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ABSTRACT

The ATC-40 and FEMA-274 documents contain simplified nonlinear analysis procedures
to determine the displacement demand imposed on a building expected to deform inelastically.
The Nonlinear Static Procedure in these documents, based on the capacity spectrum method,
involves several approximations: The lateral force distribution for pushover analysis and
conversion of these results to the capacity diagram are based only on the fundamental vibration
mode of the elastic system. The earthquake-induced deformation of an inelastic SDF system is
estimated by an iterative method requiring analysis of a sequence of equivalent linear systems,
thus avoiding the dynamic analysis of the inelastic SDF system. This last approximation is first
evaluated in this report, followed by the development of an improved simplified analysis
procedure, based on capacity and demand diagrams, to estimate the peak deformation of inelastic
SDF systems.

Several deficiencies in ATC-40 Procedure A are demonstrated. This iterative procedure
did not converge for some of the systems analyzed. It converged in many cases, but to a
deformation much different than dynamic (nonlinear response history or inelastic design
spectrum) analysis of the inelastic system. The ATC-40 Procedure B always gives a unique value
of deformation, the same as that determined by Procedure A if it converged.

The peak deformation of inelastic systems determined by ATC-40 procedures are shown
to be inaccurate when compared against results of nonlinear response history analysis and
inelastic design spectrum analysis. The approximate procedure underestimates significantly the
deformation for a wide range of periods and ductility factors with errors approaching 50%,
implying that the estimated deformation is about half the “exact” value.

Surprisingly, the ATC-40 procedure is deficient relative to even eflastic design
spectrum in the velocity-sensitive and displacement-sensitive regions of the spectrum. For
periods in these regions, the peak deformation of an inelastic system can be estimated from the
elastic design spectrum using the well-known equal displacement rule. However, the
approximate procedure requires analyses of several equivalent linear systems and still produces
worse results.

Finally, an improved capacity-demand-diagram method that uses the well-known
constant-ductility design spectrum for the demand diagram has been developed and illustrated by
examples. This method gives the deformation value consistent with the selected inelastic design
spectrum, while retaining the attraction of graphical implementation of the ATC-40 methods.
One version of the improved method is graphically similar to ATC-40 Procedure A whereas a
second version is graphically similar to ATC-40 Procedure B. However, the improved
procedures differ from ATC-40 procedures in one important sense. The demand is determined by
analyzing an inelastic system in the improved procedure instead of equivalent linear systems in
ATC-40 procedures.

The improved method can be conveniently implemented numerically if its graphical
features are not important to the user. Such a procedure, based on equationsRglatiagt

for different T, ranges, has been presented, and illustrated by examples using three different
Ry,—H—T, relations.
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INTRODUCTION

A major challenge to performance-based seismic design and engineering of buildings is
to develop simple, yet effective, methods for designing, analyzing and checking the design of
structures so that they reliably meet the selected performance objectives. Needed are analysis
procedures that are capable of predicting the demands — forces and deformations — imposed by
earthquakes on structures more realistically than has been done in building codes. In response to
this need, simplified, nonlinear analysis procedures have been incorporated in the ATC-40 and
FEMA-274 documents (Applied Technology Council, 1996; FEMA, 1997) to determine the
displacement demand imposed on a building expected to deform inelastically.

The Nonlinear Static Procedure in these documents is based on the capacity spectrum
method originally developed by Freeman et al. (1975) and Freeman (1978). It consists of the
following steps:

1. Develop the relationship between base shégarand roof (Nth floor) displacementiy
(Fig. 1a), commonly known as the pushover curve.

2. Convert the pushover curve to a capacity diagram, (Fig. 1b), where

: % mo,
r1=%1mjcp” MI=—D%1 s @)
jZlmj q’?l jZlmj qﬁl

and m; = lumped mass at the jth floor leveg,, is the jth-floor element of the fundamental

mode ¢, N is the number of floors, and/; is the effective modal mass for the
fundamental vibration mode.

3. Convert the elastic response (or design) spectrum from the standard pseudo-acceferation,
versus natural period;, , format to theA— D format, whereD is the deformation spectrum

ordinate (Fig. 1c).

4. Plot the demand diagram and capacity diagram together and determine the displacement
demand (Fig. 1d). Involved in this step are dynamic analyses of a sequence of equivalent
linear systems with successively updated values of the natural vibration ppgocand

equivalent viscous dampin@éq (to be defined later).

5. Convert the displacement demand determined in Step 4 to global (roof) displacement and
individual component deformation and compare them to the limiting values for the specified
performance goals.

Approximations are implicit in the various steps of this simplified analysis of an inelastic
MDF system. Implicit in Steps 1 and 2 is a lateral force distribution assumed to be fixed, and
based only on the fundamental vibration mode of the elastic system; however, extensions to
account for higher mode effects have been proposed (Paret et al., 1996). Implicit in Step 4 is the
belief that the earthquake-induced deformation of an inelastic SDF system can be estimated
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Figure 1. Capacity spectrum method: (a) development of pushover curve, (b) conversion of
pushover curve to capacity diagram, (c) conversion of elastic response spectrum from
standard format to A-D format, and (d) determination of displacement demand.



satisfactorily by an iterative method requiring analysis of a sequence of equivalent linear SDF
systems, thus avoiding the dynamic analysis of the inelastic SDF system. This investigation
focuses on the rationale and approximations inherent in this critical step.

The principal objective of this investigation is to develop improved simplified analysis
procedures, based on capacity and demand diagrams, to estimate the peak deformation of
inelastic SDF systems. The need for such procedures is motivated by first evaluating the above
mentioned approximation inherent in Step 4 of the ATC-40 procedure. Thereafter, improved
procedures using the well-established inelastic response (or design) spectrum (e.g., Chopra,
1995; Section 7.10) are developed. The idea of using the inelastic design spectrum in this context
was suggested by Bertero (1995) and introduced by Reinhorn (1997) and Fajfar (1998, 1999);
and the capacity spectrum method has been evaluated previously, e.g., Tsopelas et al. (1997).

EQUIVALENT LINEAR SYSTEMS

The earthquake response of inelastic systems can be estimated by approximate analytical
methods in which the nonlinear system is replaced by an “equivalent” linear system. These
methods attracted the attention of researchers in the 1960s before high speed digital computers
were widely used for nonlinear analyses, and much of the fundamental work was accomplished
over two decades ago (Hudson, 1965; Jennings, 1968; lwan and Gates, 1979a). In general,
approximate methods for determining the parameters of the equivalent linear system fall into two
categories: methods based on harmonic response and methods based on random response. Six
methods are available in the first category and three in the second category. Formulas for the
natural vibration period and damping ratio are available for each method (lwan and Gates,
1979a). Generally speaking, the methods based on harmonic response considerably overestimate
the period shift, whereas the methods considering random response give much more realistic
estimates of the period (lwan and Gates, 1979b).

Now there is renewed interest in applications of equivalent linear systems to design of
inelastic structures. For such applications, the secant stiffness method (Jennings, 1968) is being
used in the capacity spectrum method to check the adequacy of a structural design (e.g., Freeman
et al.,, 1975; Freeman, 1978; Deierlein and Hsieh, 1990; Reinhorn et al., 1995) and has been
adapted to develop the “nonlinear static procedure” in the ATC-40 report (Applied Technology
Council, 1996) and the FEMA-274 report (FEMA, 1997). A variation of this method, known as
the substitute structure method (Shibata and Sozen, 1976), is popular for displacement-based
design (Gulkan and Sozen, 1974; Shibata and Sozen, 1976; Moehle, 1992; Kowalsky et al.,
1995; Wallace, 1995). Based on harmonic response, these two methods are known to be not as
accurate as methods based on random response (Iwan and Gates, 1979a,b). The equivalent linear
system based on the secant stiffness is reviewed next.

Consider an inelastic SDF system with bilinear force-deformation relationship on initial
loading (Fig. 2a). The stiffness of the elastic branck iand that of the yielding branch ¢ .
The yield strength and yield displacement are denoted pynd u,, respectively. If the peak

(maximum absolute) deformation of the inelastic systeny,isthe ductility factory = u./u, .

For the bilinear system of Fig. 2a, the natural vibration period of the equivalent linear
system with stiffness equal tQ.., the secant stiffness, is



Teq=T H @
“ T 1+ap-a

where T, is the natural vibration period of the system vibrating within its linearly elastic range
(usuy).

The most common method for defining equivalent viscous damping is to equate the
energy dissipated in a vibration cycle of the inelastic system and of the equivalent linear system.

Based on this concept, it can be shown that the equivalent viscous damping ratio is (Chopra,
1995: Section 3.9)

AT Eg
where the energy dissipated in the inelastic system is given by theegremclosed by the

hysteresis loop (Fig. 2b) ands = ks.u%/ I8 the strain energy of the system with stiffngss
(Fig. 2b). Substituting fog, and Eg in EqQ. (3) leads to

¢ =20-190-a) (4)
“ mp@+ap-a)
The total viscous damping of the equivalent linear system is

Zeq =C+ Zeq (5)

where ( is the viscous damping ratio of the bilinear system vibrating within its linearly elastic
range U< u,).

For elastoplastic systema,=0 and Egs. (2) and (4) reduce to
2u-1 (6)
Teq:Tn\/E Zeq:_u—

Equations (2) and (4) are plotted in Fig. 3 where the variation.gfr, and (eq With 1
is shown for four values oft. For yielding systemsy( > 1), T,is longer thant,, and {.,> 0.
The period of the equivalent linear system increases monotonicallywih all o . For a fixed
U, Teq is longest for elastoplastic systems and is shorter for systems with Fora = 0, ¢,
increases monotonically witlh but not fora > 0. For the latter casé,,, reaches its maximum
value at gu value, which depends @n and then decreases gradually.
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Figure 2. Inelastic SDF system: (a) bilinear force-deformation relationship; (b) equivalent
viscous damping due to hysteretic energy dissipation.



Figure 3. Variation of period and viscous damping of the equivalent linear system with
ductility.



ATC-40 ANALYSIS PROCEDURES

Contained in the ATC-40 report are approximate analysis procedures to estimate the
earthquake-induced deformation of an inelastic system. These procedures are approximate in the
sense that they avoid dynamic analysis of the inelastic system. Instead dynamic analyses of a

sequence of equivalent linear systems with successively updated vaiugsamid Zeq provide a

basis to estimate the deformation of the inelastic systemis determined by Eq. (2) bliteq by
a modified version of Eq. (5):

{og= L+ K, ©)

with ¢, limited to 0.45. Although the basis for selecting this upper limit on damping is not

stated explicitly, ATC-40 states that “The committee who developed these damping coefficients
concluded that spectra should not be reduced to this extent at higher values and judgmentally ...
set an absolute limit on ..0[05+(,,] of about 50 percent.”
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Figure 4. Variation of damping modification factor with equivalent viscous damping.

The damping modification factork , based primarily on judgment, depends on the
hysteretic behavior of the system, characterized by one of three types: Type A denotes hysteretic
behavior with stable, reasonably full hysteresis loops, whereas Type C represents severely
pinched and/or degraded loops; Type B denotes hysteretic behavior intermediate between Types
A and C. ATC-40 contains equations fer as a function of¢,, computed by Eq. (3) for the

three types of hysteretic behavior. These equations, plotted in Fig. 4, were designed to ensure
that k does not exceed an upper limit, a requirement in addition to the limit of 45&g, on



ATC-40 states that “... they represent the consensus opinion of the product development team.”
Concerned with bilinear systems, this paper will usexthepecified for Type A systems.

ATC-40 specifies three different procedures to estimate the earthquake-induced
deformation demand, all based on the same underlying principles, but differing in
implementation. Procedures A and B are analytical and amenable to computer implementation,
whereas procedure C is graphical and most suited for hand analysis. Designed to be the most
direct application of the methodology, Procedure A is suggested to be the best of the three
procedures. The capacity diagram is assumed to be bilinear in Procedure B. The description of
Procedures A and B that follows is equivalent to that in the ATC-40 report except that it is
specialized for bilinear systems.

PROCEDURE A

This procedure in the ATC-40 report is described herein as a sequence of steps:

1. Plot the force-deformation diagram and the 5%-damped elastic response (or design) diagram,
both in the A-D format to obtain the capacity diagram and 5%-damped elastic demand
diagram, respectively.

2. Estimate the peak deformation demamj and determine the corresponding pseudo-
accelerationp from the capacity diagram. Initially, assurpe= D(T,,{ =5%), determined
for period T, from the elastic demand diagram.

3. Compute ductilityu = D; +uy -

4. Compute the equivalent damping raﬂg1 from Eq. (7).

5. Plot the elastic demand diagram @erq determined in Step 4 and read-off the displacement

D; where this diagram intersects the capacity diagram.

6. Check for convergence. fD; - D;) + D;< tolerance (=0.05) then the earthquake induced
deformation demand = D ;. Otherwise, seD; = D; (or another estimated value) and repeat
Steps 3-6.

Examples: Specified Ground Motion

This procedure is used to compute the earthquake-induced deformation of the six
example systems listed in Table 1. Considered are two valugs:dd.5s in the acceleration-
sensitive spectral region and 1s in the velocity-sensitive region, and three levels of yield strength;
(=5% for all systems. The excitation chosen is the north-south component of the El Centro
ground motion; the particular version used is from Chopra (1995). Implementation details are
presented next for selected systems and final results for all systems in Table 2.

The procedure is implemented for System 5 (Table 1).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and the capacity
diagram in Fig. 5a.



2. AssumeD,; = D(1.05%) =1127 cm
3. p=1127+2562=4.40.

4. Zeq:O.637><(4.40—1)+4.40:0.49; instead use the maximum allowable value 0.45. For
(=045 and Type A systems (Fig. 4k =0.77 and Zeq:Z+KZeq =0.05+0.77%x0.45
=0.397.

5. The elastic demand diagram for 39.7% damping intersects the capacity diagram at
D; =3.725cm(Fig. 5a).

6. 100x(D;-D)+D; = 100x(3.725-11.27)+3.725=-2026% > 5% tolerance. Set
D; =3.725cmand repeat Steps 3 to 6.

For the second iteration, D;=3.725cm, M =3.725+2562=145,
{.,=0637x(1.45-1)+145=0198, k= 0.98, and { =0. 243 The intersection point

D; =5.654cmand the difference betweep, and D; = 34.1% which is greater than the 5%

tolerance. Therefore, additional iterations are required; results of these iterations are summarized
in Table 3. Error becomes less than the 5% tolerance at the end of sixth iteration and the
procedure could have been stopped there. However, the procedure was continued until the error
became practically equal to zero. The deformation demand at the end of the iteration process,
D; =4.458cm. Determined by response history analysis (RHA) of the inelastic system,

Dexact=10.16cm and the error 400x (4.458— 10.16)+10.16: -56.1%.

Fig. 5b shows the convergence behavior of the ATC-40 Procedure A for System 5.
Observe that this iterative procedure converges to a deformation much smaller than the exact
value. Thus convergence here is deceptive because it can leave the erroneous impression that the
calculated deformation is accurate. In contrast, a rational iterative procedure should lead to the
exact result after a sufficient number of iterations.

The procedure is next implemented for System 6 (Table 1).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and capacity
diagram in Fig. 6a.

2. AssumeD,; = D(1.0,5%) =11.27 cm.

3. u=1127+4.302=2.62.

4. 7,,=0637x(2.62-1)+262=0.39. For {,=0.39 and Type A systems (Fig. 4),
K =0.82and{_ ={+K{,=0.05+0.82x0.39=0.371

5. The elastic demand diagram for 37.1% damping intersects the capacity diagram at
D; = 3.538cm(Fig. 6a).

6. 100x(D,;-D)+D; = 100x(3.538-11.27)+3538=-2186% > 5% tolerance. Set
D; =3.538cmand repeat Steps 3 to 6.



The results for subsequent iterations, summarized in Table 4, indicate that the procedure
fails to converge for this example. In the first iteration, the 37.1%-damped elastic demand
diagram intersects the capacity diagram in its linear-elastic region (Fig. 6a). In subsequent
iterations, the intersection point alternates between 11.73 cm and 3.515 cm (Table 4 and Fig. 6b).
In order to examine if the procedure would converge with a new starting point, the procedure
was restarted withp; =5 cmat iteration number 7. However, the procedure diverges very

quickly as shown by iterations 7 to 15 (Table 4 and Fig. 6b), ending in an alternating pattern.

Table 1. Properties of example systems and their response to El Centro (1940) ground
motion.

System Properties System Response

System | T, f,~w Uy Il Dexact
(s) (cm) (cm)

1 0.5 | 0.1257 | 0.7801 6 4.654

2 0.1783 | 1.106 4 4.402

3 0.3411 | 2.117 2 4.210

4 1 |0.07141| 1.773 6 10.55

5 0.1032 | 2.562 4 10.16

6 0.1733 | 4.302 2 8.533

Table 2. Results from ATC-40 Procedure A analysis of six systems for El Centro (1940)
ground motion.

System Conve rged D approx Dexact Error
(?) (cm) (cm) (%)
1 Yes 3.534 4.654 -24.1
2 Yes 3.072 4.402 -30.2
3 No -- 4.210 --
4 Yes 7.912 10.55 -25.0
5 Yes 4.458 10.16 -56.1
6 No -- 8.533 --

10



Table 3. Detailed results from ATC-40 Procedure A analysis of System 5 for El Centro
(1940) ground motion.

Iteration| D A l D; A Difference

No. * (%)
1 11.272 0.1032 0.3965 3.7262 0.1032 -202.6
2 3.7252 0.1032 0.2432 5.6537 0.1032 34.1
3 5.6537 0.1032 0.3466 4.0832 0.1032 -38.5
4 4.0832 0.1032 0.2732 4.7214  0.1032 13.5
5 47214 0.1032 0.3114 4.3523 0.1032 8.5
6 43523 0.1032 0.2912 4.5002 0.1032 3.3
I 45002 0.1032 0.2999 4.44p5 0.1032 1.3
8 44425 0.1032 0.2966 4.4639 0.1032 0.5
9 44639 0.1032 0.2978 4.4561 0.1032 0.2
10 44561 0.1032 0.2974 4.4589 0.1032 0.1
11 44589 0.1032 0.2975 4.4579 0.1032 0

11
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Figure 5. Application of ATC-40 Procedure A to System 5 for ElI Centro (1940) ground
motion: (a) iterative procedure, and (b) convergence behavior.
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Table 4. Detailed results from ATC-40 Procedure A analysis System 6 for El Centro (1940)
ground motion.

Iteration| D A { D; A Difference Comments
No. * (%)
1 11.272 0.17338 0.371 3.53[6 0.14251 -218.6 Start with elastic
response
2 3.5374 0.1738 0.05 11.726 0.1733 609.8
3 11.726 0.1738 0.3756 3.5146 0.14158 -233.6
4 3.5144 0.1738 0.05 11.726 0.1733 70
5 11.726 0.1738 0.3756 3.5146 0.14158 -233.6
6 3.5146 0.1733 0.05 11.726 0.1733 70 Indefinite oscillation
7 5 0.1733 0.1389 5.6491 0.17B3 11.5 Iteration restarted
8 5.6491 0.1738 0.2019 4.856 0.1733 -16.3
9 4.856 0.1738 0.1227 6.1903 0.1733 21.6
10 6.1903 0.173B 0.2394 42884  0.17276 -44.3
11 4.2884 0.1738 0.05 11.726 0.1733 §3.4
12 11.726 0.1738 0.3756 3.5146 0.14158 -233.6
13 3.5144 0.1738 0.05 11.726 0.1733 70
14 11.726 0.1738 0.3756 3.5146 0.14158 -233.6
15 3.5144 0.1738 0.05 11.726 0.1733 70 Failure to convergd
16 5.3 0.1733 0.1y 5.3711 0.1733 1.3 Iteration restarted
17 5.3711 0.1738 0.1768 5.2752 0.1733 1.8
18 5.2752 0.1738 0.1675 5.4011 0.1733 2.3
19 5.4011 0.1738 0.1796 5.22099 0.1733 3.3
20 5.2299 0.1738 0.163 5.45019 0.1733 4.1
21 5.4519 0.1738 0.1844 5.15p2 0.1733 5.8
22 5.1522 0.1738 0.15%1 5.5307 0.1733 6.8
23 5.5307 0.1738 0.1915 5.0337 0.1733 9.9
24 5.0337 0.1738 0.1426 5.6263 0.1733 10.5
25 5.6263 0.1738 0.1999 4.8902 0.1733 -15.1
26 4.8902 0.1738 0.1266 6.02p4 0.1733 18.9
27 6.0294 0.1738 0.2296 4.3819 0.1733 -37.6
28 4.3819 0.1738 0.0616 11.0[77 0.1733 60.4
29 11.0771 0.1738 0.3688 3.5484 0.14294 -212.2
30 3.5484 0.1738 0.05 11.726 0.1733 69.7
31 11.726 0.1738 0.3756 3.5146 0.14158 -233.6
32 3.5144 0.1738 0.05 11.726 0.1733 70
33 11.726 0.1738 0.3756 3.5146 0.14158 -233.6 Slow divergence

13
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Figure 6. Application of ATC-40 Procedure A to System 6 for El Centro (1940) ground
motion: (a) iterative procedure, and (b) convergence behavior.
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Examples: Design Spectrum

The ATC-40 Procedure A is next implemented to analyze systems with the excitation
specified by a design spectrum. For illustration we have selected the design spectrum of Fig. 7,
which is the median-plus-one-standard-deviation spectrum constructed by the procedures of
Newmark and Hall (1982), as described in Chopra (1995; Section 6.9). The systems analyzed
have the samq, as those considered previously but their yield strengths for the sejected

values were determined from the design spectrum (Table 5). Implementation details are
presented next for selected systems and the final results for all systems in Table 6.
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Figure 7. Newmark-Hall elastic design spectrum.

The procedure is implemented for System 5 (Table 5).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and capacity
diagram in Fig. 8a.

2. AssumeD, = D(1.0,5%) =44.64 cm
3. u=4464+1116=4.
4. 7,,=0637x(4.0-1)+4.0=048; instead use the maximum allowable value 0.45. For

(=045 and Type A systems (Fig. 4k =0.77 and Zeq: (+K{, =0.05+0.77x0.45
=0.397.
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5. The elastic demand diagram for 39.7% damping intersects the capacity diagram at
D; =2818cm(Fig. 8a).

6. 100x(D; - D;) + D; =100x (28.18—44.64)+ 28.18=-584%>5% tolerance. Sep, = 28.18
cm and repeat Steps 3 to 6.

For the second iteration, D;=2818cm, M=2818+1116=252,
{.,=0637x(252-1)+252=038, k= 0.84, and { =0. 37 The intersection point

D; =3155cmand the difference betweep;, and D; = 10.7% which is greater than the 5%

tolerance. Therefore, additional iterations are required; results of these iterations are summarized
in Table 7. The error becomes less than the 5% tolerance at the end of fourth iteration and the
procedure could have been stopped there. However, the procedure was continued till the error
became practically equal to zero. The deformation demand at the end of the iteration process is
D;=3044cm.

Determined directly from the inelastic design spectrum, constructed by the procedures of
Newmark and Hall (1982), as described in Chopra (1995, Section 7.10), the “reference” value of
deformation isD specrum= 4464 cmand the discrepancy 200x (30.44- 44.64)+ 44.64= -31.8%.

Fig. 8b shows the convergence behavior of the ATC-40 Procedure A for System 5.
Observe that the iterative procedure converges to a deformation value much smaller than the
“reference” value.

The procedure is next implemented for System 6 (Table 5).

1. Implementation of Step 1 gives the 5%-damped elastic demand diagram and capacity
diagram in Fig. 9a.

2. AssumeD, = D(0.55%) =44.64cm.
3. u=44.64+2232=20.

4. 7,,=0637x(20-1)+2.0=0.32. For {,,=0.32and Type A systems (Fig. 4},=0.87and
{,={+K{,=005+0.87x0.32=033.

5. The elastic demand diagram for 33% damping intersects the capacity diagram at
D; =18.56 cm(Fig. 9a).

6. 100x(D;-D)+D; = 100x(1856-44.64)-1856=-1406% > 5% tolerance. Set
D; =18.56 cmand repeat Steps 3 to 6.

The results for subsequent iterations, summarized in Table 8, indicate that the procedure
fails to converge for this example. In the first iteration, the 33%-damped elastic demand diagram
intersects the capacity diagram in its linear-elastic region (Fig. 9a). In subsequent iterations, the
intersection point alternates between 13.72 cm and 89.28 cm (Table 8 and Fig. 9b). In order to
examine if the procedure would converge with a new starting point, the procedure was restarted
with D; =28cm at iteration number 6. However, the procedure diverges very quickly as shown

by iterations 6 to 11 (Table 8 and Fig. 9b), ending in an alternating pattern.

16



Table 5. Properties of example systems and their deformations from inelastic design

spectrum.
System Properties System Responge
System Th f y ~w Uy H D spectrum
(s) (cm) (cm)
1 0.5 | 0.5995 | 3.7202 6 22.32
2 0.8992 | 5.5803 4 22.32
3 1.5624 | 9.6962 2 19.39
4 1 0.2997 | 7.4403 6 44.64
5 0.4496 | 11.160 4 44.64
6 0.8992 | 22.321 2 44.64

Table 6. Results from ATC-40 Procedure A analysis of six systems for design spectrum.

System Converged D approx D spectrum Discrepancy

(?) (cm) (cm) (%)

1 No -- 22.32 --

2 No -- 22.32 --

3 No -- 19.39 --

4 No -- 44.64 --

5 Yes 30.44 44.64 -31.8

6 Yes 42.28 44.64 -5.3

Table 7. Detailed results ATC-40 Procedure A analysis of System 5 for design spectrum.

Iteration| D A 4 D;j A Difference
No. * (%)
1 44.64 0.4496 0.3965 28.18  0.4496 -58.4
2 28.1§ 0.4496 0.3664 31.55 0.4496 10.7
3 31.54 0.4496 0.3796 30.01  0.4496 ©.1
4 30.01] 0.449¢ 0.3741 30.64 0.4496 2
5 30.64 0.4496 0.3764 30.87 0.4496 10.9
6 30.36 0.4496 0.3754 30.48 0.4496 0.4
7 30.48 0.4496 0.37589 30.43 0.4496 10.2
8 3043 0.449¢6 0.3757 30.45 0.4496 0.1
9 3045 0.4496 0.3757 30.44 0.4496 0
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Table 8. Detailed results ATC-40 Procedure A analysis of System 6 for design spectrum.

bnse

Iteration D A { D;j A Difference Comments
No. * (%)
1 44.64 0.8992 0.3288 18.56 0.7475 -140.6 Start with elastic resp
2 18.56 0.8992 0.0500 89.28 0.8992 79.2
3 89.28 0.8992 0.3965 13.72 0.5527 -550.7
4 13.72 0.8992 0.05Q00 89.28 0.8992 84.6
5 89.28 0.8992 0.3965 13.72 0.5527 -550.7 Indefinite oscillation
6 28.00 0.8992 0.1792 35.27 0.8992 20.6 lIteration restarted
7 35.27 0.8992 0.2705 23.10 0.8992 -52.7
8 23.10 0.8992 0.0715 71.67 0.8992 67.8
9 71.67 0.8992 0.3917 14.03 0.5653 -410.7
10 14.03 0.8992 0.0500 89.28 0.8992 84.3
11 89.28 0.8992 0.3965 13.y2 0.5527 -550.7 Indefinite oscillation
12 29.00 0.8992 0.1967 32.29 0.8992 10.2 Iteration restarted
13 32.29 0.8992 0.2413 26.23 0.8992 -23.1
14 26.23 0.8992 0.1449 42.56 0.8992 384
15 42.56 0.8992 0.3189 19.84 0.7791 -120.1
16 19.34 0.8992 0.0500 89.28 0.8992 78.3
17 89.28 0.8992 0.3965 13.72 0.5527 -550.7
18 13.72 0.8992 0.0500 89.28 0.8992 84.6
19 89.28 0.8992 0.3965 13.72 0.5527 -550.7 Slow divergence
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PROCEDURE B

This procedure in the ATC-40 report is described herein as a sequence of steps:
Plot the capacity diagram.

Estimate the peak deformation demgnd Initially assumep, = D(T,,{ =5 %)
Compute ductilityu = D; + u,

N

Compute equivalent periofl,, and damping rati@eq from Eqs. (2) and (7), respectively.

5. Compute the peak deformatidD(Teq,Zeq and peak pseudo-acceleratidXQTeq,Zeq of Jan

elastic SDF system with vibration propertieg, and Zeq.

6. Plot the point with coordinatel§(Teq,Zeq gnd A(Teq,Zeq ).

7. Check if the curve generated by connecting the point plotted in Step 6 to previously
determined, similar points intersects the capacity diagram. If not, repeat Steps 3-7 with a new
value of D; ; otherwise go to Step 8.

8. The earthquake-induced deformation demand is given byDthealue at the intersection
point.

Examples: Specified Ground Motion

Procedure B is implemented for the Systems 1 to 6 (Table 1). The final results are
summarized in Table 9; details are presented next. For a number of assumed val(ggD)f
pairs of vaIuesD(Teq,Zeq Jand A(Teq,Zeq) are generated (Tables 10 and 11). These pairs are

plotted to obtain the curvA-B in Fig. 10, wherein capacity diagrams for three systems are
shown together with the 5%-damped linear elastic demand diagram; the latter need not be
plotted. The intersection point between the cukv® and the capacity diagram of a system gives

its deformation demandd =3.536cm, D =3.075cm, and D = 3.284 cm for Systems 1 to 3,
respectively (Fig. 10a); an® =7.922 ¢nD =4.454cm, and D =5.318 cmfor Systems 4 to

6, respectively (Fig. 10b). In contrast, the exact deformations computed by RHA of the inelastic
systems are 4.654 cm, 4.402 cm, and 4.210 cm for Systems 1 to 3; and 10.55 cm, 10.16 cm, and
8.533 cm for Systems 4 to 6, indicating that the error in the approximate procedure ranges from —
22% to -56.2%. Observe that the curdeB provides the information to determine the
deformation demand in several systems with the sppvalues but different yield strengths.

Procedure B always gives a unique estimate of the deformation, whereas, as noted earlier,
the iterative Procedure A may not always converge. If it does converge, the two procedures give
the same value of deformation (within round-off and interpolation errors) in the examples solved.
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Table 9. Results from ATC-40 Procedure B analysis of six systems for ElI Centro ground
motion.

System D approx Dexact Discrepancy
(cm) (cm) (%)
1 3.536 4.654 -24.0
2 3.075 4.402 -30.1
3 3.284 4.210 -22.0
4 7.922 10.55 -24.9
5 4.453 10.16 -56.2
6 5.318 8.533 -37.7
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Table 10. Detailed results from ATC-40 Procedure B analysis of Systems 1 to 3 for El
Centro (1940) ground motion.

T Teq ; D A
eq

1 0.5 0.05 5.6846 0.91599

1.1 0.5244 0.1079 4411 0.64616
1.2 0.54771 0.156p 4.0093 0.53837
1.3 0.5701 0.19f 3.7297 0.46229
1.4 0.5916 0.229p 3.5032 0.40321
1.5 0.6124 0.25309 3.3449 0.35933
1.55 0.622% 0.2646 3.2859 0.3416
1.5515 0.6228 0.2649 3.2842 0.3411
1.5531 0.6228 0.2649 3.2854 0.34(85
1.6 0.6325 0.2743 3.228 0.32p1
1.7 0.6519 0.2914 3.1162 0.29537
1.8 0.6708 0.3058 3.0093 0.26939
1.9 0.6894 0.318p 2.9207 0.24i77

2 0.7071 0.3288 2.8739 0.231p5

2.1 0.7246 0.338 2.898 0.222B7
2.2 0.7416 0.34601 2.9204 0.2139
2.3 0.7583 0.353p 2.9412 0.20606
2.4 0.7746 0.3595 2.9605 0.19877
2.5 0.7906 0.36p 2.9929 0.19291
2.6 0.8064 0.3y 3.024 0.18712
2.7 0.8216 0.3745 3.0531 0.18221
2.7787 0.833% 0.3778 3.0747 0.1783
2.8 0.8367 0.3786 3.0804 0.17727
2.9 0.8515 0.3823 3.1058 0.17257

3 0.866 0.3856 3.1295 0.168DP9

3.1 0.8804 0.388)7 3.1517 0.16382
3.2 0.8944 0.3914 3.1723 0.15974
3.3 0.9084 0.394 3.1992 0.156P1
3.4 0.922 0.3964 3.2273 0.152095
3.5 0.9354 0.3965 3.2632 0.15023
3.6 0.9487 0.3965 3.2973 0.14759
3.7 0.9618 0.3965 3.3293 0.14499
3.8 0.9741 0.3965 3.359 0.14244
3.9 0.9874 0.3965 3.3868 0.13993

4 1 0.3965 3.412p 0.13747

4.1 1.0124 0.3965 3.4366 0.13506
4.2 1.0247 0.396H 3.4588 0.13p7
4.3 1.0368 0.3965 3.4792 0.13038
4.4 1.0488 0.3965 3.5023 0.12826
4.5 1.0607 0.3965 3.528 0.12683
4,525 1.0636 0.3965 3.5342 0.12585
4.533 1.064% 0.3965 3.5362 0.1357
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Table 11. Detailed results from ATC-40 Procedure B analysis of Systems 4 to 6 for El
Centro (1940) ground motion.

H T | ¢ D A
eq

1 1 0.05 11.272 0.454Q7
1.1 1.0488 0.1079 7.4536 0.27297
1.2 1.0954 0.156Q 5.7066 0.19157
1.225 1.1068 0.167 5.4288 0.17852
1.2362 1.1119 0.1717 5.3182 0.17330
1.2375 1.1119 0.1747 5.31b7 0.17304
1.3 1.1402 0.19y 5.0373 0.15609
14 1.1832 0.229p 4.8741 0.14025
1.5 1.2247% 0.253p 4.7401 0.12730
1.6 1.2644 0.27483 4.61%4 0.11620
1.7 1.3038 0.2914 4.4969 0.10656
1.7384 1.318% 0.2972 4.45385 0.1432
1.8 1.3414 0.3058 4.3893 0.09823
19 1.3784 0.318p 4.5607 0.09470

2 1.4142 0.3288 4.7224 0.09512

21 1.4491 0.338 4.8831 0.09367
2.2 1.4832 0.346[L 5.0397 0.09228
2.3 1.5166 0.353p 5.1901 0.09090
2.4 1.5492 0.359p 5.335 0.08955
2.5 1.5811 0.36p 5.4748 0.088p2
2.6 1.6125 0.3y 5.6097 0.086P2
2.7 1.6432 0.374p 5.7401 0.08564
2.8 1.6733 0.378p 5.8749 0.08452
2.9 1.7029 0.3823 6.00%7 0.08343

3 1.7321] 0.3856 6.1323 0.08234
3.1 1.7607 0.388)7 6.2546 0.08128
3.2 1.7889 0.3914 6.3727 0.08023
3.3 1.8164 0.394 6.491 0.079p4
3.4 1.8434 0.3964 6.6094 0.07831
3.5 1.8704 0.396p 6.742 0.07760
3.6 1.8974 0.396p 6.8714 0.07689
3.7 1.9235 0.396p 7.0005 0.07g22
3.8 1.9494 0.396p 7.1297 0.07558
3.9 1.9744 0.396p 7.2543 0.07493

4 2 0.3965 7.3773 0.074%0

4.1 2.0244 0.396bH 7.501 0.07370
4.2 2.0494 0.396bH 7.6197 0.07308
4.3 2.0736 0.396bH 7.7332 0.07245
4.4 2.0976 0.396bH 7.8442 0.07182
4.45 2.1095 0.396b6 7.9008 0.07152
4.4688 2.114 0.3965 7.9217 0.07141
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Examples: Design Spectrum

Procedure B is implemented for the Systems 1 to 6 (Table 5). The results from this
procedure are summarized in Table 12 and illustrated in Fig. 11 where the estimated
deformations are noted; intermediate results are available in Tables 13 and 14. These
approximate values are compared in Table 12 against the values determined directly from the
inelastic design spectrum constructed by the procedure of Newmark and Hall (1982), as
described in Chopra (1995, Section 7.10); see Appendix B for details. Relative to these reference
values, the discrepancy ranges from —5.2% to —58.6% for the systems considered.

Table 12. Results from ATC-40 Procedure B analysis of six systems for design spectrum.

System Dapprox D spectrum Discrepancy
(cm) (cm) (%)
1 10.46 22.32 -53.1
2 9.245 22.32 -58.6
3 11.51 19.39 -40.6
4 42.27 44.64 -5.2
5 30.45 44.64 -31.7
6 29.84 44.64 -33.1

Table 13. Detailed results from ATC-40 Procedure B analysis of Systems 1 to 3 for design

spectrum.
/1 Teq ZA D A
eq
1 0.5 0.05 16.794 2.7062

1.1 0.5244 0.1070  13.012 1.90b1
1.2 0.547% 0.156p  11.332 1.5217
1.1871 05448  0.1504 11.51 1.5624
1.3 0.5701 0.197  10.328 1.28p2
1.4 0.5916 0.22927  9.7547 1.1227
1.5 0.6124 0.2530  9.4602 1.0163
1.6]  0.6325 0.2748  9.2924 0.9368
1.6567  0.6436  0.2843  9.2447 0.8992
1.7 0.6519 0.2914  9.2107 0.87830
1.8  0.6704 0.3058  9.1906 0.82p7
1.9 0.6892 0.3182  9.2164 0.78116
2| 07071 0.3288  9.2776 0.74l75
2.1]  0.7246 0.338 9.3664 0.7187
2.2 0.7416 0.3461L  9.4776 0.6942
23] 0.7583 0.353 9.607 0.67B1
2.4 0.7746 0.3595  9.7515 0.6547
25| 0.7906 0.365  9.9087 0.63B7
2.6  0.8062 037  10.0%7 0.6215
2.7 0.8216 0.3746  10.25%4 0.610
2.8 0.8367 0.3786  10.439 0.6008
28123  0.8385  0.3791  10.463 0.5495
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Table 14. Detailed results from ATC-40 Procedure B analysis of Systems 4 to 6 for design

spectrum.

IJ Teq ZA D A
eq
1 1 0.05 44.642 1.7944
1.2 1.0954 0.156p 32.69 1.0974
1.3519 1.1627 0.2154 29.84 0.8492
1.4 1.1832 0.229p 29.411 0.8463
1.6 1.2649 0.2743 28.488 0.71)73
1.8 1.3416 0.3058 28.32 0.63338
2 1.4142 0.3288 28.521 0.5745
2.2 1.4837 0.346[1 28.926 0.5207
2.4 1.5497 0.3595 29.448 0.4943
2.6 1.6125 0.3 30.042 0.46b5
2.7283 1.651F 0.3757 30.449 0.4496
2.8 1.6733 0.378p 30.679 0.44114
3 1.7321 0.385p 31.343 0.42p9
3.2 1.788d 0.391#4 32.022 0.40B1
34 1.843d 0.3964 32.708 0.3975
3.6 1.8974 0.396p 33.648 0.3765
3.8 1.9494 0.396p 34.57 0.36p5
4 2 0.3965 35.468 0.3572
4.2 2.0494 0.396p 36.344 0.3486
4.4 2.0976 0.3965 37.199 0.34p6
4.6 2.1444 0.396p 38.035 0.3331
4.8 2.1909 0.396p 38.853 0.32p1
5 2.2361 0.3965 39.634 0.31p5
5.2 2.2804 0.396p 40.44 0.31B3
5.4 2.3234 0.396b 41.21 0.30[74
5.6 2.3664 0.396p 41.966 0.3019
5.6822 2.383] 0.3965 42.273 0.2997
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EVALUATION OF ATC-40 PROCEDURES
SPECIFIED GROUND MOTION

The ATC-40 Procedure B is implemented for a wide range of system parameters and
excitations in two versions: (1§ =1, i.e., the equivalent viscous damping is given by Egs. (4)
and (5) based on well-established principles; ank (B given by Fig. 4, a definition based
primarily on judgment to account for different types of hysteretic behavior.

The yield strength of each elastoplastic system analyzed was chosen corresponding to an
allowable ductilityp:

f,=(A/OW ®)

where w is the weight of the system ang, is the pseudo-acceleration corresponding to the
allowable ductility and the vibration properties — natural pergdand damping ratid — of
the system in its linear range of vibration. Recall that the ductility demand (computed by

nonlinear response history analysis) imposed by the selected ground motion on systems defined
in this manner will exactly equal the allowable ductility (Chopra, 1995; Section 19.1.1).

The peak deformation due to a selected ground motion, determined by the ATC-40
method, D,ppox: 1S COMpared in Fig. 12 against the “exact” valu,,.., determined by
nonlinear RHA, and the percentage error in the approximate result is plotted in Fig. 13. These
figures permit several observations. The approximate procedure is not especially accurate. It
underestimates significantly the deformation for wide rangesTpf values with errors
approaching 50%, implying that the estimated deformation is only about half of the value
determined by nonlinear RHA. The approximate method gives larger deformation for short
period systemsT(, < 0.1 sec fop = 2 andT,< 0.4 sec fop = 6) and the deformation does not
approach zero ag, goes to zero. This unreasonable discrepancy occurs because, for very short-
period systems with small yield strength, tiig, has to shift to the constawtregion of the

spectrum before the capacity and demand diagrams can intersect (Appendix A). While inclusion
of the damping modification factar increases the estimated displacement, the accuracy of the
approximate results improves only marginally for the smaller valugs Dierefore tha factor

IS not attractive, especially because it is based primarily on judgement.

Shown in Fig. 14 are the errors in the ATC-40 method, withk tfaetor included, for six
different ground motions: (1) El Centro, SO0E, 1940 Imperial Valley; (2) Corralitos, Chan-1, 90
deg, 1989 Loma Prieta; (3) Sylmar County Hospital Parking Lot, Chan-3, 360 deg, 1994
Northridge; (4) Pacoima Dam, N76W, 1971 San Fernando; (5) Lucerne Valley, S80W, 1992
Landers; and (6) SCT, SO0OE, 1985 Mexico City. Observe that, contrary to intuition, the error
does not decrease consistently for smaller ductility. While the magnitude of the error and its
variation with T, depend on the excitation, the earlier observation that the error in the

approximate method is significant is supported by results for several ground motions.

29



(b)

Figure 12. Comparison of deformations due to El Centro (1940) ground motion from
approximate procedure and nonlinear response history analysis: (@) = 2, and (b)u = 6.
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El Centro, Imperial Valley Earthquake (1940)
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Figure 14. Error in deformations computed by approximate procedure for six ground
motions.
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DESIGN SPECTRUM

The ATC-40 Procedure B is implemented for a wide rangg.olnd pu values with the

excitation characterized by the elastic design spectrum of Fig. 7. The yield strength was defined
by Eq. (8) with A, determined from the inelastic design spectrum corresponding to the selected

ductility factor. The resulting approximate values of deformations will be compared in this
section with those determined directly from the design spectrum, as described next.
Given the properties,, {, f anda of the bilinear hysteretic system and the elastic

design spectrum, the earthquake-induced deformation of the system can be determined directly
from the design spectrum. The peak deformaDanf this system is given by

D=uDy 9)
with the yield deformation defined by
n (10)
Dy - éQITT'[D Ay

where A, is the pseudo-acceleration related to the yield strenigfh,by Eq. (8). Putting Egs.
(9) and (10) together gives

(11)
D=p @;T”Tg A
The yield strength reduction factor is given by
_f, A (12)
A

where

-

is the minimum vyield strength required for the structure to remain eldstis;the pseudo-
acceleration ordinate of the elastic design spectruft,at). Substituting Eq. (12) in Eg. (11)

gives
2 (14)
p=ptHHa

R, 21t

Equation (14) provides a convenient way to determine the deformation of the inelastic system
from the design spectrum. All that remains to be done is to detepniorea givenR, ; the latter

is known from Eq. (12) for a structure with knowr) .
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Presented in Fig. 15 are the deformations determined by Eqg. 14 using three different
R,~M—T, equations: Newmark and Hall (1982); Krawinkler and Nassar (1992) for
elastoplastic systems; and Vidic, Fajfar and Fischinger (1994) for bilinear systems. The
equations describing these relationships are presented later in this report. Observe that the three
recommendations lead to similar results exceptfpx 0.3 sec, indicating that the inelastic
design spectrum is a reliable approach to estimate the earthquake-induced deformation of
yielding systems.

Acceleration 'Velocity Displacement

200" Sensitive Sensitive Sensitive

Figure 15. Deformation of inelastic systemsuE 4) determined from inelastic design spectra
using three R,—1—T, equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and

Vidic-Fajfar-Fischinger (VFF).

The deformation estimates by the ATC-40 method are compared in Fig. 16 with those
from inelastic design spectra presented in Fig. 15. Relative to these “reference” values, the
percentage discrepancy in the approximate result is plotted in Fig. 17. The results of Figs. 16 and
17 permit the following observations. The approximate procedure leads to significant
discrepancy, except for very long periods, & T in Fig. 7). The magnitude of this discrepancy
depends on the design ductility and the period region. In the acceleration-sgfisjtve, and )
displacement-sensitiv€T (<T <T; Begions (Fig. 7), the approximate procedure significantly
underestimates the deformation; the discrepancy increases with incrgasimghe velocity-
sensitive (T.<T,<Tgy ) region, the ATC-40 procedure significantly underestimates the
deformation fory = 2 and 4, but overestimates it for= 8 and is coincidentally accurate for
H=6.
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In passing, note that the ATC-40 procedure is deficient relative to evetastedesign
spectrum in the velocity-sensitive and displacement-sensitive reionsT,. . For J,in these

regions, the peak deformation of an inelastic system can be estimated from the elastic design
spectrum, using the well-known equal-displacement rule (Veletsos and Newmark, 1960).
However, the ATC-40 procedure requires analyses of several equivalent linear systems and still
produces worse results.
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Figure 16. Comparison of deformations computed by ATC-40 procedure with those from
three different inelastic design spectra |{ = 4): (a) Newmark and Hall (1982), (b)
Krawinkler and Nassar (1992), and (c) Vidic, Fajfar and Fischinger (1994).
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IMPROVED PROCEDURES

Presented next are two improved procedures that eliminate the errors (or discrepancies) in
the ATC-40 procedures, but retain their graphical appeal. Procedures A and B that are presented
are akin to ATC-40 Procedures A and B, respectively. The improved procedures use the well-
known constant-ductility design spectrum for the demand diagram, instead of the elastic design
spectrum for equivalent linear systems in ATC-40 procedures.

INELASTIC DESIGN SPECTRUM

A constant-ductility design spectrum is established by reducing the elastic design
spectrum by appropriate ductility-dependent factors that dependTon The earliest
recommendation for the reduction fact@, (Eq. 12), goes back to the work of Veletsos and
Newmark (1960), which is the basis for the inelastic design spectra developed by Newmark and
Hall (1982). Starting with the elastic design spectrum of Fig. 7 and tRgsgl relations for
acceleration-, velocity-, and displacement-sensitive spectral regions, the inelastic design
spectrum constructed by the procedure described in Chopra (1995, Section 7.10) is shown in Fig.
18a.

In recent years, several recommendations for the reduction factor have been developed
(Krawinkler and Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994; Riddell, Hidalgo, and Cruz,
1989; Tso and Naumoski, 1991; Miranda and Bertero, 1994). Based on two of these
recommendations, the inelastic design spectrum is shown in Figs. 18b and 18c. Fopafked
the inelastic spectra from Fig. 18 are compared in Fig. 19. The three spectra are very similar in
the velocity-sensitive region of the spectrum, but differ in the acceleration-sensitive region. An
improved procedure based on such inelastic design spectra is presented in two versions that
follow.

INELASTIC DEMAND DIAGRAM

The inelastic design spectra of Fig. 18 will be plotted inAHe format to obtain the
corresponding demand diagrams. The peak deformBtiohthe inelastic system is given by Eq.

(11) where A, is known from Fig. 18 for a givem, andp. Determined corresponding to the
three inelastic design spectra in Fig. 18, such data pajr®J are plotted to obtain the demand
diagram for inelastic systems (Fig. 20).
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Figure 18. Inelastic design spectra: (a) Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and Fischinger (1994).
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2.5

Figure 19. Pseudo-acceleration design spectrum for inelastic systems=(2) using three
R, M —T, equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and Vidic-Fajfar-

Fischinger (VFF).

PROCEDURE A

This procedure, which uses the demand diagram for inelastic systems (Fig. 20), will be
illustrated with reference to six elastoplastic systems defined by two valges ©10.5 and 1.0
sec and three different yield strengths, given by Eq. (8) correspondipg-t@, 4, and 6,
respectively. Superimposed on the demand diagrams are the capacity diagrams for three inelastic
systems withT,, = 0.5 sec (Figs. 21a, 22a, and 23a) @nd= 1.0 sec (Figs. 21b, 22b, and 23b).
The yielding branch of the capacity diagram intersects the demand diagram for gessduals.
One of these intersection points, which remains to be determined, will provide the deformation
demand. At the one relevant intersection point, the ductility factor calculated from the capacity
diagram should match the ductility value associated with the intersecting demand curve.
Determined according to this criterion, the deformation for each system is noted in Figs. 21 to
23. Implementation of this procedure is illustrated for two systems.

Examples

The yield deformation of System 1ig= 3.724cm. The yielding branch of the capacity

diagram intersects the demand curvegiferl, 2, 4, 6, and 8 at 133.93 cm, 66.96 cm, 33.48 cm,
22.3 cm, and 16.5 cm, respectively (Fig. 21a). Dividing gy the corresponding ductility

factors are 133.938.724=35.96 (which exceeds« = 1 for this demand curve),
66.96-3.724=17.98 (which exceeqs = 2 for this demand curve), 33:48724=8.99 (which
exceedgu = 4 for this demand curve), 223724=6 (which matcheg = 6 for this demand
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curve), and 16:53.724=4.43 (which is smaller than= 8 for this demand curve). Thus, the
ductility demand is 6 and the deformation of System[l #22.3 cm.

For System 3y,= 9.681cm. The yielding branch of the capacity diagram intersects the

demand curve fopu = 1 at 51.34 cm (Fig. 21a). The corresponding ductility factor is
51.34-9.681=5.3, which is larger than the= 1 for this demand curve. The yielding branch of
the capacity diagram also intersects the demand curye=£ao? continuously from 9.681 cm to
25.2 cm, which correspond to ductility factors of 1 to 2.6. The intersection point at 19.29 cm
corresponds to ductility factor = 19:32681=2 which matcheg = 2 for this demand curve.
Thus, the ductility demand is 2 and the deformation of Syster 3-i49.39 cm.
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Figure 20. Inelastic demand diagrams: (a) Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and Fischinger (1994).
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Figure 21. Application of improved Procedure A using Newmark-Hall (1982) inelastic
design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Figure 22. Application of improved Procedure A using Krawinkler-Nassar (1992) inelastic

design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Figure 23. Application of improved Procedure A using Vidic-Fajfar-Fischinger (1994)
inelastic design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Observe that for the presented examples, the ductility factor at the intersection point
matched exactly the ductility value associated with one of the demand curves becatige the

values were chosen consistent with the sanvalues for which the demand curves have been
plotted. In general this is not the case and interpolation between demand curves for two ¢ values
would be necessary. Alternatively, the demand curves may be plotted at a finer « interval
avoiding the need for interpolation.

Comparison with ATC-40 Procedure A

The improved procedure just presented gives the deformation value consistent with the
selected inelastic design spectrum (Table 15), while retaining the attraction of graphical
implementation of the ATC-40 Procedure A. Comparison of Figs. 21 (or 22 or 23) and 5
indicates that the two procedures are similar in the sense that the desired deformation is
determined at the intersection of the capacity diagram and the demand diagram. However, the
two procedures differ fundamentally in an important sense; the demand diagram used is
different: the constant-ductility demand diagram for inelastic systems in the improved procedure
(Figs. 21 to 23) versus the elastic demand diagram in ATC-40 Procedure A for equivalent linear
systems (Fig. 5).

Observe that equivalent linear systems are analyzed using the elastic design spectrum for
a range of damping values, wide enough to cover the large damping expected for equivalent
linear systems (Fig. 3). However, most existing rules for constructing elastic design spectra are
limited to = 0 to 20% (Chopra, 1995, Section 6.9).

PROCEDURE B

This version of the improved procedure avoids construction of the inelastic design
spectrum. The peak deformatién of an inelastic system with propertigs,, ¢, and f is

determined by the following sequence of steps:

1. Plot the capacity diagram and the 5%-damped elastic demand diagram of Fid-O in
format.

2. Assume the expected ductility demandstart withp =1.

3. Determine A/ (T,,¢{,1 )from the inelastic design spectrum for the estimateshd calculate
D from Eq. (14).

4. Plot the point with coordinatd3 and A, .

5. Check if the curve generated by connecting similar points intersects the capacity diagram. If
not, repeat Steps 3 and 4 with larger valugs, etherwise go to Step 6.

6. The earthquake-induced deformation demBnid given by theD-value at the intersection
point.
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Examples

This procedure is implemented for Systems 1 to 6 (Table 5) with the earthquake
excitation characterized by the elastic design spectrum of Fig. 7. The results are summarized in
Table 15; intermediate results are available in Tables 16 and 17. The inelastic design spectrum of
Newmark and Hall (1982) provides ti®,, A, pairs forT,= 0.5 sec and 1.0 sec in Tables 16

and 17, respectively; arfd is determined by Step 3. The,(A,) pairs are plotted to obtain the

curveA-Bin Figs. 24a and 24b. The 5%-damped elastic demand diagram and capacity diagrams
for the selected systems are also shown; however, a plot of the elastic demand diagram is not
essential to the procedure. The intersection point between the AwBvand the capacity
diagram gives the system deformatioD:=22.32 ,ci =2232cm and D =19.39 cm for

Systems 1, 2, and 3, respectively (Fig. 24a)ardl4.64 cmfor Systems 4 to 6 (Fig. 24b). In

the latter case, the deformation of the inelastic system is independent of the yield strength and
equals that of the corresponding linear system bec@yses in the velocity-sensitive spectral

region. This is the well-known equal displacement rule.
Comparison with ATC-40 Procedure B

The improved procedure just presented gives the deformation value consistent with the
inelastic design spectrum, while retaining the attraction of a graphical implementation of ATC-
40-Procedure B. Comparison of Figs. 24 and 11 indicates that the two procedures are graphically
similar. However, they differ fundamentally in one important sense. Each point on the\eBrve
(Fig. 24) in the improved procedure is determined by analyzing an inelastic system. In contrast
the ATC-40-Procedure B gives a point on the cukvB (Fig. 11) by analyzing an equivalent
linear system.

ALTERNATIVE DEFINITION OF EQUIVALENT DAMPING

We digress briefly to observe that the capacity spectrum method based on the elastic
design spectrum has been modified to use an alternative definition of equivalent viscous
damping, {,, (Freeman, 1998; WJE, 1996). Thi, is derived by equating the peak

deformation of the equivalent linear system, determined from the elastic design spectrum
(Chopra, 1995; Section 6.9), to the peak deformation of the yielding system, determined from the
inelastic design spectrum (Chopra, 1995; Section 7.10). The capacity spectrum method,
modified in this way, should give essentially the same deformation as the improved procedure.
However, we see little benefit in making this detour when the well-known constant-ductility
inelastic design spectra can be used directly in the improved procedure.
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Table 15. Results from Improved Procedure analysis of six systems for design spectrum.

Table 16. Detailed results from improved Procedure B analysis of Systems 1 to 3 for design

spectrum.

System Dimproved D spectrum Discrepancy

(cm) (cm) (%)
1 22.32 22.32 0
2 22.32 22.32 0
3 19.39 19.39 0
4 44.64 44.64 0
5 44.64 44.64 0
6 44.64 44.64 0

VI Dy Ay D
(cm) (@) (cm)

1 16.794 2.706 16.794
1.25 13.713 2.21 17.141
1.5 11.875 1.914 17.81B
1.75 10.622 1.713 18.588
2 9.696 1.562 19.39p
2.25 8.977 1.447 20.198
25 8.397 1.353 20.99B
2.75 7.917 1.274 21.77p
3 7.44 1.199 22.321
3.25 6.868 1.107 22.321
35 6.377 1.028 22.321L
3.75 5.952 0.959 22.321
4 5.58 0.8992 22.321
4.25 5.252 0.846 22.321
4.5 4.96 0.799 22.321
4.75 4.699 0.757 22.321
5 4.464 0.719 22.321
5.25 4.252 0.685 22.321
5.5 4.058 0.654 22.321L
5.75 3.882 0.626 22.321
6 3.72 0.5995 22.321
6.25 3.571 0.579 22.321
6.5 3.434 0.553 22.321L
6.75 3.307 0.533 22.321
7 3.189 0.514 22.321
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Table 17. Detailed results from improved Procedure B analysis of Systems 4 to 6 for design

spectrum.

(cm) (g (cm)

1 44.642 1.798 44.64p
1.25 35.714 1.439 44.64p
15 29.761 1.199 44.64p
1.75 2551 1.024 44.64p
2 22.321 0.8997 44.64p
2.25 19.841 0.799 44.64p
25 17.857 0.71d 44.64p
2.75 16.233 0.654 44.64p
3 14.881 0.599 44.64p
3.25 13.736 0.553 44.64p
35 12.755 0.514 44.64p
3.75 11.905 0.48 44.64p
4 11.161 0.4496 44.64p
4.25 10.504 0.423 44.64p

45 9.92 0.4 44,647
4.75 9.398 0.374 44.64p
5 8.928 0.36 44.642
5.25 8.503 0.343 44.64p
55 8.117 0.327 44.64p
5.75 7.764 0.313 44.64p
6 7.44 0.2997 44647
6.25 7.143 0.284 44.64p
6.5 6.868 0.277 44.64p
6.75 6.614 0.266 44.64p
7 6.377 0.257 44.64
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Figure 24. Application of improved Procedure B using Newmark-Hall (1982) inelastic
design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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IMPROVED PROCEDURE: NUMERICAL VERSION

BASIC CONCEPT

The improved procedures presented in the preceding section were implemented
graphically, in part, to highlight the similarities and differences relative to the Nonlinear Static
Procedure in the ATC-40 report. The graphical implementation of the first version of the
improved procedure is especially attractive as the desired earthquake-induced deformation is
determined at the intersection of the capacity and demand diagrams. However, the graphical
feature is not essential and the procedure can be implemented numerically. Such a procedure
using Ry —HM—T, equations is presented in this section.

Ry —pu-Tn EQUATIONS

The Ry~ —T, equations for elastoplastic systems, consistent with the Newmark-Hall
inelastic design spectra are (Chopra, 1995; Section 7.10):

a Th<Ta
Zu_l)Blz Ta<Tn <Tb
R, = D%Zu—l To<Ta<Tc (15a)
Hp Te<Ta<T.
0T
=0 Ta>Te
where
B=In(T,/T.)/IN(Ty/Ta) (15b)

and theT,, T, andT. are defined in Fig. 7 ang. is the period where the constaxtand
constanty branches of the inelastic design spectrum intersect (Chopra, 1995, Section 7.10).
Recasting Eqg. (15) givegsas a function oRy:

[(Undefined T,<T.
1T+RYP)/2 T.<To<Ts
14R:)2 To<T,<Te

(16)
|:'I_CRy Tc'<Tn<Tc
LTy
ERy Th>Te

For a givenr,, 4 can be calculated for aft, except forT,<T,<T., wherein two possibilities
need to be checked singe itself depends op (see Appendix B).

Based on the earthquake response of bilinear systems, Krawinkler and Nassar (1992)
have developed the following, -1 — T, equations:
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=[e(u-1)}+a]" (17)
where

cfra)= T+ 2 o

1+T2 T,
and the numerical coefficients depend on the slokeof the yielding branch (Fig. 2ag =1

andb =0.42fora =0%; a=1 andb =0.37 for a = 2% ;a =0.8 andb =0.29 fora = 10% .
Recasting Eq. (18) providgsas a function oR, :

n= 1+1(Ry 1) (19)

For given values oR, anda, p can be calculated from Eq. (19).

Based on the earthquake response of bilinear systems, Vidic, Fajfar and Fischinger
(1994) have developed the followirgy, - — T, equations:

_Ass-rpeToss 1,57,
=0 To (20)
H.35u-1""+1 T,>T,
where
To= 0750 T < T, (1)

Recasting Eq. (20) givgsas a function oR, :

@74(Ry 1)75 Tn To (22)
BI-+[074(Ry ]1053 Th>To

Since T, in Eqg. (22) depends om (Eq. 21), the value ofi corresponding to a giver, is
determined by solving a nonlinear equation iteratively unless the simpler refatierg ., is
assumed.

W=

Figure 25 shows plots aR, Vv's T, for selected values @f based on Egs. (15), (17) for
o =0, and (20). In Fig. 264 is plotted againstr,, from Egs. (16), (19) foo = 0, and (22).
Observe the similarity among the three sets of results, indicating consensus among different
researchers.
The peak deformation of systems 1 to 6 (Table 5) are determined from Eq. (14) using
-u—T, relations of Eq. (16), (19), and (22). Detailed calculations are presented in Appendix

B and the results are summarized in Table 18. Observe that the deformation values computed
using R,—~M—T, equations are identical to those determined by the graphical procedure (Figs.

21 to 23) except for round-off differences.
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Figure 25. Variation of R, with T, for selected ductility values based on three different

sources: Newmark and Hall (1982), Krawinkler and Nassar (1992), and Vidic, Fajfar, and
Fischinger (1994).
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Figure 26. Variation of p with T, for selected R, values based on three different sources:

Newmark and Hall (1982), Krawinkler and Nassar (1992), and Vidic, Fajfar, and
Fischinger (1994).
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Table 18. Results from numerical implementation of improved procedure using thre®, — 4 — T, equations.

System Properties Newmark-Hall Krawinkler-Nassar Vidic et al.
System | T, A Ay Dy =uy Ry U D U D U D
(f,~w) (A+p) | (Eq.16) | (uxDy) | (EQ.19) | (M*Dy) | (Eq.22) | (M*Dy)
(s) (9) ) (cm) (cm) (cm) (cm)

1 0.5 | 2.7062] 0.5995 3.7202 4.51 5.99 22.29 5.14 19.10 4.69 17.43
2 0.8992 5.5803 3.01 3.99 22.29 3.25 18.15 3.0b 17.p2
3 1.5624 9.6962 1.73 2.00 19.39 1.77 17.20 1.71 16.54
4 1 | 1.7984| 0.2997 7.4403 6.00 6.00 44.64 5.56 41.37 4.9y 36.94
5 0.4496 11.160 4.00 4.00 44.64 3.80 42.4p 3.32 37.p0
6 0.8992 22.321 2.00 2.00 44.64 1.97 43.9f7 1.78 38.58

54



CONSISTENT TERMINOLOGY

Many new terms that have been introduced in connection with simplified analysis of
inelastic systems are examined in this section and, where necessary, better terminology is
recommended:

1. Demand SpectrunThe term “spectrum” has traditionally implied a function of frequency or
period. For examplegsponse spectruim a plot of the peak value of a response quantity as a
function of the natural vibration period (or frequency) of the SDF system. Another example:
Fourier Spectrunof ground acceleration is a plot of the amplitude of the Fourier transform
of the excitation against exciting frequency. The “Response Spectrum” terminology was
introduced in the 1930s within the context of earthquake engineering, whereas the “Fourier
Spectrum” terminology has existed for much longer. Given this background, “spectrum” is
inappropriate to describe a plot of pseudo-acceleration v's deformation. The terminology
Demand Diagranhas therefore been used in this investigation.

2. Capacity SpectrumFor the same reasons, the recommended terminolodyapsacity
Diagram

3. Acceleration-Displacement Response Spectrum (ADRS) FoFmathe same reasons, the
recommended terminology #4D format

4. Nonlinear Static Procedure (NSPJhe capacity diagram is determined by nonlinear static
analysis of the structure, but the demand diagram is determined by dynamic analysis.
Because the NSP involves use of both diagrams, the NSP terminology is inappropriate and
the suggested alternativeSemplified Dynamic Analysis

5. Modal Participation Factor.This traditional terminology far,, (Eq. 1) implies that it is a

measure of the degree to which tHemode participates in the response. However, this is
misleading becausg, is not independent of how the mode is normalized, nor a measure of

the modal contribution to a response quantity (Chopra, 1995; section 13.1).

CONCLUSIONS

This investigation of capacity-demand-diagram methods to estimate the earthquake-
induced deformation of inelastic SDF systems has led to the following conclusions:

1. Based on the belief that the deformation of an inelastic system can be estimated by an
iterative method requiring analysis of a sequence of equivalent linear systems, the ATC-40
Procedure A did not converge for some of the systems analyzed. It converged in many cases
but not to the exact deformation determined by nonlinear response history analysis of the
inelastic system, nor to the value determined from the inelastic design spectrum. Thus,
convergence of this iterative procedure is deceptive because it can leave the erroneous
impression that the calculated deformation is accurate. This approximate procedure therefore
does not meet the basic requirement of a rational iterative procedure: it should always
converge to the “exact” result after a sufficient number of iterations.

55



. The ATC-40 Procedure B always gives a unique value of deformation, the same as
determined by Procedure A if it converged.

. The peak deformation of inelastic systems, determined by ATC-40 procedures, when
compared against results of nonlinear response history analysis for several ground motions
were shown to be inaccurate. The approximate procedure underestimates significantly the
deformation for a wide range gf, values with errors approaching 50%, implying that the

estimated deformation is only about half of the “exact” value.

. The damping modification factor, in ATC-40 procedures improves the deformation
estimate only marginally. Therefore tRefactor is not attractive, especially because it is
based primarily on judgement.

. The ATC-40 procedures were implemented for a wide rangg,oéndp values with the

excitation characterized by an elastic design spectrum. The resulting estimate of deformation
for the inelastic system was compared with the deformation determined from the inelastic
design spectrum using three differe, —pu—T, equations (Newmark and Hall, 1982;

Krawinkler and Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994), all of which provided
similar results. Relative to these “reference” values, the approximate procedure significantly
underestimates the deformation for a wide rangg, 0éndu values.

. The ATC-40 procedures are deficient relative to evenethstic design spectrum in the
velocity-sensitive and displacement-sensitive regions of the spectrumT Fan these
regions, the peak deformation of an inelastic system can be estimated from the elastic design
spectrum using the well-known equal displacement rule. However, the approximate
procedure requires analyses of several equivalent linear systems and still produces worse
results.

. An improved capacity-demand-diagram method that uses the well-known constant-ductility
design spectrum for the demand diagram has been developed and illustrated by examples.
When both capacity and demand diagrams are plotted i-Bhvéormat, the yielding branch

of the capacity diagram intersects the demand curves for sgveshles. The deformation is

given by the one intersection point where the ductility factor calculated from the capacity
diagram matches the value associated with the intersecting demand curve. This method gives
the deformation value consistent with the selected inelastic design spectrum, while retaining
the attraction of graphical implementation of the ATC-40 methods.

. One version of the improved method is graphically similar to ATC-40 Procedure A.
However, the two differ fundamentally in an important sense; the demand diagram used is
different: the constant-ductility demand diagram for inelastic systems in the improved
procedure versus the elastic demand diagram in Procedure A for equivalent linear systems.

. A second version of the improved method is graphically similar to ATC-40 Procedure B.

However the two differ fundamentally in one important sense. Each point on curve A-B is

determined by analyzing an inelastic system in the improved procedure (Fig. 24) but an
equivalent linear system in Procedure B (Fig. 12).

10.The improved method can be conveniently implemented numerically if its graphical features

are not important to the user. Such a procedure, based on equations Rjaangu for

56



different T, ranges, has been presented. It has been illustrated by examples using three
different R,—p—T, relations (Newmark and Hall, 1982; Krawinkler and Nassar, 1992;

Vidic, Fajfar, and Fischinger, 1994). The graphical and numerical implementations of the
improved method are shown to give essentially identical values for deformation.

11.The new terminology that has been introduced in recent years in connection with simplified
analysis of inelastic systems has been examined and, where necessary, better terminology
recommended:

(a) The term “spectrum” implies a function of frequency or period (e.g., response spectrum
or Fourier spectrum) and is therefore inappropriate to describe a plot of pseudo-
acceleration versus deformation. The recommended terminol@gmsnd Diagranand
Capacity Diagramnstead oDemand SpectrumndCapacity Spectrum

(b) Acceleration-Displacement Response Spectrum (ADRS) Fasnnappropriate for the
same reason amdD Formatis preferable.

(c) Nonlinear Static Procedur@NSP) is a misleading term because the NSP uses a demand
diagram determined by dynamic analysis. The suggested alternati@mified
Dynamic Analysis
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D
Dapprox
Dexact

D spectrum
Di

D

Dy

Eb

kSEC

NOTATION

strain hardening ratio
constant used in Krawinkler and Nasggr— 1 — T, equations
constant used in Newmark and Hgl| — i — T, equations

pseudo-acceleration spectrum ordinate

(27T/Tn)2Di , pseudo-acceleration corresponding¥o
(2r/T,.F D, , pseudo-acceleration correspondingtp

(2n/Tn)2Dy, pseudo-acceleration corresponding to yield deformetipn
constant used in Krawinkler and Nasggr— 1 — T, equations

variable used in Krawinkler and Nassy— u - T, equations
deformation spectrum ordinate

peak deformation computed from approximate procedure

exact peak deformation determined by nonlinear response history analysis
exact peak deformation determined by inelastic design spectrum
deformation estimate at the beginning of an iteration

deformation estimate at the end of an iteration

yield deformation =,

energy dissipated in inelastic system (= area of hysteresis loop)
strain energy of the equivalent linear system

fundamental mode

j™ floor element of the fundamental moge

minimum strength required for a system to remain elastic

yield strength

acceleration due to gravity

fundamental mode factor defined by Eq. (1)

initial elastic stiffness of the inelastic system

secant stiffness of the equivalent linear system
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TarToTer Te
TarTer T

To

Teq

Th

u

Ugo+ Ugos Ugo
Um

Uy
Vy
W
¢
Ceq
¢

€q

damping modification factor specified in ATC-40

mass of the system

lumped mass at the jth floor level

effective modal mass for the fundamental vibration mode
number of floors

ductility factor

yield reduction factor

periods that define spectral regions

transition period used in Vidic, Fajfar, and Fischinggr- 1 — T, equations
equivalent vibration period
natural vibration period

deformation
peak ground displacement, velocity, and acceleration

peak deformation of inelastic system
yield displacement
pseudo-velocity corresponding to yield deformatpp

weight of the system
viscous damping ratio of linearly elastic system

equivalent viscous damping ratio
viscous damping used in equivalent linear procedures
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APPENDIX A. DEFORMATION OF VERY-SHORT PERIOD SYSTEMS BY ATC-40
PROCEDURE B

Consider an elastoplastic system with the following properties=0.1s, { = 5%,
f,=0.2659v, u, =0.066cm. The deformation demand of this system computed from ATC-40

Procedure B isD =2.267 cifFig. A.1a) and the values of.,=0.586%kand Zeq:O. 397 The

“exact” deformation of this system computed from nonlinear RHA is 0.3944 cm and the error is
100%(2.267—0.3944 +0.3944=47%%. Clearly ATC-40 Procedure B leads to unreasonably

large error for such a system.

Figure A.1b shows the close-up view of the intersection between éuBend the
capacity diagram wherein the demand diagrams for 5% and 39.7% damping are also included.
Observe that the demand diagram for 39.7% damping also passes through the intersection point
between curvé-B and the capacity diagram. This figure leads to the following observations.

The curveA-B can be divided into three distinct segments. Initially the curve is very
steep, it then becomes essentially flat, and finally it begins to move downward slowly. Since the
capacity of the selected system is lower than the flat portion of the AuByehe intersection
between the capacity diagram and the cukv® does not occur till the third segment. On the
39.7% demand curve, the intersection occurs past the constant pseudo-acceleration region of the
spectrum. This implies that even though the initial elastic period of the system is in the very-
short period region, the intersection would occur in the con$taation if the capacity of the
system is smaller than the pseudo-acceleration value in the coAstagien of the response

spectrum corresponding t@eq:O. 39As a result, the equivalent period at this intersection

point would have to be significantly larger than the initial elastic period (for the selected system
T,=0.1s andT.,=0.5861) which in turn would lead to large deformation demand.
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Figure A.1. ATC-40 Procedure B applied to a system witlT,= 0.1s and A, = 0.2659 g: (a)

deformation demand; and (b) close-up view near the intersection between the demand and
capacity diagrams.
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APPENDIX B: EXAMPLES USING R,—-u-T, EQUATIONS

SYSTEM 1

Consider an elastoplastic system with the following properties=0.5s, { = 5%,
A=f , W= 0.599% . The pseudo-acceleration for linear-elastic system with 0.5s, { = 5%

is A=2.7062g. For this systemD, =u, = (217T,. xA, x g = (217/0.5f x0.5995x 980 = 3.7202
cm andRr, = 2.7062+0.5995=4.51 .

Newmark-Hall Equation (Eq. 16)

The periods corresponding to various regions of the Newmark-Hall design spectrum are
T.=1/33s, T,=0.125s, andT.=0.6634s; T. is unknown at this time because it depends on

U that is yet to be determined. Singg is unknown, it is not clear which equation — the third or
the fourth in Eq. (16) — should be used to determpnéssuming thatT,<T,<T., gives
u=(+ R§)+2=(1+4_512)+2:10.67. For this value of W, T¢=T/20-1/u

= 0.6634«/W67—1/10.67: 0.2804s. Clearly the assumption th@t <T,<T. IS not correct.
Therefore, we must use the available equationTfok T,<T., which givespy=R,*T.+T,

=4.51x0.6634+0.5=5.99. For this value ofi, T, =0.6634y2%5.99-1/5.99 = 0.3674 s and
the assumption thaf,<T,<T. is valid. The deformation demand =5.99x3.7202= 22.29
cm.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behaviora=1 and b=0.42. Then
c=05+(1+0.5)+0.42+05=1.1733 (Eq. 18) andu=1+(1+1.17339x(451~1) = 5.14.
The deformation demand =5.14x3.7202= 19.11 cm.

Vidic-Fajfar-Fischinger Equation (Eq. 22)

Sincep is unknown at this timeT, (Eg. 21) can not be determined at this time. Assume
that T,=T.=0.6634s (Fajfar 1998),T,=0.5s<T,. The first of the two equations in Eq. (22)

then gives W =1+[0.74x(0.66340.5)(4.51-1)]***=4.69. The deformation demandD =
4.69%x3.7202=17.43 cm.

SYSTEM 2

Consider an elastoplastic system with the following properties=0.5s, { = 5%,
A=f , W= 0.89925 . The pseudo-acceleration for linear-elastic system with 0.5s, { = 5%
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is A=2.7062g. For this systemD, =u, = (21T, xA,*x g = (217/0.5f x0.8992x 980 = 5.5803
cm andR, = 2.7062+ 0.8992=3.01 .

Newmark-Hall Equation (Eq. 16)

Assuming thatT,<T,<T., gives u:(1+ 3_012)+2:5.03. For this value ofu, T.=

0.6634%x+/2x5.03-1/5.03=0.3970 s. Clearly the assumption th@t <T,<T. IS nhot correct.
Therefore, we must use the available equation fpr<T,<T., Which gives p

=3.01x0.6634+0.5=3.99. For this value ofi, T, = 0.6634«/2x3.99—1/3.99 = 0.4393 s and
the assumption that,<T,<T. is valid. The deformation demand =3.99x5.5803= 22.29
cm.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behaviora=1 and b=0.42. Then
c=05+(1+05)+0.42+05=1.1733 (Eq. 20) andp=1+(1+1.1733x(3071"*-1) = 3.25.
The deformation demand = 3.25x5.5803= 18.15 cm.

Vidic-Fajfar-Fischinger Equation (Eq. 22)

Assuming thatT,=T.=0.6634s and using the first of the two equations in Eq. (22),
gives  u=1+[0.74x(0.66340.5)3.01-1)]***=3.05.  The  deformation = demand
D = 3.05%x5.5803= 17.02 cm.

SYSTEM 3

Consider an elastoplastic system with the following properties=0.5s, { = 5%,
A=f y+w:1.5624g. The pseudo-acceleration for linear-elastic system with 0.5s, { = 5%

is A=27062Q. For this system, D,=(21/0.5)x1.5624x980 = 9.6962 cm and
R, = 2.7062+1.5624=1.73,

Newmark-Hall Equation (Eq. 16)

Assuming thatT,<T,<T., gives u:(1+1_732)+2:2.0. For this value ofu, T.=
0.6634%x+/2%x2.0-1/2.0=0.5745s and the assumption that,<T,<T. Iis valid. The

deformation demand =2.0x9.6962= 19.39 cm.
Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic  force-deformation behaviora=1 and b=0.42. Then
c=05+(1+05)+0.42+05=1.1733 (Eq. 20) andpu=1+(1+1.1733x(1.731%-1) = 1.77.
The deformation demanD =1.77x9.6962= 17.20 cm.
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Vidic-Fajfar-Fischinger Equation (Eq. 22)
Assuming thatT,=T.=0.6634s and using the first of the two equations in Eq. (22),

gives  p=1+[0.74x(0.663405)1.73-1)]***=171.  The  deformation  demand
D =1.71x9.6962= 16.54 cm.

SYSTEMS 4TO 6

Consider an elastoplastic systems with the following propertiess1s, { = 5%,
A, =0.2997g, 0.44969, and0.8992y for Systems 4, 5, and 6, respectively. The pseudo-

acceleration for linear-elastic system with =1s, { = 5% is A=1.7984g. For these system,
D, = 7.4403 cm, 11.160 cm, and 22.321 cm, and corresponding valggs-o8, 4, and 2.

Newmark-Hall Equation (Eq. 16)

For T,>T., L=R,= 6 for System 4, 4 for System 5, and 2 for System 6 which gives
D =puxp,=44.64 cm for all these examples.

Krawinkler-Nassar Equation (Eq. 19)

For elastoplastic force-deformation behaviora=1 and b=0.42. Then
c=1.0+(1+1.0)+0.42+1.0=0.92 (Eq. 18). The values ofi for the three Systems are 5.56,
3.80, and 1.97 which give deformation demdnd 41.37 cm, 42.46 cm, and 43.97 cm.
Vidic-Fajfar-Fischinger Equation (Eq. 22)

For T,>T,, values ofu for the three Systems are 4.97, 3.32, and 1.73 which give
deformation demand =36.94 cm, 37.0 cm, and 38.58 cm.
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