0.3965 7.7332 0.07245
4.4 2.0976 0.3965 7.8442 0.07182

4.45 2.1095 0.3965 7.9008 0.07152

4.4688 2.114 0.3965 7.9217 0.07141
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Figure 10. Application of ATC-40 Procedure B for El Centro (1940) ground motion: (a)
Systems 1 to 3, and (b) Systems 4 to 6.
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Examples: Design Spectrum

Procedure B is implemented for the Systems 1 to 6 (Table 5). The results from this
procedure are summarized in Table 12 and illustrated in Fig. 11 where the estimated
deformations are noted; intermediate results are available in Tables 13 and 14. These
approximate values are compared in Table 12 against the values determined directly from the
inelastic design spectrum constructed by the procedure of Newmark and Hall (1982), as
described in Chopra (1995, Section 7.10); see Appendix B for details. Relative to these reference
values, the discrepancy ranges from –5.2% to –58.6% for the systems considered.

Table 12. Results from ATC-40 Procedure B analysis of six systems for design spectrum.

System Dapprox

(cm)
Dspectrum

(cm)
Discrepancy

(%)
1 10.46 22.32 -53.1
2 9.245 22.32 -58.6
3 11.51 19.39 -40.6
4 42.27 44.64 -5.2
5 30.45 44.64 -31.7
6 29.84 44.64 -33.1

Table 13. Detailed results from ATC-40 Procedure B analysis of Systems 1 to 3 for design
spectrum.

µ Teq ζ̂ eq
D A

1 0.5 0.05 16.794 2.7062
1.1 0.5244 0.1079 13.012 1.9061
1.2 0.5477 0.1562 11.332 1.5217

1.1871 0.5448 0.1504 11.51 1.5624
1.3 0.5701 0.197 10.328 1.2802
1.4 0.5916 0.2292 9.7547 1.1227
1.5 0.6124 0.2539 9.4602 1.0163
1.6 0.6325 0.2743 9.2924 0.9358

1.6567 0.6436 0.2843 9.2447 0.8992
1.7 0.6519 0.2914 9.2107 0.8730
1.8 0.6708 0.3058 9.1906 0.8227
1.9 0.6892 0.3182 9.2164 0.7816

2 0.7071 0.3288 9.2776 0.7475
2.1 0.7246 0.338 9.3664 0.7187
2.2 0.7416 0.3461 9.4776 0.6942
2.3 0.7583 0.3532 9.607 0.6731
2.4 0.7746 0.3595 9.7515 0.6547
2.5 0.7906 0.365 9.9087 0.6387
2.6 0.8062 0.37 10.077 0.6245
2.7 0.8216 0.3745 10.254 0.6120
2.8 0.8367 0.3786 10.439 0.6008

2.8123 0.8385 0.3791 10.463 0.5995
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Table 14. Detailed results from ATC-40 Procedure B analysis of Systems 4 to 6 for design
spectrum.

µ Teq ζ̂ eq
D A

1 1 0.05 44.642 1.7984
1.2 1.0954 0.1562 32.69 1.0974

1.3519 1.1627 0.2154 29.84 0.8892
1.4 1.1832 0.2292 29.411 0.8463
1.6 1.2649 0.2743 28.488 0.7173
1.8 1.3416 0.3058 28.32 0.6338

2 1.4142 0.3288 28.521 0.5745
2.2 1.4832 0.3461 28.926 0.5297
2.4 1.5492 0.3595 29.448 0.4943
2.6 1.6125 0.37 30.042 0.4655

2.7283 1.6517 0.3757 30.449 0.4496
2.8 1.6733 0.3786 30.679 0.4414

3 1.7321 0.3856 31.343 0.4209
3.2 1.7889 0.3914 32.022 0.4031
3.4 1.8439 0.3964 32.708 0.3875
3.6 1.8974 0.3965 33.648 0.3765
3.8 1.9494 0.3965 34.57 0.3665

4 2 0.3965 35.468 0.3572
4.2 2.0494 0.3965 36.344 0.3486
4.4 2.0976 0.3965 37.199 0.3406
4.6 2.1448 0.3965 38.035 0.3331
4.8 2.1909 0.3965 38.853 0.3261

5 2.2361 0.3965 39.654 0.3195
5.2 2.2804 0.3965 40.44 0.3133
5.4 2.3238 0.3965 41.21 0.3074
5.6 2.3664 0.3965 41.966 0.3019

5.6822 2.3837 0.3965 42.273 0.2997
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Figure 11. Application of ATC-40 Procedure B for elastic design spectrum: (a) Systems 1 to
3, and (b) Systems 4 to 6.
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EVALUATION OF ATC-40 PROCEDURES

SPECIFIED GROUND MOTION

The ATC-40 Procedure B is implemented for a wide range of system parameters and
excitations in two versions: (1) =κ 1, i.e., the equivalent viscous damping is given by Eqs. (4)
and (5) based on well-established principles; and (2) κ is given by Fig. 4, a definition based
primarily on judgment to account for different types of hysteretic behavior.

The yield strength of each elastoplastic system analyzed was chosen corresponding to an
allowable ductility µ :

wgAf yy )(= (8)

where w  is the weight of the system and Ay  is the pseudo-acceleration corresponding to the

allowable ductility and the vibration properties — natural period Tn  and damping ratio ζ — of
the system in its linear range of vibration. Recall that the ductility demand (computed by
nonlinear response history analysis) imposed by the selected ground motion on systems defined
in this manner will exactly equal the allowable ductility (Chopra, 1995; Section 19.1.1).

The peak deformation due to a selected ground motion, determined by the ATC-40
method, Dapprox , is compared in Fig. 12 against the “exact” value, Dexact , determined by

nonlinear RHA, and the percentage error in the approximate result is plotted in Fig. 13. These
figures permit several observations. The approximate procedure is not especially accurate. It
underestimates significantly the deformation for wide ranges of Tn  values with errors
approaching 50%, implying that the estimated deformation is only about half of the value
determined by nonlinear RHA. The approximate method gives larger deformation for short
period systems (Tn < 0.1 sec for µ = 2 and Tn < 0.4 sec for µ = 6) and the deformation does not
approach zero as Tn  goes to zero. This unreasonable discrepancy occurs because, for very short-
period systems with small yield strength, the Teq  has to shift to the constant-V region of the

spectrum before the capacity and demand diagrams can intersect (Appendix A). While inclusion
of the damping modification factor κ increases the estimated displacement, the accuracy of the
approximate results improves only marginally for the smaller values of µ. Therefore the κ factor
is not attractive, especially because it is based primarily on judgement.

Shown in Fig. 14 are the errors in the ATC-40 method, with the κ factor included, for six
different ground motions: (1) El Centro, S00E, 1940 Imperial Valley; (2) Corralitos, Chan-1, 90
deg, 1989 Loma Prieta; (3) Sylmar County Hospital Parking Lot, Chan-3, 360 deg, 1994
Northridge; (4) Pacoima Dam, N76W, 1971 San Fernando; (5) Lucerne Valley, S80W, 1992
Landers; and (6) SCT, S00E, 1985 Mexico City.  Observe that, contrary to intuition, the error
does not decrease consistently for smaller ductility. While the magnitude of the error and its
variation with Tn  depend on the excitation, the earlier observation that the error in the
approximate method is significant is supported by results for several ground motions.
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Figure 12. Comparison of deformations due to El Centro (1940) ground motion from
approximate procedure and nonlinear response history analysis: (a) µ = 2, and (b) µ = 6.
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Figure 13. Error in deformations due to El Centro (1940) ground motion computed by
approximate procedure: (a) µ = 2, and (b) µ = 6.
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Figure 14. Error in deformations computed by approximate procedure for six ground
motions.
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DESIGN SPECTRUM

The ATC-40 Procedure B is implemented for a wide range of Tn  and µ  values with the
excitation characterized by the elastic design spectrum of Fig. 7. The yield strength was defined
by Eq. (8) with Ay  determined from the inelastic design spectrum corresponding to the selected

ductility factor. The resulting approximate values of deformations will be compared in this
section with those determined directly from the design spectrum, as described next.

Given the properties Tn , ζ, f y and α of the bilinear hysteretic system and the elastic

design spectrum, the earthquake-induced deformation of the system can be determined directly
from the design spectrum. The peak deformation D of this system is given by

DD yµ= (9)

with the yield deformation defined by

A
T

D y
n

y 






π
=

2

2 (10)

where Ay  is the pseudo-acceleration related to the yield strength, f y , by Eq. (8). Putting Eqs.

(9) and (10) together gives

A
TD y

n 






π
µ=

2

2 (11)

The yield strength reduction factor is given by
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is the minimum yield strength required for the structure to remain elastic; A is the pseudo-
acceleration ordinate of the elastic design spectrum at ),( ζTn . Substituting Eq. (12) in Eq. (11)
gives

AT

R
D n

y








π
µ=

2

1
2 (14)

Equation (14) provides a convenient way to determine the deformation of the inelastic system
from the design spectrum. All that remains to be done is to determine µ for a given Ry ; the latter

is known from Eq. (12) for a structure with known f y .
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Presented in Fig. 15 are the deformations determined by Eq. 14 using three different
TR ny −µ−  equations: Newmark and Hall (1982); Krawinkler and Nassar (1992) for

elastoplastic systems; and Vidic, Fajfar and Fischinger (1994) for bilinear systems. The
equations describing these relationships are presented later in this report. Observe that the three
recommendations lead to similar results except for sec3.0<Tn , indicating that the inelastic
design spectrum is a reliable approach to estimate the earthquake-induced deformation of
yielding systems.
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Figure 15. Deformation of inelastic systems (µ= 4) determined from inelastic design spectra
using three TR ny −µ−  equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and
Vidic-Fajfar-Fischinger (VFF).

The deformation estimates by the ATC-40 method are compared in Fig. 16 with those
from inelastic design spectra presented in Fig. 15. Relative to these “reference” values, the
percentage discrepancy in the approximate result is plotted in Fig. 17. The results of Figs. 16 and
17 permit the following observations. The approximate procedure leads to significant
discrepancy, except for very long periods ( TT fn >  in Fig. 7). The magnitude of this discrepancy

depends on the design ductility and the period region. In the acceleration-sensitive )( TT cn <  and

displacement-sensitive )( TTT fd n <<  regions (Fig. 7), the approximate procedure significantly

underestimates the deformation; the discrepancy increases with increasing µ. In the velocity-
sensitive )( TTT dc n <<  region, the ATC-40 procedure significantly underestimates the

deformation for µ = 2 and 4, but overestimates it for µ = 8 and is coincidentally accurate for
µ = 6.
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In passing, note that the ATC-40 procedure is deficient relative to even the elastic design
spectrum in the velocity-sensitive and displacement-sensitive regions )( TT cn > . For Tn in these

regions, the peak deformation of an inelastic system can be estimated from the elastic design
spectrum, using the well-known equal-displacement rule (Veletsos and Newmark, 1960).
However, the ATC-40 procedure requires analyses of several equivalent linear systems and still
produces worse results.
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Figure 16. Comparison of deformations computed by ATC-40 procedure with those from
three different inelastic design spectra (µ = 4): (a) Newmark and Hall (1982), (b)
Krawinkler and Nassar (1992), and (c) Vidic, Fajfar and Fischinger (1994).
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Figure 17. Discrepancy in deformations computed by ATC-40 procedure relative to three
different inelastic design spectra: (a) Newmark and Hall (1982), (b) Krawinkler and Nassar
(1992), and (c) Vidic, Fajfar and Fischinger (1994).
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IMPROVED PROCEDURES

Presented next are two improved procedures that eliminate the errors (or discrepancies) in
the ATC-40 procedures, but retain their graphical appeal. Procedures A and B that are presented
are akin to ATC-40 Procedures A and B, respectively. The improved procedures use the well-
known constant-ductility design spectrum for the demand diagram, instead of the elastic design
spectrum for equivalent linear systems in ATC-40 procedures.

INELASTIC DESIGN SPECTRUM

A constant-ductility design spectrum is established by reducing the elastic design
spectrum by appropriate ductility-dependent factors that depend on Tn . The earliest
recommendation for the reduction factor, Ry  (Eq. 12), goes back to the work of Veletsos and
Newmark (1960), which is the basis for the inelastic design spectra developed by Newmark and
Hall (1982). Starting with the elastic design spectrum of Fig. 7 and these µ−Ry  relations for
acceleration-, velocity-, and displacement-sensitive spectral regions, the inelastic design
spectrum constructed by the procedure described in Chopra (1995, Section 7.10) is shown in Fig.
18a.

In recent years, several recommendations for the reduction factor have been developed
(Krawinkler and Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994; Riddell, Hidalgo, and Cruz,
1989; Tso and Naumoski, 1991; Miranda and Bertero, 1994). Based on two of these
recommendations, the inelastic design spectrum is shown in Figs. 18b and 18c. For a fixed µ = 2,
the inelastic spectra from Fig. 18 are compared in Fig. 19. The three spectra are very similar in
the velocity-sensitive region of the spectrum, but differ in the acceleration-sensitive region. An
improved procedure based on such inelastic design spectra is presented in two versions that
follow.

INELASTIC DEMAND DIAGRAM

The inelastic design spectra of Fig. 18 will be plotted in the A-D format to obtain the
corresponding demand diagrams. The peak deformation D of the inelastic system is given by Eq.
(11) where Ay  is known from Fig. 18 for a given Tn  and µ. Determined corresponding to the

three inelastic design spectra in Fig. 18, such data pairs (Ay ,D) are plotted to obtain the demand

diagram for inelastic systems (Fig. 20).
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Figure 18. Inelastic design spectra: (a) Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and Fischinger (1994).
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Figure 19. Pseudo-acceleration design spectrum for inelastic systems (µ= 2) using three
TR ny −µ−  equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and Vidic-Fajfar-

Fischinger (VFF).

PROCEDURE A

This procedure, which uses the demand diagram for inelastic systems (Fig. 20), will be
illustrated with reference to six elastoplastic systems defined by two values of Tn  = 0.5 and 1.0
sec and three different yield strengths, given by Eq. (8) corresponding to µ = 2, 4, and 6,
respectively. Superimposed on the demand diagrams are the capacity diagrams for three inelastic
systems with Tn  = 0.5 sec (Figs. 21a, 22a, and 23a) and Tn  = 1.0 sec (Figs. 21b, 22b, and 23b).

The yielding branch of the capacity diagram intersects the demand diagram for several µ values.
One of these intersection points, which remains to be determined, will provide the deformation
demand. At the one relevant intersection point, the ductility factor calculated from the capacity
diagram should match the ductility value associated with the intersecting demand curve.
Determined according to this criterion, the deformation for each system is noted in Figs. 21 to
23. Implementation of this procedure is illustrated for two systems.

Examples

The yield deformation of System 1 is uy = cm724.3 . The yielding branch of the capacity

diagram intersects the demand curves for µ = 1, 2, 4, 6, and 8 at 133.93 cm, 66.96 cm, 33.48 cm,
22.3 cm, and 16.5 cm, respectively (Fig. 21a). Dividing by uy , the corresponding ductility

factors are 133.93÷3.724=35.96 (which exceeds µ = 1 for this demand curve),
66.96÷3.724=17.98 (which exceeds µ = 2 for this demand curve), 33.48÷3.724=8.99 (which
exceeds µ = 4 for this demand curve), 22.3÷3.724=6 (which matches µ = 6 for this demand
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curve), and 16.5÷3.724=4.43 (which is smaller than µ = 8 for this demand curve). Thus, the
ductility demand is 6 and the deformation of System 1 is D = 22.3 cm.

For System 3, uy = cm681.9 . The yielding branch of the capacity diagram intersects the

demand curve for µ = 1 at 51.34 cm (Fig. 21a). The corresponding ductility factor is
51.34÷9.681=5.3, which is larger than the µ = 1 for this demand curve. The yielding branch of
the capacity diagram also intersects the demand curve for µ = 2 continuously from 9.681 cm to
25.2 cm, which correspond to ductility factors of 1 to 2.6. The intersection point at 19.29 cm
corresponds to ductility factor = 19.39÷9.681=2 which matches µ = 2 for this demand curve.
Thus, the ductility demand is 2 and the deformation of System 3 is D = 19.39 cm.
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Figure 20. Inelastic demand diagrams: (a) Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and Fischinger (1994).
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Figure 21. Application of improved Procedure A using Newmark-Hall (1982) inelastic
design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Figure 22. Application of improved Procedure A using Krawinkler-Nassar (1992) inelastic
design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Figure 23. Application of improved Procedure A using Vidic-Fajfar-Fischinger (1994)
inelastic design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Observe that for the presented examples, the ductility factor at the intersection point
matched exactly the ductility value associated with one of the demand curves because the f y

values were chosen consistent with the same µ values for which the demand curves have been
plotted. In general this is not the case and interpolation between demand curves for two •  values
would be necessary. Alternatively, the demand curves may be plotted at a finer •  interval
avoiding the need for interpolation.

Comparison with ATC-40 Procedure A

The improved procedure just presented gives the deformation value consistent with the
selected inelastic design spectrum (Table 15), while retaining the attraction of graphical
implementation of the ATC-40 Procedure A. Comparison of Figs. 21 (or 22 or 23) and 5
indicates that the two procedures are similar in the sense that the desired deformation is
determined at the intersection of the capacity diagram and the demand diagram. However, the
two procedures differ fundamentally in an important sense; the demand diagram used is
different: the constant-ductility demand diagram for inelastic systems in the improved procedure
(Figs. 21 to 23) versus the elastic demand diagram in ATC-40 Procedure A for equivalent linear
systems (Fig. 5).

Observe that equivalent linear systems are analyzed using the elastic design spectrum for
a range of damping values, wide enough to cover the large damping expected for equivalent
linear systems (Fig. 3). However, most existing rules for constructing elastic design spectra are
limited to ζ = 0 to 20% (Chopra, 1995, Section 6.9).

PROCEDURE B

This version of the improved procedure avoids construction of the inelastic design
spectrum. The peak deformation D of an inelastic system with properties Tn , ζ, and f y  is

determined by the following sequence of steps:

1. Plot the capacity diagram and the 5%-damped elastic demand diagram of Fig. 7 in A-D
format.

2. Assume the expected ductility demand µ; start with 1=µ .

3. Determine ),,( µζTA ny  from the inelastic design spectrum for the estimated µ and calculate

D from Eq. (14).

4. Plot the point with coordinates D and Ay .

5. Check if the curve generated by connecting similar points intersects the capacity diagram. If
not, repeat Steps 3 and 4 with larger values of µ; otherwise go to Step 6.

6. The earthquake-induced deformation demand D is given by the D-value at the intersection
point.
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Examples

This procedure is implemented for Systems 1 to 6 (Table 5) with the earthquake
excitation characterized by the elastic design spectrum of Fig. 7. The results are summarized in
Table 15; intermediate results are available in Tables 16 and 17. The inelastic design spectrum of
Newmark and Hall (1982) provides the Dy , Ay  pairs for Tn = 0.5 sec and 1.0 sec in Tables 16

and 17, respectively; and D is determined by Step 3. The (D, Ay ) pairs are plotted to obtain the

curve A-B in Figs. 24a and 24b. The 5%-damped elastic demand diagram and capacity diagrams
for the selected systems are also shown; however, a plot of the elastic demand diagram is not
essential to the procedure. The intersection point between the curve A-B and the capacity
diagram gives the system deformation: cm32.22=D , cm32.22=D  and cm39.19=D  for
Systems 1, 2 , and 3, respectively (Fig. 24a) and cm64.44=D for Systems 4 to 6 (Fig. 24b). In
the latter case, the deformation of the inelastic system is independent of the yield strength and
equals that of the corresponding linear system because Tn  is in the velocity-sensitive spectral
region. This is the well-known equal displacement rule.

Comparison with ATC-40 Procedure B

The improved procedure just presented gives the deformation value consistent with the
inelastic design spectrum, while retaining the attraction of a graphical implementation of ATC-
40-Procedure B. Comparison of Figs. 24 and 11 indicates that the two procedures are graphically
similar. However, they differ fundamentally in one important sense. Each point on the curve A-B
(Fig. 24) in the improved procedure is determined by analyzing an inelastic system. In contrast
the ATC-40-Procedure B gives a point on the curve A-B (Fig. 11) by analyzing an equivalent
linear system.

ALTERNATIVE DEFINITION OF EQUIVALENT DAMPING

We digress briefly to observe that the capacity spectrum method based on the elastic
design spectrum has been modified to use an alternative definition of equivalent viscous
damping, ζeq  (Freeman, 1998; WJE, 1996).  This ζeq  is derived by equating the peak

deformation of the equivalent linear system, determined from the elastic design spectrum
(Chopra, 1995; Section 6.9), to the peak deformation of the yielding system, determined from the
inelastic design spectrum (Chopra, 1995; Section 7.10).  The capacity spectrum method,
modified in this way, should give essentially the same deformation as the improved procedure.
However, we see little benefit in making this detour when the well-known constant-ductility
inelastic design spectra can be used directly in the improved procedure.
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Table 15. Results from Improved Procedure analysis of six systems for design spectrum.

System Dimproved

(cm)
Dspectrum

(cm)
Discrepancy

(%)
1 22.32 22.32 0
2 22.32 22.32 0
3 19.39 19.39 0
4 44.64 44.64 0
5 44.64 44.64 0
6 44.64 44.64 0

Table 16. Detailed results from improved Procedure B analysis of Systems 1 to 3 for design
spectrum.

µ Dy

(cm)
Ay

(g)
D

(cm)
1 16.794 2.706 16.794

1.25 13.713 2.21 17.141
1.5 11.875 1.914 17.813

1.75 10.622 1.712 18.588
2 9.696 1.562 19.392

2.25 8.977 1.447 20.198
2.5 8.397 1.353 20.993

2.75 7.917 1.276 21.772
3 7.44 1.199 22.321

3.25 6.868 1.107 22.321
3.5 6.377 1.028 22.321

3.75 5.952 0.959 22.321
4 5.58 0.8992 22.321

4.25 5.252 0.846 22.321
4.5 4.96 0.799 22.321

4.75 4.699 0.757 22.321
5 4.464 0.719 22.321

5.25 4.252 0.685 22.321
5.5 4.058 0.654 22.321

5.75 3.882 0.626 22.321
6 3.72 0.5995 22.321

6.25 3.571 0.575 22.321
6.5 3.434 0.553 22.321

6.75 3.307 0.533 22.321
7 3.189 0.514 22.321
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Table 17. Detailed results from improved Procedure B analysis of Systems 4 to 6 for design
spectrum.

µ Dy

(cm)
Ay

(g)
D

(cm)
1 44.642 1.798 44.642

1.25 35.714 1.439 44.642
1.5 29.761 1.199 44.642

1.75 25.51 1.028 44.642
2 22.321 0.8992 44.642

2.25 19.841 0.799 44.642
2.5 17.857 0.719 44.642

2.75 16.233 0.654 44.642
3 14.881 0.599 44.642

3.25 13.736 0.553 44.642
3.5 12.755 0.514 44.642

3.75 11.905 0.48 44.642
4 11.161 0.4496 44.642

4.25 10.504 0.423 44.642
4.5 9.92 0.4 44.642

4.75 9.398 0.379 44.642
5 8.928 0.36 44.642

5.25 8.503 0.343 44.642
5.5 8.117 0.327 44.642

5.75 7.764 0.313 44.642
6 7.44 0.2997 44.642

6.25 7.143 0.288 44.642
6.5 6.868 0.277 44.642

6.75 6.614 0.266 44.642
7 6.377 0.257 44.642
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Figure 24. Application of improved Procedure B using Newmark-Hall (1982) inelastic
design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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IMPROVED PROCEDURE: NUMERICAL VERSION

BASIC CONCEPT

The improved procedures presented in the preceding section were implemented
graphically, in part, to highlight the similarities and differences relative to the Nonlinear Static
Procedure in the ATC-40 report. The graphical implementation of the first version of the
improved procedure is especially attractive as the desired earthquake-induced deformation is
determined at the intersection of the capacity and demand diagrams. However, the graphical
feature is not essential and the procedure can be implemented numerically. Such a procedure
using TR ny −µ−  equations is presented in this section.

Ry – µ −Tn EQUATIONS

The TR ny −µ−  equations for elastoplastic systems, consistent with the Newmark-Hall

inelastic design spectra are (Chopra, 1995; Section 7.10):
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where

( ) ( )TTTT aban lnln=β (15b)

and the T and,, cTT ba  are defined in Fig. 7 and Tc'  is the period where the constant-A and
constant-V branches of the inelastic design spectrum intersect (Chopra, 1995, Section 7.10).
Recasting Eq. (15) gives µ as a function of Ry :
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For a given Ry , µ can be calculated for all Tn  except for TTT cnb << , wherein two possibilities

need to be checked  since Tc'  itself depends on µ (see Appendix B).

Based on the earthquake response of bilinear systems, Krawinkler and Nassar (1992)
have developed the following TR ny −µ−  equations:
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( )[ ]11 /1+−µ= cR
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y
(17)

where

( )
T

b

T

T
Tc

n
a
n

a
n

n +
+

=α
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,
(18)

and the numerical coefficients depend on the slope kα  of the yielding branch (Fig. 2a): a = 1
and b = 0.42 for α = 0% ; a = 1 and b = 0.37 for  α = 2% ; a = 0.8 and b = 0.29 for α = 10% .
Recasting Eq. (18) provides µ as a function of Ry :

( )1
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1 −+=µ R
c

c
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(19)

For given values of Ry  and α, µ can be calculated from Eq. (19).

Based on the earthquake response of bilinear systems, Vidic, Fajfar and Fischinger
(1994) have developed the following TR ny −µ−  equations:
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where

TTT cco ≤µ= 2.075.0 (21)

Recasting Eq. (20) gives µ as a function of Ry :
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Since To  in Eq. (22) depends on µ (Eq. 21), the value of µ corresponding to a given Ry  is

determined by solving a nonlinear equation iteratively unless the simpler relation, TT co = , is
assumed.

Figure 25 shows plots of Ry  v’s Tn  for selected values of µ based on Eqs. (15), (17) for

α = 0, and (20). In Fig. 26, µ is plotted against Tn  from Eqs. (16), (19) for α = 0, and (22).
Observe the similarity among the three sets of results, indicating consensus among different
researchers.

The peak deformation of systems 1 to 6 (Table 5) are determined from Eq. (14) using
TR ny −µ−  relations of Eq. (16), (19), and (22). Detailed calculations are presented in Appendix

B and the results are summarized in Table 18.  Observe that the deformation  values computed
using TR ny −µ−  equations are identical to those determined by the graphical procedure (Figs.

21 to 23) except for round-off differences.
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Figure 25. Variation of Ry  with Tn  for selected ductility values based on three different
sources: Newmark and Hall (1982), Krawinkler and Nassar (1992), and Vidic, Fajfar, and
Fischinger (1994).
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Figure 26. Variation of µ with Tn  for selected Ry  values based on three different sources:
Newmark and Hall (1982), Krawinkler and Nassar (1992), and Vidic, Fajfar, and
Fischinger (1994).
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Table 18. Results from numerical implementation of improved procedure using three TR ny −µ− equations.

System Properties Newmark-Hall Krawinkler-Nassar Vidic et al.
System Tn

(s)

A

(g)

Ay

)( wf y ÷
(g)

uD yy =

(cm)

Ry

)( AA y÷
µ

(Eq. 16)
D

)( Dy×µ
(cm)

µ
(Eq. 19)

D
)( Dy×µ

(cm)

µ
(Eq. 22)

D
)( Dy×µ

(cm)

1 0.5995 3.7202 4.51 5.99 22.29 5.14 19.11 4.69 17.43
2 0.8992 5.5803 3.01 3.99 22.29 3.25 18.15 3.05 17.02
3

0.5 2.7062

1.5624 9.6962 1.73 2.00 19.39 1.77 17.20 1.71 16.54
4 0.2997 7.4403 6.00 6.00 44.64 5.56 41.37 4.97 36.94
5 0.4496 11.160 4.00 4.00 44.64 3.80 42.46 3.32 37.00
6

1 1.7984

0.8992 22.321 2.00 2.00 44.64 1.97 43.97 1.73 38.58
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CONSISTENT TERMINOLOGY

Many new terms that have been introduced in connection with simplified analysis of
inelastic systems are examined in this section and, where necessary, better terminology is
recommended:

1. Demand Spectrum. The term “spectrum” has traditionally implied a function of frequency or
period. For example, response spectrum is a plot of the peak value of a response quantity as a
function of the natural vibration period (or frequency) of the SDF system. Another example:
Fourier Spectrum of ground acceleration is a plot of the amplitude of the Fourier transform
of the excitation against exciting frequency. The “Response Spectrum” terminology was
introduced in the 1930s within the context of earthquake engineering, whereas the “Fourier
Spectrum” terminology has existed for much longer. Given this background, “spectrum” is
inappropriate to describe a plot of pseudo-acceleration v's deformation. The terminology
Demand Diagram has therefore been used in this investigation.

2. Capacity Spectrum. For the same reasons, the recommended terminology is Capacity
Diagram.

3. Acceleration-Displacement Response Spectrum (ADRS) Format. For the same reasons, the
recommended terminology is A-D format.

4. Nonlinear Static Procedure (NSP). The capacity diagram is determined by nonlinear static
analysis of the structure, but the demand diagram is determined by dynamic analysis.
Because the NSP involves use of both diagrams, the NSP terminology is inappropriate and
the suggested alternative is Simplified Dynamic Analysis.

5. Modal Participation Factor. This traditional terminology forΓn  (Eq. 1) implies that it is a
measure of the degree to which the nth mode participates in the response. However, this is
misleading because Γn  is not independent of how the mode is normalized, nor a measure of
the modal contribution to a response quantity (Chopra, 1995; section 13.1).

CONCLUSIONS

This investigation of capacity-demand-diagram methods to estimate the earthquake-
induced deformation of inelastic SDF systems has led to the following conclusions:

1. Based on the belief that the deformation of an inelastic system can be estimated by an
iterative method requiring analysis of a sequence of equivalent linear systems, the ATC-40
Procedure A did not converge for some of the systems analyzed. It converged in many cases
but not to the exact deformation determined by nonlinear response history analysis of the
inelastic system, nor to the value determined from the inelastic design spectrum. Thus,
convergence of this iterative procedure is deceptive because it can leave the erroneous
impression that the calculated deformation is accurate. This approximate procedure therefore
does not meet the basic requirement of a rational iterative procedure: it should always
converge to the “exact” result after a sufficient number of iterations.
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2. The ATC-40 Procedure B always gives a unique value of deformation, the same as
determined by Procedure A if it converged.

3. The peak deformation of inelastic systems, determined by ATC-40 procedures, when
compared against results of nonlinear response history analysis for several ground motions
were shown to be inaccurate. The approximate procedure underestimates significantly the
deformation for a wide range of Tn  values with errors approaching 50%, implying that the
estimated deformation is only about half of the “exact” value.

4. The damping modification factor, κ, in ATC-40 procedures improves the deformation
estimate only marginally. Therefore the κ factor is not attractive, especially because it is
based primarily on judgement.

5. The ATC-40 procedures were implemented for a wide range of Tn  and µ values with the
excitation characterized by an elastic design spectrum. The resulting estimate of deformation
for the inelastic system was compared with the deformation determined from the inelastic
design spectrum using three different TR ny −µ−  equations (Newmark and Hall, 1982;

Krawinkler and Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994), all of which provided
similar results. Relative to these “reference” values, the approximate procedure significantly
underestimates the deformation for a wide range of Tn  and µ values.

6. The ATC-40 procedures are deficient relative to even the elastic design spectrum in the
velocity-sensitive and displacement-sensitive regions of the spectrum. For Tn  in these
regions, the peak deformation of an inelastic system can be estimated from the elastic design
spectrum using the well-known equal displacement rule. However, the approximate
procedure requires analyses of several equivalent linear systems and still produces worse
results.

7. An improved capacity-demand-diagram method that uses the well-known constant-ductility
design spectrum for the demand diagram has been developed and illustrated by examples.
When both capacity and demand diagrams are plotted in the A-D format, the yielding branch
of the capacity diagram intersects the demand curves for several µ values. The deformation is
given by the one intersection point where the ductility factor calculated from the capacity
diagram matches the value associated with the intersecting demand curve. This method gives
the deformation value consistent with the selected inelastic design spectrum, while retaining
the attraction of graphical implementation of the ATC-40 methods.

8. One version of the improved method is graphically similar to ATC-40 Procedure A.
However, the two differ fundamentally in an important sense; the demand diagram used is
different: the constant-ductility demand diagram for inelastic systems in the improved
procedure versus the elastic demand diagram in Procedure A for equivalent linear systems.

9. A second version of the improved method is graphically similar to ATC-40 Procedure B.
However the two differ fundamentally in one important sense. Each point on curve A-B is
determined by analyzing an inelastic system in the improved procedure (Fig. 24) but an
equivalent linear system in Procedure B (Fig. 12).

10. The improved method can be conveniently implemented numerically if its graphical features
are not important to the user. Such a procedure, based on equations relating Ry  and µ for
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different Tn  ranges, has been presented. It has been illustrated by examples using three
different TR ny −µ−  relations (Newmark and Hall, 1982; Krawinkler and Nassar, 1992;

Vidic, Fajfar, and Fischinger, 1994). The graphical and numerical implementations of the
improved method are shown to give essentially identical values for deformation.

11. The new terminology that has been introduced in recent years in connection with simplified
analysis of inelastic systems has been examined and, where necessary, better terminology
recommended:

(a) The term “spectrum” implies a function of frequency or period (e.g., response spectrum
or Fourier spectrum) and is therefore inappropriate to describe a plot of pseudo-
acceleration versus deformation. The recommended terminology is Demand Diagram and
Capacity Diagram instead of Demand Spectrum and Capacity Spectrum.

(b) Acceleration-Displacement Response Spectrum (ADRS) Format is inappropriate for the
same reason and A-D Format is preferable.

(c) Nonlinear Static Procedure (NSP) is a misleading term because the NSP uses a demand
diagram determined by dynamic analysis. The suggested alternative is Simplified
Dynamic Analysis.
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NOTATION

α strain hardening ratio

a constant used in Krawinkler and Nassar TR ny −− µ  equations

β constant used in Newmark and Hall TR ny −− µ  equations

A pseudo-acceleration spectrum ordinate

Ai ( ) DT in/2 2π , pseudo-acceleration corresponding to Di

Aj ( ) DT jn/2 2π , pseudo-acceleration corresponding to D j

Ay ( ) DT yn/2 2π , pseudo-acceleration corresponding to yield deformation Dy

b constant used in Krawinkler and Nassar TR ny −− µ  equations

c variable used in Krawinkler and Nassar TR ny −− µ  equations

D deformation spectrum ordinate

Dapprox peak deformation computed from approximate procedure

Dexact exact peak deformation determined by nonlinear response history analysis

Dspectrum exact peak deformation determined by inelastic design spectrum

Di deformation estimate at the beginning of an iteration

D j deformation estimate at the end of an iteration

Dy yield deformation = uy

ED energy dissipated in inelastic system (= area of hysteresis loop)

ES strain energy of the equivalent linear system

φ1 fundamental mode

φ 1j jth floor element of the fundamental mode φ1

f o minimum strength required for a system to remain elastic

f y yield strength

g acceleration due to gravity

Γ1 fundamental mode factor defined by Eq. (1)

k initial elastic stiffness of the inelastic system

ksec secant stiffness of the equivalent linear system
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κ damping modification factor specified in ATC-40

m mass of the system

mj lumped mass at the jth floor level

M *
1 effective modal mass for the fundamental vibration mode

N number of floors

µ ductility factor

Ry yield reduction factor

TTT
TTTT

fed

ccba

,,
,,,, ' periods that define spectral regions

To transition period used in Vidic, Fajfar, and Fischinger TR ny −− µ  equations

Teq equivalent vibration period
Tn natural vibration period
u deformation

uuu gogogo ��� ,, peak ground displacement, velocity, and acceleration
um peak deformation of inelastic system
uy yield displacement
V y pseudo-velocity corresponding to yield deformation Dy

w weight of the system
ζ viscous damping ratio of linearly elastic system
ζeq equivalent viscous damping ratio

ζ̂eq
viscous damping used in equivalent linear procedures
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APPENDIX A. DEFORMATION OF VERY-SHORT PERIOD SYSTEMS BY ATC-40
PROCEDURE B

Consider an elastoplastic system with the following properties: sTn 1.0= , ζ = 5%,
wf y 2659.0= , cm066.0=uy . The deformation demand of this system computed from ATC-40

Procedure B is cm267.2=D (Fig. A.1a) and the values of sTeq 5861.0= and 397.0ˆ =ζeq
. The

“exact” deformation of this system computed from nonlinear RHA is 0.3944 cm and the error is
%.4753944.0)3944.0267.2(100 =÷−×  Clearly ATC-40 Procedure B leads to unreasonably

large error for such a system.

Figure A.1b shows the close-up view of the intersection between curve A-B and the
capacity diagram wherein the demand diagrams for 5% and 39.7% damping are also included.
Observe that the demand diagram for 39.7% damping also passes through the intersection point
between curve A-B and the capacity diagram. This figure leads to the following observations.

The curve A-B can be divided into three distinct segments. Initially the curve is very
steep, it then becomes essentially flat, and finally it begins to move downward slowly. Since the
capacity of the selected system is lower than the flat portion of the curve A-B, the intersection
between the capacity diagram and the curve A-B does not occur till the third segment. On the
39.7% demand curve, the intersection occurs past the constant pseudo-acceleration region of the
spectrum. This implies that even though the initial elastic period of the system is in the very-
short period region, the intersection would occur in the constant-V region if the capacity of the
system is smaller than the pseudo-acceleration value in the constant-A region of the response
spectrum corresponding to 397.0ˆ =ζeq

. As a result, the equivalent period at this intersection

point would have to be significantly larger than the initial elastic period (for the selected system
sTn 1.0=  and sTeq 5861.0= ) which in turn would lead to large deformation demand.
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Figure A.1. ATC-40 Procedure B applied to a system with Tn = 0.1s and Ay  = 0.2659 g: (a)
deformation demand; and (b) close-up view near the intersection between the demand and
capacity diagrams.
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 APPENDIX B: EXAMPLES USING TR ny −− µ  EQUATIONS

SYSTEM 1

Consider an elastoplastic system with the following properties: sTn 5.0= , ζ = 5%,

gwfAy y
5995.0=÷= . The pseudo-acceleration for linear-elastic system with sTn 5.0= , ζ = 5%

is gA 7062.2= . For this system, ( ) gATuD ynyy ××π== 2 2 ( ) 9805995.05.02 2 ××π=  = 3.7202

cm and .51.45995.07062.2 =÷=Ry

Newmark-Hall Equation (Eq. 16)

The periods corresponding to various regions of the Newmark-Hall design spectrum are
sTa 33/1= , sTb 125.0= , and sTc 6634.0= ; Tc'  is unknown at this time because it depends on

µ that is yet to be determined. Since Tc'  is unknown, it is not clear which equation — the third or

the fourth in Eq. (16) — should be used to determine µ. Assuming that TTT cnb '<< , gives

( ) ( ) 67.10251.4121 22 =÷+=÷+=µ Ry . For this value of µ, µ−µ= 12' TT cc

2804.067.10167.1026634.0 =−×= s. Clearly the assumption that TTT cnb '<<  is not correct.
Therefore, we must use the available equation for TTT cnc <<' , which gives TTR ncy ÷×=µ

99.55.06634.051.4 =÷×= . For this value of µ, 99.5199.526634.0' −×=Tc  = 0.3674 s and
the assumption that TTT cnb '<<  is valid. The deformation demand 7202.399.5 ×=D = 22.29
cm.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behavior, a=1 and b=0.42. Then
( ) 1733.15.042.05.015.0 =÷++÷=c  (Eq. 18) and ( ) ( )151.41733.111 1733.1 −×÷+=µ  = 5.14.

The deformation demand 7202.314.5 ×=D = 19.11 cm.

Vidic-Fajfar-Fischinger Equation (Eq. 22)

Since µ is unknown at this time, To  (Eq. 21) can not be determined at this time. Assume
that sTT co 6634.0== (Fajfar 1998), TsT on <= 5.0 .  The first of the two equations in Eq. (22)

then gives ( )( )[ ] 69.4151.45.06634.074.01 053.1 =−×+=µ . The deformation demand =D
7202.369.4 × = 17.43 cm.

SYSTEM 2

Consider an elastoplastic system with the following properties: sTn 5.0= , ζ = 5%,

gwfAy y
8992.0=÷= . The pseudo-acceleration for linear-elastic system with sTn 5.0= , ζ = 5%
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is gA 7062.2= . For this system, ( ) gATuD ynyy ××π== 2 2 ( ) 9808992.05.02 2 ××π=  = 5.5803

cm and .01.38992.07062.2 =÷=Ry

Newmark-Hall Equation (Eq. 16)

Assuming that TTT cnb '<< , gives ( ) 03.5201.31 2 =÷+=µ . For this value of µ, Tc' =

3970.003.5/103.526634.0 =−××  s. Clearly the assumption that TTT cnb '<<  is not correct.
Therefore, we must use the available equation for TTT cnc <<' , which gives µ

99.35.06634.001.3 =÷×= . For this value of µ, 99.3199.326634.0' −×=Tc  = 0.4393 s and
the assumption that TTT cnb '<<  is valid. The deformation demand 5803.599.3 ×=D = 22.29
cm.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behavior, a=1 and b=0.42. Then
( ) 1733.15.042.05.015.0 =÷++÷=c  (Eq. 20) and ( ) ( )101.31733.111 1733.1 −×÷+=µ  = 3.25.

The deformation demand 5803.525.3 ×=D = 18.15 cm.

Vidic-Fajfar-Fischinger Equation (Eq. 22)

Assuming that sTT co 6634.0==  and using the first of the two equations in Eq. (22),

gives ( )( )[ ] 05.3101.35.06634.074.01 053.1 =−×+=µ . The deformation demand
=D 5803.505.3 × = 17.02 cm.

SYSTEM 3

Consider an elastoplastic system with the following properties: sTn 5.0= , ζ = 5%,

gwfAy y
5624.1=÷= . The pseudo-acceleration for linear-elastic system with sTn 5.0= , ζ = 5%

is gA 7062.2= . For this system, =Dy ( ) 9805624.15.02 2 ××π  = 9.6962 cm and

.73.15624.17062.2 =÷=Ry

Newmark-Hall Equation (Eq. 16)

Assuming that TTT cnb '<< , gives ( ) 0.2273.11 2 =÷+=µ . For this value of µ, Tc' =

5745.00.2/10.226634.0 =−×× s and the assumption that TTT cnb '<<  is valid. The
deformation demand 6962.90.2 ×=D = 19.39 cm.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behavior, a=1 and b=0.42. Then
( ) 1733.15.042.05.015.0 =÷++÷=c  (Eq. 20) and ( ) ( )173.11733.111 1733.1 −×÷+=µ  = 1.77.

The deformation demand 6962.977.1 ×=D = 17.20 cm.
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Vidic-Fajfar-Fischinger Equation (Eq. 22)

Assuming that sTT co 6634.0==  and using the first of the two equations in Eq. (22),

gives ( )( )[ ] 71.1173.15.06634.074.01 053.1 =−×+=µ . The deformation demand
=D 6962.971.1 × = 16.54 cm.

SYSTEMS 4 TO 6

Consider an elastoplastic systems with the following properties: sTn 1= , ζ = 5%,
gggAy 8992.0and,4496.0,2997.0= for Systems 4, 5, and 6, respectively. The pseudo-

acceleration for linear-elastic system with sTn 1= , ζ = 5% is gA 7984.1= . For these system,

Dy  = 7.4403 cm, 11.160 cm, and 22.321 cm, and corresponding values of Ry  = 6, 4, and 2.

Newmark-Hall Equation (Eq. 16)

For TT cn > , Ry=µ = 6 for System 4, 4 for System 5, and 2 for System 6 which gives

DD y×µ= = 44.64 cm for all these examples.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behavior, a=1 and b=0.42. Then
( ) 92.00.142.00.110.1 =÷++÷=c  (Eq. 18). The values of µ  for the three Systems are 5.56,

3.80, and 1.97 which give deformation demand D = 41.37 cm, 42.46 cm, and 43.97 cm.

Vidic-Fajfar-Fischinger Equation (Eq. 22)

For TT on > , values of µ  for the three Systems are 4.97, 3.32, and 1.73 which give
deformation demand =D 36.94 cm, 37.0 cm, and 38.58 cm.


